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Abstract

Scalable Parallel Algorithms for Genome Analysis

by

Evangelos Georganas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine A. Yelick, Chair

A critical problem for computational genomics is the problem of de novo genome assembly:
the development of robust scalable methods for transforming short randomly sampled “shot-
gun” sequences, namely reads, into the contiguous and accurate reconstruction of complex
genomes. These reads are significantly shorter (typically hundreds of bases long) than the
size of chromosomes and also include errors. While advanced methods exist for assembling
the small and haploid genomes of prokaryotes (e.g. cells without nuclei), the genomes of
eukaryotes (e.g. cells with nuclei) are more complex. Moreover, de novo assembly has been
unable to keep pace with the flood of data, due to the dramatic increases in genome sequencer
capabilities, combined with the computational requirements and the algorithmic complexity
of assembling large scale genomes and metagenomes.

In this dissertation, we address this challenge head on by developing parallel algorithms
for de novo genome assembly with the ambition to scale to massive concurrencies. Our work
is based on the Meraculous assembler, a state-of-the-art de novo assembler for short reads
developed at the Joint Genome Institute. Meraculous identifies non-erroneous overlapping
substrings of length k (k-mers) with high quality extensions and uniquely assembles genome
regions into uncontested sequences called contigs by constructing and traversing a de Bruijn
graph of k-mers, a special type of graph that is used to represent overlaps among k-mers.
The original reads are subsequently aligned onto the contigs to obtain information regarding
the relative orientation of the contigs. Contigs are then linked together to create scaffolds, se-
quences of contigs that may contain gaps among them. Finally gaps are filled using localized
assemblies based on the original reads.

Efficient parallelization of the core algorithms in the Meraculous pipeline exhibit nu-
merous challenges, including the irregular communication patterns. First, we design efficient
scalable algorithms for k-mer analysis and contig generation. K-mer analysis is characterized
by intensive communication and I/O requirements and our parallel algorithms successfully
reduce the memory requirements by 7×. Then, contig generation relies on efficient paral-
lelization of the de Bruijn graph construction and traversal, which necessitates a distributed
hash table and is a key component of most de novo assemblers. The underlying de Bruijn
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graphs are characterized by high diameter and therefore the parallelization of the corre-
sponding algorithms is formidable. We present a novel algorithm that leverages one-sided
communication capabilities of the Unified Parallel C (UPC) to facilitate the requisite fine-
grained, irregular parallelism and the avoidance of data hazards. The sequence alignment
is characterized by intensive I/O and large computation requirements. We introduce mer-
Aligner, a highly parallel sequence aligner that implements a seed–and–extend algorithm and
employs parallelism in all of its components. We employ a handful of optimizations in order
to scale efficiently to massive concurrencies and results show that merAligner outperforms
other state-of-the-art tools by orders of magnitude. Finally, this dissertation details the par-
allelization of the remaining scaffolding modules, enabling the first massively scalable, high
quality, complete end-to-end de novo assembly pipeline. Experimental large-scale results
on the NERSC Edison Cray XC30 system using human and wheat genomes demonstrate
efficient performance and scalability on thousands of cores. Compared to the original Mer-
aculous code, which has limited scalability, and requires approximately 48 hours to assemble
the human genome, our pipeline called HipMer computes the assembly in only 4 minutes
using 23,040 cores of Edison – an overall speedup of approximately 720×.

In the last part of the dissertation we tackle the problem of metagenome assembly.
Metagenomics is currently the leading technology to study the uncultured microbial diversity
and delineating the microbiome structure and function. While accessing an unprecedented
number of environmental samples that consist of thousands of individual microbial genomes
is now possible, the bottleneck is becoming computational, since the sequencing cost im-
provements notoriously exceed that of Moore’s Law. Assemblies of metagenomes into long
contiguous sequences are not only critical for the identification of the usually long biosyn-
thetic clusters but are also key for enabling the discovery of new lineages of life and viruses.
Metagenome assembly is further complicated (compared to single genome assembly) by re-
peated sequences across genomes, polymorphisms within a species and variable frequency
of the genomes within the sample. In our work we repurpose HipMer components for the
problem of metagenome assembly and we design a versatile, high-performance metagenome
assembly pipeline that outperforms state-of-the-art tools in both quality and performance.
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Chapter 1

Introduction

Genomes are the fundamental biochemical elements underlying inheritance, represented by
chemical sequences of the four DNA “letters” A, C, G, and T that stand for the nucleobases
Adenine, Cytosine, Guanine and Thymine respectively. Genomes encode the basic software
of an organism, defining the proteins that each cell can make, and the regulatory information
that determines the conditions under which each protein is produced, allowing different
organs and tissues to establish their distinct identities and maintain the stable existence of
multicellular organisms like humans. Sequences that differ by as little as one letter can cause
the expression of proteins that are defective or are inappropriately expressed at the wrong
time or place. These differences underlie many inherited diseases and disease susceptibility.

Each organism’s genome is a specific sequence, ranging in length from a few million
letters for a typical bacterium to 3.2 billion letters for a human chromosome to over 20
billion letters for some plant genomes, including conifers and bread wheat. Genomes differ
between species and between individuals within species; for example, two healthy human
genomes typically differ at more than three million positions, and each can contain over
ten million letters that are absent in the other. Genomes mutate between every generation
and even within individuals as they grow, and some of those mutations can drive cells to
proliferate and migrate inappropriately, leading to diseases such as cancer. We do not yet
know which sequence differences are important but hope to learn these rules by sequencing
millions of healthy and sick people, and comparing their genomes.

Determining a genome sequence “de novo” (that is, without reference to a previously de-
termined sequence for a species) is a challenging computational problem. Modern sequencing
instruments can cost-effectively produce only short, erroneous sequence fragments of 100-
250 letters, read at random from a genome (so-called “shotgun” sequencing). A billion such
short reads can be produced for around $1,000, enough to redundantly sample the human
genome thirty times in overlapping short fragments. The computational challenge of genome
assembly is then to reconstruct chromosome sequences from billions of overlapping short, er-
roneous sequence fragments, bridging a six order of magnitude gap between the length of
the individual raw sequence reads and a complete chromosome.

Reconstructing a long sequence from short substrings is in general an NP-hard prob-



CHAPTER 1. INTRODUCTION 2

lem, and must rely on heuristics and/or take advantage of specific features of genome se-
quences [98, 56]. Current genome assembly pipelines typically rely on single node, large
memory (e.g. 1 TB) architectures, and can take a week to assemble a single human genome,
or even several months for larger genomes like loblolly pine [110]. These approaches cannot
be used in clinical settings or on genomes that exceed the memory footprint of Terabytes.
While some distributed memory parallel algorithms have been developed [97, 9, 79, 51], they
do not scale to massive concurrencies as they exhibit algorithmic bottlenecks and the irreg-
ular access patterns that are inherent to these algorithms amplify the distributed memory
parallelization overheads.

To add more urgency to the problem, over the last few years increasing attention has
been devoted to the microbiome, the collective of single-celled organisms that live in diverse
environments, including the human gut and other cavities and surfaces on the body. The
human microbiome contains several times as many cells as are in the human body, and the
microbes that live in and on us are increasingly linked to health [2]. But most of these
microbes are undescribed and uncultivated, and their role in health or disease unknown.
An increasingly important way of discovering and characterizing these unknown microbes is
direct shotgun sequencing of DNA from an environment, such as the human gut, producing a
“metagenome”. If the genomes of the constituent microbes can be assembled from the result-
ing set of short fragments, we can gain valuable information about the functional and role of
these organisms. The number of publicly available metagenome datasets is rapidly increasing
where in the span of just two years (2011-2013), the number of metagenome datasets nearly
quadrupled and the number of identified protein coding genes increased by 119× [76], far
exceeding Moore’s law of computing. An added complexity of metagenomes assembly is that
in a given microbiome some species are common and others rare; each organism contributes
to the raw data in proportion to its prevalence and hundreds or thousands of species can be
present.

This dissertation addresses the aforementioned challenges by developing parallel algo-
rithms for de novo assembly with the ambition to scale to massive concurrencies. The result
of this work is HipMer [33], an end-to-end high performance de novo assembler designed
to scale to massive concurrencies. HipMer uses (i) high performance computing clusters or
supercomputers for both memory size and speed, (ii) a global address space programming
model via Unified Parallel C (UPC) [37] to permit random accesses across the aggregate
machine memory, and (iii) parallel graph algorithms and hash tables, optimized for the sta-
tistical characteristics of the assembly process to reduce communication costs and increase
parallelism. Our work is based on the Meraculous [19, 18] assembler, a state-of-the-art
de novo assembler for short reads developed at the Joint Genome Institute [54]. Meracu-
lous is a hybrid assembler that combines aspects of de Bruijn-graph-based assembly with
overlap-layout-consensus approaches and is ranked at or near the top in most metrics of
the Assemblathon II competition [13]. Meraculous leverages base quality scores from se-
quencing instruments to identify non-erroneous overlapping substrings of length k (k-mers)
with high quality extensions and then uniquely assembles genome regions into uncontested
sequences called contigs. The original reads are subsequently aligned onto the contigs to
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obtain information regarding the relative orientation of the contigs. The last stage of the
Meraculous pipeline is called scaffolding where the read-to-contigs alignments are assessed
to stitch together multiple contigs into longer scaffolds that may contain gaps. Finally gaps
are filled using localized assemblies based on the original reads; these localized assemblies
involve only localized reads and therefore are able to extract information that is hard to
identify by examining the complex, entire read dataset. The original Meraculous used a
combination of serial, shared memory parallel, and distributed memory parallel code. The
size and complexity of genomes that could be assembled with Meraculous was limited by
both speed and memory size. Our goal was a fast, scalable parallel implementation that
could use the combined memory of a large scale parallel machine and our work [35, 34,
33] has covered all aspects of the single genome assembly pipeline: k-mer analysis, contig
generation, sequence alignment, scaffolding and gap closing.

The first step of the pipeline, namely k-mer analysis, is to process the erroneous input
reads and extract error-free k-mers. The reads are chopped into overlapping k-mers that
start at every position in the input (i.e. a read of length L will have L − k + 1 k-mers)
and a count is kept for each k-mer occurring more than once. The generated k-mers are
preprocessed and only those who appear more times than a user-specified threshold are kept.
Also, we further filter the survived k-mers and maintain only those with unique high-quality
forward and backward single-base extensions; we consider that a k-mer extension is of “high
quality” if it appears to extend that k-mer more times than a user-specified threshold. These
remaining k-mers are considered to be error-free. One of the difficulties with performing k-
mer analysis in distributed memory is that the size of the intermediate data (the set of
k-mers) is significantly larger than the input, since each read is subsequenced with overlaps
of k − 1 base pairs. Also, the massive input read datasets stress the I/O system while
the k-mer counting phase requires high communication bandwidth. Finally, high frequency
k-mers constitute a source of load imbalance and pose a scalability impediment at large
concurrencies. Our work overcomes all these shortcomings by employing novel algorithmic
and optimization techniques.

The output of the k-mer analysis is a set of k-mers with high quality extensions. These
k-mers are used to form a de Bruijn graph, where the k-mers are the vertices in the graph
and two k-mers are connected with an edge if they overlap by k − 1 consecutive bases. We
store this de Bruijn graph in a compact way using a hash table: the keys in the hash ta-
ble represent the vertices and the values represent the adjacent edges of the corresponding
vertices, i.e. the high-quality extensions of the k-mers. Then, by traversing the de Bruijn
graph we find the connected components which constitute the contigs. However, paralleliz-
ing the contig generation exhibits a few challenges. The first challenge involves the size of
the de Bruijn graph which can be very large depending on the genome size. For complex
eukaryotes the corresponding hash table requires hundreds of gigabytes to tens of terabytes
of memory. Also, the underlying graph of k-mers is characterized by high-diameter where
parallel Breadth First Search (BFS) approaches do not scale well and this fact poses a second
challenge. In order to deal with the first challenge, we distribute the hash table to multi-
ple processors by leveraging the global address space of UPC which obviates the need for
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large shared memory hardware. However, we introduce communication and synchronization
overheads in the parallel graph construction. We further optimize this process by applying
dynamic message aggregation and we minimize the number of messages and the number
of required synchronization events. In regard to the de Bruijn graph traversal, we develop
a novel parallel algorithm that employs massive concurrency. This algorithm exploits the
one-sided communication capabilities of UPC, remote atomics and a lightweight synchro-
nization protocol. Finally, we identify sources of locality in this kind of graph and design an
appropriate graph partitioning scheme. These methods can significantly reduce the volume
of communication during the graph traversal, yielding a communication-avoiding parallel
algorithm. The high-performance contig generation has been used for the whole-genome
shotgun assembly of the highly repetitive 16 Gbp (Giga base pairs) hexaploid bread wheat
genome [20]. The contig generation of the wheat genome required 73 seconds on 3,840 cores
of the Edison supercomputer [26], where in aggregate we had available 10 Tbytes of memory.

The contig generation produces highly confident regions of contiguous sequences, but they
can be further extended by leveraging information from the original reads. The foremost
task in the contigs’s extension process is to align the input reads onto the contigs. The
sequence alignment algorithm in Meraculous uses a seed-and-extend paradigm where: (1) the
contig sequences are decomposed into overlapping seeds of length k which are subsequently
indexed with a hash table (keys are the seeds and values are the corresponding contigs they
were extracted from) and (2) we extract seeds from the reads, look them up in the index
data structure, locate candidate contigs for alignment and eventually perform an extension
algorithm with the read and the candidate contig as inputs. There are a few parallel sequence
alignment tools but they all suffer mainly from two limitations. First, they build the seed
index serially and then replicate it to the available processors. However, the seed index
construction requires a lot of processing time for large genomes and the serial procedure
imposes a serialization bottleneck on the critical path of the parallel pipeline. Second,
the seed index for large eukaryote genomes requires hundreds of gigabytes of memory and
thus can not fit even in a typical modern supercomputer node. To overcome these major
scalability impediments, we have developed merAligner [34], a fully parallel sequence aligner
that employs parallelism in all of its components. MerAligner distributes the hash table that
represents the seed index to multiple nodes. Also, merAligner leverages dynamic message
aggregation at the construction of the distributed hash table and software caching schemes
to reduce the communication volume during the aligning phase. Additionally, merAligner
preprocesses the contig sequences to extract properties enabling exact sequence matching
with minimal communication.

Regarding the remaining steps in the scaffolding module, we assess the read-to-contig
alignments from the previous alignment step and generate links among contigs. In order to
assess these links in parallel, we utilize again distributed hash tables with communication
optimizations. Finally, we form a graph of contigs using the links among them and by
identifying the connected components in this graph we form scaffolds of contigs. Each
scaffold may contain gaps between the contigs, which are efficiently closed by employing a
mini-assembly procedure. The parallelization of the scaffolding modules enables the first
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massively scalable, high quality, complete end-to-end de novo assembly pipeline, which we
call HipMer. Experimental large-scale results on the NERSC Edison Cray XC30 using human
and the wheat genomes demonstrate efficient performance and scalability on thousands of
cores. Compared with the original Meraculous code, which has limited scalability, and
requires approximately 48 hours to assemble the human genome, HipMer employs an efficient
UPC implementation, computing the assembly in only 4 minutes using 23,040 cores of Edison
– an overall speedup of approximately 720×.

To tackle the metagenome assembly problem, we repurpose the high performance algo-
rithmic modules in HipMer and implement a metagenome assembly metagenome pipeline
called meta-HipMer. The metagenome datasets are in general much larger than the single
genome case in order to resolve all of the individual genomes; this affects both the input size
and the memory required for hash tables of k-mers. The meta-HipMer algorithm consists of
two main components: (1) the iterative contig generation and (2) the scaffolding component.
The iterative contig generation aims to eliminate the quality trade-off that different k-mer
sizes induce in de Bruijn graph based assemblers. Typically, a small value of k is appropriate
for low-coverage genome areas since it allows sufficient number of overlapping k-mers to be
found and as a result the underlying sequences can be assembled to longer contigs. On the
other hand, a large value of k is better suited for the high-coverage regions since a sufficient
number of overlapping, long k-mers can be found and repetitive regions are disambiguated
by such long k-mers. In each iteration of the contig generation step, meta-HipMer applies
a handful of transformations on the de Bruijn graphs, such as “bubble” merging due to to
Single Nucleotide Polymorphisms (SNPs) and iterative graph pruning aiming to eliminate
erroneous graph branches. To accommodate low coverage genomes, meta-HipMer leverages
a localized assembly algorithm that is able to extract critical information from the entire
dataset. Eventually, the HipMer’s scaffolding module is utilized and adapted to finalize the
metagenome assembly. Large scale experimental results with the meta-HipMer pipeline in-
dicate that our approach outperforms state-of-the-art tools in both quality and performance.

In the last part of this dissertation we present an architectural analysis of core parallel
operations encountered in our assembly pipelines. First, we investigate the communication
aspects that are stressed during the pipeline and we illustrate the impact of the communi-
cation infrastructure on the parallel contig generation and sequence alignment. Then, we
develop micro-benchmarks to assess the behavior of such irregular access patterns at dif-
ferent scales and we compare the performance of the micro-benchmarks with the empirical
performance of the pipeline’s modules. These micro-benchmarks provide naturally a roof-
line model [103] and we demonstrate that our parallel implementations are efficient. Finally,
we highlight the necessity for scalable, parallel I/O infrastructure in modern supercomputers
in order to accommodate genome assembly pipelines that deal with massive datasets. The
results of our architectural analysis indicate bottlenecks in current architectures and provide
insights on how to improve the performance of such patterns in future systems.
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1.1 Contributions

The main contributions of this dissertation include new parallel algorithms designed for
global address space programming, i.e. a shared memory style algorithms with reads, writes
and atomic updates to remote data, but having data layout and communication optimizations
for distributed memory scaling:

• A global address space algorithm for de Bruijn graph construction that represents the
graph as a hash table.

• A global address space graph traversal algorithm that is suitable for high-diameter
graphs where traditional BFS approaches fail to scale.

• A new parallel sequence alignment algorithm that employs various communication and
computation optimizations.

• A new parallel scaffolding algorithm for a global address space with various communi-
cation optimizations.

• A new parallel algorithm for metagenome assembly that efficiently deals with the id-
iosyncrasies of metagenome datasets.

In addition, the thesis describes novel scalable implementations using the Unified Parallel C
(UPC) language for partitioned global address space programming:

• A scalable implementation of the graph construction algorithm with asynchronous com-
munication allowing processors to perform communication on demand, i.e. at different
rates based on their own distribution of keys, and dynamic message aggregation to
amortize communication overhead.

• A fast implementation of graph traversal with a remote synchronization approach that
resolves data races while minimizing synchronization overhead.

• A locality aware hashing strategy that reduces communication in the de Bruijn graph
traversal for genomes that are similar to previously assembled ones as is the case for
human assembly.

• A scalable sequence alignment implementation that distributes the index of the “ref-
erence” genome as a distributed hash table, deploys software caching to reduce com-
munication and has a preprocessing optimization to quickly identify exact matches,
avoiding both communication and computation.

• A complete parallel implementation of single genome assembly algorithm, HipMer,
which matches the quality of the original Meraculous code.
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• A distributed memory parallel metagenome assembly pipeline, meta-HipMer, which
produces high-quality results, meeting or improving on other state-of-the-art metage-
nome assemblers, and scales to much larger data sets.

Finally, we analyze the performance of our codes, noting that the genome assembly workload
is unlike most high performance simulation codes:

• Experimental analysis of the entire genome assembly pipeline on a Cray XC30 super-
computer using the human genome and the grand-challenge wheat genome datasets,
showing unprecedented performance and scalability, attaining an overall runtime of
3.91 minutes for the human DNA at 23K cores on the Cray XC30 while the original
pipeline required 48 hours on a large shared memory machine.

• An architectural analysis of key parallel operations encountered in our assembly pipe-
lines, indicating bottlenecks in current architectures and providing insights on how to
improve the performance of such parallel operation in future systems.

The rest of this dissertation is organized as follows. Chapter 2 describes the fundamental
concepts that we build upon in this dissertation. Chapters 3 and 4 describe the parallel
algorithms for k-mer analysis and contig generation respectively. Chapter 5 details that
parallel sequence alignment algorithm while Chapter 6 presents the parallelization of the
scaffolding and gap closing modules. Chapter 7 provides a quality assessment of the HipMer
single genome assembly pipeline, illustrates its end-to-end scalability results and compares
its performance to other assemblers. Chapter 8 introduces the parallel algorithms in the
meta-HipMer metagenome assembly pipeline along with experimental results. Chapter 9
illustrates an architectural analysis of core parallel operations in the HipMer and meta-
HipMer pipeline. Finally, Chapter 10 presents related work and Chapter 11 concludes this
dissertation.
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Chapter 2

Background

In this chapter, we describe the fundamental concepts that we build upon in this disserta-
tion. We start by reviewing the Meraculous [19, 18] single genome assembly pipeline and
its main algorithmic components. This pipeline is the basis for our parallel algorithms. We
then provide a brief overview of the Partitioned Global Address Space Model (PGAS) mem-
ory model in Unified Parallel C (UPC) [37] which lies at the heart of our parallelization
techniques. Finally, we discuss aspects of distributed hash tables which constitute our main
distributed data structure. In particular, we examine use cases of distributed hash tables
that enable various optimizations in a PGAS model. These use cases will be used as point
of reference throughout this dissertation.

2.1 The Meraculous Assembly Pipeline

The input to a genome assembly pipeline is a set of short, erroneous sequence fragments
of 100-250 letters, read at random from a genome (see Figure 2.1). Note that the genome
is redundantly sampled at a depth of coverage d. Typically these reads fragments come in

Reads 

Genome      

depth d 

insert size 

Figure 2.1: Reads extracted from a genome with a depth of coverage d.



CHAPTER 2. BACKGROUND 9

reads 

contigs 

k-mers 

1 

2 

3 

scaffolds 

Read     G A T C T G A A C C G 

G A T 
A T C 

T C T 
C T G 

T G A 
G A A 

 A A C 
 A C C 

 C C G 

k-mers  

(a) (b) 

alignments 

4 

Figure 2.2: (a) The Meraculous assembly pipeline. (b) Extracting k-mers (k = 3) from the
read GATCTGAACCG.

pairs and this information will be further exploited in the pipeline. Paired reads are also
characterized by the insert size, the distance between the two ends of the reads. Thus,
given the read lengths and the corresponding insert size, we have an estimate for the gap
between the paired reads. Typically the reads are grouped into libraries and each library is
characterized by a nominal insert size and its standard deviation. Libraries with different
insert sizes play a significant role in the assembly process, as will be explained later in this
section.

The Meraculous pipeline consists of four major stages (see Figure 2.2(a)):

1. K-mer analysis: The input reads are processed to exclude errors. First, the reads are
chopped into k-mers, which are overlapping sequences of length k. Figure 2.2(b) shows
the k-mers (with k = 3) that are extracted from a read. Then, the k-mers extracted
from all the reads are counted and those that appear fewer times than a threshold
are treated as erroneous and discarded. Additionally, for each k-mer we keep track of
the two neighboring bases in the original read it was extracted from (henceforth we
call these bases extensions). The result of k-mer analysis is a set of k-mers and their
corresponding extensions that with high probability include no errors.
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GAT ATC TCT CTG TGA 

AAC 

ACC 

CCG 

AAT 

ATG 

TGC 

GAA 

Contig 1: GATCTGA 

Contig 2: AACCG 

Contig 3: AATGC 

Figure 2.3: A de Bruijn graph of k-mers with k = 3.

It is worth noting that the redundancy d in the read data set is crucial in the process
of excluding the errors implicitly. More specifically, an error at a specific read location
yields k erroneous k-mers1. However, there are more reads covering the same genome
location due to the redundancy d. More precisely, given the read length L we expect
to find a k-mer on average f = d · (1− (k − 1)/L) times in the read data set where f
is the mean of the Poisson distribution of key-frequencies [68] and most of these k-mer
occurrences will be error-free. Therefore, if we find a particular k-mer just one or two
times in our read dataset, then we consider that to be erroneous. On the other hand,
k-mers that appear a number of times proportional to d are likely error-free.

2. Contig generation: The resulting k-mers from the previous step are stored in a de
Bruijn graph. This is a special type of graph that represents overlaps in sequences.
In this context, k-mers are the vertices in the graph, and two k-mers that overlap by
k − 1 consecutive bases whose corresponding extensions are compatible are connected
with an undirected edge in the graph (see Figure 2.3 for a de Bruijn graph example
with k = 3).

Due to the nature of DNA, the de Bruijn graph is extremely sparse. For example, the
human genome’s adjacency matrix that represents the de Bruijn graph is a 3 · 109 ×
3 · 109 matrix with between two and eight non-zeros per row for each of the possible
extensions. In Meraculous only k-mers which have unique extensions in both directions
are considered, thus each row has exactly two non-zeros.

Using a direct index for the k-mers is not practical for realistic values of k, since there
are 4k different k-mers. A compact representation can be leveraged via a hash table: A
vertex (k-mer) is a key in the hash table and the incident vertices are stored implicitly
as a two-letter code [ACGT][ACGT] that indicates the unique bases that immediately
precede and follow the k-mer in the read dataset. By combining the key and the
two-letter code, the neighboring vertices in the graph can be identified.

1If the error does not occur at the k first/last bases of the read, then k erroneous k-mers are generated.
Otherwise fewer erroneous k-mers are extracted.
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Figure 2.4: (a) A link between contigs i and j that is supported by three read pairs. (b) Two
scaffolds formed by traversing a graph of contigs.

In Figure 2.3 all k-mers (vertices) have unique extensions (neighbors) except from the
vertex GAA that has two “forward neighbors”, vertices AAC and AAT. From the previous
k-mer analysis results we can identify the vertices that do not have unique neighbors.
In the contig generation step we exclude from the graph all the vertices with non-unique
neighbors. Via construction and traversal of the underlying de Bruijn graph of k-mers
the connected components in the graph are identified, which are linear chains of k-mers,
called contigs. The connected components have linear structure since we exclude from
the graph all the “fork” nodes or equivalently the k-mers with non-unique neighbors.
The contigs are (with high probability) error-free sequences that are typically longer
than the original reads. In Figure 2.3 by excluding the vertex GAA that doesn’t have
unique neighbors, we find three linear connected components that correspond to three
contigs.

3. Aligning reads onto contigs: In this step we map the original reads onto the
generated contigs. This mapping provides information about the relative ordering and
orientation of the contigs and will be used in the final step of the assembly pipeline.

