
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Performance Pressure and Comparison in Relational Category Learning

Permalink
https://escholarship.org/uc/item/4kd6x7b1

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 38(0)

Authors
Patterson, John D.
Kurtz, Kenneth J.

Publication Date
2016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kd6x7b1
https://escholarship.org
http://www.cdlib.org/


 

 

Performance Pressure and Comparison in Relational Category Learning 
 

John D. Patterson (jpatter4@binghamton.edu) 
Kenneth J. Kurtz (kkurtz@binghamton.edu) 

Department of Psychology, 4400 Vestal Parkway East 
Binghamton, NY 13905 USA 

 
 

Abstract 

An important objective in higher-order cognition research is 
to understand how relational categories are acquired and 
applied. Much of the research on relational category learning 
has investigated the role of within-category comparison 
opportunities in category acquisition and transfer – guided by 
predictions from structure mapping theory that alignment 
leads to highlighting and abstraction of shared relational 
structure (Gentner, 1983). Recent research has yielded a 
within-category comparison advantage under the supervised 
observational learning mode (relative to twice as many single-
item trials), but not under the supervised classification mode 
(Patterson & Kurtz, 2015). In the present study we investigate 
the role that pressure to succeed at the training task – a critical 
difference between the two learning modes – plays in the 
apparent ineffectiveness of learning by comparison within the 
classification mode. In a 2x2 between-subjects design we 
crossed two levels of performance pressure (elevated and 
standard) with two presentation formats (single-item and 
within-category pairs). The main findings are: (1) a 
significant interaction showing a negative impact of increased 
performance pressure for single-item learners, but not for 
comparison learners; and (2) a theoretically predicted, but 
empirically elusive effect of comparison over single-item in 
the classification mode. We conclude that: (1) performance 
pressure exerts a deleterious effect on relational category 
learning (in accord with findings in the attribute category 
literature) that opportunities to compare may compensate for; 
and (2) pressure to perform does not appear to underlie 
lackluster comparison + classification performance (relative 
to observational learning). Further, we offer new evidence on 
the role that within-category comparison plays in relational 
category learning. 

Keywords: relational categories; structural alignment; 
comparison; classification learning; transfer; performance 
pressure 

Introduction 
Categorization and comparison are two mechanisms that 
play a central role in human learning, comprehension, and 
knowledge use. The study of categorization has largely 
focused on attribute-based categories, or categories whose 
members belong based on a shared set of intrinsic features. 
Attribute categories have been studied under a diverse set of 
circumstances ranging from inference of missing features 
(Markman & Ross, 2003) to category construction (Ahn & 
Medin, 1992). By far however, the most prevalent paradigm 
of study has been the traditional artificial classification 
learning (TACL) paradigm. In its most common form, the 
paradigm operates as follows: a single stimulus is presented, 
the participant is asked to classify the item into one of two 
category options, a response is selected, and corrective 

feedback is given. The study of attribute categories has led 
to a considerable body of knowledge and has provided a 
viable testing ground to evaluate formal models of 
categorization (e.g., ALCOVE, Kruschke, 1992; DIVA, 
Kurtz, 2007; SUSTAIN, Love, Medin, & Gureckis, 2004).  

However, attribute-based understandings alone cannot 
adequately characterize the richness of human category 
knowledge. Beyond our attribute-based understanding, we 
are sensitive to, and knowledgeable about, the ways in 
which objects and attributes in the world relate to one 
another. Accordingly, the categorization literature has 
placed increasing emphasis on the study of relational 
categories (Gentner & Kurtz, 2005; Markman & Stilwell, 
2001). Members belong to relational categories, not based 
on their attributes, but instead based on shared relational 
structure. For example, consider the relational noun barrier. 
A thunderstorm, for instance, might be a barrier to a 
baseball game. Just the same, a sick child could be a barrier 
to you going to work. Considering the attributes of these 
two instances of barrier reveals that they are greatly 
disparate; they would be poor candidates for shared 
membership based on their attributes. However, their 
overlapping relational structure – that they both occupy an 
obstructing role between two other things – grants them 
membership in a shared relational category.  

