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Abstract

In this paper we show that a Dupin hypersurface with constant Mobius curvatures is
Mobius equivalent to either an isoparametric hypersurface in the sphere or a cone over
an isoparametric hypersurface in a sphere. We also show that a Dupin hypersurface with
constant Laguerre curvatures is Laguerre equivalent to a flat Laguerre isoparametric hy-
persurface. These results solve the major issues related to the conjectures of Cecil et al on

the classification of Dupin hypersurfaces.
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1 Introduction

Let M™ be an immersed hypersurface in Euclidean space R**!. A curvature surface of M"
is a smooth connected submanifold S such that for each point p € 9, the tangent space 1,5
is equal to a principal space of the shape operator A of M™ at p. The hypersurface M™ is
called Dupin hypersurface if, along each curvature surface, the associated principal curvature

is constant. The Dupin hypersurface M™ is called proper Dupin if the number r of distinct


http://arxiv.org/abs/1503.02914v1

principal curvatures is constant on M™. Both Dupin and properness are invariant under the
group of Lie sphere transformations, which was verified by Pinkall [35]. The group of Lie sphere
transformations is generated by its two subgroups: the group of Moébius transformations and
the group of Laguerre transformations. Hence, due to Mobius invariance, the theory of Dupin

submanifolds is essentially the same whether it is considered in R"*!, S*+1 or H**+!,

Dupin surfaces were first studied by Dupin [I3] in 1822. Since then, Dupin hypersurfaces have
been studied extensively (cf. [3 [, [6 8, @, 10, 14, 26| 27 28| 34], B8, [40]). The classification of
Dupin hypersurfaces is far from complete, especially for higher dimensions. An important class
of examples are the isoparametric hypersurfaces in R**!, H"*!, and S"*!'. An isoparametric
hypersurface is a hypersurface with constant principal curvatures. In R**! as well as H*t!, an
isoparametric hypersurface has no more than 2 distinct principal curvatures and is completely
classified (cf. [3]). On the other hand, in S"*!, there are many more examples (cf. [5] 12} 18]
42 [44]). Minzner (|30, B1]) showed that the number r of distinct principal curvatures of an

isoparametric hypersurface in S"*! must be 1,2,3,4 or 6. Cartan [2] classified those with r < 3.

Thorbergsson [43] showed the restriction that » = 1,2,3,4 or 6 on the number of distinct
principal curvatures also holds for compact proper Dupin hypersurfaces embedded in S™*!.
Compact proper Dupin hypersurfaces with r < 3 are completely classified (cf. [I1 26]). How-
ever, it is a different story if the compactness is dropped. In fact, Pinkall [35] discovered the
basic constructions of building tubes, cylinders, cones and surfaces of revolution over a Dupin
hypersurface. It is important to note that these constructions may yield a compact proper
Dupin hypersurface only if the original one is a sphere (cf. [3, B5]). A Dupin hypersurface
which is locally equivalent by a Lie sphere transformation to a hypersurface M™ obtained by
one of these four basic constructions is said to be reducible, otherwise, the Dupin hypersurface
is said to be irreducible. Local classifications have been obtained for irreducible connected
proper Dupin hypersurfaces with r» < 3 (cf. [8, @, [33], B3]).

In all of the above cases when r < 3, compact (or irreducible) Dupin hypersurfaces are known
to be Lie equivalent to isoparametric hypersurfaces (cf. [9,26, [33]). In addition, Stolz [40] in the
cases r = 4 and Grove and Halperin [14] in the cases r = 6 have shown that the multiplicities of
the principal curvatures of a compact proper Dupin hypersurface must be the same as that of an
isoparametric hypersurface. Hence it was conjectured that, at least for compact cases, proper
Dupin hypersurface is always Lie equivalent to an isoparametric hypersurface (see for instance
[8, p.184]). However, this conjecture was shown to be false by Pinkall and Thorbergsson [36]
for r = 4 and separately by Miyaoka and Ozawa [29] for r = 4 and r» = 6. The compact proper
Dupin hypersurfaces for counterexamples in [36, 29] have non-constant Lie curvatures. For an

oriented hypersurface M™ with r(> 4) distinct principal curvatures Ag,- -, A., Miyaoka [27]



introduced Lie curvatures as the cross-ratios of the principal curvatures

(A = AN\ = As)

\Ili's =
T =) e = A)

and verified that Lie curvatures W;;,; are invariant under Lie sphere transformations. Obviously,
that the Lie curvatures are constant is a necessary condition for a Dupin hypersurface to be
Lie equivalent to an isoparametric hypersurface. Therefore Cecil, Chi and Jensen [8] proposed

the following conjecture.

Conjecture 1.1. ([8]) Every compact connected proper Dupin hypersurface with four or siz
principal curvatures and constant Lie curvatures is Lie equivalent to an isoparametric hyper-

surface in a sphere.

Analogously, on local classifications of irreducible connected proper Dupin hypersurfaces,

Cecil, Chi and Jensen [§] proposed the following conjecture.

Conjecture 1.2. ([§]) If M™ is an irreducible connected proper Dupin hypersurface with four
principal curvatures having respective multiplicities my, mo, ms, my and constant Lie curvature,
then my = mo, mg = my, and M™ is Lie equivalent to an isoparametric hypersurface in a

sphere.

In [6], Cecil, Chi and Jensen have verified both Conjecture [[LTland Conjecture [[.2] for Dupin
hypersurfaces with four principal curvatures and multiplicities m; = ms > 1, mg=my4 = 1. In
this paper we will shed different lights on Conjecture [[LT] and Conjecture More precisely,
we will consider Mo6bius (Laguerre) curvatures instead of Lie curvatures and show Conjecture
[T and Conjecture hold in stronger ways where Lie equivalence is replaced by Mobius

(Laguerre) equivalence respectively.

For an oriented hypersurface M™ with r(> 3) distinct principal curvatures A1, -« , A, the
Mobius curvatures are defined by
Ai — A
M5 = 2,
178 /\Z — )\S

It is known that the Mobius curvatures M, are invariant under the Mobius transformations
but not under Lie sphere transformations in general (cf. [27]). Obviously, Lie curvatures are

products of two Md&bius curvatures
Wiist = MMy

and therefore Mobius curvatures are finer than Lie curvatures. On a seemingly different thread,
Hu, Li, and Wang [I5] [16 [I7] classified the hypersurfaces with vanishing Mébius form and

constant Mobius principal curvatures, which are called M&bius isoparametric hypersurfaces,



provided that the dimension of the hypersurface or the number of distinct principal curva-
tures is small. Until Rodrigues and Tenenblat [39] observed that an oriented hypersurface is a
Dupin hypersurface with constant Mobius curvatures if and only if it is a Mobius isoparametric

hypersurface.

Our first main result is the following classification theorem:

Theorem 1.1. Let M™ be a Dupin hypersurface in R"* with r(> 3) distinct principal
curvatures. If the Mébius curvatures are constant, then locally M™ is Mébius equivalent to one
of the following hypersurfaces:

(1) the image of the stereograph projection of an isoparametric hypersurface in S*H1;

(2) a cone over an isoparametric hypersurface in S¥ C RF1 ¢ R+1,

A Dupin hypersurface with constant Mobius curvatures turns out to be proper (cf. Corollary
21). As a consequence of the constraint on the number of distinct principal curvatures for

isoparametric hypersurfaces established by Miinzner ([30} 31]), we may conclude

Corollary 1.1. Let M™ be a Dupin hypersurface in R" ™% with r(> 3) distinct principal

curvatures. If the Mobius curvatures are constant, then r = 3,4,5,6,7.

As argued in [6] based on the analyticity of Dupin hypersurfaces established in [7], we can
use Theorem [[T] to solve some major issues related Conjecture [Tl and Conjecture on the

classification of Dupin hypersurfaces.

Corollary 1.2. Let M™ be a compact connected Dupin hypersurface with r(> 3) distinct
principal curvatures. Then M™ is Mobius equivalent to an isoparametric hypersurface in S™+1

if and only if its Mobius curvatures are all constant.

and

Corollary 1.3. Let M™ be an irreducible connected Dupin hypersurface with r(> 3) distinct
principal curvatures. Then M™ is Mobius equivalent to an isoparametric hypersurface in S™+1

if and only if its Mobius curvatures are all constant.

For an oriented hypersurface M™ in R"*! with non-vanishing principal curvatures Ay, Aa, -+ , Ap,
let R; = )\l be the curvature radius. Then one can define the Laguerre curvatures of M™ as
R, — R;
Y=+~
ijs R1 — Rs
It is clear that Y, are invariant under Laguerre transformations in the light of (G.66]) in Section

Again, obviously, the Lie curvature is a product of two Laguerre curvatures

Wiist = Yijs Lisj



and therefore Laguerre curvatures are finer than Lie curvatures. Analogous to M&bius cases, it
turns out, as expected, an oriented hypersurface is a Dupin hypersurface with constant Laguerre
curvatures if and only if its Laguerre form vanishes and its Laguerre principal curvatures are

all constant (see Proposition 5.l and also [37]).