The Meraculous pipeline adopts a seed-and-extend algorithm in order to map the reads
onto the contigs. First, the contig sequences are indexed by constructing a seed index,
where the seeds are all substrings of length k that are extracted from the contigs. This
seed index is then used to locate candidate read-to-contig alignments. Given a read,
we extract seeds of length k, look them up in the seed index and as a result we get
candidate contigs that are aligned with the read because they share common seeds.
Finally, an extension algorithm (e.g. Smith-Waterman [99]) is applied to extend each
found seed and local alignments are returned as the final result.

4. Scaffolding and gap closing: The scaffolding step aims to “stitch” together contigs
and form sequences of contigs called scaffolds by assessing the paired-end information
from the reads and the reads-to-contigs alignments. Figure 2.4(a) shows three pairs of
reads that map onto the same pair of contigs i and j. Hence, we can generate a link



CHAPTER 2. BACKGROUND 12

Gap 1 Gap 2 Gap 3 

Gap 
closing 

closed 
scaffold 

v v 
v 

v 

v 
v 

scaffold 

Figure 2.5: The gap closing procedure.

that connects contigs i and j. By generating links for all the contigs that are supported
by pairs of reads we create a graph of contigs (see Figure 2.4(b)). By traversing this
graph of contigs we can form chains of contigs which constitute the scaffolds. Note
that libraries with large insert sizes can be used to generate long-range links among
contigs. Additionally, scaffolding can be performed in an iterative way by using links
generated from different libraries at each iteration.

After the scaffold generation step, it is possible that there are gaps between pairs of
contigs. We then further assess the reads-to-contigs mappings and locate the reads that
are placed into these gaps (see Figure 2.5). Ultimately, we leverage this information
and close the contig gaps by performing a mini-assembly algorithm involving only the
localized reads for each gap. The outcome of this step constitutes the result of the
Meraculous assembly pipeline.

In Chapters 3, 4, 5, 6 and 7 we examine in more detail the algorithms involved in the
Meraculous pipeline along with their parallelization.

2.2 The Partitioned Global Address Space Model in

Unified Parallel C

The Partitioned Global Address Space (PGAS) model is a communication mechanism em-
ployed in parallel programming languages. In this model, any thread is allowed to directly
access memory on other threads. In the PGAS model, two threads may share the same
physical address space or they may own distinct physical address spaces. In the former case,
remote-thread accesses can be done directly using load and store instructions while in the
latter case a remote access must be translated into a communication event, typically using
a communication library such as GASNet [11] or hardware specific layers such as Cray’s
DMAPP [15] or IBM’s PAMI [58].
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An alternative communication mechanism typically employed in parallel programming
languages is message passing, where the communication is done by exchanging messages be-
tween threads (e.g. see the Message Passing Interface (MPI) [40]). In such a communication
model, both the sender and the receiver should explicitly participate in the communication
event and therefore requires coordinating communication peers to avoid deadlocks. The
programmer’s burden in such a two-sided communication model can be further exaggerated
in situations where the communication patterns are highly irregular as in distributed hash
table construction. On the other hand, the PGAS model requires the explicit participation
only of the peer that initiates the communication and as a result parallel programs with
irregular accesses are easier to implement. Such a communication mechanism is typically
referred to as one-sided communication. In addition to PGAS languages like Unified Parallel
C (UPC) [37] there are programming libraries such as SHMEM [17] and MPI 3.0 [24] with
one-sided communication features. In Chapter 9 we describe some of the specific one-sided
capabilities that are required by our parallel algorithms.

Unified Parallel C (UPC) is an extension of the C programming language designed for
high performance computing on large-scale parallel machines by leveraging a PGAS com-
munication model. UPC utilizes a Single Program Multiple Data (SPMD) model of com-
putation in which the amount of parallelism is fixed at program startup time. On top of
its one-sided communication capabilities, UPC provides global atomics, locks and collectives
that facilitate the implementation of synchronization protocols and common communication
patterns. In short, UPC combines the programmability advantages of the shared-memory
programming paradigm and the control over data layout and performance of the message
passing programming paradigm. According to the memory model of UPC each thread has
a portion of shared and private address space. Variables that reside in the shared space can
be directly accessed by any other thread and typically synchronization is required in order
to avoid race conditions. On the other hand, variables that live in the private space can be
read and written only by the thread owning that particular private address space.

2.3 Distributed Hash Tables in a PGAS Model

A common data structure utilized in subsequent parallel algorithms is the distributed hash
table. There is a wide body of work on concurrent hash tables [96, 45, 47, 28, 59, 81, 95]
that focuses on shared memory architectures. There is also a lot of work on distributed hash
tables (see [6], [90] and survey of Zhang et al. [107]) specially designed for large-scale dis-
tributed environments that support primitive put and get operations. Such implementations
do not target dedicated HPC environments and therefore have to deal with faults, malicious
participants and system instabilities. Such distributed hash tables are optimized for ex-
ecution on data centers rather than HPC systems with low-latency and high-throughput
interconnects. There are some simple distributed memory implementations of hash tables in
MPI [36] and UPC [77], but they are used mainly for benchmarking purposes of the under-
lying runtime and do not optimize the various operations depending on the use case of the
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Figure 2.6: (a) A de Bruijn graph of k-mers (k = 3). (b) A distributed hash table that
represents de Bruijn graph at left.

hash table. In this section we describe the basic implementation of a distributed hash table
in a PGAS model. We also identify a handful of use cases for distributed hash tables that
enable numerous optimizations for HPC environments.

2.3.1 Basic implementation of a distributed hash table

We will present the vanilla implementation of a distributed hash table by following an exam-
ple of a distributed de Bruijn graph. Figure 2.6 (a) shows a de Bruijn graph of k-mers with
k = 3 and Figure 2.6 (b) illustrates its representation in a distributed hash table. A vertex
(k-mer) in the graph is a key in the hash table and the incident vertices are stored implicitly
as a two-letter code [ACGTX][ACGTX] that indicates the unique bases that follow and precede
that k-mer. This two letter code is the value member in a hash table entry. Note that the
character X indicates that there is no neighboring vertex in that direction. By combining the
key and the two-letter code, the neighboring vertices in the graph can be identified. More
specifically, by concatenating the last k − 1 letters of a key and the first letter of the value,
we get the “forward” neighboring vertex. Similarly, by concatenating the second letter of
the value and the first k − 1 letters of that key, we get the “preceding” neighboring vertex.
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In our example, all the hash table entries are stored in the shared address space and thus
they can be accessed by any thread. The buckets are distributed to the available threads in
a cyclic fashion to achieve load balance. Note that this hash table implementation utilizes
a chaining rule to resolve collisions in the buckets (entries with the same hash value). We
emphasize here that the hash tables involved in our algorithms can be gigantic (hundreds
of Gbytes up to tens of Tbytes) and cannot fit in a typical shared-memory node. Therefore
it is crucial to distribute the hash table buckets over multiple nodes and in this quest the
global address space of UPC is convenient.

In the following subsection we list different use case scenarios of distributed hash tables
and in the subsequent chapters we examine efficient algorithms to construct and utilize the
hash tables under various conditions.

2.3.2 Use cases of distributed hash tables

Here we identify a handful of use cases for the distributed hash tables that allow specific
optimizations in their implementation. These use-cases will be used as points of reference in
the chapters that detail our parallel algorithms.

• Use case 1 – Global Update-Only phase (GUO)
The operations performed in the distributed hash table are only global updates with
commutative properties (e.g. inserts only). The global hash table will have the same
state (although possibly different underlying representation due to chaining) regard-
less of insert order. The global update-only phase can be optimized by dynamically
aggregating fine-grained updates (e.g. inserts) into batch updates. In this way we
can reduce the number of messages and synchronization events. We can also over-
lap computation/communication or pipeline communication events to further hide the
communication overhead.

A typical example of such a use case is a producer/consumer setting where the pro-
ducers operate in a distinct phase from consumers, e.g. all consumers insert items in a
hash table before anything is consumed/read.

• Use case 2 – Global Reads & Writes phase (GRW)
The operations performed during this phase are global reads and writes over the already
inserted entries. Typically we can’t batch reads and/or writes since there might be race
conditions that affect the control flow of the governing parallel algorithm. However, we
can use global atomics (e.g. compare-and-swap) instead of fine-grained locking in order
to ensure atomicity. The global atomics might employ hardware support depending
on the platform and the corresponding runtime implementation. We can also build
synchronization protocols at a higher level that do not involve the hash table directly
but instead are triggered by the results of the atomic operations. Finally, we can
implement the delete operation of entries with atomics and avoid locking schemes.
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For example consider the consumers in a producer/consumer scenario that compete
for the entries of the hash table. The entries may have utilization signatures (i.e.
“used” binary flags) that can be accessed via global atomics and indicate that if the
corresponding entries have been consumed or not. An orthogonal optimization for this
use case scenario is to adopt locality sensitive hashing schemes to increase locality and
decrease communication volume/latency overhead of global atomics.

• Use case 3 – Global Read-Only phase (GRO)
In such a use case, the entries of the distributed hash table are read-only and a degree
of data reuse is expected. The optimization that can be readily employed is to design
software caching schemes to take advantage of data reuse and minimize communication.
These caching frameworks can be viewed as “on demand” copying of remote parts of
the hash table. Note that the read-only phase guarantees that we do not need to
provision for consistency across the software caches. Such caching optimizations can
be used in conjunction with locality-aware partitioning to increase effectiveness of the
expected data reuse. Initially even if the data is remote, it is likely to be reused later
locally.

A typical example of this use case is a lookup only hash table that implements a
database/index. This is a special case of the consumer side in a producer/ consumer
setting where the entries can be consumed an infinite number of times.

• Use case 4 – Local Reads & Writes phase (LRW)
In this use case, the entries in the hash table will be further read/written only by
the processor owning them. The optimization strategy we employ in such a setting
is to use a deterministic hashing from the sender side and local hash tables on the
receiver side. The local hash tables ensure that we avoid runtime overheads and also
high-performance, serial hash table implementations can be seamlessly incorporated
into parallel algorithms.

For example, consider items that are initially scattered throughout the processors and
we want to send occurrences of the same item to a particular processor for further
processing (e.g. consider a “word-count” type of task). Each processor can insert the
received items into a local hash table and further read/write the local entries from
there.

We emphasize that this is not an exhaustive list of use cases for distributed hash tables.
Nevertheless, it captures the majority of the computational patterns we identified in our
parallel algorithms that will be detailed in the following chapters. Table 2.1 summarizes the
optimizations we can employ for the various use cases of the distributed hash tables. Multiple
of the aforementioned use cases can be encountered during the lifetime of a distributed hash
table; in most of the cases the optimizations can be easily composed (e.g. by having semantic
barriers to signal the temporal boundaries of the phases). For example, the Global Update-
Only phase can be followed by a Global Read-Only phase in a scenario where a database is
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Use case
Dynamic message

aggregation Remote global

atomics Caching of remote

entrie
s Locality

sensitiv
e

hashing Serial hash

table library

GUO X X X
GRW X X
GRO X X
LRW X X X

Table 2.1: Distributed hash table optimizations for various use case scenarios.

first built via insertion of the corresponding items into a hash table and later the distributed
data structure is reused as a global lookup table.
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Chapter 3

Parallel Algorithms for k-mer Analysis

The parallel algorithms and implementations presented in this Chapter are done primarily by
Aydın Buluç and were part of the co-authored papers “Parallel De Bruijn Graph Construc-
tion and Traversal for De Novo Genome Assembly” [35] and “HipMer: An Extreme-Scale De
Novo Genome Assembler” [33]. We include this material as necessary background for later
chapters. In particular, we describe parallel algorithms for the first stage of the assembly
pipeline, namely k-mer analysis. First, we present the basic parallel algorithm and then we
describe the optimization techniques we employed in order to achieve scalability. Finally, we
present large-scale experimental results and conclude the parallel k-mer analysis algorithms.

3.1 Parallel Three-pass k-mer Analysis

K-mers are contiguous DNA subsequences of length k that are smaller than the read length.
The goal of this k-mer analysis is to chop the reads into fixed-length k-mers, count the
number of instances of each, and filter out those that occur with low frequency. Note that
filtering out a k-mer does not eliminate the entire read, but only the portion that contains
errors. The underlying assumption is that the genome has been read multiple times (30
would be common for a human dataset) so k-mers that appear in the input set with low
frequency are likely to be errors. The k-mers are overlapping, one for each position in the
reads, and a second goal of k-mer analysis is to filter out k-mers with more than one likely
extensions on the left or right direction. This will simplify the de Bruijn graph structure in
the next step of the assembly pipeline, where the de Bruijn graph is used to represent the
connectivity of the k-mers. Therefore, the de Bruijn graph can be assumed to have only
unique extensions for each vertex (k-mer) and thus linear connected components; branches
and repeated sequences in the genome will be addressed by later stages of the pipeline. In
this section we describe our basic parallel algorithm that counts k-mers and characterizes
their extensions.

Counting the frequencies of each distinct k-mer involves reading file(s) that includes DNA
short reads, parsing the reads into k-mers, and keeping a count of each distinct k-mer that
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Figure 3.1: Typical k-mer histogram from a read data set.

occurs more than ε times (ε ≈ 1, 2). The reason for such a cutoff is to eliminate sequencing
errors. Figure 3.1 shows a typical k-mer histogram from a read dataset. Observe that there
are many k-mers with very small number of counts (“left” from the blue vertical arrow).
The reason is that a single error in a read will create ≈ k erroneous k-mers: one erroneous
k-mer is extracted for each one of the k initial positions of the k-length sliding window that
includes that particular erroneous base in the read. Since it is quite unlikely that a similar
read has exactly the same error in the exact same location, these erroneous k-mers will have
a count less that ε.

K-mer characterization additionally requires keeping track of all possible extensions of
the k-mer from either side. This is performed by keeping two short integer arrays of length
four per k-mer, where each entry in the array keeps track of the number of occurrences of
each nucleotide [ACGT] on either end. If a single nucleotide on an end appears more than thq
times, then that end is characterized as unique high quality extension; the symbol U will be
used throughout this dissertation to characterize such high quality extensions. On the other
hand, if two (or more) nucleotides on an end appear more than thq times, then that end is
designated a “fork” extension (represented with the symbol F). Finally, if no nucleotide on
an end appears more than thq times, then that end is designated an “unknown” extension
(represented with the symbol X). So, depending on the counts of the extensions (forward &
backward) of a k-mer and a given integer constant thq, a k-mer can be characterized as UU,
UF, UX, FU, FF, FX, XU, XF or XX.

One of the difficulties with performing k-mer analysis in distributed memory is that
the size of the intermediate data (the set of k-mers) is significantly larger than the input,
since each read is subsequenced with overlaps of k− 1 base pairs. As each processor reads a
portion of the reads, a deterministic map function maps each k-mer to a processor. This map
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Algorithm 1 Parallel three-pass k-mer analysis
1: for all processors pi in parallel do
2: while there are reads to process do . Pass 1
3: kmers←ParseToKmers(reads)
4: est← HyperLogLog(kmers)

5: globalest← ParallelReduce(est)
6: bfilter ← BloomFilter(globalest/p)
7: while there are reads to process do . Pass 2
8: for a batch of reads do . memory constraint
9: kmers←ParseToKmers(reads)

10: owners←MapToProcessors(kmers)

11: Alltoallv(kmers, owners)
12: for each incoming k-mer km do
13: if km exists in bfilter then
14: Insert(locset, km, null)
15: else
16: Insert(bfilter, km)

17: while there are reads to process do . Pass 3
18: for a batch of reads do . memory constraint
19: kmers←ParseToKmers(reads)
20: owners←MapToProcessors(kmers)
21: exts←FetchExtensions(kmers, reads)

22: Alltoallv(kmers, owners)
23: Alltoallv(exts, owners)
24: for each incoming k-mer km and extension ext do
25: if km exists in locset then
26: Update(locset, km, ext)

k-mer → {1, . . . , p} assigns all the occurrences of a particular k-mer sequence to the same
processor, thus eliminating the need for a global hash table. Note that this computational
pattern fits the Use Case 4 (LRW) described in subsection 2.3.2. Because a k-mer can be
seen in two different orientations (due to reverse complementarity), the map flips it to the
lexicographically smaller orientation before calculating the process number to which it is
mapped.

Algorithm 1 lists our parallel k-mer analysis algorithm, which does three streaming passes,
as described in detail below. During the I/O steps (lines 2, 7, and 17), each processor reads
an equal amount of sequence data. The algorithm achieves almost perfect load balance in
terms of the number of distinct k-mers assigned to each processor, thanks to our use of the
strong MurmurHash [4] function to implement the k-mer to processor map. The locset is
a set data structure that does not allow duplicates, hence potential reinsertion attempts
(line 14) are treated as no-ops.

Unlike the later phases of our assembly pipeline, k-mer analysis is a bulk-synchronous
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algorithm and is written in MPI. It uses MPI’s irregular personalized communication prim-
itive, Alltoallv. Since the k-mer to processor map is uniform, as described before, the
input to the Alltoallv is evenly distributed in each processor. If h is the maximum data
received by any processor and there are p processors, then Alltoallv can be implemented
with a communication volume of O(h + p2) per processor [5]. Unfortunately, the data re-
ceived per processor, h, is not necessarily evenly distributed due to potential presence of high
count k-mers. It is most problematic when there are less than p high count k-mers as there
is no way to distribute them evenly in that case. In Section 3.2 we describe how our parallel
algorithm deals with such high-frequency k-mers. A less synchronous algorithm might also
help with modest levels of load imbalance and is a topic for future work.

3.1.1 Eliminating Erroneous k-mers

The previously mentioned deterministic k-mer to processor mapping allows us to use hash
tables that are local to each processor. Even then, memory consumption quickly becomes
a problem due to errors; a single nucleotide error creates ≈ k erroneous k-mers. It is not
uncommon to have over 80% of all distinct k-mers erroneous, depending on the read length,
the error-rate and the value of k. We ameliorate this problem using Bloom filters, which
were previously used in serial k-mer counters [78].

A Bloom filter [8] is a space-efficient probabilistic data structure used for membership
queries. It might have false positives, but no false negatives. If a k-mer was not seen before,
the filter can accidentally report it as “seen”. However, if a k-mer was previously inserted,
the Bloom filter will certainly report it as “seen”. This is suitable for k-mer counting as no
real k-mers will be missed. If the Bloom filter reports that a k-mer was seen before, then
we insert that k-mer to the final locset that does the actual counting. Our novelty is the
discovery that localization of k-mers via the deterministic k-mer to processor mapping is
necessary and sufficient to extend the benefits of Bloom filters to distributed memory.

The false positive rate of a Bloom filter is Pr(e) = (1− e−hn/m)h for m being the number
of distinct elements in the dataset, n the size of the Bloom filter, and h the number of
hash functions used. There is an optimal number of hash functions given n and m, which is
h = ln 2·(m/n). In practice, we achieve approximately 5% false positive rate using only 1-2%
of the memory that would be needed to store the data directly in a hash table (without the
Bloom filter). Hence, in a typical dataset where 80% of all k-mers are errors, we are able to
filter out 76% of all the k-mers using almost no additional memory. Hence, we can effectively
run a given problem size on a quarter of the nodes that would otherwise be required.

3.1.2 Estimating the Bloom Filter Size

We have so far ignored that Bloom filters need to know the number of distinct elements
expected to perform optimally. While dynamically resizing a Bloom filter is possible, it is
expensive to do so. We therefore use a cardinality estimation algorithm to approximate
the number of distinct k-mers. Specifically, we use the Hyperloglog algorithm [31], which
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Figure 3.2: First pass of the algorithm that uses the Hyperloglog algorithm to estimate the
Bloom filter size.

achieves less than 1.04/
√
m error for a dataset of m distinct elements. Hyperloglog requires

only several KBs of memory to count trillions of items. The key idea of the Hyperloglog
algorithm is the observation that the cardinality of a multiset of uniformly distributed ran-
dom numbers can be estimated by calculating the maximum number of leading zeros in the
binary representation of each number in the multiset. If the maximum number of leading
zeros observed is Z, an estimate for the number of distinct elements in the multiset is 2Z .
In the Hyperloglog algorithm, a hash function is applied to each element in the original
multiset in order to obtain a multiset of uniformly distributed random numbers with the
same cardinality as the original multiset. The cardinality of this randomly distributed set
can then be estimated using the algorithm above.

The observation that leads to minimal communication parallelization of Hyperloglog is
as follows. Merging Hyperloglog counts for multiple datasets can be done by keeping the
maximum of their final buckets by a parallel reduction. Consequently, the communication
volume for this first cardinality estimation pass is independent of the size of the sequence
data, and is only a function of the Hyperloglog data structure size. In practice, we implement
a modified version of the algorithm that uses 64-bit hash values as the original 32-bit hash
described in the original study [31] is not able to process our massive datasets. Figure 3.2
illustrates the first pass of the algorithm that uses the Hyperloglog algorithm to estimate
the Bloom filter size. After the Bloom filters have been initialized, we perform a second pass
over the input dataset and store in the actual local sets only the k-mers that are reported
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Figure 3.3: Second pass over the input reads where only the k-mers that are reported by the
corresponding Bloom filter as “seen” are eventually stored in the local sets.

by the corresponding Bloom filter as “seen” (see Figure 3.3). Finally, with a third pass we
keep track of the number of occurrences of each extension for the k-mers existing in the
actual set (see Figure 3.4). The outcome of the k-mer analysis step is set of k-mers and
the corresponding counts of their extensions. Given a threshold thq we can designate each
extension as U, F or X in subsequent steps of the assembly pipeline.

3.2 High-Frequency k-mer Analysis

During the k-mer analysis phase, we assigned each k-mer to a particular “owner” processor,
which counts all the occurrences of a given k-mer. In other words, processors did not perform
any partial counting. This choice was largely motivated by the need to use Bloom filters for
eliminating erroneous k-mers, which requires that all counting for a k-mer is performed by
its owner in order to safely call it erroneous.

For a simple analysis, assume that there are n k-mers and a fraction 0 ≤ f ≤ 1 of them
occur only once (hence guaranteed to be an error or unreliable at best). Blindly performing
partial counting in each processor for all k-mers encountered would require O(np) aggregate
space over p processors. Using the owner-computes model and Bloom filters reduces this
overhead to O(fn). The downside of this approach is that highly complex plant genomes,
such as wheat, are extremely repetitive and it is not uncommon to see k-mers that occur
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Figure 3.4: Third pass over the input reads where we keep track of the number of occurrences
of each extension for the k-mers existing in the actual set.

millions of times. For example, the hexaploid bread wheat lines “Synthetic W7984” assem-
bled with an early version of the HipMer contig generation [20] has about 2,000 k-mers that
each occur more than half a million times and about 70 k-mers that occur over 10 million
times for k = 51. Such high-frequency k-mers create a significant load imbalance problem,
as the processors assigned to these high-frequency k-mers require significantly more memory
and processing times and also create imbalanced communication times.

Consequently, we improve our approach by first identifying frequent k-mers (i.e.“heavy
hitters” in database literature) and treating them specially. In particular, the owner-
computes method is still used for low-to-medium frequency k-mers but the high frequency
k-mers are accumulated locally, followed by a final global reduction. Since an initial pass over
the data is already performed to estimate the cardinality (the number of distinct k-mers) and
efficiently initialize our Bloom filters, running a streaming algorithm for identifying frequent
k-mers during the same pass is essentially free in terms of I/O costs.

We use the counter-based algorithm of Misra and Gries [82] (subsequently reinvented
several times [23, 55]). This algorithm maintains an associative array of θ− 1 entries where
in each entry we store a key (the item that is counted) and its value (its count). Whenever
we see an item ei in the input stream of items (k-mers in our case), we look it up in the
associative array and if ei is already there, we increment its count. If ei is not found and
there is an empty entry in the associative array, we store it there and make its count 1. If
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no space is left in the associative array and the item is not there, we do not store the item
ei, but we decrement the counters of all the stored items by 1. If a counter becomes 0, the
corresponding item is dropped from the associative array and the cell becomes empty.

If the true frequency of a k-mer x is f(x), the Misra-Gries algorithm outputs all k-mers

with f(x) ≥ 1/θ using O(θ) space. Furthermore, the reported count f̃(x) is a lower bound

on the actual count, i.e. f̃(x) ≤ f(x). Since the items with f̃(x) > 1 can not be eliminated
by the Bloom filter, integration of the Misra-Gries algorithm to the k-mer analysis step does
not decrease the efficiency of Bloom filters as long as we only treat k-mers with f̃(x) > 1
specially. For parallelization, we take advantage of the fact that the Misra-Gries algorithm
creates mergeable summaries [1] and use a high-performance implementation of the algorithm
described by Cafaro and Tempesta [16].

3.3 Parallel File I/O

A standard format to represent DNA short reads is the FASTQ format, a text file that
includes one read per line with another line of the same length that encodes the quality of
each base pair. Unfortunately, there is no scalable way to read a FASTQ file in parallel due
to its text-based nature. One commonly used approach is to create many subfiles to be read
by different processors. Unfortunately this approach creates problems for data management
and cannot flexibly be processed by varying numbers of processors. We overcome this barrier
by implementing a parallel block FASTQ reader.

The reader first samples the FASTQ file in parallel (each processor samples about a
million reads concurrently) to estimate the lengths of the read names, which can be variable
across reads. The average read-name length is then used as an estimate to find splitting
points across processors. Since a splitting point can be in the middle of a read, a processor
pi fast forwards to the beginning of the next full read, while the previous partial read is
processed by the neighboring processing pi−1. The key to high performance is to use MPI-IO
functions (in our case MPI File read at) with large buffer sizes and parse the buffered data
in memory. Using this approach, our method obtains performance close to the theoretical
I/O bandwidth.

3.4 Experimental Results

3.4.1 Experimental Testbed

High-concurrency experiments are conducted on Edison, a Cray XC30 supercomputer at
NERSC. Edison has a peak performance of 2.57 petaflops/sec, with 5,576 compute nodes,
each equipped with 64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge processors for a
total of 133,824 compute cores. The compute nodes are interconnected with the Cray Aries
network using a Dragonfly topology.
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Figure 3.5: Strong scaling of the k-mer analysis on Edison for the human genome before the
“high-frequency k-mer optimization”. Both axes are in log scale. Combined time corresponds
to the sum of communication and computation times of the k-mer analysis.

Our experiments are conducted on real datasets for the human and wheat genomes. The
3.2 Giga base pair (gigabase, Gb) human genome is assembled from 2.5 billion reads (252 Gbp
of sequence) for a member of the CEU HapMap population (identifier NA12878) sequenced
by the Broad Institute. The reads are 101 bp in length from a paired-end insert library
with mean insert size 238 bp. The 17 Gbp hexaploid wheat genome (Triticum aestivum
L.), is assembled from 2.3 billion reads (477 Gbp of sequence) for the homozygous bread
wheat line “Synthetic W7984” sequenced by the JGI. The reads are 100-250 bp in length
from 5 paired-end libraries with insert size 240-740 bp. This important genome was only
recently sequenced for the first time [20], due to its size and complexity and our work in
k-mer analysis and contig generation enabled its assembly.

