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Abstract 

Alzheimer's amyloid-β and the disordered structural ensemble characterized using molecular 
dynamics and NMR spectroscopy 

by 

Katherine Aurelia Ball 

Doctor of Philosophy in Biophysics 

University of California, Berkeley 

Professor Teresa Head-Gordon, Chair 

 

We used simulations and NMR experiments to investigate the diverse structure of 
amyloid-β (Aβ) peptide in the soluble non-aggregated form in order to better understand this 
peptide’s role in Alzheimer’s disease. Because amyloid-β is intrinsically disordered in its 
monomeric state, the combination of molecular dynamics simulation and NMR spectroscopy was 
crucial to determining the individual conformations that make up the amyloid-β structural 
ensemble. Initially we focused on amyloid-β 1-42 (Aβ42), which is the most toxic form of 
amyloid-β. We collected homonuclear Nuclear Overhauser Effect (NOE) data on the peptide, 
and used extensive molecular dynamics simulations to characterize its conformational ensemble. 
We found that the conformational ensemble of Aβ42 is extremely heterogeneous. However, it 
also contains many structured populations with long-range NOE contacts. This is in contrast to 
Aβ21-30, an amyloid-β fragment. Aβ21-30 is mostly extended and unstructured, with no long-
range NOEs measured. Next we characterized Aβ40, another common form of amyloid-β, which 
is less toxic and aggregation prone than Aβ42. Again we saw many long-range NOEs and 
structured conformations in the Aβ40 ensemble, but the most populated conformations for Aβ40 
and Aβ42 were quite different. From our simulations we had seen that Aβ42 adopts a β-turn and 
β-strand, which together form the most common long-range interaction of the peptide, and that 
this turn is consistent with the same bend and β-strand segment seen in the aggregated form of 
the peptide. Aβ40 also adopts many different long-range β-strand conformations, however, none 
of them are similar to the fibril-like turn and β-strand seen in the Aβ42 ensemble. This is one 
possible explanation for the greater aggregation rate and toxicity of Aβ42. 

Amyloid-β presents a difficult case for characterizing an intrinsically disordered disease 
protein because it contains many structured conformations within its ensemble. We therefore 
decided to examine the effectiveness of different computational methods for determining the 
conformational ensemble of this intrinsically disordered protein. We compared the knowledge-
based approach to our de novo molecular dynamics approach. The knowledge-based approach 
randomly generates an ensemble and refines it to fit the NMR data. The de novo molecular 
dynamics approach, on the other hand, uses no experimental information to form the amyloid-β 
ensemble. In both methods, we compare the simulated ensemble to the experimental data after it 
is created. We found that the knowledge-based approach is highly dependent on the starting pool 
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of structures that it refines, and that a randomly generated pool does not contain structured 
conformations which are able to fit the NMR data. We also found that certain types of NMR data, 
like J-coupling constants and NOEs, do a much better job of distinguishing between vastly 
different ensembles than other types of NMR data like chemical shifts, which are calculated to be 
the same for both unstructured and heterogeneous structured ensembles. We did find that the 
knowledge-based approach was useful for further refining the molecular dynamics simulation 
ensemble to give a better fit to the NMR data. This refinement yielded a slightly different picture 
of the Aβ40 and Aβ42 monomer conformational ensembles. The refined Aβ42 ensemble still 
contains the fibril-like turn and β-strand as its major feature, but in the refined Aβ40 ensemble 
we see many fewer β-strands than in the molecular dynamics ensemble. Our revised picture of 
the two peptides shows that Aβ40 is less structured than Aβ42, with the most populated β-strand 
of Aβ40 forming near its N-terminus. Aβ42, with two additional residues at the C-terminus, 
forms more C-terminal hydrophobic interactions, often adopting a large loop that nucleates a 
fibril-like turn and β-strand near the middle of the peptide sequence. Thus, the Aβ42 C-terminus 
does not form a β-strand itself, but promotes β-structure at a different region of the sequence, 
while preventing the type of β-strands formed in the Aβ40 ensemble. 

After fully characterizing the amyloid-β monomer ensemble, we were interested in 
studying an oligomer of amyloid-β, which is believed to be the toxic agent in Alzheimer’s 
disease. In collaboration with the Schaffer group, we assessed the toxicity of an Aβ42 oligomer, 
known as the globulomer, on cultures of human cortical neurons. This oligomer, which can be 
prepared consistently and does not aggregate to form fibrils, was found to induce neuronal cell 
death, indicating that it could be a toxic complex of amyloid-β. This led us to an investigation of 
the Aβ42 globulomer structure, known to consist of β-sheets. One proposed model of the 
globulomer is based on NMR data from a small globulomer precursor. Another model of the 
globulomer derives from coarse grain simulations of amyloid-β prefibrils. We used molecular 
dynamics simulations to begin a comparison of these two models. Based on our preliminary 
simulations, the prefibrillar model seems to maintain a more stable β-sheet structure than the 
NMR-based model. However, so far the NMR-based model has only been simulated as a dimer 
unit, and may be more stable when more chains are added. We have also calculated NMR 
observables from each of the two models and we find that J-coupling and amide exchange 
experiments may be useful in determining which model more accurately represents the 
globulomer. Future NMR experiments as well as calculation of NOE data from the simulations 
will help to form a better picture of this toxic Alzheimer’s oligomer. Like the amyloid-β 
monomer, the oligomer may occupy a range of conformational states that form a diverse 
ensemble, and therefore molecular dynamics simulations as well as NMR data are crucial to fully 
representing its structure. 
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Chapter 1 

 

Introduction 

 
Unlike many other diseases, Alzheimer’s disease is not caused by an infectious external agent, 
but by a malfunction of the normal cellular processes that take place in the brain. Amyloid-β is 
the key protein involved in Alzheimer’s Disease (AD), causing damage to neurons and 
debilitating symptoms in AD patients as part of a progressive neurodegenerative disorder (1, 2). 
In order to better understand this illness, it is imperative to thoroughly characterize the central 
player, amyloid-β (Aβ). This thesis investigates the underlying physics of Aβ and how physical 
properties may influence its behavior in the context of Alzheimer’s disease. Below we provide 
an over view of the role of Aβ in AD, known characteristics of Aβ, and the experimental and 
computational techniques we employ to study Aβ. We conclude with a short summary of each 
chapter. 

Role of Aβ in Alzheimer’s Disease 
Aβ is a peptide generated when Amyloid Precursor Protein (APP) is cleaved by two enzymes, β- 
and γ-secretase. APP is a transmembrane protein, and γ-secretase cleaves within the cell 
membrane, so Aβ is made up of what were the transmembrane and extracellular regions of APP. 
β-secretase can cleave APP at variable locations within the membrane, and therefore Aβ presents 
as peptides of various lengths, the most common of which are amyloid-β 1-42 (Aβ42) and 
amyloid-β 1-40 (Aβ40). The only difference between the Aβ42 and Aβ40 amino acid sequences 
is the two additional residues that Aβ42 has at the C-terminus, which are absent in Aβ40. Aβ42 
is present at higher levels in the brains of AD patients than in healthy brains, although the reason 
for this is still unclear (1, 2). 

The brains of AD patients are characterized by large plaques, composed of long, 
insoluble fibrils (3). These fibrils, in turn, are composed of aggregated Aβ peptides. Both Aβ40 
and Aβ42 are present in these aggregates, although Aβ42 is more aggregation prone and more 
toxic than Aβ40 (4-10). Aβ peptides can also form smaller soluble oligomeric structures, either 
as precursors to the insoluble fibrils or as an alternate pathway (11). These soluble oligomers are 
now believed to be more toxic than the fibrils, however the mechanism of toxicity is unknown 
(12, 13). Characterization of the individual Aβ peptides can provide physical information that is 
important to understanding both oligomer and fibril formation, as well as explaining differences 
between Aβ40 and Aβ42. 
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Intrinsic Disorder of Aβ 
Monomeric Aβ is an unusual protein because it does not form a stable folded structure as the 
typical functional protein does. Instead, both Aβ40 and Aβ42 have been characterized as 
intrinsically disordered proteins (IDPs) (14, 15), which fluctuate between different 
conformational states, frequently sampling different dihedral angles along the entire protein. 
IDPs are fundamentally flexible and cannot be described by a small number of folded 
conformations. While a natively folded protein is energetically trapped in a single state with high 
barriers to unfolding, an IDP can sample a “landscape” of energetic states, hopping between 
local minima. There is no deep energy minimum much lower on the IDP landscape, and 
therefore it tends to spend similar amounts of time in many weakly stabilized states (16). 
Experimentally IDPs can be identified using a variety of techniques that indicate lack of stable 
secondary and tertiary structure, flexibility, and exposure to solvent (17, 18). 

Aβ has no evidence of stable secondary or tertiary structure in the monomeric state (14, 
15, 19, 20). This makes it particularly difficult to characterize the Aβ peptide. The Aβ fibril does 
have stable tertiary structure, forming a repetitive intermolecular β-sheet that extends in the 
direction of fibril growth, with each individual chain running perpendicular to the fibril axis (21). 
The Aβ oligomer is less well characterized than the fibril, but seems also to have stable β-sheet 
structure, although it may still have transient, disordered tertiary contacts (11, 22). It is unknown 
whether any of this fibrilar or oligomeric structure is present in the Aβ monomer. 

Molecular Dynamics 
Insights into biological systems that are difficult to probe experimentally can be provided by 
computational simulation using molecular dynamics (MD). This technique employs physical 
theories and energy functions to calculate the expected velocities on each particle in a system, 
then incrementally moves the entire system forward through time, producing an incredibly 
detailed movie of the system’s evolution. We can perform these simulations at atomic resolution, 
yielding a detailed structure of a protein molecule at many points in time. The energy functions 
used in these simulations require approximations, but are designed to accurately reproduce 
experimental data (23-26). These energy functions describe the energy landscape of the system, 
and MD allows all states on this landscape to be sampled as the system evolves, generating 
information about what structures are possible, the relative populations of each structure, and the 
timescales of molecular motion.  

One of the limitations of MD simulations is the accessible timescale. While a 
complicated system may only access certain states on the timescale of milliseconds, most 
atomistic MD simulations have only just begun to access this timescale (27, 28). Short 
simulations can result in sampling that is restricted to a small area of the energy landscape, so 
that only configurations corresponding to one energy minimum are observed although 
experimentally many more states are populated by the system. Advanced techniques can be used 
to improve sampling. One such technique is replica exchange molecular dynamics (REMD), 
which uses many parallel simulations at multiple temperatures to gain access to kinetically 
restricted areas of the energy landscape (26, 29-31). The high temperature system traverses 
energy barriers more easily than those at lower temperatures, and a Monte Carlo acceptance 
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criterion is used to pull structures from the higher temperature and correctly populate the lowest 
desired temperature with states corresponding to a Boltzmann distribution. Using such a 
technique, MD simulations may generate a set of states corresponding to all likely configurations 
of a complicated system, representing each individual structure in atomic detail. 

NMR Spectroscopy 
The results of protein simulations should always be employed in conjunction with experiments to 
ensure accuracy and allow for improvement of the simulation theory. Nuclear magnetic 
resonance (NMR) spectroscopy can be used to collect information on protein structure and 
dynamic at the atomic level. One benefit of NMR compared to other techniques in structural 
biology is that it can be performed on a sample in native conditions. Protein samples are 
dissolved in buffer and placed in a very strong magnetic field where electromagnetic pulses can 
be used to probe the interactions between the atomic nuclei in the protein. These experiments can 
be performed with no modifications to the protein that would cause it to adopt configurations 
different from those present in vivo. 

There are many different types of information about a protein that can be obtained from a 
single or multiple NMR experiments. Chemical shift data and through bond-coupling data, such 
as J-coupling constants, report on the secondary structure of the protein. Tertiary structure 
information is available from through-space coupling interactions like the Nuclear Overhauser 
Effect (NOE), as well as more complex experiments such as residual dipolar coupling. Because 
the relaxation rates of atomic nuclei are affected protein motion, dynamic information is also 
available from NMR. Combining all of these data provides an extensive characterization of the 
overall fold and secondary structure of a protein as well as which areas are more flexible and 
which are very rigid. These NMR observables can only be measured as an average over many 
individual protein molecules in the experimental sample, and since protein motion can be faster 
than the NMR experiment, time averaging also occurs. 

Summary of Chapter 2 
Many previous studies of Aβ have focused on small fragments rather than the full-length 40 or 
42 residue peptide that is associated with Alzheimer’s disease. These fragments are easier to 
simulate and work with experimentally while still exhibiting the aggregation behavior seen in the 
full-length peptide (19, 32-47). One example is Aβ21-30, which, like the longer Aβ42 peptide, is 
designated as an intrinsically disordered protein (26). In Chapter 2 (published in (48)) we use 
atomistic MD simulations and a variety of NMR experiments to characterize the Aβ42 disease 
peptide, comparing it to the Aβ21-30 fragment which was previously characterized using similar 
methods (26). We find that although both peptides are IDPs, their properties are very different.  

Aβ21-30 has few possibilities for favorable inter-residue contacts, and therefore the 
majority of Aβ21-30 conformations are extended and unstructured, similar to a random coil 
ensemble. In contrast Aβ42 samples a diverse ensemble of partially structured conformations 
including α-helices, β-turns, and β-strands. The differences between the two peptides are 
especially apparent from the NOE data, which shows very few contacts between Aβ21-30 
residues that are sequentially separated. Aβ42, however, generates many NOEs that are due to 
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long-range tertiary interactions only possible in a structured conformation. Although, Aβ42 
resembles a random coil by some measures, it clearly exhibits significant structure and cannot be 
described so simply. Some of the structural features present in the Aβ42 ensemble may also be 
relevant for the formation of the toxic Aβ fibrils and oligomers. Thus it is crucial to study the 
more complex full-length Aβ42 protein in the context of Alzheimer’s disease, rather than the 
simpler, unstructured Aβ21-30 fragment. 

Summary of Chapter 3 
The comparison of Aβ42 and Aβ21-30 is of interest from the perspective of IDP physics, 
however, differences between Aβ40 and Aβ42 are more relevant to Alzheimer’s disease biology. 
Although the two peptides are almost identical in sequence, differing only be two C-terminal 
amino acids, Aβ42 is much more toxic and aggregation prone (4-10, 49). In Chapter 3 we extend 
the methods from Chapter 2 to compare the conformational ensembles of the Aβ40 and Aβ42 
monomers. We find that the additional two residues on the Aβ42 C-terminus (Ile41 and Ala42) 
directly prevent structural features seen in the Aβ40 ensemble and promote structure that is 
unique to Aβ42.  

NMR data including, especially NOE contacts, are interpreted using conformational 
ensembles generated from de novo MD simulations for both Aβ40 and Aβ42. These MD 
ensembles both contain many structural features and point to major differences in the β-strand 
populations for the two peptides. While Aβ42 often forms a β-strand with a turn that is also 
present in the Aβ fibril structure, Aβ40 forms a wide variety of other, non-fibril-like β-strands. 
These Aβ40 β-strands do not form in the Aβ42 ensemble because they are replaced by 
hydrophobic contacts with the C-terminus. The two Aβ42 C-terminal residues also promote the 
fibril-like turn when they form a C-terminal hydrophobic cluster. Thus, the purely MD generated 
Aβ conformational ensembles provide a plausible picture of why Aβ42 might form toxic AD 
fibril and oligomer structures more easily than Aβ40.  

Summary of Chapter 4 
Although de novo molecular dynamics presents an attractive method for constructing the 
complete conformational ensemble of an intrinsically disordered protein such as Aβ, several 
other techniques are also commonly used in the IDP field. These techniques, which we designate 
“knowledge-based approaches” incorporate experimental data directly in the creation of the IDP 
ensemble rather than including experimental data only as a validation of a computationally 
generated ensemble (50-63). One main knowledge-based method relies on generating a large 
pool of statistical coil IDP conformations, from which a smaller ensemble is selected based on 
agreement with experimental data (50, 52, 54, 58-63).  

In Chapter 4 (published in (64)) we compare the performance of de novo MD and this 
knowledge-based method when constructing IDP conformational ensembles for Aβ40 and Aβ42. 
We also examine various types of NMR experimental data in terms of their ability to discern 
between vastly different IDP conformational ensembles. We find that the knowledge-based 
method depends crucially on the characteristics of the starting pool of structures. The 
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knowledge-based approach cannot successfully reproduce the ensemble of an IDP with 
significant structure such as Aβ if the starting structure pool resembles an extended random coil. 
A combined MD and knowledge-based approach, where de novo MD generated structures form a 
starting pool that is subsequently refined by NMR data, emerges as the best method of generating 
an experimentally accurate Aβ ensemble. 

Summary of Chapter 5 
After comparing several different possible ensembles that could represent the Aβ40 and Aβ42 
IDPs in Chapter 4, we found that although the de novo MD generated ensembles performs well 
with respect to reproducing the experimental NMR data, the best Aβ40 and Aβ42 ensembles are 
created by further refining the MD ensembles against the NMR data itself. In Chapter 5 
(published in (65)) these NMR-refined MD Aβ ensembles are examined from a structural and 
biological disease perspective. As in the de novo MD ensembles characterized in Chapter 3, we 
find that both Aβ40 and Aβ42 adopt many partially structured conformations within their 
ensembles and that there are key differences between the Aβ40 and Aβ42 ensembles.  

It is experimentally difficult to distinguish structural differences between the Aβ40 and 
Aβ42 monomers from most types of NMR data. Homonuclear NOESY spectra of the two 
peptides show us that the long-range inter-residue contacts made be structures in the two 
ensembles differ. Heteronuclear NOE intensities also provide experimental evidence that Aβ40 
has a more flexible backbone than Aβ42 at the C-terminus (66, 67). In Chapter 5 we investigate 
the specific structures that explain these observed differences. As in the de novo MD ensemble 
we see that Aβ42 forms a fibril-like turn, with β-strands on either side, structures that are absent 
from the Aβ40 ensemble. In fact, in the NMR-refined Aβ40 ensemble we observe few β-strand 
conformations. The role of the Aβ42 C-terminal residues, while still key, is also adjusted 
somewhat in the NMR-refined ensemble. We see that the Aβ42 C-terminus is more ordered than 
that of Aβ40 because it engages in hydrophobic side chain contacts at the C-terminus and in the 
middle of the protein. This long-range interaction induces the formation of the Aβ42 β-turn and 
β-strands. Again this prominent β-turn present in a subset of Aβ42 structures stands out as a 
possible precursor to toxic structures observed in Aβ fibrils and oligomers. 

Summary of Chapter 6 
Although our studies have focused primarily on the monomeric forms of the Aβ peptides 
associated with Alzheimer’s disease, the toxic form of the peptide is believed to be a small 
soluble oligomer (12, 13). However, many different oligomers of Aβ have been observed 
experimentally, and it is difficult to isolate a single species with particular size and structure 
from the distribution of oligomers that form during Aβ aggregation. One proposed toxic 
oligomer that can be prepared consistently is the Aβ42 “globulomer” (68), however its effect on 
human neurons has not been specifically characterized. In Chapter 6 we collaborate with the 
Schaffer group (69, 70) to examine the toxicity of the globulomer (relative to the Aβ42 
monomer) toward human cortical neurons. Our collaborators have derived cultures of these 
neuronal cells from human pluripotent stem cells, and employed them as an in vitro model for 
the study of AD. We see that globulomer binds to these neurons inducing cell death, and is 
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selective for glutamatergic over GABAeric neurons, consistent with AD toxicity patterns in 
patients. We also find that the globulomer exhibits culture age dependent cell binding. These 
results support the proposed role of the Aβ42 globulomer as a toxic agent contributing to AD 
pathology. 

Summary of Chapter 7 
Because the Aβ42 globulomer seems to be a toxic Aβ oligomer, knowledge of its molecular 
structure is important to understanding disease mechanisms and developing possible drug 
therapies that could disrupt these mechanisms. Some general structural information is known 
about the globulomer, for example it contains about 12 monomer chains and is has β-sheet 
secondary structure. One NMR study of the globulomer has been performed, however most the 
of the data collected reported on a smaller oligomer called the “preglobulomer” which is a 
precursor to the globulomer and believed to be similar in structure (71-75). In Chapter 7, we 
present our initial work evaluating two different models of the Aβ42 globulomer using all-atom 
molecular dynamics simulations. The first model is based on the preglobulomer NMR data, 
while the second model is a dodecamer generated from coarse grain simulations of the Aβ40 
protofibril (69).  

From simulations of the dimer repeating unit, we find that the preglobulomer model does 
not maintain stable β secondary structure at the C-terminus, where it forms a parallel β-strand, 
however this structure may be more stable when more chains are present in the full 
preglobulomer or globulomer structures. The dodecamer protofibril model does maintain β-sheet 
structure when it is converted from the coarse grain model and equilibrated in all-atom 
simulations. We have also begun to calculate NMR observables for both globulomer models that 
we can compare to existing and future NMR data. Estimated amide protection factors for the 
preglobulomer dimer model appear to be lower than those seen experimentally. Chemical shifts 
and J-coupling constants have been calculated for the protofibril model, but have not yet been 
quantitatively compared to experiments. Ongoing analysis of MD simulation data for both 
models will give a better picture of the possible Aβ42 globulomer structures, and future NMR 
experiments can determine which model is the most accurate. Combined with our 
characterization of the Aβ monomer ensembles, we will then have the basis for understanding 
the formation of a toxic species associated with Alzheimer’s disease. 
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Chapter 2 

 

Homogeneous and heterogeneous tertiary 
structure ensembles of Aβ 21-30 and Aβ42 
peptides 

 
The interplay of modern molecular simulation and high quality nuclear magnetic 
resonance (NMR) experiments has reached a fruitful stage for quantitative 
characterization of structural ensembles of disordered peptides. Amyloid-β 1-42 
(Aβ42), the primary peptide associated with Alzheimer’s disease, and fragments 
such as Aβ21-30, are both classified as intrinsically disordered peptides (IDPs). 
We use a variety of NMR observables to validate de novo molecular dynamics 
simulations in explicit water to characterize the tertiary structure ensemble of 
Aβ42 and Aβ21-30 from the perspective of their classification as IDPs. Unlike the 
Aβ21-30 fragment which conforms to expectations of an IDP that is primarily 
extended, we find that Aβ42 samples conformations reflecting all possible 
secondary structure categories and spans the range of IDP classifications from 
collapsed structured states to highly extended conformations, making it an IDP 
with a far more heterogeneous tertiary ensemble.1 

Introduction 
Intrinsically disordered proteins (IDPs), polypeptides that do not adopt a single or dominant 
tertiary conformation, are abundant in eukaryotic proteomes, comprising 25-30% of protein 
coding sequences found in the human genome (71, 73-75). Characterizing IDP structural 
diversity is important to understanding their role in functional signaling, regulation, and 
transcription, as well as their detrimental involvement in pathologies such as cancer and 
neurodegenerative diseases. Their characterization has presented new challenges in structural 
biology since traditional experimental techniques such as X-ray crystallography and electron 
microscopy cannot yield the same detailed structural information that has been paramount in our 
understanding of folded enzymes and well-formed protein complexes (73). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Reproduced from (48) with permission. 
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Our current understanding of IDPs comes in part through contrasting their sequence and 
structural characteristics with those of folded proteins (73). For example, IDPs sequences are 
often significantly lower in hydrophobic residue content, have an over-representation of polar 
and/or charged amino acids, and have low sequence complexity compared to globular, folded 
proteins (74, 76). IDPs often have little secondary structure compared to the (non-denatured) 
unfolded ensembles of structured protein at native or near native conditions that retain α-helical 
and β-strand segments. The structural diversity of IDPs suggests that conformational sub-
populations interconvert at a much faster rate than the folded to unfolded transition timescale of 
a structurally ordered protein. While folded proteins can be usefully categorized into classes 
based on well-ordered secondary or tertiary structure, IDPs are classified by their degree of 
disorder, i.e. whether they predominately are collapsed semi-ordered ensembles (“structured” 
molten globules or pre-molten globule states), collapsed disordered ensembles, or extended 
disordered ensembles (71, 77). These classification schemes have been useful for IDPs with 
known function. 

Amyloid-β 1-42 (Aβ42) is the primary peptide associated with Alzheimer’s Disease 
(AD), generated in the amyloidogenic pathway by proteolytic cleavage of the transmembrane 
Amyloid Precursor Protein (APP) by membrane-anchored β- and γ-secretases. While Aβ appears 
to interconvert between α-helical and random coil populations when part of the APP integral 
membrane protein (78), the cleaved Aβ42 peptide and fragments such as Aβ21-30 have been 
categorized as intrinsically disordered peptides (IDPs) (14, 15). Although both are classified as 
IDPs, it would be useful to know whether their structural ensembles are similar or dissimilar so 
that we might usefully interpret the physiological behavior of the full-length peptide or the 
physiological significance of the smaller Aβ21-30 fragment.  

The interplay of modern molecular simulation and high quality nuclear magnetic 
resonance (NMR) experiments has reached a fruitful stage for quantitative characterization of 
structural ensembles of disordered peptides, which we review here. We use a variety of NMR 
observables to validate de novo molecular dynamics simulations in explicit water to contrast the 
tertiary structure ensemble of Aβ21-30 and Aβ42. We show that Aβ42 samples conformations 
reflecting all possible secondary structure categories and spans the range of IDP classifications 
from collapsed structured states to highly extended conformations, while Aβ21-30 has a 
relatively homogeneous extended structure ensemble, showing that the two amyloid-β peptides 
are very different classes of IDP.  

Methods 
NMR Experiments 

The peptide preparation and NMR experiments on Aβ21-30 have been reported in a previous 
publication (26). Here we report on the experimental details of Aβ42. Recombinant Aβ42 
peptide was purchased from a commercial source (rPeptide, Athens, GA) reported to be > 97% 
purity. The peptide was lyophilized from trifluoroacetic acid (TFA). The alkaline pretreatment of 
Aβ and preparation of LMW Aβ by filtration protocols outlined by Teplow (79) were used to 
prepare a monomeric solution of Aβ42. The lyophilized peptide was dissolved in 2 mM NaOH to 
produce a peptide concentration of 0.21 mg/ml with a pH of > 10.5. The peptide was then 
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sonicated for 1 min in a bath sonicator and lyophilized. It was then resuspended in 20 mM 
sodium phosphate buffer, pH 7.2, 0.01% (w/v) sodium azide. This protocol ensures that when the 
lyophilized peptide is dissolved in buffer it will not pass through its pI of ~5.31. Before 
collecting NMR data, the sample was filtered with a 0.22 µm filter to remove any fibril seeds and 
brought to a concentration of ~600 µM, pH 7.2. 

NMR data were collected at 287 K at the NMR Facility at UC Berkeley on Bruker 
Avance II 800 and 900 MHz spectrometers, the latter equipped with a Bruker cryogenic probe. 
The data were processed using NMRPipe and peaks were assigned and analyzed using CARA 
(80). Chemical shifts were assigned using 2D 1H-1H Total Correlation Spectroscopy (TOCSY) 
(81, 82) and Nuclear Overhauser Effect Spectroscopy (NOESY) spectra (83-85). The TOCSY 
spectra were collected in a 90% H2O (10% 2H2O) buffer solution with a mixing time of 60 ms 
and in a 99% 2H2O buffer solution with a mixing time of 80 ms. The NOESY spectra were 
collected in a 90% H2O (10% 2H2O) buffer solution with mixing times of 100 ms and 200ms, 
and in a 99% 2H2O buffer solution with a mixing time of 200 ms. In the direct dimension, 1024-
2048 points were collected while 256 complex points were collected in the indirect dimension 
for all spectra. The spectral width was 12 ppm in each dimension with 16-48 scans. 1D spectra 
were collected at time points before and after the experiments to measure the degree to which the 
monomeric peptide signal decreased due to aggregation. We also ensured that our NOESY data 
was resulting only from a monomeric form of the peptide by collecting a NOESY spectrum 
immediately after dissolving the peptide and another NOESY spectrum ~48 hours after 
dissolving the sample. We saw no difference between the two spectra except for a decrease in 
peak intensity due to aggregation, which eliminates the possibility that some NOEs could be a 
result of oligomers forming during peptide incubation. Peaks were identified at particular 
chemical shifts in the 200 ms mixing time NOESY spectra in both H2O and 2H2O, and those 
peaks that could be unambiguously assigned to two specific hydrogen atoms were used to 
calibrate the NOE peak intensities derived from simulation. The majority of peaks could not be 
clearly assigned to a unique pair of hydrogen atoms due to spectral overlap. These peaks were 
instead assigned a list of potential hydrogen pairs consistent with the observed peak frequencies. 
This list is made up of atoms within a 0.04 -0.08 ppm range around each observed peak. 

De novo molecular dynamics simulations 

The de novo molecular dynamics simulations of Aβ21-30 have been reported in a previous 
publication (26). Here we report on the simulation details of Aβ42. The peptide was modeled 
using the Amber ff99SB force field (23) and aqueous solvent represented by the TIP4P-Ew water 
model (25). We chose the ff99SB force field and TIP4P-Ew water model combination because it 
was used in the previous Aβ21-30 study (26), and subsequent studies support its clear superiority 
relative to other biomolecular simulation force fields (24, 26, 86-88). 

In order to calculate equilibrium ensemble averages in the NVT ensemble, we used an 
Andersen thermostat, a leapfrog integrator with a 1.0 fs time step, and periodic boundary 
conditions. Particle Mesh Ewald was used for calculating long-range electrostatic forces, and a 
cutoff of 9.0 Å was used for the real space electrostatics and Lennard-Jones forces throughout 
the study. The initial structure for Aβ42 was built in an extended form using the LEaP module 
that is part of the AMBER package. Each structure was solvated in a water box such that there 
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were 10 Å of water surrounding the peptide on all sides (15,142 molecules of water, 580 nm3 
box volume), and three Na+ ions to neutralize the charge of the peptide. The structure was 
minimized and equilibrated with constant volume while raising the temperature to 300 K, then 
equilibrated for 2 ns under a constant pressure of 1 bar, maintained with a Berendsen barostat, to 
achieve the correct density. Then, a 2 ns 498 K simulation was run on the extended Aβ42 peptide 
to obtain a more collapsed starting structure for equilibrium ensemble simulations. Two different 
collapsed structures were chosen to start two independent replica exchange simulations. These 
systems were prepared by first removing the solvent, and then the previous solvation and 
equilibration steps were used to create a final box that contained 6,251 water molecules (193 nm3 
volume). The sander module of AMBER and the Multi-Reservoir Replica Exchange (MRRE) 
method presented by Ruscio et al. (14, 31) were used to achieve a Boltzmann weighted ensemble 
of 100,000 Aβ42 structures at the experimental temperature of 287 K, from 100 ns of 
equilibrated simulation. Details of the MRRE calculations for Aβ42 are reported in the Appendix. 

In order to calculate time-correlation data on the 287 K reservoir, selected structures from 
this ensemble were used to run microcanonical (NVE) ensemble simulations using the pmemd 
module of AMBER10. 50 structures were chosen from each 287 K Aβ42 ensemble (after the 10 
ns of equilibration), spaced 1 ns apart (ensuring complete decorrelation through swaps between 
replicas), and equilibrated at constant 287 K for 100 ps before running 20 ns of simulation for 
each initial structure. In total, the Aβ42 constant energy simulation time with starting 
conformations equilibrated at 287 K was 2 µs.  

Calculation of NMR Observables 

For both Aβ21-30 and Aβ42 we evaluate NMR chemical shifts and scalar-coupling constants 
(66, 67, 89), NOE peak intensities for not only backbone amide proton contacts (14) but the full 
set of hydrogen contacts that were measured by us, using the methods described in Fawzi et al. 
(26). For Aβ42 we also evaluate residual dipolar couplings (66, 67, 90). 

Chemical shifts. We used the program SHIFTS (91)  to calculate chemical shifts for Hα and 
amide hydrogen atoms and carbon chemical shifts. These values were compared directly to the 
chemical shift (in ppm) assigned to each hydrogen and carbon atom from the NMR spectra 
reported here, without any normalization. The Cα and Cβ chemical shifts were also calculated and 
compared to experimental values from Hou et al. (14).  

Scalar couplings. The ptraj module of AMBER was used to calculate the φ angles for each 
residue of Aβ21-30 or Aβ42 at every snapshot in the 287 K ensemble, and the J-coupling 
constant, J(φ) was evaluated for each snapshot using the Karplus equation (92)  

    (2.1) 

with coefficients A = 6.51, B = -1.76, and C = 1.60 corresponding to the original parameter set by 
Vuister and Bax (93). We note that the φ values used to calculate the J-coupling constants 
correspond to the dihedral angle defined by Ci-1, Ni, Ca

i, Ci, although the J-splitting seen 
experimentally is a result of coupling between two hydrogen atoms, related by the dihedral angle 
defined by HNi, Ni, Ca

i, Ha
i. These two dihedral angles are geometrically related by a phase 

J φ( ) = Acos2 φ − 60( ) + Bcos φ − 60( ) + C
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factor of ~ 60° as per Eq. (2.1). This discrepancy was not properly accounted for in a previous 
publication, Fawzi et al. (26), and we show the corrected calculation in Results. To obtain an 
overall metric of how well the calculated coupling constants correspond to the experimental data, 
and compare this to other simulated systems, we calculate the figure of merit 

     (2.2) 

where N is the number of J-coupling constants measured, 〈Ji〉sim is the ith calculated j-coupling 
constant averaged over all structures in the simulated ensemble, Ji,expt  is the ith experimental J-
coupling constant, and  is the uncertainty in 〈Ji〉sim, which we expect to be dominated by the 
uncertainty in the Karplus parameters.  

ROESY and NOESY Intensities. We use the method of Peter et al. (94) to calculate the spectral 
density function (which is related to the NOE or ROE peak intensity) from the short NVE 
simulations. Specifically, we use ptraj to analyze the NVE simulations. The ptraj output is the 
normalized correlation function for each pair of hydrogen atoms of the Aβ peptides (the 
normalization option is convenient as the values of the correlation function, output as decimal 
numbers with limited field width by ptraj are then all available to high precision, which is 
especially critical for distant 1H-1H pairs). These are calculated according to 

    (2.3a) 

where r(t) is the vector between each hydrogen atom pair at time t, χt,t+τ is the angle between the 
r(t) and r(t+τ) vectors, and P2 is the second order Legendre polynomial. We multiply these 
normalized correlation functions by <r-6(t)> , averaged over the individual trajectory, to obtain 
the expression 

     (2.3b) 

for each of the independent 100 20-ns NVE simulations and average these values together, then 
re-normalize the average correlation function by dividing by <r-6(t)>, averaged over all NVE 
simulations (equivalent to dividing the entire correlation function by the value at t=0) . Each 
correlation function is then fit over a 5 ns range for τ to a multi-exponential form  

     (2.4) 

with N = 1, 2, 3, or 4 and 
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using the MATLAB function lsqcurvefit, which fits curves in a least-squares sense (The 
MathWorks, Natick, MA). The value for N is determined using Mallow’s Cp statistic (95), 

     (2.5) 

where S is the set of N covariates, Rtr, the training error, is the square difference between the 
correlation values and the fit exponential function, k is the number of regressors (2N - 1), and σ2 
is the variance under the full model, which we estimate as 0.001 based on a selected number of 
spin vectors. The value of N that yields the lowest value for Mallow’s Cp statistic is used as the 
fit, which is a better criterion for model selection than simply the training error, which is biased 
towards higher values of N.  

The resulting time correlation function can be Fourier-transformed  

     (2.6) 

to yield 

     (2.7) 

following the convention for Fourier-transforms of exponentials. The correlation time constants, 
τi, have a practical upper bound imposed by the rotation of the entire peptide in solution. No 
vectors may remain correlated at timescales longer than the rotational correlation time of the 
entire molecule in the slowest dimension. In cases where the average correlation function for the 
vector between two hydrogen atoms is fit with a time constant greater than 15 ns (around 5% of 
cases), we replace the long time constant with a time constant of 15 ns, which is a reasonable 
value for the longest possible rotational time-scale, based on the Debye-Stokes theory for 
calculating the rotational correlation time of a spherical molecule, 

      (2.8) 

where a is the molecule’s radius, η is the viscosity of the solvent (in this case water), k is the 
Boltzmann constant, and T is the temperature (287 K). The average Aβ42 radius of gyration in 
our simulated ensemble is 13.0±4.5 Å. The most compact structures (radii of gyration of 8.5 Å) 
correspond to τ values of 0.8 ns using a spherical molecule, while the most extended (radii of 
gyration of 17.5 Å) correspond to τ values of 7.4 ns, less than half of our 15 ns limit on rotational 
correlation time. This limit on the correlation time has a physical basis, because global tumbling, 
independent of any local angle or distance fluctuations, causes a complete loss of correlation in 
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C(τ) as defined in Eq. (2.3a). We note that the traditional method for disordered peptides of 
using the same fast motional correction for all spin pairs was not sufficient to accurately predict 
the Aβ21-30 ROESY peaks, so we were obliged to calculate correlation times and spectral 
densities from NVE simulations for both peptides. 

For Aβ21-30 we predict the ROESY spectra from our structural ensemble and dynamical 
trajectories by calculating the intensity  

     (2.9) 

where X and Λ are the eigenvectors and eigenvalues of the full relaxation matrix, R, composed 
of the diagonal elements  

   (2.10a) 

and off-diagonal elements 

 

     (2.10b) 

where ρ is the direct dipolar relaxation rate and σ is the cross-relaxation rate for all proton pairs, 
and the constant factor K is defined as 

     (2.11a) 

where µ0 is the permeability of free space,  is Planck’s constant, and γa and γb are the 
gyromagnetic ratios for the nuclei of interest. The effective r vector 

     (2.11b) 

is the average of the r-6 values, which has then been converted back into units of distance. For 
Aβ42 we predict the NOESY spectra from our structural ensemble and dynamical trajectories by 
calculating the intensity from a different relaxation matrix R, composed of diagonal elements  
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    (2.12b) 

We simulate all hydrogen atoms explicitly for each methyl group and hence calculate all pair 
correlation functions, including neighboring methylene and methyl group protons, and we ignore 
water proton coordinates as is the standard assumption in the NMR experiment.  

We solve for the magnetization matrix at the mixing times that were used in both H2O 
and 2H2O ROESY and NOESY experiments, removing all exchangeable hydrogen atoms to 
simulate 2H2O buffer conditions. For the H2O experiment, we multiply all amine intensities by 
0.9 to account for the presence of 10% 2H2O, and remove all basic amine and hydroxyl groups, 
which would not appear due to broadening caused by exchange with solvent. We then add all of 
the degenerate intensities from methyl groups and intra-residue spins that are indistinguishable in 
the NMR spectra.  

Finally, the constant relating the t = 0 matrix, M(0) of unity to the experimental cross-
peak intensity scale, is approximated by fitting a line of best fit (restrained to cross through the 
origin) to a plot of known experimental intensities (those that were unambiguously assigned) 
versus their corresponding calculated intensities. For this plot, the experimental intensity values 
are an average of the peak intensities measured on either side of the diagonal in order to 
compensate for base-line differences on either side of the diagonal. The slope of this line can 
then be used as a conversion factor for all calculated intensities. All reported intensities 
(experimental and simulated) are also normalized by an estimate for the smallest experimentally 
identifiable peak intensity, so that an intensity of 1 indicates the smallest intensity that should be 
visible experimentally. After NOE peaks were calculated from the simulated ensemble the 
intensities were compared with the experimental intensity and expressed as multiples of smallest 
experimentally identifiable peak. This generated a distribution of simulated NOE peak intensities 
corresponding to every possible atomic contact. For these relative intensities, only peaks with 
intensities above 1 are expected to be experimentally visible above noise.  

Due to the complexity of the noise distribution in the Aβ42 spectra relative to the Aβ21-
30 spectra, uncertainties in Aβ42 peak intensity due to noise were estimated from simulation 
(again expressed relative to the smallest identifiable peak). We used a factor of 0.44 for the H2O 
spectrum and 0.50 for the 2H2O spectrum, and this noise was assumed to have a normal 
distribution (although there are other non-random noise features in the NMR data). Based on 
simulated NOE intensities for the H2O spectrum, we were able to estimate the number of NOE 
peaks below 1 that should statistically be made visible due to noise increasing their intensities 
above 1, and the number of NOE peaks above 1 which noise should decrease below 1, rendering 
them unobservable. These statistical estimates were made by binning the simulated peaks by 
intensity. For each bin below 1, a normal distribution with standard deviation σ = 0.44 was used 
to determine the probability that random experimental noise would increase the lowest intensity 
in the bin to a value above 1. This probability is given by 

     (2.13) 
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where Φ is the cumulative distribution function of the normal distribution with a standard 
deviation of one, centered at zero, and Wi is the intensity of the weakest NOE peak in bin i. The 
number of peaks that are increased above 1 due to noise is then given by the sum over all bins 
below 1, 

      (2.14) 

where ni is the number of peaks in bin i. This number Nfn is a reasonable estimate for the number 
of false negatives that should statistically be observed if all true NOE peaks are simulated with 
the correct intensities. The analogous procedure was performed for the bins above 1 to determine 
the number of intensities that should statistically drop below 1 due to noise, i.e. the number of 
false positives expected if all simulated peaks are exactly correct. We used a bin size of σ/2 = 
0.22. The distribution of peak intensities was obtained from the simulated H2O NOE because 
experimental NOE intensities below 1 are not visible by definition, however the intensity 
distribution should be quite similar to experiment because simulated NOE intensities were scaled 
to fit experiment and normalized by the lower bound for experimentally visible peak intensity. 
No peaks in high-noise regions of the experimental spectra (noise from experimental artifacts 
such as t1 noise) were used in this procedure because these regions do not have the same 
normally distributed noise with σ = 0.44.  

