UC San Diego

Oceanography Program Publications

Title

Seasonal Changes in Sand Level and Wave Energy on Southern California Beaches

Permalink

https://escholarship.org/uc/item/4kc942s3

Authors

Yates, M L Guza, R T Seymour, R J <u>et al.</u>

Publication Date

2006-02-17

Data Availability

The data associated with this publication are available upon request.

Seasonal Changes in Sand Level and Wave Energy on Southern California Beaches Marissa L. Yates¹, R. Guza¹, R. Seymour¹, W. O'Reilly¹, and R. Gutierrez² ¹ Scripps Institution of Oceanography, ² University of Texas - Austin Results **Abstract Number 821**

Introduction

 Investigate seasonal variability of sand levels in Southern California • Sand levels: LIDAR and In-situ surveys at two focus sites Waves: regional network and numerical model

GPS Sand Level Observations

• Back beach to waterline • Vertical accuracy ~10 cm

• 8 LIDAR flights since 2002 • Survey 79 km, extended to 170 km • High spatial resolution (multiple points per square meter)

• Monthly in-situ surveys since 2000 • Focus sites at Torrey Pines (~7 km) and San Onofre (~3 km) Increased tempora resolution

Wave Observations

- Wave observations combined with numerical model
- Hourly estimates every 100 m alongshore
- Alongshore variability in wave field due to offshore islands

Focus Sites

LIDAR

70 km

San Onofre Beach 3km

Torrey Pines Beach 7 km

Goal: Test:

• ATV-LIDAR divergence is most offshore acceptable LIDAR data point •••• Using LIDAR, tide level, and wave height to define waterline

• Island blocking results in larger seasonal wave height variation at Torrey Pines

with significant alongshore variability

Finding the Waterline:

• Discard LIDAR returns from ocean surface • Retain LIDAR returns from sand surface

 Compare LIDAR processing to regions where ATV data is available

Greater variability in volume change fluctuations

• Erosion with increased wave energy (H_{Large})

 Best elevation criterion is Tide + 20% wave height (*) • Tide only (*) yields water reflections Tide + 30% wave height (*)

omits too much beach

San Onofre Beach

• Heavily cobbled region during high tide (does it matter?)

• Flat, sandy terrace during low tide

Conclusions

• Primarily seasonal cycle in sand level fluctuations: summer accretion when south swell is predominant and winter erosion when north swell is predominant

• Considerable alongshore variability, with three times as much elevation change at Torrey Pines than at San Onofre

• Seasonal volume change and wave energy correlated at the focus sites, but not over the 79 km section

• In general, more variability in seasonal volume changes than seasonal wave field

• Larger sand grain size at San Onofre and elsewhere could contribute to difference

 Future work investigating the influence of grain size (and cobbles), beach width, and wave obliquity

A BIG thank you to the engineers and technicians from the hydraulics lab for their labor intensive completion of in-situ surveys.