3.4.2 Strong scaling results

The k-mer analysis step of the original Meraculous pipeline had 3,459 GB overall memory
footprint. By contrast, our optimized k-mer analysis implementation only required 499 GB
of RAM for the 240 cores run on human genome, a reduction of 6.93×. Our code achieves
a rate of over 3 billion k-mers analyzed per second for our largest run (15K cores) on the
human data, including the I/O cost. Our maximum attained aggregate I/O performance is
18.5 GB/s out of the theoretical peak of 48 GB/s of Edison. The ability to perform this step
so fast allowed us to do previously infeasible exploratory analyses to optimize the assembly
as a function of k.
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Figure 3.6: Strong scaling of the k-mer analysis on Edison for the wheat genome before the
“high-frequency k-mer optimization”.

The strong scaling results for the human and wheat data before the “high-frequency
k-mer optimization” are shown in Figures 3.5 and 3.6 respectively. Our algorithm scales
efficiently for the human data, all the way from 240 cores to over 15K cores, for both
communication and local computation phases. The relatively poor scaling of communication
for the wheat is because wheat data is significantly more skewed with about 60 k-mers
occurring over 10 million times, and only 403 k-mers occurring over 1 million times each.
This creates load imbalance in the Alltoallv phase as the receiving processors of those
extreme frequency k-mers spend relatively longer time in the collective call.

Figure 3.7 presents the effect of identifying heavy hitters (i.e. “high-frequency k-mers”)
and avoiding communication for each of those on the wheat genome dataset. As described in
Section 3.2, we treat heavy hitters specially by first accumulating their counts and extensions
locally, followed by a final global reduction. We do not show the results for human as the
heavy hitters optimization does not significantly impact its running time. We use θ = 32, 000
in our experiments, which is the number of slots in the main data structure of the Misra-
Gries algorithm. Since the wheat data has approximately 330 billion 51-mers, this choice
of θ only guarantees the identification of k-mers with counts above 10 million. In practice,
however, the performance was not sensitive to the choice of θ, which was varied between
1K and 64K with negligible (less than 10%) performance difference. At the scale of 15,360
cores, the heavy hitters optimization results in a 2.4× improvement for the wheat data.

In the default version, the percentage of communication increases from 23% in 960 cores
to 68% in 15,360 cores and as a consequence we observe poor strong-scaling. In the optimized
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Figure 3.7: Strong scaling of k-mer analysis on the wheat genome after the heavy hitters
(“high-frequency k-mers”) optimization.

version, however, communication increases from 16% to only 22%, meaning that the method
is no longer communication bound for the challenging wheat dataset and is showing close to
ideal scaling up to 7,680 processors. Scaling beyond that is challenging because the run times
include the overhead of reading the FASTQ files, which requires 40-60 seconds independently
of the number of processors (depending on the system load). Since the Edison I/O bandwidth
is already saturated by 960 cores, the I/O costs are relatively flat with increasing number of
cores and thus impact scalability at the highest concurrency.

3.5 Conclusion

In this Chapter we presented a distributed memory algorithm for k-mer analysis. Our
algorithm uses Bloom filters to reduce the memory footprint by 7×. Also, in order to mitigate
the load imbalance caused by heavy hitters we incorporated a streaming algorithm that
identifies the high-frequency k-mers and deals with them separately; this optimization yields
a speedup up to 2.4× in a dataset with highly skewed distribution of k-mers. Experimental
results on the Edison supercomputer illustrate efficient scaling up to 15K cores, enabling us
to do previously infeasible exploratory analyses for different values of k.
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Chapter 4

Parallel Algorithms for Contig Gener-
ation

In this Chapter1 we present parallel algorithms for the second stage of the assembly pipeline,
namely contig generation. First, we present the parallel algorithm and optimizations for
the de Bruijn graph construction, a special graph that is used to represent overlap among
k-mers. Then, we present the parallel algorithm that traverses the de Bruijn graph and
identifies connected components that constitute the contigs. Our algorithm is work-optimal,
exhibits massive parallelism and employs a lightweight synchronization scheme. We also
introduce a communication-avoiding optimization which further improves the performance
under various use cases. Finally, we present large-scale experimental results on Edison and
conclude the parallel contig generation algorithms.

4.1 Parallel de Bruijn Graph Construction

We now discuss our parallel de Bruijn graph construction algorithm, where the de Bruijn
graph represents the connectivity of the k-mers. In particular we are working with a linear
subgraph of the full de Bruijn graph, as specified by the Meraculous approach in Section 2.1
because we are using only the UU k-mers from the previous k-mer analysis step and therefore
we have excluded all the “fork” structures in the graph. Below, we use the term “de Bruijn
graph” to refer to this linear subgraph of the full de Bruijn graph where only the UU k-mers
are included. The branches of the full de Bruijn graph will be addressed by later stages of
the pipeline.

In our approach a de Bruijn graph is represented as a hash table with a k-mer as “key” (a
k-mer is a vertex in the graph) and a two-letter code [ACGT][ACGT] as “value” which represents
two undirected edges incident to that vertex. The parallelization relies heavily on a high

1The material presented in this Chapter was first published in the papers “Parallel De Bruijn Graph
Construction and Traversal for De Novo Genome Assembly” [35] and “HipMer: An Extreme-Scale De Novo
Genome Assembler” [33].



CHAPTER 4. PARALLEL ALGORITHMS FOR CONTIG GENERATION 30

…
 

Input Read k-mers & 
extensions 

Distributed 
Hash table 

Store k-mers & 
extensions 

ACCCA   CT 
CTTAG    CF 
AACCT   TG 
CGCAT   XA      
 
AGGCA   AT 
GGTAG   FF 
AAAAT   TG 
CCCAT   XX      
             
 
 
TTCCA   GT 
TTTGC   CA 
AACTT   GG 
CTTTT    CA      

…
 

pp-1 

p1 

p0 

Figure 4.1: Parallel de Bruijn graph construction. Only UU k-mers will be stored in the
distributed hash table and input k-mers with an F or X extension are ignored during this
stage.

performance distributed hash table, shown in Figure 4.1 that inputs a set of k-mers with
their corresponding two letter code (high quality extensions). Assuming m initial k-mers
and p processors, each processor will read m/p k-mers, hash the keys and store only the
input UU entries to the appropriate buckets of the distributed hash table.

4.1.1 Dynamic message aggregation

The basic algorithm described in the previous subsection suffers from fine-grained commu-
nication and synchronization required to store k-mers into the distributed hash table. Mul-
tiple processors might try to store simultaneously k-mers in the same bucket and therefore
a synchronization mechanism is required to ensure atomicity and prevent race conditions.
Note that the computational task of the graph construction is to insert all the UU k-mers
in a distributed hash table that can be globally accessed for later use. We recognize this
computational pattern as the Use Case 1 (GUO) of the distributed hash tables (see subsec-
tion 2.3.2), therefore we can mitigate the communication and synchronization overheads by
leveraging dynamic message aggregation called aggregating stores, shown in Figure 4.2. Here,
a processor pi has p−1 local buffers corresponding to the rest p−1 remote processors, where
the size S of each local buffer is a tuning parameter. Every processor hashes a k-mer entry
and calculates the location in the hash table where it has to be stored. Instead of incurring a
remote access to the distributed hash table, the processor computes the processor ID owning
that remote bucket in the hash table and stores the entry to the appropriate local buffer.

In this approach, when a local buffer dedicated for processor pj becomes full, a remote
aggregate transfer to the processor pj is initiated. Each processor pj has a pre-allocated
shared space (henceforth called local-shared stack) where other processors can store entries
destined for that processor pj. In Section 4.2.4 we describe the memory management of the
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Figure 4.2: Dynamic message aggregation for the de Bruijn graph construction. In this
example, processor pi performs one remote aggregate transfer to processor p0 when the local
buffer for p0 gets full. p0 will store these k-mers in its local buckets later by iterating over
its local-shared stack.

local-shared stacks. Once all k-mers are processed, each processor iterates over its local-
shared stack and stores each entry to the appropriate local bucket in the distributed hash
table, in a communication-free fashion. This optimization trades off S×(p−1) extra memory
for the reduction in the number of messages by a factor of S compared to the unoptimized
version, while the communication volume remains the same. This algorithm also avoids data
races on the hash table by having the owner process do all the inserts into the hash table.
At the completion of this process, the so called UU k-mers are stored in the the distributed
hash table.

4.2 Parallel de Bruijn Graph Traversal

Given the de Bruijn graph construction, we now describe our parallel algorithm used to
traverse the graph, find the corresponding linear connected components and output the
computed set of contigs (defined in Section 2.1).



CHAPTER 4. PARALLEL ALGORITHMS FOR CONTIG GENERATION 32

GAT ATC TCT CTG TGA 

AAC 

ACC 

CCG 

AAT 

ATG 

TGC 

p1 picks seed CCG 

p2 picks seed ATG 

p0 picks seed CTG  

1

234

1
2

1

2

buckets entries 
Key: 
ATC 

Val: 
TG ! ! 

! 

! 

! 
! 

! 

! 

! 

! 

! 

! 

! 

Key: 
ACC 

Val: 
GA ! 

Key: 
AAC 

Val: 
CG ! 

Key: 
TGA 

Val: 
AC ! 

Key: 
GAT 

Val: 
CG ! Key: 

ATG 
Val: 
CA ! 

Key: 
AAT 

Val: 
GG ! 

Key: 
TCT 

Val: 
GA ! 

Key: 
CCG 

Val: 
AA ! 

Key: 
CTG 

Val: 
AT ! Key: 

TGC 
Val: 
TA ! 

G
lo

ba
l A

dd
re

ss
 S

pa
ce

 

Shared Private 

x 

x 

y 

z 

Figure 4.3: Parallel de Bruijn graph traversal. Processor 0 picks a k-mer called “traversal
seed” (vertex CTG) and with four lookups in the distributed hash tables it explores the four
remaining vertices of that connected component. The red numbered arrows indicate the
order in which processor 0 looks up the corresponding vertices in the distributed hash table.
In an analogous way, processors 1 and 2 pick seeds CCG and ATG respectively and explore in
parallel with processor 0 different connected components of the underlying de Bruijn graph.

4.2.1 Parallel Traversal Without Conflicts

In order to form a contig, a processor pi chooses a random k-mer from its own part of
the distributed hash table as seed and creates a new subcontig (incomplete contig) data
structure which is represented as a string and the initial content of the string is the seed
k-mer. Processor pi then attempts to extend the subcontig towards both of its endpoints
using the high quality extensions stored as values in the distributed hash table. To extend
a subcontig from its right endpoint, processor pi uses the k− 1 last bases and the right high
quality extension R from the right-most k-mer in the subcontig. It therefore concatenates
the last k − 1 bases and the extension R to form the next k-mer to be searched in the
hash table. Processor pi performs a lookup for the newly formed k-mer and if it is found
successfully, the subcontig is extended to the right by the base R. The same process can be
repeated until the lookup in the hash table fails, meaning that there are no more UU k-mers
that could extend this subcontig in the right direction. A subcontig can be extended to
its left endpoint using an analogous procedure. If processor pi can not add more bases to
either endpoint of the subcontig, then a contig has been formed (or equivalently a connected
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component in the de Bruijn graph has been explored) and is stored accordingly.
Figure 4.3 illustrates how the parallel algorithm works with three processors. Processor 0

picks a random traversal seed (vertex CTG) and initializes a subcontig with content CTG. Then,
by looking in the distributed hash table the entry CTG it gets back the value AT, meaning that
the right extension is A and the left extension is T. After that, processor 0 forms the next
k-mer to be looked up (TGA) by concatenating the last 2 bases of CTG and the right extension
A – this lookups corresponds to the red arrow with number 1. By following the analogous
procedure and three more lookups in the distributed hash table, processor 0 explores all
the vertices of that connected component that corresponds to the contig GATCTGA. The red
numbered arrows indicate the order in which processor 0 looks up the corresponding vertices
in the distributed hash table. In an analogous way, processors 1 and 2 pick seeds CCG and
ATG respectively and explore in parallel with processor 0 different connected components of
the underlying de Bruijn graph.

4.2.2 Lightweight Synchronization Scheme

All processors independently start building subcontigs and no synchronization is required
unless two processors pick initial k-mer seeds that eventually belong in the same contig.
In this case, the processors have to collaborate and resolve this conflict in order to avoid
redundant work. We now explain our lightweight synchronization scheme at the heart of the
parallel de Bruijn graph traversal.

Basic Data Structures

Before detailing the synchronization scheme, we describe the high-level enhancements re-
quired in the data structures. Figure 4.4 illustrates these basic data structures and the way
they are coupled. The k-mer data structure includes the k-mer sequence, the forward/back-
ward extensions as well as a binary flag used flag that may take two possible values: UNUSED
or USED. Initially this field is set to the UNUSED value. When a processor finds a k-mer in the
hash table:

• The processor reads the k-mer’s used flag.

• If the value is UNUSED then the processor can infer that no other processors have reached
this k-mer and thus can visit it. It therefore sets that k-mer flag to USED and can use
the k-mer’s information conflict-free.

• If the value is USED then another processor has already added that k-mer to another
subcontig.

Note that these actions need to be executed in an atomic fashion to ensure correctness (de-
tailed in Section 4.2.4). Thus the k-mer’s used flag is updated via compare and swap()
remote atomics to avoid races and redundant work. Furthermore, the k-mer data structure
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Figure 4.4: Basic data structures used in the de Bruijn graph traversal. In this exam-
ple, the k-mer’s used flag is USED since the k-mer has been added to a subcontig. The
my subcontig ptr field points to the pointer box which contains another pointer to the
subcontig’s data structure that the k-mer currently belongs to. The next field is a pointer
to a list of box pointers; this list represents other subcontigs that have been potentially at-
tached to the current subcontig. The state flag of the subcontig is ACTIVE since a processor
is working on it. The my ptr box field has a pointer that points back to the pointer box of
the current subcontig.

has a pointer my subcontig ptr to a pointer box containing another pointer to the sub-
contig’s data structure that the k-mer currently belongs to. The pointer box has also a
next pointer that points to a list of pointer boxes. In the next paragraphs we detail how
these lists of pointer boxes are used in the synchronization scheme. This level of indirection
is introduced for efficiency reason as it will be explained later in this section.

The subcontig data structure includes (i) the subcontig’s sequence, (ii) a lock state lock,
(iii) a my ptr box field that points to the pointer box of the current subcontig and (iv) a flag
state that may take one of the following values: ACTIVE, ABORTED and COMPLETE.

Synchronization Algorithm

The synchronization scheme in our parallel de Bruijn graph traversal is based on the sub-
contig’s state machine illustrated in Figure 4.5. Note that a processor might conflict with at
most two processors due to the one dimensional nature of the subcontigs. Therefore, when
we mention neighboring subcontigs of a subcontig S we refer the subcontigs that conceptu-
ally lie to the right and to the left of S in the eventual contig. Similarly, when we refer to
the neighboring processors of pi we are referring to the processors that are working on the
neighboring subcontigs.

When a processor pi picks a k-mer as traversal seed, it also creates a new subcontig
data structure and sets the state to ACTIVE (see arrow 1 in Figure 4.5); the subcontig also
contains the selected k-mer string as the initial value of the subcontig’s sequence. The seed’s
my subcontig ptr is set to point to a pointer box that contains another pointer to the newly
created subcontig. The my ptr box field of the subcontig points back to the pointer box. The
processor pi tries to extend the subcontig in both directions using the previously described
procedure.
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(cannot find any UU k-mers in that direction) AND found 
USED k-mer in the other direction of the subcontig AND 
that k-mer belongs to an ACTIVE subcontig: 
1)  Set state of own subcontig to ABORTED
2)  Pick another random seed k-mer from the hash table 
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Figure 4.5: Subcontig’s state machine used for synchronization during the parallel de Bruijn
graph traversal. Boldface text indicates the preconditions for the corresponding transition.
Regular text indicates the actions that occur during the transition. We emphasize that a pro-
cessor can read the neighboring subcontigs’ state only after obtaining all the corresponding
state locks in an order indicated by the processors’ ids.

When pi finds UNUSED k-mers in either direction of the subcontig, it successfully adds
the forward/backward extension bases to the subcontig’s sequence and marks the visited

k-mers’ used flag field as USED (see arrow 2 ). At the same time, pi updates the visited
k-mers’ my subcontig ptr field to point to the pointer box pointing to the subcontig’s data
structure. Meanwhile, the subcontig’s state remains ACTIVE (see Figure 4.4).

Assume that processor pi is unable to extend its current subcontig in any direction
because it has either found USED k-mers in both directions or it cannot find any UU k-mer in
one direction and has found a USED k-mer in the other direction. Processor pi then attempts
to obtain all the state locks of the neighboring subcontigs including its own state lock
in a total global order indicated by the processors’ ids — and thus ensuring that deadlocks
are avoided. Processor pi has access to the neighboring subcontigs’ data structures (and
consequently to the appropriate state locks) via the my subcontig ptr fields of the USED
k-mers found in either direction. The processor ids can be extracted from the global pointers
stored in the pointer boxes.

After obtaining these state locks, pi examines the state fields of the neighboring sub-
contigs and takes appropriate actions as indicated by the state machine in Figure 4.5:

• If both neighboring subcontigs are ACTIVE or one neighboring subcontig is ACTIVE and
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next � 

subcontig i subcontig j subcontig i subcontig j 

attach j to i 

Figure 4.6: The process of attaching subcontigs. In this example, subcontig j is ABORTED
and will be attached to subcontig i that is ACTIVE. First, processor pi concatenates to the
sequence of subcontig i the non-overlapping part of the sequence of subcontig j (note that the
sequences of subcontigs i and j overlap by k+ 1 bases). Then, processor pi owning subcontig
i visits the pointer box list in the my ptr box field of subcontig j and updates all the pointer
fields to point to subcontig i. Also, the pointer box list of subcontig i is concatenated with
the pointer box list of subcontig j. Finally, pi sets the state of the “aborted” subcontig to
ACTIVE as it is now added to an “active” subcontig.

the other direction cannot be extended (because we cannot find any UU k-mers in that
direction), then pi sets the state of its subcontig to ABORTED, releases the obtained
state locks following the inverse order in which they were obtained and picks another
random k-mer seed from the distributed hash table to initiate another traversal (see

arrow 3 ).

• If at least one of the neighboring subcontigs is ABORTED then pi attaches that subcontig
to its own (see arrow 4 ).

Figure 4.6 illustrates the attaching process. In this example, subcontig j is ABORTED and
will be attached by processor pi to subcontig i that is ACTIVE. Note that the sequences
of subcontigs i and j overlap by k + 1 bases. First, processor pi concatenates to the
sequence of subcontig i the non-overlapping part of the sequence of subcontig j. Then,
processor pi visits the pointer box list in the my ptr box field of subcontig j and updates
all the pointer fields to point to subcontig i. Also, the pointer box list of subcontig i
is concatenated with the pointer box list of subcontig j. Afterwards, pi sets the state
of the “aborted” subcontig to ACTIVE as it is now added to an “active” subcontig (see

arrow 5 ). Finally, pi releases the obtained state locks following the inverse order in
which they were obtained and continues to extend its subcontig.

All the k-mers of the previously “aborted” subcontig have access (indirectly through
the updated pointer boxes) to the pointer of the new subcontig where they have been
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attached. Such a scheme with a level of indirection allows us to avoid revisiting all
these k-mers.

A processor working on an ACTIVE subcontig A continues computing while other processors
might obtain A’s state lock and examine A’s state, hence allowing our synchronization
scheme to be lightweight. Additionally, a processor “aborts” its subcontig when there are
more processors working on the same eventual contig and they will claim the “aborted”
subcontig later, hence avoiding redundant work. Note that the subcontigs’ state flag does
not require atomic update since the locking scheme we describe guarantees that at most one
processor will examine and update a subcontig’s state flag at any point in time.

When both directions of the subcontig cannot be extended (cannot find any UU k-mer in
either direction), pi sets the state of the subcontig to COMPLETE and stores the subcontig’s

sequence as a complete contig (see arrow 6 ). Afterwards, pi picks another random k-mer
seed from the distributed hash table and initiates another traversal. When all k-mers in the
hash table have been visited the parallel de Bruijn graph traversal is complete.

The computational task of the graph traversal is to visit all the already inserted k-mers in
the distributed hash table. During this parallel process, we can’t batch reads and/or writes
since there might be race conditions that affect the control flow of the synchronization
algorithm. However, we use global atomics instead of fine-grained locking and we build
synchronization protocols at a higher level that do not involve the distributed hash table
directly but instead are triggered by the results of the atomic operations on the objects
stored inside the hash table. We recognize this computational pattern as the Use Case 2
(GRW) of the distributed hash tables (see subsection 2.3.2).

4.2.3 De Bruijn Graph Traversal Synchronization Cost Analysis

Since the synchronization cost of the parallel de Bruijn graph traversal will likely determine
parallel efficiency, we present three analytical propositions to quantify the correlation be-
tween the expected subcontig conflicts and the concurrency. Proposition 1 gives a lower
bound on the total expected conflicts while Proposition 2 provides an upper bound. Finally
Proposition 3 demonstrates the expected number of conflicts incurred on the critical path.

Proposition 1. Let p be the total processors during parallel execution and n the number of
contigs to be assembled during the de Bruijn graph traversal. Assuming that the n contigs
have the same length and n � p, the number f(p) of expected conflicts during the traversal
increases at least linearly with p, i.e. f(p) ≥ a · p+ b for some constants a and b.

Proof. Initially there are n contigs to be assembled and the p available processors pick
random k-mers as seeds to start the traversal. A conflict occurs if two (or more) processors
pick an initial seed belonging to the same contig. We can formulate this process as tossing
p balls into n bins where the tosses are uniformly at random and independent of each other
and thus the probability that a ball falls into any given bin is 1/n. Let’s denote Qi,t the
event where ball i falls into bin t (and thus Pr[Qi,t] = 1/n) and Φij be the event that ball i
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and ball j collide. By using the Bayes rule we can calculate the probability of any two balls
i and j falling into one bin (i.e. balls i and j collide):

Pr[Φij] =
n∑

t=1

Pr[Qj,t|Qi,t] Pr[Qi,t] =
n∑

t=1

1

n
Pr[Qi,t]

=
1

n

n∑
t=1

Pr[Qi,t] =
1

n

n∑
t=1

1

n
=

1

n

(4.1)

where we have used the fact that Pr[Qj,t|Qi,t] = Pr[Qj,t] = 1/n since the events Qj,t and Qi,t

are independent.
Let Xij be the indicator random variable of Φij, i.e. Xij = 1 if Φij happens and Xij = 0

otherwise. We can consider Xijs as Bernoulli variables and tosses can be considered as a
sequence of Bernoulli trials with a probability 1/n of success, i.e. Pr[Xij = 1] = Pr[Φij] =
1/n. If C is defined as the number of conflicts then C =

∑
i<j Xij. So, we can calculate the

expected number of conflicts E[C] as:

E[C] =
∑
i<j

E[Xij] =
∑
i<j

Pr[Xij = 1] =
1

n

(
p

2

)
(4.2)

Now, consider the traversal as a sequence of steps, where at each step p contigs are
calculated, and the traversal consists of n/p such steps. In the first step, the expected
number of conflicts is given by equation 4.2: E[C1] = 1

n

(
p
2

)
. We assume that as soon as

these conflicts are resolved no more conflicts occur at the same step and thus E[C1] is a
lower bound of the expected number of conflicts in the first step. In the i-th step, there
are n − (i − 1)p remaining contigs and we can consider the i-th step as tossing p balls into
n− (i− 1)p bins, thus we get that E[Ci] = 1

n−(i−1)p

(
p
2

)
where Ci is the number of conflicts at

step i. A lower bound on the expected number of conflicts for the entire graph traversal is
therefore:

E[Ctotal] = E[C1] + E[C2] + · · ·+ E[Cn/p]

=
1

n

(
p

2

)
+

1

n− p

(
p

2

)
+ · · ·+ 1

p

(
p

2

)
=

(
p

2

)
· 1

p
·
(

1 +
1

2
+

1

3
+ · · ·+ 1

n/p

)
=

(
p

2

)
· 1

p
·Hn/p =

p− 1

2
·Hn/p

(4.3)

where with Hi we denote the i-th partial sum of the diverging harmonic series. For large
values of n/p we can write:

Hn/p ' ln (n/p) + γ = ln(n)− ln(p) + γ (4.4)
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where γ ' 0.577 is the Euler-Mascheroni constant. So, the number f(p) of the expected
conflicts as a function of p is:

f(p) = E[Ctotal] =
p− 1

2
· (ln(n)− ln(p) + γ) (4.5)

We have assumed that n� p. If n ≥ 100 · p then:

ln(n) ≥ ln(100 · p) = ln(100) + ln(p) ≥ 4.6 + ln(p)

⇔ ln(n)− ln(p) + γ ≥ 5.177
(4.6)

By combining equation 4.5 and inequality 4.6 we get that:

f(p) =
p− 1

2
· (ln(n)− ln(p) + γ) ≥ p− 1

2
· 5.177

⇒ f(p) ≥ 2 · p− 3
(4.7)

which completes the proof by setting a = 2 and b = −3.

Proposition 2. Let G be a de Bruijn graph and assume that the result of its traversal consists
of a single contig L. Let CG be the number of conflicts in this traversal by using a seeding
function Fseed. Now assume that some nodes are removed from G resulting in a graph G′.
The traversal of G′ that uses the same seeding function Fseed results in CG′ conflicts where
CG′ ≤ CG.

Proof. By removing a number of nodes from G, the traversal of the new graph G′ results in
a set of contigs S that span part of the single contig L. More accurately, the only places
that the combination of S’s members differs from L are those ones that correspond to the
removed nodes (k-mers). Now consider a seeding function Fseed that incurs CG conflicts in
G. The same seeding function Fseed creates at most CG conflicts in G′ because the removed
nodes only can prevent a conflict (since a removed node divides a contig in two independent
subcontigs). Therefore we get: CG′ ≤ CG.

The result of Proposition 2 suggests that the worst case for the number of conflicts in a
traversal is one in which the resulting assembly is a single contig and thus CG is an upper
bound in the number of conflicts. Now, let’s assume that the seeds are picked uniformly
distanced across the single contig L and that p processors are performing the traversal of G
in parallel. Such a traversal of G results in O(p) conflicts. By using the latter fact and the
result of Proposition 2 we conclude that an upper bound for the total number of conflicts
during a traversal with seeding function resulting in uniformly distanced seeds is O(p). Also,
Proposition 1 indicates that the total number of conflicts is Ω(p). Therefore, under the
assumptions made in Propositions 1 and 2, the total number of expected conflicts is Θ(p).