Residual Dipolar Couplings. We use the PALES (96) program to calculate residual dipolar 
coupling (RDC) values by residue for each structure in our simulated Aβ42 ensemble. The 
program computes the RDC by using steric properties of the molecule to generate an alignment 
orientation. Then, the angle between the internuclear vector and the external magnetic field is 
used to calculate the RDC for each snapshot. We calculate the RDC for the backbone amide 
bond vector for each Aβ42 residue. The average value over the ensemble for each residue is then 
compared to the Aβ42 experimental data from Yan et al. (67). The simulation values are 
multiplied by a constant to put them on the same scale as the experimental data, which is 
determined by experimental peptide concentration. 

Ensemble Structural Analysis 

Structural analysis of the de novo molecular dynamics simulations of Aβ21-30 and the Aβ42 287 
K ensembles was performed using ptraj, perl scripts and MATLAB (The MathWorks, Natick, 
MA) scripts. Ptraj was used to identify regions of secondary structure in the peptide backbone 
using the DSSP criteria (97). We also used ptraj to calculate radii of gyration and to identify the 
most commonly formed hydrogen bonds and salt-bridges. We used a cutoff of 3.5 Å between 
heavy atoms for identifying hydrogen bonds and a 4.0 Å cutoff for salt-bridges with a 60° angle 
cutoff for both. In-house scripts were used to identify particular secondary structure features and 
hydrogen bonds that are present simultaneously in the Aβ42 ensemble.  
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Results 
Chemical Shifts 

We compare the Aβ21-30 and Aβ42 experimental and simulated chemical shifts for Hα and HN 
(Figure 2.1)2, as well as Cα and Cβ (Figure 2.2), for each residue; the experimental carbon 
chemical shift data for Aβ42 was taken from Hou et al. (14), otherwise the experimental data 
was generated in the Wemmer lab. Residue specific random-coil chemical shifts are subtracted 
from both experimental and simulated chemical shifts (98). The agreement is very good between 
measured and calculated Cα, Cβ, Hα, and most HSC chemical shifts, while the calculated amide 
hydrogen chemical shift values are less good, especially so for the Aβ21-30 peptide. This is 
consistent with previous results showing that SHIFTS and other chemical shift calculators have 
difficulty predicting amide hydrogen values due to the high sensitivity of chemical shifts to 
hydrogen bonding geometry (91, 99). In summary, the chemical shift comparisons serve as one 
indication that our simulations have sampled the correct conformational landscape measured in 
the experimental ensemble. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 This and all other figures in this chapter are reproduced from (48) with permission. 



 

 17	  

 



 

 18	  

 

Figure 2.1. Experimental and calculated proton secondary chemical shifts by residue. (a) Aβ21-30 Hα chemical 
shifts, (b) Aβ42 Hα chemical shifts, (c) Aβ21-30 HN chemical shifts, and (d) Aβ42 HN chemical shifts. Red squares 
represent experimental data, while blue circle represent the data calculated from simulation. Random coil residue 
specific values are subtracted from both experimental and simulation values. The experimental data for Aβ21-30 
data is from Fawzi et al. (26). Insert (a): difference between average chemical shift for each residue and random coil 
Hα chemical shift from Merutka et al. (98). 
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Figure 2.2. Experimental and calculated carbon secondary chemical shifts by residue. (a) Aβ21-30 Cα chemical 
shifts, (b) Aβ42 Cα chemical shifts, (c) Aβ21-30 Cβ chemical shifts, and (d) Aβ42 Cβ chemical shifts. Red squares 
represent experimental data, while blue circle represent the data calculated from simulation. Random coil residue 
specific values are subtracted from both experimental and simulation values. The experimental data for Aβ42 are 
taken from Hou et al. (14) while the Aβ21-30 data is from Fawzi et al. (26).  
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In general the chemical shifts by residue assume values near the average shift for that 
residue type from the BMRB database (100): 98% of the hydrogen chemical shift rms 
differences are within one standard deviation, and these trends do not vary greatly across peptide 
sequence, indicating that the ensemble does not show a strong preference for α-helical or β-sheet 
conformations. In fact, the rms difference between experimental chemical shifts and average 
chemical shifts is on the same order as the difference between the experimental and simulated 
chemical shifts. Furthermore, we note that average chemical shifts by residue do not differ 
greatly from random coil chemical shifts (98) (Figure 2.1a insert). This distinction is important 
when comparing the structural ensembles of Aβ21-30 and Aβ42. We show later that while the 
tertiary ensemble of the Aβ21-30 fragment peptide is largely a random coil, Aβ42 samples both 
extended and collapsed states containing significant amounts of β-turn, α-helical, or β-strand 
secondary structure, and therefore its average chemical shift value should not be interpreted as a 
random coil ensemble. Therefore the chemical shift data does not discriminate between the two 
IDP peptide ensembles. 

J-Couplings 

We next consider the comparison of experimental and our simulated 3JHNHα scalar coupling 
constants for Aβ21-30 (Figure 2.3a) and Aβ42 (Figure 2.3b), using the established Karplus 
parameters from Vuister and Bax (93). We initially compare our simulations against the 
experimental data reported in our previous study on Aβ21-30 (26) and that of Yan and co-
workers for Aβ42 (67). Overall, the average J-coupling constants do not reflect any well-defined 
secondary structure for either IDP. 
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Figure 2.3. J-coupling constants for backbone amides for (a) Aβ21-30 and (b) Aβ42. The red symbols are the Aβ42 
experimental data from Yan et al. (67) and the Aβ21-30 data from Fawzi et al. (26). The green stars are the 
reprocessed experimental data for Aβ21-30. The blue circles are the data calculated from the simulation ensemble 
using the Vuister and Bax Karplus parameters (93). Glycine residues are boxed to emphasize that they can only be 
measured as the sum of two coupling constants and therefore have higher values than the other residues. Simulation 
uncertainty bars represent rms difference between two independent simulations and the average. The Yan et al. data 
(67) has not accounted for a relaxation correction that makes J-couplings determined from a HNHa 3D experiment 
consistently lower than those from COSY splittings (14) by a small amount (maybe as high as ~10% (93)); if this 
relaxation effect is accounted for, then the qualitative agreement between experiment and simulation is excellent. 
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We note that our original calculated 3JHNHα constants for Aβ21-30 used an incorrect 
definition of the φ angle (26), and Figure 2.3a displays the simulation data using the correct 
definition of the φ angle in Eq. (2.1). We see that the calculated J-coupling constants (blue 
symbols) do not agree as well with the experimental data (red symbols) for either Aβ42 or Aβ21-
30, thereby implying that our ensemble of structures does not sample the same dihedral angle 
distribution as that of the peptide in the NMR sample, and thereby yields average J-coupling 
values that differ significantly from experiment.  

However, we have determined that for Aβ21-30 most of the disagreement is likely due to 
experimental error of the original studies reported in (26). We went back to the experimental data 
and reprocessed it to remove inappropriate truncation of, and application of a cosine window 
function to, the time-domain data in the original processing, yielding significantly larger values 
of 3JHNHα than the original splittings we reported.  In order to conclusively rule out dangers of 
interpreting apparent splittings in spectra with either large peak widths or also truncation artifacts, 
we also performed lineshape analysis. The (new) directly measured splittings were within +/- 0.2 
Hz of the 3JHNHα

 obtained by least squared non linear fitting of Eq. (6.5) in (101) to a 1D slice 
through the peak maxima. These 3JHNHα

 values are also significantly higher on average than the 
values we previously reported. These new experimental values are shown in Figures 2.3a (green 
symbols) which are shifted upward by ~0.5-1.0 Hz relative to the original data. We also see 
much improved agreement between simulation and experiment, providing further support of the 
accuracy of our simulated ensemble for Aβ21-30.  We would like to point out that the high 
coupling constants for the glycine residues (Figure 2.3a, boxed) are sums of the coupling 
constants for both glycine Hα atoms, which are measured as one splitting experimentally. 

For Aβ42 there are experimental differences in the 3JHNHα
  scalar coupling constants 

reported in two independent NMR studies (14, 67). The earlier 2004 NMR study report scalar 
coupling values of 7.0-8.0 Hz for most residues, with some residues exhibiting values as high as 
9.0 Hz (26). The later NMR study (67) determined an average scalar coupling values of ~6.9 Hz 
across all residues, with a highest value of 8.14 Hz. However, the later NMR study that derived 
J-coupling values from a 3D HNHa experiment did not take into account relaxation effects (102); 
if these were accounted for then the scalar couplings would be shifted upward by ~10% (93) 
relative to that reported in Figure 2.3b. Roughly speaking, accounting for the relaxation effect 
would provide excellent qualitative agreement of the Yan et al. data (67) with the earlier NMR 
study, and with our simulation of 3JHNHα

  scalar couplings for Aβ42 that determines an average 
scalar coupling values of ~7.6 Hz across all residues. We attribute any remainder of J-coupling 
discrepancies to insufficient parameterization of the intrinsic backbone dihedral angle 
preferences that over-sample the extended β-region of the Ramachandran map (φ = -120°, ψ = 
145°) relative to the slightly more collapsed polyproline II (PP II) conformation (φ = -75°, ψ = 
145°). In recent work by Nerenberg and Head-Gordon, using the same force field combination of 
ff99SB and TIP4P-Ew, we found that agreement of the 3JHNHα coupling constant with experiment 
is complete for a glycine tri-peptide (χ2 = 0.00(37)) (88). However, in the same study, we found 
that agreement between experiment and simulation diminishes steeply for alanine and valine tri-
peptides (χ2 = 1.44 and 1.01 respectively), and the discrepancy is amplified as peptide length 



 

 24	  

increases, a known shortcoming of current force-fields when used to simulate unfolded proteins 
(24, 88).  

Residual Dipolar Couplings 

Table 2.1 compares the experimental RDC values (67) of Aβ42 to those calculated from our 
simulated ensemble using PALES (96). We compare all available RDCs for 33 residues reported 
in (67), unlike previous work (90) that only compares their simulated RDC data against 19-22 of 
the 33 experimental RDC values. The RMS difference between simulation and experiment is 
2.12 Hz, however, this error is dominated by Lys16 which has a very large experimental RDC 
value compared to the other residues. Excluding Lys16, our RMSD is lowered to 1.73 Hz, which 
is on the order of the experimental and simulation error bars (Figure 2.4). In our opinion, it is 
difficult to interpret the structural content of the experimental RDCs  for an IDP (66, 67, 90), and 
therefore we primarily present the RDCs to provide further experimental validation of the 
simulated ensemble.  

 

Figure 2.4. Experimental vs. calculated residual dipolar couplings for Aβ42. The red symbols are experimental data 
for Ab42 from Yan et al. (67). The blue circles are the data calculated from the simulation ensemble. 
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Residue Experimental 
RDC 

Experimental 
error 

RDC from 
Simulation 

Simulation 
error 

Glu 3 3.01 0.91 2.25 0.52 
Phe 4 0.23 0.57 3.23 0.2 
Arg 5 0.96 1.54 3.47 0.36 
Asp 7 1.72 0.57 0.59 0.23 
Gly 9 0.63 0.41 1.36 1.36 
Glu 11 3.45 0.17 1.18 0.34 
Val 12 2.77 0.13 0.16 0.72 
Gln 15 0.52 0 -0.69 1.02 
Lys 16 7.59 2.6 0.73 1 
Leu 17 3.33 0.57 1.89 0.44 
Phe 19 3.93 0.62 2.09 2.4 
Phe 20 2.34 0.12 3.52 0.69 
Ala 21 3.23 2.23 1.98 1.12 
Glu 22 3.34 0.16 3.05 0.73 
Asp 23 3.63 0.45 0.72 1.27 
Gly 25 0.42 0.14 1.05 0.54 
Ser 26 0.04 0.16 2.91 0.04 
Asn 27 1.94 0.38 0.47 1.1 
Gly 29 1.9 0.03 0.44 0.1 
Ala 30 0.68 0.3 1.04 0.13 
Ile 32 2.83 0.3 0.85 0.98 
Gly 33 3.7 0.08 2.02 0.63 
Leu 34 1.92 0.16 2.23 1.27 
Met 35 3.63 0.45 2.62 0.54 
Val 36 3.56 0.28 2.78 0.12 
Gly 37 1.68 0.8 1.11 0.78 
Gly 38 1.47 0.44 1.5 1.09 
Val 40 3.57 0.47 2.5 1.14 
Ile 41 3.5 0.23 0.66 0.09 
Ala 42 3.03 0.25 0.21 0.51 

Table 2.1. Aβ42 RDC values from experiment (67) and the simulated ensemble. 

ROESY and NOESY Peaks 

In our original high field NMR study of Aβ21-30 (26), the 2D ROESY experiments yielded a set 
of 155 assigned ROESY crosspeaks, of which 28 were weak medium range ROE interactions. 
The medium range ROEs comprised several i,i+2 and i,i+3 interactions and two extremely weak 
i,i+4 interactions; no longer range ROE crosspeaks were observed and no strong patterns of α-
helical or β-strand contacts were evident. In the case of Aβ21-30, all experimental peaks were 
assignable. The role of simulation for Aβ21-30 was to ascertain whether the medium range 
interactions were occurring simultaneously, as would be typical in structure calculations on 
folded proteins which assume that weak NOE or ROE cross peaks correspond to large (~4.5-
6.0Å) upper distance restraints on a single well-defined structural population. In fact we found 
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that the peptide ensemble involves significant disorder and hence it is inappropriate to use the 
standard structure determination methods.  

We determined very good agreement between the simulated and experimentally observed 
ROE cross peaks, indicating that our ff99SB/TIP4P-Ew simulations provide a well-validated 
estimate of the ensemble of structures interrogated by the experiments, allowing them to be used 
to describe the full structural ensemble diversity. We found that the conformational ensemble of 
Aβ21-30 was dominated by an unstructured population that lacked any consensus secondary 
structure or hydrogen-bonded interactions. The remaining minority population involved ~14% 
population of β-turn structure centered at Val24 and Gly25, which in turn populated contacts 
between Asp23 and Ser26. The simulations also indicate that the Asp23 to Lys28 salt bridge, 
important to the fibril structure (103), was formed in ~7% of the ensemble. Nonetheless, while 
Aβ21-30 exhibits some residual structure, it is largely an extended random coil peptide. 
Experimental and simulation data suggest that the structured populations may increase upon 
lengthening of the Aβ peptide to larger fragments (32, 36, 104, 105), and that is what we 
consider next for Aβ42. 

Figure 2.5 shows a region of the experimental 1H2O NOESY spectrum of Aβ42 that 
emphasizes the difficulties in obtaining unambiguous tertiary structure assignments for longer 
IDPs with spectra that are congested (giving multiple possible peaks assignments, Figure 2.5a) 
and have appreciable variation in noise (Figure 2.5b). We define an experimental NOE peak as 
“assignable” based on the definition that there is one dominant short-ranged contact that must 
contribute the majority toward the peak intensity, and that its intensity is above experimental 
noise uncertainties. Therefore, due to degeneracy of chemical shifts, only 196 of the 705 NOESY 
peaks seen in the H2O and 2H2O NMR spectra could be assigned from the experimental data 
alone. Of these assignable peaks, 11 were found to be non-sequential and non-intra-residue, and 
these peaks had significantly lower experimental intensities than many other assigned peaks. 
Therefore 509 experimental peaks, 165 of which are I to i+2 or greater, have multiple possible 
assignments for Aβ42, far different than that seen for Aβ21-30. 
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Figure 2.5. Plot of the experimental NOESY spectra. (a) a region of the spectra with large chemical shift degeneracy 
(47 H chemical shifts along the x dimension and 52 H chemical shifts along the y dimension), and (b) a region of the 
spectra with high T1 noise and large background signal arising from the water peak. 
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In order to assign more of the NOEs, we performed de novo calculations of the NOE 
intensities using our MD simulation and described in the Methods section, in which we use the 
experimentally assigned peaks to place the simulation intensities on the absolute scale of the 
NMR experiment (Figure 2.13). We also determine a scaling factor based on the smallest peak 
that can be identified clearly above the noise in the experimental spectra - and express 
experimental and simulated intensities as a multiple of this threshold. Only peaks simulated with 
intensity above 1 are considered visible above noise. With this scaling factor determined from 
the 1H2O and 2H2O experimental data, 176 of the 196 assigned experimental peaks were 
predicted as visible from the simulation data. None of the 11 long range assigned peaks was 
predicted by simulation to be above 1, but 10 of them were predicted above 0.1. A factor of 10 in 
intensity corresponds to a factor of 101/6 = 1.5 difference in distance, thus the predicted distances 
are just outside the range of giving a detectable peak. We note that 10 of these peaks involved i 
to i+2 and i to i+3 contacts, with only 1 peak that involved an i to i+4 contact. 

The remaining 509 unassigned experimental NOEs were compared to the simulation data 
by summing the calculated NOE intensities for all proton pairs that had the same chemical shift 
of the experimentally observed peak. Of these 509 unassigned peaks, the simulation predicted 
355 peaks, of which 54 had no sequential or intra-residue contact. Only 223 of these 355 contacts 
were dominated by a single atomic contact included, while 132 of these simulated peaks had two 
or more contacts contributing with similar intensities. Therefore there were 174 false negatives 
(not predicted to be visible), 122 of which could not result from an intra-residue or sequential 
contact. In addition to the 531 simulated peaks that were consistent with experimentally observed 
peaks, there were 383 false positive peaks (calculated from simulation that were not seen in 
experiment). These data are summarized in Table 2.2. 
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Peak Types 
 

All NOE  
Peaks 
 

Long range 
peaks (i to i+2 or 
greater) 

Experimentally observed peaks 705 176 
Experimentally assigned peaks 196 11 
Experimentally unassigned peaks 509 165 
 
Simulated peaks 914 188 
Simulated peaks agree experimentally assigned peaks 176 0 
Simulated peaks agree experimentally unassigned 
peaks 355 54 

  
False negatives 174 122 
False negatives found in high noise regions  -62 -47 
False negatives explained by atomic contacts on same 
residue pairs -66 -29 

False negatives inconsistent with experiment 46 46 
  
False positives 383 134 
False positives found in high noise regions  -82 -19 
False positives explained by atomic contacts on same 
residue pairs -223 -81 

False positives made up of numerous weak contacts -16 -6 
False positives inconsistent with experiment 62 28 

Table 2.2. The summary of experimental and calculated NOEs statistics, and analysis of the number of false 
positives and false negatives. 

In total, the simulations yielded 174 false negatives and 383 false positives when 
compared to the NMR experiment. However, unlike our previous experiment on more 
concentrated samples of Aβ21-30, the noise across the NOESY spectra for Aβ42 was quite 
variable. We estimate that the average experimental uncertainty in the intensities due to noise is 
± 0.44 of the threshold for the H2O spectrum and ± 0.50 for the 2H2O spectrum. However, there 
are regions where noise move far outside these experimental ranges due to T1 noise, modulations 
from the water signal, and/or dense regions of overlapping large peaks that make peak intensities 
difficult to determine (see Figure 2.5). This required a more painstaking analysis of different 
regions of the spectra to determine our confidence in what are genuine false positives and false 
negatives in the NOESY assignments. For example, 82 false positive peaks were in regions of 
the spectra well above the baseline intensity uncertainties, which would prevent these 82 peaks 
from being observed experimentally. Of the false negatives, 62 of these peaks were observed in 
the high-noise regions of the experimental spectra, which could cause a weak peak to appear 
stronger. 

Disregarding peaks that could not be seen due to high noise, there were 301 remaining 
false positives, 115 of which contain only residue i to i+2 or longer contacts, and 112 remaining 
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false negatives of which 75 are long-range. However, for many hydrogen-hydrogen pairs with 
NOEs observed but not predicted (false negatives), NOEs between other proton pairs within the 
same residue pair were not observed but were predicted (false positives). Thus although the 
simulations sometimes miss the correct inter-proton contacts, they do largely succeed in 
predicting correct residue contacts. Considering predictions between the proper residue pairs as 
correct removes 223 false positives and 66 false negatives (Table 2.2). Finally, the remaining 78 
false positives were analyzed to see whether their intensities were dominated by a specific set of 
contacts: 16 of these peaks, although predicted to be above noise level, did not contain any 
dominant atomic contact of significant intensity, but instead were composed of many atomic 
contacts whose individual intensities were below half of the noise level. Considering that 
multiple crosspeaks would probably be spread over a wider range of shifts than used in 
constructing the simulated spectrum, these are not serious experimental disagreements. 

The remaining 46 false negatives (out of 705 observed peaks) and 62 false positives (out 
of 914 simulated peaks) are weak as estimated by the experimental intensity uncertainty inherent 
in the H2O (± 0.44) and 2H2O spectra (± 0.50), although we report them in the Appendix. If the 
noise is assumed to be normally distributed, based on our distribution of experimental intensities 
we would expect to see ~69 false negatives, compared to the 46 that we determined. Given the 
experimental variation in noise, our level of false negatives is not statistically significant. 
Similarly, if the noise is assumed to be normally distributed, based on our distribution of 
simulated peak intensities, we would expect to see ~29 false positive peaks, whereas we see 60. 
Even so, a vast majority of the false positives are short-range, and do not grossly influence the 
backbone structural ensemble. These data are also summarized in Table 2.2. 

Peptide Structural Ensemble 

Given the overall good agreement of the calculated NMR observables from de novo molecular 
dynamics with various NMR measurements, we proceed to a structural analysis of the simulated 
ensemble. Figure 2.6 shows the radius of gyration (Rg) distribution of Aβ42, which emphasizes 
that the peptide adopts conformations that vary extensively in the degree of compactness. It is 
interesting to compare this to a random coil polymer, in which the original Flory model (106) 
states that Rg scales with the number of residues, n 

,      (2.15) 

where R0 is an estimated persistence length and n depends on the quality of the solvent. In a good 
(denaturing) solvent n ~ 0.598, and assuming a persistence length of R0=1.33 (107), a 42 amino 
acid peptide’s average radius of gyration, <Rg> would be estimated to be 12.4±1.0 Å, consistent 
with what we find for the Aβ42 peptide in which <Rg> = 13.0±4.5 Å. However, the large 
standard deviation for <Rg> and the nature of its distribution (Figure 2.6) emphasizes that the 
Aβ42 peptide samples many conformations that are even more compact or more extended than 
expected from a good solvent model or estimates of the persistence lengths of denatured proteins. 
For example, if we assume a larger persistence length of R0 = 2.1 (108), we get a value of <Rg> = 
19.6 Å in a good solvent, or an <Rg> = 7.2 Å in a poor (water-like) solvent (n ~ 0.33), which 
better correlates with Aβ42’s skewed Rg distribution that is peaked around 9-10 Å but with a 
long tail that samples conformations with an Rg as large as ~30 Å. 

Rg = R0n
ν
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Figure 2.6. Distribution of Aβ42 radius of gyration. The peptide’s radius of gyration ranges from ~9 Å, which is 
similar to that of globular proteins with the same number of residues, to ~30 Å, which is fully extended, with an 
average radius of gyration is 13±4.5 Å (Figure 2.4). 

We also find that the more compact portion of the Aβ42 ensemble (~90% of the 
ensemble) is dominated by conformations with some type of secondary structure, hydrogen 
bonding, or ion pairing structural features. Figure 2.7 shows the probability of observing a given 
DSSP secondary structure category for each amino acid; DSSP defines secondary structure 
classes by distinct hydrogen bonding patterns and geometry (primarily dihedral angles), with 
α-helices and β-strands requiring the cooperative organization of repeats based on localized turns 
and bridges (97). We find that only 0.2% of the Aβ42 ensemble is completely lacking of any 
identifiable secondary structure! This is far different than our previous study of Aβ21-30 in 
which ~65% of the structural ensemble had no identifiable stabilizing secondary structure or 
consensus hydrogen bonds26. 
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Figure 2.7. Percentage of Aβ42 ensemble in different types of secondary structure by residue. The red line 
represents α-helix, the blue line for anti-parallel strand, and the black line for β-turns. 

In order to better characterize the Aβ42 peptide conformations that contain these turns, 
we focused on six pairs of residues that define the following turns: The first turn is defined at 
residues 7-8 (Turn7-8), the second turn at residues 14-15 (Turn14-15), the third turn at residues 
18-19 (Turn18-19), the fourth turn at residues 24-25 (Turn24-25), the fifth turn at residues 26-27 
(Turn26-27), and the final turn at residues 34-35 (Turn34-35). We also combine the α-helix 
structure and 310-helix classifications into one ‘helix’ classification in our secondary structure 
analysis because the same sequence region has the same tendency to form either helical structure. 
Residues 14 to 19 often adopt helical structure, as do residues 22 to 28, while residues 30 to 35 
do so to a lesser extent.  However, for residues 14-19 and 22-28, in 26% and 10% of the 
ensemble respectively, only part of the helix is formed while the other portion of the helical 
region forms one of the turns mentioned above. For this reason, we break these regions into 5 
pairs of residues that often form helical structure: residues 14-15 (Helix14-15), residues 17-18 
(Helix17-18), residues 23-24 (Helix23-24), residues 26-27 (Helix26-27), and residues 32-33 
(Helix32-33). These residues simply label the central regions of the helix, since DSSP requires 
that helices (as well and turns and β-strands) be supported by hydrogen bonds involving 
additional residues. Finally, anti-parallel β-strand secondary structure is also observed in the 
ensemble. Anti-parallel β-strand structure is observed for residues 3-6 (Beta3-6), residues 10-13 
(Beta10-13), residues 16-21 (Beta16-21) and finally residues 29-36 (Beta29-36). We do not 
display parallel β-strand structure because this structure was only seen at very low levels, and 
when the particular conformations were examined more closely, they were found to be 180° 
turns, rather than true parallel β-strands. 
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Table 2.3 summarizes the percentage of the time each of the above secondary categories 
appears in the Aβ42 conformational ensemble, the percentage of the time each occurs in 
isolation with no other secondary structure, and the frequency at which pairs of secondary 
structure elements form simultaneously. It is seen that Turn7-8 and Turn34-35 are the turns most 
commonly formed, and each is present in almost half of the simulation ensemble, and they often 
form simultaneously with each other (34% of the ensemble). For the minority of consensus 
secondary structure found in the conformational ensemble of Ab21-30, the dominant feature was 
~14% of the ensemble forming a classic β-turn structure centered at Val24 and G25 bringing 
together Asp23 and S26 (26). 

Secondary 
structure Secondary Structure Region Percentages 

 Turn7-8 Turn14-15/ 
Helix14-15 

Turn18-19/ 
Helix17-18 

Turn24-25/ 
Helix23-24 

Turn26-27/ 
Helix26-27 Turn34-35 Helix32-33 

Observed 48.90 34.02 / 20.78 12.52 / 31.82 35.24 / 14.23 28.32 / 13.36 47.25 8.16 
In isolation 3.11 1.24 / 0.59 0.19 / 0.00 3.22 / 1.04 8.41 / 2.68 2.36 0.89 

 
Secondary 
structure Simultaneous Secondary Structure Pairing Percentages 

 Turn7-8 Turn14-15/ 
Helix14-15 

Turn18-19/ 
Helix 17-18 

Turn24-25/ 
Helix23-24 

Turn26-27/ 
Helix26-27 Turn34-35 Helix32-33 

Turn7-8  24.28 / 16.91 10.03 / 26.81 24.87 / 7.68 14.48 / 9.14 33.75 2.54 
Turn14-15   5.06 / 19.55 16.81 / 5.00 9.68 / 5.56 25.82 0.66 
Turn18-19    8.28 / 2.08 5.14 / 2.96 10.52 0.09 
Turn24-25     10.20 / 6.83 24.30 2.62 
Turn26-27      14.16 0.73 
Turn34-35       0.27 
Helix14-15   6.74 / 11.85 12.78 / 3.56 5.96 / 4.76 16.05 1.82 
Helix17-18    18.56 / 6.18 8.73 / 7.01 26.20 2.36 
Helix23-24     2.92 / 1.49 7.28 4.09 
Helix26-27      9.38 0.16 

Table 2.3. The categorization of secondary structure features most prevalent in the ensemble. Each column is a 
different secondary structural feature (see text). In the first part of the table we report the observed secondary 
structure percentages, as well as the percentage of the time they are observed in isolation. The second half of the 
table reports percentages of the time that two secondary structural elements occur simultaneously. 

The Aβ42 ensemble is dominated by secondary structure pairings with Turn7-8 and 
Turn34-35 (Figures 2.8a and 2.8b), impossible for Aβ21-30: Turn14-15, Helix17-18, and 
Turn24-25 are often present in conjunction with either of these turns in ~25% of the ensemble, 
Helix14-15 and Turn18-19 are most often paired with these turns in ~17% of the ensemble, and 
likewise Helix23-24 and Helix26-27 are most frequently present in conjunction with either 
Turn7-8 or Turn34-35 in ~9% of the ensemble. Table 2.2 also shows that Helix17-18 occurs with 
high frequency (32% of the ensemble) compared to the other helical segments, but it never 
occurs in isolation, while Helix32-33 is the least frequent of the secondary structure categories. 
Even though the helical conformational populations are diverse, it is clear that helical 
conformations are more populated in the N-terminus region of the Ab42 peptide (Figure 2.9a and 
9b). We emphasize that while we have quantified the percentages of the ensemble that involve 
secondary structure pairings, most often these pairs are occurring with a third, fourth, or 
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sometimes a greater number of additional secondary structural elements, resulting in a 
combinatorial explosion in the structural diversity of metastable conformations.  
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Figure 2.8. Percent of Aβ42 ensemble in secondary structure by residue involving the most ubiquitous turns. For 
fraction of ensemble where (a) Turn7-8 is always present and (b) Turn34-35 is always present. 
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Figure 2.9. Representative ribbon conformations of the Aβ42 populations. Turns (blue) and Helix (red). (a) Turn7-8 
and Turn24-25 and Helix14-15 and Helix26-27; each of these pairs occurs with high frequency with each other 
(Table 2.2) and (b) the hydrogen-bond between backbone residues 13-34, which occurs in ~40% of the ensemble, 
occurs with high frequency when many secondary structural elements occur simultaneously, such Turn7-8, Turn14-
15, Turn24-25, and Turn26-27, and Helix17-18 shown here. 
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The most unusual secondary structure feature for Aβ42 involves Turn26-27. While it 
simultaneously pairs with either Turn7-8 or Turn34-35 in ~14% of the ensemble, 12% of the 
time the formation of Turn26-27 occurs simultaneously with β-strand structure involving 
Beta16-21 and Beta29-36, and this β-strand structure precludes the formation of many of the 
other secondary structures such as Turn14-15, Turn18-19, Turn24-25, Turn34-35, Helix14-15, 
Helix17-18, Helix23-24, Helix32-33, and of course Helix26-27, which are so common in the rest 
of the ensemble. In fact 8% of the time Turn26-27 occurs in isolation (compared to 0-3% for all 
other turns or helices, Table 2.3), i.e. with all other secondary structure categories completely 
absent, and when this happens the β-strand is almost always present (Figure 2.10a). This is 
unlike the case when the N-terminus anti-parallel β-strand (Beta3-6 and Beta10-13), nucleates 
around Turn7-8 (9% of the ensemble), because this localized structure always forms 
simultaneously with other secondary structure categories in the latter two thirds of the sequence 
(Figure 2.10b). Thus, while Turn26-27 is not the most dominant feature of secondary structure, 
present in only 28% of the ensemble, it is one of the most important features because it can have 
a much longer-range effect on the peptide’s structure than all other secondary structure 
categories that are more structurally localized. There is still a significant percentage (9%) of the 
population where the Beta16-21 and Beta29-36 pairing forms without Turn26-27 present (Figure 
2.10c), so that in total this β-strand occurs in 21% of the ensemble. In 5% of the ensemble, 
Beta16-21 forms a β-strand with some other part of the peptide, and in 4% of the ensemble 
Beta29-36 forms a β-strand with another region besides Beta16-21, although in both cases the 
pairing partner region is highly promiscuous. 
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Figure 2.10. Representative ribbon conformations of the Aβ42 populations. Turns (blue), Helix (red), and β-strands 
(green). (a) Turn26-27 forms with β-strand (Beta16-21 and Beta29-36), and no other major secondary structure is 
present. (b) Turn7-8 nucleating β-strand Beta3-6 and Beta10-13, along with Helix14-15 and Helix17-18, and 
Turn34-35. (c) β-strand involving Beta16-21 and Beta29-36 in the absence of Turn26-27, or any other of the major 
secondary structure features. (d) Turn26-27 with β-strand Beta16-21 and Beta29-36, stabilized by a salt bridge 
between Glu22 and Lys28, in the absence of other secondary structure.  
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Other interesting structural features of the ensemble are the presence of particular 
hydrogen bonding partners, and Table 2.4 emphasizes that most of these are stabilizing the 
secondary structure categories above has required by the DSSP definitions. Stabilizing salt 
bridges are also found in the Aβ42 ensemble, in which Arg5 often participates in various salt-
bridges: the largest occupancy (16% of the ensemble) is between the Arg5 and Glu3 side chains, 
and Arg5 also forms frequent salt-bridges with Asp1, Glu11, and Glu22. The Asp23-Lys28 salt-
bridge, found in the Aβ42 fibril conformation as well as 7% of the Ab21-30 ensemble, and its 
competitor Glu22-Lys28, are found in 3% and 4% of the ensemble, respectively, and not 
surprisingly they co-form with helix and turns that they encapsulate: Turn24-25, Turn26-27, 
Helix23-24, Helix26-27. In only 1% of the population does a salt bridge stabilize the Beta16-19 
and Beta29-36 β-strand (Figure 2.10d), which is thought necessary for stabilizing the Aβ42 
monomer in the greater amyloid fibril assembly, although we only observe it for the competitor 
Glu22-Lys28 pairing (103, 109).  

Residue - Residue 
hydrogen-bonds 

% in Aβ42 
Ensemble 

Residue - Residue 
hydrogen-bonds 

% in Aβ42 
Ensemble 

  2      5 6% 18    34 10% 
  4      7 11% 19    32 8% 
  4      8 7% 21    24 16% 
  6      9 50% 21    25 10% 
  6    10 13% 21    26 24% 
  7      9 6% 21    27 20% 
  8    10 6% 22    25 42% 
  8    11 5% 23    26 13% 
  8    12 5% 24    27 18% 
10    12 6% 24    28 11% 
13    16 50% 25    28 24% 
13    17 39% 25    29 5% 
13    34 41% 26    28 9% 
14    17 7% 26    29 13% 
14    18 5% 29    31 9% 
16    19 40% 29    32 7% 
16    20 12% 31    34 13% 
16    36 10% 31    35 10% 
17    20 30% 32    35 8% 
17    21 9% 33    36 32%  

Table 2.4. Hydrogen-bonds between residue pairs most frequently found (>5%) in Aβ42 ensemble. Hydrogen bonds 
that define Turn7-8 (pink); Turn14-15/Helix14-15 (orange); Turn18-19/Helix17-18  (yellow); Turn24-25/Helix23-
24 (green); Turn26-27/Helix26-27 (light blue); Turn34-35/Helix32-33  (purple); β-strands (brown). See Figure 2.10 
where colors correspond to contact map. 

Finally Figure 2.11 provides a contact map of strong experimental NOE intensities for 
Aβ42 that are dominated by a single contact. We note that these dominant NOEs correlate well 
both with the various secondary structures (including β-strands) and the presence of NOEs that 
“compact” structure (i.e., those which involve multiple secondary structure categories occurring 
simultaneously) that are described in Figures 2.6-2.10. Moreover, they are highly consistent with 
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the hydrogen bonds that occur with high frequency in Table 2.4 and lend strong support to the 
observed structural sub-populations. 
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Discussion and Conclusions 
Our NMR/de novo MD study of the Aβ21-30 and Aβ42 conformational ensembles reveals a 
broad range of intrinsically disordered peptide structure. This range of structural complexity can 
be usefully described with techniques that combine the collection and analysis of both 
experimental NMR and simulation data using more modern force fields. Using a combination of 
NOESY cross-peaks, which reveal tertiary interactions via definitive intra-molecular contacts, 
and MD simulations that provide the structural context for such contacts in an equilibrium 
ensemble at conditions that match the experiment, we achieve a picture of two very different 
intrinsically disordered peptides. While the Aβ21-30 peptide conforms to a rather homogeneous 
ensemble consistent with an extended random coil, Aβ42 exhibits traits of an extremely 
heterogeneous ensemble of peptide conformations that contain a diversity of localized as well as 
long-range tertiary structure.  

Of interest here is that functional but intrinsically disordered peptides and proteins are 
typically classified by having a dominant population corresponding to a particular “degree of 
disorder”: collapsed semi-ordered ensembles (radius of gyration similar to that of a globular 
protein of same sequence length, typically containing well-formed secondary structure but little 
organized tertiary structure), collapsed disordered ensembles (radius of gyration typical of a 
globular protein and containing little well-formed secondary or tertiary structure), or an extended 
disordered ensemble (much larger radius of gyration than a globular protein and dominated by 
random coil). The Aβ42 peptide does not fall into any of these classifications exclusively, rather 
the NMR and MD show that its structural populations span the full range of classifications. For 
example, unlike molten globules (or ordered proteins), the Aβ42 hydrogen chemical shifts are 
not highly dispersed - 98% of the chemical shifts assume values within a standard deviation of 
the average shift for each residue type along the Aβ42 sequence. The J-coupling values also 
provide no evidence of secondary structure “blocks” at different points in the peptide sequence 
of Aβ42. Because Aβ42 samples so many distinct conformations, experimental observables that 
are based on simple ensemble averages like chemical shifts and spin-spin couplings yield values 
for these observables that are close to random-coil values. While this might be interpreted as a 
signature of an extended IDP, in fact the homogeneity of the chemical shifts and J-coupling are a 
result of averaging over many heterogeneous conformations involving compact, structured 
conformations, in addition to a significant population (~10%) of more extended conformers that 
span the Rg range from 9 Å to 30 Å. The NOESY experiment also confirms that these compact 
conformations must persist on long enough time-scales for the cross relaxation between protons 
to be detected, and thus these interactions must be stabilized by (likely shallow) free-energy 
minima. While the MD simulations show that many medium- to long-range NOEs in the Aβ42 
NOESY spectra are reporting on semi-order in the collapsed conformations, we also observe 
numerous instances where a single peak is made up of many different contacts arising from 
different conformations with completely distinct tertiary structures and degree of compactness. 
By contrast, Aβ21-30 is more easily classifiable as an extended random coil. 

The many strong NOESY cross-peaks observed experimentally for Aβ42, which we are 
able explain with specific attributes of the peptide populations from our simulated ensemble, 
allow us to corroborate or question specific structural features proposed in previous work. The 
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first NMR studies of the monomeric structural ensemble of Aβ42 (and Aβ40) by Hou et al. was 
directed toward changes that occurred upon oxidation of the Met35 side chain, a chemical 
change associated with impeded fibrillization of the peptide (14). Based on 1H, 15N, and 13C 
NMR chemical shifts and backbone NOEs, that study found an absence of any well-defined 
secondary or tertiary structures, interpreting from the NMR data that the ensemble was well-
classified as random, extended chains. Although our results show that Aβ42 is not really an 
extended random coil, that was a reasonable conclusion based on the more limited analysis of 
NMR data alone, since simple averaging over an ensemble of a highly diverse set of secondary 
and tertiary structures, a majority of which are collapsed, can generate average NMR observables 
consistent with extended random coil signatures.  However, on the basis of NOE and chemical 
shift data, Hou et al. identified backbone Cα and Cβ chemical shifts consistent with β-strand 
structure in two hydrophobic regions (Leu17-Ala21 and Ile31-Val36), as well as turn structures 
at two largely hydrophilic regions (Asp7-Glu11 and Phe20-Ser26). Those results are consistent 
with the present study in which we found significant β-strands (Beta16-21 and Beta29-36), as 
well as turns (Turn7-8, Turn24-25, and Turn26-27) largely in the same region of the sequence. 
What our study offers is a far richer picture as to how these secondary structural elements 
organize together to create a diverse set of collapse to extended conformations that contribute to 
the broad ensemble average. 

A study by Sgouarkis and co-workers consisted of an MD simulation using the OPLS 
force field and the TIP3P water model, which they validated against measured scalar 3JHNHα data 
(89). Although the agreement with the experimental J-coupling data was not particularly good, 
they nonetheless characterized the conformational ensemble of Aβ42 (and Aβ40) that pointed to 
a unique feature of the longer peptide forming a β-hairpin at Met35 and Val36, bringing together 
short anti-parallel β-strands at residues Ile31-Leu34 and G38-Ile41. This prediction of large 
population of β-strand structure in this region clearly contradicts the present study and the earlier 
Hou et al. NMR results since NOEs arising from these structure are not observed. More recently 
Sgourakis and co-workers performed a second MD study on Aβ42 (90), this time using a 
combination of ff99SB force field and the TIP4P-Ew water model that we successfully used on 
Aβ21-30 (26) and which we have used in this study. They analyzed 11,570 Aβ conformations 
using a clustering algorithm that yielded thousands of small clusters, with the six largest clusters 
having populations in the range 2-6% of the ensemble (90). This analysis does not provide much 
structural insight, and we found that classifications based on energetically stabilizing features 
such as hydrogen bonds and secondary structure to be more informative. Again they find central 
importance of the short β-strand at residues 38-40, which they argue may act as a conformational 
switch by forming alternative interactions with other β-strands along the sequence, in 
disagreement with this study and that of Hou and co-workers.  