A key question in the study of relational categories is how 
we come to learn them. A strong candidate mechanism is 
comparison. A substantial body of evidence from the 
relational reasoning literature has found that comparison 
promotes learning and transfer of shared relational structure 
(Alfieri, Nokes-Malach, & Schunn, 2013, Gick & Holyoak, 
1983; Kurtz, Miao, & Gentner, 2001; Loewenstein, 
Thompson, & Gentner, 1999; see Loewenstein, 2010 for a 
review). The benefits of comparison can be explained 
through the process of structural alignment (Markman & 
Gentner, 1993). Comparison encourages the alignment of 
instances’ relational predicates, serving to preferentially 
highlight shared relational structure that is not readily 
salient when considering either instance alone. Importantly, 
comparison fosters abstraction of shared relational structure, 
thereby promoting later transfer. Thus, it is predicted that 
comparison of instances belonging to the same relational 
category should produce greater highlighting and learning of 
shared relations than sequential presentations. Indeed, the 
study of relational categories has shown same-category 
comparison to produce these effects in children (Gentner & 
Namy, 1999; Son, Smith, & Goldstone, 2011) and in adults 
(Kurtz, Boukrina, & Gentner, 2013; Patterson & Kurtz, 
2015).  
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Though the support for comparison’s central role in 
relational learning is extensive, research in relational 
category learning has exposed possible boundary conditions 
of its potency. Borrowing from the tradition of the attribute 
category literature, the study of relational categories has 
frequently used the TACL paradigm. However, when a 
straightforward pairing of pure within-category comparison 
with TACL has been used, it has failed to produce the 
predicted comparison advantage. An attempt by Kurtz and 
Gentner (1998) found that a straightforward merging of 
same-category comparison with classification required twice 
as many stimulus exposures to produce an effect of 
comparison over sequential presentations. Moreover, we 
conducted a series of follow-up attempts that failed to find 
an effect of comparison when exposure was equated – 
despite efforts to enhance the invitation to compare by 
eliciting similarity ratings or correspondences between 
elements. 

Recent research, however, has shown that learning mode 
can influence the impact of comparison. Patterson and Kurtz 
(2015) found robust comparison advantages relative to 
equivalent single-item presentation on within- and across-
domain tests of knowledge when learning under a 
supervised observational mode (passive study of labeled 
examples). However, no effect was found in the supervised 
classification mode – suggesting that some facet(s) of the 
classification mode attenuates the power of comparison. A 
key difference between the two modes is that task 
performance – tied to the guess-and-correct cycle of TACL 
– is emphasized in the classification mode. When combining 
comparison and classification, this may elicit competition 
for resources or a strategic element that favors one 
component or the other. By receiving accuracy feedback on 
each trial, it is possible that participants’ theory of task 
shifts relative importance to the guess-and-correct cycle 
over comparison. We can refer to this as a weighting effect.  

Alternatively, the apparent incompatibility between 
classification and comparison may be explained by a 
distraction effect (Beilock & Carr, 2005; Markman, 
Maddox, & Worthy, 2006). According to the distraction 
hypothesis, peoples’ available cognitive resources decline as 
pressure to perform increases – a ‘choking effect’ that is 
accredited to the occupation of executive attention with 
task-irrelevant thoughts and performance-related worries. 
Given the greater performance demands of the classification 
mode, it is possible that the pressure to perform results in 
the occupation of cognitive resources needed for 
comparison. Indeed, working memory resources have been 
marked as important to the structural alignment process 
(Waltz, Lau, Grewal, & Holyoak, 2000). Waltz et al. (2000) 
found that when participants were under load that occupied 
either phonological or executive working memory, noticing 
of relational correspondences was significantly attenuated 
and noticing of simpler-to-detect attribute correspondences 
increased. 