Let Tserial be the serial time for de Bruijn graph traversal, p the number of total processors,
Ccrit(p) the expected number of conflicts incurred on the critical path and tconfl the effective
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time for resolving a conflict. Then the time for the parallel traversal T (p) can be modeled
roughly as:

T (p) =
Tserial
p

+ Ccrit(p) · tconfl (4.8)

The first term of Equation 4.8 decreases linearly with p and is the useful work, while the
second term is the synchronization overhead of the parallel algorithm, and Ccrit(p) depends
on the total number of conflicts Ctotal(p) and p. We showed that under some assumptions
Ctotal(p) = Θ(p) and thus a synchronization scheme that merely leaves Θ(p) conflicts to
be resolved on the critical path is unacceptable because then the second term of equa-
tion 4.8 would increase linearly with p. The synchronization algorithm in subsection 4.2.2
is lightweight in a sense that as soon as a conflict is detected, one of the involved processors
takes actions according to the state machine and does not prevent others from doing useful
work. Proposition 3 shows that the expected number of the conflicts incurred on the critical
path is Ccrit(p) = 2 · Ctotal(p)/p.

Proposition 3. Let T be the set of conflicts during the parallel de Bruijn graph traversal
with cardinality |T | = Ctotal(p). Assuming that the eventual contigs have the same length,
the expected number of the conflicts incurred along the critical path Ccrit(p) is equal to 2 ·
Ctotal(p)/p.

Proof. We will use the same formulation of the problem as in Proposition 1. Additionally
consider a collision in a particular bin t during a step of the algorithm where there are R bins
(equivalently consider a conflict in a particular contig t during a step of the traversal where
there are R remaining contigs to be assembled). Let Qi,t be the same as in Proposition 1,
Zt the indicator variable of the event “there is a collision in bin t” and Φt

ij the event that
balls i and j fall in bin t. Since the events Qi,t are independent we can write:

Pr[Φt
ij] = Pr[Qi,t ∩Qj,t] = Pr[Qi,t] Pr[Qj,t] =

1

R

1

R
=

1

R2
(4.9)

Using the Bayes theorem we get:

Pr[Φt
ij | Zt = 1] =

Pr[Zt = 1 | Φt
ij] · Pr[Φt

ij]

Pr[Zt = 1]

(4.9)
=

Pr[Zt = 1 | Φt
ij] · 1/R2

Pr[Zt = 1]
=

1/R2

Pr[Zt = 1]

(4.10)

since Pr[Zt = 1 | Φt
ij] = 1 (i.e. given that balls i and j fall into bin t, Zt = 1 with probability 1

since there is a collision in that bin). Equation 4.10 dictates that given a collision t, all pairs
of balls (i, j) are equally probable to incur that collision t. Thus, if we denote with Ct

ij the
event where the pair of balls (i, j) incurs a particular collision t (i.e. Ct

ij is Φt
ij given Zt = 1),

we can write: Pr[Ct
ij] = Pr[Ct

lm] for any pairs (i, j) and (l,m). The total number of pairs of

balls is
(
p
2

)
and therefore:

Pr[Ct
ij] =

1(
p
2

) =
2

p(p− 1)
(4.11)
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Finally, if we denote with Iti the event where ball i incurs the collision t (or equivalently a
processor i incurs the conflict t) we can write:

Iti =

p⋃
j=1
j 6=i

Ct
ij (4.12)

where the events Ct
ij with i, t fixed and j ∈ {1, ..., p}−{i} are mutually exclusive. Therefore:

Pr[Iti ] = Pr[

p⋃
j=1
j 6=i

Ct
ij] =

p∑
j=1
j 6=i

Pr[Ct
ij]

(4.11)
=

p∑
j=1
j 6=i

2

p(p− 1)

=
2

p(p− 1)

p∑
j=1
j 6=i

1 =
2

p(p− 1)
· (p− 1) =

2

p

(4.13)

If we denote with Fi the number of conflicts that a processor i incurs on the critical path
we get:

E[Fi] =
∑
t∈T

Pr[Iti ]
(4.13)
=
∑
t∈T

2

p
=

2

p

∑
t∈T

1 =
2

p
Ctotal(p) (4.14)

Equation 4.14 indicates that the expected number of the conflicts incurred along the critical
path is equal to 2 · Ctotal(p)/p, which completes the proof.

4.2.4 Implementation Details

For our implementation we used the portable, high-performance Berkeley UPC compiler [50].
The result is a portable code that can be executed on both shared and distributed memory
machines without any change.

Memory Management

We now describe the mechanism that allows us to implement the “aggregating stores” com-
munication optimization. When processor pi stores S entries to the local-shared stack of
pj, it needs to locate the position in pj’s stack that these entries should go to. Thus, ev-
ery local-shared stack is associated with its stack ptr pointer that indicates the current
position in the local-shared stack. These stack ptr variables are shared and accessible to
all processors. Therefore, if processor pi is about to store S entries to processor pj, it (a)
reads the current value of pj’s stack ptr, called cur pos, (b) increases the value of pj’s
stack ptr by S and (c) stores the S entries in pj’s local-shared stack into the locations
cur pos · · · cur pos+S-1 with an aggregate transfer. Steps (a) and (b) need to be executed
atomically to avoid data hazards, for which we leverage global atomics atomic fetchadd()
provided by Berkeley UPC.
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Atomic Flag Updates

In order to ensure atomicity in the parallel de Bruijn graph traversal we utilize a lock-
free approach that is based on Berkeley UPC atomics. In particular, to atomically read
and update a k-mer’s used flag (as it is described in Section 4.2.2), we make use of the
compare and swap() global atomic. Thus, if the used flag field is already USED, then the
atomic returns the value USED. Conversely, if the used flag field is UNUSED the atomic sets
that field to USED and returns the value UNUSED.

DNA Sequence Compression

Given that the vocabulary in a DNA sequence is the set {A,C,G,T} only two-bits per base are
required for a binary representation. We thus implement a high-performance compression
library that compresses the DNA sequences from text format into a binary format. This
approach reduces the memory footprint by 4×, while additionally reducing the bandwidth
by 4× for communication events that involve k-mers or DNA sequences transfers. Finally we
exploit the complementary nature of DNA by not storing explicitly both (redundant) strands;
i.e. given one strand of the DNA we can get the other by reversing the former sequence and
swapping As with Ts and Cs with Gs. This design decision offers an extra 2× saving in memory
requirements (e.g. we can store only the lexicographically smaller representation of a k-mer
and its reverse complement), but it complicates a bit the code. For example, given a k-mer
sequence we should form its reverse complement, find which one is lexicographically smaller
and use that representation in downstream computations.

4.3 Communication-Avoiding de Bruijn Graph

Traversal

Although the de Bruijn graph traversal described in the previous section demonstrates high
scalability, it inherently suffers from high communication overhead. Because we focus on de
novo genome assembly (i.e. there is no reference genome), the initial contig construction lacks
implicit locality, and it is the goal of the de Bruijn graph traversal to explore connectivity
and to find the corresponding connected components. Additionally, due to the nature of
DNA, the de Bruijn graph is extremely sparse, as previously discussed. Thus, to explore
an additional vertex in the graph and expand a subcontig by one base is it necessary to
perform a lookup in the distributed hash table, which with high probability will incur a
communication event.

Therefore, given a genome of size G, the asymptotic communication cost of the parallel
traversal is O(G) messages, or O(G/p) messages if we measure the number of messages along
the critical path. Since the messages have size O(1) (each message is just a single k-mer
data structure), the asymptotic bandwidth cost on the critical path is also O(G/p). Note
that our parallel algorithm is load balanced and communication along the critical path is
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Figure 4.7: A de Bruijn graph of k-mers where k = 3. In this graph we can identify three
contigs or equivalently three connected components. The dashed lines indicate an optimal
partitioning of the graph with p = 3. Each processor will work only with local k-mers during
the traversal.

decreased as the number of processors is increased, thus allowing our traversal algorithm to
strong scale efficiently as the results for the previous scalability analysis dictate.

4.3.1 Insights for improved locality

There are two key insights that underly the development of our communication-avoiding
algorithm for the parallel de Bruijn graph traversal:

1. Oracle Partitioning If we were given an oracle partitioning function that could ac-
curately predict how the k-mers are placed into contigs, the k-mers could be partitioned in
such a way that k-mers ultimately belonging to the same contig would be mapped to the
same processor. Thus, during the traversal algorithm a processor would incur no communi-
cation, since none of the k-mer accesses (lookups in the distributed hash table) will require
communication — all the vertices of the de Bruijn graph that build up a particular contig
are local to a single processor (local buckets in the distributed hash table). This idea is
similar to graph partitioning, which aims to minimize the number of edges between sepa-
rated components. An example is given in Figure 4.7, which shows three processors and
three equally-sized sub-graphs that do not share any edges. By assigning the corresponding
k-mers to the appropriate processor, all three processors will conduct local lookups in the
hash table during the parallel traversal.

2. Genetic Similarity The nucleotide diversity is similar for given organisms. For exam-
ple it is estimated that humans differ in only 0.1%–0.4% of DNA base pairs, meaning that
the contigs of different humans have a high degree of similarity. This implies that an oracle
partitioning derived from one genome will work for others of the same species.
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4.3.2 Communication-avoiding parallel algorithm

These insights have enabled us to develop an off-line oracle partitioning function. Once the
contigs are computed for a given organism, we can apply this oracle partitioning function
to any other de Bruijn graph (for another member of the same species), to dramatically
decrease the communication incurred during the traversal computation. This approach can
also be leveraged when searching for the optimal k length for de novo assembly. Typically,
computational biologists begin the genome assembly process for a given organism with a
draft version generated using a reasonable initial k value. Different k lengths are then
explored to optimize the quality of the assembly output. Thus we can generate our oracle
partitioning function during the initial contig generation phase, and use it to significantly
reduce communication for subsequent assemblies that explore different k values. Even though
the contigs are expected to change for varying k lengths, the new set of contigs will have a
high degree of similarity with the first draft assembly, resulting in significant performance
improvements. Also, this optimization is applicable in the context of metagenome assembly
that is discussed in Chapter 8.

The (off-line) algorithm for generating the oracle partitioning function, oracle hash(),
given a set of contigs C and a uniform hash function, uniform hash(), consists of two steps:

1. Iterate over the set of contigs C and assign each contig a processor ID (in a cyclic
fashion to ensure load balance) among processors.

2. Iterate within each contig and extract its k-mers. To each one of these k-mers assign
the contig’s processor ID and store this information in a compact oracle hash vector.
In particular, given a k-mer A, we store the corresponding processor ID in the position
uniform hash(A) of oracle hash vector. If there is a collision (i.e. another k-mer of
another contig has been already stored in this position of the vector), then k-mer A
will be stored to a remote processor instead of the correct (local) one. The number
of collisions in this oracle hash vector is approximately the number of communi-
cation events that will be incurred during the traversal. Therefore, with a larger
oracle hash vector we can decrease the number of collisions and consequently we can
decrease the communication volume. Essentially we can trade off memory requirements
and the number of collisions in the oracle hash vector, thus increasing or decreasing
communication overhead according to the size of the available aggregate memory. Note
that the algorithm for generating the oracle hash vector can be trivially parallelized.
Nevertheless, since the construction of the oracle hash vector is an offline process
and has to be completed only once, it does not lie on the critical path of the pipeline’s
execution.

The oracle hash() values are computed during the graph construction and traversal for
a given oracle hash vector as follows:

1. The processors load the oracle hash vector in their local memory – note that the
oracle hash vector is replicated across processors. Alternatively we can replicate
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the oracle hash vector on a node basis in order to decrease the per thread memory
requirements.

2. When calling oracle hash(A) at the application level in respect to a k-mer A, the
value of uniform hash(A) is computed. Next we lookup in the oracle hash vector
that is local to the processor and retrieve the corresponding processor ID (pi). Based
on the value of pi, we subsequently reshuffle the original uniform hash(A) value. In
particular, if uniform hash(A) was about to be mapped in location (bucket) b of pro-
cessor pj (assuming a cyclic distribution of buckets to processors), the return value of
oracle hash(A) is adjusted such that it is mapped at location (bucket) b of processor
pi. Observe that uniformity in the distribution of buckets is preserved since all the hash
values are shifted in a uniform way to the appropriate buckets. Moreover, the vast ma-
jority of the contig’s k-mers that will be looked up after k-mer A during the traversal
phase, are located in the same processor pi by construction of the oracle hash vector.
Therefore, if the processors select traversal seeds from local buckets, they will be mostly
performing local accesses in the hash table when traversing the de Bruijn graph.

A refinement for practical considerations (e.g. SMP clusters), is working with node IDs
instead of processor IDs. In this setting, the algorithm avoids the off-node communica-
tion while performing intra-node accesses when generating the contigs, which are orders of
magnitude cheaper than the off-node communication overhead.

4.4 Experimental Results

We experimented again on the human and the wheat datasets described in Section 3.4.1.
The experimental platform is again the Edison supercomputer. Our experiments sought to
understand the strong scaling performance for these two data sets that differ by a factor of
6× in size.

4.4.1 Parallel De Bruijn Graph Construction and Traversal

Figure 4.8 exhibits the strong scaling behavior of our de Bruijn graph construction and
traversal using the human data set. The experiments presented in this section do not utilize
the communication-avoiding optimization. We were not able to run this step for less than
480 cores, due to memory limitations. Our implementation shows efficient scaling for both
constructing and traversing the de Bruijn graph, attaining a 12.24× relative speedup when
increasing concurrency from 480 to 15,360 cores. We highlight that due to our optimized
parallelization approach, our 15,360 core execution completes the contig generation for the
human genome in ∼ 20 seconds, compared with the original Meraculous serial code that
required ∼ 44 hours on a 128 GB shared memory node.

Figure 4.9 presents the strong scaling results for the wheat data set. The starting point
for the graph is 960 processors, since the memory requirements are significantly larger than
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Figure 4.8: Strong scaling of the contig generation on Edison for the human dataset (without
the communication-avoiding optimization). Both axes are in log scale. Combined time
corresponds to the sum of de Bruijn graph construction and traversal times.
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Figure 4.9: Strong scaling of the contig generation on Edison for the wheat dataset (without
the communication-avoiding optimization).

the human dataset. We achieve 12.5× relative speedup when increasing concurrency from
960 to 15,360 cores. For this grand-challenge genome, our implementation required only
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Figure 4.10: Time breakdown of the de Bruijn graph traversal for (a) the human genome
and (b) the wheat genome.

∼ 32 seconds on 15,360 cores, whereas single-node memory constraints prevent the original
Meraculous version from running this problem. We extrapolate that if enough memory was
available, the original Meraculous code would have required 121 hours.

Additionally, for each strong scaling experiment we measured the fraction of time spent to
add forward/backward extensions at the subcontigs, because this is the useful workload and
the fraction of time spent in the synchronization protocol along the critical path. Figure 4.10
shows this performance breakdown. We observe that although the relative time spent in
synchronization mode increases for higher concurrency levels, the majority of the time is
always consumed in doing useful work. This empirical behavior validates our analysis in
Section 4.2.3 and demonstrates that our synchronization scheme is lightweight, enabling our
parallel algorithm to scale up to tens of thousands of cores.

4.4.2 Communication-Avoiding de Bruijn Graph Traversal

To evaluate the effectiveness of our communication-avoiding algorithm we investigate per-
formance results on the human genome dataset on Edison using two concurrencies: 480
and 1,920 cores. Table 4.1 presents the speedup achieved by our communication-avoiding
algorithm (columns “oracle-1” and “oracle-4”) over the basic version without an oracle hash
function (column “no-Oracle”). The case labeled “oracle-1” corresponds to an oracle hash
function with a per-thread memory requirement of 115 MB, while the “oracle-4” hash func-
tions requires four times more memory, i.e. 461 MB per-thread. Recall that an increase of
dedicated memory for the oracle hash function corresponds to more effective communication-
avoidance. At 480 cores the communication-avoiding algorithms yields a significant speedup
up to 2.8× over the basic algorithm, while at 1,920 cores we achieve an improvement in
performance up to 1.9×.
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Graph traversal time (sec) Speedup
Cores no-Oracle oracle-1 oracle-4 oracle-1 oracle-4

480 145.8 105.8 52.1 1.4× 2.8×
1,920 46.3 35.9 24.8 1.3× 1.9×

Table 4.1: Speedup of communication-avoiding parallel de Bruijn graph traversal vs. the
basic (no Oracle) algorithm.

Off-node communication time % reduction in off-node
Cores (% of total communication time) communication time

no-Oracle oracle-1 oracle-4 oracle-1 oracle-4

480 92.8 % 54.6 % 22.8 % 41.2 % 75.5 %
1,920 97.2 % 54.5 % 23.0 % 44.0 % 76.3 %

Table 4.2: Reduction in communication time via oracle hash functions.

The data presented in Table 4.2 show that the performance improvements are related to
a reduction in communication. As expected, the basic algorithm performs mostly off-node
communication during the traversal. In particular, 92.8% of the lookups result in off-node
communication at 480 cores, and 97.2% of the lookups yield off-node communication at
1,920 cores. By contrast, even a lightweight oracle hash function “oracle-1” reduces the off-
node communication by 41.2% and 44%, at 480 and 1,920 cores, respectively. By allocating
more memory for the oracle hash function (“oracle-4”) we can further decrease the off-node
communication, by 75.5% and 76.3%.

4.5 Conclusion

In this Chapter we presented parallel algorithms for the two phases of contig generation,
namely de Bruijn graph construction and traversal. First, we described how to optimize
the de Bruijn graph construction by aggregating dynamically messages. Then, we detailed
our parallel de Bruijn graph traversal algorithm tailored for high diameter graphs, where
traditional Breadth First Search (BFS) approaches fail to scale. Our algorithm employs
massive parallelism and a provably lightweight synchronization scheme. We further op-
timized the de Bruijn graph traversal by developing a communication-avoiding technique
inspired by graph partitioning and genetic similarity. Human re-sequencing projects, opti-
mization of the single genome assembly and metagenome assembly can take advantage of
this communication-avoiding optimization. Finally, we presented distributed memory results
up to 15K cores on the Edison supercomputer and demonstrated that our algorithms scale
efficiently despite their irregular nature. As a result, our approach overcomes the limitations
of specialized big shared memory machines and allows the contig generation to be completed
in seconds instead of days.
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Chapter 5

Parallel Sequence Alignment

Aligning a set of query sequences to a set of target sequences is an important task in bioinfor-
matics. For example, the human genome is often analyzed by aligning each new individual’s
genome against a reference. In our assembly pipeline (see Figure 2.2(a)), we will use align-
ment to extend the length of the contigs by referring to the original reads – among other
things, this will help to resolve branches in the de Bruijn graph and disambiguate repeated
sequences that did not have unique extensions. The alignment of two sequences does not
require a perfect match, but allows some number of mismatched characters, insertions and
deletions. The bioinformatics community has therefore developed several approaches for
parallelizing the alignment of multiple reads (queries) to a set of reference sequences (targets
or contigs in the Meraculous pipeline).

A class of sequence alignment methods include the seed–and–extend algorithms (e.g.
BLAST [3]). The seeds are sequences of fixed length that can be extracted from the queries
or the target sequences. In the seed–and–extend paradigm, we extract first all possible seeds
that can be found in the reference sequences and store them in a hash table called seed
index. By searching a seed in the seed index we get as a result all the reference sequences
that contain this seed. In this way, by looking up seeds extracted from the queries we can find
in constant time potential pairs of queries and references to be aligned, with the assumption
being that all alignable pairs will have at least one common (identical) seed. Finally, an
extension algorithm is applied to the alignable pairs and we find detailed alignments of
queries with references.

In some applications of this methodology, the reference genome is known a priori, thus
allowing an off-line seed index construction that can then be exploited for multiple read data
sets. This scenario allows for straightforward parallelization, where the seed index is repli-
cated across a set of computational nodes, which can then independently and concurrently
align their subset of the reads. Indeed, there are existing frameworks (e.g. pMap [88]) that
automate the process of (1) index replication, (2) distribution of reads across nodes and (3)
local alignment computation.

However, this approach can suffer from two major limitations. First, the seed index of
very large genomes (e.g. wheat [20], pine [110]) and metagenomes may exceed the memory
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capacity of a singe node, thereby preventing the use of a simple seed index replication scheme.
More significantly, there are important applications such as de novo genome assembly where
the reference sequence is not known ahead of time, thus obviating the off-line approach.
Therefore, parallel de novo genome assemblers rely on efficient aligner algorithms, where
the seed index construction must be efficiently parallelized and distributed to allow high
concurrency solutions for grand-challenge genomes and metagenomes. In the Meraculous
pipeline, seeds from reads and contigs are extracted using the same sliding window of k-
mers that is used in contig generation. In this chapter we describe the alignment process
as a standalone algorithm with two sets of sequence data, the target sequences (reference)
and the query sequences (reads), since alignment is useful in other genomic analyses besides
assembly. In our pipeline the target is the set of contigs, since we have high confidence that
those are correct, and the queries are the original reads. The reads have information about
how the contigs may connect to one another, and the alignment phase will help to capture
that.

The parallel alignment algorithm presented in this chapter1 is called merAligner [34].
All the components of merAligner are fully parallelized from end to end, including the I/O
and the seed index construction. The seed index implementation presented in this chapter
leverages dynamic message aggregation and software caching to minimize communication
overheads. Also, merAligner preprocesses the reference sequences and performs exact seed
matching with minimal communication and computation without sacrificing accuracy. The
performance results of merAligner show close-to-ideal scaling (with 0.7 - 0.78 parallel effi-
ciency) up to 15K cores on NERSC’s Edison Cray XC30 supercomputer, using real datasets
from the human and the grand-challenge wheat genomes. Finally, we compare merAligner
with existing alignment solutions, showing the significant advantage of our end-to-end par-
allel approach. Overall, this chapter shows that efficient utilization of distributed memory
architectures enables effective parallelization of sequence alignment in terms of both high
scalability and reduced per-node memory requirements.

5.1 The merAligner Parallel Algorithm

Algorithm 2 describes the parallel seed–and–extend algorithm we employ to align a set
of query sequences to a set of target (reference) sequences. We emphasize here that the
pseudocode of Algorithm 2 assumes a Single Program, Multiple Data (SPMD) parallel model
where all processors execute the same program. The algorithm outputs detailed alignments
of queries with targets. In the context of this chapter, an alignment of two sequences is a
way of arranging them in order to identify regions of similarity. In this arrangement, the
sequences can have exact matches in the corresponding positions, mismatches or inserted
gaps. Also, an alignment is characterized by a score and typically an exact character match
has a positive contribution in the score while mismatches and inserted gaps have a negative

1The material presented in this chapter was first published in the paper “merAligner: A Fully Parallel
Sequence Aligner” [34]
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Algorithm 2 Parallel sequence alignment
1: Input: A set of queries and a set of targets, both sets of DNA sequences
2: Output: Set of alignments of queries with targets
3: mySetOfAlignments← ∅
4: for all processors pi in parallel do
5: myTargetSeqs←ReadTargetSequences(targets)
6: mySeedsInTargets←ExtractSeeds(myTargetSeqs)
7: globalSeedIndex←AllCreateGlobalSeedIndex(mySeedsInTargets)
8: myQuerySequences←ReadQuerySequences(queries)
9: for each query sequence q ∈ myQuerySequences do

10: for each seed s ∈ q do
11: myCandidateTargets←LookUp(globalSeedIndex, s)
12: for each target t ∈ myCandidateTargets do
13: myNewAlignment←SmithWaterman(t, q)
14: mySetOfAlignments←AddToSet(myNewAlignment,mySetOfAlignments)

impact on the score. An optimal alignment represents an arrangement of the two sequences
such that the score is maximized given the match reward and the mismatch and gap penalties.
Figure 5.1 illustrates an example of how two sequences can be aligned assuming that the
match, mismatch and gap scores are 1, -2 and -5 respectively. In subsection 5.1.4 we describe
the Smith-Waterman [99] dynamic programming algorithm that is used in order to find
optimal alignments.

5.1.1 Extracting Seeds from Target Sequences

First, each processor pi reads a distinct portion of the target sequences (line 5) and stores
them in shared memory such that any other processor can access them. Every target sequence
of length L contains L − k + 1 distinct seeds of length k. The first bases 1 . . . k of a target
form the first seed, the bases 2 . . . k + 1 form the second seed, etc. We extract seeds from
the target sequences and associate with every seed the target from which it was extracted
(line 6) – we also keep track of the exact offset of the seed in the target. Note that a given
seed s might appear in two or more target sequences.

GATACAGGTACCCGGAATATATGAC
|||||||||| ||||||||| |||| 
GATACAGGTA-CCGGAATATTTGAC

mismatch gap 

Sequence 1: 

Sequence 2: 

Figure 5.1: Detailed alignment of two DNA sequences. Assuming that the match, mismatch
and gap scores are 1, -2 and -5 respectively, the total score of this alignment is 16.
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Seed: ACT 

� 
Seed: GGC 

•  �  
Seed: CTG 

� 
---- 

� 
Seed: TGG 

� 
Seed: GCA 

� 

A  C  T  G  G   C G  G  C  A  Target 0: Target 1: 

Seed Index 

Figure 5.2: An example of a seed index data structure that indexes two target sequences.
Note that the seed index is distributed and stored in global shared memory. Also, the target
sequences are stored in global shared memory such that any processor can access them. Here
the seed GGC is extracted from both target sequences, thus the value in the corresponding
hash table entry is a list of pointers to the corresponding sequences. For simplicity we do
not show here additional stored information, such as the seed’s offsets in the targets.

5.1.2 Indexing Target Sequences

Once the seeds are extracted from the target sequences, they are stored in a global hash
table, henceforth referred to as the seed index (line 7), where the key is a seed and the value
is a pointer to the target sequence from which this seed has been extracted. If a seed is
extracted from multiple target sequences, its value in the hash table is a list of pointers to
those targets. The seed index is distributed and stored in global shared memory such that
any processor can access and lookup any seed. Essentially the seed index data structure
provides a mapping from seeds to target sequences (see Figure 5.2).

5.1.3 Locating Query-to-Target Candidate Alignments

Given a seed s from a query sequence q and an index globalSeedIndex, we perform a lookup
and locate the candidate target sequences that have length(s) consecutive bases matching
with q (line 11). Thus, each one of the query-to-target candidate alignments can be located
in O(1) time (see Figure 5.3).