In summary, the full Aβ42 peptide and the shorter Aβ21-30 fragment we studied 
previously (26), represent two fundamentally different types of IDPs. Experimentally, while the 
average chemical shift and scalar coupling values suggest that they both are random coil 
polymers, it is only true for Aβ21-30, an outcome supported by a de novo molecular simulation 
ensemble that predicts its small number of 28 non-sequential NOESY cross-peaks (26). By 
contrast, the NMR observables for Ab42 represent an average over a rich and diverse set of 
tertiary structures, supported by a larger number of 179 non-sequential NOESY cross-peaks that 
are reasonably described by our MD ensemble. While the Aβ21-30 structural ensemble at 283K 
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is primarily extended, with ~65% of the structures containing no secondary structure or 
hydrogen-bonding pairing for any residue, the Aβ42 structural ensemble at 287 K has <1% of the 
population in which there is no secondary structure. In fact, key structures such as the β-strand 
involving Beta16-21 and Beta29-36 could even be crucial to oligomerization of fibril nucleation, 
although this is currently speculation. Aβ21-30 has the same primary sequence as a key middle 
segment of the Aβ42 peptide, however the additional interactions possible in the longer peptide 
shift the equilibrium to other stabilizing conformations dominated by a different set of residues, 
with the exception of ~5% of the population that contains the Asp23-Lys 28 salt bridge that is 
observed in both peptides. The full Aβ42 sequence may be necessary to interpret any 
physiological behavior of the peptide, because it is only the complete peptide that adopts a 
diverse but structured conformational ensemble.  

APPENDIX 
Multi-Reservoir Replica Exchange (MRRE) ensemble sampling method  

The sander module of AMBER (110, 111) and the MRRE method presented by Ruscio et al. 
(30, 31) were used to achieve a Boltzmann weighted ensemble of Aβ42 structures at the 
experimental temperature of 287 K. Initially, parallel-tempering replica exchange (112) was used 
to converge a Boltzmann reservoir at 397 K using 13 replicas spaced from 447 K to 397 K (the 
spacing of replica temperatures at all stages of simulation was roughly exponential, ranging from 
every 5 K at the highest temperatures to every 2 K at the lowest). Exchanges were attempted 
every 1.0 ps. After the 397 K replica was sufficiently converged, the last 30 ns of simulation time 
was used to create a 397 K reservoir for the next set of replica exchange, taking 30,000 
conformational snapshots spaced one picosecond apart.  

In the next stage of MRRE, the 397K reservoir was used to exchange with the highest 
temperature replica of 18 replicas spaced between the 397 K reservoir and a low temperature 
replica of 335 K, using the Reservoir Replica Exchange method (30). After the 335 K replica 
converged, the final 30 ns of simulation were used to create a 335 K reservoir for the next set of 
replica exchange, taking 30,000 conformational snapshots spaced one picosecond apart. In the 
final stage of MRRE, the 335K reservoir exchanged with the highest temperature of 18 replicas 
that included the lowest temperature of 287 K, corresponding to the NMR experimental 
temperature. 50,000 structures from the final 50 ns from the converged 287 K replica were taken 
to construct the 287 K structural ensemble, and used to calculate conformational statistics. Aβ42 
needed 40 ns to converge the 397 K reservoir, 60 ns to converge the 335 K reservoir, and 60 ns 
to converge the 287 K ensemble. The total simulation time combining every replica was 5.36 ms 
for Aβ42, resulting in 100 ns of equilibrated NVT simulation at the lowest temperature of 287 K. 

Convergence of each intermediate reservoir, as well as the low temperature ensemble, 
was determined by comparing average intra-atomic distances for peptide hydrogen atoms 
between the two independent simulations using the ptraj module of the AMBER software 
package. Various statistics measuring agreement of these two ensembles were plotted over time 
(Figure 2.12), and generally, we focused on the short intra-atomic distances (<7.0 Å) that would 
have the greatest effect on experimental NOE measurements. When greater than 85% of the 
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short distances were converged within 10% of the total distance, the sampling was deemed 
sufficient.  

Atom 1 Atom 2 
Calculated 
H2O  NOE 
intensity 

Experimental 
H2O NOE 
intensity 

Calculated 
2H2O NOE 
intensity 

Experimental 
2H2O NOE 
intensity 

Hε   Tyr 10 Hγ2  Val 12 0.92 1.63 0.85 1.84 
Hγ3  Glu 22 Hγ  Val 24 0.58 3.29 0.52  
Hδ  Tyr 10 Hγ2  Val 12 0.52 1.52 0.46 1.70 
Hδ  Phe 20 Hγ  Val 24 0.47 1.98 0.43 3.44 
Hε   Phe 20 Hγ2  Glu 22 0.46 1.32 0.42  
Hδ1  Leu 17 Hε   Phe 19 0.45 3.06 0.41 5.07 
Hδ  Phe 20 Hγ3  Glu 22 0.28 1.70 0.26  
Hβ  Asp  7 Hδ  Tyr 10 0.19 1.50 0.17  
Hγ2  Val 18 Hδ  Phe 20 0.16 2.85 0.14 2.70 
Hγ2  Val 18 Hε   Phe 20 0.16 1.57 0.14 2.98 
Hγ2  Val 18 Hζ  Phe 20 0.06 1.52 0.06 1.63 

Table 2.5. List of experimentally assigned NOE peaks that are not due to intra-residue or sequential contacts along 
with calculated NOE values from simulation for both H2O and 2H2O. 
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Atom 1 Atom 2 Experimental NOE 
Intensity 

Peaks in Spectrum 1 Peaks in Spectrum 2 
  H2O 2H2O H2O 2H2O H2O 2H2O 

Hγ  Val 24 Hδ  Phe 20 1.26 3.44 2 2 2 2 
Hβ  Asp  7 Hα  Ala 21 3.36  1 0 2 2 

Hβ2  Gln 15 Hγ2  Val 12 3.02  2 0 2 0 
Hε  Phe 20 Hγ2  Val 18 1.57 2.98 1 1 1 1 
Hγ2  Val 18 Hδ  Phe 20 1.50 2.70 2 2 2 2 
Hδ2  Leu 17 Hδ  Tyr 10 1.14 2.81 1 2 1 0 
Hγ2  Val 12 Hβ  Asp  7  2.62 0 1 0 0 
H  Val 24 Hα  His 13 2.61  1 0 1 0 

Hβ2  Asp 23 Hα  Gly 25  2.43 0 1 0 0 
Hδ2  His 13 Hη1  Arg  5 2.39  1 0 1 0 
Hγ  Val 24 Hδ  Tyr 10 1.30 2.27 1 1 1 1 
Hβ2  Glu  3 Hβ2  Asp  1 2.16  1 0 1 0 
Hβ2  His 13 Hα  Glu 11  2.07 0 1 0 1 
Hε1  His  6 H  Ala 30 2.03  1 0 1 0 
Hβ2  Asp  1 Hδ2  His 13  2.02 0 1 0 0 
Hδ2  His  6 Hα  His 13  1.87 0 1 0 1 
Hζ  Phe 19 Hα  Asp 23 1.72  1 0 0 0 
H  Asp  7 Hβ2  Arg  5 1.72  1 0 1 0 

Hβ2  Glu 11 Hβ2  His 13 1.67  1 0 1 0 
Hζ  Phe 20 Hγ2  Val 18 1.52 1.63 1 2 2 2 

Hδ22  Asn 27 H  Ile 32 1.63  1 0 1 0 
Hδ21  Asn 27 Hε22  Gln 15 1.57  1 0 1 0 
Hε21  Gln 15 Hδ2  His  6 1.53  1 0 0 0 

Hδ  Tyr 10 Hβ  Asp  7 1.50  1 0 0 0 
Hδ2  His 13 Hβ3  Glu 11 1.49  1 0 1 0 
Hδ2  His 13 Hα  Glu 11 1.48  1 0 1 0 
Hδ2  His  6 Hα  Glu  3 1.47  1 0 1 1 
Hδ2  Leu 17 Hε  Tyr 10 0.60  2 2 0 1 
Hδ2  His 14 Hβ  Val 12 1.41  1 0 1 0 
Hβ3  Asp  1 Hα  Phe 4 1.36  1 0 0 0 
H  Ala 30 Hα  Met 35 1.32  1 0 0 0 

Hδ22  Asn 27 Hγ12  Ile 32 1.31  1 0 1 0 
Hε21  Gln 15 Hγ2  Glu 22 1.29  1 0 1 0 

Hδ  Tyr 10 H  His 13 1.29  1 0 1 0 
Hγ2  Val 18 Hδ2  His 14 1.29  1 0 1 1 
Hδ1  Leu 17 Hδ  Tyr 10 1.26 0.66 1 1 1 1 
Hγ3  Glu  3 H  Ser  8 1.11  1 0 1 0 
Hγ  Leu 17 H  Val 24 1.07  1 0 0 0 
Hδ2  His 13 Hβ3  Tyr 10 1.04  1 0 1 0 
Hβ  Phe  4 H  Tyr 10 1.03  1 0 1 0 
H  Leu 17 Hα  Ser  8 1.03  1 0 0 0 
H  Glu 22 Hβ  Ala 42 1.02  1 0 0 0 
H  His 13 Hβ2  Arg  5 1.00  1 0 1 0 

Hβ3  His 13 Hε  Tyr 10 0.89  1 0 2 1 
Hβ3  Phe 19 Hδ1  Ile 41 0.88  1 0 2 1 
Hε  Lys 16 Hδ  Phe 20  0.74 0 1 0 1 

Table 2.6. List of false-negative NOE peaks (identified experimentally but not calculated from simulation) that 
cannot be explained by: the presence of high noise in that region of the spectrum or by a small simulation inaccuracy 
that identifies the correct residue interaction but misses the exact atomic contact. Listed are the experimental 
intensity for both the H2O and 2H2O spectra, and the atomic contact which would produce this peak. If more than 
one atomic contact could produce this NOE peak, the contact is listed with the smallest difference in sequence 
between the two residues. The number of spectra in which peak is observed experimentally is also indicated. 
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Figure 2.12. Measure of convergence of 287 K Aβ42 simulated ensemble averaged over 50ns. (a) The average 
percent of the mean by which Aβ42 inter-hydrogen distances from two simulations differ. (b) Fraction of all Aβ42 
inter-hydrogen distances where the average distance for two simulations differs by more than 10% of the mean 
distance. (c) Fraction of short (less than 7 Å) inter-hydrogen distances where the average distance for two 
simulations differs by more than 10% of the mean distance. 
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Figure 2.13. Plot of assigned experimental NOE intensities to calibrate the simulated intensities (a) H2O NOESY 
spectrum and (b) 2H2O NOESY spectrum. The best-fit line is used to scale the simulation intensities to compare to 
experiment. The experimental intensities used are the average of the two peaks seen on either side of the diagonal, 
which differ somewhat due to base-line variation. Uncertainty bars correspond to the variation in peak intensity 
expected based on noise levels in areas of the spectrum that were not designated as ‘high-noise regions’.  
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Chapter 3 

 

Differences between the Aβ42 and Aβ40 
monomer conformational ensembles generated 
from de novo molecular dynamics simulations 

 
We have collected and simulated homonuclear 1H NOESY spectra for the 
monomeric amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42) peptides to show 
that Aβ42 forms a major β-strand between residues 16-21 and 29-36 in 30% of its 
structural ensemble, typically forming with a turn at residues 26-27 and with no 
other secondary structure present elsewhere along the chain, while Aβ40 favors a 
promiscuous set of β-strand conformations. We find that the two additional C-
terminal residues of Aβ42, Ile41 and Ala42, form hydrophobic contacts with the 
same regions that form β-strands in the Aβ40 ensemble, directly disrupting these 
structures. Ile41 and Ala42 also form hydrophobic contacts in the C-terminus 
region, which promote β-strand structure that is compatible with known fibril 
forming regions of the Aβ sequence. This Aβ monomer structural information adds 
to the existing picture of how the two C-terminal residues of Aβ42 affect peptide 
aggregation rate, producing a plausible hypothesis for the Aβ42 fibrilization 
mechanism. 

 

Introduction 
The amyloid-β peptide is acknowledged to be a key molecular contributor to Alzheimer’s 
Disease (AD), although the mechanism explaining disease symptoms and toxicity is not well 
understood (2). Because amyloid-β (Aβ) is generated through cleavage of the Amyloid Precursor 
Protein (APP), it is present in the brain as different length fragments of APP (113, 114). The 
most common of these are amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42), which differ 
only at the C-terminus where Aβ42 has two additional hydrophobic residues (Ile41 and Ala42). 
Both peptides form insoluble fibrils and plaques in the extra-cellular space of the brain in AD 
patients (113, 114), but Aβ42 is more prevalent in these toxic aggregates (4-8, 49), and also 
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forms potentially toxic soluble oligomers that are not formed by Aβ40 (11, 115). Differences 
between Aβ40 and Aβ42 have also been observed in vitro. Aβ42 aggregates more quickly than 
Aβ40 (9, 10), and populates a larger distribution of oligomer sizes (116, 117). These striking 
behavioral dissimilarities indicate that a difference in sequence of only two residues has a 
substantial influence on structure and function for these disease peptides. 

The Aβ40 and Aβ42 peptides have been characterized as intrinsically disordered in their 
monomeric state (14, 15), which makes structural investigations of their differences difficult. 
Intrinsically disordered proteins (IDPs) sample many different conformations that form an 
ensemble of structures, rather than folding to one stable structure. As shown in Chapter 2, IDP 
ensembles may consist of largely extended, random coil structures, as is the case for Aβ21-30 
(26). In contrast the full length Aβ42 ensemble mostly consists of conformations containing 
secondary and tertiary structure (48). Although the energy landscape of an IDP does not contain 
a deep minimum corresponding to a stable folded structure, many shallow energy minima may 
exist, which are stabilized by structural features and inter-residue interactions (118). Because 
these minima are shallow, and the energetic barriers between them are small, the structural 
ensemble of an IDP can change more dramatically with small energetic variations due to 
differences in sequence. In the case of Aβ, a sequence difference of two residues causes a drastic 
difference in the behavior of Aβ40 and Aβ42, which may result from a similarly drastic 
difference in the monomer ensembles. 

This study aims to assess these differences in the Aβ40 and Aβ42 structural ensembles 
using a combination of NMR spectroscopy and de novo molecular dynamics (MD) simulations. 
We have collected NOE data on both peptides that directly reports on tertiary structure contacts 
between residues. These data reveal differences in the long range contacts formed by Aβ40 and 
Aβ42 which are not accessible from other experimental observables such as circular dichroism 
(CD) spectra, NMR chemical shifts, or J-coupling constants (14, 67, 116, 119). The MD 
simulations add to this picture by allowing us to observe the individual conformations that 
populate the IDP ensembles. We use advanced simulation techniques to sample the Aβ40 and 
Aβ42 energy landscapes, creating ensembles of conformations without experimental biasing. By 
comparing observed NOEs with those calculated from the simulated ensembles, we can both 
validate and interpret the differences in structural sub-populations of the two peptides measured 
by NMR.  

We find that the NMR and MD simulation data show that the Aβ42 ensemble contains a 
major β-strand between residues 16-21 and 29-36 in 30% of the monomer ensemble, typically 
forming with a turn at residues 26-27 and with no other secondary structure present elsewhere 
along the chain (48). Furthermore, Aβ40 exhibits far more promiscuous, but relatively unstable, 
β-strand structure compared to Aβ42, and does not populate the major β-strands and 26-27 
β-turn that dominate the Aβ42 monomeric ensemble. The two additional C-terminal residues of 
Aβ42 are directly responsible for the differences in the populations of β-strands of the two 
amyloid peptides. Ile41 and Ala42 make hydrophobic contacts in regions of the sequence that 
preclude the β-strands observed in the Aβ40 ensemble. Additionally, Ile41 and Ala42 often form 
a hydrophobic cluster in the Aβ42 C-terminal region that promotes a dominant β-strand 
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population seen in the fibril subunit structure, but which is infrequently observed in the Aβ40 
ensemble.  

Methods 
NMR Experiments 

The Aβ40 and Aβ42 monomers were purchased and prepared according to the protocol in (48). 
Briefly, recombinant Aβ40 and Aβ42 peptides were purchased from a commercial source 
(rPeptide, Athens, GA) reported to be > 97% purity. The peptide was lyophilized from 
trifluoroacetic acid (TFA). The alkaline pretreatment of Aβ and preparation of LMW Aβ by 
filtration protocols outlined by Teplow (79) were used to prepare a monomeric solution of Aβ. 
The lyophilized peptide was dissolved in 2 mM NaOH to produce a peptide concentration of 
0.21 mg/ml with a pH of > 10.5. The peptide was then sonicated for 1 min in a bath sonicator 
and lyophilized. It was then resuspended in 20 mM sodium phosphate buffer, pH 7.2, 0.01% 
(w/v) sodium azide. This protocol ensures that when the lyophilized peptide is dissolved in 
buffer it will not pass through its pI of ~5.31. Before collecting NMR data, the sample was 
filtered with a 0.22 µm filter to remove aggregates and fibril seeds (79), and brought to a 
concentration of ~600 µM at pH 7.2.  

TOCSY and NOESY 1H-1H homonuclear spectra were collected for both peptides at the 
NMR Facility at UC Berkeley on Bruker Avance II 800 and 900 MHz spectrometers, the latter 
equipped with a Bruker cryogenic probe. The data was processed as described in (48). A more 
detailed description is provided in the Appendix. 

Molecular Dynamics Simulations 

We computed 287 K and 311 K equilibrium ensembles of Aβ40 and Aβ42 peptide 
conformations using Multi-Reservoir Replica Exchange (MRRE) (23, 24, 31) and AMBER 11 
(111). The peptides were modeled with the Amber ff99SB force field (23, 24) solvated with 
TIP4P-Ew water (25), which has been shown to be the current best force field for reproducing 
NMR observables (90) and 1H-1H NOE data (26, 48). Two independent MRRE simulations for 
each peptide generated final ensembles of 70,000 - 90,000 structures pulled from 0.1 µs of 
replica exchange simulation time at each temperature. We also performed 100 separate 20 ns 
microcanonical ensemble simulations for each peptide in order to calculate time-correlation data. 
Further details are presented in the Appendix. 

Calculation of NMR Observables 

We calculated chemical shifts, J-coupling constants, Residual Dipolar Couplings (RDCs), and 
1H-1H NOEs from our 287 K Aβ40 ensemble with the same procedure used for Aβ42 (48). All 
details of how the procedure differed in the case of Aβ40 are available in the Appendix.  

Heteronuclear NOEs. We also calculated 1H-15N NOEs for the Aβ40 and Aβ42 backbone N-H 
atoms from the 287 K ensembles and correlation times. We use the same method as for the 1H-
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1H NOEs (described in the Appendix) to calculate the spectral density function for each pair of 
H-N atoms from the short NVE simulations, resulting in a function  

     (3.1) 

for the H-N backbone bond of each residue of Aβ40 and Aβ42  where τi are the correlation time 
constants. We then calculate the steady state NOE enhancement factor of the 15N spin by the 1H 
NOE from our structural ensemble and dynamical trajectories according to  

     (3.2) 

where γH and γN are the gyromagnetic ratios of 1H and 15N, respectively. The 1H-15N cross-
relaxation rate constant is given by  

   (3.3) 

and the 15N self-relaxation by 

 

           (3.4) 

where ω0,H is the Larmor frequency of 1H and ω0,N is the Larmor frequency of 15N, and the 
constant factor K is defined as 

     (3.5) 

where µ0 is the permeability of free space, and  is Planck’s constant. The effective r vector 

     (3.6) 

is the average of the r-6 values, which has then been converted back into units of distance. 

Ensemble Structural Analysis 

Structural analysis of the de novo molecular dynamics simulations of Aβ40 and the Aβ42 287 K 
and 311 K ensembles was performed using ptraj, DSSP (97), perl scripts and MATLAB (The 
MathWorks, Natick, MA) scripts. The secondary structure designations we used to describe the 
Aβ40 and Aβ42 ensembles are all based on the DSSP criteria described by Kabsch and Sander 
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(97). We also used ptraj to identify the most commonly formed hydrogen bonds and salt-bridges 
and calculated distances between residue side chains. Side chain contacts were defined using a 7 
Å cutoff between side chain centers of mass, and salt bridges were defined with 4 Å distance 
cutoff between heavy atoms and a 60° angle cutoff. In-house scripts were used to identify 
particular secondary structure features, side chain contacts, and hydrogen bonds that are present 
simultaneously in the Aβ42 and Aβ40 ensembles. 

Results 
Previous chemical shift and J-coupling data reported for the monomeric Aβ40 and Aβ42 
peptides do not differ greatly from random coil values. However, in our simulated structural 
ensembles, we find that more than 99% of the Aβ40 and Aβ42 monomer conformers (snapshots 
during the trajectories) at 287 K and 311 K contain one or more elements of secondary structure 
somewhere along the peptide sequence. When averaged over the entire ensemble of each peptide, 
these yield average chemical shifts and J-couplings that do not give a clear indication of the 
secondary structure. Figures 3.1 and 3.2 display the agreement between experimentally measured 
chemical shifts and J-couplings (67), and those calculated from the Aβ40 and Aβ42 simulated 
ensembles. Because there is no large deviation from random coil values for either peptide, 
chemical shifts are similar for Aβ40 and Aβ42. The J-coupling values are shifted higher than 
random coil, but show no trends indicating different secondary structure for Aβ40 and Aβ42. 
The peptide residual dipolar couplings also show reasonable agreement between experiment and 
simulation values, but no clear differences between the two peptides (Figure 3.3). 
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Figure 3.1. Experimental and calculated proton and carbon secondary chemical shifts by residue. (a) Aβ40 Hα 
chemical shifts, (b) Aβ42 Hα chemical shifts, (c) Aβ40 HN chemical shifts, (d) Aβ42 HN chemical shifts, (e) Aβ40 
Cα chemical shifts, (f) Aβ42 Cα chemical shifts, (g) Aβ40 Cβ chemical shifts, and (h) Aβ42 Cβ chemical shifts. Red 
squares represent experimental data, while blue circles represent the data calculated from simulation. Random coil 
residue specific values are subtracted from both experimental and simulation values. The experimental carbon 
chemical shift data are taken from Hou et al. (14). 
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Figure 3.2. J-coupling constants for backbone amides for (a) Aβ40 and (b) Aβ42. The red squares are the 
experimental data from Yan et al. (67), blue circles are values calculated from the simulation ensemble. Simulation 
uncertainty bars represent rms difference between two independent simulations and the average. The experimental 
data has not accounted for a relaxation correction that makes J-couplings determined from a HNHα 3D experiment 
consistently lower than those from COSY splittings (14) by a small amount (as high as ~10% (93)); if this relaxation 
effect is accounted for, then the qualitative agreement between experiment and simulation is excellent. 
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Figure 3.3. Experimental vs. calculated residual dipolar couplings for Aβ40 (a) and Aβ42 (b). The red squares are 
experimental data from Yan et al. (67). The blue circles are the data calculated from the simulation ensemble. The 
Aβ40 RMSD without Lys16 is 2.18 Hz, and the Aβ42 RMSD without Lys16 is 1.89 Hz. 



 

 62	  

The Aβ40 and Aβ42 simulated conformational ensembles provide more information 
about the structural differences between the two peptides. The propensities to form β-turn, anti-
parallel β-strand, or helical structure are shown by residue for both Aβ40 and Aβ42 in Figure 3.4. 
We focus on these secondary structure classifications because they are the most common in the 
peptide ensembles (intra-molecular parallel β-strands are uncommon for such a short peptide). 
Although Aβ40 adopts some of the same structural features seen in the Aβ42 ensemble, such as 
a highly populated turn centered at residues 7-8 or a helix near Ser26 in ~15% of structures, the 
two peptides have substantially different secondary structure profiles overall. The primary 
difference is that Aβ40 forms turns and helices less often than Aβ42, while adopting a larger 
amount of various β-strand structures. When averaged over such a diverse structural ensemble, 
the NMR chemical shifts and J-couplings do not provide any discrimination between the relative 
secondary structure populations of the two peptides.  
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Figure 3.4. Percentage of (a) Aβ40 simulated ensemble and (b) Aβ42 simulated ensemble in different types of 
secondary structure by residue. The red line represents α-helix, the blue line for anti-parallel strand, and the black 
line for β-turns. 



 

 64	  

The high resolution NOE data collected at 900 MHz provide evidence for the differences 
in the β-strand content of the two peptides, with the information for all NOE data presented in 
Tables 3.1-3.8 in the Appendix. In Figure 3.5 we present a contact map of the strongest long-
range NOEs for both peptides. The NOEs experimentally observed often have ambiguities in 
assignment (many resonances have the same chemical shift), and for these the simulated 
monomer ensembles are used to make assignments of the ambiguous cross peaks, as described in 
the Appendix. The contact map shows that the Aβ40 and Aβ42 monomers form some of the 
same medium-range NOE contacts, but the two peptides differ in the residues that form long-
range contacts. 
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In particular, we detected long-range NOEs for the Aβ42 monomer from Lys16 to Val36, 
Phe20 to Ile31, and Phe20 to Leu34, from the NMR data. The NOE between Phe20 Hε and 
Leu34 Hδ1 is at a location in the NOESY spectrum where no short-range peaks occur, so we 
know from experiment alone that it must be due to a long-range contact, i to i+12 or greater. We 
see even more long-range NOEs resulting from the Aβ40 conformational ensemble (Figure 3.5). 
Aβ40 NOEs from Phe20 Hζ to Gly25 Hα, Glu11 Hβ2 to Phe19 Hδ, Val12 Hγ1 to Phe19 Hα, and 
Val12 Hγ1 to Phe20 Hβ2 are not consistent with any assignment of residues closer in the sequence. 
Additionally, two long-range NOEs from Val18 Hγ1 and Hγ2 to Val36 Hγ cannot be assigned to a 
contact closer in sequence than i to i+6. 

Our computationally derived Aβ40 and Aβ42 conformational ensembles (calculated with 
no NMR derived restraints) allow for more detailed structural interpretation of the long-range 
NOEs that we observe experimentally. These structural ensembles show that most of the long-
range NOEs produced by each peptide are a result of hydrogen-bonded β-strand structure. 
However, different β-strands are formed in the Aβ40 ensemble than in the Aβ42 ensemble, and 
Figure 3.5 illustrates the most common β-strand pairs observed for each peptide, although we 
emphasize that in the ensemble these contacts do not all exist simultaneously. While the two 
common Aβ42 β-bridge partners can be represented in one diagram, Aβ40 forms several β-
strands that bring very different parts of the Aβ sequence together, and we must use three 
separate diagrams to illustrate all of these contacts. We describe these β-strand structures more 
carefully below. 

The simulated Aβ42 ensemble contains one β-strand between residues 3-6 and 10-13 in 
8% of the ensemble, and another large β-strand between residues 16-21 and 29-36 (48). This 
large β-strand is the underlying structural feature responsible for the Aβ42 long-range 
experimental NOEs involving Lys16-Val36, Phe20-Ile31, and Phe20-Leu34. All or part of this 
16-21 to 29-36 β-strand is present in 30% of the Aβ42 ensemble (see the Appendix), and is often 
stabilized by a hydrogen-bonded turn that is centered on residues 26-27, with no other major 
secondary structure present elsewhere in the chain (48). The 26-27 β-turn also stands out from 
other secondary structure in the Aβ42 ensemble because it forms without other turns or helices in 
13% of the simulated ensemble, while each of the other five major turns exhibited by Aβ42 
forms alone less than 3% of the time The unique 26-27 β-turn and intramolecular Aβ42 β-strand 
at residues 16-21 and 29-36 are compatible with the same 26-27 β-turn and the 16-21 and 29-36 
β-strands that ultimately adopt the intermolecular arrangement of the stable mature fibril state. 
This is consistent with a number of MD simulations that highlight the importance of residues 23-
28 for nucleating monomer folding (120), and detailed structural characterization of the amyloid-
β fragments Aβ21-30 (26, 48, 121, 122) and Aβ10-35 (104, 105), as well as the importance of 
residues 16-22 that promote β-sheet structure as discussed in (123, 124). 

By contrast Aβ40 forms nine highly populated turns along its sequence, but no β-turn 
forms alone in more than 3% of the simulated ensemble. In fact, the 26-27 β-turn forms in only 
4% of Aβ40 structures, compared to 32% of Aβ42 structures (see the Appendix). Instead, Aβ40 
often forms a β-strand in that region of the peptide sequence: in 16% of the Aβ40 ensemble, at 
least one of the two residues, Ser26 or Asn27, is involved in a β-strand, while this happens in 
only 1% of the Aβ42 ensemble. In fact, Aβ40 contains regions with high β-strand occupancy all 
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along its sequence, with different β-strand regions tending to mix-and-match alternative pairings 
to form a promiscuous set of β-strand sub-populations (Figure 3.6), unlike Aβ42, which is 
dominated by a single major β-strand.  
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Figure 3.6. Diagram of Aβ42 and Aβ40 β-strand partners in simulated ensembles. This is a schematic showing 
which residues come together in a β-strand structure for each peptide. Residues of the same color are β-bridge 
partners, and the percent of the ensemble in which these two residues form a β-bridge is written between the two 
residues. The β-bridge contacts represented in each diagram may or may not form simultaneously in the peptide 
conformational ensemble. 
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The most populated β-strands in the Aβ40 simulated ensemble also provide structural 
explanation for the long-range Aβ40 NOEs observed experimentally and described above 
(Figure 3.5). A β-strand between residues 9-13 and 16-21 (39% of the ensemble) contributes to 
the Glu11-Phe19, Val12-Phe19, and Val12-Phe20 NOEs, while a β-strand between residues 17-
20 and 35-37 (29% of the ensemble) is the underlying structure that causes the NOEs between 
Val18 and Val36. The β-strand pairing of 20-21 with 26-27 (7% of structures) contributes to the 
NOE from Phe20 to Gly25. Residues 3-6 also form a β-strand with 30-33 (10% of the ensemble), 
but this does not result in long-range NOEs that are as strong, in part because this strand is less 
populated.  

Rather than the fibril-like 26-27 β-turn present in the Aβ42 simulated ensemble, Aβ40 
exhibits a highly populated β-turn centered at residues 28 and 29 instead (26% of the ensemble), 
which is often flanked by the β-strand between residues 17-20 and 35-37, 22% of structures. 
However, the Aβ40 28-29 β-turn occurs with other turns or helices, even when the 17-20 and 35-
37 β-strand is present, unlike the Aβ42 26-27 turn which often occurs alone. Finally, previous 
work by Yan and co-workers (125) examined side chain methyl groups, showing that Val18 is 
more ordered in Aβ40 compared to Aβ42. Our simulations provide an explanation for this 
experimental observation since we find Val18 participates in more NOE contacts and hydrogen 
bonds within the Aβ40 ensemble than in the Aβ42 ensemble (Figure 3.4 and Table 3.9). 
Representative Aβ40 and Aβ42 structures containing the primary β-strands of the two peptides at 
287 K are presented in Figure 3.6. 

We have described the major β-strand differences in the Aβ40 and Aβ42 ensembles that 
we observe using MD simulations, but a remaining question concerns the sequence difference 
that must be the underlying cause. The two C-terminal residues of Aβ42 (Ile42 and Ala42) have 
hydrophobic side chains, and most often interact hydrophobically with other residues, rather than 
through hydrogen bonding. Figure 3.7 shows the other residues that contact the Ile41 and Ala42 
side chains most frequently in the Aβ42 structural ensemble. Many of these residues contacting 
Ile41 and Ala42 in the 287 K Aβ42 structural ensemble form alternate contacts comprising β-
strands in the Aβ40 ensemble. This helps to explain why the β-strand structures that dominate 
the Aβ40 ensemble are not present in the 287 K Aβ42 ensemble, because in the Aβ42 ensemble 
they are substituted with C-terminal hydrophobic contacts. The most populated β-strands in the 
Aβ40 ensemble, between residues 9-13 and 16-21, residues 17-20 and 35-37, residues 3-6 and 
30-33, and residues 20-21 and 26-27, together compose 52% of the Aβ40 ensemble. Ile41 and/or 
Ala42 contact residues Arg5, Tyr10, Lys16, Phe19, Lys28, Ile32, Gly 33, Leu34, Met35, and 
Val36 side chains in 45% of Aβ42 structures, thereby completely replacing the Aβ40 β-strand 
populations.  
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Experimental relaxation rates and 1H-15N NOE intensities reveal that the Aβ42 C-
terminus is less flexible than that of Aβ40. Figure 3.9 shows that our calculated 1H-15N NOE 
values agree well with the experimental data from Yan and Wang (66). Unlike the 1H-1H NOEs, 
these data are unambiguous and no information about the simulated ensembles are used to assign 
them. In Figure 3.10 we show the comparison between the Aβ40 and Aβ42 calculated 1H-15N 
NOE intensities. As in the experiment we see higher values at the Aβ42 C-terminus, associated 
with more ordered structures of the Aβ42 C-terminal backbone. As represented in the Figure 
3.8a, this increased order seems to be a result of hydrophobic interactions involving the Ile41 
side chain. Furthermore, the high density of hydrophobic contacts at the C-terminus of the Aβ42 
peptide displaces the β-turn at residues 28 and 29 seen in the Aβ40 ensemble with a turn that is 
closer to the N-terminus, stabilizing the β-turn at residues 26 and 27 that often occurs with the 
formation of the major 16-21 and 29-36 β-strand. The C-terminal hydrophobic clustering occurs 
with the 16-21 and 29-36 β-strand motif in 7% of the ensemble and with the 26-27 β-turn in 7% 
of the ensemble, while 6% of the ensemble contains the hydrophobic cluster with both the strand 
and turn, as shown in Figure 3.7f.  
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Figure 3.8. Aβ42 Ile41 and Ala42 side chain contacts at 287 K (a) and 311 K (b). This plot presents only contacts 
involving Ile41 in blue and only contacts involving Ala42 in red. The percent of the Aβ42 ensemble with the contact 
(Ile41 or Ala42) is shown on the X-axis, while the residue in contact with Ile41 or Ala42 is shown on the Y-axis. 
Contacts involving neither Ile41 nor Ala42 are not presented. Contacts are defined as a distance between side chain 
centers of mass of the two residues of less than 7 Å. 
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Figure 3.9. Agreement with experiment of simulated Aβ40 (a) and Aβ42 (b) 1H-15N NOE. The red squares are 
experimental data from Yan and Wang (66). The blue circles are the data calculated from the simulation ensemble.  
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Figure 3.10. Comparison of Aβ40 and Aβ42 steady-state 1H-15N resolved NOE enhancements calculated from MD 
simulations by residue. The blue circles are the Aβ40 data and the red squares are the Aβ42 data. 

We also converged and analyzed simulated Aβ40 and Aβ42 ensembles at 311 K, near 
physiological temperature. At the higher temperature, Aβ40’s most populated β-strands at 287 K 
(Figure 3.7a and 3.7b) decrease, while the two β-strands present in the Aβ42 ensemble remain 
and even increase in population (Figure 3.7d and 3.7e). We attribute this stabilization of the 
Aβ42 β-strands with increasing temperature to an increase in hydrophobic clustering of the C-
terminal residues as seen in Figure 3.8b. This temperature dependent MD ensemble data also 
helps to explain the results of circular dichroism experiments showing that the Aβ42 β-strand 
content is more stable than that of Aβ40 as the temperature of the sample is increased (119).  

Discussion & Conclusions 
Although Aβ40 and Aβ42 are intrinsically disordered peptides, we have shown through 
molecular dynamics simulations that their monomer ensembles are significantly structured, 
presenting a diverse set of secondary structures including α-helix, β-turns, and β-strands. These 
simulation results provide a level of detail not available from the CD and NMR experimental 
data, by allowing us to see the particular secondary structure features adopted by one peptide 
rather than an average over all of the peptides in an experimental sample. Our simulated 
ensembles also do a good job of reproducing the NMR data, especially for chemical shifts and 
NOEs, showing that the current MD force fields are able to accurately represent the energy 
landscape for an IDP. The quantitative comparison to experiments gives us enough confidence to 
interpret the differences we see between the Aβ40 and Aβ42 ensembles with respect to 
fibrilization and oligomerization.  
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Looking at the simulated ensembles of Aβ40 and Aβ42, we see that there are many 
differences between the structures occupied by the two peptides, even though their sequences are 
almost identical. The two additional residues on the C-terminus shift of Aβ42 prevent it from 
occupying the same combination of promiscuous β-strands that Aβ40 forms in its ensemble. 
Instead Aβ42 contains more hydrophobic interactions at the C-terminus, and a β-strand around a 
turn at residues 26-27, consistent with the Aβ fibril structure. Although we also see Aβ40 form a 
β-strand and turn at residues 28-29, this strand is not consistent with the aggregated fibril 
conformation of the peptide. Since Aβ42 has a cluster of hydrophobic interactions around its C-
terminus, it cannot form the more C-terminal strand seen in Aβ40, and instead it forms a slightly 
shifted strand centered at the 26-27 turn. From the MD analysis we see a picture forming of how 
the Ile41 and Ala42 can cause such drastic differences in Aβ42 behavior when compared to 
Aβ40. Rather than residues 41 and 42 directly forming fibril-like β structure, their hydrophobic 
side chain contacts change the way that β-strands are formed at other locations of the peptide 
sequence, preventing β-strands that are not compatible with Aβ aggregated structure and 
promoting conformations that could more easily form fibril seeds. Such a large effect from a two 
residue addition is particular to the conformational ensembles of IDPs. The energy minima 
stabilizing the Aβ40 β-strand structures are shallow, and therefore they are easily disrupted and 
rearranged when Ile41 and Ala42 are added to create the Aβ42 ensemble. For a folded protein, 
adding two residues would be unlikely to eliminate the large energy minimum of the native state, 
as demonstrated by the common use of fusion tags for protein purification. Therefore, the 
intrinsically disordered nature of the Aβ peptides explains how they can have drastically 
different aggregation and disease behavior though they are very similar in sequence. 

Because the Aβ40 and Aβ42 are IDPs, they also have very diverse structural ensembles. 
This makes complete MD sampling of the conformations they occupy difficult because the 
transitions between each of the local energy minima may be slower than the timescale accessed 
by MD simulations. We have addressed this problem by using the multi-reservoir replica 
exchange sampling technique (31, 81, 82), and looking for agreement between two independent 
simulations, however our simulated ensembles may still be incomplete with respect to their 
sampling of the full Aβ40 and Aβ42 energy landscapes. The level of disagreement we see 
between our NMR data and the simulated ensembles most likely a result of incomplete sampling, 
which results in improperly weighted MD ensembles. This raises the question of whether MD is 
the best computational technique for constructing an IDP ensemble to achieve proper Boltzmann 
weighting of the structures and the best agreement with experimental data. Because we observe 
such diverse structural features within the Aβ40 and Aβ42 ensembles, these disease peptides are 
ideal models on which to develop general methods for constructing accurate IDP ensembles.  

APPENDIX 
NMR experimental method 

NMR data were collected at 287 K at the NMR Facility at UC Berkeley on Bruker Avance II 800 
and 900 MHz spectrometers, the latter equipped with a Bruker cryogenic probe. The data were 
processed using NMRPipe and peaks were assigned and analyzed using CARA (80). Chemical 
shifts were assigned using 2D 1H-1H Total Correlation Spectroscopy (TOCSY) (81, 82) and 
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Nuclear Overhauser Effect Spectroscopy (NOESY) spectra (83-85). The TOCSY spectra were 
collected in a 90% H2O (10% 2H2O) buffer solution with a mixing time of 60 ms and in a 99% 
2H2O buffer solution with a mixing time of 80 ms. The NOESY spectra were collected in a 90% 
H2O (10% 2H2O) buffer solution with mixing times of 100 ms and 200ms, and in a 99% 2H2O 
buffer solution with a mixing time of 200 ms. In the direct dimension, 2048 points were collected 
while 445-512 complex points were collected in the indirect dimension. The spectral width was 
10 ppm in each dimension (9 ppm in the direct and 2 ppm in the indirect dimension for 2H2O) 
with 64 scans. We ensured that our NOESY data was resulting only from a monomeric form of 
the peptide by collecting a NOESY spectrum immediately after dissolving the peptide and 
another NOESY spectrum ~48 hours after dissolving the sample. We saw no difference between 
the two spectra except for a decrease in peak intensity due to aggregation, which eliminates the 
possibility that some NOEs could be a result of oligomers forming during peptide incubation. 
Peaks were identified at particular chemical shifts in the 200 ms mixing time NOESY spectra in 
both H2O and 2H2O for Aβ40 and Aβ42, and those peaks that could be unambiguously assigned 
to two specific hydrogen atoms were used to calibrate the NOE peak intensities derived from 
simulation. The majority of peaks could not be clearly assigned to a unique pair of hydrogen 
atoms due to spectral overlap. These peaks were instead assigned a list of potential hydrogen 
pairs consistent with the observed peak frequencies. This list is made up of atoms within a 0.04 -
0.08 ppm range around each observed peak. 