In the present study, we sought to determine whether the 
ineffectuality of comparison in the classification mode can 

be traced to weighting or distraction effects by varying the 
degree of performance pressure in the classification task. 
The global factor, termed ‘performance pressure’, was 
manipulated by testing an elevated pressure condition 
operationalized by: (1) an instruction asserting that 
achieving the highest possible performance was the goal, (2) 
trial feedback in red/green colors (incorrect/correct) to 
underscore evaluation, and (3) presentation of a running 
accuracy percentage at the end of each trial. The standard 
pressure group did not receive (1) or (3) and received 
feedback in black text. The manipulation was intended to 
further accentuate the guess-and-correct cycle and increase 
perceived pressure to perform. It would also be helpful to 
make the classification task less performance-centric, but 
reducing pressure would seem to require changing the 
essential nature of the task or employing a relatively weak 
manipulation. If comparison in the classification mode is 
ineffective due to either a weighting or distraction effect 
elevated performance pressure should lead to poorer 
learning outcomes than standard pressure. To be clear, both 
possible effects would be predicted to result in the same 
performance outcome – differentiating between the two is 
not of immediate concern. 

In addition to exploring the comparison + classification 
incompatibility, the present study addresses the influence of 
performance pressure on relational category learning more 
generally by looking at its effect on single-item learning. 
Though addressed in the attribute category literature, this 
issue has not been studied in the relational category realm. 
Markman, Maddox, and Worthy (2006) showed that 
participants under very high pressure to perform (i.e., 
contingent monetary incentives) were hindered, by a posited 
distraction effect, in their ability to learn sequentially 
presented rule-based attribute categories, but were 
facilitated in learning information integration categories. 
Relational categories are generally considered to be 
verbalizable and rule-like in nature (Gentner & Kurtz, 
2005). To the extent that the rule-like nature of attribute and 
relational categories is similar, a distraction effect marked 
by reduced learning outcomes should be expected for 
single-item relational category learning under elevated 
pressure.  

In a 2x2 design, the effect of performance pressure 
(standard, elevated) on relational category learning was 
assessed across two presentation formats (single-item, 
within-category comparison). Additionally, we measured 
participants’ regulatory focus – their degree of approach 
(promotion) and avoid (prevention) motivation using 
Higgins, Friedman, Harlow, Idson, Ayduk, and Taylor’s 
(2001) regulatory focus questionnaire (RFQ). The match 
between a person’s regulatory focus and their perceived 
nature of the reward structure has been shown to be 
important to cognitive tasks, including category learning 
(see Maddox, Baldwin, & Markman, 2006). To control for 
how individual differences in participants’ regulatory focus 
might interact with the pressure manipulation, we 
incorporated their RFQ data into our statistical models. 
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Method  
Participants 
93 undergraduates from Binghamton University participated 
toward partial fulfillment of a course requirement.   
 
Materials 
The RFQ contained 11 questions, six measuring 
participants’ level of promotion focus and five measuring 
their level of prevention focus. A five-point Likert scale was 
used to collect participants’ RFQ responses. The training 
and within-domain test phase stimuli consisted of 36 
unique, Stonehenge-like rock arrangements (see Figure 1). 
Rocks varied in their size, shape, color, and spatial location. 
The stimuli comprised three relational categories: 
monotonicity – defined by a monotonic decrease in height of 
the arrangement from left to right, support – characterized 
by the presence of one rock being supported by two other 
rocks, and mirrored stack – consisting of two same color 
rocks of similar size and shape arranged in a stack. Each 
arrangement belonged to only one of the three categories. A 
24 item subset of 36 stimuli was used for training and 12 
were reserved for use at test; subsets were balanced by 
category. The subsets matched those used in Kurtz, 
Boukrina, and Gentner (2013) and the subset was held 
constant across participants. For comparison conditions, 
training stimuli were presented in same-category pairs. Pairs 
were randomly generated for each participant on each pass 
through the training set. 

To evaluate participants’ ability to transfer category 
knowledge to a novel domain, 15 mobile-like stimuli were 
used (see Figure 1). Each mobile conformed to one of the 
three categories from training, five per category. The 
mobiles differed considerably from the training/test stimuli 
in their surface characteristics (color/shape of objects) as 
well as in the spatial orientation of the category-defining 
core which was reflected over the X-axis. 