5.1.4 Identifying Alignments via Smith-Waterman

Finally, after locating a candidate target sequence t that has length(s) consecutive bases
matching with a query sequence q (where s is a common seed in both sequences), the Smith-
Waterman [99] algorithm is executed with input the sequences t and q in order to perform
local sequence alignment (line 13). The Smith-Waterman algorithm is a general local align-
ment method based on dynamic programming. The algorithm compares segments of all
possible lengths and optimizes the similarity measure. Therefore, the core of this algorithm
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query sequence :         G  C  T  G   

Seed: ACT 

� 
Seed: GGC 

•  �  
Seed: CTG 

� 
---- 

� 
Seed: TGG 

� 
Seed: GCA 

� 

A  C  T  G  G   C G  G  C  A  Target 0: Target 1: 

Seed Index 

(1) 

(2) 

query’s seed 

Figure 5.3: Locating query-to-target candidate alignments. First the processor extracts a
seed from the query sequence (CTG seed). Next the processor looks up the distributed seed
index (arrow 1) and finds that a candidate target sequence is Target 0 (arrow 2). Finally, the
Smith-Waterman algorithm is executed using as inputs the query and the Target 0 sequences.

is the computation of a similarity matrix H. In this formulation q, t are string sequences
over the alphabet {A,C,G,T}, qi is the i-th character of a string q, tj is the j-th character of
a string t and w is a measure of weight for two characters. By denoting:

• w(qi, tj) = match score if qi = tj

• w(qi, tj) = mismatch score if qi 6= tj

• − is the gap symbol and stands for deletion or insertion

• w(qi,−) = w(−, tj) = gap score

• H(i, j) is the maximum similarity-score between a suffix of q[1...i] and a suffix of t[1...j]

the similarity matrix H is built from the following recursive expressions (given the integer
scores match score, mismatch score and gap score where typically match score is positive
and mismatch score and gap score are negative):

H(i, 0) = 0, 0 ≤ i ≤ length(q)

H(0, j) = 0, 0 ≤ j ≤ length(t)
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H(i, j) = max


0

H(i− 1, j − 1) + w(qi, tj) Match/Mismatch

H(i− 1, j) + w(qi,−) Deletion

H(i, j − 1) + w(−, tj) Insertion

with 1 ≤ i ≤ length(q), 1 ≤ j ≤ length(t).

Once the computation of matrix H is completed, the alignment is reconstructed as fol-
lows: Starting with the last value H(length(q), length(t)) we find the (i, j) entry that was
used to arrive at the current location in the matrix H. A diagonal jump implies there is
an alignment (either a match or a mismatch). A top-down jump implies there is a deletion.
A left-right jump implies there is an insertion. We can recursively apply this idea to find
the optimal alignment arrangement of q and t. The Smith-Waterman algorithm is fairly
demanding in time since the similarity matrix H takes O(length(q)× length(t)) time to be
computed.

However, two sequences q and t that align well will generate a path through the Smith-
Waterman alignment matrix that will almost run diagonally from the start point (0, 0) to the
end point (length(q), length(t)). Only insertions and deletions will cause a horizontal or ver-
tical shift on the diagonal alignment path. We can exploit this property and calculate only a
part of the similarity matrix, typically a band of width β around the diagonal. This algorithm
is called banded Smith-Waterman and has time complexity O(β ·min(length(q), length(t))).
In our application we know that the sequences q and t are quite similar since they have a
common seed s and as a result we can leverage the banded version of Smith-Waterman.

5.2 Distributed Seed Index Optimizations

In this section we detail the optimizations we employed regarding the distributed seed index.

5.2.1 Distributed Seed Index Construction

The computational task of the seed index construction is to insert all the seeds from the
target sequences into a distributed hash table (seed index) that can be globally accessed
for later use. We recognize this computational pattern as the Use Case 1 (GUO) of the
distributed hash tables (see subsection 2.3.2), therefore we can mitigate the communication
and synchronization overheads by leveraging dynamic message aggregation. This is exactly
the same optimization described in subsection 4.1.1, where it is used for the construction of
the distributed de Bruijn graph.
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Figure 5.4: A genome sampled at some depth of coverage d.

5.2.2 Software Caching Schemes

The nature of the alignment problem enables data reuse in both the seeds and target se-
quences, allowing us to exploit this insight for a more efficient implementation. High through-
put sequencing allows genomes to be sampled redundantly at a depth d, as visualized in
Figure 5.4. Let k be the length of a seed s and L be the read length. Any seed s of the
genome (yellow region) is expected to be found f = d · (1− (k−1)/L) times in the read data
set (f is the mean of the Poisson distribution of key-frequencies [68]), thus resulting in f
lookups for that seed within the distributed seed index. Additionally, targets are in general
sequences that are significantly longer than the reads. Thus, multiple reads are expected to
be aligned with the same target and a given target t is expected to be reused multiple times
in the seed extension procedure.

The parallel alignment algorithm makes no writes/updates in the distributed seed index
and the distributed data structure that stores the target sequences after their construction
phase; it just uses them for lookups/reads. We recognize this computational pattern as
the Use Case 3 (GRO) of the distributed hash tables (see subsection 2.3.2) and given the
potential for data reuse, we developed a software cache architecture to reduce communication
overhead as shown in Figure 5.5. In UPC, the address space of every node is logically divided
into private memory and shared memory. The private memory is thread local and can only
be accessed by the UPC thread (which maps to a processor in our case) to which it has
affinity. On the other hand, a location of the shared memory can be accessed by any UPC
thread in the system. It is much faster to access locally stored data than to access shared
memory residing on a remote node. Thus, on every node, a portion of the shared memory is
dedicated for software caches that can store either remote parts of the distributed seed index
(seed index cache) or target sequences owned by remote nodes (target cache). In Figure 5.5
consider Node i which has stored in its seed index cache a seed s (yellow block) that belongs
to the part of the distributed seed index local to Node j. Any lookup for the seed s by
processors of Node i will be served by the seed index cache resulting in much faster lookup
time than accessing the original yellow block on the remote Node j. Similarly, consider a
target sequence t (red block) which has been stored to the target cache of Node i. Processors
of Node i that need to align a query with respect to t will fetch t from the target cache and
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Figure 5.5: Software cache architecture for the distributed seed index and the target se-
quences. Node i has stored in its seed index cache a seed s (yellow block) from Node j.
Any lookup for the seed s by processors of Node i will be served by the seed index cache.
Similarly, Node i has stored in its target cache a sequence t (red block) from Node j. Any
processor of Node i that needs to align a query with respect to t will fetch t from the target
cache.

thus avoid the expensive off-node communication.
The expected seed data reuse naturally depends on the seed distribution among proces-

sors. As discussed later in Subsection 5.3.2, for load balancing reasons reads are assigned to
processors in a uniformly random fashion. Consider a parallel system with p total processors,
with ppn processors per node and a seed s with frequency f in the read data set residing
on node i. Following the reasoning in the previous paragraph, there are f − 1 additional
occurrences of that seed s in the read data set or equivalently there are f − 1 locations in
the reads that include that seed.

We can then ask the question: What is the probability that at least one such read
is assigned to node i? This problem can be reduced to the well known “bins and balls”
experiment. In this case, given f − 1 balls (remaining occurrences of the seed s) and m =
p/ppn bins (nodes), we toss the balls (reads) uniformly at random — the probability that at
least one of these balls falls in bin i (node i) is 1− (1−1/m)f−1. Therefore, with probability
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Figure 5.6: Probability of any seed being reused as a function of cores. We have picked
values of d = 100, L = 100, k = 51, f = 50 and ppn=24.

1− (1− 1/m)f−1 our approach will perform at least one seed index lookup of s resulting in
a software cache hit, since there are at least two occurrences of that seed in the same node
i. In order to assess the limits of this optimization, consider the case of a read data set with
d = 100, L = 100, k = 51, f = 50 and a system with ppn = 24 cores per node. Figure 5.6
shows the probability of any seed being reused at least one time given the previous values
of f and ppn. Note, however, that this is the behavior in the ideal case of “infinite” cache.
In practice, we dedicate a fraction of the nodes’ memory for software caching, and tradeoff
memory for increased data reuse. For typical experimental values of d and ppn, we expect a
significant benefit from our cache optimization strategy, as demonstrated in the experimental
results of Section 5.5.

5.3 Alignment Optimizations

We now discuss our alignment optimizations and theoretical proofs of expected behavior.

5.3.1 Optimizing exact read matches

Here we devise a method to preprocess the target sequences to identify properties enabling
exact sequence matching with minimal communication. The property we describe is based
on the Lemma 1.
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Lemma 1. Let k be the length of the seeds, q be a query sequence and t be a target sequence
where all the seeds extracted from t are uniquely located in t (i.e. this seed cannot be found
in any other target sequence). Assume that s is a subsequence in q with length(s) ≥ k and
t is a candidate target to be aligned with q that also includes the subsequence s. Then, q is
uniquely aligned to t with respect to the subsequence s, in essence there is no other target
t′ that matches with q in the subsequence s.

Proof. Since q matches with t in length(s) bases, then all length(s)−k+ 1 seeds in s belong
to both q and t. Since all seeds in t are uniquely located in t we conclude that also these
length(s)−k+1 seeds are uniquely located in t and therefore there are no other targets that
include those seeds. Consequently, there are no other targets that include the subsequence
s.

Consider a subsequence s ≡ q, and assume that the first candidate target t0 is to be
aligned with q and it is known that all the seeds extracted from t0 are uniquely located in t0
(we detail in the subsequent paragraph how to identify such a property). With a fast check
we can determine if q and t0 match in exactly length(s) bases. Given this scenario, then via
Lemma 1 with s ≡ q it holds that q is uniquely aligned to t0. Thus it is not necessary to
look for more candidate targets and additional seed lookups in the distributed seed index
can be avoided. It is thus assured that all possible alignments of q are found (to the set of
the targets) by simply performing a single seed lookup — thereby only requiring minimal
communication. Further speedups can also be achieved by recognizing that a seed extension
algorithm is not necessary in this case, instead a simple and fast string comparison between
q and the appropriate location of t0 can be executed.

We now explain how to identify, efficiently for all target sequences, whether the seeds
extracted from t0 are uniquely located in t0. During the distributed seed index construction
described in Subsection 5.2.1, when a processor adds the received seeds in its local buckets
of the hash table, it counts the number of occurrences of each seed — a cheap and local
operation. We additionally associate a boolean single copy seeds flag that is initialized as
true for all targets. After inserting the seeds into the seed index, a processor pi can visit all
the local seeds and if the count of an encountered seed s′ is greater than 1, pi sets the flags
single copy seeds of the targets that s′ was extracted from as false. This indicates that
those targets do not have seeds uniquely located in them. At the end of this step, all the
remaining targets with single copy seeds set to true are guaranteed to have all their seeds
uniquely located in them.

To maximize the impact of this optimization, we add an additional strategy. Given the
seed length k, the longer a target sequence t is, the more probable it is that t contains at
least one seed that is not uniquely located in t, thus negating the potential of leveraging the
described lookup optimization (even if some reads uniquely match to t). Now consider the
case where a target sequence t′ has all but one seed a uniquely located in t′. If we fragment
t′ in two equal-length subsequences t′1 and t′2 (that overlap to some degree but have disjoint
sets of seeds), then the non-uniquely located seed a in t′ should be found (by construction) in
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either t′1 or t′2. Thus the subsequence not containing the seed a consists of uniquely located
seeds, thereby enabling our described optimization.

The same reasoning can be applied recursively to address the general case where a target
t′ contains multiple non-uniquely located seeds. The idea is to fragment the sequence t′

into m equal-length subsequences t′1, t
′
2, ..., t

′
m that overlap to some degree — however the

subsequences have disjoint sets of seeds and the union of their sets of seeds is exactly the
set of seeds in the original sequence t′. This approach increases the probability of applying
the previous optimization. Note that some additional information must be stored for each
one of the subsequences t′1, t

′
2, ..., t

′
m, to allow quick locating of these subsequences later in

the alignment.

5.3.2 Load Balancing

Load balancing the queries might initially seem trivial: given n queries and p processors each
processor should process n/p queries. Unfortunately, queries may differ in their processing
requirements. For instance, consider a query q′ that perfectly aligns with a single target
sequence. Let textractSeed be the required time to extract a seed from a query, tlookupSeed the
time to lookup a seed in the seed index, tfetchTarget the time to fetch a target sequence,
and tmemcmp() the time to perform a memcmp() operation on length(q′) bytes. Then, the
time Algorithm 2 takes (after applying the previous optimization) to process q′ is tq′ =
textractSeed + tlookupSeed + tfetchTarget + tmemcmp(). On the other hand, consider a query q′′ that
can be aligned with C targets. Assume that tSW is the time to execute the Smith-Waterman
algorithm. Then, processing q′′ takes tq′′ = L ·(textractSeed+tlookupSeed)+C ·(tfetchTarget+tSW )
time, where L = length(q′′) − length(seed) + 1. Given tmemcmp() ≤ tSW , it must hold that
tq′′ ≥ min(C,L) · tq′ , thus the processing times of two queries can vary significantly.

Assume that the n queries can be divided in two categories: “fast” and “slow” (depending
on their required processing time). The goal is to evenly distribute the slow queries to the
available p processors. However, because it is unknown a priori if a query is fast or slow, we
implement the following load balancing strategy. Before executing Algorithm 2 the order of
the queries is randomly permuted in the input file and each processor is assigned a chunk
of n/p consecutive queries from the corresponding file. As proven in Theorem 1, if there
are h “slow” queries, p available processors and p log p� h ≤ p polylog(p)2, then with high
probability the load imbalance (difference of maximum “slow” load from the average “slow”

load h/p) is at most: 2
√

2h
p

log p.

Theorem 1. Let h be the number of “slow” queries and p be the number of available pro-
cessors and assume that p log p� h ≤ p polylog(p). After assigning the h queries randomly
to the p processors (or equivalently randomly permuting the order of the queries in the input
file) then with high probability the load imbalance (difference of maximum “slow” load from

the average “slow” load h/p) is at most: 2
√

2h
p

log p.

2polylog(p) is some polynomial in log(p)
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Proof. We formulate the process of randomly permuting the order of the queries in the input
file as the uniformly random tossing of h balls into p bins. Let M be the random variable
that counts the maximum number of balls (“slow” queries) in any bin. It therefore holds

that Pr[M ≤ k] = 1 − o(1) where k = h
p

+ 2
√

2h
p

log p [89], i.e. with high probability the

load imbalance (difference of maximum “slow” load from the average “slow” load h/p) is at

most: 2
√

2h
p

log p.

5.3.3 Restricting the Maximum Alignments per Seed

Even after applying the described load balancing scheme, there may be a few seeds that
can be aligned with too many targets, causing a high processing time for the corresponding
queries. Additionally, finding those numerous alignments may not be relevant to many
genome alignment applications. Thus, a threshold can be set for the maximum number of
alignments per seed, after which the candidate alignment queries are stopped. This threshold
determines the sensitivity of our aligner and it can be used to trade off accuracy for speed
when appropriate.

5.4 Additional Optimizations

We now describe the additional set of I/O, SIMD, and compression optimizations utilized in
our work.

5.4.1 Parallel I/O

The input read sequences are stored in the standard FASTQ format and we leverage our
parallel FASTQ reader described in Section 3.3.

5.4.2 SIMD Optimized Striped Smith-Waterman

MerAligner spends a significant portion of its runtime using the banded Smith-Waterman
(SW) algorithm for seed extension. Due to the critical role of SW, many efforts have been
made to accelerate it by taking the advantages of special hardware SIMD (Single Instruction
Multiple Data) instructions. In this work we incorporate such an implementation from
the Striped Smith-Waterman (SSW) library [108] which has been shown to be orders of
magnitude faster than reference implementations of SW in C.

5.4.3 DNA Sequence Compression

Given the {A,C,G,T} vocabulary of a DNA sequence, only two-bits per base are required for
binary representations. We thus use a high-performance compression library that transforms
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Figure 5.7: End-to-end strong scaling of merAligner on Cray XC30 for the human and the
wheat genome. The plotted curves exhibit the performance of merAligner while the single
data points show the performance of BWA-mem and Bowtie2 used in the pMap parallel
framework.

the DNA sequences from text format into a binary format [35]. This approach reduces the
memory footprint by 4×, while also reducing the bandwidth by 4× for communication events
that involve seeds or DNA sequence transfers.

5.5 Experimental Results

We experimented again on the human and the wheat dataset described in Section 3.4.1 and
the experimental platform is also the Edison supercomputer. Our experiments sought to
understand the strong scaling performance for these two datasets that differ by a factor of
6× in size.

5.5.1 Strong Scaling of End-to-End merAligner

Figure 5.7 shows the merAligner end-to-end strong scaling performance with all optimizations
applied. This summarizes the main result of this chapter, and demonstrates the efficient uti-
lization of distributed memory architectures for enabling scalable high performance sequence
alignment. More specifically when scaling from 480 to 15,360 cores the total execution time
drops from 4,147 seconds to 185 seconds (a 22× speedup), which translates to 0.7 parallel
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Figure 5.8: Distributed seed index construction scaling before and after applying the dynamic
message aggregation optimization for the human dataset.

efficiency at the extreme scale for the human dataset (red curves). At the scale of 15,360
cores our approach performs alignment at 15,499,718 reads/sec. For the larger wheat data
set (blue curves), scaling from 960 to 15,360 cores achieves 0.78 parallel efficiency. Note the
super-linear speedup in the range of 960 — 7,680 cores, which we speculate is due to reduced
congestion on the NIC since the communication is spread to even more nodes while we scale.

5.5.2 Anatomy of the Optimizations’ Benefits

We now examine the individual effects of our optimization schemes, by selectively turning
them off and measuring the resulting performance impact.

Distributed Seed Index Construction

Figure 5.8 illustrates the scaling of the distributed seed index construction before and after
applying the “aggregating stores” optimization, given a size S = 1000 for the aggregating
buffers. Observe that the reduction in the communication via our optimization dramatically
decreases the construction time. At 480 cores the time spent decreases from 1,229 seconds
to 262 seconds (4.7× improvement), and similarly at 7,680 cores we achieve an improvement
of 4.8×. For the optimized construction phase, increasing concurrency from 480 cores to
7,680 (16× core increase) results in a near-linear speedup speedup of 12.7×. These results
show that our algorithm efficiently parallelizes the seed index construction in a distributed
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Figure 5.9: Impact of software caching on communication for the alignment of the human
dataset.

memory and enables end-to-end scaling of merAligner. These scalable seed index construc-
tion results are in contrast to serial approaches of competing alignment codes as detailed
in Subsection 5.5.3. Also, the algorithm achieves almost perfect load balance in terms of
the number of distinct seeds assigned to each processor, thanks to our use of the djb2 hash
function to implement the seed to processor map.

Software Caching

In Figure 5.9 we depict the benefits of software caching on the communication time during
the alignment phase (in all experiments 16 GB/node and 6 GB/node are allocated for the
seed index and the target cache respectively). The red bars indicate the communication
time for the seed lookups and the blue bars represent target sequence fetching overhead.
Observe that the target cache is extremely efficient at all concurrencies and it essentially
obviates all the communication involved with target sequences. Results also show that the
seed index cache is effective at small concurrencies, where lookup time is decreased from
4,839 seconds to 3,130 seconds (≈ 35% reduction) at 480 cores, whereas larger concurrencies
see small benefits — validating our analysis in Subsection 5.2.2. Overall, the caching scheme
decreases communication overhead by 2.3×, 1.7× and 1.8× at concurrencies of 480, 1,920
and 7,680 cores respectively.
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Figure 5.10: Impact of “exact matching optimization” on the aligning phase of the human
dataset.

Exact Read Matching Optimization

Figure 5.10 shows the significant performance benefits of exact read matching, validating
the theoretical analysis of Subsection 5.3.1. Here the optimization results in runtime im-
provement of the alignment step by factors of 2.8× and 3.1× for 480 cores and 7,680 cores
respectively. Note that these gains come from both decreased communication (since in exact
matching just one seed lookup is sufficient) and reduction of computation time (by avoiding
Smith-Waterman execution). For example, at 480 cores our approach improves computation
by 2.48× and communication by 2.82×. Finally we emphasize that ≈ 59% of the aligned
reads took advantage of this optimization, thus enabling these impressive performance gains.
For the optimized aligning phase, increasing concurrency from 480 cores to 7,680 (16× core
increase) results in a near-linear speedup of 15.9×.

Load Balancing

In order to assess the effectiveness of the load balancing scheme, we conducted experiments
with and without permuting the input read files and measured the maximum, minimum and
average computation time as well as alignment times (computation plus communication).
Results for 480 cores for the human dataset are shown in Table 5.1. Although our load
balancing scheme effectively helps reduce the maximum computation time by almost 2.5×,
the total alignment time is only improved by ≈ 5%. A closer investigation of the original
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Load Computation time Total Alignment time
Balancing Min Max Avg Min Max Avg

Yes 678 800 740 2700 3885 3277
No 515 1945 690 1512 4092 2073

Table 5.1: Effect of load balancing scheme on the human dataset, showing the reduction of
the maximum compute time

dataset reveals that the reads mapping to the same genome region are grouped together.
Since some groups of reads did not map to any target, they do not require Smith-Waterman
execution, and thereby cause an imbalanced computing load. However, this locality made our
seed index cache extremely effective and substantially decreased the communication time.
Therefore, our load balancing scheme alleviates the computational load imbalance, while
making the seed index cache less effective as seen in Table 5.1. Nonetheless, our approach
improves the overall execution time. We note that the read grouping in the original data set
is not the common case, and thus expect our load balancer to be even more effective in the
general case.

5.5.3 Comparison with Existing Parallel Aligners

To assess our optimized merAligner in the context of existing solutions, we compare human
data performance with BWA-mem [63] and Bowtie2 [60] using the pMap [88] framework.
Note that pMap was modified to use the latest versions of the alignment software. Our
experiments are configured using 4 instances of 6 threads per Edison node, since it is not
possible to run one instance per core due to memory requirements of BWA-mem and Bowtie2
(each node contains 64GB of memory, which is insufficient to hold 24 instances of the seed
index). BWA-mem is run with minimum seed length equal to 51 (like merAligner). For
Bowtie2, we set the minimum seed length to the maximum possible value (31) and we execute
the experiment with the --very-fast option in order to achieve the best mapping runtime.
It is important to highlight that the seed index construction for BWA-mem and Bowtie2 is
performed serially. For both cases, pMap partitions the reads to the available instances, then

Aligner
Seed Index Mapping

Total Speedup
Construction Time

merAligner 21 (P) 263 (P) 284 sec 1×
BWA-mem 5,384 (S) 421 (P) 5,805 sec 20.4×

Bowtie2 10,916 (S) 283 (P) 11,119 sec 39.4×

Table 5.2: End-to-end performance comparison between parallel executions of merAligner,
BWA-mem and Bowtie2 using 7,680 cores on the human data set (with all times in seconds)
– highlighting serial (S) or parallel (P) implementation of the phases.
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Figure 5.11: Shared memory performance of merAligner, BWA-mem and Bowtie2 on a single
node of Edison on the E. coli data set. At the scale of 24 cores, merAligner is 6.33× faster
than BWA mem and 7.2× faster than Bowtie2.

the seed index is loaded into each instance’s memory and finally the corresponding instance
is called on the set of reads assigned to it.

Table 5.2 presents comparative end-to-end performance results at 7,680 cores, and notes
which computing phases are performed in serial (S) or parallel (P). As expected, the serial
seed index construction is a major bottleneck for the competing codes, compared with our
parallel merAligner approach. Also, pMap spends a significant amount of time in read
partitioning by having a single process sending the appropriate portion of the input read files
to the corresponding node (4,305 and 3,982 seconds for BWA-mem and Bowtie2 respectively).
On the contrary, merAligner does not suffer from this overhead since all processors read in
parallel the appropriate portions of the input read files. To make though a fair comparison,
we exclude the timing of the read partitioning for the cases of BWA-mem and Bowtie2. In
total, merAligner is 20.4× and 39.4× faster than the parallel execution of BWA-mem and
Bowtie2, respectively.

A complete analysis of the accuracy of the method is outside of the scope of this chapter.
The algorithm is guaranteed to identify all alignments that share at least one identically
matching stretch of at least length(seed) consecutive bases between query and target se-
quences. Whether such alignments are sufficient is largely an application-dependent question.
For the purposes of the Meraculous de novo assembly toolkit, these alignments are precisely
those required. Here, we simply report all alignments detected (i.e. without any percent-
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identity thresholding, using a commonly employed scoring matrix) and find that merAligner
successfully aligned 86.3% of the reads, while BWA-mem and Bowtie2 aligned 83.8% and
82.6% of the reads respectively. The accuracy of the detailed alignments is a function of the
Smith-Waterman code, and we refer the interested reader to that publication [108].

To further assess merAligner performance, we conduct experiments on the smaller 4.64
Mbp E. coli K-12 MG1655 dataset, which allows single node scalability experiments using
both BWA-mem and Bowtie2 in parallel mode with threads. The execution time of all three
approaches (using a seed length of 19) is shown in Figure 5.11. Observe that merAligner
performance continues to scale using all 24 available cores, while the runtimes of BWA-mem
and Bowtie2 stop improving at 18 cores. Overall, merAligner is significantly faster, exceeding
BWA-mem and Bowtie2 performance on 24 cores by 6.33× and 7.2× respectively. Subject
to the alignment correctness discussion above, we find that merAligner successfully aligned
97.4% of the reads, while BWA-mem and Bowtie2 aligned 96.3% and 95.8% of the reads
respectively.

5.6 Conclusion

In this Chapter we presented merAligner, a highly parallel sequence aligner that implements
a seed–and–extend algorithm and employs parallelism in all of its components. MerAligner
relies on a high performance distributed hash table (seed index) and uses one-sided com-
munication capabilities of the Unified Parallel C to facilitate a fine-grained parallelism. We
leverage communication optimizations at the construction of the distributed hash table and
software caching schemes to reduce communication during the aligning phase. Additionally,
merAligner preprocesses the target sequences to extract properties enabling exact sequence
matching with minimal communication. Finally, we efficiently parallelize the I/O intensive
phases and implement an effective load balancing scheme. Results show that merAligner
exhibits efficient scaling up to thousands of cores on a Cray XC30 supercomputer using real
human and wheat genome data while significantly outperforming existing parallel alignment
tools.
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Chapter 6

Parallel Scaffolding and Gap Closing

The main goal of the scaffolding algorithm in our pipeline is to connect together contigs and
form scaffolds which are long sequences of contigs. The first step of scaffolding comprises of
assessing the contigs created by contig generation and using the branches of the full de Bruijn
graph (i.e. the “fork” k-mers) to discover information regarding the connectivity among
contigs. By exploiting this connectivity information we generate a graph of contigs which is
further processed in order to be simplified, e.g. by identifying and transforming special graph
structures. Then, by leveraging the reads-to-contigs alignments and the information from
paired reads we introduce additional links/edges in the contig graph. Note that paired reads
with large insert sizes can be used to generate long-range links among contigs that could
not be found from the k-mer de Bruijn graph. Afterwards, we traverse the updated contig
graph and form chains of contigs that constitute the final scaffolds. It is possible though that
there are gaps between pairs of contigs. Therefore, we further process the reads-to-contigs
alignments and locate the reads that are placed into these gaps. Ultimately, we leverage
these subsets of reads and close the gaps by performing a mini-assembly algorithm involving
only the localized reads for each gap. The outcome of this step constitutes the result of the
Meraculous assembly pipeline.