Our second main theorem is the following result:

Theorem 1.2. Let M™ be a Dupin hypersurface in R"*1 with r(> 3) distinct non-vanishing
principal curvatures. Then M™ is Laguerre equivalent to flat Laguerre isoparametric hypersur-

face in R™FL if and only if the Laguerre curvatures are all constant.

Flat Laguerre isoparametric hypersurfaces will be reviewed in Section We note that
a flat Laguerre isoparametric hypersurface is a Dupin hypersurface with any given number k
of principal curvatures with any prescribed multiplicities my,- - ,my and that a flat Laguerre

isoparametric hypersurface is reducible and non-compact.

Our approach is to recognize Mébius (Laguerre) second fundamental form B (B) and Blaschke
(Laguerre) tensor A (L) are commuting isoparametric tensors. Isoparametric tensors on a Rie-
mannian manifold (M™, g) are the Codazzi tensors with constant eigenvalues. The name comes
from the fact that the second fundamental form of an isoparametric hypersurface in space forms
is an isoparametric tensor. We will play with the integrability conditions (2.6) and (563]) and
generalized Cartan identity (ATT) to pin down the specific behaviors of Mobius (Laguerre)
second fundamental form B (B) and Blaschke (Laguerre) tensor A (L). In Mdbius cases it
turns out miraculously we are able to show that either the Mdbius second fundamental form
and Blaschke tensor are linearly dependent (cf. Definition 1)) or they behave as in I7) and
(BI8). Then one may conclude the Dupin hypersurface is Mobius equivalent to an isoparamet-
ric hypersurface in the sphere in the former cases following [21, Main Theorem]|, and to a cone
over an isoparametric hypersurface in a sphere in the latter cases in the light of Theorem [3.11
In Laguerre cases the situation is much simpler. We will be able to show that the Laguerre
second fundamental form B in our consideration is in fact parallel. Then Theorem follows

from the classification result in [23].

We now give a brief outline of the paper. In Sections 2] we will recall some facts about the
Mébius geometry of a hypersurface in R"*! and [21, Main Theorem]. In Section B we will give
a Mobius characterization of the cone hypersurfaces. In Section M, we will present the proof
of our first main classification Theorem [[.Il In Section Bl we will recall some facts about the
Laguerre geometry of a hypersurface in R"*!. In Section B, we will first review two families of
examples of Dupin hypersurface and then we will present the proof of our second main Theorem

In Appendix A, we will discuss some properties of isoparametric tensors and applications.



2 Mobius invariants of hypersurfaces in R"*!

In this section, to set the notations, we will briefly review the Mobius geometry of hypersur-
faces in R"*! via the Minkowski spacetime R?H. For details readers are referred to [T, [25] [46].
We observe there is a straightforward way to see that a Dupin hypersurface of constant Mébius
curvatures is always proper. We will also recall the characterization of Dupin hypersurfaces
of constant Mobius curvatures in terms of Mébius invariants given in [39]. We will also de-
rive the characterization of Dupin hypersurfaces that are Mobius equivalent to isoparametric

hypersurfaces based on [2I, Main Theorem).

Let R?H be the Minkowski spacetime, i.e., R**3 with the standard spacetime metric

(x,y) = —woyo + T1y1 + - + Tpi2Ynt2

for x = (zo, 1, ,Tnt2) and y = (Yo,y1,"** ,Yn+2). One may identify the conformal round

sphere S"*! as the projective positive light cone
O ={y = (yo, 1) € Rx R"?|(y,y) = 0,50 > 0} C Ry,

Let O (n+2,1) be the Lorentz group of linear transformations of R? "3 that preserve the time
orientation and the spacetime metric, and let M(S"*1) be the group of Mébius transformations
of S"*1. One knows from Liouville Theorem that the group M(R"*!) of M&bius transformations

on R™*1 is the same as M(S"*1). It is then useful to mention the natural isomorphism
L:0T(n+2,1) = M(S"T) = M(R™ ).

Let f: M™ — R"™! be a hypersurface without umbilical points and {e;} be an orthonormal
basis with respect to the induced metric I = df -df with the dual basis {6;}. Let IT = Zij hi;0:0;

and H =73, h;j be the second fundamental form and the mean curvature of f respectively. To

study the Mdobius geometry of f, as in [25] [46], one considers the Mobius position vector

1+ 21— ? n mn n
Y:p(f)( 2|f|, 2|f| ,f):M — C1T? C RYT?

and the Mobius metric
g =<dY,dY >= (p(f))*df - df,

where (p(f))? = 25 (|/II|*> — nH?). One basic fact for this approach is

Lemma 2.1. Suppose that f: M™ — R™*! is an immersed hypersurface and

1+ 21— ? n n n
Y=P(f)< 2|f| ; 2|f| 7f):M — O C RYT?



is the Mébius position vector of f. Then, for any T € O (n +2,1), we have

L+ [L(T)f]? 1—|L(T)fP
2 ’ 2 ’

(2.1) TY = p(L(T)f) ( L(T)f> t M™ — CPPP C R

and therefore the Mdbius metric g stays invariant.

To build a moving frame along Y in R?"3 as in [25, 46], one starts with the so-called
conformal Gauss map

§:H(1+2|f|2,1—|f|2

7f> + (f : €n+1a—f'€n+17€n+1)

that represents the mean curvature sphere, where e, 11 is the unit normal vector field of f
in R"*1. One can pick up a moving frame {Y; = Yi(E1),---,Y, = Yi(E,)} for the tangent
space of Y along M™ with its dual {w1, - ,w,}. To complete a moving frame, as in [25] 46],
one chooses another null normal vector N to Y in R} such that < N,Y >= 1. Thus

{Y,N,Yy,---,Y,,&} forms a moving frame in R?H

dy =3 Yiw,

dN = Z Aijinj + Z C’iwig,

along Y and the structure equations are:

(22) ZA”wJY w; N + Zw”Y + Z Bjjwj€,
Z CiwiY — Z w;Bi;Y;,
where w;; is the connection form of the M&bius metric g with respect to the dual {w1, - ,wy,}
and the range of Latin indices are in 1,2,--- ,n. The tensors
A= ZA”wZQ@wJ, B = ZB”M@wJ, C = ZC’lwl
ij ij

are called the Blaschke tensor, the Mobius second fundamental form and the M&bius form of f

respectively (cf. [25] 46]). In [46], the integrability conditions for {A, B, C} are identified as

(2.3) Aijr — Aik,; = BiCi — By;Cy,
(2.4) Ci;—Cji= Z(BikAkj — Bji Ayi),
k
(2.5) Bijr — Bir,j = 0;;Cr — 61C},
(2.6) Rijr = BiBji — BuBji, + 0i Aji + 051 Ask — 6 Ajr — 051 Aq,
(2.7) Rij =Y Rigjx = — Y BixBij + (trA)d;; + (n — 2)Ayj,
k k
(2.8) > Bi=0, > (By)®= n- 1, trA = %(1 + n2k),
i ij " "



where R;ji; denote the curvature tensor of g, K = m ZZ—J— Riji; is its normalized scalar
curvature. Most importantly, it was shown in [46] that {g, B} determines the hypersurface f
up to Mobius transformations provided that n > 3.

We would also like to recall from [25] [46] how {A, B,C} can be calculated in terms of the
geometry of f in R™+1:
Bij = p~'(hiy — Hdyy),

Ci = —p 2les(H) + Y (hij — Hbij)e; (log p)],
(2.9) J
Aij = —p ?[Hess;;j(log p) — ei(log p)e;j(log p) — Hhj

1 _
=50 (Viogpl* + H?)dyj,

where Hessian and V are with respect to I = df -df. The eigenvalues of B are called the Mobius
principal curvatures of f. Let {b1,--- ,b,} be the Mobius principal curvatures and {\1,--- , A, }
be the principal curvatures of f, then, from (29),

(2.10) bi=p (N — H).

Clearly the number of distinct Mdbius principal curvatures is the same as that of principal
curvatures of f and
Ai— A bi—b;

2.11 M, — _ 7
(211) LD VS VR %

which confirms that the Md6bius curvatures are Mobius invariants. It is then rather easily seen
from (2.8)) that, if M6bius curavtures M;;, are constant for all 1 <4, j,k < n, then all Mobius

principal curvatures {b;} are constant.

Proposition 2.1. Let f: M™ — R*"" be an immersed hypersurface with r(> 3) distinct
principal curvatures. Then the Mobius curvatures My . are constant if and only if the Mobius

principal curvatures {by,--- ,b,} are constant.