De novo molecular dynamics simulation method 

The de novo molecular dynamics simulations of Aβ42 have been reported in a previous 
publication (48). The Aβ40 peptide was also modeled using the Amber ff99SB force field (23) 
and aqueous solvent represented by the TIP4P-Ew water model (25). We chose the ff99SB force 
field and TIP4P-Ew water model combination because it was used successfully in previous 
Aβ21-30 and Aβ42 studies to reproduce 1H-1H NOEs (26, 48). 

In order to calculate equilibrium ensemble averages in the NVT ensemble, we used an 
Andersen thermostat, a leapfrog integrator with a 1.0 fs time step, and periodic boundary 
conditions. Particle Mesh Ewald was used for calculating long-range electrostatic forces, and a 
cutoff of 9.0 Å was used for the real space electrostatics and Lennard-Jones forces throughout 
the study. The initial structure for Aβ40 was built in an extended form using the LEaP module 
that is part of the AMBER package. The structure was solvated in a water box such that there 
were 10 Å of water surrounding the peptide on all sides (13,992 molecules of water, 540 nm3 
box volume), and three Na+ ions to neutralize the charge of the peptide. The structure was 
minimized and equilibrated with constant volume while raising the temperature to 300 K, then 
equilibrated for 2 ns under a constant pressure of 1 bar, maintained with a Berendsen barostat, to 
achieve the correct density. Then, a 2 ns 498 K simulation was run on the extended Aβ40 peptide 
to obtain a more collapsed starting structure for equilibrium ensemble simulations. Two different 
collapsed structures were chosen to start two independent replica exchange simulations. These 
systems were prepared by first removing the solvent, and then the previous solvation and 
equilibration steps were used to create a final box that contained 6,136 water molecules (190 nm3 
volume).  
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The sander module of AMBER (111) and the Multi-Reservoir Replica Exchange 
(MRRE) method presented by Ruscio et al. (31, 110) were used to achieve a Boltzmann 
weighted ensemble of Aβ40 structures at the experimental temperature of 287 K and at the 
physiological temperature of 311 K. Initially, replica exchange was used to converge two 
independent Boltzmann reservoirs at 397 K using 13 replicas spaced from 447 K to 397 K. 
Exchanges were attempted every 1.0 ps. After the 397 K replica was sufficiently converged, the 
last 30 ns of simulation time was used to create a 397 K reservoir for the next set of replica 
exchange for each of the two independent trajectories, taking 30,000 conformational snapshots 
spaced one picosecond apart. In the next stage of MRRE, the 397 K reservoir was used to 
exchange with the highest temperature replica of 18 replicas spaced between the 397 K reservoir 
and a low temperature replica of 335 K. After the 335 K replica converged, the final 30 ns of 
simulation were used to create a 335 K reservoir for the next set of replica exchange. In the final 
stage of MRRE, the 335 K reservoir exchanged with the highest temperature of 18 replicas that 
included 311 K and 287 K. Approximately 50,000 structures from the final 50 ns of each of the 
independent converged 287 K and 311 K replica were used to construct the equilibrium 
ensembles. Aβ40 needed 40 ns to converge the 397 K reservoir, 70 ns to converge the 335 K 
reservoir, and 60 ns to converge the 287 K ensemble. The total simulation time combining every 
replica was 5.72 µs for Aβ40, resulting in 100 ns of equilibrated NVT simulation at 287 K and 
311 K. A minority of these structures was extended outside of the simulation box, and the 
peptides were interacting with their periodic image. We removed these unphysical structures to 
yield 72,632 Aβ40 structures and 89,469 Aβ42 structures in their respective 287 K ensembles 
and 79,253 Aβ40 structures and 89,852 Aβ42 structures at 311 K. 

Convergence of each intermediate reservoir, as well as the low temperature ensemble, 
was determined by comparing average intra-atomic distances for peptide hydrogen atoms 
between the two independent simulations using the ptraj module of the AMBER software 
package (111). Various statistics measuring agreement of these two ensembles were analyzed 
over time, and generally, we focused on the short intra-atomic distances (<7.0 Å) that would 
have the greatest effect on experimental NOE measurements. When greater than 90% of the 
short distances were converged within 10% of the total distance, the sampling was deemed 
sufficient.  

In order to calculate time-correlation data on the 287 K reservoir, selected structures from 
this ensemble were used to run microcanonical (NVE) ensemble simulations using the pmemd 
module of AMBER10 (110). 50 structures were chosen from each 287 K Aβ40 ensemble (after 
the 10 ns of equilibration), spaced 1 ns apart (ensuring complete decorrelation through swaps 
between replicas), and equilibrated at constant 287 K for 100 ps before running 20 ns of 
simulation for each initial structure. In total, the Aβ40 constant energy simulation time with 
starting conformations equilibrated at 287 K was 2 µs.  

Calculation of NMR observables methods 

For both Aβ40 and Aβ42 we calculated NMR chemical shifts, scalar-coupling constants, residual 
dipolar couplings (RDCs), 1H-1H NOE peak intensities, and 1H-15N NOEs from our simulated 
ensemble data. To calculate hydrogen and carbon chemical shifts we used the program SHIFTS 
(91) as in Ball et al. (48). The scalar-coupling constants and the χ2 figure of merit were also 
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calculated as described previously (48), using the original Vuister and Bax parameter set (93) for 
the Karplus equation (92). RDCs were calculated using PALES (96) and multiplied by a constant 
factor (48) for comparison to experimental data from Yan et al. (67). 

Homonuclear NOE Intensities. Due to the complexity of the noise distribution in the Aβ40 and 
Aβ42 spectra, uncertainties in Aβ40 and Aβ42 peak intensities due to noise were estimated from 
simulation (again expressed relative to the smallest identifiable peak). We used a factor of 0.32 
for the Aβ40  H2O spectrum, 0.46 for the Aβ40 2H2O spectrum, 0.44 for the Aβ42 H2O spectrum, 
and 0.50 for the Aβ42 2H2O spectrum, and this noise was assumed to have a normal distribution 
(although there are other non-random noise features in the NMR data). Using the simulated NOE 
intensities for the Aβ40 and Aβ42 H2O spectra, we calculated the expected number of false-
positive and false-negative NOEs for each peptide based on the noise level as in (48). For Aβ40,  
we would expect 36 false negatives and 26 false positives, and for Aβ42,  we would expect 57 
false negatives and 23 false positives. 

Correction to Aβ42 secondary structure ensemble percentages 

The 287 K Aβ42 ensemble previously reported (48) was missing 10% of the 100,000 simulated 
structures that were supposed to be part of the ensemble, and instead had duplicates of other 
structures in the Aβ42 ensemble. In this chapter we have corrected this mistake, presenting all 
analysis on the correct Aβ42 ensemble. We have also become aware that ~10% of the structures 
in the Aβ42 287 K ensemble were extended outside of the periodic box, and we removed these 
structures from the Aβ42 analysis in this chapter (see De novo molecular dynamics simulation 
method section). This correction to the Aβ42 ensemble resulted in mostly minor changes to the 
percentage of the Aβ42 ensemble containing certain structural features. We note that a turn at 
residues 26-27 was previously reported to appear in 28% of the ensemble, 8% of the time with 
no other turns or helices (48), but actually appears in 32% of the corrected ensemble, 13% of the 
time alone. We also previously reported that a β-strand between residues 16-21 and 29-36 forms 
in 21% of the ensemble (48), while it appears in 30% of the corrected ensemble. A β-strand at 
residues 3-6 and 10-13 was also previously reported in 9% of the ensemble (48), but actually 
appears in 8% of the corrected ensemble. 
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Peak Types All NOE peaks 
Long range 
peaks (i to i+2 
or greater) 

Experimentally observed peaks 1088 267 

Experimentally assigned peaks 382 20 

Experimentally unassigned peaks 706 247 
  
  
Simulated peaks 1306 387 

Simulated peaks agree experimentally assigned peaks 339 9 

Simulated peaks agree experimentally unassigned peaks 562 146 
  
  False negatives 187 112 

False negatives found in high noise regions -86 -59 

False negatives explained by atomic contacts on same 
residue pairs -82 -34 

False negatives inconsistent with experiment 19 19 
  
  False positives 405 235 

False positives found in high noise regions -78 -40 
False positives explained by atomic contacts on same 
residue pairs -283 -162 

False positives made up of numerous weak contacts -23 -19 

False positives inconsistent with experiment 21 14 

Table 3.1. Aβ40 summary of experimental and calculated NOEs statistics, and analysis of the number of false 
positives and false negatives. 
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Peak Types 
All NOE  
Peaks 
 

Long range 
peaks (i to i+2 or 
greater) 

Experimentally observed peaks 705 175 
Experimentally assigned peaks 196 11 
Experimentally unassigned peaks 509 164 
 
Simulated peaks 945 206 
Simulated peaks agree experimentally assigned peaks 177 0 
Simulated peaks agree experimentally unassigned 
peaks 360 55 

  
False negatives 168 120 
False negatives found in high noise regions  -59 -45 
False negatives explained by atomic contacts on same 
residue pairs -65 -31 

False negatives inconsistent with experiment 44 44 
  
False positives 408 151 
False positives found in high noise regions  -86 -21 
False positives explained by atomic contacts on same 
residue pairs -241 -91 

False positives made up of numerous weak contacts -19 -10 
False positives inconsistent with experiment 62 29 

Table 3.2. Aβ42 summary of experimental and calculated NOEs statistics, and analysis of the number of false 
positives and false negatives. 
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Atom 1 Atom 2 
Calculated 
H2O NOE 
intensity 

Experimental 
H2O NOE 
intensity 

Calculated 
2H2O NOE 
intensity 

Experimental 
2H2O NOE 
intensity 

He TYR 10 Hg1 VAL 12 3.51 5.64 3.17 5.29 
He TYR 10 Hg2 VAL 12 3.51 2.68 3.17 2.86 
He PHE 19 Hb ALA 21 3.17 8.26 2.91 4.49 
Hd TYR 10 Hg1 VAL 12 2.97 5.86 2.67 5.34 
Hd TYR 10 Hg2 VAL 12 2.97 2.99 2.67 2.45 
Ha ASN 27 H GLY 29 2.65 1.97 0.00 0.00 
Ha ASP 23 H GLY 25 1.89 2.08 0.00 0.00 
Hb ASP 7 H GLY 9 1.82 1.80 0.00 0.00 
Hb ALA 2 H PHE 4 1.61 3.01 0.00 0.00 
Ha SER 8 H TYR 10 0.78 2.25 0.00 0.00 
H GLU 22 Hg VAL 24 0.74 2.68 0.00 0.00 
Hb3 SER 8 H TYR 10 0.67 10.32 0.00 0.00 

Hg2 VAL 18 He PHE 20 0.62 5.84 0.56 4.51 
Ha2 GLY 37 H VAL 39 0.52 11.59 0.00 0.00 
Hg2 VAL 18 Hd PHE 20 0.47 4.09 0.42 4.15 
Hd LEU 17 He PHE 19 0.45 8.16 0.40 5.23 
Hd LEU 17 Hz PHE 19 0.29 8.25 0.26 6.35 
Ha LEU 17 Hz PHE 19 0.27 2.55 0.26  

Hg2 VAL 18 Hb3 PHE 20 0.13 3.51 0.10 1.59 
Hg2 VAL 12 Hd2 HIS 14 0.12 5.49 0.10 2.90 

Table 3.3. List of Aβ40 experimentally assigned NOE peaks that are not due to intra-residue or sequential contacts 
along with calculated NOE values from simulation for both H2O and 2H2O. 

Atom 1 Atom 2 
Calculated 
H2O NOE 
intensity 

Experimental 
H2O NOE 
intensity 

Calculated 
2H2O NOE 
intensity 

Experimental 
2H2O NOE 
intensity 

He TYR 10 Hg2 VAL 12 0.93 1.63 0.86 1.84 
Hg3 GLU 22 Hg VAL 24 0.68 3.29 0.60  
Hd1 LEU 17 He or d PHE 19 0.61 3.06 0.56 5.07 
Hd TYR 10 Hg2 VAL 12 0.52 1.52 0.45 1.70 
Hd PHE 20 Hg VAL 24 0.47 1.98 0.43 3.44 
He PHE 20 Hg2 GLU 22 0.35 1.32 0.32  
Hb ASP 7 Hd TYR 10 0.26 1.50 0.23  

Hg2 VAL 18 He PHE 20 0.18 1.57 0.17 2.98 
Hg2 VAL 18 Hd PHE 20 0.17 2.85 0.15 2.70 
Hd PHE 20 Hg3 GLU 22 0.17 1.70 0.15  

Hg2 VAL 18 Hz PHE 20 0.07 1.52 0.07 1.63 

Table 3.4. List of Aβ42 experimentally assigned NOE peaks that are not due to intra-residue or sequential contacts 
along with calculated NOE values from simulation for both H2O and 2H2O. 
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Atom 1 Atom 2 Experimental 
NOE Intensity 

Number of Peaks 
in Spectrum 

  H2O 2H2O H2O 2H2O 
Ha2 GLY 37 H VAL 39 5.57  2 0 
Hb2 GLU 22 Hg3 MET 35 5.17  1 0 
Hg2 VAL 18 Hb3 PHE 20 2.03 1.59 2 2 
Hb2 PHE 20 Hb3 LYS 16  1.98 0 1 
Hb2 PHE 20 Hb2 LEU 34  1.98 0 1 
Hb2 PHE 20 Ha GLU 11  1.54 0 1 

Hb ASP 7 H TYR 10 1.46  1 0 
He1 HIS 6 Ha GLU 3 1.44  1 0 

Hg2 VAL 18 Hb3 TYR 10  1.34 0 1 
H VAL 40 Ha2 GLY 38 1.33  1 0 
H GLU 11 Ha SER 8 1.26  1 0 

Hd21 ASN 27 Ha GLU 22 1.23  1 0 
Hb ASP 7 He TYR 10 1.23  2 0 
H TYR 10 Ha ARG 5 1.22  1 0 

He21 GLN 15 Ha GLU 11 1.18  1 0 
H ASP 23 Ha SER 26 1.16  1 0 
H GLY 9 Ha GLU 11 0.94  1 0 
H VAL 40 Ha3 GLY 38 0.91  1 0 
H ALA 30 Hg3 LYS 28 0.70  1 0 

Table 3.5. List of Aβ40 false-negative NOE peaks (identified experimentally but not calculated from simulation) 
that cannot be explained by: the presence of high noise in that region of the spectrum or by a small simulation 
inaccuracy that identifies the correct residue interaction but misses the exact atomic contact. Listed are the 
experimental intensities and number of peaks observed experimentally for both H2O and 2H2O spectra, and the 
atomic contact which would produce this peak. If more than one atomic contact can produce this NOE peak, the 
contact is listed with the smallest difference in sequence between the two residues.  
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Atom 1 Atom 2 Experimental NOE 
Intensity 

Number of Peaks 
in Spectrum   H2O 2H2O H2O 2H2O 

Hd PHE 20 Hg VAL 24 2.0 3.4 2 2 
Hb ASP 7 Ha ALA 21 3.4  1 0 

Hb2 GLN 15 Hg2 VAL 12 3.0  2 0 
Hd2 LEU 17 Hd TYR 10 1.1 2.8 1 2 
Hg2 VAL 12 Hb ASP 7  2.6 0 1 

H VAL 24 Ha HIS 13 2.6  1 0 
Hb2 ASP 23 Ha GLY 25  2.4 0 1 
Hd2 HIS 13 Hh1 ARG 5 2.4  1 0 
Hb2 GLU 3 Hb2 ASP 1 2.2  1 0 
Hb2 HIS 13 Ha GLU 11  2.1 0 1 
He1 HIS 6 H ALA 30 2.0  1 0 
Hb2 ASP 1 Hd2 HIS 13  2.0 0 1 
Hd2 HIS 6 Ha HIS 13  1.9 0 1 
Hz PHE 19 Ha ASP 23 1.7  1 0 

H ASP 7 Hb2 ARG 5 1.7  1 0 
Hb2 GLU 11 Hb2 HIS 13 1.7  1 0 
Hz PHE 20 Hg2 VAL 18 1.5 1.6 1 2 

Hd22 ASN 27 H ILE 32 1.6  1 0 
Hd21 ASN 27 He22 GLN 15 1.6  1 0 
He21 GLN 15 Hd2 HIS 6 1.5  1 0 

Hd TYR 10 Hb ASP 7 1.5  1 0 
Hd2 HIS 13 Hb3 GLU 11 1.5  1 0 
Hd2 HIS 13 Ha GLU 11 1.5  1 0 
Hd2 HIS 6 Ha GLU 3 1.5  1 0 

Hd2 LEU 17 He TYR 10 0.6  2 0 
Hd2 HIS 14 Hb VAL 12 1.4  1 0 
Hb3 ASP 1 Ha PHE 4 1.4  1 0 
He PHE 20 Hg2 GLU 22 1.3  1 0 
H ALA 30 Ha MET 35 1.3  1 0 

Hd22 ASN 27 Hg12 ILE 32 1.3  1 0 
He21 GLN 15 Hg2 GLU 22 1.3  1 0 

Hd TYR 10 H HIS 13 1.3  1 0 
Hg2 VAL 18 Hd2 HIS 14 1.3  1 0 
Hd1 LEU 17 Hd TYR 10 1.3 0.7 1 1 
Hg3 GLU 3 H SER 8 1.1  1 0 
Hg LEU 17 H VAL 24 1.1  1 0 
Hd2 HIS 13 Hb3 TYR 10 1.0  1 0 
Hb PHE 4 H TYR 10 1.0  1 0 
H LEU 17 Ha SER 8 1.0  1 0 
H GLU 22 Hb ALA 42 1.0  1 0 
H HIS 13 Hb2 ARG 5 1.0  1 0 

Hb3 HIS 13 He TYR 10 0.9  1 0 
Hb3 PHE 19 Hd1 ILE 41 0.9  1 0 
He LYS 16 Hd PHE 20  0.7 0 1 

Table 3.6. List of Aβ42 false-negative NOE peaks. 
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Val18 Hydrogen 
bonds Aβ40 Aβ42 

Val12 12%  
His13 10%  
His14  5% 
Gln15 9%  
Lys16 5%  
Ile32  7% 
Leu34  14% 
Val36 8%  
Total 44% 26% 

Table 3.9. Val18 backbone hydrogen bonds present in more than 1% of the ensemble for Aβ40 and Aβ42. The 
brown boxes correspond to β-strands and the orange corresponds to a turn at residues 14 and 15. 
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Chapter 4 

 

Determining the structural ensemble of 
intrinsically disordered disease peptides using 
computation and experiment 

 
Intrinsically disordered proteins (IDPs) represent a new frontier in structural 
biology since the primary characteristic of IDPs is that structures need to be 
characterized as diverse ensembles of conformational sub-states. These proteins 
are often determined to be central to disease processes such as Alzheimer’s and 
Parkinson’s. In this Perspective we review two general but very different ways for 
combining NMR spectroscopy with theoretical methods to derive structural 
ensembles for the disease IDPs amyloid-β 1-40 and amyloid-β 1-42, which are 
associated with Alzheimer’s disease. We compare the performance of de novo 
molecular dynamics and knowledge-based approaches for generating structural 
ensembles by assessing their ability to reproduce a range of NMR experimental 
observables. In addition to the comparison of computational methods, we also 
evaluate the relative value of different types of NMR data for refining or validating 
the IDP structural ensembles, culminating in an overview of future directions for 
improving the theoretical and computational infrastructure for both de novo 
molecular dynamics (MD) and knowledge-based methods. We suggest that a larger 
community effort in the structural biology of IDPs could be realized through the 
establishment of a high-throughput NMR-MD IDP structure ‘solver’, analogous to 
the advent of X-ray crystallography beamlines to solve 3D structures of folded 
proteins.3 

 

1. Introduction 
Recognition of the importance of intrinsically disordered proteins (IDPs) has gradually taken 
root in the field of structural biology over the past 14 years since the publication of the seminal 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Reproduced from (64) with permission. 
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review by Wright and Dyson (17). Intrinsic protein disorder can refer to either local, disordered 
regions of a folded protein, or a global protein disorder without any stable structure along the 
entire sequence. Locally disordered proteins have been commonly assessed in X-ray and NMR 
studies and have been well studied from a functional perspective. In this chapter we focus on the 
study of globally disordered proteins. These proteins adopt neither a single nor a small number of 
stable folded conformations and are very flexible, frequently sampling different dihedral angles 
along the backbone. The energy landscape of an IDP lacks a deep minimum, unlike a folded 
globular protein, and the IDP is likely to sample many local minima (118). Thus, an IDP 
structure can be described as an ensemble of conformational states, each at a different local 
minimum, weighted according to a Boltzmann distribution (126). 

Numerous examples of functional IDPs have now been characterized and found to serve 
important roles in recognition, inhibition, molecular assembly, protein modification, and entropic 
chain activities (71, 73). Considerable progress has also been made in identifying protein 
sequences that are likely to be disordered, and using these prediction algorithms, IDPs are 
estimated to make up 25-30% of proteins encoded in the human genome (71, 73-75). Disease 
proteins represent an important subcategory of IDPs. Many amyloid proteins are unstructured in 
the soluble  monomeric state, but form large insoluble fibrils upon aggregation (15, 127). These 
include proteins involved in neurodegenerative disorders such as Parkinson’s disease, 
Huntington’s disease, prion diseases, and Alzheimer’s Disease (AD). While these proteins may 
have properties not associated with functional IDPs, techniques developed to study intrinsically 
disordered disease proteins are likely applicable to all globally disordered proteins. For more 
general information about IDPs, we direct the reader the following reviews (15, 75, 126, 128, 
129). 

The experimental identification of proteins with global intrinsic disorder can be 
performed using various spectroscopic techniques including Circular Dichroism (CD), NMR, 
infrared spectroscopy (IR), UV spectroscopy, and fluorescence spectroscopy (17, 18). CD and IR 
report on the amount of secondary structure, while lack of chemical shift dispersion in NMR 
spectra is a good indication of high flexibility. Hydrodynamic techniques such as SAXS, gel 
filtration, and dynamic light scattering can also aid in IDP identification as they report on the 
radius of the protein, which will be larger for an IDP or denatured protein than a folded protein 
of the same mass. Lack of a cooperative folding transition, solubility at high temperatures, and 
proteolytic sensitivity are also attributes of IDPs that are useful in forming a complete picture of 
a certain protein’s level of disorder. A subset of these techniques is generally employed in order 
to form a consensus on a given protein’s level of disorder.  

Experimental methods for identifying IDPs are affective at showing whether or not a 
protein is folded, and up to this point have primarily been used to classify IDPs based on a 
signature degree of underlying order. The assumption is that all conformational sub-states can be 
categorized into one of the following: a collapsed semi-ordered ensemble (compact structures 
with some well-formed secondary structure), a collapsed disordered ensemble (compact 
conformations with little or no secondary structure), or an extended disordered ensemble (the 
least collapsed and most unstructured ensemble classification) (18, 73, 75, 77). More recently, 
however, increased importance has been placed on characterization of the conformational sub-
states comprising these ensembles since they each may have distinct functional roles (18, 130-
135) or lead to hypotheses about disease origin (65). Experimental approaches such as X-ray and 
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electron crystallography and microscopy have traditionally excelled at determining the structure 
of single folded proteins (136, 137) and large protein complexes (138). IDPs, however, are not 
amenable to these static structural determination methods (128).  

IDPs represent a new frontier in structural biology in that the IDP structure must be 
characterized as a diverse ensemble of interconverting conformational sub-states, as opposed to a 
single dominant 3D structure (126). This necessitates an adjustment in the core methodology of 
protein structure determination for this class of protein. In order to achieve both better ensemble 
classification and detailed description of conformational sub-states, we must critically assess 
how we currently derive these complex structural ensembles from experiment and theoretical 
models.  

NMR is the experimental tool of choice for characterizing the solution structure and 
dynamics of biological molecules since it characterizes the native distribution of conformations 
in an aqueous environment (50, 128, 139). Observables from these experiments include chemical 
shifts, which are characteristic of functional groups and their surrounding environment, and spin-
spin couplings (J-couplings), which independently report on backbone dihedral angles. In 
addition, through-space dipole-dipole interactions give rise to the Nuclear Overhauser Effect 
(NOE) that reports on tertiary structure contacts, and more recently, residual dipolar couplings 
(RDCs) have been used to describe the relative orientation of spatially separated regions of a 
protein (140-142). Paramagnetic Relaxation Enhancements (PREs), which can produce longer 
distance restraints than NOEs have also been used in the context of IDPs (51-53, 143), however 
this measurement requires chemical modification of the protein with a nitroxide spin label or an 
amino-terminal copper binding motif, which may perturb the monomeric IDP conformations 
(129, 144); for the amlyoid-β PRE study by Fawzi and coworkers, an additional cysteine is 
added to the N-terminus of the peptide to which the spin label is attached (145).  

IDPs typically convert between conformations faster than the ~ns-ms timescale of the 
NMR experiment, leading to an averaging of the NMR observables across structural sub-
populations. This uniform average hinders the structural characterization of all the 
conformational sub-states, and can even obscure the overall ensemble classification, as we will 
see for the amyloid peptides. Building the connection between the averaged NMR observables 
and the complete IDP structural ensemble therefore depends critically on computational models 
(146). The goal of the computational model is to provide a properly weighted set of the diverse 
sub-populations of the IDP most consistent with the NMR observables and perhaps other 
experimental measures such as circular dichrosim (147), small angle X-ray scattering (54, 148), 
or PREs (52, 149). Thus, multiple types of NMR or other experimental observables are necessary 
for validation of the computational model (50, 148).  

Currently there are two primary but very different computational approaches to building 
an IDP structural ensemble composed of properly weighted conformational sub-states, which can 
be loosely contrasted as first principle or de novo methods vs. knowledge-based approaches. The 
de novo approach implements molecular dynamics (MD) simulations based on the theoretical 
foundations of statistical mechanical sampling and model-derived potential energy surfaces. De 
novo MD generates a structural ensemble that is representative of given thermodynamic 
conditions, i.e. a Boltzmann weighted ensemble of conformational sub-populations, independent 
of experimental input. The complementary use of MD and NMR data to determine structure and 
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dynamics of folded and unfolded proteins has been a highly active area over the last two decades 
(150, 151), particularly for relaxation measurements that require a dynamical interpretation of 
the NMR data at the picosecond and nanosecond timescales (152). For the de novo MD method, 
multiple NMR or other experimental data are necessary to validate the MD ensemble through 
direct back-calculation of observables and comparison to experiment. Once validated, MD 
simulations provide a prediction of the complete IDP structural ensemble, allowing overall 
classification as well as the study of individual conformational sub-states, which can be analyzed 
with some confidence. 

In contrast, we define knowledge-based approaches as those that use experimental NMR 
information directly to derive the structural ensemble. While MD is often used to generate 
atomistic predictions independent of NMR experimental input, as in our de novo method, a 
number of researchers have advanced the combination of applying knowledge from NMR to 
restrain the MD ensemble (51, 53, 55-57). Such methods are the foundation of NMR structure 
determination of folded proteins using experimentally derived conformational constraints based 
on chemical shifts, J-couplings, and NOE data embodied in software packages such as CANDID 
(153), CYANA (154), X-Plor-NIH (155, 156), and TALOS (157). MD simulations have been 
combined with RDC restraint data for folded proteins (56) that then allows for the analysis of 
other features of the ensemble, such as conformational fluctuations. NMR restrained MD has 
also been applied to IDPs such as α-synuclein, a disease protein indicted in Parkinson’s disease, 
which incorporated distance restraints derived from PRE experiments in order to guide the MD 
so that the protein’s radius of gyration distribution is in good agreement with the experimental 
value (55).  

Other knowledge-based approaches for IDPs forgo MD simulations altogether and 
instead use an extensive set of statistical coil conformations (50, 58); this starting pool, which 
can be generated using a variety of heuristics, can be thought of as a basis set of structures. 
Subsequently the starting pool of structures is then culled for the subset of conformations that are 
in best agreement with experimental data to create the IDP ensemble. In the energy-minima 
mapping and weighting (EMW) method, Stultz and coworkers used end-to-end distance 
restraints to develop a pool of conformations with varying radii of gyration. They then selected, 
via Monte Carlo, a weighted ensemble of 15 structures to optimize the agreement with 
experimental 13C and 15N chemical shifts and J-couplings (59, 60). Blackledge and coworkers 
have developed the program Flexible-Meccano to create a pool of structures based on random 
coil backbone dihedral angles, on which they employ a genetic search algorithm in their 
ASTEROIDS software program to select structures that together best match experimental 
chemical shifts, PREs, or RDCs (50, 61, 62).  

The ENSEMBLE method, developed by Forman-Kay and coworkers, typically defines 
the starting pool of IDP conformational states as an ensemble of extended or random coil states, 
with an option for biasing the secondary structure of the ensemble at certain places in the 
sequence that are known to be partially structured (52, 54, 58, 63). Structures are selected from 
this pool using a Monte Carlo selection algorithm with an energy-weighting scheme for each 
type of experimental input. The ENSEMBLE program includes modules for several different 
experimental data types including chemical shifts, RDCs, PREs, J-couplings, and contact 
distances derived from NOEs. Since ENSEMBLE is a user friendly and publically available 
software package (58), we review it as an example of a knowledge-based approach. 
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The primary objective of this chapter is to review the de novo and knowledge-based 
approaches for deriving IDP structural ensembles in context of the intrinsically disordered 
Alzheimer’s disease peptides amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42). For the 
knowledge-based approach we analyze the ENSEMBLE method and consider its performance 
against the null hypothesis that random coil or statistical ensembles can explain the experimental 
observations. This comparison exposes the relative utility of different types of NMR data for 
refining or validating the IDP computational ensemble. As we outline in this chapter, chemical 
shifts and RDCs do not differentiate between IDP conformational ensembles that are 
qualitatively different in both their degree of secondary structure and their tertiary contacts. In 
contrast, scalar couplings and NOEs provide much stronger discrimination between qualitatively 
different structural ensembles for IDPs such as Aβ40 and Aβ42.  

We conclude that while de novo MD currently offers one of the best approaches for 
generating correct Boltzmann weighting of the sub-populations that make up an IDP structural 
ensemble, a combination of MD and knowledge-based methods yields the most experimentally 
coherent and refined set of results. The importance of including MD-derived conformations is 
especially evident for disease peptides that resist a classification based on a particular degree of 
order, such as amyloid-β. We describe future directions for improving the computational 
infrastructure of both de novo and knowledge-based methods to most reliably work together with 
available NMR data on IDPs. Finally we suggest that a larger community effort in the structural 
biology of IDPs could be realized by combining NMR, MD, and knowledge-based methods into 
a structure ‘solver’, analogous to the advent of X-ray crystallography structural beamlines that 
have successfully solved the 3D structures for thousands of folded proteins. 

2. Amyloid-β as a Model IDP 
Amyloid-β is an intrinsically disordered protein involved in Alzheimer’s disease, which is 
cleaved from the transmembrane amyloid precursor protein in variable sequence-length forms. 
The most common of these are amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42). These 
peptides are identical in sequence except at the C-terminus, where Aβ42 contains two additional 
residues, isoleucine and alanine. Both in vivo and in vitro these peptides aggregate to form long 
fibrils composed of β-sheet structure, however Aβ42 aggregates more quickly in vitro and is 
believed to be more toxic in vivo. In the soluble monomeric form, various experimental 
techniques detect no major secondary or tertiary structure content, consistent with their 
classification as statistical coil IDPs (14, 15, 19, 20). An important question at present is whether 
there are important structural differences in their conformational sub-states that might explain the 
greater disease virulence of Aβ42 compared to Aβ40. We refer the reader to the following 
reviews of amyloid-β from a disease perspective (1, 2, 122). Here they serve as an ideal case 
study in a comparison of de novo and knowledge-based methods for reliably characterizing IDP 
conformational ensembles for this important disease problem. 

3. Generation of IDP Structural Ensembles 
In order to classify a given IDP into one of the aforementioned three levels of disorder, we must 
first generate a set of alternative ensembles to compare to the available NMR data, eventually 
selecting the one that is best validated. Here we consider the creation of four qualitatively 
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different conformational ensembles. Firstly we consider the null hypothesis that Aβ can be well 
represented by a random coil (RC) ensemble. The second ensemble is also random, but 
incorporates bioinformatics-based knowledge about what secondary structure category is more 
likely for a given residue in the amino acid sequence. In this case, the random ensemble is biased 
to contain a statistical probability of predicted secondary structure on a per residue basis (Pred-
SS). Thirdly, we employ a fully knowledge-based ENSEMBLE approach that generates 
structural ensembles that best conform to the NMR data based on selection from the Pred-SS 
ensemble (Pred-SS-ENS). Each of the above three ensembles is compared against the ensemble 
we have generated by de novo MD for each of the IDPs Aβ40 and Aβ42, which we designate as 
our fourth candidate ensemble method (MD). Based on our analysis of the first four ensembles, 
we also create an additional fifth ensemble (MD-ENS) that combines the knowledge-based and 
de novo MD approaches, by using ENSEMBLE to select structures from the de novo MD 
starting pool. Details of the ensemble generation protocols are given in the Appendix. 

Table 4.1 shows the average radius of gyration (Rg) values for each ensemble. We see 
that the order from most extended to most compact proceeds as Pred-SS > Pred-SS-ENS > RC > 
MD ~ MD-ENS, and thus the alternative ensembles span a range of IDP classifications by the 
<Rg> measure. Figure 4.14 provides the propensities for the Pred-SS vs. de novo MD ensemble 
to form turns, anti-parallel β-strands, or helical structure by residue for Aβ42. We do not show 
the secondary structure profiles for the RC and Pred-SS-ENS ensembles since they are similar to 
or less structured than the Pred-SS ensemble (see the Appendix), while MD-ENS resembles the 
MD ensemble. 

Aβ40 Peptide Average  Property 
Ensemble Type Rg (Å) χ 2 (Hα) χ 

2 (HN) χ 2 (Cα) χ 2 (Cb) 3JHNHα 
RC 16.9± 3.1  0.77 0.07 0.31 0.78 1.95 (7.16) 
Pred-SS 19.3± 3.6  0.48 0.13 0.49 0.55 1.95 (7.13) 
ENS-Pred-SS 17.4± 3.5  0.28 0.06 0.37 0.20 1.99 (7.46) 
MD 14.7± 4.8  0.58 0.36 0.69 0.70 0.99 (1.82) 
ENS-MD 15.0± 4.1 0.30 0.34 0.46 0.36 0.62 (0.72) 
Aβ42 Peptide Average  Property 
Ensemble Type Rg (Å) χ 2 (Hα) χ 2 (HN) χ 2 (Cα) χ 2 (Cb) 3JHNHα 
RC 17.4± 3.3  0.88 0.08 0.35 0.90 2.10 (8.29) 
Pred-SS 19.9± 3.8  0.51 0.12 0.72 0.61 2.09 (8.20) 
ENS-Pred-SS 18.4± 4.0  0.30 0.08 0.47 0.12 2.28 (9.73) 
MD 13.1± 4.3  0.54 0.48 0.98 0.52 0.99 (1.83) 
ENS-MD 13.1± 2.8 0.33 0.37 0.51 0.34 0.60 (0.67) 

Table 4.1. Comparison between random coil (RC), predicted secondary structure (Pred-SS), de novo MD (MD), and 
ENSEMBLE optimized Pred-SS-ENS and MD-ENS ensembles. For the radius of gyration (Rg) values we report 
both the ensemble average and RMSD. For chemical shifts we report χ2   that measures agreement between the 
computational ensembles and the experimentally measured chemical shifts; χ2 < 1 indicates no disagreement with 
experiment within SHIFTX calculator error. We also report the 3JHNHα

 RMSD (χ2). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 This and all other figures in this chapter are reproduced from (64) with permission. 
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Figure 4.1. Percentage of Aβ42 simulated ensemble in different types of secondary structure by residue for (a) the 
Pred-SS, (b) de novo MD, and (c) MD-ENS ensembles. The red line represents helix, the blue line for anti-parallel 
strand, and the black line for β-turns.  



 

 96	  

We have previously shown that the Aβ40 and Aβ42 peptide samples some type of 
structured conformations in ~99% of its ensemble, including complex β-strand motifs (48, 65). 
From this, we conclude that the radius of gyration trends stem from the much larger propensity 
for the MD ensembles to form cooperative secondary structure and therefore to be more compact, 
as opposed to the random or knowledge-based ensembles that do not generate contiguous blocks 
of secondary structure, and hence are more extended on average. Although the secondary 
structure content of the MD-ENS ensemble resembles that of the MD ensemble, Figure 4.1 
shows that there is some variation in the percentages with which certain residues adopt different 
types of secondary structure. 

4. Experimental NMR Applied to IDPs 
Any of the computational methods considered depend on both high quality and a wide range of 
experimental NMR data. The primary reason is that qualitatively different structural ensembles 
may reproduce a given NMR observable with the same fidelity, so that additional experimental 
observables are needed for validating different structural attributes of the same system (129, 158, 
159). For analysis of Aβ40 and Aβ42 IDPs covered in this chapter, we have utilized chemical 
shift data from the Zagorski group (14) as well as J-coupling constants, RDCs, and heteronuclear 
1H-15N NOEs for backbone amides from Wang and co-workers (66, 67, 125). Our group 
generated NOESY 1H-1H homonuclear spectra collected for both peptides Aβ40 and Aβ42 and 
reported elsewhere (48, 65). The data were processed as described in (48). Here we summarize 
the experimental characterization of Aβ40 and Aβ42 that is independent of any theoretical model 
of their IDP structural ensembles. 

Chemical shifts. In folded proteins, the type of secondary structure at a particular residue affects 
the chemical environment of the hydrogen and carbon atoms in that residue, leading to signature 
chemical shift values for α-helices as well as β-sheets (160, 161). Chemical shifts have also been 
used to quantify secondary structure propensities in IDPs (62, 63, 162, 163). However, the Aβ40 
and Aβ42 hydrogen and carbon chemical shifts are not highly dispersed, i.e. there are no obvious 
regions of the sequence displaying a clear trend toward cooperative α-helix or β-strand chemical 
shifts.  

A more sound analysis is to examine chemical shift indices (CSI), i.e. deviations of 
chemical shift values from a random coil reference, that provide a better indication of whether 
the region is more likely to be in an α-helix or β-strand (160, 161) For example, a recently 
reported knowledge-based CSI “calculator” predicts similar β-sheet trends for Aβ40 and Aβ42, 
with highest percentages of β-sheets, ~15-20%, in the C-terminus when backbone nitrogen 
chemical shifts are included (163). If nitrogen chemical shifts are not included, for the reason 
that they have greater experimental error relative to the chemical shifts of other atom types, then 
the absolute probabilities of β-sheets were found to be very low, 1-5%, for both peptides in all 
regions of the sequence. This indicates that both Aβ IDP monomers contain some β-strands, but 
the β-strand population percentages are ambiguous if only chemical shift information is taken 
into account. 

J-coupling constants. J-coupling constants are another measurement reflecting a protein’s 
secondary structure because they report directly on the backbone φ dihedral angle for each 
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residue. The J-coupling values for Aβ40 and Aβ42 also provide no evidence of secondary 
structure “blocks” at different points in the peptide sequence, i.e. no persistence of J-coupling 
values that would be consistent with a dominant population of α-helical or β-strand secondary 
structure as in a folded protein. However, the J-couplings for both peptides are shifted upward 
from random coil to yield values mostly between 6.0-8.5 Hz. This is consistent with an extended 
random coil ensemble or the presence of β-strand structure (14), although population percentages 
are unknown. 

Homonuclear NOE. Unlike chemical shifts and J-couplings, homonuclear NOEs are not as 
highly averaged over all conformations in the IDP ensemble, but rather report on persistent 
tertiary structure contacts between pairs of atoms in the protein. An NOE cross-peak between 
two atoms is a result of through-space coupling between the nuclei of those atoms and indicates 
that the atoms must come into close contact in a significant percentage of structures in the IDP 
ensemble.  

The 1H-1H homonuclear NOE cross-peaks for Aβ40 and Aβ42 provide evidence for 
compact tertiary conformations held together by a number of long-range contacts that must 
persist on long enough time-scales for the cross-relaxation between protons to be detected, and 
thus these interactions must be stabilized by (likely shallow) free-energy minima. Table 4.2 
provides a summary of the 1H-1H homonuclear NOE cross-peaks for Aβ40 and Aβ42 that can be 
uniquely assigned from experiment alone (typically from an atom on residue i to one on residue 
i+2 or closer). Although the NMR spectra is so congested that we can’t uniquely assign all the 
cross-peaks, we can provide a lower bound on n for contacts from residue i to residue i+n that 
cannot be assigned from just experimental information alone. For both Aβ40 and Aβ42 about 
20% of the cross-peaks are long-ranged (defined to be residue i to residue i+2 or greater) 
contacts, however Table 4.2 makes clear that the two peptides differ substantially in their 1H-1H 
homonuclear cross-peaks, and therefore must sample different tertiary structures. However we 
can’t uniquely formulate a structural model of sub-populations based on the experimental 1H-1H 
homonuclear NOE data in isolation as we have shown previously for Aβ40, Aβ42, and the 
fragment Aβ21-30 peptides (26, 48, 65).  
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 Aβ40 Aβ42 
Total NOE peaks 1108 707 
Intra-residue and sequential 828 (362) 537 (185) 
i to i+ 2 (assigned) 142 (20) 68(9) 
i to i+ 3 (assigned) 58 36 (1) 
i to i+ 4 (assigned) 40 20 (1) 
i to i+ 5 11 13 
i to i+ 6 7 4 
i to i+ 7 10 9 
i to i+ 8 2 3 
i  to i+9 2 6 
i  to i+10  1 
i  to i+11 2  
i to i+12 1 3 
i  to i+13 2  
i to i+14 2 3 
i to i+20 1 2 
i to i+21  1 
i to i+24  1 

Table 4.2. Summary of experimental NOEs determined for Aβ40 and Aβ42 independent of any computational 
model. Only ~25% of peaks for each peptide are assignable from experiment alone. For the remaining ~75% peaks 
that cannot be assigned, peak intensities may be composed of a single pair contact of which several pair contacts are 
possible assignments, or may be composed of multiple, fractional contact pairs. In either case we provide the 
experimental lower bound, n, for i to i+n contacts for the unassigned peaks. Parentheses define the number of peaks 
uniquely assigned to one proton pair from experimental information alone for each category. 