In this chapter we describe in detail the parallelization of the scaffolding and the gap
closing algorithms. This material was first published in the paper “HipMer: An Extreme-
Scale De Novo Genome Assembler” [33]. The gap closing parallelization is done by Steven
Hofmeyr who co-authored that paper.

6.1 Computing Contig Depths

First, we calculate the depth (coverage) of each contig Ci as the average of the k-mer counts
in Ci. This information is important because it dictates contigs with low coverage and contigs
that represent repetitive genome regions; the latter type of contigs typically have much larger
coverage than the rest contigs. The contig depth information is used in subsequent steps of
the scaffolding algorithm.
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Given the exact count (depth) of the k-mers and a set of contigs, we calculate the depth
of each contig Ci as:

depth(Ci) =

∑
k-merj∈Ci

count(k-merj)

length(Ci)− k + 1
(6.1)

This information is important in order to approximate the read coverage of each contig and
will be used in later scaffolding stages. The parallelization here consists of two steps:

1. The k-mers are stored in a distributed hash table where the keys are k-mers and the
values are the corresponding counts. We recognize this computational pattern as the
Use Case 1 (GUO) of the distributed hash tables (see subsection 2.3.2), therefore we
can mitigate the communication and synchronization overheads by leveraging dynamic
message aggregation (see subsection 4.1.1 for more details).

2. Each processor pi is assigned 1/p of the contigs (p is the total number of available
processors) and for every contig, pi looks up all the contained k-mers and sums up
their counts. The depth of the contig is then calculated as the mean count of all the
k-mers (see equation 6.1). Note that this step does not require any synchronization,
as the distributed hash table is only read after its construction.

6.2 Identifying Termination States of Contigs

In this step we identify the termination condition for every contig generated by the de
Bruijn graph traversal. A contig may have been terminated because: (1) it does not have
any neighboring UU k-mers to its endpoints, or (2) one of its endpoints may be adjacent to a
“fork” k-mer (see Figure 2.3 for an example of such a “fork” k-mer). The termination states
of contigs provide information regarding the connectivity among contigs and will be used in
subsequent scaffolding modules that operate on graphs of contigs.

In the distributed hash table of k-mers we store their corresponding extensions as their
values. Again we identify the Use Case 1 (GUO) of the distributed hash tables (see sub-
section 2.3.2) and we aggregate dynamically the messages. The algorithm then iterates in
parallel over the contig set and identifies the termination condition for every contig. For
example, a contig may have been terminated because it did not find any neighboring UU
k-mers to its endpoints, or it may have found a branch in the graph with two high quality
neighboring k-mers. The latter is the case that often arises in: (i) diploid organisms, i.e.
genomes that have two sets of chromosomes, one set inherited from each “parent” and (ii)
in repetitive genome regions. The Meraculous assembler terminates contigs if they do not
have unique high quality neighboring k-mers, but this termination state is utilized in the
following bubble identification step.
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Figure 6.1: Example of a bubble structure in a bubble-contig graph.

6.3 Identifying Bubble Structures

In this step, we examine the termination condition of contigs from the previous step and we
detect bubbles : contigs that have the same k-mers as extensions of their endpoints. Note that
this is only applicable in diploid genomes. By leveraging this bubble information and the
contigs’s end termination state, a graph of contigs is created, called the bubble-contig graph.
Figure 6.1 illustrates an example of such a bubble structure. Assume that all four contigs
GATCTCAA, AATCC, AAGCC, CCATGCG have been generated by a de Bruijn graph of k-mers with
k = 3. Also, observe that the k-mers CAA and CCA (which are highlighted with boldface text)
are “fork” k-mers and they can be used to recognize this bubble structure. This graph is
orders of magnitude smaller than the original k-mer de Bruijn graph because the connected
components (contigs) of the de Bruijn graph have been contracted to supervertices. We build
this bubble-contig graph in parallel by employing a distributed hash table.

Once the bubble-contig graph is built, it is traversed to merge qualifying contigs (e.g. by
following one of the paths in the bubbles). In the example of Figure 6.1 by following the
upper path we get a the single contig GATCTCAATCCATGCG. We parallelize this bubble-contig
graph traversal using a speculative approach. The processors pick random seeds (in this
case the traversal seeds are contigs) from the bubble-contig graph and initiate independent
traversal. Once an independent traversal is terminated we store the resulting path as a new
contig. However, if multiple processors work on the same path, they abort their traversals
and allow a single processor to complete them. In practice, this speculative execution spends
most of the time (∼ 99%) in parallel traversals. Given that the bubble-contig graph is orders
of magnitude smaller than the original de Bruijn graph, its traversal is extremely fast. The
result of this module is a set of contig paths, where every path can be compressed to a single
DNA sequence. For simplicity, we call these compressed paths also contigs in the description
of the following scaffolding modules.

6.4 Alignment of Reads onto Contigs

In this pipeline phase the goal is to map the original reads onto the generated contigs; the
contigs can be generated either by the contig generation step or by the bubble-contig graph
simplification in the case of diploid genomes. This mapping provides information about the
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Figure 6.2: (a) Contigs k and m constitute a splint. (b) Contigs i and j constitute a span.

relative ordering and orientation of the contigs. In order to efficiently parallelize the reads-
to-contigs alignment, we employ merAligner [34] described in more detailed in Chapter 5, a
scalable, end-to-end parallel sequence aligner. The seed length used in merAligner has the
same value as the k used for k-mers in the de Bruijn graph.

6.5 Insert Size Estimation of Read Libraries

Given a set of paired reads from a library (i.e. the reads come in pairs) and the corresponding
read-to-contig alignments from the previous step, we now use full length alignments in which
both reads of a pair are placed within a common contig, and calculate the insert size. Even if
the library is characterized by an insert size (see Figure 2.1) we want to get a more accurate
estimate for the mean of its value and its standard deviation in order to be more precise in the
scaffolding decisions where the insert size plays a crucial role. Sampling the alignments allows
us to estimate the insert size of the library in an efficient way. The insert size estimation
is parallelized by having p processors build local histograms of distinct sampled alignments
and eventually merging these p local histograms to a global one, from which the mean insert
size and the standard deviation of the read library are computed.

6.6 Locating Splints and Spans

The next step is to process the alignments and identify splints, which are contigs that overlap
at their ends. Essentially, if a particular segment of a read aligns to the ends of two different
contigs we conclude that these contigs form a splint (see Figure 6.2 (a)). The parallelization
of this step is straightforward: Each one of the p processors independently processes 1/p of
the total read alignments and stores the splints’s information it identifies. The computation
of this step is embarrassingly parallel.

Additionally, by processing paired reads’ alignments we identify spans, which are pairs
of contigs associated with particular read pairs via their read-to-contig alignments. For
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example, consider that the first read of a pair aligns with contig i while the second read of
that pair aligns with contig j. It can thus be concluded that contigs i and j form a span
(see Figure 6.2 (b)). Note that we have already calculated the insert size of the read library
in the previous step and therefore can estimate the gap size between contigs i and j. Again
the parallelization of this module is straightforward, where each processor independently
assesses 1/p of the total read alignments and stores the spans’s information.

6.7 Contig Link Generation

Once splints and spans are created, they can be processed to generate links among pairs of
contigs. More specifically, if a sufficient number of read alignments supports a particular
splint between contig k and contig m, we generate a splint link for that pair of contigs.
Parallelizing this operation requires a distributed hash table, where the keys are pairs of
contigs and values are the splint/overlap information. Each processor is assigned 1/p of the
splints and stores them in the distributed hash table. Here, we again apply the aggregating
stores optimization to minimize the number of messages and the synchronization cost (Use
Case 1 (GUO) 2.3.2 of distributed hash tables). When all splints have been stored in the
distributed hash table, each processor iterates over its local buckets to further assess/count
the splint links (Use Case 4 (LRW) 2.3.2 of distributed hash tables).

In an analogous way, if a sufficient number of paired reads’ alignments supports a partic-
ular span between contig i and contig j we generate a span link for that pair of contigs. The
parallelization of this operation relies on a distributed hash table where the keys are pairs of
contigs and values are the span/gap information. Again we have each processor process 1/p
of the spans and apply the aggregating stores optimization. After the distributed hash table
construction is finalized, each processor iterates over its local entries to further assess/count
the span links.

6.8 Ordering and Orientation of Contigs

After storing the previously generated links in a distributed hash table (Use Case 1 of
distributed hash tables with dynamic message aggregation) where the keys are pairs of
contigs and values are the corresponding link information, the data in the links is processed
to build ties among the contigs by consolidating splint/span links. If the contigs that are
about to be tied differ significantly in their depth, we can reject that tie. Also, the depth
information can be used to recognize contigs arising from repetitive regions: such contigs
should have significantly larger depth than the depth of coverage d. Typically such contigs
have multiple links on both of their endpoints.

This step employs parallelism by having each processor work on the local buckets of the
links’ distributed hash table (Use Case 4 of distributed hash tables). After the establish-
ment of ties among the contigs, we traverse the implicit graph of ties and then lock contigs
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Figure 6.3: Two scaffolds formed by traversing sequences of ties. Note that the tie between
contigs 5 and 6 is due to a splint-link while the rest ties are due to span-links.
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Figure 6.4: A set of gaps in a scaffold to be closed.

together in order to form scaffolds (see Figure 6.3). The traversal is done by selecting seeds
(traversal seeds are contigs in this case) in order of decreasing length and therefore it is
inherently serial; this heuristic tries to lock together first “long” contigs. We have optimized
this component and found that its execution time is insignificant compared to the previous
pipeline operations. This behavior is expected since the number of contigs (vertices in the
ties’s graph) is orders of magnitude smaller than the number of k-mers (vertices in the de
Bruijn graph of the pipeline).

Finally, libraries with large insert sizes can be used to generate long-range links/ties and
consequently to resolve repeats in the contig graph. To accommodate this functionality, the
scaffolding algorithm can be performed in an iterative way by using links generated from
different libraries at each iteration.

6.9 Gap Closing

The gap closing stage uses the merAligner outputs (i.e. read-to-contig alignments), the scaf-
folds and the contigs to attempt to assemble reads across gaps between the contigs of scaffolds
(see Figure 6.4). To determine which reads map to which gaps, the alignments are processed
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in parallel and projected into the gaps. The gaps are divided into subsets and each set is
processed by a separate thread, in an embarrassingly parallel phase. Several methods are
available for constructing closures, and are used in succession until a closure is found or no
more methods are available. The first method used is spanning, i.e. finding a read that
begins with the end of the contig on one side of the gap, and finishes with the start of the
contig on the other. Should spanning fail, an attempt is made to do a traversal (k-mer walk)
across the reads from one side of the gap to the other, with iteratively increasing k-mer sizes
until the gap is closed. This mini-assembly step is first attempted from the right hand side
contig to the left, and if that fails, from left to right. If both traversals fail, the final method
used is an attempt to patch across the two incomplete traversals, i.e. find an acceptable
overlap between the two sequences.

The various closure methods differ in computational intensity, with spanning and patch-
ing being orders of magnitude quicker than k-mer walks. Given that it is not clear a priori
what methods will be successful for closing a gap, the computational time can vary by orders
of magnitude from one closure to the next. To prevent load imbalance in the gap closing
phase, the gaps are distributed in a Round Robin fashion across all the available threads.
This suffices to prevent most imbalance because it breaks up the gaps from a single scaffold,
which tend to require similar costs to close.

6.10 Experimental Results

The experiments presented in this section utilize the human and wheat datasets on the
Edison supercomputer.

Figure 6.5 illustrates the strong scaling performance for the scaffolding module using the
human dataset. This graph depicts three scaffolding component runtimes at each concur-
rency: (1) the merAligner runtime, the most time consuming module of scaffolding, (2) the
time required by the gap closing module and (3) the execution time for the remaining steps
of scaffolding. The final component includes computation of contig depths and termination
states, identification of bubbles, insert size estimation, location of splints & spans, contig
link generation and ordering/orientation of contigs — which have all been parallelized and
optimized. Scaling to 7,680 cores and 15,360 cores results in parallel efficiencies (relative
to the 480 core baseline) of 0.48 and 0.33, respectively. While merAligner exhibits effective
scaling behavior all the way up to 15,360 cores (0.64 efficiency), the scaling of gap closing
is more constrained by I/O and only achieves a parallel efficiency of 0.35 at 7,680 cores,
and 0.19 at 15,360 cores. Similarly, the remaining modules of scaffolding show scaling up
to 7,680 cores, while once again suffering from I/O saturation at the highest (15,360 cores)
concurrency.

Figure 6.6 presents the strong scaling behavior of scaffolding for the larger wheat dataset.
We attain parallel efficiencies of 0.61 and 0.37 for 7,680 and 15,360 cores respectively (rela-
tive to the 960 core baseline). While merAligner and gap closing exhibit similar scaling to
the human test case, the remaining scaffolding steps consume a significantly higher fraction



CHAPTER 6. PARALLEL SCAFFOLDING AND GAP CLOSING 75

 128

 256

 512

 1024

 2048

 4096

 480  960  1920  3840  7680  15360

Se
co

nd
s

Number of Cores

overall time
merAligner

rest scaffolding
gap closing

ideal overall time

Figure 6.5: Strong scaling of scaffolding for the human genome. Both axes are in log scale.
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Figure 6.6: Strong scaling of scaffolding for the wheat genome. Both axes are in log scale.

of the overall runtime. There are two main reasons for this behavior. First, the highly repet-
itive nature of the wheat genome leads to increased fragmentation of the contig generation
compared with the human DNA, resulting in contig graphs that are contracted by a smaller
fraction. We refer to contraction with respect to the size reduction of the k-mer de Bruijn
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graph when it is simplified to equivalent contig graph. Hence, the serial component of the
contig ordering/orientation module requires a relatively higher overhead compared with the
human dataset. Second, the execution of the wheat pipeline as performed in our previous
work [20] requires four rounds of scaffolding with libraries of different insert sizes, resulting
in even more overhead within the contig ordering/orientation module.

6.11 Conclusion

In this chapter we described in detail the parallel algorithms that constitute the scaffolding
and gap closing modules in the HipMer pipeline. In the parallelization process we identified
properties of the underlying distributed data structures (hash tables) that enable communi-
cation optimizations. We also developed a speculative algorithm for the bubble identification
step and we parallelized efficiently the time consuming gap closing procedure. Most of the
time in scaffolding is required for sequence alignment and we employed for this purpose the
merAligner algorithm. Finally, empirical large-scale results demonstrate that the parallel
scaffolding module and gap closing can scale to 15K cores of the Edison supercomputer.
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Chapter 7

Single Genome Assembly with HipMer

The primary goal of this dissertation is to provide a high-quality, high-performance de novo
single genome assembler. Therefore we focused on the parallelization of a state-of-the-art
assembly pipeline called Meraculous. The parallelization of the end-to-end pipeline has been
described in detail in Chapters 3, 4, 5 and 6 and the outcome is a fully parallel assembler
we call HipMer. In this Chapter1 we discuss first the quality of HipMer and illustrate
that it provides high-quality assemblies in a set of benchmarks. Then, we provide a rough
performance model for the whole pipeline that gives insights for the relative costs of the
various components. Finally, we present performance results for the end-to-end pipeline and
compare its execution time and scalability with other parallel de novo assembly pipelines.

7.1 Quality Assessment of HipMer Assemblies

The HipMer pipeline is a faithful implementation of the original Meraculous algorithm.
Therefore, in order to assess the quality of the assemblies in comparison to other state-of-
the-art tools we refer to the most recent Assemblathon study [13] where Meraculous is a
participating team; detailed quality analysis of the Meraculous assembler is out of scope of
this dissertation.

Table 7.1 shows the participating teams along with the assembly software they used.
Each team was allowed to submit one competitive entry for each of the three datasets (bird,
fish, and snake) that were used as the quality benchmark in this study. Figure 7.1 shows the
quality results in regard to the REAPR [49] summary score; this metric rewards short-range
and long-range accuracy, as well as low error rates. This score is calculated as the product
of i) the number of error free bases and ii) the squared scaffold N502 length after breaking
assemblies at scaffolding errors divided by the original scaffold N50 length. This metric takes

1The material presented in this Chapter was first published in the paper “HipMer: An Extreme-Scale
De Novo Genome Assembler” [33].

2N50 is calculated by summing all sequence lengths, starting with the longest, and observing the length
that takes the sum length past 50% of the total assembly length
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Team-ID Assembly software used Team-ID Assembly software used

ABL HyDA CURT SOAPdenovo, velvet
ABYSS ABySS and Anchor GAM GAM, CLC and ABySS
ALLP ALLPATHS-LG IOB ALLPATHS-LG and SOAPdenovo
BCM Quake, ALLPATHS-LG, Velvet MLK ABySS
CBCB Celera assembler MERAC Meraculous
COBIG Mira, Bambus2 NEWB Newbler
CRACS ABySS, SSPACE, Bowtie, and FASTX PHUS Phusion2, SOAPdenovo, SSPACE
CSHL ALLPATHS, SOAPdenovo PRICE PRICE
CTD Unspecified RAY Ray
SGA SGA SOAP SOAPdenovo

SYMB SSPACE, SuperScaffolder & GapCloser

Table 7.1: Participating teams in the Assemblathon 2 study. For more details on the em-
ployed software we refer the interested reader to the Assemblathon 2 study [13].
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Figure 7.1: REAPR summary scores for all assemblies. This score is calculated as:
number of error free bases× (broken N50)2/original N50. Data shown for assemblies
of bird (blue), fish (red), and snake (green). The REAPR summary score is plotted on a log
axis. Results for bird assemblies MLK and ABL and fish assembly CTD are not shown as
it was not possible to run REAPR on these assemblies. Assemblies were excluded from the
analysis if their total size was less than 25% of the expected genome size for the species in
question. This plot is taken from the Assemblathon 2 study [13].



CHAPTER 7. SINGLE GENOME ASSEMBLY WITH HIPMER 79

into account both the contiguity and the accuracy of the assemblies and therefore we opt to
present it here as representative of the overall results.

The REAPR summary scores reveal large differences between the quality of different
assemblies. The Meraculous assembler is ranked first for the bird and the snake assemblies
while it is ranked seventh in regard to the fish assembly, where in general all assemblers per-
form worse compared to the other two datasets. It is worth noting that the REAPR score
considers both accuracy and contiguity. For example, the snake Meraculous and SGA as-
semblies have comparable numbers of error free bases, but the N50 before and after breaking
at errors makes the difference between their final scores. Although the Meraculous assembly
had lower N50 values than those of the SGA assembly, it made proportionally fewer errors,
so that it was ranked above SGA. Of course, the REAPR quality score is not a panacea, it
just highlights in this case study that the Meraculous assembler (and consequently HipMer)
performs well compared to other state-of-the-art tools. We refer the interested reader to the
Assemblathon 2 paper for a comprehensive analysis of the quality results.

7.2 Performance Modeling of the HipMer Pipeline

This section provides a rough performance model for the whole pipeline that gives insights
for the relative costs of the various components. In particular, we consider only the computa-
tional costs and we do not take into account parallelization overheads such as communication,
synchronization and load imbalance. Nevertheless, we have shown in the previous Chapters
that all these modules can be parallelized efficiently and we can minimize synchronization,
communication and load imbalance. The HipMer pipeline is illustrated in Figure 7.2 and
consists of four modules: (1) k-mer analysis, (2) contig generation, (3) sequence alignment
and (4) scaffolding & gap closing. In the following subsections we provide lower bounds of
the computational cost of each one of these steps which are necessarily lower bounds on
the total cost, including communication, synchronization and load imbalance overheads. In
other words, these costs are indicative of the actual complexity of the pipeline given work-
efficient algorithms. Throughout the analysis we assume that the underlying genome has
size G and the average coverage depth is d. We also assume that the read length is L and
therefore the number of reads covering the genome is roughly G · d/L.

7.2.1 Complexity of k-mer analysis

Given a parameter k for the k-mer length, from each read we extract (L−k+1) k-mers. We
have to access all these k-mers in order to count/characterize them, therefore the three-pass
k-mer analysis step as described in Chapter 3 has roughly cost:

Tk-mer analysis = Ω(# passes · # reads · k-mers per read) = Ω(3 ·G · d/L · (L− k+ 1)) (7.1)
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Figure 7.2: The HipMer de novo genome assembly pipeline.

7.2.2 Complexity of contig generation

Once the k-mer analysis has been performed, the multiple occurrences of k-mers have been
consolidated to unique copies and they are used to form a de Bruijn graph which has size
proportional to the genome size G. Also, all the erroneous k-mers have been filtered our
during the previous step. Therefore, traversing the de Bruijn graph and discovering the
connected components has cost:

Tcontig generation = Ω(size of de Bruijn graph) = Ω(G) (7.2)

7.2.3 Complexity of sequence alignment

In this step we map the original read pairs onto the generated contigs. The first part of the
alignment step is to generate an index on the contigs. The cost for constructing the index
is proportional to the size of the contigs which have size roughly equal to the genome size;
therefore the indexing cost is:

Tcontig indexing = Θ(genome size) = Θ(G) (7.3)

Once we build the index, we lookup seeds which are extracted from the reads and we perform
local alignments via banded Smith-Waterman. For our analysis we assume a band of width
β in the Smith-Waterman execution. Also, for simplicity we assume that each read aligns on
average onto α contigs and we can efficiently identify contig properties to avoid redundant
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computation and seed lookups as we described in Chapter 5. Therefore, the mapping step
has cost:

Tmapping = Ω(# of reads ·# alignments per read · cost per local alignment)

= Ω(G · d/L · α · β · L) = Ω(G · d · α · β)
(7.4)

The total cost for the sequence alignment module is therefore:

Tsequence alignment = Ω(Tcontig indexing + Tmapping) = Ω(G(1 + d · α · β)) (7.5)

7.2.4 Complexity of scaffolding

In order to simplify our cost analysis, we refer to the modules “Computing Contig Depths”,
“Identifying Termination States of Contigs” and “Identifying Bubble Structures” as contig
graph assessment. These modules process the contig graph and assess the depth of coverage,
the connectivity and the “bubble” structures respectively. Therefore the cost is:

Tcontig graph assessment = Θ(3 · contig graph size) = Θ(3G) (7.6)

In the remaining scaffolding modules, we analyze the computed alignments in order to gen-
erate links among contigs. Afterwards, we traverse the underlying graph of links/ties to
generate scaffolds. The cost is therefore:

Tlinks assessment = Ω(Talignments analysis + Ttraverse link graph)

= Ω(# of alignments + size of link graph) = Ω(G · d/L · α +G)
(7.7)

Eventually we get the cost for the complete scaffolding step:

Tscaffolding = Ω(T contig graph assessment + T links assessment) = Ω(G · d/L · α + 4G) (7.8)

7.2.5 Complexity of Gap Closing

With regard to the final gap closing module we assume that a fraction γ of the genomic
sequences is not assembled into contigs and therefore the corresponding reads will be assem-
bled via the gap closing process. Also, we assume that the average coverage in these regions
is also d. Therefore, by performing a mini assembly algorithm on these reads and considering
the most time consuming parts in this process, namely k-mer counting and k-mer walks, the
computational cost is:

Tgap closing = Ω(Tk-mer counting + Tk-mer walks)

= Ω(#k-mers in unassembled genome + size of unassembled genome)

= Ω(γG · d/L · (L− k + 1) + γG) = Ω( γG(1 + d/L · (L− k + 1)) )

(7.9)
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Symbol Parameter Description
G genome size
d depth of coverage
L read length
k length of k-mers
α average number of alignments per read
β width of band in Smith-Waterman
γ % of genome not in assembled contigs

Table 7.2: Model parameters

Stage Complexity
k-mer analysis 3 ·G · d/L · (L− k + 1)

contig generation G
sequence alignment G · (1 + d · α · β)

scaffolding G · d/L · α+ 4G
gap closing γG · (1 + d/L · (L− k + 1))

Table 7.3: Complexity of the pipeline

7.2.6 Complexity of the end-to-end pipeline

The results of the complexity analysis (equations 7.1 - 7.9) are summarized in Tables 7.2
and 7.3. In particular, Table 7.2 lists the parameters used in our complexity model and
Table 7.3 illustrates the complexity of the main stages in the pipeline. Now we pick a few
representative values for the parameters and overview the cost of the various stages of the
pipeline. By setting d = 50, k = L/2 + 1, α = 1, β = 5, L = 150 and γ = 0.1 we get:

Tk-mer analysis = 75 ·G
Tcontig generation = G

Tsequence alignment = 251 ·G
Tscaffolding = 4.3 ·G
Tgap closing = 2.6 ·G

We conclude that the most time consuming phases are k-mer analysis and sequence align-
ment, which both have orders of magnitude larger cost compared to the remaining steps in
the pipeline. Of course this analysis is not rigorous but it gives an approximate estimate
with regard to the relative costs of the HipMer components. One of the limitations is that
the model ignores the parallelization overheads of the various computational patterns. For
example, in Chapters 3 and 4 we saw that the k-mer analysis step follows a bulk synchronous
parallel model while the contig generation has an inherently irregular pattern and as a result
its parallelization is more challenging. Furthermore, this model is agnostic to the relative
cost of the various operations (e.g. string computations vs I/O). For instance, the k-mer
analysis has to deal with the I/O of the massive read datasets with size Θ(G · d), while
the contig generation takes as input a filtered k-mer set with size Θ(G). This gap in the
expensive I/O phase will contribute more in the actual difference of the two stages’ cost
compared to differences arising from in-memory computations.