Proof. 1t suffices to prove that the Mobius curvatures M, are constant implies all Mébius
principal curvatures b; are constant. First, for any tangent vector X € TM™, it is not hard to

calculate that
X(b) ~ X(by) _ X(b) — X(b) _ X(b;) — X(be)
bi — b; b; — by, b — by
from M, being constant for all 1 <4, j,k < n. Hence there exist u and d such that

(212) X(bj):p,bj—i—d forj=1,---,n.

It is then immediate that (2.8)) implies d = 0 and b1 X (b1) 4+ - - - + b, X (b,) = 0, which implies
#=20. Thus all b1,--- ,b, are constant. O



As a consequence of Proposition 2.1l and (210]), one easily derives

Corollary 2.1. A Dupin hypersurface of constant Mébius curvature is always proper.

As another consequence of Proposition [l we can characterize the Dupin hypersurfaces of
constant Mobius curvature in terms of Mobius invariants, which were observed by Rodrigues

L.A. and Tenenblat K. [39]. In fact, from (2.9, we have
Ci=—p lei(H) + Y _ ¢j(pBij) — pej(Bij)] = —p~*[ei(N\i) — pes(bi)]-
J

Hence one easily derives

Theorem 2.1. ([39]) Let f : M™ — R"! be an immersed hypersurface with v(> 3) distinct
principal curvatures. Then it is a Dupin hypersurface of constant Mébius curvatures if and only
if its Mobius form vanishes and its Mébius principal curvatures are all constant, i.e. it is a

Mobius isoparametric hypersurface.

Recall from [I5] [16] 20], an immersed hypersurface is said to be a Mébius isoparametric
hypersurface if its Mobius form vanishes and its Mobius principal curvatures are all constant.
We would like to remind readers that a M&bius isoparametric hypersurface is not necessarily

Mobius equivalent to an isoparametric hypersurface.

The following result [21] Main Theorem] enables us to characterize Dupin hypersurfaces that

are Mobius equivalent to isoparametric hypersurfaces.

Theorem 2.2. [2], Main Theorem] Let x : M™ — S"*1 be an immersed hypersurface.
Suppose that it satisfies that C = 0 and A = AB + ug for some functions A and p. Then x
is Mobius equivalent to a hypersurface with constant mean curvature and scalar curvature in

Euclidean space R™1, or sphere S"t1, or hyperbolic space H* 1.

Consequently we have

Corollary 2.2. Suppose that f : M™ — R"*! is a Dupin hypersurface with r(> 3) dis-
tinct principal curvatures and constant Mobius curvatures. Then it is Mobius equivalent to an
isoparametric hypersurface in the sphere S*™1 if and only if A = A\B + ug for some numbers \
and p.

Proof. If A = AB + pg for some numbers A and y, by the definition of the function p, it is
immediate that p is constant when the mean curvature and the scalar curvature of a hypersurface
in a space form are constant. Then one can conclude that the Dupin hypersurface under the

assumptions is M6bius equivalent to an isoparametric hypersurface in space forms in the light of



the first equation in ([2.9]). Therefore, with the assumption that f has r(> 3) distinct principal
curvatures, the proof is complete due to known classifications of isoparametric hypersurafces in
R and H" ! (cf. [3, Chap. 3]).

On the contrary, If f is an isoparametric hypersurface in the sphere S**!, then the mean
curvature and the scalar curvature are constant. Hence p is constant and A = AB + ug for

some numbers A and p by the equations (2.9). O

3 Cones over isoparametric hypersurfaces

Remarkably in [35], Pinkall discovered the cone over a Dupin hypersurface is still a Dupin
hypersurface. In fact it is easily seen that the cone over an isoparametric hypersurface in a sphere
is always a Dupin hypersurface of constant Mobius curvatures. In this section we will calculate
the Mobius invariants, and using Mobius invariants to characterize cones over isoparametric
hypersurfaces in spheres. Let us start with the construction of cones over hypersurfaces in

spheres.

Definition 3.1. For1 <k <n-—1, letu: M¥ — SF1 C R¥*2 be an immersed hypersurface

in S¥*1. The cone over u in R"*! is given as
ty,p) = (y, tu(p)) : RT x R"7F=1 x MF — R,
Y Y

It is easily calculated that the first fundamental form of the cone f is Iy = dt? + |dy|? + %I,
and the second fundamental form of the cone is II; =t II,,, where I,, and I, are the first and
second fundamental forms of the hypersurface « in the sphere S¥*1 respectively. The principal

curvatures of the cone f are

1 1
(313) 07 707_)‘17"' 7_)‘/€7
—_—— T t
n—k
where {1, -, \x} are the principal curvatures of u. Hence
2
2 n LT N
= I,|* — —H:)—,
pr= o (L) = ——Hy)
the Mobius metric of the cone is
dt? + |dy|?
(3.14) 9=0"I; = po(———— + L),

t2

and the Md&bius position vector of the cone is

T+82 4y 1—-t2—|y?

5 5 Ly, tu(p)) s RT x RPF1 s (b ont2 ¢ RS,

Y (ty.p) = B

10



where p§ = 25 (|[11,]* - IZ—QHﬁ) Note that

L+ 4y 12—y y

(315) ’L(t,y) = ( 57 , 57 , t) . RJF X Rn*kfl — ank — ank C R?—k-‘,—l

is nothing but the identity map of H* %, since R™ x R*“*~1 = H" ¥ is the upper half-space
endowed with the standard hyperbolic metric. We may now rewrite the Mobius position vector

of the cone f as

(3.16) Y = po(i(t,y),u) : RT x R"F 1 x MF — 02 ¢ RIS,
Consequently we have

Lemma 3.1. Let u: M* — S¥*1 be an immersed hypersurface in S**1 c RF? and

1
—Y = (i(t,y),u) : RT x R*7F=1 5 MF — HPF x Sk c RIS
Po

for smooth positive function po. Suppose that' Y is the Mobius position vector for an immersed
hypersurafce
f:RY xR Mk — R

Then f is a cone over u and p§ = =< (|IL,|* — k—;Hﬁ)

Lemma [3.1] is useful when we derive the cone structure of a Dupin hypersurface f from the

cone structure of its Mobius position vector Y. It is also easily seen that

Lemma 3.2. Let u: M*¥ — S**1 be an immersed hypersurface. Then the cone
f(t.y,p) = (y,tu(p)) : RT x R*F71 o MP — R

is a Dupin hypersurface of constant Mobius curvatures if and only if the hypersurface u is an

isoparametric hypersurface in SFt1.

Proof. From (BI3) it is very clear that, if w is isoparametric, then the cone f is a Dupin
hypersurface of constant Mobius curvatures. To see the other direction, assume f is Dupin of
constant Mobius curvatures. Then, from (BI3) and the fact that all Mobius curvatures are
constant, it is straightforward to see that all the ratios % are constant. Now, one knows from
the fact that f is Dupin, each principal curvature \; is constant along the principal direction
e; that is perpendicular to the homogeneous direction ¢. Therefore each principal curvature \;

is in fact constant in all directions. Thus the proof is complete. O

For the cone f over an isoparametric hypersurface u in the sphere S¥*! the eigenvalues of

the Blaschke tensor and the Mobius second fundamental form are

(317) A= dmg(u, y My On—k+15 " ° 7a/n)7 B = dmg()\, 7)‘7bn—k+17"' 7bn)7 and CZOa
—— —_——

n—k n—k

11



where

(3.18) o = —Abo — 11
and )
1 k 1k 1 k
= ——=(1 —H2 )\:___HL“ ba:_ )\a—n __Hu 9
: 2p3( ot pon po Ramnts =3 )

for n—k+1 < a < n, following the equations (Z9). From (B.I4]), we know that the Mobius metric
g is a Riemannian product, that is, (M",g) = (H" % p3gn) x (M*, p21,) locally. Moreover

1
Blryn—+ = AP(Q)QHv Alpgn—x = HP%QHa Alpas = =AB|ppe — #P(Q)Iua and \* + 2p = —? <0.
0

It is very important to observe that both the Blaschke tensor A and the Md&bius second funda-
mental form B are so-called isoparametric tensors according to Definition [A.Il Moreover, and
equations (3I7) and [BI8]) are sufficient to characterize a cone f over an isoparametric surface

u in a sphere. Namely,

Theorem 3.1. Suppose that f : M™ — R™* is a Dupin hypersurface with r(> 3) distinct
Y

principal curvatures and constant Mébius curvature. And suppose that BIT) and BI8) hold

for some constants aq,ba, A\, . Then [ is Mdbius equivalent to a cone over an isoparametric

hypersurface in SF1.

Proof. The equations (BI7) and [BI8]) implies that the Blaschke tensor A and the Mdbius
second fundamental form B are not linearly dependent, since A2 + 2u < 0. From Theorem 1]

and its proof in Section [ we know
(3.19) Rjnjo =0and wjo =0forj=1,--- ,n—kanda=n—-k+1,---,n

and therefore

dwj=Zwm/\wmj: Z Wm Awmj, 1<j<n—k
m

m<n—k

dw;zZo.)m/\me: Z WaNwag, n—k+1<B<n
m a>n—k+1

Thus the distributions Dy = Span{FE1, -, E,_;} and Dy = Span{FE,_k+1, En—g+2, -, En}

are integrable. Recall the corresponding Mobius position vector

L+ |f]2 1-1f?