Design and Procedure 
In a between-subjects design, participants were randomly 
assigned to one of four training conditions using the 
supervised classification task. Two conditions presented 
pairs of items for same-category comparison: elevated 
performance pressure comparison (n = 23) and standard 
performance pressure comparison (n = 23). The other two 
conditions trained with twice as many single-item trials: 
elevated performance pressure single-item (n = 24) and 
standard performance pressure single-item (n = 23). Prior to 
the training instructions, all participants completed the RFQ 
(Higgins et al., 2001). Following the RFQ, all participants 
received an archeological cover story and instructions 
indicating that their goal was to figure out what makes a 
rock arrangement belong to a particular type and that they 
would be tested on their knowledge later. Participants in 
comparison conditions received an additional instruction 
indicating that looking at the two arrangements together can 

be helpful for learning. A further instruction was given to 
the elevated performance pressure groups, indicating (1) 
that a performance tracker would show them the percentage 
of trials they had gotten correct after each trial, and (2) that 
their job was to achieve the highest percentage they could. 

Training – Comparison Conditions Training consisted of 
two passes through 12 paired stimulus trials, totaling 48 
stimulus exposures. Each trial showed two stimuli, side-by-
side, that remained visible until the trial was complete. 
Participants were asked to make a joint category decision 
for the presented items and selected their response with the 
mouse. The joint decision represents a deviation from 
Patterson and Kurtz (2015), however preliminary work 
showed performance under joint and independent responses 
to be nearly identical. Time was unconstrained for the 
category decision. Following the response, participants were 
given feedback for two seconds indicating: (1) whether they 
were correct and (2) the correct category of the items. In the 
elevated performance pressure condition, participants 
received feedback in either green (correct) or red (incorrect) 
and at the end of the trial participants saw a screen for two 
seconds showing the percentage of trials correct to that point 
before advancing to the next trial.  

 
Training – Single-item Conditions Training consisted of 
two passes through 24 randomized, single-item trials, 
totaling 48 stimulus exposures. Outside of the number of 
trials and language adjusted to accommodate single, instead 
of paired, items in the decision query, the single-item 
conditions were conducted identically to the comparison 
conditions.  
 

           
 
Figure 1: Sample stimuli for each category in 
each phase. 

 
Assessment After the training, all conditions performed an 
identical assessment sequence. Participants first received a 
within-domain test consisting of the 24 ‘old’ rock 
arrangements from training and 12 previously unseen 
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arrangements. Old and new items were interspersed 
randomly. The transfer assessment, consisting of 15 
randomly ordered mobile stimuli, was presented after the 
within-domain test. Both the within-domain and transfer 
assessments were conducted using a category endorsement 
task: on each trial an item was presented along with a query 
asking whether the item belonged to a given category and 
participants responded with either “yes” or “no.” Given our 
primary interest in how well acquired category knowledge 
could be extended to new cases, old test items were 
presented once each while the new within-domain and far 
transfer items were each presented twice – once with an 
accurate category label and once with an incorrect label. 

Results 
The trial-wise accuracy data were modeled using binomial 
generalized linear mixed effect regressions via the lme4 
(Bates, Maechler, Bolker, & Walker, 2015) and lmerTest 
(Kuznetsova, Brockhoff, & Christensen, 2015) packages for 
the R environment (R Core Team, 2015). Models examining 
main effects included trial number and the effect of interest 
as fixed effects. Models examining interactions included 
trial number, presentation condition, performance pressure 
condition, and the presentation condition by performance 
pressure interaction as fixed effects. All models controlled 
for participants’ regulatory focus in the random effects 
structure by including random intercepts for the 16 levels of 
prevention focus and 15 levels of promotion focus that 
resulted from the sample’s RFQ data. In the interest of 
brevity, results of the RFQ will not be discussed. Adjusted 
means and standard errors for accuracy data can be seen in 
Table 1. 