Heteronuclear NOE. The 1H-15N  heteronuclear NOE is based on coupling between two atoms 
that are covalently bonded together, so it does not depend on the protein structure, but only on 
the dynamics of the backbone for each residue. If the backbone is more structured, the amide 
bond motion will have a longer timescale and the 1H-15N NOE signal will be stronger. This is 
another measurement where the difference between the Aβ40 and Aβ42 peptides is evident. The 
C-terminus of the Aβ42 backbone has higher 1H-15N NOE intensities and slower relaxation rates 
than the C-terminus of Aβ40, indicating that Aβ42 is more structurally ordered in this region 
(66, 164). 

Residual Dipolar Couplings (RDCs). Unlike the other NMR measurements described above, 
RDC experiments cannot be conducted in a normal aqueous environment. The RDC 
measurement requires that the sample be aligned along a universal axis and therefore must be 
conducted in an anisotropic medium such as 10% polyacrylamide gels (67). The alignment of the 
amide bond for each residue of the protein backbone can then be determined with respect to the 
protein’s global alignment by measuring the RDC. RDCs have been useful in structure prediction 
for folded proteins, and have also been applied to unfolded proteins and IDPs (165, 166). 
However, the RDC may be difficult to interpret in the case of a diverse ensemble of protein 
conformations. The main concern is the timescale of interconversion between the different 
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conformational states of the IDP. Interpretation of RDCs for IDPs generally assumes that the 
proteins are able to realign in the medium on a faster timescale than that of the exchange 
between conformational states, which may not be the case. Although the RDCs for amyloid-β are 
non-uniform along the peptide sequence, and show different trends between Aβ40 and Aβ42, 
they are difficult to interpret structurally for these reasons. 

Disorder classification from NMR. Together, this combination of NMR data supports the fact 
that there are important structural differences between the IDP structural ensembles of Aβ40 and 
Aβ42. However, the NMR evidence is mixed with regard to the overall ensemble 
characterization of disorder for the amyloid-β peptides. While the chemical shift and J-coupling 
data seem to indicate a highly disordered peptide with a small amount of β-strand or extended 
structure, the homonuclear and heteronuclear NOE data indicate a more compact and structured 
ensemble. The highly averaged experimental information makes it difficult to define and 
properly weight all conformational sub-populations of the two peptides, and hence a 
computational model is necessary to interpret the NMR data. However the range of NMR 
observables can provide an important validation suite to judge the quality of different 
computationally generated structural ensembles.  

5. Evaluation NMR Observables from Structural Ensembles 
To validate each of the five alternative ensembles against the experimental NMR data, we need a 
method of calculating the chemical shifts, J-coupling constants, RDCs, and 1H-1H NOEs as 
averages over the entire computationally-generated structural ensemble for comparison with 
experimental values. Below, we review the procedures for evaluating NMR observables (48).  

Chemical shifts. General purpose chemical shift calculators such as SHIFTX (99) and SHIFTS 
(91) describe the isotropic shielding of the applied magnetic field for the given atom, a quantity 
that depends sensitively on the local electronic structure environment (91, 99, 167). Even for 
folded proteins with a dominant native conformer, each atom type can exist in many different 
local environments, and for disordered peptides and proteins the ensemble average reflects an 
even more diverse set of chemical environments. This makes an accurate calculation of chemical 
shifts quite a challenge for IDPs. For this review we used SHIFTX rather than SHIFTS to 
calculate chemical shifts for consistency with the ENSEMBLE program, but the results 
generated by the two programs are consistent when applied to amyloid-β (26, 48). To determine 
chemical shifts of the entire IDP ensemble, we took an average of the SHIFTX values for each 
individual structure, consistent with the experimental average. 

J-coupling constants. To calculate the scalar coupling constants, 3JHNHα, we used the Karplus 
equation (92)  

      (4.1) 

where ϕ indicates the protein backbone dihedral angle, with coefficients A = 6.51, B = −1.76, 
and C = 1.60 corresponding to the parameter set by Vuister and Bax (93). We note that the 
original experimental J-coupling data from Wang and co-workers (67) has been corrected for a 
missing relaxation that makes scalar couplings determined from the HNHα 3D experiment 

J φ( ) = Acos2 φ − 60( )+ Bcos φ − 60( )+C



 

 100	  

consistently lower than those from COSY splittings by a small amount (93) (from ~1-5%). The 
J-coupling values were also an average over all structures in the ensemble, consistent with the 
experimental average. 

Residual Dipolar Couplings. We used the standard method in the field for calculation of RDCs, 
the PALES (96) program, for each structure for the five different Aβ40 and Aβ42 ensembles. 
The program computes the RDC by using steric properties of the molecule to generate a global 
alignment orientation. Then, the angle between the backbone amide bond vectors and the 
external magnetic field is used to calculate the RDC for each conformation, and the RDCs are 
averaged over all conformations of a given ensemble. To compare with the ENSEMBLE 
program, we also calculated RDCs using a local alignment program developed in the Forman-
Kay lab, where 15 residue segments along the protein are aligned separately over the ensemble 
of structures (141). The local RDCs (L-RDCs) are also averaged over all conformations of a 
given ensemble. This local alignment has lower computational cost and has been shown to give 
similar results to PALES, hence L-RDCs, rather than RDCs generated from a global alignment 
algorithm, are optimized in the standard implementation of the ENSEMBLE approach. We also 
note that the PALES alignment and RDC calculation were developed for folded proteins, and 
their application to IDPs assumes individual IDP conformations behave similarly to folded 
proteins during the RDC experiment, which may not be the case for amyloid-β. 

Homonuclear NOEs. We also evaluate the 1H-1H NOESY spectra as in reference (48) by 
calculating the intensity of the NOE cross-peaks  

    (4.2) 

where X and Λ are the eigenvectors and eigenvalues of the full relaxation matrix, composed of 
diagonal elements  

         (4.3a) 

and off-diagonal elements 

         (4.3b) 

that are comprised of appropriate combinations of the spectral density functions  

         (4.4) 

evaluated at the relevant Larmor frequencies, ω, and where K is given by 
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γH is the gyromagnetic ratio of 1H, µ0 is the permeability of free space, and  is Planck’s 
constant. reff is the distance between the hydrogen atoms raised to -6 power, averaged over all 
structures in the ensemble and then raised to the -1/6 power to convert back to units of distance. 
We account for all hydrogen atoms explicitly (including all methyl or methylene groups) and 
hence calculate reff and correlation functions for every pair of hydrogen atoms. The spectral 
density function for each atom pair is calculated as the Fourier transform of the correlation 
function for the pair vector (48). We ignore water proton coordinates, as is the standard 
assumption in the NMR experiment.  

Heteronuclear NOEs. Finally we calculate 1H-15N NOEs by evaluating the steady state NOE 
enhancement factor of the 15N spin by the 1H NOE according to  

    
 

    (4.6) 

where γH and γN are the gyromagnetic ratios of 1H and 15N, respectively. The 1H-15N cross-
relaxation rate constant is given by  

  (4.7) 

and the 15N self-relaxation by 

 .     (4.8) 

In this case JHN(ω) is the spectral density function for the 1H-15N covalently bonded pair. Note 
that the NOE calculations require correlation time information about the vector between each 
pair of atoms given by τ in Eq. (4.4).  

This dynamic information is naturally supplied by the de novo MD method, which allows 
direct measurement of the autocorrelation of the inter-atomic vector over the time of the 
simulation. However, it is not available for the RC, Pred-SS and knowledge-based ensembles. 
This is an inherent limitation of ensembles generated from a static perspective only, which we 
discuss further below. Since time information is not available for the static ensembles, we can 
only evaluate the NOEs for these ensembles under the assumption of one average correlation 
time applied to all pairs of protons (we use an average correlation time derived from our MD 
simulations). Of course the de novo MD method can account for the timescales explicitly and 
more importantly for the fact that different pairs of hydrogen atoms do decay on different 
timescales. 

6. Validation of Different Structural Ensembles with NMR 
Chemical shifts. Most knowledge-based approaches for NMR structure determination of IDPs 
depend heavily on site-specific chemical shift values, δ. In the case of Aβ, and possibly other 
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IDPs that form a diverse set of secondary structure, chemical shifts do not provide strong 
discrimination among different structural ensembles or structural interpretations. This is a very 
different situation from folded proteins, where chemicals shifts are used in detailed structural 
refinement. Here we review why chemical shifts are not particularly useful for defining or 
validating the Aβ structural ensemble. 

First we note that the calculated chemical shifts have an uncertainty that is independent of 
the quality or type of structural ensemble, and results from approximations of the SHIFTX or 
SHIFTS calculators themselves. Other research groups have reported the uncertainty, σ2 (ppm), 
for these calculators, with the value depending on the atom type and its bonding chemistry (91, 
99). Therefore the best way compare the agreement of various IDP ensembles with chemical 
shift data is to calculate chemical shift χ2 values  

χ 2 =
1
N

δi, calc −δi, exp( )
σ 2

ii=1

N

∑ .    (4.9) 

We calculate χ2 by taking the difference between the experimental chemical shift and the shift 
calculated from each of the structural ensembles and normalizing it by the calculator uncertainty. 
Reported uncertainties (root mean squared difference, RMSD, from experiment) for the SHIFTX 
calculator (99) are σ2 = 0.23 ppm for Hα, σ2 = 0.49 ppm for HN, σ2 = 0.98 ppm for Cα, and σ2 = 
1.10 ppm for Cβ. Any dominant error due to the underlying structural ensemble would then 
correspond to values of χ2 > 1. 

Table 4.3 displays the χ2 agreement between experimentally measured proton (48) and 
carbon (14) chemical shifts with those generated from each structural ensemble for both Aβ40 
and Aβ42. Experimental chemical shift data reported for the monomeric Aβ40 and Aβ42 
peptides do not differ greatly from random coil values, and therefore the RC ensemble falls 
within χ2 uncertainty. Since the Pred-SS ensemble shows no cooperative secondary structure 
(Figure 4.1a), it remains largely equivalent to the RC ensemble as deduced by chemical shifts. 
The de novo MD structural ensemble is also in good agreement with the chemical shift data, 
however ~99% of the MD generated Aβ conformations contain one or more elements of 
cooperative secondary structure somewhere along the peptide sequence (Figure 4.1b). The 
reason that the MD ensemble is also in good agreement with the experimental chemical shifts is 
that averaging over a large ensemble of cooperatively formed secondary structure and tertiary 
contacts yields average chemical shifts that are consistent with random coil values. For example, 
averaging the chemical shifts of all folded proteins in the PDB results in averages very similar to 
random coil values (48, 100).  
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Aβ40 Peptide Average  Property 
Ensemble Type RDC - PALES (Hz) RDC-Local (Hz) H2O NOEs D2O NOEs 
RC 1.48 1.55 4.33 (0.57) 5.32 (0.53) 
Pred-SS 1.54 1.35 3.85 (0.58) 4.43 (0.54) 
ENS-Pred-SS 1.47 0.26 3.74 (0.57) 4.79 (0.48) 
MD 2.22 1.88 1.15 (0.74) 3.22 (0.55) 
ENS-MD 1.69 0.18 1.22 (0.70) 3.66 (0.51) 
Aβ42 Peptide Average  Property 
Ensemble Type RDC - PALES (Hz) RDC-Local (Hz) H2O NOEs D2O NOEs 
RC 1.33 1.42 2.27 (0.33) 1.35 (0.61) 
Pred-SS 1.37 1.27 1.74 (0.35) 1.00 (0.66) 
ENS-Pred-SS 1.07 0.39 2.56 (0.34) 1.00 (0.68) 
MD 2.25 2.14 1.25 (0.67) 0.58 (0.80) 
ENS-MD 2.13 0.33 1.51 (0.62) 0.73 (0.76) 

Table 4.3. Comparison between random coil (RC), predicted secondary structure (Pred-SS), de novo MD (MD), and 
ENSEMBLE optimized Pred-SS-ENS, and MD-ENS ensembles. We report RMSDs for the RDC calculator PALES 
and L-RDCs evaluated with ENSEMBLE using local alignments. The NOEs are back-calculated from the structural 
ensembles as described in Section 4. We evaluate the RMSD normalized by the largest NOE intensity, RMSDN and 
(correlation coefficient, r) with the H2O and D2O experiments. 

ENSEMBLE optimization of the Pred-SS and MD starting pools improves the χ2 values, 
but all are within the calculator uncertainty. Not surprisingly, if the knowledge-based 
ENSEMBLE approach were biased by chemical shift data alone, they would show little 
deviation from their starting “soup”, and the structural interpretation would be highly dependent 
on the starting ensemble. For this reason we conclude that NMR chemical shifts do not provide 
any qualitative discrimination between the alternative ensembles, at least for the Aβ40 and Aβ42 
IDPs. 

J-coupling constants. In contrast to chemical shifts, J-couplings provide an important way to 
discriminate between random or extended IDPs and those that are more collapsed with 
cooperative secondary structure and tertiary structure contacts. Figure 4.2 illustrates this by 
plotting the agreement between experimentally measured 3J(HN,Hα) (67, 90), and those 
calculated from the RC, Pred-SS, Pred-SS-ENS, de novo MD, and MD-ENS ensembles for Aβ40 
and Aβ42. It is evident that the MD ensembles are far superior to the RC, Pred-SS, and Pred-SS-
ENS ensembles when validated against scalar couplings, yielding an RMSD across all residues 
of 0.60-0.99 Hz, whereas the other ensembles yield much larger RMSDs of ~1.95-2.28 Hz 
(Table 4.3). Therefore J-couplings provide an experimental measure for discriminating among 
qualitatively different structural ensembles for the amyloid peptides. 
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Figure 4.2. J-coupling constants for backbone amides for Aβ40 and Aβ42. (a) Aβ40 experimental J-coupling 
constants (red squares) compared to RC (green triangles) and de novo MD (solid blue circles). (b) Aβ40 
experimental J-coupling constants (red squares) compared to Pred-SS-ENS (black diamonds) and MD-ENS (blue 
circles). (c) Aβ42 experimental, RC, and de novo MD J-coupling constants. (d) Aβ42 experimental, Pred-SS-ENS, 
and MD-ENS J-coupling constants. The experimental data from Yan et al. (67) have been corrected to account for 
T1sel relaxation and bring J-couplings determined from a HNHα 3D experiment to be consistent with those from 
COSY splittings (14). 

We attribute the poor performance of the RC, Pred-SS, and Pred-SS-ENS ensembles to a 
structural distribution that too uniformly samples the φ angles. This can be seen from the Karplus 
Eq. (4.1) using the Vuister and Bax parameters, in which a uniform φ average from -180° to 180° 
would reduce to J=A/2+C or  ~4.85 Hz, consistent with the across the board value of ~5 Hz 
calculated for the RC, Pred-SS, and Pred-SS-ENS ensembles (Figure 4.2). An option to 
introduce new structures created by TraDES to the starting pool during the selection process is 
available in the ENSEMBLE package, however this would be unlikely to improve J-couplings 
because the additional structures would still not have cooperative secondary structure. By 
contrast the de novo MD ensemble yields values in a range of ~6.5-8.5 Hz that is consistent with 
experiment, and with a pool of conformations containing cooperative secondary structure. The 
MD-ENS is able to refine the J-coupling values further, lowering the RMSD from experiment 
(Figure 4.2, Table 4.3). Figure 4.1c emphasizes that the refined MD-ENS for Aβ42 contains 
largely the same distribution of cooperative secondary structure, with certain populations shifting 
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by 5-15%, thereby providing an independent validation of the de novo MD ensemble. Thus, the 
absolute residue by residue 3J(HN,Hα) values, which are highly sensitive to backbone 
conformational preferences for the φ angle, provide important proof that cooperative secondary 
structure generated by de novo MD is a better structural prediction than the RC, Pred-SS, and 
Pred-SS-ENS ensembles.  

Residual dipolar couplings. Table 4.3 provides the assessment of the five alternative ensembles 
for Aβ40 and Aβ42 using RDC values evaluated residue by residue using the PALES program 
(96) and L-RDCs based on local alignments (141). While the RC and Pred-SS ensembles yield 
lower RMSD values, 1.3 - 1.5 Hz, they are marginally better than the de novo MD RMSD of 2.2 
Hz. This is in part due to the fact that experimental RDC uncertainties for IDPs are larger (~0.9 
Hz for Aβ40 and ~0.5 Hz for Aβ42) than the uncertainty observed for folded proteins of ~0.1 Hz 
(168). In addition, there are large uncertainties in the accuracy of RDC calculators using 
programs such as PALES (96). In fact, the reported RMSD of the PALES calculator for folded 
proteins is ~2.0 Hz, on the same order as the RMSD for the de novo MD ensemble. While the 
ENSEMBLE method does significantly lower the RMSD for L-RDCs for the Pred-SS-ENS and 
MD-ENS ensembles, the corresponding RMSD based on the global alignment using PALES is 
marginally better than the Pred-SS and de novo MD starting pools. Hence for this particular 
application on disordered amyloid peptides, RDCs are not a particularly good experimental 
metric for differentiating among the different ensembles, and substantial disagreement between 
RDCs based on local and global alignments are observed. 

Homonuclear NOEs. Finally, we consider the performance of the different ensemble methods 
for reproducing 1H-1H homonuclear NOE cross-peaks. We presented the NOE data collection for 
the Aβ42 peptide in which ~700 cross-peaks are observed in the NOE spectra, but only ~200 can 
be uniquely assigned from experimental information alone (Table 4.2). The remaining cross-
peaks do not have a clear independent assignment (and in fact require a computational model to 
interpret them). Therefore in this review we only compare the different methods against the NOE 
cross-peaks that can be assigned by experiment alone. We note that quantitatively reproducing 
NOE intensities is a very high bar since peak volumes are extremely sensitive to r-6 distance 
averaging. Geometric imperfections in the conformational ensemble where contact differences 
differ by a factor of 21/6 (difference between 1 Å and 1.12 Å) will double the corresponding 
intensity value, thereby driving up the RMSD error for all ensembles. Large absolute NOE 
intensities especially tend to dominate the RMSD error; we mitigate this effect by normalizing 
the RMSD (RMSDN) by the experimental intensity for each NOE. 

Table 4.3 shows that the predicted set of 1H-1H NOEs from de novo MD is better than 
any other ensemble, with RMSDNs that are significantly lower by 2-3 fold and with much higher 
correlation coefficients. The NOE validation clearly indicates that the de novo MD ensemble 
with its cooperative secondary structure is a better representation of Aβ40 and Aβ42 than are the 
RC, Pred-SS, or Pred-SS-ENS ensembles, which have no cooperative secondary structure. As 
discussed in Section 5, the statistically generated and knowledge-based ensembles agree 
relatively poorly with the NOE observables since no correlation times are known, and hence the 
MD-ENS ensemble is in somewhat worse agreement with the experimental NOEs than the de 
novo MD ensemble (Table 4.3). The NOE validation emphasizes that an IDP’s diverse set of 
conformations gives rise to a heterogeneous set of correlation times that must be described in 
order to validate against experimental NOEs.  
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Heteronuclear NOEs. We further emphasize that the calculation of heteronuclear NOEs, being a 
purely dynamical measurement, is only possible with the de novo MD method. Figure 4.3 shows 
a comparison of the experimental 1H-15N NOE intensities, measured by Yan and Wang (66), and 
those derived from our MD simulation for Aβ42 and Aβ40, showing overall excellent agreement. 
Unlike the 1H-1H NOEs, these assignments are unambiguous. We find that, as in the experiment, 
there is an increase in 1H-15N NOE intensities calculated from simulation for residues 35-40 for 
Aβ42 compared to Aβ40, indicating that the longer peptide experiences slower dynamics at the 
C-terminus. This difference in experimental 1H-15N NOEs for Aβ42 and Aβ40 has previously 
been interpreted as evidence that Aβ42 has greater structural rigidity in the C-terminus compared 
to Aβ40 (66, 164). 
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Figure 4.3. Agreement with experiment of simulated (a) Aβ40 and (b) Aβ42 1H-15N NOE. The red squares are 
experimental data from Yan and Wang (66). The blue circles are the data calculated from the de novo MD ensemble.  
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7. The Structural Differences Between IDPs Aβ42 and Aβ40 
Based on the MD and MD-ENS structural ensembles, which are best validated against the 

NMR data, we find that both peptides have a diverse set of secondary structure elements 
including turns, helices, and anti-parallel and parallel β-strands. However, the most significant 
difference in the structural ensembles of the two IDPs is the type of β-hairpins and β-strands they 
populate. The analysis of the sub-populations of structure show that Aβ42 forms a major 
population of an anti-parallel β-hairpin involving residues 16-21 with residues 29-36. These 
particular β-strands are the same β-strands adopted by the peptide in the insoluble amyloid fibril 
state. By contrast, Aβ40 forms an alternative anti-parallel β-hairpin between residues 9-13 and 
16-21 that is incompatible with the amyloid fibril β-strands. The fact that Aβ42 fibrillizes more 
readily than Aβ40 thus could arise from the differences observed in β-strand sub-populations 
between the two IDPs in their monomeric forms (65). A more detailed analysis of the amyloid 
IDPs can be found in a companion publication (65). 

8. Summary and Future Directions 
We have shown that the MD and MD-ENS structural ensembles for the IDPs Aβ40 and Aβ42 
yield substantially better agreement with a range of NMR data than the random coil or statistical 
ensembles that are typically used with knowledge based approaches, even after refinement with 
all available NMR data. The MD ensembles are qualitatively different than random coil or 
statistical ensembles in that the sub-populations are richly structured, contain a diverse set of 
secondary structures including α-helix, β-turns, and β-strands, and span the full range of compact 
to fully extended conformations. Furthermore, while MD generated ensembles are Boltzmann 
weighted, the knowledge-based approaches give equal statistical weight to all conformations and 
thus are likely inconsistent with statistical mechanical weightings that are inherent to the NMR 
experiment.  

We have shown that some types of NMR data may not be helpful for discriminating 
among qualitatively different structural ensemble of IDPs. In particular, averages over a diverse 
set of cooperative secondary structure conformations yield experimental values of chemical 
shifts that are superficially consistent with values expected from a random coil ensemble. 
Furthermore, if the chemical shifts are not highly dispersed along the sequence of a particular 
IDP, such as is found for the amyloid-β peptides, then the chemical shifts have limited value as 
experimental input or as a validation measure. J-couplings do provide some discrimination 
between randomly generated conformations and a diverse population of cooperative secondary 
structure. In fact J-couplings were a decisive factor in determining that the RC and Pred-SS 
ensembles are not well-validated models of amyloid-β structure.  

Unlike others who have used RDC data to help interpret IDP or unfolded protein 
structural ensembles, we found RDCs to be only marginally useful for Aβ40 and Aβ42. This may 
be due to limitations of RDC calculators such as PALES (96), which were originally developed 
and successfully applied to folded proteins, but which are reported to have large uncertainties in 
their predicted RDC values. Furthermore, the agreement between global alignment algorithms 
such as PALES (96) diverge significantly from RDCs evaluated from localized alignments (141) 
for Aβ40 and Aβ42, indicating that in cases like this the ENSEMBLE package should be 
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employed using the PALES calculator to fit RDCs, which is possible though not standard (169).  
More research may be necessary to apply programs like PALES to disordered proteins, which 
likely do not align in an anisotropic medium in the same way as folded proteins, in part due to 
the timescale of interconversion of the conformational sub-states. For example, conventional 
methods for calculating RDCs cannot be applied to the motion of multi-domain biomolecules 
(170), and the local conformational sampling and long-range structure need to be simultaneously 
accounted for because they both affect the experimental RDC data (50). However, progress is 
being made in using RDCs to provide meaningful structural information for other IDPs (50, 56, 
61, 140, 170, 171). We speculate that success is greatest when all sub-populations of the IDP 
ensemble are homogeneously classifiable (as extended disordered for example), so that 
assumptions about the global alignment properties of the IDP can be made. 

We have demonstrated that homonuclear 1H-1H NOE intensities and heteronuclear 15N-
1H NOEs are by themselves discriminating with regard to the tertiary contacts and backbone 
dynamics, respectively, that define the important structural differences between the two Aβ 
peptides. Nonetheless, a correct picture of the IDP ensemble based on the experimental NOE 
data would not be possible without a computational model providing details of individual 
structures. In turn, although the homonuclear NOEs are averaged over all sub-populations, they 
are still vital for deducing whether a given ensemble contains sub-populations of structure with 
the right tertiary contacts to give rise to the observed cross-peaks in the spectra. Because these 
cross-peak intensities rely directly on the decay timescales of correlated proton distances, the 
NOEs for IDPs are reporting on a heterogeneous population of timescales. One of the primary 
limitations of the statically generated ensembles is that they are not associated with any 
information about motional timescales that can be used to calculate NOE observables. 
Relaxation times can be used with the ENSEMBLE method, although they are incorporated as 
structural rather than dynamic constraints (54, 58, 148). This is a genuine strength of the de novo 
MD methods, especially for 15N-1H relaxation measurements, which are incompatible with 
validation of the static ensembles. 

We believe that the primary limitation of knowledge-based methods applied to the 
difficult amyloid-β case is three-fold. We note that while there will be quantitative differences 
between ENSEMBLE and other knowledge-based approaches such as ASTEROIDS, 
qualitatively the problems will be similar. First, there is no requirement for generating a 
complete and representative starting “basis set” of conformations to select the final ensemble 
from; i.e. these methods cannot use the NMR data effectively to select for compact structures 
with elements of cooperative secondary structure if the initial pool of structures is largely 
composed of extended random coil structures. Both ENSEMBLE and ASTEROIDS have relied 
on statistical coil ensembles as the starting pool of structures, and while some “on-the-fly” 
addition of new structures is possible with these methods, they do not yet support formation of 
complicated β-strand motifs (50, 58). Metrics of ensemble heterogeneity, such as those 
developed by the Onuchic and Stultz research groups, will continue to be useful as we explore 
the range of IDPs that cannot be easily classified based on their level of disorder (118, 172, 173). 
Second, for certain classes of IDPs such as amyloid-β, optimization of structures to reproduce 
chemical shifts does not discriminate among qualitatively different structural ensembles. Third, 
the optimization phase of the knowledge-based approaches relies on approximations to NMR 
observables, which may diverge from a global property, as for L-RDCs, or from the dynamical 
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origins of NOE intensities. At the same time, the de novo MD method is not quantitatively 
perfect, and therefore the MD ensemble provides an excellent start state for subsequent 
refinement by knowledge-based approaches.  An unambiguous future direction for the structural 
biology of IDPs is the combined use of knowledge-based approaches and MD that supplies 
Boltzmann weighted conformational sub-states as well as heterogeneous timescales of motion. 

Currently, the application of truly de novo MD techniques to generate IDP 
conformational ensemble pushes these methods to the edge of their capabilities. Because there 
are many degrees of freedom to sample in a protein conformational landscape, MD simulation 
methods rely on computationally cheap, but potentially inaccurate, theoretical models. In 
particular, a number of research groups are currently exploring whether the use of empirical 
fixed-charge force fields and advanced sampling techniques such as replica exchange are 
sufficient to provide an accurate and complete ensemble of structures (26, 31, 86-88, 174-177). 

The predictive quality of biomolecular simulations depends on the accuracy of the 
empirical potential energy functions, which were first developed more than two decades ago for 
folded proteins (178-180). While much progress has been made on adapting the protein force 
fields to better describe energetics and structure, they continue to be co-parameterized with 
rather antiquated aqueous solvent models such as TIP3P or SPC that are deficient in modeling 
bulk water liquid. Because IDPs are generally more solvent-exposed than their folded globular 
counterparts (181, 182), we have argued that these default water models limit the predictive 
capability of de novo MD, especially when applied to IDPs. We have demonstrated this 
deficiency on the Aβ21-30 fragment (which is well-classified as an extended random coil (48)), 
showing that the TIP3P model poorly predicts the NOE data (26). Use of the TIP4P-Ew model – 
a superior theoretical model for bulk water – greatly improves the solvation description of Aβ21-
30 so that de novo MD gives excellent agreement with the experimental NOE cross-peaks and 
relaxation times (26). This has motivated the use of TIP4P-Ew in other NMR simulation 
applications (48, 90). Overall, a number of affiliated research groups have great interest in 
improving the theoretical models for molecular simulation, including full reparameterization of 
the AMBER protein force fields with better descriptions of water solvent (88, 174), better 
modeling of short-ranged anisotropic interactions (which we believe will especially improve 
agreement with NOE data) through advanced multipole electrostatic models (183), and eventual 
movement from fixed charge to polarizable force fields (184-191).  

Advanced sampling techniques allow faster sampling of conformational ensembles by 
artificially reducing free energy barriers between IDP conformational states. A Monte Carlo or 
reweighting step on the resulting ensemble states ensures a Boltzmann distribution. These 
techniques offer significant reductions in both simulation time and compute power needed for 
extensive sampling when compared to a single long MD trajectory (138, 192-194). Our group 
and others have used parallel tempering replica exchange (RE) to increase sampling (26, 90, 195). 
However, the MC or reweighting steps often require a significant amount of time and parallel 
computing resources so that further improvements are still necessary. For example, we have 
developed a modification of the RE technique, which we term multi-reservoir replica exchange 
(MRRE), which reduces computational cost and total simulation time compared to standard 
replica exchange, reaching the same degree of ensemble convergence (31, 48). A very different 
approach integrates out irrelevant or equilibrated degrees of freedom to devise a coarse-grained 
model that is easier to sample. For example, Terakawa and Takada used RE to characterize 
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fragments of an disordered p-53 N-terminal domain sequence with an all-atom model (177). 
These ensembles were used to construct a coarse grained potential using an iterative Boltzmann 
inversion procedure. Coarse grained simulations then sampled the ensemble of the full-length 
IDP, which was converted back to an all-atom representation and used to calculate RDC and 
SAXS data. 

Advances in harnessing extensive computational resources to perform MD simulations 
have also improved ability to simulate IDPs, and increased automation in allocating processors 
for and monitoring these large simulations could further reduce the time and resources needed to 
produce complete conformational ensembles. Many of us in the field of computational chemistry 
have benefitted from the rapid evolution of multicore processors and GPUs, along with emerging 
GPU MD accelerators (196, 197). Impressive work by Pande and coworkers has increased their 
computational capacity through the distributed computing platform Folding (198). This platform 
takes advantage of the idle computing power of thousands of personal computers by enlisting 
them to run short MD simulations. Combining many of these short simulations has resulted in 
the accumulation of large total simulation times (> 200 µs) for sampling the ensembles of 
intrinsically disordered Aβ peptides (199). D. E. Shaw and coworkers have built a special-
purpose MD simulator, Anton, staying well ahead of the Moore’s Law curve of expected 
improvements in standard processor performance, so that today it performs MD calculations that 
beat current more conventional state of the art hardware by 2 orders of magnitude (200). Using 
this advanced computing power they are able to simulate the unfolded state of a ~85 residue 
protein for one continuous 200 µs simulation, achieving extensive sampling of the structural 
ensemble (176). Long-range contacts seen in this MD simulation show good correspondence 
with PRE NMR data, and there is also reasonable agreement between calculated and 
experimental relaxation rates and radius of gyration estimates. 

All together, the productive interplay between NMR experiments, de novo MD 
simulations, and knowledge-based approaches, along with supporting models, algorithms, and 
computer hardware, gives us an ability to accurately identify structures present in IDP ensembles 
and use that knowledge to gain previously inaccessible functional insights (48, 51, 53, 55, 59, 60, 
90, 177, 201-211). To further improve techniques for studying disordered proteins, we as a 
community could establish a high throughput computational infrastructure to predict IDP 
structural ensembles using a combination of MD and NMR as appropriate experimental restraints 
as per knowledge-based approaches that do not violate Boltzmann weighting. This would be 
similar to the establishment of X-ray crystallography beamlines for the rapid solution of folded 
protein structures that was launched during the structural genomics era. The ultimate goal in both 
cases is to use structural information to drive the formation of hypotheses about protein function. 
Based on the success of using structural information for functional characterization of folded 
proteins and complexes, we hope and expect that structural knowledge of IDP ensembles can 
provide similar insight into IDP function and enable development of molecular hypotheses for 
disease IDPs. 
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APPENDIX 
Details of generating the different structural ensembles 

RC ensemble. To generate a RC or Pred-SS structural ensemble we used the TraDES software 
package (212, 213). TraDES generates a random coil (RC) ensemble of structures by building 
each conformation one residue at a time and picking the dihedral angles according to their 
probability from the Ramachandran plot. This procedure also avoids steric clashes, but does not 
attempt to distinguish between energetically favorable and unfavorable conformations.  

Pred-SS ensemble. There is also an option to bias the TraDES ensemble to preferentially sample 
α-helix or β-strand regions along the sequence according to a bioinformatics prediction of 
secondary structure, which we label the Pred-SS ensemble. Many bioinformatics tools allow 
prediction of a protein’s secondary structure based on its sequence alone by comparing the 
sequence to known structures in the PDB. We employ the Psi-Pred V3.0 (214, 215) server, for 
this purpose, feeding it the Aβ40 and Aβ42 sequences and receiving a prediction of either 
extended, helical, or coil structure for each residue, as shown in Table 4.4. For both peptides, 
PsiPred predicts blocks of extended, β-structure with high confidence, consistent with the 
structure that Aβ adopts in the aggregated fibril state (21). This does not guarantee that the 
resulting conformations will contain true cooperative secondary structure (such as β-strand), 
since the secondary structure state of each residue is picked independently of other residues by 
TraDES. The RC and Pred-SS ensembles each contain 100,000 structures as recommended in 
(58). 

Pred-SS-ENS ensemble. As an example of a knowledge-based approach we consider the 
ENSEMBLE software package, which selects from a large starting pool (basis set) of structures, 
typically generated by TraDES, a subset of 100 conformations that best conform to various NMR 
experimental data supplied to it (see Section 5 on calculation of experimental observables from 
structures). The Pred-SS-ENS, was selected by the ENSEMBLE program from a starting ‘soup’ 
consisting of the Pred-SS ensemble structures. We supplied Hα, HN, Cα, and Cβ chemical shifts, 
J-coupling constants, RDCs and NOEs for both Aβ40 and Aβ42. We used default values of the 
ENSEMBLE program input parameters and the default output of a 100-structure ensemble. We 
ran each ENSEMBLE optimization for 48 hours on a Cray XE6 at National Energy Research 
Scientific Computing Center (NERSC), during which ~500 rounds of ENSEMBLE optimization 
steps were completed. We found that the resulting Pred-SS-ENS ensemble satisfied all of the 
experimental criteria besides RDCs according to the ENSEMBLE software. Based on our 
subsequent analysis, the default convergence criteria for RDCs appear to be too strict. We 
therefore selected those ensembles with the best fit to the NMR data overall, which we found to 
be sufficient for quantitative analysis. 

MD ensemble. We created the fourth ensemble with de novo molecular dynamics simulations of 
Aβ40 and Aβ42 using the Amber ff99SB force field (23) and aqueous solvent represented by the 
TIP4P-Ew water model (25), which we chose because previous studies support its clear 
superiority relative to other biomolecular simulation force fields (24, 26, 48, 90). We simulated 
each amyloid-β peptide in a cubic box containing 6,251 water molecules for Aβ42 and 6,136 
water molecules for Aβ40, with three Na+ ions to neutralize the charge of the peptide. The 



 

 113	  

sander module of AMBER (111) was used in conjunction with Multi-Reservoir Replica 
Exchange (MRRE) method (31) to generate ~2 µs of MD trajectories, from which we created a 
Boltzmann weighted ensemble of 72,632 - 89,469 structures each for Aβ40 and Aβ42 
respectively at the experimental temperature of 287 K. 

MD-ENS ensemble. After reaching the conclusion that no true cooperative secondary structure 
can be generated from the purely knowledge-based method that selects from a pool of random 
structures, we decided to construct a fifth ensemble that uses a knowledge-based approach 
combined with MD. For this ensemble (MD-ENS), we employed the same ENSEMBLE 
procedure described above for the Pred-SS-ENS ensemble except that we used the de novo MD 
ensemble as the starting pool of structures from which the experimentally optimized 100-
structure ensemble was selected. NOE data was not included in our final MD ENSEMBLE 
refinement because a more structured ensemble could not satisfy the large number of distance 
restraints. We again had the same problem satisfying RDC convergence criteria, but otherwise 
the MD-ENS ensemble was optimized well to the NMR data after ~500 ENSEMBLE rounds.  

Details of using the ENSEMBLE software 

For knowledge-based approach we used the ENSEMBLE software package (58) to select a final 
ensemble of 100 structures from a starting pool of structures. The ENSEMBLE method 
formulates energy functions that score structures favorably when they agree with an 
experimental observable and unfavorably when they do not. To generate the Pred-SS-ENS and 
MD-ENS ensembles we performed two sets of ENSEMBLE optimization. The first used the 
Pred-SS ensemble as the starting ‘soup’ of structures while the second used our de novo MD 
ensemble. In our first attempt to select a final ensemble that agreed with experiment we supplied 
multiple atom type chemical shifts, J-coupling constants, RDCs, and NOE contacts that we could 
assign directly from the experimental data for both Aβ40 and Aβ42. For the NOEs, we did not 
have specific distance restraints for the contacts, so we set the distance to a maximum of 7.0 Å 
for each contact. We used default values of the ENSEMBLE program for the experimental 
observable target energies. As recommended (58), we set chemical shifts and NOE distances to 
converge first, before converging J-coupling constants or RDCs. We ran each ENSEMBLE 
optimization for 48 hours on a Cray XE6 at NERSC, during which ~500 rounds of ENSEMBLE 
optimization steps were completed.  

After this first ENSEMBLE attempt we saw that while the both chemical shifts and NOE 
distance restraints converged for the Pred-SS-ENS ensemble, in the MD-ENS calculation the 
NOE distance restraints did not converge. For the MD-ENS optimization the NOE distance 
restraint energies were extremely high (~800 in the best ensemble, compared with the target 
energy of 49). This was probably due to the approximation of the NOE cross-peaks as simple 
distance restrains, the large number of NOE distance restraints being optimized (177 for Aβ42 
and 340 for Aβ40), and the fact that the MD starting pool was more diverse than the Pred-SS 
pool. We then attempted a second MD-ENS ENSEMBLE run without the NOE distance 
restraints, and this time the chemical shifts did converge.  

The second stage of the ENSEMBLE runs optimized against J-coupling constants and 
RDCs. This round was able to successfully converged the J-coupling constants to the default 
energy tolerance, but not the RDCs. Although the RDC energies had improved (from ~80 to 51 
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on energy units), their convergence had stagnated so as to not meet the ENSEMBLE 
convergence tolerance of >0.2 Hz, keeping a constant energy of ~51, even with additional 
computation time of ~5000 ENSEMBLE optimization rounds. In actuality, the RDCs were 
sufficiently converged to permit the analysis in sections 5 and 6, suggesting that the default RDC 
tolerance was too tight. We therefore selected the final ensembles of 100 structures with the 
lowest energy according to the ENSEMBLE weighting function, in order to give the overall best 
performance against the chemical shift, J-coupling and RDC data. We then used these final 
ensembles as the Pred-SS-ENS and MD-ENS ensembles in our subsequent analyses. 