5 s ) M Cyt? Cc RS

Y = p(

and set

_ _ L e _
F=)\Y +¢, P—m[ (A + )Y + N — A,

—1
T = ﬁ(uY+N—A§), and K = \2 + 2.

(3.20)
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Then {F, P,T,Y1,---,Y,}, where Y; = Y.(E};), is a local orthogonal frame along M" in R}*>.
From the structure equations ([22)) and ([BI9]), we get the new structure equations

dF = Y (A=ba)waYa

a>n—k+1
dP = vV—K Z wWaYa
a>n—k+1
Yo = ((ba = NF = V=EP)wa + Y wap¥s
(3.21) B>n—k+1

n—=k
dT = V=K ) w;Y;
j=1

n—k
d}/J =w;V —KT + Z ijYk
k=1
From (321), we know that the subspace V' = Span{P,Yn—k+1, -, Yn, F'} and the orthogo-
nal complement V+ = Span{T,Y1,---,Y, i} are parallel along M"™. We can assume that

V = RM? and V1 = R? 1 Let M™% be an integrable submanifold of the distribu-
tion Dy = {Ey,Ea,---,E,_1} and M* an integrable submanifold of the distribution Dy =
{Ey_k41, -+, Ey}. From 3ZI), we know that P is constant along the variables in M™% and
hence

P:MF — Ry
is an k—dimensional immersed submanifold. Similarly, we know that

T:M"% RS

is an (n — k)—dimensional immersed submanifold. One may calculate that < P,P >= 1 and
conclude that

P:M*F S c v =Rk C R]P3
since V is a fixed space-like subspace. Similarly, one may calculate < T,T >= —1 and conclude

that, up to a Mobius transformation,
T:M"* 5 H"* vt =Ry cR*

since V* is a fixed Lorentzian subspace in R}, In the light of ([@30), which is a consequence
of the integrability condition (2.6)), we know that the sectional curvature for the manifold M™%
is, fori,j=1,--- ,n—k,

1

1
Rijijlg1] = —7 Riiig l9] = j(/\Q +2p) = —1,

which implies that T is an isometry of H" ¥,

13



Moreover we have

1 1
Y=—-(T+P)=—
— )=
is the Mobius position vector of the cone over an isoparametric hypersurface P according to

Lemma [3.I] and Lemma Thus the proof is complete. O

(T, P): M™% x M* — H"F x §F*+1 c RPH3

4 Proof of Theorem [1.1]

In this section we present the proof for Theorem [Tl By now, according to Corollary
and Theorem [B.1] to prove Theorem [I[.T] it suffices to prove the following:

Theorem 4.1. Let f: M"™ — R"*! be a Dupin hypersurface with v(> 3) distinct principal

curvatures and constant Mébius curvatures. Then either
(a) A and B are linearly dependent, that is, A = AB + pg for some constants X\ and u, or

(b) the Riemannian manifold (M™, g) is locally reducible, that is, (M™,g) = (M, g1) x
(Mas, g2) locally. Moreover

Blran = Ag1, Alran = pgr, and Alra, = —AB|ran, — 1ge2,

for some constants A\ and p such that A\? + 2u < 0.

4.1 Outline of the proof of Theorem [4.1]

The main idea of the proof of Theorem E.1]is to use two commuting isoparametric tensors
(cf. Definition [A)) to capture the geometric structure. We leave the discussions on basics
of isoparametric tensors including two commuting isoparametric tensors in Appendix A. We
will first show that the Mobius second fundamental form B and the Blaschke tensor A are
commuting isoparametric tensors. Then we will show that commuting isoparametric tensors A
and B that satisfy the condition (28] will be either linearly dependent or cause the hypersurface
to be reducible.

Let f : M™ — R™*! be a Dupin hypersurface of constant Mdbius curvatures. From Theorem
211 (cf. [39]) we know that its Mdbius form C vanishes and its Mébius principal curvatures {b;}
are all constant. Immediately from equations [23]), (24) and (Z35]), we know that the Mdbius
second fundamental form B and the Blaschke tensor A are two commuting Codazzi tensors.

Moreover, B is in fact an isoparametric tensor according to Definition [A1]

14



To make it more clearer about the behaviors of these two tensors, we can choose a local

orthonormal basis {F1,- -, E,} for TM™ with respect to the Mobius metric g such that

(AU) = dia’g(ala" : 7an)7
(B’LJ) = dla’g(blv 5b’n«) :dlag(biv abiabéa"' 7b§7"' ;b'F;"' 7bF)-

(4.22)

Let [i] = {k|br, = b;}. Then V,, = Span{Ey|k € [i]} is the eigenspace of B corresponding to the
eigenvalue b;. Since B is an isoparametric tensor, from (A74) and (A7H), we know

Biji =0 when [i] = [j] or [i] = [k],

4.23 B;;
(4:29) wij = 22y, when  [i] # |j]
bi — b;
k
and
2B2
4.24 Risii = .k when  [i] # [5].

One of the important steps in our proof is to show that the Blaschke tensor A is also an
isoparametric tensor. That is to show that eigenvalues {a1,--- ,a,} are all constant according

to Definition [A.1]

Theorem 4.2. Let f: M™ — R™*! be a Mébius isoparametric hypersurface without umbilical

points. Then the eigenvalues of the Blaschke tensor {a1,--- ,a,} are all constant.

Proof. In the light of the classification result in [20], we may assume that the number r of
distinct principal curvatures is greater than 2. Since the Blaschke tensor is a Codazzi tensor,

we have

(ai — aj)wij = Y Aijrwr,
k

which implies, from (@23,

By
(4.25) (a; — aj)ﬁ = Ay when  [i] # [f]
Hence we know

(4.26) Ei(aj) = Ajji = Agjj = 0 when  [i] # [j]

from B;j; = 0. Now to verify that a; is a constant, we only need to prove
(4.27) Ei(a;) =0, i€ [j].

For a fixed point p € M™ and j € {1,---,n}, it is either Bj,; = 0 for all 1 < k,I < n or

Bjr; # 0 for some 1 < k,I < n. First assume it is the second case. In fact we may assume

15



Bjr,; # 0 in a neighborhood of p for some j, k,! that have to be associated to three distinct

Mébius principal curvatures. Therefore, from ([2H), we obtain

aj —ar  Ajkg Ay a—ag
- - - b
bj —br,  Bjxg By b—0bg

which implies

b; — b
by — by

(4.28) a; = (a; — ag) + ag.

This easily implies (£27)). Next, suppose it is the first case. If there is a sequence of point
p; — p in M™ such that the second cases happen on p; for some 1 < k, 1 < n, then (£21) holds
at p due to the continuity. Otherwise, there is an open neighborhood U C M™ of p such that
Bjiy =0for all 1 < k,l <nin U. Therefore Rjx;x =0 in U from ([#24). Hence, from (2.6,

we derive
(4.29) a; = —b;bi, — ai in U when k ¢ [j],
which obviously implies (E27). Thus the proof is complete. O

Remark 4.1. From the above proof it is clear that the following statement is true. Suppose
that A and B are two commuting Codazzi tensors and that B is an isoparametric tensor of
r(> 3) distinct eigenvalues. In addition assume R;j;; = —a; —a; (cf. (0.63)). Then A is also

an soparametric tensor.

From now on in this section we will focus to studying Riemmannian manifolds with two

commuting isoparametric tensors 77 and T» that satisfy the condition

1
(4.30) Rijp = §(T1 @ T1)ijr + (T2 @g)ijkl

according to (Z.6]), where () denotes the Kulkarni-Nomizu product (cf. Section [AT]). We will
complete the proof of Theorem [£]] in Section and Section For basic properties of
isoparametric tensors readers are referred to Section [A1] and Section in Appendix A.

4.2 Linear relations of commuting isoparametric tensors

Definition 4.1. Let (M™, g) be a Riemannian manifold. Two symmetric 2-tensors T and

T are said to be linearly dependent, if there exist constants \, u,e such that XT1 + uTs = €g.

Clearly two linearly dependent symmetric 2-tensors are always commuting. It turns out the
converse is not true. In fact, two commuting isoparametric tensors on a Riemannian manifold

are not necessarily linearly dependent. In this subsection we want to give a sufficient condition
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for two commuting isoparametric tensors that satisfy the [£30) to be linearly dependent. Our
approach is to carefully study the linear co-relations of all distinct pairs of eigenvalues of two
commuting isoparametric tensors. First of all, given two commuting isoparametric tensors that

satisfy (£30), by Lemma [A.3] we may choose the orthonormal basis {E1,- - , E,} such that

(E]):dla’g(bL 7bi7b§7"' 7b§7"' 7b’F7"' 7bf)7
—— — ——
(ﬁ]) :dia’g(a’i?”' yGT, AT, AT, Ayt G, Gyt 7df)7

where a; and a; may be same and by < --- < br. We then define the following two index sets

[ ={ke{1,2,-,n}| by = b;} and (i) = {k € [i]] ar = a;}.