 
Training 
Modeling of the performance data revealed three effects in 
the training phase. First, trial number was found to be 
significantly predictive of accuracy (β = 0.04, SE = 0.003, 
Wald Z = 11.86, p < .0001), indicating that participants’ 
accuracy increased as they progressed through training. 
Second, a main effect of presentation condition was 
observed (β = 0.53, SE = 0.14, Wald Z = 3.84, p = .0001), 
showing that comparison learners were more accurate than 
their single-item counterparts. Third, the analysis revealed a 
marginal presentation condition by performance pressure 
interaction (β = 0.34, SE = 0.18, Wald Z = 1.90, p = .057). 
The interaction was driven by an effect of performance 
pressure for the single-item condition (standard pressure > 
elevated pressure; β = -0.22, SE = 0.11, Wald Z = -2.06, p = 
.04), but not for the comparison condition (β = -0.11, SE = 
0.14, Wald Z = -0.77, p = .44). In a follow-up test to the 
interaction, both comparison conditions outperformed their 
single-item counterparts (elevated pressure: β = 0.87, SE = 
0.14, Wald Z = 6.20, p < .0001; standard pressure: β = 0.53, 
SE = 0.14, Wald Z = 3.84, p < .001). 
 
 
 

Old Within-domain Items 
Modeling of the old-item accuracy data revealed only a 
significant effect of trial number (β = -0.01, SE = 0.01, 
Wald Z = -2.76, p = .006), indicating that participants’ 
accuracy was slightly lower for items encountered later in 
the queue compared to those encountered earlier. This effect 
may be associated with old items being interspersed with 
new ones. There was also a marginal main effect of 
performance pressure (β = -0.22, SE = 0.13, Wald Z = -1.80, 
p = .07), marking higher accuracy for the standard pressure 
group compared to the elevated pressure group. In addition, 
there was a marginal interaction mirroring that in the 
training phase (β = 0.41, SE = 0.24, Wald Z = 1.69, p = .09) 
– showing a significant difference between levels of 
performance pressure for the single-item condition (standard 
pressure > elevated pressure; β = -0.43, SE = 0.17, Wald Z 
= -2.44, p = .01), but not for the comparison condition (β = 
0.02, SE = 0.17, Wald Z = 0.10, p = .92).   
 
Novel Within-domain Items  
Analyses of the new, within-domain items yielded one 
reliable effect: a presentation condition by performance 
focus condition interaction (β = 0.73, SE = 0.22, Wald Z = 
3.40, p = .001). Again, the interaction was characterized by 
a reliable difference between levels of performance pressure 
for the single-item presentation group (standard pressure > 
elevated pressure; β = -0.52, SE = 0.15, Wald Z = -3.41, p = 
.001), but not for the comparison group (β = 0.21, SE = 
0.15, Wald Z = 1.34, p = .18).  Examining the interaction 
further, a comparison advantage was found for the elevated 
pressure group (β = 0.56, SE = 0.18, Wald Z = 3.11, p = 
.002), but not the standard pressure group (β = -0.17, SE = 
0.18, Wald Z = -0.98, p = .33). Since the comparison 
conditions did not differ, it suggests that the interaction and 
comparison advantage were driven by poor performance 
among elevated pressure single-item learners, rather than 
exceptional performance among elevated pressure 
comparison learners. 

 
Table 1: Adjusted condition means and standard 
errors across all performance phases. 
 

 
 
Transfer  
The transfer results are visualized in Figure 2. Three reliable 
effects emerged in the analysis of the transfer data. First, an 
effect of trial number (β = 0.02, SE = 0.005, Wald Z = 4.73, 
p < .0001) demonstrated that participants’ accuracy 
increased slightly over the course of the transfer assessment. 
The effect suggests that domain experience helped 
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participants to recognize the deep similarity between the 
two domains and apply their category knowledge.  
 

 
 
Figure 2: Transfer accuracy by condition. Error 
bars show +/- 1 SE.  

 
Second, a highly reliable main effect of presentation 
condition was observed (β = 0.99, SE = 0.16, Wald Z = 6.08, 
p < .00001), indicating that participants in the comparison 
group were better at extending their knowledge to a novel 
domain than those in the single-item group. Third, a 
significant presentation condition by performance pressure 
interaction was observed (β = 0.50, SE = 0.19, Wald Z = 
2.63, p = .01). The interaction was characterized by 
pressure-related decrements for the single-item group 
(standard pressure > elevated pressure; β = -0.29, SE = 0.14, 
Wald Z = -2.19, p = .03), but not the comparison group (β = 
0.20, SE = 0.14, Wald Z = 1.46, p = .14). Critically, follow-
up tests examining the effect of comparison revealed that 
both standard (β = 0.74, SE = 0.19, Wald Z = 3.94, p = 
.0001) and elevated pressure (β = 1.24, SE = 0.19, Wald Z = 
6.56, p < .0001) comparison led to highly reliable 
advantages over their single-item counterparts. 