 Aβ40    Aβ42    

Residue 
structure 
prediction 

prediction 
confidence 

TraDES % 
extended 

TraDES % 
coil 

structure 
prediction 

prediction 
confidence 

TraDES % 
extended 

TraDES % 
coil 

1 C 9 0 100 C 9 0 100 
2 C 4 0 100 C 4 0 100 
3 C 2 0 100 C 2 0 100 
4 C 1 0 100 C 1 0 100 
5 C 1 0 100 C 1 0 100 
6 C 1 0 100 C 0 0 100 
7 C 4 0 100 C 4 0 100 
8 C 6 0 100 C 6 0 100 
9 C 5 0 100 C 5 0 100 
10 E 0 0 100 E 0 0 100 
11 E 5 50 50 E 5 50 50 
12 E 7 70 30 E 7 70 30 
13 E 7 70 30 E 8 80 20 
14 E 6 60 40 E 6 60 40 
15 E 4 40 60 E 5 50 50 
16 E 8 80 20 E 8 80 20 
17 E 9 90 10 E 9 90 10 
18 E 8 80 20 E 8 80 20 
19 E 8 80 20 E 8 80 20 
20 E 7 70 30 E 7 70 30 
21 E 5 50 50 E 5 50 50 
22 E 0 0 100 E 0 0 100 
23 C 1 0 100 C 1 0 100 
24 C 2 0 100 C 2 0 100 
25 C 7 0 100 C 7 0 100 
26 C 8 0 100 C 8 0 100 
27 C 8 0 100 C 8 0 100 
28 C 4 0 100 C 4 0 100 
29 C 2 0 100 C 2 0 100 
30 E 1 10 90 E 1 10 90 
31 E 8 80 20 E 9 90 10 
32 E 9 90 10 E 9 90 10 
33 E 9 90 10 E 9 90 10 
34 E 9 90 10 E 9 90 10 
35 E 7 70 30 E 7 70 30 
36 E 5 50 50 E 6 60 40 
37 E 0 0 100 E 0 0 100 
38 E 0 0 100 E 0 0 100 
39 E 2 20 80 E 8 80 20 
40 C 9 0 100 E 9 90 10 
41     E 4 40 60 
42         C 9 0 100 

Table 4.4. Aβ40 and Aβ42 predicted secondary structure. For Aβ40 and Aβ42 the predicted secondary structure and 
confidence in that prediction are presented (214, 215). This corresponds to a TraDES ensemble generated with 
extended dihedral angles for those residues predicted to have extended structure. The percent of the TraDES 
ensemble that has that residue extended corresponds to the confidence of the prediction, and the rest of the TraDES 
ensemble is generated with random coil structure. 
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Figure 4.4. Percentage of Aβ42 simulated ensemble in different types of secondary structure by residue for (a) the 
RC, and (b) Pred-SS-ENS ensembles. The red line represents helix, the blue line for anti-parallel strand, and the 
black line for β-turns. 
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Chapter 5 

 

Differences in β-strand populations of 
monomeric Aβ40 and Aβ42 based on molecular 
dynamics simulations refined using NMR data 

 
Using homonuclear 1H NOESY spectra, with chemical shifts, 3JHNH

α scalar 
couplings, residual dipolar couplings, and 1H-15N NOEs, we have optimized and 
validated the conformational ensembles of the amyloid-β 1-40 (Aβ40) and 
amyloid-β 1-42 (Aβ42) peptides generated by molecular dynamics simulations. 
We find that both peptides have a diverse set of secondary structure elements 
including turns, helices, and anti-parallel and parallel β-strands. The most 
significant difference in the structural ensembles of the two peptides is the type of 
β-hairpins and β-strands they populate. We find that Aβ42 forms a major anti-
parallel β-hairpin involving the central hydrophobic cluster (CHC) residues (16-
21) with residues 29-36, compatible with known amyloid fibril forming regions, 
while Aβ40 forms an alternative but less populated anti-parallel β-hairpin between 
the CHC and residues 9-13, that sometimes forms a β-sheet by association with 
residues 35-37. Furthermore, we show that the two additional C-terminal residues 
of Aβ42, in particular Ile41, directly control the differences in the β-strand content 
found between the Aβ40 and Aβ42 structural ensembles. Integrating the 
experimental and theoretical evidence accumulated over the last decade, it is now 
possible to present monomeric structural ensembles of Aβ40 and Aβ42 consistent 
with available information that produce a plausible molecular basis for why Aβ42 
exhibits greater fibrillization rates than Aβ40.5 

Introduction 
Alzheimer’s Disease (AD) is characterized by insoluble fibrils and plaques in the extra-cellular 
space within the brain that are largely composed of the two cleaved products of the amyloid 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Reproduced from (65) with permission. 
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precursor protein (216), amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42) (113, 114). 
Although these two peptides differ only in Aβ42 having two additional hydrophobic residues at 
its C-terminus, Ile41 and Ala42, Aβ42 has been shown to be more significant in disease 
development. Aβ42 is more prevalent in the insoluble aggregates and causes more extensive 
damage to neuronal cell cultures than Aβ40 (4-8, 49, 126), and Aβ42 aggregates and fibrillizes 
much more quickly in vitro than Aβ40 (9, 10, 71, 73), demonstrating that the addition of these 
two C-terminal residues has a significant effect on the physiological and biophysical behavior of 
the two peptides. 

Monomeric forms of Aβ40 and Aβ42 have been classified as intrinsically disordered 
peptides (IDPs), meaning that they populate a diverse set of conformational states as opposed to 
a single dominant folded conformation (14, 15, 64, 71, 73-75). However, when part of the 
ordered fibril state, both peptides adopt highly similar morphologies, with β-strands running 
orthogonal to the fibril axis, which organize further into intermolecular β-sheets that can extend 
to microns in length (21, 40, 103, 109, 217, 218). Since Aβ40 and Aβ42 adopt similar structures 
when part of the fibril, differences in the monomeric conformational ensembles could provide a 
starting point for understanding the greater predisposition of the Aβ42 peptide for faster 
fibrillization, aberrant oligomerization, or disease outcomes compared to Aβ40. In particular, 
does the addition of the two hydrophobic residues Ile41 and Ala42 produce any changes in the 
monomeric conformational ensemble for Aβ42 with respect to Aβ40? 

We have collected 1H NOESY spectra for the Aβ40 and Aβ42 monomers that in fact 
show differences in their structural ensembles, which are not evident from previous circular 
dichroism (CD) spectra or NMR chemical shift and J-coupling experiments (14, 67, 116, 119). 
While the NOESY data yield important differences in residue contacts observed for Aβ40 vs. 
Aβ42, these NMR experiments can only provide an ensemble-averaged picture of the tertiary 
contacts that occur, and not in what combinations they are present in specific, significantly 
populated conformers. As we have shown previously in our comparison study of Aβ21-30 (26) 
and Aβ42 (48), and more recently in a review of different computational approaches for 
generating IDP conformational ensembles (18, 64, 130-135), de novo molecular dynamics (MD) 
simulations provide one of the best approaches for most reliably characterizing the structural 
ensembles sampled by Aβ42 and Aβ40 as monomers.  

We find that the MD simulation data, further refined with the ENSEMBLE method (52, 
54, 63, 141)) and validated against a range of experimental NMR data including 1H NOEs, show 
that both peptides have a diverse set of secondary structure elements including turns, helices, and 
parallel and anti-parallel b-strands in ~99% of the ensemble conformers. However, the most 
significant difference in the structural ensembles of the two peptides is the type of β structures 
they populate. We find that Aβ42 forms a major anti-parallel β-hairpin involving the central 
hydrophobic cluster (CHC) residues 16-21 and residues 29-36, typically forming with a turn at 
residues 26-27 which is rarely present in the Aβ40 ensemble (48). This dominant sub-population 
is consistent with the β-strands and β-turn that form an intermolecular β-sheet steric zipper (43, 
219) in models of the Aβ40 and Aβ42 fibril structures based on solid state NMR (103). Instead, 
Aβ40 forms an alternative but less populated anti-parallel β-hairpin between the CHC and 
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residues 9-13, that sometimes forms a β-sheet when the CHC associates with a third β-strand 
comprising residues 35-37.  

We find that the two additional C-terminal hydrophobic residues of Aβ42 sharply 
increases the hydrophobic clustering between residues 39-40 and 31-36 for Aβ42 compared to 
Aβ40, and when Ile41 is included the number of structures with hydrophobic contacts with 31-
36, it increases to a decisive majority of the Aβ42 ensemble. This hydrophobic clustering is 
directly responsible for the differences in the populations of secondary structure, and β-strand 
content in particular, of the two amyloid peptides. When our new experimental NOEs and 
simulated ensemble results are placed in the context of experimental and theoretical evidence 
accumulated over the last decade (20, 66, 116, 119, 125, 164, 220-224), we believe that a good 
consensus has been reached on the monomeric structural ensembles of amyloid-β and the 
differences that exist between Aβ40 and Aβ42. Based on this consensus, the underlying 
structural differences between the two Aβ monomeric ensembles are in themselves sufficient to 
provide clear and testable hypotheses for why the nucleation step for fibrillization may be more 
difficult for Aβ40 compared to Aβ42. 

Methods 
NMR Experiments 

The Aβ40 and Aβ42 monomers were purchased and prepared according to the protocol in (48). 
A more detailed description is provided in a previous publication (50, 64, 128, 139) and 
extensively in the Appendix. In this work we also corrected the experimental 3JHNH

α values by 
Wang et al. using the method described by Vuister and Bax (93), also described in the Appendix. 
This correction accounts for the effect of selective T1 relaxation so that the resulting J-coupling 
constants are comparable to those measured more accurately from COSY splittings. 

Molecular Dynamics Simulations 

We computed equilibrium ensembles of Aβ40 and Aβ42 peptide conformations at 287 K and 
311 K using Multi-Reservoir Replica Exchange (MRRE) (31) and AMBER 11 (111, 129, 144). 
The peptides were modeled with the Amber ff99SB force field (23, 24) and solvated with TIP4P-
Ew water (25), which is currently the best force field combination for reproducing NMR 
observables of flexible peptides (90) and 1H-1H NOE data (26, 48). Two independent MRRE 
simulations for each peptide generated final ensembles of  70,000 - 90,000 structures pulled from 
0.1 µs of replica exchange simulation time at each temperature. We also performed 100 separate 
20 ns microcanonical ensemble simulations for each peptide in order to calculate time-
correlation data. Further details can be found in the Appendix to Chapter 3. 

ENSEMBLE Refinements 

We also consider the ENSEMBLE software package (52, 54, 63, 141), which selects from a 
large starting pool or “basis set” of structures a subset of conformations that best conform to 
various NMR experimental data supplied to it. We performed an ENSEMBLE optimization 
using the de novo MD ensemble as the starting ‘soup’ of structures, and we supplied chemical 
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shifts, J-coupling constants, and RDCs for both Aβ40 and Aβ42. We used default values of the 
ENSEMBLE program for the experimental observable target energies and selected ensembles of 
100 structures from the soup to best match the NMR data, combining the 20 best ensembles for a 
total of 2,000 structures in the final MD-ENS ensembles. Further details are given in the 
Appendix. 

Calculation of NMR Observables 

We back-calculated chemical shifts, J-coupling constants, Residual Dipolar Couplings (RDCs) 
based on local (141) and global alignments (96), and 1H-1H NOEs from our 287 K Aβ40 and 
Aβ42 refined ensembles with the same procedure used for Aβ42 (48) and for IDPs (51, 53, 55-
57, 64). All details of how the procedure differed in the case of Aβ40 are available in the 
Appendix. Finally, we calculated 1H-15N NOEs for the Aβ40 and Aβ42 backbone N-H atoms 
from the 287 K refined ensembles and MD correlation times. We use the same method as for the 
1H-1H NOEs (described in the Appendix) to calculate the spectral density function for each pair 
of H-N atoms from the short NVE simulations. We then calculate the steady state NOE 
enhancement factor of the 15N spin by the 1H NOE from our structural ensemble and dynamical 
trajectories as described elsewhere (64, 153), and which we recapitulate in the Appendix. 

Results 

Summary of Experimental NMR Data for Aβ40 and Aβ42 

We find that the hydrogen and carbon chemical shifts for both Aβ40 and Aβ42 do not differ 
significantly from random coil values (Figure 5.7)6, and based on analysis of chemical shifts 
using webserver http://www-vendruscolo.ch.cam.ac.uk/d2D/ (160, 161), both peptides have 
significant β-strand content if backbone nitrogen chemical shifts are considered (163). However 
if nitrogen chemical shifts (which have larger experimental uncertainty compared to hydrogen 
and carbon chemical shifts) are not included in the webserver calculation, then the absolute 
probabilities of β-strand structure were found to be very low for both peptides.  

J-coupling values also provide no strong evidence of structural differences between the 
Aβ peptides (Figure 5.8), i.e. there are no secondary structure “blocks” at different points in the 
peptide sequence that would be consistent with a dominant population of α-helical or β-strand 
secondary structure (as in a folded protein) that is different between the two peptides. However, 
the scalar couplings for both peptides are shifted upward from random coil to yield values mostly 
between 6.0-8.5 Hz, consistent with an extended random coil ensemble or the presence of β-
strand structure, and there are certainly quantitative differences in the scalar couplings between 
the peptides. While these highly averaged data may imply that the two peptides do not have 
substantially different structural ensembles, 1H-15N, and 1H NOE data do provide more 
information about important structural differences between the conformational ensembles of 
IDPs Aβ40 and Aβ42.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This and all other figures in this chapter are reproduced from (65) with permission. 
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Experimental RDCs (Figure 5.9 and 5.10) are also difficult to interpret structurally 
because the timescale of interconversion between IDP conformational states may be on the same 
order as the timescale of the protein realignment in the anisotropic medium. However, RDCs for 
Aβ40 and Aβ42 vary along the peptide sequences and show differences between the two 
peptides. Thus, these RDC data contain information about Aβ40 and Aβ42 structural differences, 
which can help to determine the correct ensembles. 

Our high field 1H NOE data identifies 707 crosspeaks for Aβ42 and 1108 crosspeaks for 
the Aβ40 peptide, but only 382 and 196 of these crosspeaks, respectively, can be uniquely 
assigned from experimental information alone. This is due to the fact that the NOESY spectra are 
crowded, different 1H atoms have the same chemical shift, and many NOE peaks have multiple 
possible assignments (Figure 5.11). In the case of a strong NOE where only one of the possible 
assignments is a short-range interaction, we can confidently assign the peak. Most of the 
assigned cross peaks are intra-residue or sequential peaks, and 147 of them are a result of the 
same 1H-1H contacts occurring in the Aβ40 and Aβ42 ensembles. However Table 5.1 shows that 
235 of the crosspeaks are unique to Aβ40 and 49 are uniquely present for Aβ42. Therefore, the 
NOEs which can be assigned from experimental information alone already indicate that the 
structural ensembles are different between the two peptides. 

  Aβ40 Aβ42 Both peptides 
Total Assigned NOE peaks 382 196 147 
Intra-residue and sequential 362 185 142 
i to i+ 2 20 9 5 
i to i+ 3   1   
i to i+ 4   1   

Table 5.1. Summary of experimentally assignable NOEs determined for Aβ40 and Aβ42. Only ~25% of peaks for 
each peptide are assignable from experiment alone, and the third column indicates the assigned peaks that are 
present in both the Aβ40 and Aβ42 spectra.  

We cannot assign the longer-range NOE peaks uniquely to one 1H-1H contact because all 
possible assignments are long-range and therefore it is unclear which is correct. However, we 
can see that the Aβ40 and Aβ42 spectra are different (Figure 5.11) and many of the longer-range 
NOEs present in the Aβ40 ensemble are not present for Aβ42 and vice versa. For example, if we 
look at NOE peaks that because of the chemical shifts (which restrict residue types involved) 
cannot be a result of any contact between residues closer than i to i+5, we see that 19 out of 40 of 
the Aβ40 NOEs are not present in the Aβ42 spectrum and 28 out of 46 of the Aβ42 NOEs are not 
present in the Aβ40 spectrum (Table 5.2). This indicates that there are several long-range NOEs 
for each peptide that are unique to its structural ensemble, and therefore the two amyloid peptide 
ensembles have distinct structurally features. Further details on the 1H NOE’s are presented in 
the Appendix in Tables 5.4 and 5.5. For further interpretation a computational model is needed 
that is validated by the available NMR data and yet expands upon the molecular structure 
information that would explain the NOE differences found between the two peptides. 
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  Aβ40 Aβ42 
Total NOE peaks 1108 707 
Intra-residue and sequential 828 537 
i to i+ 2 142 68 
i to i+ 3 58 36 
i to i+ 4 40 20 
i to i+ 5 11 (2) 13 (8) 
i to i+ 6 7 (3) 4 (1) 
i to i+ 7 10 (8) 9 (6) 
i to i+ 8 2 (2) 3 (0) 
i  to i+9 2 (0) 6 (1) 
i  to i+10   1 (0) 
i  to i+11 2 (2)   
i to i+12 1 (0) 3 (0) 
i  to i+13 2 (2)   
i to i+14 2 (1) 3 (1) 
i to i+20 1 (1) 2 (1) 
i to i+21   1 (0) 
i to i+24   1 (0) 

Table 5.2. Summary of remaining experimental NOEs determined for Aβ40 and Aβ42. For the remaining ~75% 
peaks that cannot be assigned, peak intensities may be composed of a single pair contact of which several pair 
contacts are possible assignments, or may be composed of multiple, fractional contact pairs. In either case we 
provide the experimental lower bound, n, for i to i+n contacts for the unassigned peaks for each peptide. The value 
in parentheses indicates the number of these peaks that are present in the other peptide spectra as well. This value is 
given only for contacts from i to i+5 or greater. Some data reproduced from (64, 157). 

Experimental Validation of Theoretically Derived Structural Ensembles for Aβ40 
and Aβ42 

In a recent review we considered the effectiveness of de novo MD for generating IDP structural 
ensembles for Aβ40 and Aβ42 (56, 64), as compared to random coil or statistically biased 
secondary structure ensembles, or selecting a subset of structures from the random or statistical 
ensembles that give a best fit to experimental NMR data, such as developed in the ENSEMBLE 
(52, 54, 63, 141) and ASTEROIDS (50, 61, 62) approaches. The performance of a given 
computational method was judged by the ability of a given model to reproduce chemical shifts, J 
couplings, and RDCs based on local (L-RDC) and global alignments, and experimentally 
assignable 1H-1H NOEs, as averages over the entirety of their conformational ensembles.  

We showed that ensembles of structures based on random coil or statistical 
conformational distributions perform poorly, and there were no subset of structures from these 
ensembles that could substantially optimize their agreement with the NMR data for Aβ40 and 
Aβ42. Instead, ensembles incorporating structural members from the de novo MD calculations 
that contain significant amounts of cooperative secondary structure content gave much better 
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agreement with all NMR data. Table 5.3 summarizes the quality of the de novo MD ensemble 
compared to an additional step of refining the de novo MD ensemble using knowledge from 
NMR experiments conducted on the Aβ40 and Aβ42 peptides using the ENSEMBLE software 
package (MD-ENS). We note that the MD and MD-ENS ensembles reproduce the chemical shift 
data equally well, although the chi-squared statistic is lower for the MD-ENS calculation. It is 
evident from Table 5.3 that while the MD-ENS structural ensemble is better optimized against 
scalar couplings and L-RDCs by construction, RDCs based on global alignments are improved 
(Figure 5.9) but not to the same extent as L-RDCs (Figure 5.10). NOE’s based on experimental 
assignment are predicted equally well by MD-ENS when the correlation times from the de novo 
MD simulations are used.  

 
Average Property Aβ40 MD 

 
Aβ40 MD-ENS 

 
Aβ42 MD 

 
Aβ42 MD-ENS 

Hα χ2 0.58 0.30 0.54 0.33 
HN χ2 0.36 0.34 0.48 0.37 
Cα χ2 0.69 0.46 0.98 0.51 
Cβ χ2 0.70 0.36 0.52 0.34 
3JHNH

α 0.99 (1.82) 0.62 (0.72) 0.99 (1.83) 0.54 (0.56) 
RDC (Hz) 2.22 1.69 2.25 2.13 
L-RDC (Hz) 1.88 0.18 2.14 0.33 
H2O NOEs (assigned) 1.15 (0.74) 1.12 (0.74) 1.25 (0.67) 1.21 (0.68) 
D2O NOEs (assigned) 3.22 (0.55) 3.19 (0.55) 0.58 (0.80) 0.57 (0.80) 
1H-15N NOEs 0.17  0.21  

Table 5.3. Comparison between de novo MD (MD) and experimentally optimized MD (MD-ENS) structural 
ensembles for Aβ40 and Aβ42. For chemical shifts we report χ2, which measures agreement between the 
computational ensembles and the experimentally measured chemical shifts within SHIFTX (99) calculator error. We 
also provide the RMSD between experiment and calculated ensembles for 3JHNH

α and (χ2). RMSDs for RDCs are 
based on either global alignments using PALES (96) or on local alignments (L-RDCs) evaluated with ENSEMBLE 
(141). For NOEs we consider the simulated agreement with experiment for NOEs that can be assigned from the 
spectrum alone. The RMSD is normalized by the NOE intensity value for each peak to yield the N-RMSD and 
(correlation coefficient, r) for the H2O and D2O experiments. In this work we have used the decay timescales of 
specific proton pairs from the de novo MD simulation to inform the calculation of the MD-ENS NOEs. Finally we 
provide the RMSD between experiment and de novo MD for the heteronuclear NOE’s; these are a purely dynamical 
phenomena and hence can only be derived from the MD simulation. Some data reproduced from (58, 64). 

We found that the Aβ40 de novo MD ensemble is more extensively optimized using the 
ENSEMBLE method compared to the Aβ42 peptide. For Aβ40 nearly half the residues across 
the sequence exhibit a decrease in the percentage of the ensemble where they are involved in β-
strand structure. By contrast for Aβ42 there are fewer changes in the qualitative features of the 
ensemble and the ENSEMBLE optimization amplifies the primary β-hairpin that is discussed in 
more detail below. Because the optimization of J-coupling and RDC data results in changes in 
each type of secondary structure at the Aβ42 C-terminus, it is difficult to draw a direct 
connection between the change in the observable value and difference in the structures present. 
However Table 5.8 gives more detailed changes observed in the calculated MD vs. MD-ENS for 
each peptide.  
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Overall, the quantitative agreement between experiment and back-calculations with 
structures from MD-ENS for chemical shifts (Figure 5.7), scalar couplings (Figure 5.8), and L-
RDCs evaluated with ENSEMBLE (141), and the 1H-15N and assignable NOEs are very good 
(Table 5.3), although the Aβ40 2H2O spectrum agreement is less good than the other NOEs. 
Furthermore, given the de novo or MD-ENS ensemble of 1H-1H contacts, and using the 
corresponding timescales given by de novo MD simulations to calculate NOEs with the MD-
ENS, we can also predict the assignments of the unknown experimental cross peaks (Tables 5.4 
and 5.5). We also provide the experimentally assignable cross-peaks not due to intra-residue or 
sequential contacts and agreement with MD-ENS (Tables 5.6 and 5.7). We therefore choose to 
analyze the MD-ENS structural populations for the Aβ40 and Aβ42 peptides given its consistent 
high quality performance against all available experimental NMR data. 

Structural Ensemble of Aβ40 and Aβ42 

Given the strong validation against a range of experimental NMR data, we now use the MD-ENS 
structural ensembles to determine what differences there are between the Aβ40 and Aβ42 IDPs. 
The MD-ENS structural ensembles of Aβ40 and Aβ42 show stark differences between the two 
peptides. Figure 5.1 shows the propensities of each peptide to form β-turns, helical structure, or 
intramolecular β-bridges, β-hairpins or β-strands by residue, as averages over their 
conformational ensembles. As we found for Aβ42 (48), Aβ40 is a highly heterogeneous tertiary 
ensemble, which samples conformations reflecting all possible secondary structure categories 
and is composed of a range of collapsed structured states to highly extended conformations. 
Although Aβ40 samples some conformations very similar to ones seen in the Aβ42 ensemble, 
such as a highly populated turn centered at residues 7-8 or a helix near Ser26, the two peptides 
have substantially different secondary structure profiles overall. The simulated structural 
ensembles show that most of the long-range NOEs produced by each peptide are a result of 
hydrogen-bonded β-structure, however, different β-strand associations are formed in the Aβ40 
ensemble than in the Aβ42 ensemble. 
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Figure 5.1. Percentage of (a) Aβ40 and (b) Aβ42 simulated ensemble in different types of secondary structure by 
residue. The dashed red line represents α-helix, the solid blue line for β-bridges or β-strands, and the dotted black 
line for β-turns. 



 

 125	  

Figure 5.2 is a contact map from the MD-ENS simulated ensemble for each peptide (the 
corresponding de novo MD simulated contact map is given in Figure 5.12). The long-range 
contacts are clearly different in the Aβ40 and Aβ42 ensembles, and many of these long-range 
contacts are due to β-strand formation. Clearly visible in the Aβ42 contact map are two β-hairpin 
sub-populations between the CHC residues 16-21 and 29-36 in ~34% of the ensemble (Figure 
5.3a and 5.3b); one is defined by β-strand pairing of residues 16-17 with 35-36 (~16%) and the 
other by β-strand pairing of residues 17-21 with 29-34 (~18%). Furthermore, residues 26-27 
form a β-turn in ~22% of the population, half of which also occurs with the dominant anti-
parallel β-hairpin, consistent with the same 26-27 β-turn and the 16-21 and 29-36 β-strands that 
ultimately adopt the intermolecular arrangement of the stable mature fibril state. This feature is 
also consistent with a number of MD simulations that highlight the importance of residues 23-28 
for nucleating monomer folding (120) and supported by detailed structural characterization of the 
amyloid-β fragments Aβ21-30 (26, 48, 121, 122) and Aβ10-35 (104, 105), as well as the 
importance of residues 16-22 that promote β-sheet structure as discussed in (123, 124).  
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Figure 5.2. Contact map of the simulated ensembles of (a) Aβ40 and (b) Aβ42. This contact map gives the frequency 
of interaction between each pair of residues in the peptide MD-ENS simulated ensembles. White indicates contacts 
present in 100% of the ensemble and black indicates contacts never seen in the ensemble. We define two residues to 
be in contact if any of their heavy atoms are within 5 Å of each other. 
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Figure 5.3. The dominant 16-21 and 29-36 β-hairpin population for Aβ42. (a) Aβ42 forms a β-turn at residues 26-
27 with the 16-17 and 35-36 β-hairpin. The hydrophobic side chains of residues 39-41 (brown) also fold back to 
contact the side chains of residues 34-35 (yellow). The side chain of Gln15 (pink) caps the end of the β-hairpin by 
contacting residues 37-38. (b) Aβ42 forms the 26-27 β-turn and 17-21 and 29-33 β-hairpin with a C-terminal 
hydrophobic side chain interaction between 39-40 (brown) and 32-34 (yellow). Residues 12-13 (pink) also interact 
with the C-terminus around residue 38. Turns (blue), Helix (red), β-strands (green). 
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In contrast, Aβ40 forms an alternative, less populated anti-parallel β-hairpin between the 
CHC and residues 9-13 (Figure 5.4a) in ~10% of its ensemble, that sometimes includes CHC 
association with a third β-strand comprising residues 35-37 to define a β-sheet (Figure 5.4b). We 
note that Val18, at the center of the CHC, is in the middle of this Aβ40 β-hairpin and β-sheet. In 
fact, previous work by Yan and co-workers (125) examined side chain methyl groups, showing 
that Val18 is more ordered in Aβ40 compared to Aβ42. Our simulations provide an explanation 
for this experimental observation since we find that Val18 participates in more β-bridge or strand 
contacts within the Aβ40 ensemble (~14%) than in the Aβ42 ensemble (~3%).  In the Aβ42 
ensemble Val18 is found near the ends of the two β-strands involving the CHC and is less 
ordered as a result, due to fraying. 
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Figure 5.4. The dominant β-hairpin and β-sheet population for Aβ40. (a) Aβ40 forms the 9-13 and 16-21 β-hairpin. 
(b) The hairpin interaction between 17-20 and 35-37 occurs simultaneously to form a β-sheet with 3 strands. β-
strands (green). 
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However, each peptide exhibits small additional sub-populations of anti-parallel and 
parallel β-strand associations, although most are defined by two hydrogen bonds only (i.e. a β-
bridge). Figure 5.5a-5.5c provides three additional populations of β-strand structure for the Aβ42 
ensemble that are worth mentioning. The first is an increased amount of anti-parallel β-strand 
association between residues 3-6 and 10-13 which comprises ~10% of the Aβ42 ensemble, 
although we emphasize that 7% of the Aβ42 conformers are only stabilized by a single β-bridge. 
The second is a parallel β-strand association between residues 21-23 and 36-38 in ~8% of the 
ensemble, half the time exhibiting only one β-bridge. Finally there is an anti-parallel β-hairpin 
formed by residues 34-36 and 39-40 in 6% of the ensemble that is negligibly populated in the 
Aβ40 ensemble. This last β-hairpin is consistent with that found in previous MD studies on Aβ42 
(90, 195, 225), but it is not significantly populated and actually is subsumed into a larger sub-
population involving hydrophobic clustering in the C-terminus that is a direct result of Ile41 and 
Ala42. 
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Figure 5.5. Small sub-populations of Aβ42 conformations containing β-strands. (a) Aβ42 forms a β-turn at residues 
7-8 nucleating β-strand pairing of residues 3-6 and 10-13, along with a helix from residue 14-17 and at 32-35. (b) 
Aβ42 forms a parallel β-strand association between residues 21-23 and 36-38 while the 39-40 side chains (brown) 
contact Ile32 (yellow). (c) A C-terminal β-hairpin formed by residues 34-36 and 39-40.  Turns (blue), Helix (red), β-
strands (green). 
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The Role of Ile41 and Ala42 

Based on characterization of our simulated ensembles, we have found that the very different 
populations of β-strand structure for Aβ40 and Aβ42 are consequences of the two additional 
hydrophobic residues in Aβ42, Ile41 and Ala42, which can form inter-residue contacts not 
available to Aβ40. These two residues do not form hydrogen bonds in a significant portion of the 
ensemble, but they are able to form hydrophobic interactions. We observe increased hydrophobic 
clustering between residues 39-41 and 31-36 for Aβ42, and this C-terminus clustering occurs 
frequently with contacts between residues 37-38 and residues 12-16. These interactions are 
visible in the contact map (Figure 5.2b). The new intramolecular contacts in the Aβ42 ensemble 
isolate the CHC from the N-terminus and the C-terminus to preclude β-hairpin formation with 
either the 9-13 or 35-37 β-strands observed in the Aβ40 ensemble. Instead the CHC of Aβ42  is 
most frequently encased in a loop defined by residues 15-38 or 16-36 that promote the 26-27 
β-turn and/or β-hairpin that are compatible with known amyloid fibril forming regions. 
Furthermore, the more isolated N-terminus of the Aβ42 ensemble forms some type of β-bridge or 
β-strand association between residues 3-6 and 10-13 in ~10% of the ensemble, while Aβ40 forms 
it in only 3% of its ensemble. Parallel β-strand association between residues 21-23 and 36-38 
also always occurs with the hydrophobic contacts between 39-41 and 31-36, which is why it 
never occurs in the Aβ40 ensemble.  

Our simulated ensembles are also consistent with the slower relaxation rates and 
increased 1H-15N NOE intensities seen experimentally that indicate that the Aβ42 backbone is 
more ordered at the C-terminus than Aβ40 (66, 164). However, it is not known experimentally if 
order in the C-terminus arises from a populated helix or β-strand or from hydrophobic clustering 
often observed in disordered or unfolded states of proteins (143, 226). In Figure 5.6 we provide a 
comparison of the simulated 1H-15N NOE intensities for Aβ42 and Aβ40, which are in excellent 
agreement (64, 160, 161) with the experimentally measured values by Yan and Wang (125) 
(Table 5.3). We find there is an increase in 1H-15N NOE intensities calculated from simulation 
for residues 35-40 for Aβ42 compared to Aβ40 (the same seen experimentally), indicating that 
the longer peptide is more ordered at the C-terminus. We attribute this to the many hydrophobic 
interactions involving the Val40 side chain with residues 31-36 that make up 45% of the Aβ42 
ensemble compared to 13% of the Aβ40 ensemble, and when Ile41 is included the hydrophobic 
clustering increases to close to 60%. Example Aβ42 structures in which the dominant β-hairpin 
and 26-27 β-turn form along with a C-terminal hydrophobic contact between 39-41 and 31-36 
are shown in Figure 5.3a and 5.3b. 
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Figure 5.6. Comparison of simulated Aβ40 and Aβ42 1H-15N NOEs. The MD results show that the C-terminus is 
more ordered for Aβ42 when compared to Aβ40.  

When we analyze the de novo MD Aβ40 and Aβ42 ensembles derived at 311 K, near 
physiological temperature, we find that both peptides exhibit a decrease in population of the 
major turns and helices at the increased temperature, while Aβ40’s most populated β-strands at 
287 K melt out to yield significantly reduced percentages at the higher temperature. By contrast, 
the β-strands present in the Aβ42 ensemble are more stable and persist as the temperature 
increases, strengthened by the increase in hydrophobic clustering of the C-terminal residues 
which is expected to become more prominent with increasing temperature. This is consistent 
with the experimental finding from circular dichroism that the Aβ42 β-strand content is more 
stable than that of Aβ40 as the temperature of the sample is increased (119). 

Discussion 
For the past decade, Alzheimer’s researchers have been interested in understanding why Aβ42 is 
much more aggregation prone than Aβ40, despite their nearly identical sequences. Since 
fibrillization of Aβ has been shown to follow a nucleation-dependent polymerization mechanism 
(26, 48, 65, 227), the kinetic data imply that the nucleation barrier is smaller for Aβ42 than for 
Aβ40. We suggest that the underlying structural differences between the two Aβ monomeric 
ensembles identify three possible factors for why the nucleation step is more difficult for Aβ40 
compared to Aβ42.  
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The first is that in order to oligomerize or aggregate into a fibril-forming conformation 
containing intermolecular β-sheets at CHC residues 16-21 and 29-36, the Aβ peptide must 
overcome the free energy cost of breaking up any competing β-strand alignments. We have 
found that the CHC region of Aβ40 forms a different set of β-strand pairings than Aβ42. The 
fact that in the de novo MD ensemble the alternative β-strands for Aβ40 are less populated at 
higher temperatures means that the rate of fibrillization would increase with temperature, 
consistent with what is seen in fibrillization experiments (228, 229).  The second is the presence 
of the two additional C-terminal residues Ile41 and Ala42 of Aβ42 that prevents the longer 
peptide from forming the intramolecular β-sheet seen in the Aβ40 ensemble. Finally, the 
increased hydrophobic clustering at the Aβ42 C-terminus isolates the CHC within a loop 
comprising residues 15-38, placing it in register with the 29-36 β-strand to form an 
intramolecular β-hairpin. These same β-strands are also aligned in the intermolecular β-sheets 
exhibited in the insoluble fibrillar states.  

Thus, while the data do not make a direct connection between the Aβ40 and Aβ42 
monomer conformational ensemble data and oligomer and fibril energetics or formation kinetics, 
our new data allows us to comment on other proposed oligomerization pathways based on 
assumptions about the monomeric starting point. Several previous NMR studies have observed 
that the Aβ42 C-terminal residues are less flexible than those of Aβ40, leading some groups to 
surmise that the C-terminus is preordered in a β-sheet conformation similar to that occupied by 
fibrils and oligomers, and this contributes to Aβ42’s increased aggregation propensity (20, 66, 
119, 125, 164). Our data, however, indicate that this reduced motility of the Aβ42 C-terminus is 
a result of an extensive network of hydrophobic contacts in ~60% of the ensemble rather than β-
hairpin hydrogen bonds involving residues 34-36 and 39-40, which occur in only 6% of the 
ensemble.  

Mutational studies have argued that extended conformations at residues 41 and 42 of 
Aβ42 and a turn at residues 38-39 are important for aggregation (220, 221), leading Irie et al. to 
conclude that Aβ42 forms an intramolecular, anti-parallel β-hairpin between residues 40-42 and 
35-37 with turns at residues 33-34 and 38-39 (223). Again, our data contradict this picture in that 
we observe primarily hydrophobic contacts between these regions in the monomer ensemble, 
although we do find a small population of β-hairpin in this region of the sequence. Other 
mutation studies show that Aβ42’s aggregation propensity is related to the hydrophobicity of 
Ile41 and Ala42 (116, 220, 221), supporting our picture of a C-terminal hydrophobic cluster. We 
also observe that the C-terminal hydrophobic cluster contacts the central hydrophobic cluster at 
residues 16-21, which often accompanies the formation of the residue 26-27 β-turn, in a very 
similar conformation to that seen by Maji and coworkers via photo-induced cross-linking (224).  

Conclusions 
Previous all-atom simulation studies (89, 90, 120, 123, 195, 230-236) and experimental CD and 
NMR spectroscopy (14, 66, 67, 116) have sought to characterize the differences between the 
monomer ensembles of the Aβ40 and Aβ42 peptides. The CD studies indicated that both 
peptides should be primarily classified as random coil (116, 119), consistent with the same 
classification that was derived from chemical shift and J-coupling measurements (14, 66, 67). 
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We showed previously that a random coil ensemble for Aβ40 and Aβ42 does not agree well with 
the available experimental NMR data (64, 67). Even when we considered the assumption of an 
ensemble that uses direct secondary structure prediction algorithms for Aβ40 and Aβ42 (but with 
no cooperative secondary structure), the resulting ensembles did not agree with the experimental 
data. Further optimization using the ENSEMBLE method to refine the random or statistical 
ensembles of conformational sub-populations, an accepted procedure for generating IDP 
structural ensembles (54, 63, 141, 162), showed no improvement.  

Here we have taken a different approach and used the de novo MD results to provide a 
different “basis set” for selection of conformational states using the ENSEMBLE method. In this 
case the monomer ensembles of Aβ40 and Aβ42 have heterogeneous structure, presenting a 
diverse set of α-helix, β-turns, and β-strands. Based on the optimized MD-ENS structural 
ensemble of Aβ40 and Aβ42, which show very good agreement with the available NMR data, 
back-calculations of chemical shifts were also found to be consistent with random coils or 
ensembles with statistical or predictive assignments of secondary structure (64, 96).   

We have demonstrated that homonuclear 1H-1H NOE intensities and 15N-1H 
heteronuclear NOEs are more discriminating with regard to the tertiary contacts that define the 
important structural differences between the two Aβ peptides. J-coupling constants and RDCs 
provide additional quantitative information about the differences between Aβ40 and Aβ42 
ensembles when combined with simulation data. Our study is further distinguished by the 
productive interplay of molecular simulation to first simulate the NOE observables and thus 
validate the theory, which in turn can be used to further refine and interpret the NMR data for 
Aβ42 and Aβ40. It is important to emphasize that developing a structural model of the Aβ 
monomer ensembles based on the experimental NOE data, which are averaged by rapid 
exchange among conformers, would not be possible without the MD simulations providing 
details of individual structures.  

Our data reveal how the addition of residues 41 and 42 drastically changes the 
conformational landscape of the Aβ42 peptide by increasing hydrophobic interactions within the 
C-terminus that exclude the formation of intramolecular β-hairpins formed frequently in the 
Aβ40 ensemble. The major β-hairpin populated in the Aβ42 ensemble is a consequence of the 
increased hydrophobic interactions, resulting in increased propensity for a β-turn at residues 26-
27 and increasing the proximity of β-strands involving CHC residues 16-21 and 29-36, 
compatible with a stable pre-fibrillar oligomeric species known as the globulomer (68, 115) and 
various polymorphs of the fibril structure (224). 

The results presented here, along with experimental and theoretical evidence accumulated 
over the last decade, now provide a fairly consistent picture of the monomeric ensembles of 
amyloid-β and the differences between Aβ40 and Aβ42. The combination of studies unifies our 
understanding that the hydrophobicity of residues 41 and 42 is crucial to the behavioral 
difference between Aβ40 and Aβ42 (116, 220, 221), and that the Aβ42 C-terminus folds in on 
itself (220, 222, 223), reducing its flexibility compared to the Aβ40 C-terminus (20, 66, 119, 
125, 164). Our data contradict only the hypothesis that the Aβ42 monomer C-terminal structure 
is significantly populated by a β-hairpin involving residues 34-36 and 39-40. Instead, the Aβ42 
C-terminus forms primarily hydrophobic contacts, a classic feature of the disordered or unfolded 
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state (143, 226), which indirectly promotes β-hairpin structure that is compatible with known 
fibril forming regions of the Aβ sequence.  

Finally, the results here emphasize that the disease associated amyloid-β peptides, 
although clearly classified as IDPs, do not necessarily conform to the standard computational 
model assumptions or experimental expectations that have been so useful in characterization of 
functional IDPs (74) or IDPs with simpler helical structure motifs (162). In particular, successful 
use of NMR optimization approaches such as ENSEMBLE required the diverse cooperative 
secondary structure populations derived from de novo MD to achieve good agreement with the 
NMR data, rather than the commonly assumed random coil or statistical ensembles incorporating 
secondary structure as the possible conformational populations. 

APPENDIX 
NMR experimental method 

Recombinant Aβ40 and Aβ42 peptides were purchased from rPeptide (Athens, GA) reported to 
be > 97% purity. The peptide was lyophilized from trifluoroacetic acid (TFA). The alkaline 
pretreatment of Aβ and preparation of LMW Aβ by filtration protocols outlined by Teplow (79) 
were used to prepare a monomeric solution of Aβ. The lyophilized peptide was dissolved in 2 
mM NaOH to produce a peptide concentration of 0.21 mg/ml with a pH of > 10.5. The peptide 
was then sonicated for 1 min in a bath sonicator and lyophilized. It was then resuspended in 20 
mM sodium phosphate buffer, pH 7.2, 0.01% (w/v) sodium azide. This protocol ensures that 
when the lyophilized peptide is dissolved in buffer it will not pass through its pI of ~5.31. Before 
collecting NMR data, the sample was filtered with a 0.22 µm filter to remove aggregates and 
fibril seeds (79), and brought to a concentration of ~600 µM at pH 7.2. TOCSY and NOESY 1H-
1H homonuclear spectra were collected for both peptides at the NMR Facility at UC Berkeley on 
Bruker Avance II 800 and 900 MHz spectrometers, the latter equipped with a Bruker cryogenic 
probe. The data was processed as described in (48).  