7.3 Performance Results of the end-to-end Pipeline

Figures 7.3 and 7.4 show the end-to-end strong scaling performance of HipMer (including
I/O) with the human and the wheat datasets respectively on the Edison supercomputer. For
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Figure 7.3: End-to-end strong scaling for the human genome. Both axes are in log scale.
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Figure 7.4: End-to-end strong scaling for the wheat genome. Both axes are in log scale.

the human dataset at 15,360 cores we achieve a speedup of 11.9× over our baseline execution
(480 cores). At this extreme scale the human genome can be assembled from raw reads in
just ≈ 8.4 minutes. On the complex wheat dataset, we achieve a speedup up to 5.9× over
the baseline of 960 core execution, allowing us to perform the end-to-end assembly in 39
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Figure 7.5: Strong scaling of the human data set with I/O caching. Both axes are in
logarithmic scale.

minutes when using 15,360 cores. In the end-to-end experiments, a significant fraction of
the execution time is spent in parallel sequence alignment, scaffolding and gap closing (e.g.
68% for human at 960 cores); k-mer analysis requires less runtime (28% at 960 cores) and
contig generation is the least expensive computational component (4% at 960 cores). These
empirical results support the model we presented in the previous section.

7.3.1 I/O caching

Our modular design of the pipeline enables flexible configurations that can be adapted ap-
propriately to meet the requirements of each assembly. For instance, one might want to
perform multiple rounds of scaffolding to facilitate the assembly of highly repetitive regions
or to iterate over the k-mer analysis step and contig generation multiple times (with vary-
ing k and other parameters) in order to extract information that is latent within a single
iteration. These configurations imply that the input read datasets should be loaded multi-
ple times. Even in a typical, single pass execution of the pipeline, the reads constitute the
input to multiple stages, namely k-mer analysis, alignment and gap closing. Reloading the
reads multiple times from the parallel file system, imposes a potential I/O bottleneck for the
pipeline. However, at scale we have the unique opportunity to cache the input reads and all
the intermediate results onto the aggregate main memory, thus avoiding the excessive I/O
and concurrent file system accesses. In order to achieve the I/O caching in a transparent
way, we leverage the POSIX shared memory infrastructure and thus all the subsequent input
loads are streamed through the main memory.
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Figure 7.5 shows the end-to-end strong scaling performance of HipMer on the human
dataset up to 23,040 Edison cores. We present this experiment in order to highlight the
importance of the I/O caching. Note that the baseline concurrency is 1,920 cores; we need
at least 80 Edison nodes, each with 24 cores, to fit all the data structures and cache the
input datasets in memory (≈ 5TB). The dark blue line shows the end-to-end execution time
including the I/O, which is cached in main memory once the input reads are loaded. The
ideal strong scaling is illustrated by the black line. At the concurrency of the 23,040 cores we
completely assemble the human genome in 3.91 minutes and obtain a strong scaling efficiency
of 48.7% relative to the baseline of 1,920 cores. In order to illustrate the effectiveness of the
I/O caching, we performed the same end-to-end experiments where the input reads are
loaded from the Lustre file system five times (cyan line). This experiment does not exhibit
any scaling from 15,360 to 23,040 cores due to the I/O overhead, thus demonstrating that
I/O caching is crucial for scaling to massive concurrencies. At the scale of 23,040 cores, the
version with I/O caching is almost 2× faster than the version without this optimization.

The efficiency of the I/O (reading the input reads once) is illustrated with the magenta
line. We observe that the I/O is almost a flat line across the concurrencies and yields a read
bandwidth of ≈ 16 GB/sec (the theoretical peak of our Lustre file system is 48 GB/sec).
With 80 Edison nodes we are able to saturate the available parallelism in the Lustre file
system and further increasing the concurrency does not help improve the I/O performance.
The red, green and orange lines show the partial execution time for (i) the k-mer analysis, (ii)
contig generation and (iii) sequence alignment, scaffolding and gap closing respectively. We
conclude that all the components scale up to 23,040 cores and do not impose any scalability
impediments.

7.4 Performance Comparison with Other Assemblers

To compare the performance of HipMer relative to existing parallel de novo end-to-end
genome assemblers we evaluated Ray [9, 10] (version 2.3.0) and ABySS [97] (version 1.3.6)
on Edison using 960 cores. Ray required 10 hours and 46 minutes for an end-to-end run on
the Human dataset. ABySS, on the other hand, took 13 hours and 26 minutes solely to get to
the end of contig generation. The subsequent scaffolding steps are not distributed-memory
parallel. At this concurrency on Edison, HipMer is approximately 13 times faster than Ray
and at least 16 times faster than ABySS.

7.5 Conclusion

Next-generation short-read sequencing technology has resulted in explosive growth of se-
quenced DNA. However, de novo assembly has been unable to keep pace with the flood of
data, due to vast computational requirements and the algorithmic complexity of assembling
large-scale genomes. In this Chapter we presented the HipMer pipeline, an end-to-end high
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performance de novo assembler designed to scale to massive concurrencies. Our work is
based on the Meraculous assembler, which has been shown to be one of the top de novo
approaches in recent Assemblathon competitions.

Overall results show unprecedented performance and scalability, attaining an overall run-
time of 3.91 minutes for the human DNA at 23K cores on the Cray XC30 Edison supercom-
puter, compared with 10.8 hours for Ray and 48 hours for the original Meraculous pipeline.
Additionally, we explored performance on the grand-challenge wheat genome, which, to date,
has been too large and complex for most modern de novo assemblers. Our results demon-
strated impressive scalability, allowing the completed wheat assembly in just 39 minutes
using 15K cores.
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Chapter 8

Parallel Metagenome Assembly

Metagenomics is currently the leading technology in studying the uncultured microbial di-
versity and delineating the microbiome structure and function. Since the sequencing costs
surpass that of Moore’s Law [102], we can now access a large number of environmental sam-
ples that comprise of thousands of individual microbial genomes. Effective and accurate
microbiome analysis depends on the efficiency of the assembled sequences. Assemblies of
metagenomes into long contiguous sequences are not only critical for the identification of the
long biosynthetic clusters [25] but are also key for enabling the discovery of novel lineages of
life and viruses [29]. However, for most of these energy-related environmental samples, there
is no existing reference genome, so a first step in analysis is de novo assembly.

As we have seen in the previous chapters, de novo assembly even for single genomes
is computationally challenging. In this chapter we consider the even harder problem of
metagenome assembly. In addition to the computational challenges due to the high error
rates or short read lengths of sequencers, metagenome assembly is further complicated by
repeated sequences across genomes, polymorphisms within species and variable frequency of
the genomes within the sample. Here we present a high-performance metagenome assembly
pipeline called meta-HipMer. Our work is based on the HipMer pipeline presented in previous
chapters and maintains the goal of massive parallelism. To address the unique challenges of
metagenomes we adopt many of the ideas in IDBA-UD [86], a state-of-the-art metagenome
assembler that runs on shared memory systems, although we add our own innovations on
the metagenome assembly.

The meta-HipMer algorithm consists of two main components: (1) the iterative con-
tig generation and (2) the scaffolding component. The rest of this chapter is organized
as follows. Section 8.1 describes the iterative contig generation, section 8.2 discusses the
scaffolding module in meta-HipMer while section 8.3 details the parallelization of the meta-
HipMer algorithms. Finally, section 8.4 presents experimental results where meta-HipMer is
compared with other state-of-the-art metagenome assembly tools and section 8.5 concludes
this chapter.
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Algorithm 3 Iterative contig generation

1: Input: A set of paired reads R
2: Output: A set of contigs C
3: C ← ∅
4: for k = kmin to kmax with step s do
5: kmerSet← KmerAnalysis(k,R,C)
6: Ck ← DeBruijnGraphTraversal(kmerSet)
7: C ′k ← BubbleMerging(Ck)
8: C ′′k ← IterativeGraphPruning(C ′k)
9: Rcorrected ← ErrorCorrection(R,C ′′k )

10: C ← LocalAssembly(R,C ′′k )
11: R← Rcorrected

12: Return C

8.1 Iterative Contig Generation

The genomes comprising a metagenome dataset have generally variable coverage, since some
species may exist with much higher frequency than others. Choosing an optimal value of
k for the de Bruijn graph is therefore challenging, because there is a tradeoff in k-mer
size that affects high and low frequency species differently. The iterative contig generation
(Algorithm 3) aims to eliminate the quality trade-off that different k-mer sizes induce in de
Bruijn graph based assemblers.

Typically, a small value of k is appropriate for low-coverage genomes since it allows
sufficient number of overlapping k-mers to be found and as a result the underlying sequences
can be assembled to contigs. On the other hand, a large value of k is better suited for the
high-coverage genomes since a sufficient number of overlapping, long k-mers can be found
and repetitive regions are disambiguated by such long k-mers. Figure 8.1 illustrates the
effect of different k-mer sizes in regions with different depth of coverage. The left part of

 Depth of coverage 1x 
ACCGTAGCAAAACCGGGTAGTCATT 

ACCGTAGCAAAACCGGGTAGTCATT 

ACCGTAGCAAAACCGGGTAGTCATT 

Depth of coverage 6x 

v k = 13 à all extracted k-mers have error 

v k = 7 à extract 12 error-free k-mers 

v k = 4 à repeat k-mer à fragmentation 
v k = 13 à overlapping error-free k-mers 
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AAAATTACCGTAGCAAAATCGGGTA 
TAATTACCGTAGCAAAATCGGGTGG 

AGCTAAATCGGGTAGTCATTACACC 
ATAATTACCGTAGCAAAATCGGGTT 
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Figure 8.1: Effect of k-mer size at a region with low coverage (left) and high coverage (right).
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Figure 8.2: Iterative contig generation workflow in meta-HipMer.

the figure illustrates a single read with an error (red base) that covers a genomic region.
By selecting k = 13, we are unable to extract any error-free k-mers; observe that no matter
where the sliding blue window is located, it will always include the erroneous base. If we pick
k = 7 instead, we extract in total 12 error-free k-mers within the shaded regions. By further
reducing the k value down to 4, we get a repeat k-mer (GTAG) which will cause fragmented
assembly (recall that the first k-mer analysis phase in HipMer only keeps k-mers with unique
extensions, therefore the repeat k-mers will not be used in the de Bruijn graph traversal and
the contig assembly will be disconnected at these repeats). In the right part of the figure
we illustrate a genomic region with coverage 6× and all the reads include erroneous bases.
Nevertheless, we have enough coverage and by picking k = 13 we can now extract sufficient
number of overlapping, error-free k-mers (within the shaded regions) and we can assemble
the region into a single contiguous piece.

The iterative contig generation (see Figure 8.2) starts by constructing the de Bruijn graph
with a small value k and extracts the set of contigs Ck by traversing the graph. Then, k is
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increased by a step size s and meta-HipMer builds the corresponding de Bruijn graph of the
input reads with (k+ s)-mers while the graph is enhanced with (k+ s)-mers extracted from
the previous contig set. This iterative process is repeated until k reaches a user-specified
maximum value.

The iterative analysis requires some additional steps to refine the de Bruijn graphs and
therefore meta-HipMer applies a handful of transformations on these graphs (see Figure 8.2).
More specifically, “bubble structures” (like the ones described in section 6.3) are merged and
“hair” tips (short, dead-end dangling contigs) are removed since they are potentially created
from false-positive vertices. Then, the graph is iteratively pruned in order to eliminate
branches that do not comply with the coverage of the neighboring vertices; such branches
are likely to be created by false-positive edges. After the pruning step, the read dataset can
be optionally error-corrected by aligning the reads with the survived contigs which represent
high-quality sequences. This error-correction step increases the efficiency of the subsequent
iterations. Finally, the contigs that have remained in the de Bruijn graph are extended using
a local assembly algorithm. In this local assembly process, the input reads are aligned onto
the contigs and only the localized read sequences are used in the extension of contigs. Thus,
erroneous k-mers stemming from high-coverage regions are isolated from similar k-mers in
low-depth areas and the local assembly algorithm can retrieve k-mers which otherwise would
be excluded from the de Bruijn graph. In the following subsections we describe the various
stages of the iterative contig generation in more detail.

8.1.1 k-mer analysis with adaptive thresholding

In the first iteration of the contig generation, the k-mer analysis step chops the reads into
k-mers that overlap by k− 1 consecutive bases, and a count is kept for each k-mer occurring
more than ε times (ε ≈ 1, 2) in order to exclude sequencing errors. In the original HipMer
algorithm which is designed for single genome assembly with uniform depth coverage, a
k-mer with depth greater than ε was extended in the de Bruijn graph traversal process if
there are no more than thq alternatives that contradict the most common extension of that
k-mer. A potential problem with this approach for metagenome datasets is that genomes
with high-copy number (e.g. abundance in the dataset of 1,000 or more) will typically have
more than 10 alternates if the sequencing error rate is ≈ 1%. Therefore, setting a thq below
10 can in theory start to fragment these high-copy number genomes that are very prevalent
in the dataset even though such genomes should be the easiest to assemble. On the other
hand, setting a thq above 10 will fragment the low-copy number genomes. The solution is to
replace the unique global threshold extension criterion with one that depends on the depth
dk-mer of the k-mer that is being extended. In the new scheme, a k-mer is extended in the
de Bruijn graph traversal if there are no more than thq = tbase + e · dk-mer extensions that
contradict the most common extension. Here tbase is a hard limit in the thq value and e is a
single parameter model for the sequencing error.

In subsequent iterations of the contig generation, the k-mer analysis step takes the ad-
ditional input set C of contigs from the previous iteration. These contigs are treated as
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Algorithm 4 Iterative graph pruning

1: Input: A contig-graph G, k, α, β, τ
2: Output: A pruned graph Gpruned

3: τ ← 1
4: repeat
5: for each contig c ∈ G do
6: if length(c) ≤ 2 · k and depth(c) ≤ min(τ , β · neighborhood-depth(c)) then
7: Remove c from G
8: τ ← τ · (1 + α)
9: until τ ≥ maximum contig depth of G

10: Gpruned ← G

meta-reads since they are “confidently” assembled sequences. Therefore, in addition to pro-
cessing the input reads, we extract all the k-mers from the previous contigs (meta-reads)
and treat them as high quality UU k-mers.

8.1.2 De Bruijn graph traversal

The de Bruijn graph of the k-mers stemming from the k-mer analysis is traversed in order
to form contigs ; contigs are paths in the de Bruijn graph constituted of k-mers with unique
high quality extensions (k-mers that do not have more than tbase + e ·dk-mer alternatives that
contradict the most common extension). These paths represent “confidently” assembled
sequences and can be seen in the graph of Figure 8.2 by removing the branches (vertices
with dashed incident edges) and considering the connected components in the resulting
graph. Note that the vertices with dashed incident edges do not have unique high quality
extensions and can be used later to discover the connectivity among the contigs.

8.1.3 Bubble merging and hair removal

A single-nucleotide polymorphism (SNP) represents a difference in a base between two ge-
nomic sequences. SNPs create similar contigs (paths in the de Bruijn graph with the same
length) except one position; these contigs also have the same k-mers as extensions of their
endpoints and as a result form bubble structures in the de Bruin graph. In this step we
identify these bubbles and merge them into a single contig. Additionally, dead-end dangling
contigs shorter than 2k nucleotides are considered hair and are likely to be false positive
structures in the graph, hence we remove them. See Figure 8.2 for examples of a bubble and
a hair contig.
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8.1.4 Iterative graph pruning

The remaining graph after bubble merging and hair removal is iteratively pruned in order
to eliminate branches that do not comply with the coverage of the neighboring vertices;
such branches are likely to be created by false-positive edges. Algorithm 4 implements an
iterative pruning strategy similar to the progressive relative depth module in IDBA-UD [86].
The reasoning behind this pruning algorithm is that:

1. Long contigs are most likely correct.

2. Wrong contigs in high-depth regions might have higher depth than correct contigs in
low-depth regions; however, if these high-depth contigs are short and have relatively
low depth (less than a fraction we call β of the neighbors’s average depths), then they
are considered erroneous and are removed.

3. Correct contigs that are short and have relatively low-depth usually have higher depths
than the short wrong contigs. By employing a low-depth cutoff threshold τ that is
increased progressively (by a factor we call α), we can remove such wrong contigs.

8.1.5 Read error-correction

This step is optional in meta-HipMer since the de Bruijn graph traversal implicitly handles
errors (we consider only “high quality” extensions based on the adaptive thresholding). How-
ever, the error-correction will lead to more efficient subsequent iterations. The philosophy
of this module is that contigs are high-quality sequences and reads that do not “fully ”align
onto these contigs should be corrected in order to conform to the corresponding contigs.
More specifically, in the error-correction process, first we align the reads onto the generated
contigs. If a read differs from the aligned contig in less than three bases, then the read is
modified in order to conform to the contig sequence.

8.1.6 Local assembly

After pruning the contig graph in an iterative way, we try to extend the remaining contigs
following a local assembly methodology. In this local assembly procedure, erroneous k-mers
stemming from high-coverage regions are isolated from similar k-mers in low-depth areas and
the local assembly algorithm can retrieve k-mers which otherwise would be excluded from
the de Bruijn graph.

For the local assembly algorithm, we adapt the gap closing module of HipMer. First,
we locate all the reads that can be aligned onto contigs and whose paired reads do not
align onto the same contigs. By assessing the insert size of the corresponding read library
and the alignment information (alignment orientation, start/end positions of alignment) we
can project the unaligned reads to the “right” and “left” incidents gaps of the appropriate
contigs. After assigning the unaligned reads to the appropriate gaps, we try to extend the
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contigs by performing appropriate “mer-walks”, where only k-mers present in the reads that
are projected into a gap are used. The “mer-walking” step uses a modified version of the
contig generation extension algorithm applied to the projected reads. In this modification:

1. Extension bases are categorized by their quality score into four bins and extensions
are accepted or rejected based on the number and quality category of extending bases.
This allows for uncontested extensions of lower quality than used in the original contig
generation to be accepted in local assembly.

2. The mer-size used is dynamically adjusted by “upshifting” (mer-size increased by 2)
when a fork is encountered, or “downshifting” (mer-size decreased by 2) when a termi-
nation is encountered. Repeated upshifting or downshifting will occur until the data
is no longer sufficient to support extension of the contig.

8.2 Scaffolding

As in the single genome case described in Chapter 6, the scaffolding algorithm attempts to
link together contigs in order to create scaffolds, sequences of contigs that may contain gaps
among them. The first step of scaffolding is to map the original reads onto the generated
contigs. This mapping provides information about the relative ordering and orientations of
the contigs. Once the orientations are determined, it is possible that there are gaps between
pairs of contigs. We then further assess the read-to-contig mappings and locate the reads that
are placed into these gaps. Ultimately, we leverage this information and close the scaffold
gaps in order to get the final assembly result. We refer the reader to Chapter 6 for a more
detailed description of the scaffolding algorithm.

8.3 Parallel Algorithms of meta-HipMer

In this section we detail the parallelization of the modules that are unique to the meta-
HipMer pipeline, namely iterative graph pruning and read error-correction. The parallel
k-mer analysis, parallel contig generation, parallel bubble merging, parallel scaffolding and
parallel gap closing are described in Chapters 3, 4, 5 and 6. The parallel local assembly
module leverages the same parallelization techniques as the gap closing module which is
detailed in Chapter 6.

8.3.1 Parallel iterative graph pruning

The parallel version of Algorithm 4 starts with reading in parallel the contigs from the
previous step along with their depths and also stores the k-mers from the k-mer analysis
step in a distributed hash table. In particular, we are interested in the “fork” k-mers since
they contain information regarding the connectivity of the contigs; in Figure 8.2 the vertices
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with dashed incident edges represent “fork” k-mers. Each one of the p processors is then
assigned 1/p contigs, extracts the last k-mers in the two endpoints of each contig ci, looks
them up in the distributed hash table and as a result gets the contig-neighborhood N(ci) of
contig ci.

The parallel execution then proceeds in the main loop (line 4) of Algorithm 4. Each
processor visits the contigs assigned to it and if a contig is both short and has relatively
small depth compared to its neighborhood (line 6), then that contig should be removed from
the contig graph. Note that for each contig ci we need the neighborhood N(ci) in order to
calculate the average depth of its neighborhood. At the end of the iteration, each processor
updates the neighborhoods of its contigs since some of the contigs may have been removed.
Then the threshold τ is increased geometrically and we proceed in the next iteration.

The parallel algorithm terminates if no contigs are pruned during an iteration. In order
to detect if any contigs have been pruned from the graph: (1) every processor sets a local
binary variable pruned flag to 1 if any of its contigs have been pruned and (2) we perform
an all-reduce operation of the pruned flag variables with max function as argument. If the
result is 1, then we know that the contig-graph has been pruned/modified and we proceed
in the next iteration. On the other hand, if the result is 0 we conclude that no changes have
been made in the contig-graph and the parallel algorithm terminates.

8.3.2 Parallel read error-correction

The meta-HipMer error-correction module relies on the assumption that contigs are high-
quality sequences. Therefore, reads that do not “fully ”align onto a contig but have a high
degree of similarity with a contig (e.g. 95%) should be corrected in order to conform to
the corresponding contig sequence. These error-corrected reads will lead to more efficient
subsequent iterations because they avoid the generation of erroneous k-mers and spurious
edges in the de Bruijn graphs. The error-corrected reads contain also longer error-free k-mers
that can be used for more accurate sequence alignment, scaffolding and gap closing.

First, we store the contig sequences from the previous step in a distributed array that
can be globally accessed. For load balancing reasons, given p processors we assign contig i
to the the processor i mod p. Then, we align the reads onto the contigs by employing the
merAligner parallel module (see Chapter 5 for more details).

After the alignment step, each processor loads 1/p of the reads into its memory along with
the relevant alignments. Note that these alignments are local to the appropriate processors
because each processor is assigned the same chunk of reads in the merAligner step. The
merAligner result also includes a field that indicates if a read aligns completely to a contig;
such a read should not be corrected and is considered to be error-free. If the alignment
information dictates that a read r is aligned onto a contig i with a high degree of similarity
(based on a user-defined threshold), then r is sent to processor i mod p that stores the
contig i locally. For performance reasons, we implement message aggregation in this step.

At the last phase of the error-correction, each processor iterates over the received read
sequences and modifies them in order to comply with the corresponding contig sequences.
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This step of the algorithm does not involve any communication. After the error-correction
stage, the reads are sent back to the processors they belong to. Finally, the processors in
parallel update the input read file by replacing the old entries with the error-corrected reads.

Our parallel error-correction module can be used as a flexible stand-alone tool under
different circumstances. For example the user can provide the reference sequences and in
this scenario the tool performs a reference-based error-correction of the reads. If no reference
sequence is available, our tool can generate a draft reference from the reads by executing
the k-mer analysis and contig generation parallel modules. In such a scenario, the error-
correction tool takes only the reads as input.

8.4 Experimental Results

In order to assess the quality of the meta-HipMer assemblies we performed experiments
with two metagenome datasets and compared the results with two state-of-the-art meta-
genome assemblers, namely IDBA-UD [86] and metaSPAdes [85]. We emphasize here that
both IDBA-UD and metaSPAdes are not parallelized for distributed memory systems and
therefore cannot handle massive metagenome datasets.

For the first set of experiments we considered a small simulated dataset (≈ 3.2 Gbytes)
with extremely uneven depth that was also used in the IDBA-UD paper. This dataset was
synthesized by combining simulated reads of three species Lactobacillus plantarum (∼3.3Mb),
Lactobacillus delbrueckii (∼1.85Mb) and Lactobacillus reuteri F275 Kitasato (∼2Mb) from
the same genus. Reads of length 100 were sampled from these three species with sequencing
depth 10× (genome A - low depth), 100× (genome B - moderate depth) and 1, 000× (genome
C - high depth) with 1% error rate. The simulated paired reads have an insert distance
following normal distribution N (500, 50).

For the quality assessment of the assemblies we utilized the QUAST [41] software and
we consider a few different metrics. First, we examine three reference-free metrics: (i) the
number of contigs – lower is better, (ii) the total length of sequence that can be found in
pieces larger that 10 kbp – higher is better – and (iii) the total length of sequence that can
be found in pieces larger that 50 kbp – again, higher is better. Then we consider two metrics
that take into account the reference in order to evaluate the accuracy of the assemblers:
(i) the number of misassemblies (lower is better), where misassemblies are locations on an
assembled contig where the left flanking sequence aligns over 1 kb away from the right
flanking sequence on the reference and (ii) the number of mismatches per 100 kbp (again
lower is better). Afterwards we examine the completeness of the various assemblers by
considering the fraction of each reference genome that can be found in the assembly results
(higher is better). Finally, we assess the contiguity of the results by providing the NGA50
metric for each genome (higher is better); NGA50 is calculated by summing all sequence
lengths within a genome, starting with the longest, and observing the length that takes the
sum length past 50% of the corresponding genome length.
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Metric meta-HipMer IDBA-UD metaSPAdes

Number of contigs 211 292 226
Total length > 10 kbp 6,511,747 6,539,057 6,540,869
Total length > 50 kbp 4,497,004 3,678,488 4,450,375

Misassemblies 4 6 13
Mismatches per 100 kbp 9.85 14.36 29.96

Genome fraction (%) A 97.57 98.5 97.94
Genome fraction (%) B 93.73 93.87 93.67
Genome fraction (%) C 94.82 95.58 94.8

NGA50 Genome A 99,607 42,608 71,507
NGA50 Genome B 48,966 56,460 61,767
NGA50 Genome C 58,776 58,782 58,451

Table 8.1: Assembly results on a metagenome dataset consisting of three species from the
same genus: a low-depth genome A with sequencing depth 10×, a moderate-depth genome
B with depth 100× and a high-depth genome C with coverage 1,000×.

Table 8.1 shows the assembly results of meta-HipMer, IDBA-UD and metaSPAdes on
the previous dataset with highly uneven depth of coverage. In this table we use a color code
in order to provide a comparison among the assemblers for each metric. Green cells indicate
the best assembler in that metric and assemblers that perform within 25% of the best result.
Yellow cells represent assemblers that perform within 50% of the best result on that metric.
Finally, red cells stand for assemblers that do not perform within 50% of the best result on
that metric. Overall, we conclude that all three metagenome assemblers perform well on
this dataset with extremely uneven depths of coverage; all of them are specially designed to
take into account the idiosyncrasies of metagenomes. In regard to accuracy, meta-HipMer is
the most accurate and exhibits fewer misassemblies and fewer mismatches than IDBA-UD
and metaSPAdes. Such behavior is in alignment with the empirical behavior of HipMer
compared to other tools: meta-HipMer’s de Bruijn graph traversal is conservative and k-
mers are extended only if they have unique high quality extensions (this traversal feature is
unique to HipMer/meta-HipMer pipeline). By examining the genome fractions that could be
assembled we conclude that all three assemblers have similar performance and perform well
regarding completeness. The assemblers are able to assemble ≈ 98% of the low-coverage
genome A, ≈ 94% of the moderate-coverage genome B and ≈ 95% of the high-coverage
genome C. Finally, meta-HipMer exhibits significantly better contiguity (metric NGA50) in
the low-coverage genome A compared to the other two competing assemblers, while it has
similar performance with respect to the contiguity of genomes B and C.