Let s be the number of the distinct groups of indices in the collection {(1),(2),---,(n)} and
label these distinct groups of indices as {(1),(2),---,(8)}. Clearly, we have (i) C [i] and s > r.
For any i € {1,2,---,n}, we consider the pair (a;,b;) and observe that

(@i, b;) = (a;,b;) if and only if (i) = (j).

Hence one may write (a;, b;) = (a(), b(;)) and there are exactly s distinct pairs. Let W denote

the set of all of the pairs, that is,

W = {(aq), b)), (a@),b@)); -, (a@), bs)) }-

For a number ¢ (including co) and a group (i) fixed, we define the set of pairs

a

bZ:Z,f =e k¢ (0} (e, b))}

S(i)(a) = {(ak,bk) S W|
From Lemmal[A 3 and the above definition of S(; (), it is easy to verify the following properties:

Lemma 4.1. Suppose that Ty and T» are two commauting isoparametric tensors on a Rieman-
nian manifold (M™, g) and satisfy the relation [I30). For a fived index set (i), the following
hold:

(1) S(i)(00) can have at most two pairs;

(2) For two non-empty sets S;)(ex), Sy (1) and ey # €1, Siy(ex) NSy (er) = {(agy, buy)};

(3) There exist only finitely many constants (including 0o) 1, - - - , & such that Sy (e1),- -+, Se(e1)

are non-empty;

(4) ]f the set S(z) (E‘) = {(a(i),b(i)), (Q(J),b(J))} forj ¢ (Z), then

(4.31) Riipr = bibj +a; +a; =0 for all k € (i) and | € (j).
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Proof. These properties are all trivial except (4). It suffices to show that Tk, = 0 for all
m =1,2,--- ,n when k € (i) and | € (j). The nontrivial cases are k € (i) C [i], | ¢ [{] and
m ¢ [i] U [I]. Hence, from the third equation in (A:8]]), we would have

am =0k  Temi  Tiem a1 —ag
b — bk Tkmi  Tikm b — by

if Tiim = Thm, were not vanishing. That would imply (am,bm) € S(i) (¢) and a contradiction

to assumption that S(;(¢) has only two pairs. Thus the proof is complete. O

Next we want to understand the geometric impacts for the set S(;)(e) to contain more than
two pairs. Again the key is to establish the generalized Cartan identity that relates the sectional

curvatures in the planes generated by the eigenvectors whose eigenvalues lie in the set S(;)(e).

Lemma 4.2. Suppose that Ty and Ty are two commuting isoparametric tensors on a Rie-
mannian manifold (M™,g) and satisfy the relation [E30). And suppose that, for some i and
87

S(i) (5) = {(aiwbh)v (aizvbiz)v ) (aitubit)}

has t number of distinct pairs for t > 3. Then, for j € (ig), h € (i), ir # i,

T2
4.32 Rinin = > ghm .
(4:32) ihih o : C (biy — bm)(bsy — bpm)
meE(i1)U(i2)U---U(i¢ ), me(ig)U(ir)

Consequently, if by, < b;, <--- <b;,, then

Rijij = bi by + iy, + @iy >0, 1€ (im), §€ (img1), m=1,2,--- t—1,

(4.33)
Rijij = bi bi, +ai, +a;, <0, i€ (i1), j€ (ir).

More importantly, for each iy fized and j € (iy), we have the following generalized Cartan

identity,

(4.34) Z Bjmjm 0.

) ) X - big = bm
meE (i1)U(i2)U--U(it) ,me (ix )

Proof. 1t suffices to prove that
Tjh,m = 0 when j, h e (il), (iz), s ,(it), and m ¢ (il), (ig), ceey (Zt)

The argument is exactly the same as the proof of (4) in the above lemma. Because T}, m # 0

would imply that (am,bm) € Sg(€), which is a contradiction. O

Consequently we observe
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Lemma 4.3. Under the same assumptions as in Lemma[].2,
bi, +e<0, b, +e>0.

Proof. From Lemma 2] we have

(4.35) Riyizivio 20, Rijigiyi, < 0.

In the light of the assumption (£30), we arrive at

0 < Riyigivie — Rivigii, = biy (biy = bi,) + @iy — ai

t

) = (bi, — bi,)(bi, +¢),

Ay — Ay,

= (biy — bi,) (b, + 52—
( 2 t)( 1+ biz_bit

which implies b;, + ¢ < 0. To prove that b;, + ¢ < 0 we do it by contradiction. We assume
otherwise b;, + & = 0 and hence b;, + ¢ > b;; + ¢ = 0. Immediately we have
Rikivk — Rijtiyr = biy (bk — bl) +ar —a; = (bk — bl)(bil + 6) =0 for any k € (Zk) and [ € (’Ll)
That is

Rilkilk = Rillill for any ke (zk) and | € (il),
which forces, from @35]), R;,ki,x = 0 for any k € (iz) U (i3) - -+ U (4¢). On the other hand,

Ri, ki — Ritiy = bit (bk — bl) +ar —a; = (bk — bl)(bit + 6) for any k € (’Lk) and | € (il),

which implies

0= Riirivis < Riyisyiviy < < Rigir_yivie
and hence

Ritmitm > 0 for any m € (22) U (23) e U (it—l)-
Therefore, in the light of the generalized Cartan identity (£34]) for i = iy,
Ritmitm o
P N v il
me (i2)U(i3)U---U(it—1)

and therefore R;,pi,m = 0 for m € (i1)U(i2)U- - -U(i—1) and b;, +¢ = 0, which is a contradiction
when ¢t > 3.

To prove b;, + ¢ > 0, similarly from Lemma 2] we start with
Ri i, yiyi,_, > 0and Ry .64, <0

and
0 < Riyi, yiviey — Riyigiyi, = (bi,_, —bi,)(bi, +€),

to conclude b;, + ¢ > 0. Then, with the argument similar as that in the above, we can derive a

contradiction if b;, + & = 0. Thus the proof is complete. O
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The following is another technical lemma we will use to discover the structure of the distri-
bution of pairs (a;, b;) in the plane and facilitate the proof of Theorem [Tl It is clear that pairs

in each set S(;)(¢) lie in a line with the slope ¢ if S(;)(¢) has more than one pairs. We observe

Lemma 4.4. Under the same assumptions as that in Lemma[{3, if the set S(;(e) has at

least three distinct pairs and the line equation for the set S () is
a=¢eb+d

for some constant d, then

(4.36) e? —2d < 0.

Proof. Asin the above, let S(;)(e) = {(ai,, bi,), (@iy, biy), - -+ 5 (@i, bi,) f and by, < by < -+ < by,

By the assumption, each pair (a;, ,b;, ) in S(;)(¢) satisfies the line equation
a;, = eb;, +d.

Hence, for i € (i) and j € (4;), from the assumption ([@30), we obtain

(4.37) Rijij = bib; +a; +aj = (by, +¢)(bi, +¢) +2d — 2.

For the simplicity, we will use the notations b; = b; + ¢ in the following.

We first claim that 2d — e > 0. Assume otherwise that 2d — ¢ < 0. From Lemma [£.2] we
know that

0< Rimim+1imim+1 = Bimgim+1 +2d — 62, m=1,2, cdots,t -1,

which implies

(438) b’L B’im+1 > Oa

m

for all m € {1,2,--- ,t — 1}. Under the assumptions, we know from Lemma that Bil < 0.
Therefore we may conclude that b;, < 0 in the light of {38), which is a contradiction to b;, > 0
in Lemma 3l So we have 2d — ¢ > 0.

Next we want to exclude the cases that 2d —e = 0. Assume again otherwise that 2d —e = 0.

From the generalized Cartan identity for i = 45 in Lemma 2] we write

by, bm 1

me(i)>(i1)>(i2)v”' 1(it)>m¢(ik) blk N me(i)v(il)v(i2)v”' 1(it)7m¢(ik) l;lm bik

This is impossible if one takes iy = 1 or 44 = i;. Thus 2d —e? > 0. O
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It is obvious that, in order for tensors 77 and T3 to be linearly dependent, all the pairs have
to be lined in one set S(;)(¢). Particularly it is necessary that (i) = [i] for each i = 1,2,--- ,n,

i.e. r =s. Let us list all the sets S(1)(¢) which have more than one pairs

Say(e1), Say(e2), -+ Sy (er),

where 1 < g9 < --- < &;. Now we are ready to state a theorem for linear dependence of two

commuting isoparametric tensors.