The data were processed using NMRPipe and peaks were assigned and analyzed using 
CARA (80). Chemical shifts were assigned using 2D 1H-1H Total Correlation Spectroscopy 
(TOCSY) (81, 82, 141) and Nuclear Overhauser Effect Spectroscopy (NOESY) spectra (83-85, 
168). The TOCSY spectra were collected in a 90% H2O (10% 2H2O) buffer solution with a 
mixing time of 60 ms and in a 99% 2H2O buffer solution with a mixing time of 80 ms. The 
NOESY spectra were collected in a 90% H2O (10% 2H2O) buffer solution with mixing times of 
100 ms and 200ms, and in a 99% 2H2O buffer solution with a mixing time of 200 ms. In the 
direct dimension, 2048 points were collected while 445-512 complex points were collected in the 
indirect dimension. The spectral width was 10 ppm in each dimension (9 ppm in the direct and 2 
ppm in the indirect dimension for 2H2O) with 64 scans.  

Given that Aβ40, and Aβ42 in particular, are aggregation prone, our group and many 
others have used the alkaline pretreatment and filtration protocols outlined by Teplow and co-
workers (79) in order to prepare a monomeric solution of Aβ. Other studies (66, 237-242), which 
have observed large oligomeric Aβ populations in equilibrium with the monomer, have used 
different peptide preparation protocols that either do not remove fibril seeds or do not remove 
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them as effectively as the Teplow method, and therefore have likely greater amounts of 
aggregates. Therefore, we review previously obtained NMR data generated from preparation 
protocols that are the same or similar to the Teplow method. 

Hou et al. used translational diffusion and sedimentation equilibration experiments to 
show that the Aβ peptide samples prepared by the Teplow method are mostly monomeric (14) at 
concentrations between 0.15 mM and 0.80 mM, suggesting that our experimental conditions of 
0.60 mM contain primarily the Aβ monomer. Nonetheless, during the course of our NMR 
experiments we observed a loss in intensity of resonances, particularly for Aβ42, reflecting 
formation of some aggregated peptide. However, the NOESY spectra taken shortly after 
preparing a sample (when little aggregate is present) are the same as at later times (when more 
aggregate is present) in that no new signals are observed. Furthermore, the NMR chemical shifts 
and line widths do not vary over time or as a function of concentration, consistent with rapid 
relaxation for the aggregate due to its high molecular weight (14, 66).  

Although signals from the aggregated species are not observed, in principle peptides 
could exchange between aggregated and monomeric states, and NOEs reflecting the aggregated 
state could be detected in free peptide. A careful study of relaxation parameters for Aβ solutions 
prepared as ours showed that the interactions of free peptide with aggregates are weak (so little 
peptide is bound to the aggregate), that the kinetics of exchange are relatively slow, and that the 
relaxation in the bound state is very rapid (145, 243). These features show that exchange 
transferred NOEs from aggregated states do not contribute to the observed NOEs, which must 
then arise from the monomeric state. In summary, all available evidence makes a convincing 
case that the NMR data that we and others have collected on properly prepared Aβ40 and Aβ42 
species are fully representative of the monomeric form. 

Peaks were identified at particular chemical shifts in the 200 ms mixing time NOESY 
spectra in both H2O and D2O for Aβ40 and Aβ42, and those peaks that could be unambiguously 
assigned to two specific hydrogen atoms were used to calibrate the NOE peak intensities derived 
from simulation. The majority of peaks could not be clearly assigned to a unique pair of 
hydrogen atoms due to spectral overlap; these peaks were instead assigned a list of potential 
hydrogen pairs consistent with observed peak frequencies, made up of atoms within a 0.04-0.08 
ppm range around each observed peak. 

ENSEMBLE Refinements  

We first attempted to converge chemical shifts before converging J-coupling constants or RDCs, 
as recommended in Krzeminski et al. (58). We ran each ENSEMBLE optimization for 48 hours 
on a Cray XE6 at NERSC, during which ~500 rounds of ENSEMBLE optimization steps were 
completed. While the chemical shifts and J-coupling constants were able to meet their target 
values in that amount of time, the RDCs were unable to converge to their target energy even after 
~5000 ENSEMBLE runs, although when we compared the RDC values to the experimental data 
the agreement was good, leading us to conclude that the target was set too stringently. We 
therefore selected those ensembles that did the best overall on reproducing the NMR data, 
picking the ensemble with the lowest energy according to the ENSEMBLE weighting function 
for quantitative analysis. We then combined the 20 lowest energy ensembles of 100 structures to 
create a final ensemble of 2000 structures. 
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Ensemble Structural Analysis 

Structural analysis of the de novo molecular dynamics simulations of Aβ40 and the Aβ42 287 K 
and 311 K ensembles was performed using ptraj, DSSP (97), perl scripts and MATLAB (The 
MathWorks, Natick, MA) scripts. The secondary structure designations we used to describe the 
Aβ40 and Aβ42 ensembles are all based on the DSSP criteria described by Kabsch and Sander 
(97). We also used ptraj to identify the most commonly formed hydrogen bonds and salt-bridges 
and calculated distances between residue side chains. Side chain contacts were defined using a 7 
Å cut-off between side chain centers of mass, and salt bridges were defined with 4 Å distance 
cut-off between heavy atoms and a 60° angle cut-off. In-house scripts were used to identify 
particular secondary structure features, side chain contacts, and hydrogen bonds that are present 
simultaneously in the Aβ42 ensemble. 

Calculation of NMR observables methods 

For both Aβ40 and Aβ42 we calculated NMR chemical shifts, scalar-coupling constants, residual 
dipolar couplings (RDCs), 1H-1H NOE peak intensities, and 1H-15N NOEs from our simulated 
ensemble data.  

Chemical Shifts. Figure 5.7 shows the agreement between experimentally measured hydrogen 
and carbon chemical shifts and that calculated as averages over the MD-ENS structures using the 
program SHIFTX (99).  

Homonuclear NOE Intensities. We use the method of Peter et al. (94) to calculate the spectral 
density function (which is related to the NOE peak intensity) from the short NVE simulations. 
Specifically, we use ptraj to analyze the NVE simulations. The ptraj output is the normalized 
correlation function for each pair of hydrogen atoms of the Aβ peptides. These are calculated 
according to 

    (5.1a) 

where r(t) is the vector between each hydrogen atom pair at time t, χt,t+τ is the angle between the 
r(t) and r(t+τ) vectors, and P2 is the second order Legendre polynomial. We multiply these 
normalized correlation functions by <r-6(t)> , averaged over the individual trajectory, to obtain 
the expression 

     (5.1b) 

for each of the independent 100 20-ns NVE simulations and average these values together, then 
re-normalize the average correlation function by dividing by <r-6(t)>, averaged over all NVE 
simulations (equivalent to dividing the entire correlation function by the value at t=0) . Each 
correlation function is then fit over a 5 ns range for τ to a multi-exponential form  

C τ( ) = 1
r6 t( )

−1
P2 cosχ t,t+τ( )
r3 t( )r3 t +τ( )

P2 cosχ t,t+τ( )
r3 t( )r3 t +τ( )
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     (5.2) 

with N = 1, 2, 3, or 4 and 

 

using the MATLAB function lsqcurvefit, which fits curves in a least-squares sense (The 
MathWorks, Natick, MA). The value for N is determined using Mallow’s Cp statistic (95, 170), 

     (5.3) 

where S is the set of N covariates, Rtr, the training error, is the square difference between the 
correlation values and the fit exponential function, k is the number of regressors (2N - 1), and σ2 
is the variance under the full model, which we estimate as 0.001 based on a selected number of 
spin vectors. The value of N that yields the lowest value for Mallow’s Cp statistic is used as the 
fit, which is a better criterion for model selection than simply the training error, which is biased 
towards higher values of N.  

The resulting time correlation function can be Fourier-transformed  

     (5.4) 

to yield 

    (5.5) 

following the convention for Fourier-transforms of exponentials. The correlation time constants, 
τi, have a practical upper bound imposed by the rotation of the entire peptide in solution. No 
vectors may remain correlated at timescales longer than the rotational correlation time of the 
entire molecule in the slowest dimension. In cases where the average correlation function for the 
vector between two hydrogen atoms is fit with a time constant greater than 15 ns (around 5% of 
cases), we replace the long time constant with a time constant of 15 ns, which is a reasonable 
value for the longest possible rotational time-scale as described in (48).  

We predict the Aβ40 and Aβ42 NOESY spectra from our structural ensemble and 
dynamical trajectories by calculating the intensity from a different relaxation matrix R, 
composed of diagonal elements  
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   (5.6a) 

and off-diagonal elements 

.
    (5.6b) 

We simulate all hydrogen atoms explicitly for each methyl group and hence calculate all pair 
correlation functions, including neighboring methylene and methyl group protons, and we ignore 
water proton coordinates, as is the standard assumption in the NMR experiment.  

We solve for the magnetization matrix at the mixing times that were used in both H2O 
and 2H2O NOESY experiments, removing all exchangeable hydrogen atoms to simulate 2H2O 
buffer conditions. For the H2O experiment, we multiply all amine intensities by 0.9 to account 
for the presence of 10% 2H2O, and remove all basic amine and hydroxyl groups, which would 
not appear due to broadening caused by exchange with solvent. We then add all of the 
degenerate intensities from methyl groups and intra-residue spins that are indistinguishable in the 
NMR spectra.  

Finally, the constant relating the t = 0 matrix, M(0) of unity to the experimental cross-
peak intensity scale, is approximated by fitting a line of best fit (restrained to cross through the 
origin) to a plot of known experimental intensities (those that were unambiguously assigned) 
versus their corresponding calculated intensities. For this plot, the experimental intensity values 
are an average of the peak intensities measured on either side of the diagonal in order to 
compensate for base-line differences on either side of the diagonal. The slope of this line can 
then be used as a conversion factor for all calculated intensities. All reported intensities 
(experimental and simulated) are also normalized by an estimate for the smallest experimentally 
identifiable peak intensity, so that an intensity of 1 indicates the smallest intensity that should be 
visible experimentally. After NOE peaks were calculated from the simulated ensemble the 
intensities were compared with the experimental intensity and expressed as multiples of smallest 
experimentally identifiable peak. This generated a distribution of simulated NOE peak intensities 
corresponding to every possible atomic contact. For these relative intensities, only peaks with 
intensities above 1 are expected to be experimentally visible above noise.  

Heteronuclear NOEs. We use the same method as above to calculate the spectral density 
function for each pair of H-N atoms from the short NVE simulations for the H-N backbone bond 
of each residue of Ab40 and Ab42. We then calculated the steady state NOE enhancement factor 
of the 15N spin by the 1H NOE from our structural ensemble and dynamical trajectories 
according to  

     (5.7) 

where γH and γN are the gyromagnetic ratios of 1H and 15N, respectively. The 1H-15N cross-
relaxation rate constant is given by  
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   (5.8) 

and the 15N self-relaxation by 

 

           (5.9)
 

where ω0,H is the Larmor frequency of 1H and ω0,N is the Larmor frequency of 15N, and the 
constant factor K is defined as 

     (5.10) 

where µ0 is the permeability of free space, and  is Planck’s constant. The effective r vector 

     (5.11) 

is the average of the r-6 values, which has then been converted back into units of distance. 

J-Coupling Correction. In order to account for the effect of selective T1 relaxation on the J-
coupling constants measured using quantitative J-correlation and obtain experimental J-coupling 
constants comparable to those measured from COSY splittings, we used the method described by 
Vuister and Bax (93) involving Eq. 4 in their paper, 

      

,   (5.12) 

describes the time dependence of the in-phase and antiphase amide proton magnetization during 
the dephasing period, 2ζ,. We solve this set of coupled differential equations to obtain 

,    (5.13a) 

where  

,     (5.13b) 
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which is dependent on the selective T1 relaxation time constant, T1sel. If T1sel is assumed to be 
infinite, meaning that magnetization components giving rise to diagonal and cross-peaks relax at 
the same rate, then Eq. 5.13a reduces to 

.     (5.14) 

This was the assumption made by Wang et al. when originally calculating the J-coupling 
constants, Japp, so in order to find the true magnetization ratio, we must plug in Japp to Eq. 5.14, 
along with the dephasing time 2ζ = 26.1 ms for t,  

.    (5.15) 

Then, we can use this ratio to calculate the true JHH, setting the full form of the equation (Eq. 
5.14) equal to Eq. 5.15, 

,    (5.16) 

and solving for JHH. To calculate the T1sel time necessary for Eq. 5.16, we sum the cross 
relaxation on the amide hydrogen of each residue due to every other hydrogen atom in the 
peptide, according to  

,     (5.17) 

where  

, 
    (5.18) 

for the hydrogen atom pair, calculated from the correlation times of the H-H vector in our MD 
simulations. reff is also calculated based on there H-H distances in our simulated ensemble. T1sel 
for each residue is then simply the inverse of R1. 

Figure 5.8 compares the experimentally measured scalar-coupling constants (with the 
correction described above) and values calculated as averages over the MD-ENS conformations 
as described previously (48), using the original Vuister and Bax parameter set (93) for the 
Karplus equation (92).  

Residual dipolar couplings. Figure 5.9 compares the experimentally measured RDCs and those 
calculated as averages over the MD-ENS of structures using PALES (96) and multiplied by a 
constant factor (48) for comparison to experimental data from Yan et al. (67).  
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Peak Types 
All NOE 
peaks 

Long range peaks (i to 
i+2 or greater) 

Experimentally observed peaks 1108 280 
Experimentally assigned peaks 382 20 
Experimentally unassigned peaks 726 260 
  
Simulated peaks 1660 543 
Simulated peaks agree experimentally assigned 
peaks 

356 11 
Simulated peaks agree experimentally unassigned 
peaks 

652 206 
  
False negatives 100 64 

False negatives found in high noise regions -42 -31 
False negatives: atomic contacts on same residue 
pairs -51 -26 

False negatives inconsistent with experiment 7 7 
  
False positives 652 326 

False positives found in high noise regions -206 -101 
False positives: atomic contacts on same residue 
pairs -364 -171 
False positives made up of numerous weak 
contacts 

-10 -7 
False positives inconsistent with experiment 72 47 

Table 5.4. Summary of statistics of Aβ40 experimental NOEs and calculated NOEs from MD-ENS, and analysis of 
the number of false positives and false negatives. 
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Peak Types 
All NOE  
Peaks 

Long range peaks (i to 
i+2 or greater) 

Experimentally observed peaks 707 170 

Experimentally assigned peaks 196 11 
Experimentally unassigned peaks 511 159 
 
Simulated peaks 1007 173 
Simulated peaks agree experimentally assigned 
peaks 178 1 
Simulated peaks agree experimentally unassigned 
peaks 361 46 
  
False negatives 168 123 
False negatives found in high noise regions  -69 -54 
False negatives explained by atomic contacts on 
same residue pairs -67 -37 
False negatives inconsistent with experiment 32 32 
  
False positives 468 126 
False positives found in high noise regions  -141 -30 
False positives explained by atomic contacts on 
same residue pairs -249 -60 
False positives made up of numerous weak contacts -9 -5 
False positives inconsistent with experiment 69 31 

Table 5.5. Summary of statistics of Aβ40 experimental NOEs and calculated NOEs from MD-ENS, and analysis of 
the number of false positives (peaks that were predicted from simulation but not seen experimentally) and false 
negatives (peaks seen experimentally but not predicted to be visible above the noise). 
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Atom 1 Atom 2 

Calculated 
H2O NOE 
intensity 

Experimental 
H2O NOE 
intensity 

Calculated 
2H2O NOE 
intensity 

Experimental 
2H2O NOE 
intensity 

Hα  ASN 27 H  GLY 29 6.03 1.97 0.00  
Hε  TYR 10 Hγ1  VAL 12 4.80 5.64 5.09 5.29 
Hε  TYR 10 Hγ2  VAL 12 4.80 2.68 5.09 2.86 
Hδ  TYR 10 Hγ1  VAL 12 4.71 5.86 4.92 5.34 
Hδ  TYR 10 Hγ2  VAL 12 4.71 2.99 4.92 2.45 
Hβ  ASP  7 H  GLY  9 4.31 1.80 0.00  
Hε  PHE 19 Hβ  ALA 21 3.93 8.26 4.19 4.49 
Hα  ASP 23 H  GLY 25 3.85 2.08 0.00  
Hβ  ALA  2 H  PHE  4 3.31 3.01 0.00  
Hα  SER  8 H  TYR 10 1.95 2.25 0.00  

Hα2  GLY 37 H  VAL 39 1.33 11.59 0.00  
Hβ3  SER  8 H  TYR 10 1.29 10.32 0.00  
Hδ1  LEU 17 Hε  PHE 19 1.28 8.16 1.34 5.23 
Hγ2  VAL 18 Hε  PHE 20 1.07 5.84 1.13 4.51 
Hγ2  VAL 18 Hδ  PHE 20 0.96 4.09 0.99 4.15 
H  GLU 22 Hγ  VAL 24 0.80 2.68 0.00  

Hδ1  LEU 17 Hξ  PHE 19 0.80 8.25 0.84 6.35 
Hγ2  VAL 12 Hδ2  HIS 14 0.43 5.49 0.43 2.90 
Hγ2  VAL 18 Hβ3  PHE 20 0.36 3.51 0.34 1.59 
Hα  LEU 17 Hξ  PHE 19 0.22 2.55 0.25  

Table 5.6. List of Aβ40 experimentally assigned NOE peaks that are not due to intra-residue or sequential contacts 
along with calculated NOE values from MD-ENS ensemble for both H2O and 2H2O. 

Atom 1 Atom 2 

Calculated 
H2O NOE 
intensity 

Experimental 
H2O NOE 
intensity 

Calculated 
2H2O NOE 
intensity 

Experimental 
2H2O NOE 
intensity 

Hε  TYR 10 Hγ2  VAL 12 1.22 1.63 0.98 1.84 
Hδ  TYR 10 Hγ2  VAL 12 1.00 1.52 0.79 1.70 

Hγ3  GLU 22 Hγ  VAL 24 0.94 3.29 0.72  
Hβ  ASP  7 Hδ  TYR 10 0.84 1.50 0.69  
Hδ  PHE 20 Hγ  VAL 24 0.82 1.98 0.66 3.44 

Hδ1  LEU 17 Hδ or ε  PHE 19 0.75 3.06 0.60 5.07 
Hε  PHE 20 Hγ2  GLU 22 0.73 1.32 0.59  

Hγ2  VAL 18 Hδ  PHE 20 0.39 2.85 0.29 2.70 
Hγ2  VAL 18 Hε  PHE 20 0.36 1.57 0.29 2.98 
Hδ  PHE 20 Hγ3  GLU 22 0.28 1.70 0.21  

Hγ2  VAL 18 Hξ  PHE 20 0.23 1.52 0.18 1.63 

Table 5.7. List of Aβ42 experimentally assigned NOE peaks that are not due to intra-residue or sequential contacts 
along with calculated NOE values from MD-ENS ensemble for both H2O and 2H2O. 
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 Aβ40  Aβ42 

Residue 
β-strand 
MD 

β-strand 
MD-ENS 

Change between 
MD and MD-
ENS β-strand MD β-strand MD-ENS 

10 32% 8% 
J-coupling 
decrease   

11 32% 11% L-RDC increase   
17 32% 10% L-RDC increase   
19 33% 12% L-RDC decrease   
20 36% 12% L-RDC decrease   

21 20% 7% 
J-Coupling 
decrease   

26 9% 2% L-RDC increase   
27 12% 3% L-RDC increase   

32   
J-coupling 
decrease 17% 22% 

33   L-RDC increase 4% 19% 

36 36% 15% 
J-Coupling 
decrease   

37 28% 12% L-RDC increase   

40   
J-coupling 
decrease 5% 18% 

      
    α-helix MD α-helix MD-ENS 
15   L-RDC increase 19% 9% 

16   

L-RDC increase;  
J-coupling 
decrease 20% 7% 

17   L-RDC increase 36% 11% 

18   
J-Coupling 
increase 29% 8% 

19   L-RDC increase 29% 9% 

Table 5.8. List of largest changes in calculated NMR observables between de novo MD and MD-ENS for Aβ40 and 
Aβ42. 
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Figure 5.7. Experimental and calculated proton and carbon secondary chemical shifts by residue. (a) Aβ40 Hα 
chemical shifts, (b) Aβ42 Hα chemical shifts, (c) Aβ40 HN chemical shifts, (d) Aβ42 HN chemical shifts, (e) Aβ40 
Cα chemical shifts, (f) Aβ42 Cα chemical shifts, (g) Aβ40 Cβ chemical shifts, and (h) Aβ42 Cβ chemical shifts. Red 
squares represent experimental data (the size of the marker represents the uncertainty), while blue circles represent 
the data calculated from MD-ENS simulation. Random coil residue specific values taken from are subtracted from 
both experimental and simulation values. The experimental carbon chemical shift data are taken from Hou et al. 
(14). 
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Figure 5.8. J-coupling constants for backbone amides for (a) Aβ40 and (b) Aβ42. The red symbols are the 
experimental data from Yan et al. (67). Simulation uncertainty bars represent rms difference between two 
independent simulations and the average. The experimental data has not accounted for a relaxation correction that 
makes J-couplings determined from a HNHα 3D experiment consistently lower than those from COSY splittings (14) 
by a small amount (as high as ~10% (93)); if this relaxation effect is accounted for, then the qualitative agreement 
between experiment and MD-ENS simulation is excellent. 
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Figure 5.9. Experimental vs. calculated residual dipolar couplings based on global alignments calculated from 
PALES for Aβ40 (a) and Aβ42 (b). The red symbols are experimental data from Yan et al. (67). The blue circles are 
the data calculated from the simulation ensemble.  
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Figure 5.10. Experimental vs. calculated residual dipolar couplings based on local alignments calculated from 
ENSEMBLE (141) for Aβ40 (a) and Aβ42 (b). The red symbols are experimental data from Yan et al. (26). The blue 
circles are the data calculated from MD-ENS.  
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Figure 5.11. Example NOESY spectra for (a) Aβ40 and (b) Aβ42. This is a section of the NOESY spectra that 
contains the NOEs between Hα and HN atoms. The Aβ40 spectrum and Aβ42 spectrum contain some of the same 
NOE peaks, but there are also some differences. 
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Figure 5.12. Contact map of the MD simulated ensembles of (a) Aβ40 and (b) Aβ42. This contact map gives the 
frequency of interaction between each pair of residues in the peptide de novo MD simulated ensembles. White 
indicates contacts present in 100% of the ensemble and black indicates contacts never seen in the ensemble. We 
define two residues to be in contact if any of their heavy atoms are within 5 Å of each other.  
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Chapter 6 

 

Toxicity of an Aβ oligomer studied using 
human neurons derived from stem cells 

 
While the monomeric form of amyloid-β (Aβ) is not associated with Alzheimer’s 
disease toxicity, small soluble oligomers of amyloid-β 1-42 (Aβ42) are believed to 
be more toxic even than insoluble Aβ fibrils, and may be the agent of the disease. 
Because Alzheimer's Disease (AD) is among the most prevalent forms of dementia 
affecting the aging population, and pharmacological therapies to date have not 
been successful in preventing disease progression, we need models that enable 
further investigation of the toxicity of these oligomers and early disease pathology. 
In particular, disease-relevant models based on human pluripotent stem cells 
(hPSCs) may be promising approaches to assess the impact of different 
preparations of Aβ on specific neuronal populations and thereby facilitate the 
development of novel interventions to avert early disease mechanisms. Our 
collaborators have implemented an efficient paradigm to convert hPSCs into 
enriched populations of cortical glutamatergic or GABAergic neurons for this 
purpose. AD is generally known to be toxic to glutamatergic circuits, yet reports of 
its effects on GABAergic neurons both in vitro and in vivo are conflicting. We 
investigated the sensitivity of both of these cell populations to monomeric Aβ and 
to an oligomeric pre-fibrillar form of Aβ known as the “globulomer”. Globulomers, 
which have shown strong correlation with the level of cognitive deficits in AD, 
were administered to human embryonic stem cell (hESC)-derived glutamatergic 
and GABAergic cells. Toxicity included culture age dependent binding of Aβ and 
cell death, and interestingly was selective for glutamatergic rather than GABAeric 
neurons, consistent with previous findings in postmortem human AD brain. This in 
vitro model of cortical neurons thus offers a system for future mechanistic 
investigation and therapeutic development for AD pathology, and the “globulomer” 
specifically induces AD-like toxicity on the same human cell types affected by this 
disease. 
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Introduction 
AD is a neurodegenerative disorder characterized by an abundance of Aβ peptides generated 
from amyloid precursor abnormal cleavage by membrane-associated secretases (244). The 
development of AD pathology precedes cognitive symptoms and diagnosis by many years (245), 
presenting challenges for studying the role of Aβ in early disease stages to aid in the discovery of 
preventive drugs.  

While the intrinsically disordered Aβ monomers are non-toxic, Aβ peptides, especially 
Aβ42, are extremely aggregation prone, forming large fibrils and plaques in the extra-cellular 
space of the AD affected brain (3). These plaques are the defining feature of AD; however, 
amyloid plaque load shows a weak correlation with dementia in AD (246). By comparison, 
soluble Aβ oligomer levels correlate more closely with AD pathology (12, 13). Thus, a stable 
oligomer of Aβ42 called the "Aβ globulomer" has been prepared and increasingly studied (68, 
247). Human AD brain neuropathology studies show elevated levels of Aβ oligomers 
surrounding cortical neuronal processes, which may cause synaptic impairment (248). However, 
the specific neurotoxic effects of different types of Aβ oligomers on different cortical neuronal 
populations remain to be elucidated. Such results may enhance our understanding of this toxic 
oligomer’s role in the disease process and aid future study of molecular mechanisms for its 
actions. 

In vitro models derived from hPSCs offer strong platforms for basic research and 
subsequent therapeutic development for early stages of AD if hPSCs are differentiated into 
neurons affected by AD. In particular, glutamatergic neurons are severely afflicted in the 
cerebral cortex, and disruption of their circuits is associated with the hallmark memory deficits 
of AD (249, 250). By comparison, earlier studies of human postmortem AD brain suggest that 
cortical GABAergic neurons are spared from death (251). Cortical GABAergic neurons have not 
been broadly studied in animal AD models, but Aβ is neurotoxic to basal forebrain and 
hippocampal GABAergic neurons in such models (252, 253). To date, the sensitivity of human 
cortical glutamatergic versus GABAergic neurons to Aβ has not been studied with in vitro 
models. Given the differences in disease symptoms between familial AD and corresponding 
animal models (254), we have engaged in a collaboration with the Schaffer group (68, 70, 214, 
215, 255-257) to apply an hPSC-based system to examine relative Aβ neurotoxicity in enriched 
populations of human cortical glutamatergic or GABAergic neurons. 

The Aβ42 globulomer presents an appealing example of a toxic Aβ oligomer because an 
oligomer sample can be prepared that is uniform in size and molecular weight, and no 
aggregation of the sample occurs under physiological conditions over long time scales (68, 247). 
Globulomer toxicity and its affect on long-term potentiation have been studied in vitro and in 
vivo, and it has been shown to modulate calcium currents in rat, Xenopus and human embryonic 
kidney cells (68, 255-257). Immunochemistry has also shown that oligomers with a similar 
structure to the globulomer cluster around axon terminals in AD brains (258-260). However, no 
in vitro studies have yet shown that that globulomer is toxic to human neurons of the type 
involved in AD. Here, we employed human cortical cultures derived in the Schaffer lab and 
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enriched in glutamatergic or GABAergic neurons as models to investigate the neuronal 
phenotype selective neurotoxicity of Aβ globulomers in AD pathology. Interestingly, results 
show that Aβ globulomers exert a distinctive neurotoxicity in glutamatergic neurons in 
comparison to the GABAergic neuronal populations. 

Globulomer Preparation 
The Aβ42 globulomer was prepared as described (68, 115). Alkaline pretreatment of Aβ42 and 
preparation of low molecular weight Aβ by filtration protocols were used before beginning the 
globulomer preparation as previously described (115). After the 18-20 h incubation, the 
globulomer sample were concentrated to ~500 µM via centrifugation and dialyzed into PBS 
before centrifuging the sample at 10,000 g for 10 min to remove aggregates. The supernatant was 
saved, and the absorbance was measured at 276 nm wavelength to measure the concentration 
(extinction coefficient = 1390 M-1 cm-1). 

Aβ42 Monomer Preparation 
The alkaline pretreatment of Aβ42 and preparation of LMW Aβ by filtration protocols outlined 
by Teplow (79) were also used to prepare a monomeric solution of the peptide. This involved 
dissolving 1 mg of the lyophilized peptide in 2 mL of 2 mM sodium hydroxide, sonicating for 2 
minutes, and lyophilizing. This lyophilized peptide was then dissolved in 0.166 mL 
hexafluoroisopropanol (HFIP) to break any existing hydrogen bonds and prevent aggregation. 

Evaluation of human cortical glutamatergic neurons as a model 
for AD investigation 
We generated a soluble and highly stable form of Aβ oligomers termed globulomers, which are 
excluded from polymerization and assembly into larger fibrils (68, 247). Initially, neurons 
derived from adult rat hippocampal progenitors were used to determine a concentration range of 
this species that may be toxic, and globulomer preparations from Aβ peptide concentrations 
ranging from 1-5 µM were sufficient to induce cell death within 48 hours (Figure 6.1A). 



 

 157	  

 

Figure 6.1. Characteristic response of the neuronal populations to Aβ neurotoxicity. (A) Representative phase 
contrast images of (A) adult rat hippocampal neurons and (B) hESC-derived dorsally patterned cortical neurons 
treated with 2µM Aβ in the globulomer form, exhibiting neuronal cell death after two and three days, respectively. 
(C) Glutamatergic neurons exhibited progressively higher cell death with increasing concentrations of the 
globulomeric form of Aβ, as measured by immunofluorescence staining of activated caspase-3. (D) Quantitative 
analysis demonstrated a concentration dependent onset of apoptosis in glutamatergic neurons treated with Aβ 
globulomers. As Aβ concentrations increased, (E) the percentages of glutamatergic neurons and (F) the fraction of 
neurons with a glutamatergic fate decreased. The line graph insert in panel F shows the progressive decrease of 
percentages of neurons that belonged to a glutamatergic phenotype with increasing Aβ concentrations. The increases 
in cell death and the decrease in the total percentages of glutamatergic neurons treated with 1, 2, and 5 µM Aβ in the 
globulomer form were statistically different compared to untreated cultures. The decrease in the number of MAP2 
and glutamate expressing cells was significant in conditions treated with 2, and 5 µM Aβ, as compared to culture 
that were not treated with Aβ. * = P < 0.005, ** = P < 0.001, *** = P < 0.0001. Scale bar: 100 µm. 
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When hESC-derived cortical cultures primarily comprised of glutamatergic neurons were 
treated with 2 µM Aβ as globulomers, clear neuronal cell death initiated after 72 hours (Figure 
6.1B). Analysis using caspase-3 as an apoptotic marker showed a progressive increase in 
glutamatergic neuron death with increasing Aβ globulomer concentration (Figure 6.1C, D), and 
the fraction of neurons (MAP2+) that were glutamatergic also progressively decreased (Figure 
6.1E). Finally, the overall fraction of cells in the culture that were MAP2+ and that were 
glutamate+/MAP2+ decreased in parallel, suggesting a selective neurotoxicity of Aβ 
globulomers against these human cortical glutamatergic neurons (Figure 6.1F). By comparison, 
cultures treated with the same concentrations of the monomeric, non-toxic form of Aβ peptide 
did not show activation of caspase-3. 

We also immunostained for the presence of this pre-fibrillar form of Aβ to further 
investigate cellular interactions, using an antibody against the Aβ fibrillar oligomeric form that 
also binds the soluble Aβ globulomers due to some structural similarity (11). In agreement with 
previous studies (68, 261), globulomer aggregates were tightly associated with the neuronal cell 
membrane (Figure 6.2A). Similarly, iPSC-derived neurons exhibited Aβ globulomer binding and 
subsequent apoptosis (data not shown). We also investigated whether neurons that had matured 
longer in culture may respond differentially to the Aβ globulomers, since organismal aging is the 
most prominent risk factor for AD, and neuronal lifetime in culture may embody some aspects of 
aging (262). When hESC-derived cortical neuronal populations were matured for an additional 
33 days, for a total of 72 days after the initiation of differentiation, Aβ binding to the plasma 
membrane and the dendritic spines was significantly increased (Figure 6.2B). Specifically, 
quantitative assessments of 100 neurons showed an increase in the average number of bound 
globulomer aggregates per neuron from 3 ± 1 in younger cultures to 8 ± 2 in old (P < 0.001), 
indicating that increased cell culture longevity could offer some parallels to age-related increases 
in Aβ-induced pathology. Collectively, these findings illustrate that cortical neuronal cultures 
can be used in vitro to emulate and investigate AD phenotypes. 
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Figure 6.2. Examination of Aβ binding affinity in aged glutamatergic neurons. Cortical neurons were treated with 5 
µM Aβ in the globulomer form for 24 hr, then immunostained with an anti-Aβ antibody. Binding of Aβ globulomers 
on the surface of MAP2+ neurons at (A) day 25, as compared to (B) day 58 of neuronal maturation illustrates 
enhanced interaction and binding of Aβ to aged neurons in culture. (C) The untreated control without Aβ showed no 
signal. Scale bar, 100 µm. 
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Examination of Aβ-induced neurotoxicity in glutamatergic and 
GABAergic populations 
The extent to which specific sets of neurons in the cerebral cortex are susceptible to Aβ oligomer 
binding and toxicity is unknown. To study neuronal phenotype sensitivities to Aβ, we exposed 
mature hESC-derived cultures primarily comprised of glutamatergic or GABAergic neurons to 
Aβ globulomer and assessed globulomer binding and neuronal cell death after 72 hr. The levels 
of globulomer bound to MAP2-expressing neurons was significantly higher in glutamatergic 
neuronal cultures, differentiated from dorsal NPCs, than primarily GABAergic neurons, derived 
from ventral NPCs (Figures 6.3A-B, E). Likewise, gluatamergic and GABAergic cultures 
exhibited substantially different levels of apoptotic cell death (Figure 6.3C-E). In glutamatergic 
cultures exposed to Aβ, caspase-3 activation occurred in 61% of cells, compared to 33% in 
untreated conditions, and the fraction of overall MAP2+ neurons decreased from 56 to 31% 
(representing an overall 55% decrease) in response to Aβ treatment. In contrast, the GABAergic 
population was more resistant to Aβ, as the fraction of neurons decreased by only 17% after 
treatment, and neuronal caspase-3 staining was the same in treated vs. untreated cultures (Figure 
6.3E). 
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Figure 6.3. Neuronal phenotype-specific Aβ binding and neurotoxicity. Aβ and MAP2 staining of cultures derived 
from dorsal and ventral NPCs mainly giving rise to glutamatergic and GABAergic populations, respectively, 
exposed to globulomers illustrated enhanced binding of Aβ to the (A) glutamatergic populations as compared to (B) 
GABAergic cultures. The level of Caspase-3 activations was elevated in (C) glutamatergic versus (D) GABAergic 
cultures. (E) Quantitative analysis of the percentages of MAP2 expressing neurons, number of globulomer 
aggregates divided by number of cells stained with DAPI, and percentage of cells containing activated caspase-3 in 
glutamatergic and GABAergic neuronal populations in the presence or absence of Aβ as globulomers (5 µM) for 72 
hr. Scale bar: 100 µm. (E) In conditions treated with 5 µM Aβ, the overall changes in percentages of MAP2+ and 
activated caspase-3+ neurons in glutamatergic cultures was significantly different from GABAergic cultures, ** = P 
< 0.001. 
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Discussion 
Numerous transgenic animal models of AD have been generated to aid in understanding 
mechanisms of this human disease (254), and while these models continue to provide valuable 
insights into disease mechanisms, non-human systems often do not fully emulate human 
pathophysiology. For example, the need to overexpress multiple pathological proteins to exhibit 
AD pathology in these animals highlights the value of developing models that could enable 
investigation in human cells with gene expression closer to endogenous levels. Analogously, 
overexpressing genes that influence amyloidogenesis in neurons derived from immortalized cell 
lines, such as the frequently used human neuroblastoma line SH-SY5Y (263), may not represent 
an accurate model to study AD as these cells are quite different from neurons that degenerate in 
human AD brain. Finally, tissue from AD patients is both heterogeneous and limited. Such 
challenges can potentially be addressed by using models of hPSC-derived neuronal phenotypes 
that undergo degeneration in AD for basic investigation or therapeutic development. Human 
cortical glutamatergic neurons, which are strongly involved in the neuropathology of AD (249, 
250), have remained largely unexplored in biomedical investigations of this disease. In this study, 
we have begun to evaluate the potential of human glutamatergic or GABAergic neurons as an 
AD model. 

Although growing evidence shows that a soluble oligomer of Aβ is the toxic species 
associated with AD (12, 13), study of the mechanism of toxicity is still hampered by the 
polymorphism of Aβ oligomers and fibrils (11). The globulomer is a specific Aβ42 oligomer that 
has been experimentally characterized and is stable in vitro under physiological conditions (68), 
but has yet to be evaluated in terms of its toxicity towards human neuronal cultures. We used 
cortical glutamatergic neurons derived from hPSCs by our collaborators in the Schaffer group to 
study AD pathology in vitro by showing severe toxicity for the Aβ42 globulomer (70, 262). We 
see that this specific Aβ oligomer causes human neuronal cell death at concentrations of 2 µM. 
Our results add to the existing body of evidence showing that the Aβ42 globulomer is an 
important example of a toxic AD agent, and an understanding of its structure and mechanism of 
toxicity is important to developing AD therapies. 

Our Aβ neurotoxicity analysis indicated a selective pathology against glutamatergic 
neurons, as the fraction of neurons of this phenotype decreased with increasing Aβ 
concentrations. This effect may be related to their capacity to bind the globulomers (Figure 6.3E). 
In fact, it has been suggested by studies performed in neuronal cell lines and rat primary 
hippocampal and cortical cultures that differential sensitivity to Aβ is associated with cell 
membrane Aβ binding (264). However, the binding affinity and selective sensitivity of different 
type of neurons to neurotoxic effects of Aβ remains a matter of debate and must be studied in 
greater detail. 

Interestingly, the glutamatergic model illustrated enhanced binding of Aβ globulomers to 
individual neurons with increased time in culture, which may have some parallels with neuronal 
aging in vivo (262). The mechanisms and binding partners involved in the association of Aβ 
oligomers with cortical neurons have not been identified, though a number of membrane 
associated proteins – including NMDA receptors, integrins, and proteoglycans – have been 
identified as potential binding proteins in various types of neurons (261). An alternative 
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hypothesis for Aβ-induced cytotoxicity involves age-related disruption of the cell surface 
membrane through alterations of the membrane lipid layer fluidity that eventually lead to 
apoptotic or necrotic cell death (265, 266). In either case, the model presented in this study may 
offer a platform for advancing our understanding of age- related association and binding of Aβ to 
the plasma membranes as a potential point of intervention.  

Hippocampal GABAergic neurons are susceptible to Aβ toxicity in vitro and decrease in 
number in the Alzheimer's disease TgCRND8 mouse (253, 267), and small GABAergic neurons 
were vulnerable to Aβ pentapeptide in primary rat basal forebrain cultures (252). By contrast, 
cortical GABAergic neurons were relatively spared in a study of postmortem tissue from AD 
patients (251). Given stark differences in the sensitivity of human and mouse brain to 
pathological alleles from familial forms of AD, it is important to examine Aβ biology and 
pathology in the types of human neurons directly impacted by AD, including cortical neurons. 
To our knowledge, however, the cell-type specific behavior of human cortical neurons has not 
been explored in an AD neurotoxic environment. 

To shed some light on cortical neuronal phenotype-specific vulnerability in AD, we use a 
human cell model of glutamatergic and GABAergic neuronal cultures to illustrate GABAergic 
neuronal phenotype comparative immunity against Aβ. These results with human cells agree 
more closely with the cerebral cortex of postmortem human AD patients (251) than with animal 
studies conducted to date. This is also the first evidence that the Aβ42 globulomer is less toxic 
toward GABAergic human neuronal cultures as compared to glutamatergic neuronal cultures. 
The question of whether other Aβ oligomeric species display this same differential trend in 
relative toxicity toward different neuronal phenotypes as well as the mechanism of the 
globulomer toxicity remain to be investigated. 

Conclusions 
We have examined the effects of a pre-fibrillar form of Aβ knows as the “globulomer” on human 
pluripotent stem cell derived glutamatergic and GABAergic neurons, phenotypes that comprise a 
large fraction of the human cortical regions that undergo severe degeneration in AD. Our study 
clearly shows a human cortical neuronal phenotype-dependent binding of and susceptibility to 
Aβ globulomers. The ability to reproducibly generate large quantities of different human 
neuronal subtypes will help investigations of cellular and biochemical dynamics during early to 
late stages of AD- induced neurodegeneration, and further study of the globulomer will aid in 
identifying possible disease mechanisms and thereapies. 
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Chapter 7 

 

Molecular dynamics simulations of a toxic 
Aβ42 oligomer 
 
Soluble oligomers of amyloid-β 1-42 (Aβ42), such as the “globulomer”, a globular 
oligomer consisting of 12 Aβ42 monomers with β secondary structure, are 
believed to be the toxic agent involved in Alzheimer’s disease. Although one NMR 
study by Yu and coworkers (12, 13, 72) has resulted in a model for a globulomer 
dimer repeat, little structural characterization of the globulomer or evaluation of 
different possible models has been attempted thus far. Here, we compare to 
possible models for the globulomer structure using all-atom explicit solvent 
molecular dynamics simulations. The Yu et al. dimer model, based on chemical 
shift and NOE data collected from a globulomer precursor, the “preglobulomer”, is 
the first of these two competing models. The other model is derived from coarse 
grain simulations conducted by Fawzi and coworkers on Aβ40 dodecamer 
protofibrils (69). We evaluate the stability of the Aβ42 β-sheet structure for two 
models during molecular dynamics simulations and calculate NMR observable 
values for each, which we can then compare quantitatively to current and future 
NMR experiments. 