For the second set of experiments we considered a larger metagenome dataset (≈ 110
Gbytes) from Joint Genome Institute. This dataset represents a 26 member synthetic com-
munity of bacteria from real sequencing data and the members have various depths of cover-
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Metric meta-HipMer metaSPAdes

Number of contigs 2,204 5,100
Total length > 10 kbp 93,228,737 92,152,728
Total length > 50 kbp 75,061,366 77,292,121

Misassemblies 63 134
Mismatches per 100 kbp 9.79 77.05

Genome fraction (%) 91.805 91.10

Table 8.2: Assembly results on a synthetic community consisting of 26 members with different
abundances.

age. In this experiment we compare only meta-HipMer and metaSPAdes and the results are
summarized at Table 8.2. Again we conclude that both assemblers perform similarly well
in regard to completeness (≈ 92% of the underlying genomic sequences are assembled) and
contiguity (similar number of total sequence length in pieces larger than 10 kbp and 50 kbp).
However, meta-HipMer is more accurate than metaSPAdes on this dataset; it has almost 2×
fewer misassemblies and almost 8× fewer mismatches per 100 kbp. This dataset also reveals
the limitations of metaSPAdes and all other metagenome assemblers that do not employ dis-
tributed memory parallelism. MetaSPAdes required 11.5 hours on a 32 core machine with
500 GB of memory. On the other hand, the meta-HipMer assembly was performed on 1,920
cores (80 nodes) of Edison and it required 32 minutes, being approximately 22× faster than
metaSPAdes. Given that real metagenome datasets can be orders of magnitude larger than
this mock community, we conclude that shared memory assemblers are incapable of dealing
with real-world, massive and complex metagenomes. On the contrary, meta-HipMer is a
high-quality, end-to-end parallelized pipeline that can assemble challenging metagenomes on
modern distributed memory systems in a time and memory efficient manner.

8.5 Conclusion

In this Chapter we presented meta-HipMer, a high-quality metagenome assembly pipeline
designed to scale to massive concurrencies. The meta-HipMer pipeline deals efficiently with
repeated sequences across genomes, polymorphisms within species and variable frequency
of the genomes within the sample by employing an iterative contig generation algorithm.
All the components of meta-HipMer are parallelized and can be executed on distributed
memory systems. Therefore, meta-HipMer alleviates the need for large shared memory,
specialized machines. Empirical results demonstrate that our work outperforms state-of-
the-art tools in both quality and performance and it enables the high-quality assembly of
massive metagenomes datasets which are prohibitive for all the other available tools.

Metagenomic sequencing is growing at a rapid pace. New phyla of bacteria are still being
discovered by DNA sequencing from diverse environments, allowing genomes to be sequenced
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for microbes that cannot yet be cultured in the laboratory [14, 91]. Routinely assembly of
metagenomes, without the limitation of large memory single node systems, promises to dis-
cover novel microbial genomes and reveal deep new branches in the tree of life [48, 104].
Often, the properties of a microbe can be inferred from its genes, suggesting novel cultiva-
tion (or antibiotic) strategies. An unusual feature of microbial genomes is their high degree
of plasticity, and even closely related “species” can differ by the addition and/or subtraction
of genes exchanges with other species in their environment. Metagenome assembly allows
these novel genomic combinations to be identified and characterized even in the absence of
cultivated species. In a human microbiome context, routine metagenome assembly will con-
tribute to the promotion of healthy microbiomes and the development of new treatments for
microbiome-related disease. We envision the bioinformatics community adopting the meta-
HipMer pipeline and assembling such grand-challenge, previously intractable metagenome
datasets.
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Chapter 9

Architectural Analysis of Core Opera-
tions

In this chapter we present an architectural analysis of critical operations encountered in our
pipeline. First, we investigate communication aspects that are stressed during the pipeline
and we illustrate the impact of the communication infrastructure on the parallel contig
generation and sequence alignment algorithms presented in Chapters 4 and 5. We develop
micro-benchmarks to assess the behavior of irregular access patterns at different scales and
we compare the performance of the micro-benchmarks with the empirical performance of the
real application modules. Finally, we present scalability limitations in the I/O infrastructure
and highlight the necessity for scalable, parallel I/O in modern file systems in order to
accommodate genome assembly pipelines that deal with massive datasets. For the results
presented in this chapter we utilized the Edison supercomputer, but the methodology is
general and applicable to any other system.

9.1 Communication Infrastructure Analysis

The communication system of Edison is the Cray Aries high-speed interconnect with Drag-
onfly topology [30] and we investigate its efficiency using three metrics: the bandwidth, the
global atomics latency and one-sided remote read (get) latency.

9.1.1 Bandwidth

In this section we focus on the bisection bandwidth [44] of the underlying system: the avail-
able bandwidth between two partitions of the system where each partition has the same
number of nodes. Parallel operation with all-to-all communication pattern typically stress
the bisection bandwidth of the system and are prevalent in the parallel algorithms presented
in this dissertation. In order to produce a simple micro-benchmark, we will use a synchronous
all-to-all in which all threads start together, send and receive the same volume, and wait for
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Figure 9.1: Achieved per-thread bandwidth at different concurrencies using different message
sizes. The communication pattern is an all-to-all exchange implemented with remote get
operations. Both axes are in logarithmic scale.

others to finish. This is the worst case in terms of stressing the bisection bandwidth of the
machine, but because of load imbalance in communication and different patterns of remote
vs local accesses across machines, the HipMer code uses asynchronous all-to-all communi-
cation. The entire k-mer analysis step is built around the all-to-all exchange of k-mers and
the ubiquitous distributed hash table construction algorithm includes an all-to-all exchange
of the inserted objects.

The Cray Aries interconnect on Edison has the physical infrastructure to provide at most
23.7 TB/s global bisection bandwidth. However, the Edison system is shared among multiple
users and realistic use case scenarios do not involve the entire supercomputer. As a result,
the attainable bandwidth at different scales varies from the full-system bisection bandwidth.
In order to evaluate the bandwidth we perform the following experiment: the processors
perform an all-to-all communication operation implemented with remote get primitives. We
execute multiple experiments by varying the message size and the results are exhibited
at Figure 9.1 for three different concurrencies (1,290, 3,840 and 7,680 threads). All the
experiments are performed in the same allocation of 7,680 cores (320 Edison nodes). The x
axis shows in log scale the message size in bytes while the y axis shows the attained per thread
bandwidth in MB/s. As we increase the message size, the achieved per thread bandwidth is
also increased and after some point it reaches a plateau. At the concurrency of 1,920 threads
the peak aggregate bisection attained bandwidth is 559 GB/s, while at 3,840 threads and
7,680 threads we achieve a total bandwidth of 567 GB/s and 601 GB/s respectively.

Now we describe a proxy benchmark that is closer to the actual implementation of the all-
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Figure 9.2: Proxy micro-benchmark for the all-to-all exchange in the distributed hash table
construction with dynamic message aggregation. The y axis shows the attained effective
bandwidth per thread while the x axis shows the message size.

to-all operation into the distributed hash table construction phase (see section 4.1 for more
details). This micro-benchmark naturally provides a tighter upper bound on the performance
of the real all-to-all exchange at the application level. In this micro-benchmark:

1. Every processor picks a random processor id p′

2. Performs a remote atomic fetch and add() on an integer variable that belongs to p′

3. Performs an aggregate remote transfer of size S to processor p′

4. Repeat steps 1-3 multiple times

The atomic fetch and add() corresponds to the required action that ensures atomicity
in the data exchange (i.e. avoid overwrite of the data by multiple processors as explained in
section 4.1).

Figure 9.2 illustrates the results of this micro-benchmark for three different concurren-
cies: 1,920, 3,840 and 7,680 threads. The x axis shows the message size S and the y axis
shows the attained effective bandwidth per thread. First we observe that the results illus-
trate similar behavior to the previous bandwidth benchmark. Figure 9.3 shows the effective
aggregate bisection bandwidth for the proxy micro-benchmark (red bars) and the bandwidth
micro-benchmark (green bars) at the concurrency of 3,840 cores and we see that for large mes-
sages the differences are negligible. The proxy micro-benchmark also dictates the minimum
required aggregate message size to saturate the available bandwidth at each concurrency.
Note though that the dynamic message aggregation detailed in section 4.1 requires S × P
times more memory per thread (given P threads in total). Therefore, we should tune the S
parameter at each concurrency according to the available memory.
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Figure 9.3: Effective aggregate bisection bandwidth for the proxy micro-benchmark (red
bars) and the bandwidth micro-benchmark (green bars) at the concurrency of 3,840 cores.

Concurrency (number of threads) 1,920 3,840 7,960

Effective bandwidth of proxy benchmark (GB/s) 300 533 543
Effective bandwidth of application code (GB/s) 87 112 109

Table 9.1: Comparison of communication proxy benchmark and application code that per-
forms the all-to-all exchange. The message size is 6,400 bytes.

Table 9.1 compares the aggregate bisection bandwidth performance of the proxy bench-
mark to the all-to-all exchange in the distributed hash table construction phase. The message
size in these experiments is 6,400 bytes. We emphasize that the proxy benchmark captures
only the communication cost (e.g. it ignores buffer copies, hashing overheads, skewed data
distributions, local computations) and consequently yields a loose upper bound in perfor-
mance. Nevertheless, the empirical performance of the application is always within 5× of
the upper bound provided by the proxy benchmark. By further investigating the application
results at the concurrency of 3,840 cores, we found that 47% of the execution time is required
for local computations. In other words, the effective bisection bandwidth of the application
considering only the communication operations is 219 GB/s, which is within 2.5× of the
upper bound provided by the proxy micro-benchmark.

9.1.2 Global atomics

Another important aspect of the communication interconnect that is stressed throughout
the pipeline is the efficiency of global atomics. In particular, we focus on the global atomic
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Concurrency (number of threads) 1,920 3,840 7,960

Latency (µs) to visit a vertex in the proxy benchmark 9.8 14.78 21.6
Latency (µs) to visit a vertex in the application 24.2 32.21 43.9

Table 9.2: Comparison of proxy benchmark and application code that performs the parallel
de Bruijn graph traversal.

compare and swap() that is crucial for the parallel de Bruijn graph traversal described in
section 4.2. The proxy benchmark that models the communication and synchronization
behavior of the graph traversal algorithm is the following:
1. Every processor fetches a random entry from the distributed hash table
2. Performs a global atomic compare and swap() on an integer variable of the previously

selected entry
3. Repeat steps 1-2 multiple times

This proxy micro-benchmark represents the minimum required latency overhead in order
to visit a vertex in the distributed de Bruijn graph traversal. It captures only the commu-
nication cost of this primitive operation and it does not consider any overheads due to the
high-level synchronization protocol, hashing and local computations. For example, the re-
sults at Figure 4.10(a) in Chapter 4 show that at the concurrency of 7,680 cores almost 45%
of the time is spent in the synchronization protocol. Therefore, the proxy micro-benchmark
provides a loose upper bound on the performance of the parallel graph traversal. Table 9.2
compares the performance of the proxy benchmark and the parallel graph traversal code
described in section 4.2. We conclude that the empirical performance of the application is
always within roughly 2× and 3× of the upper bound provided by the proxy communication
benchmark. The results also indicate that global atomics which take advantage of hardware
support will speedup significantly this latency-sensitive parallel algorithm.

9.1.3 Latency

Here we examine the latency of the one-sided get operation at scale. This primitive is used to
implement the lookup functionality in the distributed hash table and therefore is the limiting
factor in most of the parallel algorithms with irregular accesses. For example, the sequence
alignment algorithm described in Chapter 5 spends most of its execution time in distributed
seed index (hash table) lookups.

Figure 9.4 illustrates the remote get latency for different message sizes at three different
concurrencies. We are particularly interested in the regime of small messages sizes because
the hash table entries typically have size up to 128 bytes; for such message sizes the latency
varies between 4 to 6 microseconds. Table 9.3 compares the latency of a get operation with
the latency of a lookup in the distributed hash table used in the alignment algorithm (the
message size is 64 bytes). Note that the lookup operation also includes the hash computation,
overhead to validate that the fetched entry is the one with the requested key and potential
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Figure 9.4: Latency to fetch an entry from the distributed hash table. The y axis shows the
latency in microseconds while the x axis shows the message size. Both axes are in logarithmic
scale.

Concurrency (number of threads) 1,920 3,840 7,960

Latency of remote get (µs) 3.9 4.0 5.0
Latency of lookup in the distributed hash table (µs) 11.7 11.4 9.81

Table 9.3: Comparison of get latency and latency of lookup in the distributed hash table.
The message size is 64 bytes.

overheads to follow remote chain-pointers at hash table buckets with conflicts. Nevertheless,
the empirical performance of the lookup is always within 3× of the latency of a single get
operation at all concurrencies. The fact that the lookup latency remains almost constant
at all concurrencies justifies the efficient scaling of the parallel sequence alignment. As we
increase the number of cores, proportionally fewer lookups are executed on the critical path
and since they have constant latency the total execution time decreases proportionally with
the number of cores. The same scaling argument applies to all key operations in our parallel
algorithms that involve irregular accesses in the distributed hash tables.

The current implementation is already scalable given the above latency comparison, but
the absolute performance for a given machine size could likely be improved with some form
of message aggregation and computation/communication overlap.
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9.2 I/O Scalability Analysis

The experimental results in section 7.3.1 show that the I/O time is almost constant across all
concurrencies and we conclude that 80 Edison nodes are sufficient to saturate the available
Lustre file system bandwidth. In aggregate we achieve a read bandwidth of ≈ 16 GB/sec,
while the theoretical peak of our Lustre file system is 48 GB/sec. As a result, further
increasing the concurrency does not help improve the I/O performance and this limitation
imposes a scalability impediment for the whole pipeline, even though at 1,920 cores only 3%
of the total execution time is required for I/O. In this section we analyze this I/O limitation
starting with a simple analysis analogous to Amdahl’s law [92].

Let Tcomp be the time required for computations in the pipeline and TI/O be the time
required to read the input dataset. If we assume perfect scalability of both computation and
I/O, the total execution time of the pipeline T (p, pI/O) as a function of the concurrency p
and the I/O parallelism pI/O can be written as:

T (p, pI/O) =
Tcomp

p
+
TI/O
pI/O

(9.1)

For this I/O analysis we assume perfect scalability of the computation and take the limit as
p goes to infinity:

T (∞, pI/O) =
TI/O
pI/O

(9.2)

Therefore, the maximum attainable relative speedup Srelative(p) for the pipeline over an
execution with p processors is:

Srelative(p) =
T (p, pI/O)

T (∞, pI/O)
=

Tcomp

p
+

TI/O

pI/O

TI/O

pI/O

=
Tcomp

p

pI/O
TI/O

+ 1 (9.3)

As we described in section 7.3.1, the human genome can be assembled in 22.8 minutes

using 1,920 cores while reading the input file requires 0.67 minutes. By setting
TI/O

pI/O
= 0.67

and Tcomp

p
= 22.8 in equation 9.3 we get: Srelative(1,920)=35. In other words, even though the

full-system Edison is 70× larger than the partition of 1,920 cores, the theoretical performance
speedup is upper-bounded by 35× due to the I/O limitation.

9.3 Conclusion

In this chapter we presented an architectural analysis of core operations encountered in our
pipeline. In particular we developed micro-benchmarks to quantify the bisection bandwidth,
the network latency and the efficiency of remote atomics. We then compared the perfor-
mance of the micro-benchmarks to the performance of application-level operations that stress
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these communication aspects and showed that our implementations perform reasonably well.
Finally, we analyzed the scalability bottleneck due to I/O limitations and emphasized the
necessity of scalable I/O for our data intensive workloads in a strong scaling scenario.
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Chapter 10

Related Work

Genome analysis pipelines have attracted a lot of attention over the last decade due to the
exponential increase of genomic data. As a result, there is a wide body of work related to
the themes in this dissertation. In this chapter, we review some of the work that has been
done in the areas of genome assembly, sequence alignment and metagenome assembly. This
is not an exhaustive review of the work, but we discuss a subset of the related work in order
to provide some context to our own work and highlight the necessity of high-quality, scalable
pipelines for genome analysis.

10.1 De novo genome assembly

As there are many de novo genome assemblers and assessment of the quality of these is well
beyond the scope of this thesis, we refer the reader to the work of the Assemblathon II [13] as
an example of why Meraculous [19] was chosen to be scaled, optimized and re-implemented
as HipMer. Here we primarily refer to parallel assemblers with the potential for strong
scaling on large genomes (such as plant, mammalian and metagenomes).

Ray [9, 10] is an end-to-end parallel de novo genome assembler that utilizes MPI and
exhibits strong scaling. It can produce scaffolds directly from raw sequencing reads and
produces timing logs for every stage. As shown in Section 7.4 Ray is approximately 13×
slower than HipMer for the human data set on 960 cores. The performance difference may
be due to the communication or algorithmic differences but at least part is attributable to
the lack of parallel I/O.

ABySS [97] was the first de novo assembler written in MPI that also exhibits strong
scaling. Unfortunately only the first assembly step of contig generation is fully parallelized
with MPI and the subsequent scaffolding steps must be performed on a single shared memory
node. As shown in Section 7.4 ABySS’ contig generation phase is approximately 16× slower
than HipMer’s entire end-to-end solution for the human data set on 960 cores.

PASHA [72] is another partly MPI based de Bruijn graph assembler, though not all steps
are fully parallelized as its algorithm, like ABySS, requires a large memory single node for
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the last scaffolding stages. The PASHA authors do claim over 2× speedup over ABySS on
the same hardware.

YAGA [52] is a parallel distributed-memory that is shown to be scalable except for its
I/O. HipMer employs efficient, parallel I/O so is expected to achieve end-to-end performance
scalability. Also, the YAGA assembler was designed in an era when the short reads were
extremely short and therefore its run-time will be much slower for current high throughput
sequencing systems.

SWAP [79] is a relatively new parallelized MPI based de Bruijn assembler that has been
shown to assemble contigs for the human genome and performs strong scaling up to about
one thousand cores. However, SWAP does not perform any of the scaffolding steps, and
is therefore not an end-to-end de novo solution. Additionally, the peak memory usage of
SWAP is much higher than HipMer, as it does not leverage Bloom filters.

There are several other shared memory assemblers that produce high quality assemblies,
including ALLPATHS-LG [38] (pthreads/OpenMP parallelism depending on the stage),
SOAPdenovo [67] (pthreads), DiscovarDenovo [53] (pthreads) and SPAdes [7] (pthreads),
but unfortunately each of these requires a large memory node and we were unsuccessful at
running experiments using our datasets on a system containing 512GB of RAM due to lack
of memory. This shows the importance of strong scaling distributed memory solutions when
assembling large genomes.

In regard to k-mer analysis solutions, Jellyfish [75] is a shared-memory k-mer counting
software. Khmer [21] is a pre-publication software for k-mer counting that uses Bloom filters
but is not designed for distributed memory machines. These approaches are more restrictive
as they are limited by the concurrency and memory capacity of the shared-memory node.
Kmernator [27] is distributed k-mer counter but it consumes more memory than our k-mer
analysis algorithm since it does not use Bloom filters.

10.2 Sequence alignment

A thorough survey of sequence aligners is beyond the scope of this thesis and we refer the
reader to [43, 65, 32, 93, 46, 94]. We primarily focus on parallel sequence mapping tools and
relevant methods in this section.

CUSHAW2 [71], BWA [64], BWA-mem [63], Bowtie2 [60], SNAP [106], SOAP [66] and
GSNAP [105] are mapping tools that employ shared memory parallelism during the aligning
phase. However, these approaches are more restrictive as they are limited by the concurrency
and memory capacity of the shared-memory node. CUSHAW2-GPU [70] and SOAP3-dp [73]
are short read aligners that leverage GPU power on a single compute node. pMap [88] is
an MPI-based tool used to parallelize existing short sequence mapping tools (like the ones
mentioned above) by partitioning the reads and distributing the work among the processors.
However, pMap does not leverage any parallelism during the index table construction and
therefore a serialization bottleneck is introduced in the mapping pipeline. PBWA [87] em-
ploys MPI in order to execute BWA on distributed memory machines, however the index
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table construction and its replication are serial processes. Also, the sequence distribution
is done by a single master process. Therefore, pBWA suffers from the same limitations as
pMap. Menon et al. [80] parallelize the genome indexing with MapReduce, however the
scaling they obtain is poor.

Bozdag et al. [12] evaluate different methods of distributed memory parallelization of
a mapping pipeline. These methods fall basically in three categories: (i) partitioning the
reads only, (ii) partitioning the genome (and consequently the index table) and (iii) hybrid
method of (i) and (ii) that partitions both reads and the genome (and the index table). One
conclusion of this study is that method (i) suffers from the serialized index table construction,
method (ii) does not scale in the mapping phase, and regarding method (iii), even though it
exhibits improved scalability, its scaling is not close to linear. The main reason is that in the
hybrid method, the index table creation is parallelized among subgroups of processes and
the reads are also partitioned among subgroups of processes. Therefore, the hybrid method
does not exploit the highest possible level of concurrency. Our work does fully parallelize
the index table creation and partitions the reads using all available processors.

pFANGS [83] also tries to parallelize both the index table construction and the alignment
phase. It distributes the index table among the processors but the processors cannot look up
the distributed index in arbitrary locations. Therefore, the index lookup tasks are localized
first, then an all-to-all personalized communication step is performed, the local lookups
take place, and finally the lookup results are redistributed such that they are placed with
the relevant queries (this redistribution is done with all-to-all personalized communication).
The authors identify that the communication becomes a bottleneck because of the all-to-all
communication and therefore they divide the processes in disjoint subgroups where each
subgroup works independently by creating its own copy of the index table. However, in this
approach the scaling of the index table construction is limited by the size of each subgroup.

Orion [74] is an improvement over mpiBLAST [22] and scales the sequence matching with
fine-grained parallelization. However, Orion uses mpiBLAST’s mpiformatdb tool to format
and partition the database and this process is serial.

Finally, González-Domı́nguez et al. [39] describe a parallel implementation in a PGAS
model with UPC++ [109] of the CUSHAW3 [69] aligner for multi-core clusters with improved
scalability compared to pMap. Their goal is to parallelize aligners that work with index data
structures which typically fit in the main memory of one node and therefore they do not
parallelize the seed index construction phase.

10.3 Metagenome assembly

The metagenome assembly is an active research field where many algorithms have emerged.
Among them Genovo [61], IDBA-UD [86], Bambus 2 [57], metaSPAdes [85], metaVelvet [84],
MEGAHIT [62] and Omega [42] produce high-quality metagenome assemblies on a variety
of datasets. However, all these assemblers do not employ distributed memory parallelism
and hence their scalability is limited to the concurrency and memory of a single node.
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The results at Chapter 8 illustrate the benefits of our distributed memory solution. One
exception among the metagenome assemblers is Ray-Meta [10] which is implemented in MPI
and employs distributed memory parallelism. Nevertheless, Ray-Meta has been shown to
produce worse assemblies especially in regard to contiguity and completeness compared to
metaSPAdes [85] on complex metagenome datasets.

The number of metagenomic datasets in public databases is now doubling every 11
months [100], projecting to grow to nearly a million metagenomes datasets in 2020. We
conclude therefore that shared-memory metagenome assemblers cannot keep up with current
and future grand-challenge metagenomes. The meta-HipMer assembly pipeline presented in
this dissertation constitutes the first scalable, high-quality metagenome assembler.
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Chapter 11

Conclusions

In this dissertation we presented HipMer, the first end-to-end highly scalable, high-quality
de novo genome assembler, demonstrated to scale efficiently on tens of thousands of cores.
HipMer is two orders of magnitude faster than the original Meraculous code and at least an
order of magnitude faster than other assemblers, including those with incomplete pipelines
and lower quality. Parts of the HipMer pipeline were used in the first whole-genome assem-
bly of the grand-challenge wheat genome [20]. HipMer is so fast, that by using just 17% of
Edison’s cores, we could assemble 90 Tbases/day, or all of the 5,400 Tbases in the Sequence
Read Archive [101] in just 2 months. Also, the HipMer technology makes it possible to im-
prove assembly quality by running tuning parameter sweeps that were previously prohibitive
in terms of computation.

We also presented meta-HipMer, the first scalable, distributed memory metagenome as-
sembler. We showed that meta-HipMer produces assemblies that are competitive or better
in quality than those of previous state-of-the-art metagenome assemblers, but at least an
order of magnitude faster, because our pipeline can scale efficiently to distributed memory
architectures. But most importantly, meta-HipMer is not limited by the concurrency and
memory of a single node and thus it can handle multi-terabyte metagenome datasets that
other tools are incapable of dealing with. Due to the unforeseen drop in sequencing costs, it
is now routine for sequence datasets from a single sample to exceed one terabyte in size and
expected to grow by at least an order of magnitude by 2020.

Obtaining these scalable pipelines required several new parallel algorithms and dis-
tributed data structures which take advantage of a global address space model of com-
putation on distributed memory hardware, remote atomic memory operations and novel
synchronization protocols. Additionally, we developed runtime support to reduce communi-
cation cost through dynamic message aggregation, and statistical algorithms that reduced
communication through locality aware hashing schemes. We showed that the building block
of HipMer can be repurposed for related problems such as the metagenome assembly, and
that high-performance distributed hash tables, with various optimizations constitute a pow-
erful abstraction for this type of irregular data analysis problems.

We believe our results will be important both in the application of assembly to health
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and environmental applications and in providing a conceptual framework for scalable genome
analysis algorithms beyond those presented here. The code for HipMer is open source and
can be downloaded at: https://sourceforge.net/projects/hipmer/.
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Adam Session, Veronika Strnadova, Jerry Jenkins, Sunish Sehgal, Leonid Oliker,
Jeremy Schmutz, Katherine Yelick, Uwe Scholz, Robbie Waugh, Jesse Poland, Gary
Muehlbauer, Nils Stein, and Daniel Rokhsar. “A whole-genome shotgun approach for
assembling and anchoring the hexaploid bread wheat genome”. In: Genome Biology
16.26 (2015). doi: doi:10.1186/s13059-015-0582-8.

[21] Michael R. Crusoe, Greg Edvenson, Jordan Fish, Adina Howe, Luiz Irber, et al. khmer
– k-mer counting & filtering FTW. https://github.com/ctb/khmer. 2014.

[22] Aaron Darling, Lucas Carey, and Wu-chun Feng. “The design, implementation, and
evaluation of mpiBLAST”. In: Proceedings of ClusterWorld 2003 (2003).

http://gasnet.lbl.gov/CSD-02-1207.pdf
http://gasnet.lbl.gov/CSD-02-1207.pdf
http://dx.doi.org/doi:10.1186/s13059-015-0582-8
https://github.com/ctb/khmer


BIBLIOGRAPHY 115
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