Theorem 4.3. Suppose that Ty and Ty are two commuting isoparametric tensors on a Rie-
mannian manifold (M™, g) and satisfy the relation [@30). And suppose that r = s. If the set

S(i)(sl) has at least three distinct pairs, or r = s < 2, then there exists constant y such that
(4.39) Ty =e1Th + pug.

Before the proof of Theorem [£.3] we first establish a sequence of lemmas. Let

S(i)(El) = {(alabl)a (ailvbil)a e a(aikvbik)}
and b; < b;, <--- < b, for some k > 2.

Lemma 4.5. Under the assumptions in Theorem [].3,
(4.40) b1 +¢e; <0
foralli=1,2,--- t.

Proof. In the light of Lemma [£.3] one may only need to consider the cases when Sy(gi) has
exactly two pairs, say, S(1)(e:) = {(a1,b1), (aj,b;)} for some i = 2,3, --- ,¢. Hence, from Lemma
42 we know that

bibj + a1 +a; =0.

On the other hand,

a; — ail

b} + 2a1 — (babi, + a1 + ai,) = (b — by, ) (b1 + " h,
11

) = (b — b, )(b1 +21) > 0.
Since by + &1 < 0 due to Lemma 43l Therefore
b 4 2a1 > bibi, + ay + ai, = Ryjy1i, > 0
by Lemma again. Thus
0 < bf +2a1 — (b1bj + a1 +a;) = (b1 — b;)(b1 + i),

which implies that b, +&; < 0. So the proof is complete. O
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To set some notations, let the line equation for each set S1)(em) is
a=¢enb+d,, m=1,2,---t.

Then we have

(4.41) —b; =

foralli,j =1,2,--- ,t.

Lemma 4.6. Under the assumptions in Theorem [{.3,

(4.42) b? + 2a; > 0

forallj=1,2,---n.

Proof. First, for a given pair (a;,b;), it lies in S(1)(em) for some m = 1,2,--- ,¢. Then
b3+ 2a; = (bj +em)® — e, + 27

To prove b3 + 2a; > 0 one may verify that —e>, + 2d,, > 0. From Lemma EZ4, we know that
—&2 4+ 2d; > 0. Hence we use ([{.41]) to calculate

—e2 +2d,, — (—e2 4+ 2d1) = (€1 — €m) (201 + €1 + €m),

which is positive according to Lemma[LH5 Therefore —e2, 4+ 2d,, > 0 and the proof is complete.
O

The following lemma is very useful to understand what are the possible lines that connect
all pairs in W. Notice that, if S1)(e1) does not contain all the pairs, then the set S(;)(e) for

some € # €1 must contain more than one pairs.

Lemma 4.7. Assume the same assumptions of Theorem[].3 hold. Then, for any set San(e), 1=
1,---,k, that contains more than one pairs, if € < €1, then b;, +¢ > 0 and b;, > b; for all

(aj,bj) € Sy (e). Similarly, if € > €1, then by, +¢ <0 and b;, < b; for all (a;,b;) € S(;,)(e).

Proof. Let dj = aj —e1b; for j =1,2,--- ,n. Then it is clear that d; = d; when j € [1] U [i;] U
-+ U [ig]. On the other hand, if j & [1] U [é1]--- U [ig], then

a1 — aj

dl — dj = (bl — bj)(—El + m

) < 0.
Because ¢; is the smallest slope among all lines passing through (ay,b1). Therefore
(443) dy = dj = min{dl,dg, s ,dn}, j € [1] @] [21] J---u [Zk]
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First, we consider € < e1. for any (aj;,b;) € S;,)(€) \ {(aq,,bs,)}, we have

a;, —Qa;
bil — b; —e1) = (bj — b;)(e —e1).

dj - diz = (bj - bil)(

l
Thus, by [@43), we see that b; < b;,.

Again, to show b;, +¢ > 0, in the light of Lemma 3] one may assume that S(;,)(e) has
exactly two pairs, say, S¢;)(e) = {(a;,b;), (ai,, b;,)}. From Lemma L2} we know

Rjijir = bjbi, +a; +a; = 0.
Similar to the proof of Lemma [£5] we calculate
b} + 2a;, = b3 + 2a;, — (bjbi, + aj + a;,) = (bs, — bj)(bi, +¢€),

which implies b;, + € > 0 due to Lemma[L.6l The above proof works for the case € > ;. Thus
the proof is complete. O

We now are ready to present the proof for Theorem

Proof of Theorem[{.3 For the case r = s < 2, obviously T, = 171 + pg for some constant p.

Next let r = s > 2. We assume otherwise that S(1)(e1) does not contain all the pairs. Recall
Sy(e1) = {(a1,b1), (aiy, biy), -+, (@i, b, )}
and by < b;, <--- <b;, for some k > 2. For each i; € {i1,--- ,i} fixed, let
S (E1), S (el San (Eh,)

be the full list of the set that contain more than just the pair (a;,,b;) and 55—1 << Eé-h,

where i > 1 and may depend of [. Our argument is to show there is no way to compare €; with

the rest slopes ¢! when [ = k.

jm
It is easy to see that 1 has to be large than each slope 6§m. Assume otherwise €1 < 6§m for
some m. Then, on one hand, applying Lemma .3 to S(1)(e1), we obtain
bik +e1 > 0.
On the other hand, applying Lemma .7 to S(ik)(efm), we obtain

bi, +e1 < by, +€§m <0,

which is a contradiction.
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Next we want to show that it is also impossible to have €1 larger than each slope aé?m. But,
l

first, we can easily see that €; can not lie in between two slopes ¢;

forany I = 1,2,--- k.
Because, if it happened, then we would have from Lemma [£.7] that

l
biv + €5,

_, > 0and b +5§-m <0,
which is a contradiction. To finish the proof we show inductively for [ = 1,2,--- |k that it is
impossible that

l l
9 <E] <"'<€jh<€1.

Before we start the induction, we define

bj, = min{b;| (a;,b;) ¢ S1)(e1)}-

1
j’V?‘L
and bj, are the largest and the smallest for pairs in the line that connects (a;,,bj,) to (a4, bi, ).

Therefore, by Lemma [£2]

When [ = 1, if &7 is larger than every other slope €; , then using Lemma 7] we know b;,

Rlillil = blbil +a1+a;, 2 0, Riljoiljo = bilbjo + ai, + aj, <0,

which implies 0 < Rij, 11, — Riyiginio = (b1 = bjy ) (biy + 5=32*) and hence
70

a‘l_ajo <0

by, + Lo
1+b1_bj0

On the other hand, from Lemma [£.7] we have

aip — Gj,

O<bi1+5jl'm < bi, + by — b
Jo

which is a contradiction. Here we used the fact that ¢ < %. So €1 can only be smaller
70
than every other slope ¢} ~and
a;, — a;
(4.44) g1 < ——% and b;, < bj,.
bil - bjo

Similarly, from Lemma [4.2]
Riliziliz >0 and Rizjoizjo <0,

which implies 0 < Riyigiyi — Riajoiago = (biy = bjy) (bi, + 51=52) and
i, — aj

b, + 1 7Jo <0.
” bi, — bjo

If otherwise £; is larger than every slope E?m, then, from Lemma 7],

iy — Gjo

bi, —bj,’

0<bi2+€?m<bi2+€1<bi2+ :
Jo

i1

24



which is a contradiction and implies

Qi — Ay
270 apnd big < bjo'

(4.45) g1 <
biz - bjo

By induction, we can prove €1 cannot be larger than every slope aé?m. Thus the proof is

finished. O

4.3 Reducible cases

In this subsection we want to show that, if the assumptions in Theorem (4.3 for two com-
muting isoparametric tensors that satisfy (£30]) are not true, then the underlined Riemannain
manifold has to be reducible. The first cases are when r < s, that is, when T5 restricted to
some eigensapce Vj, has two distinct eigenvalues. The other cases are when the set S(1)(e1) has

two distinct pairs.

Let us deal with the first cases. In the light of Lemma [A3] we may assume that for some

F=12 .7

)

(4.46) (k] = (k1) | (k2) and ax, < a,.

Lemma 4.8. Suppose that Ty and Ta are two commuting isoparametric tensors on a Rie-
mannian manifold (M™, g) that satisfy the condition [@30). And suppose that (E48) holds for

some k =1,2,--- 7. Then any set S(k,)(€) has at most two pairs.

Proof. We assume otherwise that the S(,)(¢) has at least three distinct pairs for some ¢, say,

S(lﬂ)(E) = {(akubkl)a (a‘jlvbjl)a T (a’jt’bjt)}

for some ¢t > 2, where b;, < bj, < --- < bj,. Our argument is again to show that there is no
way to compare by, with the rest b;,,b4,, -+ ,0bj,.