Introduction 
Soluble amyloid-β (Aβ) oligomers have recently been identified as the probable toxic agent in 
Alzheimer’s Disease (AD) (12, 13, 268). This conclusion is a result of growing evidence that the 
presence of large, insoluble Aβ fibrils does not correlate well with disease symptoms (246). 
Because the monomer is known to be nontoxic (268), an intermediate between the monomeric 
and fibril forms of the peptide is likely responsible for toxicity. This oligomer could be an early 
form of the larger fibril or a different structure that forms off-pathway to fibrilization. One 
soluble Aβ oligomer that has been recently prepared and characterized is the Aβ42 “globulomer” 
(68). This oligomer is a promising target for structural and mechanistic studies of AD pathology 
because is can be prepared consistently, has a somewhat uniform size, shape, and structure, and 
does not aggregate, even after long periods of time under physiological conditions (68, 247). 
Studies in animal models have suggested that the globulomer is toxic to the brain (255, 257, 269) 
and our work with human neuronal cultures (Chapter 6) (68, 70) have confirmed similar toxicity 
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patterns to those observed in AD patients. To understand the mechanism of this toxicity, and 
how it might be prevented, this globulomer species must be structurally characterized. 

Initial structural characterization of the Aβ42 globulomer by size-exclusion 
chromatography has shown that it is made of approximately 12-16 Aβ42 monomer chains and 
exists in a single globular structure (68). Although the globulomer is not as compact as a typical 
globular protein, circular dichroism shows that it has stable β-sheet secondary structure. This 
structure most probably occurs at the C-terminal portion of the Aβ42 chains since the protease 
digestion results indicate that the N-termini are largely disordered and solvent exposed (68). 
Antibody binding assays have also been conducted on the globulomer, and while specific 
antibodies show higher binding to the Aβ42 globulomer than to Aβ42 fibril aggregates, other 
antibodies developed to bind Aβ fibrils also bind the globulomer, indicating some structural 
similarities to the fibril structure (68). Without atomic level structural information, however, it is 
difficult to identify the similarities and differences between the Aβ42 fibril and globulomer 
conformations. NMR has been a useful technique in our characterization of the Aβ monomers 
(48, 64, 65) because it reveals residue specific structural and dynamic information without 
subjecting the sample to disrupting experimental conditions. For these same reasons, NMR is an 
ideal method for building a detailed model of the toxic Aβ42 globulomer. 

One NMR study of the globulomer has been published thus far by Yu et al. at Abbott 
Laboratories, who propose a globulomer structural model from their NMR data (115). Although 
the goal of their NMR study is the characterization of the Aβ42 globulomer, a dodecamer, they 
found that their preparations of N-Met-Aβ42 globulomers produced NMR spectra not suitable 
for structural studies. As a result, a large amount of their analyzed NMR data reports not on the 
globulomer, but on a smaller oligomer known as the “preglobulomer” which forms as a 
precursor to the globulomer during preparation and consists of ~4 Aβ42 chains stabilized in 
0.2% SDS solution. Yu et al. report amide exchange data that indicate similar protection levels at 
each residue in the Aβ42 preglobulomer to those of the globulomer. NOE and chemical shift data 
from 15N and 13C labeled samples were then used to construct a structural model of the 
preglobulomer based on a peptide dimer repeating unit. Preparation of a mutant Aβ42 
globulomer with a designed disulfide bridge indicates that the model proposed for the 
preglobulomer may also be present in the larger globulomer. 

The NMR data and globulomer structure proposed by Yu et al. leave several open 
questions that must be addressed in order to have a complete structural picture of this toxic Aβ 
species. The most important question regards the similarities between the globulomer and 
preglobulomer structures. Although the amide exchange data for the two species appears to be 
similar, it is not identical and a quantitative comparison was not presented. In fact, any proposed 
model must necessarily contain differences between a tetrameric species stabilized by SDS (the 
preglobulomer) and a dodecamer with less than one SDS molecule present per complex. 
Although the same disulfide bond may be compatible with in both structures, there will be 
structural differences in the arrangement of Aβ chains, which has yet to be investigated. The 
model proposed by Yu et al. does not give a full picture the preglobulomer structure either. They 
propose a repeating dimer unit and build a structure consisting of only two Aβ42 chains using 
restraints from NMR data, however it has been shown that the dimer is not the most stable form 
of Aβ42 (270, 271). To form the preglobulomer tetramer, two of the modeled structures would 
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need to come together, but the resulting configuration is unclear. The dimer model presented is 
not symmetrical, however Yu et al. do not report two sets of chemical shifts for any of the 
residues, which would be expected if the monomer chains were not in identical environments. 
Finally, the construction of the Aβ42 preglobulomer dimer model from NMR restraints assumes 
that all of these restraints are satisfied simultaneously. Because the Aβ42 monomer is extremely 
disordered, switching between different conformational states on timescale faster than the NMR 
data collection (48, 65), it may be the case that the preglobulomer and globulomer are also 
somewhat disordered and flexible and that the NMR data only report on an average of an 
ensemble of structures that form. Such an ensemble would be difficult to construct from NMR 
data alone, but molecular dynamics simulations could allow characterization of several different 
Aβ42 globulomer structures. 

A competing model to the Yu et al. Aβ42 globulomer structure could be a fibril-like 
oligomer. Despite the fact that the globulomer is off-pathway to fibril formation, many of its 
structural properties are consistent with the Aβ fibril structure. Both consist of β-sheet secondary 
structures with ordered and buried C-termini and flexible N-termini. Some globulomer 
antibodies have been shown to bind the Aβ fibril as well, which has led to classification of the 
globulomer as a fibrillar oligomer (11). Short segments of the Aβ fibril, protofibrils, may serve 
as a good starting model for investigating the Aβ42 globulomer structure. The structure and 
dynamics of protofibrils have been studied previously by Fawzi et al. with MD simulations using 
a coarse grain protein model (69). These simulations started from a Aβ40 fibril structure from 
solid-state NMR (21, 272) with varying numbers of monomer chains to simulate different 
lengths of Aβ protofibrils. The coarse grain model allowed a relatively large system consisting of 
multiple Aβ40 chains to be simulated over long timescales, revealing many possible 
conformational states. While protofibrils consisting of only 4 monomer chains were unstable and 
dissociated during the coarse grain simulations, larger protofibrils (> 14 chains) maintained fibril 
order over long timescales (69). At intermediate protofibril sizes, many structures in the 
simulation lose fibril order (i.e. cannot form a nucleus for fibrilization), but do not dissociate. 
Instead they form stable β-sheet structures which do not have a fibril-like cross section. This is 
the case for the protofibril dodecamer, which is close to the size determined as the critical 
nucleus for fibril formation (69). The dodecamer protofibril structures sampled in this study 
provide an alternative model to the NMR-based preglobulomer model, which represents all 12 
chains of the globulomer and is stable in coarse grain simulations. 

Here we investigate both the NMR-based preglobulomer model and the coarse grain 
simulation-based protofibril model as possible Aβ42 globulomer structures. Initially we have run 
atomic resolution de novo molecular dynamics simulations of the preglobulomer dimer structure 
generated by Yu et al. to assess its stability. We find that it does not retain its initial β-strand 
structure during the simulation in physiological conditions. The NMR-based preglobulomer 
model may be more stable as a tetramer, and we are currently constructing a tetramer model 
from the dimer structure, which will be tested for stability in future work. We have also created 
an atomic resolution Aβ42 dodecamer from one structure from the coarse grain Aβ40 protofibril 
dodecamer simulations by Fawzi et al. Based on initial simulations in physiological conditions, 
this model appears retain stable β-sheet structure. We are also interested in back-calculating 
NMR observables from these all-atom simulations. These can be used to compare with the 
currently available experimental data from Yu et al. as well as data collected in the future. We 
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can also see which types of NMR data are useful in distinguishing between the different 
globulomer models and design future experiments accordingly. We have already calculated 
amide exchange protection factors for the preglobulomer dimer structure from simulation and we 
have calculated chemical shifts and J-coupling constants from the protofibril dodecamer 
simulations. This work is ongoing. 

Methods 
Preglobulomer Simulation 

Dimer structure preparation from NMR model. The starting Aβ42 dimer structure was taken 
from Yu et al. who have collected the only published NMR data on the globulomer and 
preglobulomer (115). NMR chemical shifts and NOE data were used to construct the dimer 
model. NOE contacts between amides were obtained by using 15N-labeled peptide. Interchain 
and intrachain contacts were distinguished by mixing labeled peptide with an unlabeled sample 
in a 1:1 ratio and comparing to a homogeneous labeled mixture. The NOE’s primarily seen in the 
homogeneous mixture indicate interchain interactions. Distance restraints were created based on 
13C- and 15N-resolved NOE contacts. Chemical shifts were also used to determine the secondary 
structure and local environment of each residue in the peptide. Finally, the proposed 
preglobulomer dimer model of the soluble N-Met-Aβ(1-42) was generated using CNX by 
determining the lowest energy structure to satisfy all NOE distance restraints and φ dihedral 
angle restraints based secondary structure from chemical shifts. Although the preglobulomer is 
believed to be a tetramer, Yu et al. created a model that only represents two interacting Aβ42 
chains, the assumption being that the preglobulomer is symmetrical (115). 

After applying the restraints, Yu et al. came up with an ensemble of Aβ dimers, modeling 
residues 15-42 for each chain, and analyzed the 10 lowest energy models consistent with the 
NMR data (115). They omitted the first 14 residues since NOE restraints were not available for 
these residues, which indicates that they were not structured. Their structure was consistent with 
the NOE data in that there were intrachain antiparallel β-strands between residues 18-33 and 
interchain parallel strands at residues 34-40, with a β-turn between residues 23 and 30. We were 
given one of their Aβ15-42 dimer models and used Modeler (273-275) to construct the omitted 
N-terminus residues. The resulting Aβ42 dimer was the starting structure for our molecular 
dynamics simulations. 

Dimer simulation. We performed MD simulations on the proposed preglobulomer dimer from 
Yu et al. to determine whether this structure is stable under physiological conditions and to 
compare NMR observables calculated from this model to the experimental NMR data. The 
peptide was modeled using the Amber ff99SF force field (23) and aqueous solvent represented 
by the TIP4P-Ew water model (25). To calculate equilibrium ensemble averages in the NVT 
ensemble, we used an Andersen thermostat, a leapfrog integrator with a 2.0 fs time step, and 
periodic boundary conditions. Our initial structure was built by using modeler to add residues 1-
14 to Yu et al.’s low energy NMR structure. This structure was solvated in a rectangular water 
box such that there were 8.0 angstroms of water surrounding the peptide on all sides and six Na+ 
ions to neutralize the charge of the peptide. The structure was minimized and equilibrated with a 
constant volume while the temperature was increased to 298 K and then equilibrated for 1.0 ns 
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under a constant pressure of 1 bar, maintained with a Berendsen barostat, to achieve the correct 
density.  

Distance and angle restraints pertaining to β-strands were determined for the equilibrated 
structure based on the hydrogen bonds using ptraj. Due to the intrinsically disordered nature of 
Aβ42, it would not be satisfactory to look at our starting structure as a representation of the 
protein. Intrinsically disordered proteins are known to quickly sample a large number of 
conformations, so multiple starting structures that still obey our restraints must be included. In an 
attempt to increase conformational diversity of the Aβ42 dimer model, we heated the structure to 
600 K in order to overcome energy barriers, applied our determined distance and angle restraints, 
and cooled the dimer at different points over the course of the high temperature simulation. This 
allowed for multiple variations on the starting structure that still followed the secondary structure 
of the original model. During the heating step the system was raised to 600 K, where the peptide 
adopted an extended conformation, from its starting temperature at 298K. Structures were then 
selected at 1 ns intervals and cooled while applying distance and angle restraints. The cooling 
with restraints was performed gradually over 1.0 ns with a timestep of 1.0 fs. This process was 
repeated until 11 different structures were obtained. We then equilibrated each structure at 298 K 
for a total of 20 ns. 

Tetramer preparation. Construction of a tetramer model began by analyzing the distances 
between dimers in the Aβ40 fibril structure from a solid-state NMR study by Petkova et al. (272). 
We used VMD in order to determine the closest atomic distances at the interface of the two C-
terminal β-strands that are stacked on top of each other in the fibril structure. We then used 
Packmol in order to orient two dimers so that their interchain parallel β-strands were aligned in 
an anti-parallel orientation with the odd numbered amino acid side chains of one dimer facing 
the odd number side chains of the other dimer. We then applied distance restraints based the 
fibril structure (272) to bring the two identical dimers together. 

Secondary structure and stability analysis. The secondary structure and backbone stability of 
the preglobulomer simulated structures were analyzed using ptraj. β-strands were identified 
according to the DSSP definitions (97) and compared to the β-strand content determined from 
the NMR experiments. The backbone RMSD from the starting NMR model was determined for 
each snapshot in the simulation to asses backbone stability. We also performed RMSD analysis 
of residues 19-41 only since they were shown to form β-strands, while the N-terminus lacks any 
stable structure. 

Amide exchange prediction. The amide protection factors were determined by 2-D 15N/1H 
HSQC spectra (115). The peptide was grown in an H2O medium, then placed in a solution 
containing 2H2O. Samples were flash-frozen with liquid nitrogen after different lengths of time in 
the 2H2O buffer, and 2-D 15N/1H HSQC spectra were taken as time progressed. These spectra 
were compared to an H2O-only control and hydrogen exchange rates indicated the solvent 
exposure for each residue. 

To investigate whether the proposed preglobulomer model is consistent with 
experimental amide protection factors, we predicted amide exchange protection from the MD 
simulations of the preglobulomer. The level of amide protection for each residue was determined 
by analyzing the amount of time a hydrogen bond occurred between two residues during the last 
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9 ns of each of 11 simulations. Hydrogen bonds for the backbone were defined using a 3.5 Å 
distance cutoff and a 60° angle cutoff. Residues that spend the most time engaged in hydrogen 
bonding with other Aβ residues are less able to undergo amide exchange with water and 
therefore are more protected. 

Protofibril Simulation 

Dodecamer structure preparation from coarse-grain simulation model. In previous work, 
Fawzi et. al showed that the critical nucleus for Aβ40 fibril formation is 12, and that dodecamers 
which have values of the fibril similarity parameter (χ) greater than 0.7 result in the formation of 
stable fibrils, while those less than 0.7 are disordered and do not form stable fibrils. We choose 
these disordered dodecamer structures for our simulations and postulate that these dodecamers 
are a good starting model for Aβ42 globulomer structure.  

To predict the NMR observables based on this Aβ42 oligomer model, we needed to run 
MD simulations of the structures in atomistic detail. Therefore, we converted the coarse-grained 
protofibril structure to an all-atom representation. The first step was to build in backbone atoms 
based on the coarse-grain residue coordinates using Perl scripts. Then Modeller 9.10 (273-275) 
was used to add Ile41 and Ala42 to the C-terminus of each Aβ chain and also to optimize the 
backbone coordinates. Scwrl4 (276) was used to add the side chains and optimize their rotamers.  

Dodecamer simulation. The all-atom Aβ42 dodecamer structure was solvated using TIP4P-
Ewald water model (25). The minimization and equilibration of the structure was done using the 
PMEPD program as part of the Amber 11 software package (111) and the Amber ff99SB force 
field (23). First, the structure was minimized with 2000 steps of steepest descent followed by 
2000 steps of conjugate gradient minimization, with 500.0 kcal/mol restraints on the protein, 
solvent, and ions  Then we minimized further for 2000 steps of steepest descent followed by 
2000 steps of conjugate gradient, with 50.0 kcal/mol restraints only on the protein. Next we 
equilibrated the structure at 10 K for 20 ps with 25.0 kcal/mol restraints on the protein complex , 
followed by heating the system from 10 to 298 K  with 10.0 kcal/mol restraints over 40 ps and 20 
ps further equilibration at 298 K. Next we gradually decreased the restraints to 1.0 kcal/mol over 
40 ps and then to 0.1 kcal/mol restraints over another 40 ps. The last step was a 5.5 ns 
equilibration in the NPT ensemble. A 2 fs step size was used for the equilibration and production 
runs. 

Secondary structure and stability analysis. RMSD (with reference to the pre-minimization and 
equilibration structure) and secondary structure of simulated Aβ42 protofibrils were analyzed 
using the ptraj module of Amber. The fibril similarity parameter, χ, was calculated using the 
method described by Fawzi et al. (69) for terminal B. The reference structure for χ calculation is 
the -2 staggered structure determined by Petkova et al. (272) from solid state NMR experiments. 
The summation, 

,   (7.1) χ =
1
M

h ε − ra,i:b, j − r
0
a:i,;b, j( )
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∑
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is done for pairs of the 4 outermost monomer (a and b) on the terminal B, and i and j are the 
residues 17-21 and 30-34. M  (=600) is the total number of pairs involved in the summation. r 
and r0 are the distance between the Cα atoms for the dodecamer model and the reference structure. 
The tolerance is set by ε (0.5 Å in our case) and h is the heavyside function.  

J-coupling constant prediction. J- coupling constants, JHNH
α, were calculated using the Karplus 

equation,  

,   (7.2) 

with coefficients A = 6.51, B = −1.76, and C = 1.60 given by Vuister and Bax (93).  It gives 
information about the dihedral angles. For glycine residues, the calculation was different because 
it has two H-atoms bonded to the backbone N; 

. (7.3) 

Chemical shift prediction. We used SHIFTX for to calculate chemical shifts for Cα, Cβ,  Hα, and 
HN atoms. The chemical shift gives a measure of electron density, electronegativity of 
neighboring atoms and magnetic field effects, which also depend on the secondary structure of 
the residue. 

Results 
Preglobulomer Simulation 

Structure and stability. Aβ42 is known to convert to its insoluble fibrillar form in most 
conditions. These fibrils have been structurally characterized and shown to have cross-β 
structure with in-register parallel β-sheets (21, 109, 272, 277-281). In addition, the diverse set of 
amyloid intermediates which correlate with AD symptoms also contain ordered β-sheet structure 
(11, 22). Therefore, any good model for the globulomer structure must contain stable β 
secondary structure. We monitored the β-strand structure of the preglobulomer dimer during our 
MD simulations (Figure 7.1 & 7.2). The amount of parallel and antiparallel β-strand structures 
decreased as the simulations progressed, but many of them disappeared and reappeared before 
eventually being lost. This may be because the β-strand interactions were still in place when 
fluctuations occurred that deformed the β-strand away the typical β-structure. The loss of β 
structure was more evident for the parallel β-strands than the anti-parallel β-strands. The RMSD 
of the backbone from the starting structure was higher than the data gathered by Yu et al. by a 
factor of 10 (Table 7.1). Even when comparing only those residues known to participate in β-
strand formation and excluding the N-terminus, as Yu et al. did, the RMSD values were still 
large. Residues 19-32 did have a lower RMSD compared to the full structure, but not enough to 
indicated that the dimer structure is stable. The data gathered from these simulations reveal that 
the NMR-based model is not stable as a dimer. The formation of a tetramer structure may 
stabilize the β-strand structure observed experimentally. 

J φ( ) = Acos2 φ − 60( )+Bcos φ − 60( )+C

J φ( ) = 0.5*[Acos2 φ − 60( )+Bcos φ − 60( )+C + Acos2 φ + 60( )+Bcos φ + 60( )+C]
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Figure 7.1. The average number of residues characterized as part of an anti-parallel β-strand in 1 ns intervals 
during the 10 ns runs calculated over all residues in the dimer ensemble. 

 

Figure 7.2. The average number of residues characterized as part of a parallel β-strand in 1 ns intervals during the 
10 ns runs calculated over all residues in the dimer ensemble. 
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RMSD (Å)       

 
residues 
19-41  

residues 
19-32  

residues 
34-41  

Structure 
Post 
Restraints Post 10ns 

Post 
Restraints Post 10ns 

Post 
Restraints Post 10ns 

1.0 10.7 9.7 8.6 7.4 6.0 4.8 
2.0 12.5 10.8 11.1 10.3 6.5 5.8 
3.0 10.5 9.5 7.0 7.5 6.8 5.9 
4.0 10.2 9.9 9.3 9.2 6.4 5.9 
5.0 10.3 11.7 8.8 11.4 6.8 6.9 
6.0 10.6 10.9 11.7 12.0 6.2 5.8 
7.0 10.2 9.1 10.6 9.0 5.6 4.9 
8.0 10.1 9.3 11.3 10.1 6.5 6.0 
9.0 10.0 9.9 11.1 11.3 6.1 5.4 
10.0 10.5 9.9 11.5 10.6 6.5 5.6 

control 12.2 10.1 8.7 8.2 6.0 5.1 
average 10.6 10.1 10.1 9.9 6.3 5.7 
Standard 
deviation 0.7 0.8 1.6 1.6 0.4 0.6 
experimental  2.4  1.1  0.5 

Table 7.1. The average backbone RMSD in Å of the dimer ensemble (residues 19-41) for the 11 starting structures 
before and after applying restraints with heating simulation was analyzed as a whole. In an effort to minimize these 
values we excluded the unstructured N-terminus and only exclude the residues that are known to adopt a β-strand 
structure. 

Amide exchange prediction. The experimental amide exchange data show that the same residues 
were buried in the preglobulomer and globulomer C-termini. This may indicate that the 
globulomer consists of multiple preglobulomer subunits. The presentation of the amide exchange 
protection, however, is unclear and many of the exchange rates for the preglobulomer and 
globulomer residues could not be measured. 

Hydrogen bond analysis of the final 9 ns of each of our 20 ns runs showed high variation 
(Figure 7.3). Due to the parameters used to defined a hydrogen bond, more than one oxygen 
atom was able to hydrogen bond to the same amide at once, causing the percentage of time a 
single residue spent hydrogen bonded to exceed 100%. However, this was seen in <1% of the 
residues examined. The large error bars indicate that our 11 different simulations had high 
variation in terms of the amount of time spent hydrogen bonding. Longer simulation times are 
required to achieve converged hydrogen bonding statistics. Even so, it can be observed that the 
average time spent in a hydrogen bond is quite low, often less than 60%, even near the C-
terminus where the residues are involved in β-strands. This means that dimer model may be too 
disordered and solvent exposed to account for the amide exchange protection observed 
experimentally for the globulomer and preglobulomer. Although our hydrogen bond data is not 
yet converged, it does show a trend along the Aβ42 sequence, and so we have classified each 
residue of the Aβ42 chain into fast, medium, or slow exchange categories in order to compare to 
the experimental data reported by Yu et al. (72, 160) (Table 7.2). We find that even if we pick 



 

 173	  

the cutoffs for each of these classifications to best match the experimental data, there are still 
many discrepancies between the calculated and experimental protection factors for the dimer 
model. It may be that simulations with a tetrameric model will result in better agreement with 
experimental amide exchange data. 
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Residue 
number 

Globulomer 
experiment 

Preglobulomer 
experiment 

Dimer 
simulation 

1 x f f 
2 f f f 
3 f f f 
4 f f f 
5 f x f 
6 f f f 
7 x f f 
8 x f m 
9 f f s 

10 f x s 
11 g x m 
12 f x m 
13 f x m 
14 x x m 
15 f x m 
16 f f s 
17 f s m 
18 g s m 
19 m f s 
20 f f m 
21 f f s 
22 f x f 
23 g x s 
24 f f m 
25 f f f 
26 f x s 
27 f x s 
28 f x s 
29 f f m 
30 f m s 
31 s s f 
32 g s s 
33 s s s 
34 s s s 
35 s s s 
36 g x s 
37 s s m 
38 s s m 
39 s s m 
40 s x m 
41 g m m 
42 f m f 

Table 7.2. Comparison of calculated backbone amide exchange protection for the dimer chains and Yu et al.’s 
preglobulomer and globulomer data. The backbone amides that exhibited slow, moderate, and fast exchange are 
indicated by s, m, and f, respectively , below the residue number. Residues for which exchange rates could not be 
measured are indicated by an x. The sequence positions of the three pairs of overlapping cross-peaks of amides in 
slow exchange in globulomer are indicated by g. For the amide protection calculated from simulation, residues 
involved in hydrogen bonds less than 10% of the time were considered to be in fast exchange, 10-30% in medium 
exchange, and greater than 30% in slow exchange. These cutoffs were chosen to give the best possible agreement 
with the experimental data, although the true exchange chemistry would probably lead toward even worse 
agreement with the experimental data. 
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Protofibril Simulation 

Structure and stability. After the minimization and equilibration protocol, we compared the 
RMSD, secondary structure and χ values for each step to figure out whether the structure remains 
stable in simulation (Figure 7.4). For the structure obtained from the coarse-grain model and 
Modeller, the RMSD is close to zero, showing that the backbone and side chain optimization 
steps do not change the backbone configuration significantly. The RMSD gradually increases 
with step number as we decrease the restraints on the protein complex and there is a sudden jump 
in the values after simulation in the NPT ensemble, where we lift off the restraints and start 
equilibration in the NPT ensemble. This is because the starting structure was obtained from a 
coarse grained model and without side chains the Cα atoms were much closer to each other than 
is possible in an all-atom representation. Also, the C-terminus of the Aβ peptide is more 
structured than the N-terminus and is involved in parallel-β sheet formation. We expect the N-
terminus to be more disordered because it can move freely. Hence, the RMSD without the N-
terminus is less than that with all the residues. Figure 7.5 shows that in the last 1 ns simulation in 
NPT ensemble the RMSD values become steady, indicating that the structure has equilibrated. 
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Figure 7.4. Plot of the backbone RMSD (with reference to the Scrwl4-optimized step 0 structure) versus 
equilibration and minimization step number. Step -2: Coarse Garin Structure, Step -1: Structure obtained from 
Modeller, Step 0: Structure obtained from Scrwl4, Step 1- Minimization of protein hydrogen atoms, ligand, solvents 
and ions for 2000 steps of steepest descent followed by 2000 steps of conjugate gradient, with 500.0 kcal/mol 
restraints on the protein heavy atoms, Step 2 -Minimization of solvents and ions for 2000 steps of steepest descent 
followed by 2000 steps of conjugate gradient, with 50.0 kcal/mol restraints on the protein-ligand complex , Step 3 -
20 ps equilibration at 10 K, with 25.0 kcal/mol restraints on the protein complex, Step 4 - 40 ps heat-up from 10 to 
298 K followed by 20 ps equilibration at 298 K, Step 5- 40 ps equilibration at 298 K, with 10.0 kcal/mol restraints 
on protein complex, Step 6 - 40 ps equilibration at 298 K, with 1.0 kcal/molrestraints on protein complex, Step 7 - 
40 ps equilibration at 298 K, with 0.1 kcal/mol restraints on protein complex, Step 8-16: The system was further 
equilibrated by running it in the NPT ensemble for 0.5 ns at each step. 
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Figure 7.5. Plot of backbone RMSD verses time for the NPT ensemble equilibration (steps 8-15). 
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Figure 7.6. Plot of parallel β-sheet content versus step number. Total β is the average number of residues involved 
in β sheets in all 12 monomers, Outer corresponds to the average number of residues involved in β-sheets for the 
outermost 4 monomers, Middle for the 4 monomers present in the next inner layer, Core for the 4 innermost 
monomers, Step -2: Coarse Garin Structure, Step -1: Structure obtained from Modeller, Step 0: Structure obtained 
from Scrwl4, Step 1- Minimization of protein hydrogen atoms, ligand, solvents and ions for 2000 steps of steepest 
descent followed by 2000 steps of conjugate gradient, with 500.0 kcal/mol restraints on the protein heavy atoms, 
Step 2 -Minimization of solvents and ions for 2000 steps of steepest descent followed by 2000 steps of conjugate 
gradient, with 50.0 kcal/mol restraints on the protein-ligand complex, Step 3 -20 ps equilibration at 10 K, with 25.0 
kcal/mol restraints on the protein complex , Step 4 - 40 ps heat-up from 10 to 298 K followed by 20 
ps equilibration at 298 K, Step 5- 40 ps equilibration at 298 K, with 10.0 kcal/mol restraints on protein complex, 
Step 6 - 40 ps equilibration at 298 K, with 1.0 kcal/molrestraints on protein complex, Step 7 - 40 ps equilibration at 
298 K, with 0.1 kcal/mol restraints on protein complex, Step 8-16: The system was further equilibrated by running it 
in the NPT ensemble for 0.5 ns at each step. 

Figure 7.6 shows the average number of residues involved in parallel β-sheets after each 
of the minimization and equilibration steps. The core Aβ chains (the 4 innermost monomers) 
have the highest amount of β-sheet content, followed by the middle (the next layer of 4 
monomers), and then by the outermost 4 chains. In the beginning of the simulation the structure 
looses its β-sheet content, possibly due to conversion from the coarse-grain model. However, the 
β-sheet content increases during simulation in the NPT ensemble, showing that the structure is 
stable and the individual Aβ chains do not disassociate from the protofibril. In the last 1.5 ns of 
NPT equilibration (steps 14-16), the β-sheet content remains almost constant, indicating that the 
structure has equilibrated. The fibril similarity parameter, χ, also decreases slightly with the 
minimization and equilibration steps (1-7) and then increases during NPT equilibration with no 
restraints (steps 8-15) and remains fairly constant in the last few steps of the simulation (Figure 
7.7). Thus we can see from our analysis that the structure has equilibrated and is able to retain 
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stable β secondary structure. We simulate this structure in NVT ensemble for calculating the 
NMR observables.  

 

Figure 7.7. Plot of Fibril Similarity Parameter (χ) versus step number. Step -2: Coarse Grain Structure, Step -1: 
Structure obtained from Modeller, Step 0: Structure obtained from Scrwl4, Step 1: Minimization of protein 
hydrogen atoms, ligand, solvents and ions for 2000 steps of steepest descent followed by 2000 steps of conjugate 
gradient, with 500.0 kcal/mol restraints on the protein heavy atoms, Step 2 -Minimization of solvents and ions for 
2000 steps of steepest descent followed by 2000 steps of conjugate gradient, with 50.0 kcal/mol restraints on the 
protein-ligand complex , Step 3 -20 ps equilibration at 10 K, with 25.0 kcal/mol restraints on the protein complex , 
Step 4 - 40 ps heat-up from 10 to 298 K followed by 20 ps equilibration at 298 K, Step 5- 40 ps equilibration at 298 
K, with 10.0 kcal/mol restraints on protein complex, Step 6 - 40 ps equilibration at 298 K, with 1.0 
kcal/molrestraints on protein complex , Step 7 - 40 ps equilibration at 298 K, with 0.1 kcal/mol restraints on protein 
complex, Step 8-16: The system was further equilibrated by running it in the NPT ensemble for 0.5 ns at each step. 

Chemical shift prediction. From Figure 7.8 a and b we can see that the Hα and HN chemical 
shifts for the Aβ42 protofibril vary significantly from residue to residue unlike monomeric Aβ42 
for which they are almost constant (48, 64). The values are higher in the β-sheet region and 
decrease slightly around the loop region (residues 25-29), consistent with the fact that average Hα 
and HN β-sheet chemical shifts are higher than random coil values (160). Negative Cα secondary 
chemical shifts correspond to β-strand (161), and we do see that our Cα shifts in Figure 7.8c are 
on average lower than random coil, although the trend is small. However, from 7.8d, we can see 
grouping of positive chemical shifts in the β-sheet region, which correctly represents the NMR 
structure predictions. Overall, the protofibril chemical shifts generally reflect known trends for β-
sheet secondary structure, although for each residue the correlation is not perfect. We do not see 
a large variation in chemical shift between the different strands making up the protofibril. 
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Figure 7.8. Hα (a), HN (b), Cα (c), and Cβ (d) Chemical shifts calculated for the protofibril globulomer model versus 
residue number. Random coil specific values are subtracted from the simulations value. Total is the calculated value 
averaged over all 12 monomers, Outer corresponds to the average over the outermost 4 monomers, Middle for the 4 
monomers present in the next inner layer, Core for the 4 innermost monomers. 

J-coupling constant prediction. In Figure 7.9, we can see that the J-coupling values are higher 
than the random coil or average value (around 5 Hz), as expected for β-sheet structure. Also, the 
values are higher for the β-sheet regions and drop down around the turn region  (residues 23-28). 
The values for the different chains compare to each other in the β-sheet region, however differ in 
the termini, which is expected as the termini of the outer monomers have more freedom to move, 
followed by the middle, and the core monomers are the most ordered with little freedom to move. 
Overall, the J-coupling constants do not vary much over the different chains in the globulomer, 
indicating that this model would be consistent with uniform secondary structure for each of the 
Aβ chains. 
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Figure 7.9. J-coupling constants calculated for the protofibril globulomer model versus residue number. Total is the 
calculated value averaged over all 12 monomers, Outer corresponds to the average over the outermost 4 monomers, 
Middle for the 4 monomers present in the next inner layer, Core for the 4 innermost monomers. 

Discussion 
We have done preliminary work to characterize the stability of two alternate structural models of 
the globulomer, a toxic Aβ42 oligomer. One model is based on NMR data collected on a 
globulomer precursor (72), the preglobulomer, which is thought to have similar structure to the 
globulomer. Our explicit water, all-atom MD simulations of the dimer repeat unit proposed in 
this model indicate that the structure is not stable. We are currently investigating whether the 
tetramer structure, consisting of two dimer repeats will have greater stability during simulations. 
The tetramer model, however, is still not a symmetrical model of the preglobulomer, which 
contradicts NMR data showing that each chain in the preglobulomer is in the same chemical 
environment. The competing model for the globulomer that we evaluate is based on coarse grain 
simulations of Aβ40 protofibrils (69), which indicate that the dodecamer protofibril adopts 
structures that will not nucleate extended fibrils. When we simulate an all-atom Aβ42 dodecamer 
structure derived from one of these protofibrils, we find that it is quite stable and retains β 
secondary structure over the course of the simulation. There are many protofibril structures from 
the coarse grain simulations that we could use as globulomer models, which have varying levels 
of order. It is likely that the globulomer samples many of these states, and we plan to create an 
ensemble of potential globulomer structures in the future, from which we can assess the average 
level of order for the model. 
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We have done initial calculations of NMR observables based on the all-atom simulations 
of both models. These calculated data can be quantitatively compared to existing and future 
NMR experiments. Differences between the calculated experimental observables from each 
model will allow us to differentiate between the two models experimentally. For the NMR-based 
preglobulomer dimer model we have examined the percent of the simulation time where 
backbone amide hydrogen atoms for each residue are present in order to gauge the amount of 
protection each residue has from solvent exchange. We find that both chains have similar levels 
of protection, with more exposed N-termini and protected C-termini, since only the C-termini are 
involved in β-strands. The high level of variation between our 11 independent simulations 
indicates that an ensemble of structures must be used to calculate any observable quantities for 
this preglobulomer model, since even structures with the same β-strand conformations can yield 
quantitatively varied data. We also find that we are unable to achieve a good match between the 
experimentally reported amide exchange rates and those calculated from the dimer model 
simulations, which may mean that this model needs to be modified, perhaps with the 
construction of a tetramer. However, it is difficult to do a careful comparison of the calculated 
and NMR data, since the amide exchange rates were not reported in a quantitative manner (68, 
72). Further hydrogen exchange experiments would be beneficial for an effective assessment of 
amide protection in the various Aβ42 globulomer models. 

From the dodecamer protofibril model we have calculated chemical shifts and JHNHα J-
coupling constants for each residue. The J-coupling constants report on the dihedral angles 
sampled by the protein, and are therefore directly related to secondary structure. We see that the 
J-coupling values are increased for residues participating in β-sheets and drop off for residues 
without β structure. This means that a J-coupling experiment would be useful in distinguishing 
between two possible globulomer models that contain β-sheet structure at different points in the 
chain sequence. However, J-coupling constants may not distinguish well between the NMR-
based preglobulomer model and the protofibril model, because both models contain β-sheet 
structure at residues 18-23 and residues 28-40. One area that might distinguish between the two 
models is residues 13-17, which are involved in β-sheets in the protofibril structure, increasing 
their J-coupling values. In the NMR preglobulomer model, these residues are unrestrained and 
not designated as β-sheet residues, indicating that their J-coupling values will probably be lower. 
The J-coupling values may also help to distinguish the protofibril model from a model where 
each of the Aβ42 chains samples a different type of secondary structure. The protofibril model 
produces similar calculated J-coupling values for each of the chains, since they all adopt 
essentially the same secondary structure, with the end chains having slightly lower values due to 
the loss of β-sheet structure on the ends. Calculated chemical shifts for the protofibril model are 
also very similar for each monomer chain, indicating that experimentally the monomers could be 
indistinguishable and only set of Aβ42 chemical shifts would be observed experimentally. 
Although we also see a trend in the secondary chemical shift values corresponding to the 
stretches of sequence with β-sheet structure, this would be less useful in distinguishing between 
the protofibril and NMR preglobulomer models since the trend is not clearly defined for each 
residue. 

In future work, we will calculate amide exchange data for the dodecamer protofibril 
model and chemical shifts and J-coupling values for the preglobulomer dimer structure as well as 
the tetramer. We can also calculate NOE intensities for both models. These values have been 
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measured for the preglobulomer by Yu et al. (48, 64, 65, 72), and therefore could be 
quantitatively compared to their experimental data as well as future experiments. After 
calculating expected values for all of these different types of NMR observables for both our 
alternative globulomer models, we will be able to identify the NMR experiments that can best 
distinguish between the two models. We can then design specific experiments using labeled 
Aβ42 peptides to collect data that will help us refine our globulomer model. 

Conclusions 
The investigation of Aβ oligomer structure is an important part of ongoing Alzheimer’s disease 
research, given that a small soluble oligomer is believed to be responsible for AD toxicity. This 
is a challenging task because there are many possible polymorphic arrangements of the Aβ 
monomers which could compose such an oligomer, and many oligomers which can be studied 
experimentally. The Aβ42 globulomer is one oligomer that is experimentally shown to be 
relatively consistent in terms of size and structure, however, even it may also incorporate a 
considerable level of disorder and heterogeneity. Size exclusion chromatography data suggest 
that the globulomer is more loosely packed than globular folded proteins, much like a molten 
globule state (68). This indicates that a single, static model of the globulomer may be insufficient 
to describe its structure, as we know is the case for the Aβ42 monomer, which is an intrinsically 
disordered protein. Although the globulomer is not completely disordered and seems to have 
stable β secondary structure, it may be best represented by an ensemble of structures, which 
could be effectively generated from MD simulations.  

These computationally generated Aβ oligomer structures should always be well validated 
with experimental evidence, as we have done with the Aβ monomer ensembles (48, 64, 65). As 
we discussed in Chapter 4, there are many ways of incorporating NMR data into the construction 
of an IDP ensemble, and the same methods should, in principle, apply to an ensemble of 
structures representing a disordered Aβ oligomer. It is likely that a similar fusion of the de novo 
MD and knowledge-based approaches that we used to construct the Aβ40 and Aβ42 monomer 
ensembles could be adapted to the Aβ42 globulomer. After using MD to generate a large number 
of possible globulomer structures, the available NMR data could be used to select the best 
ensemble of globulomer structures. Use of coarse grained simulations, as in the construction of 
our dodecamer protofibril model could also be very useful in the sampling of possible 
globulomer structures, since extensive MD sampling for a large oligomer would be very difficult 
using only all-atom MD simulations. 

After using NMR data to validate a set of globulomer structures, a detailed analysis of the 
oligomer conformations can be carried out in the context of Alzheimer’s disease and the 
formation of this toxic species. It will be interesting to determine whether any of the 
conformations we have already characterized in the Aβ monomer ensembles will appear in the 
context of the globulomer. If so, this indicates that globulomer formation involves a process of 
conformational selection whereby oligomerization occurs when Aβ42 monomers that are already 
adopting a globulomer-like structure come into contact, stabilizing the conformation through 
intermolecular interactions.  
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The comparison of the globulomer structure to the Aβ monomer ensembles may also lead 
to a better understanding of why only Aβ42, and not Aβ40, appears to form the toxic globulomer. 
One possible explanation lies in the major Aβ42 monomer β-hairpin formation that we describe 
in Chapter 5 (65). This structure includes a β-turn at residues 26-27, that is also present in the 
NMR-based preglobulomer model presented by Yu et al. (115). This turn is not present in the 
Aβ40 monomer ensemble, one possible explanation for why Aβ40 does not form the globulomer 
structure. Yu et al. also argue that the presence of this β-turn, rather than a larger bend, is the key 
factor that leads to globulomer, rather than fibril, formation for Aβ42. This leads to the question 
of how different polymorphic Aβ structures are formed, another question that we hope to address 
using oligomer models in combination with our well-characterized Aβ monomer ensembles. 
Conformational selection of different monomer structures may well be part of the explanation for 
the wide array of oligomer and fibril polymorphs observed for Aβ experimentally.  

A complete structural picture of the Aβ monomeric and oligomeric populations will 
contribute to a broad understanding of the molecular aspects of Alzheimer’s disease, providing a 
better guide for efforts to diagnose patients and prevent or treat disease symptoms. 
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