Discussion 
The goal of this study was to evaluate the effect that 
performance pressure exerts on relational category learning. 
The results convincingly show that performance pressure 
has a deleterious effect on relational category learning – 
leading to learning decrements that were realized across 
training, within-domain test (both old and new items), and 
at transfer. However, the pressure-related deficits were 
restricted to learners who trained via sequential 
presentations. The effect of performance pressure on single-
item learning shows a consistency between the domains of 
attribute and relational category learning. The similarity 
between pressure effects for relational and attribute category 

learning (Markman, Maddox, & Worthy, 2006) suggests 
that similar systems and/or resources are employed for 
learning the both category types – perhaps mutually 
depending on an explicit, verbal system like that posited by 
the COVIS model (Ashby, Alfonso-Reese, Turken, & 
Waldron, 1998). Future research should further explore the 
conditions under which the behavior of attribute and 
relational categories converges and diverges. 

A specific interest embedded in our broader goal was to 
investigate if weighting or distraction effects might underlie 
the ineffectuality of comparison in the classification mode 
as seen by Patterson and Kurtz (2015). If cognitive 
resources that are necessary for comparison are retrained on 
the guess-and-correct cycle of classification or if they 
become occupied with worry under pressure to perform, 
then our performance pressure manipulation ought to have 
led to poorer comparisons and poorer learning. However, 
accentuating performance and increasing pressure was 
found to have no effect on the learning outcomes of 
comparison learners; this finding casts tentative doubt on 
the weighting and distraction accounts of lackluster 
comparison performance in the classification mode (relative 
to observational).  

One possible rationale for why pressure did not affect 
comparison learning is that the manipulation was not 
sufficiently strong to elicit an effect. Other studies (e.g., 
Markman, Maddox, & Worthy, 2006) have employed 
stronger manipulations, such as contingent monetary 
incentives, to achieve high levels of pressure. It seems likely 
that, at greater levels of pressure, a distraction effect would 
occur, and learning outcomes under comparison would 
suffer. However, it is clear that our manipulation was 
sufficiently strong to elicit consistent performance pressure 
deficits for the single-item group. This suggests that 
comparison served a compensatory role to the otherwise 
negative effects of pressure. By this account, elevated 
pressure learners may have faced a weighting or distraction 
effect, but the resources allocated to the alignment process 
were sufficient to avoid performance decrements. To further 
elaborate on this effect, future studies should evaluate how 
differing levels of performance pressure affect alignment-
based relational category learning. 

 Of considerable note, this study also showed a reliable 
effect of same-category comparison in the supervised 
classification mode (under standard pressure) at training and 
transfer over its single-item counterpart. To our knowledge, 
this is unprecedented. Finding a comparison effect at 
training and transfer was puzzling, since comparison 
advantages were not found in Patterson and Kurtz (2015). 
One notable difference is that the two studies utilized 
different analysis techniques. Follow-up analyses revealed 
that the effects from the present study remained after 
dropping the random effects structure; this prompted us to 
reanalyze Patterson and Kurtz (2015) using a logistic 
regression framework as in the present study. Though 
comparison in the observational mode was the clear winner, 
showing advantages over single-item at every phase, the 
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results showed a reliable comparison effect in the 
classification mode over single-item at training and a 
marginal effect (p = .09) at transfer. This finding provides 
further evidence that comparison is an effective means to 
promote relational category learning. In addition, it echoes 
the need for researchers to utilize analysis techniques that 
adequately reflect the richness of the data. For category 
learning research, analyzing the data trial-wise using logistic 
regression increases the number of observations available 
for model fitting, thereby increasing sensitivity over 
analysis methods that aggregate across trials. 
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