First we want to show that by, cannot be in between the rest. Assume otherwise that for
somel=1,2,---,t—1

bjz < bkl < bjz+1'

From Lemma [£.2] we know that
bj, bk, +aj, +ar, >0 and bj,, by, +aj_ , +ar, > 0.
And, from Lemma [A3] we know that b} + ax, + ar, = 0. Hence, on one hand,

2
0 Sbjz+1b/€1 + Qg4 +ag, — (bkl +ag, + akz)
Yjrer ~ k2

akl — akQ )
b, — bi, ’

= (bjips — by ) (i, + —

) = (bjz+1 - bkl)(bE +e+

Ji4+1 Ji41
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which implies

Ay — Ay >0

br+e>bp+e+
¥ i bjl+1_b7€

On the other hand,

j, — Qky )
)

0 < by by, +aj, +ar, — (O, + ar, + ary) = (bj, — by, ) (be, + o———
J 2

which implies

akl —akz <0
— )

br bz _—
Fpte<bg+e+ —

which is a contradiction.

Next we want to show that by, cannot be smaller than all the rest. Assume otherwise
br, <bj, <bj, <---<by,.

From Lemma 3] we know that bg + ¢ < 0. But, on the other hand, applying Lemma 2] we
know that

a;, —a
0 S bklbjl + ag, + aj, — (bil —+ Qg +ak2) = (bjl — bk1)(bk1 + H)a
' 2
which implies
b§+€>bk+5+wzo’
bj, — bz

which is a contradiction. One may find similarly b cannot be larger than the rest. Thus the

proof is complete. O

Now we are ready to solve the cases when s > r.

Theorem 4.4. Suppose that Ty and Ty are two commuting isoparametric tensors on a Rie-
mannian manifold (M™, g) that satisfy the condition @30). And suppose that there exists an

eigenspace V. of T such that T2|Vb),€ has two distinct eigenvalues ay, < ay,. Then
(4.47) b2 + 2ar, <0

and the Riemannian manifold (M™, g) is locally reducible, that is, (M™, g) = (M1, g1) X (Ma2, g2)

locally. Moreover
Ti|ra, = bggr, Tolran, = ar, g1 and To|rar, = —bpT1 | T — ak, g2-

Proof. In the light of Lemma A8 we know each set g(kl)(s) has at most two pairs, where

[k] = (k1) U (k2). Then, from Lemma AT we know
Rijij =bpbj +akx, +a; =0forall i € (k1) and j ¢ (k1)
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Therefore, for j ¢ [k], we calculate from

a; —a
0= bybj + ar, +a; — (0F +an, +ax,) = (b — bp)(bg + —52).
J Yk
that
Q5 — Ak,
e
b; — by, i

Thus each pair (aj, b;) for any j ¢ (k1) falls in S(y,)(—by) and satisfies
a; = —b;;bj — Q-

To finish the proof we only need to verify that both the distribution Vg, = span{E;| i €
(k1)} and its orthogonal compliment V+ = span{FE;| i ¢ (k1)} are integrable and parallel.
According to [19], that amounts to show that w;; = 0 for all i € (k1) and j ¢ (k1). We first
verify that, for i € (k1) and j € (k2), wi; = 0. This is because, using (A.83]), one only needs to
see that Tjj; = 0 when [ € [k] = (k1) U (ko) from the second equation in (ASI). We then claim
Tijym =0 for all i € (k1),j ¢ [k[,m = 1,2,--- ,n. We are proving this claim by repeatedly
using the Cartan identity (A-78) and (£31)) in Lemma F.T]

2T2

(4.48) 0=Rijij= > i _b)](l;" —y when i€ (k) C[k], j ¢k
mglRL ) - e

First, let j € [k + 1] in (£48), and we note that

(b, — b)) (b, — bj) >0, when m ¢ [k], [k + 1],
which forces

(4.49) Tijom =0, when i€ (ki), jelk+1, 1<m<n.

Then let j € [k + 2] in (£48)) and obtain

2T7 2T2

13,m _ Z 13,m
b — bz) (b, — by = (b — ) (b — b
O =000 —big) = o= B~ bii)

O:

(]

m[k],[k+2]
due to [@49), which in turn improves [@49)) into

Tijm =0, when i€ (k1), jek+1U[k+2], 1<m<n.

Repeatedly extending in both directions we can prove the claim T}, = 0 for alli € (k1), j ¢ [K]
and all 1 < m < n. Therefore, from (AT4), w;; = 0 for all i € (k1) and j ¢ [k]. So the proof is
complete. O
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The rest cases are when 7 = s but S(1)(e1) has two pairs. Let

(4.50) Sy(e1) = {(a1,b1), (ag, bz)}-

The patterns of correlations among all the pairs are exactly the same as what they are in the
cases of Theorem 4] that is, every S(,;)(a) has at most two pairs and therefore all pairs except

(af, bz) lie in one line.

Theorem 4.5. Suppose that Ty and T» are two commuting isoparametric tensors on a Rie-
mannian manifold (M™, g) and satisfy the relation (E30). And suppose that r = s > 2 and

@50) holds. Then
(4.51) b2 +2aj, <0

and the Riemannian manifold (M™, g) is locally reducible, that is, (M™, g) = (M1, g1) X (Ma2, g2)

locally. Moreover
Tilran, = brgr, Tolra, = aggr, and Talra, = —bgTi|rae — agge.

Proof. We claim that the set S’(,;)(E) has at most two pairs. One only needs to prove this claim

for € # €1. Assume otherwise S(,;)(s) has at least three pairs, say,

S(Tc) (5) = {(afm bfc)? (ail ) bi1)7 R (aimbih)}

and b;, <b;, <---<b;,, for some € #¢; and h > 2.

Let dj = aj —e1b; for j = 1,2,--- ,n. Then it is clear that d; = d; when j € [I] U [k]. On

the other hand, if j ¢ [1] U [k], then

a1 — aj

dl — dj = (bl — bj)(—El + bl — bj

) < 0.

Because €7 is the smallest slope among all lines passing through (ag, b1). Therefore

(452) dl :min{dl,d2,~-~ ,dn}

Now, for any i € [k] and j € [i1] U [ig] - - - U [in], we have
(453) 0< dj —d; = (bj — bE)(E — 51).

Let us assume ¢ > ¢, first, which immediately implies b < b;; < --- < b;, and hence by +¢ <0

from Lemma We then calculate

2
ap — ag bE‘FQGE
0> by by + &1 = by =
> k+‘€> k+€1 k+bE—bi bE—b17
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where we used

bibg + a1 +a; =0
from Lemma [l Therefore b% +2ag, < 0. Meanwhile, applying LemmaH.2lto Sz (¢), we have,
bEbil + ag + Agq Z 0.
Then
0 < bbiy + ag + ai, — (bF +2az) = (bi, — by) (b + <),
which implies that bz + ¢ > 0. This is a contradiction and concludes that € < €;.

From [@53), when ¢ < €1, we have b;, < b;, < --- < b;, < b and hence bz + ¢ > 0 from
Lemma .3 Similarly, applying Lemma .2 to Sz, (¢) again, we have

brbi, +af +a;, <O0.

Then

]
1 — V1

which implies that bz +¢; < 0 and therefore by +¢ < by +¢1 < 0. This is a contradiction again

0 > bpbi, + ag + ai, — (bgby + ap +ag) = (b, — b1)(bg +

and concludes that no S (¢) has more than two pairs.

Consequently, as in the proof of Theorem 4, we know S(1)(—b;) contains all pairs except
(ap,bg) and a; = —bgb; — aj, for j ¢ [k]. By the minimality of €1, we find that by + &1 < 0,
which implies
a,E—a,l . b%‘FZCLE

0> bz = by, =
>k+51 k+b,}—b1 bE—bl

and therefore

b7 + 2az < 0.

Finally, by a bootstrapping argument similar to that in the proof of Theorem .4l repeatedly
using the Cartan identity (A7) and (£31)) in Lemma E.T] we can show that

Tijm =0, when i€ k], 1<j,m<n,
which implies that

(4.54) wij =0, when i€ [k], j¢][k]

Thus both the distribution V4, and its orthogonal complement are integrable and parallel ac-

cording to [I9]. The proof is completed O
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5 Laguerre invariants of hypersurfaces in R"*!

In this section we first recall Laguerre invariants of hypersurfaces in R"*!. For the details
we refer readers to [23] [24]. We then present the characterization of Dupin hypersurfaces with

constant Laguerre curvatures in terms of Laguerre invariants.

The group of Laguerre transformations is not as well known as the group of Mdbius trans-
formations. It is the other important subgroup of the group of Lie sphere transformations. Let
us first introduce the group of Lie sphere transformations (cf. [3]). It starts with the space
of all oriented hyperspheres in R™*!, which are, points, oriented n-spheres, and oriented hy-
perplanes in R"*!. One may use the so-called Lie quadric Q, 1 to represent the space of all
oriented hyperspheres. The Lie quadric is the projectivized light cone C™*3 in the Minkowski
spacetime RSH, where the Minkowski spacetime RQH is the vector space R"** equipped with
the quadratic

<Z,Y>=—T1y1 + TaY2 + - + Tni3Ynt3 — TnrdYnid
and the light cone is given as

C"3 = {z e R"™| < x,2 >=0}.

The group of Lie sphere transformation is the orthogonal group O(n + 2,2)/{%1} of the
Minkowski spacetime Rg+4. And the group of Laguerre transformations is the isotropy sub-
group of O(n +2,2)/{+1} at p = (1,-1,0,0) € C"*3 ¢ Ry ™.

A more geometric way to introduce the group of Lie sphere transformations is to consider the
unit tangent bundle UR™*! over R™*!, which represents the space of lines on the Lie quadric

@Qn+1. It is clear that
UR™ =R"™ x §" = {(z, )|z e R"T! £ € S"} c C !
and there is a standard contact structure on UR™! defined by the standard contact form
w=dzx-E£.
We then recall that oriented hypershperes in UR™*! are the following three types:

e oriented n-sphere S(p,7) = {(z,£) € UR" !z — p = r¢} for a point p € R™! and a

nonzero real number r

e point sphere S(p,0) = {(p,&) UR"|¢ € UT,R"*1} for a point p € R"*! a ”sphere” of

radius 0,
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e oriented hyperplane P(£,\) = {(z,£) € UR" |z - £ = A} for a fixed unit vector £ and a

real number A, a "sphere” of infinite radius.

It turns out that the group of Lie sphere transformations is also the group of diffeomorphisms
of UR™*! that take oriented hyperspheres to oriented hyperspheres and preserve the contact
structure w. Particularly, a Laguerre transformation is a Lie sphere transformation that takes

oriented spheres to oriented spheres and takes oriented hyperplanes to oriented hyperplanes.

Let x : M™ — R"*! be an oriented hypersurface in R**! with non-vanishing principal
curvatures. Then the unit normal £ : M™ — S" is an immersion and x induces a Laguerre
surface f = (z,€) : M™ — UR™!. Let x and & be two oriented hypersurfaces in R**! with
non-vanishing principal curvatures. We say = and x are Laguerre equivalent, if there is a

Laguerre transformation ¢ : UR™*! — UR"! such that (Z,£) = ¢ o (z,€).

Let  : M™ — R™*! be an umbilical free hypersurface with non-vanishing principal curva-
tures. Let {e1,ea, -, e,} be the orthonormal basis for TM™ with respect to dz - dz, consisting

of unit principal vectors. We write the structure equation of x : M™ — R"+! by
. k . o ..
ejlei(@) = Thee(@) + Nidij& ei(€) = —Niei(x), 1<i,j,k<n,
k

where \; # 0 is the principal curvature corresponding to e;. Let

R = anqg p=fatfet 41
)\i n

be the curvature radius and mean curvature radius of x. As in [23] 24], we call
(5.55) Y =p(z-&—x-661): M" - C"3 c Ry

the Laguerre position vector of the hypersurface z, where p = /> (R; — R)?. It is important

to realize the following covariant property.

Theorem 5.1. ([2]]) Let x and % be two umbilical free oriented hypersurfaces in R™*1 with
non-vanishing principal curvatures. Then x and T are Laguerre equivalent if and only if their

Laguerre positions Y and Y are the same up to a Laguerre transformation.

Let Y the Laguerre position vector of a hypersurface  : M — R"T!. We want to build
a natural orthogonal moving frame along the surface Y in R;’H. Analogous to the cases of
Mobius geometry,
g=<dY,dYy >

is then called the Laguerre metric and the null normal vector

NZEAY—F L <AY,AY >Y
n 2n2

n
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to the surface Y in RQH that is paired with the tautological null normal Y such that
<Y N >= -1,

where the Laplacian operator A is that of the Laguerre metric g. In contrast to the cases of

Mobius geometry, we have a constant null normal vector p and a canonical null normal vector

(1), 5 (1 = [2),2,0) + R (€~ £,6,1)

N =

n=(

such that
<n,p>=—-land <nY >=<n, N >=<p,Y >=<p,N >=0.

Therefore, if let {E1, Ea, -+ , E,} be an orthonormal basis for ¢ =< dY,dY > that are tangent
to Y with dual basis {w1,wa, -+ ,wy }, then, as given in [23] 24], we have the following orthogonal

moving frame along Y in Rg+4
{KN7E15E27"' 7E’n.5777p}'

We next recall from [23] 24] the following structure equations:

(5.56) Ei(N)=>_ Li;E; + Cip;
J
(5.57) Ej(E;) = LY +6i;N + > _T¥Ex + Bijp;
k
(5.58) El(n) =-C;)Y + ZBijEj.

J

Analogous to the cases of Mdbius geometry, besides the Laguerre metric g =< dY,dY >, we

have the following Laguerre invariants:
(559) B= Z Bijwi R wj, L= ZLijwi R wj, and C = Z Ciwi,
ij ij i
where B is called the Laguerre second fundamental form, L is called the Laguerre tensor, and

C is called the Laguerre form. In [24], the integrability conditions for {IL,B, C} are identified

as
(5.60) Lijk = Lik,j;
(5.61) Cij—Cji= Z(Bikij — BjrLi);
k
(5.62) Bijr — Bir,j = Cjbi — Cr0yy;
(5.63) Rijki = Ljk6it + Ladjk — Likdji — Ljidix;

(5.64) > B =1, Bi=0,Y Bi;=(n—1)Cj.
iJ i A
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where R,k is the curvature tensor of g. More importantly, in [24], it was shown that, up to a
Laguerre transformation, an umbilical free oriented hypersurfaces in R”*! with non-vanishing
principal curvatures is completely determined by the Laguerre invariants {g, B} when n > 2
and by the Laguerre invariants {g,B,L} when n = 2.
Finally we recall from [23] 24] how {g,B, C} can be calculated in terms of the geometry of

x in R*HL:

g= | (Ri—RQ2III, By=p (R — R)s;,
(5.65) i

C; = —p *{Ei(R) + Ei(logp)(R; — R)},
here E; = Rje; and {e;} is an orthonormal frame with respect to the metric dz - dz, consisting

of unit principal vectors.

Definition 5.1. Let x : M™ — R be an immersed hypersurface with non-vanishing
principal curvatures, and the principal curvature radius {Ry = /\—11, Re = /\%, - Ry = )\%} For
any three principal curvature radius Aj, A\j, As, We define the Laguerre curvature of =

R, — R,

R; — R’

The eigenvalues of B are called the Laguerre principal curvatures of x. Then, from (G.63]),

Tijs =

the Laguerre principal curvature b; = p~1(R; — R). Hence
Ri—R; bi—b;
Ri— Ry b;i—bs’

which implies that the Laguerre curvatures T;;, are Laguerre invariants.

(5.66) Yijs =

We now are ready to give the characterization of Dupin hypersurfaces with constant Laguerre

curvatures in terms of Laguerre invariants.

Proposition 5.1. Let z : M™ — R"*! be an oriented hypersurface with r(> 3) distinct
non-vanishing principal curvatures. Then x is a Dupin hypersurface with constant Laguerre
curvatures if and only if its Laguerre form vanishes and all Laguerre principal curvatures are

constant.

Proof. First of all it is easily seen that, with a proof that is almost identical to the proof of
Proposition 2] the Laguerre curvatures Y;;s are constant if and only if the Laguerre principal

curvatures are constant.

Secondly, from (B.65]), we have

Ci = —p2{Ei(r) + Ei(p)p~ (i — 1)} = —p 2L Eu(r) + Bs(p)bi}
(5.67) = _972{&(7”) + Ei(/’bi) - PflEi(bi)} = —P72{Ei(7”z‘) - pilEi(bi)}
= _p*2{_EZ)E§\1) _ 1 z(bz)}



Therefore the proof of Proposition 5.l can easily be completed. O

In [41], an immersed hypersurface is said to be a Laguerre isoparametric hypersurface if its
Laguerre form vanishes and its Laguerre Principal curvatures are all constant. And Song [41]
has classified the Laguerre isoparametric hypersurfaces with two distinct principal curvatures.
In these terminology, Theorem [5.1] then says that, a hypersurface in R"*! is a Dupin surface
with constant Laguerre curvatures if and only if it is a Laguerre isoparametric hypersurface.

We would like to mention that Proposition 5] recently has also been observed in [37].

6 Dupin Hypersurfaces with constant Laguerre curvatures

In this section we will present the proof of Theorem We will first study examples of
Dupin hypersyrfaces with constant Laguerre curvatures. Then we will proceed similar to the
Mobius cases to study the isoparametric tensors. This time the proof will be significantly

simpler than that in Mobius cases because of (5.63) in contrast to ([2.6]).
6.1 Examples
Cyclide of Dupin. For any integer k with 1 <k <mn —1, let
H" % = {(v,w) € R"*||v|? —w? = —1 and w > 0}
be the hyperboloid in the Minkowski space R’ll_k"’l. We then consider the hypersurface

(6.68) 2(u,v,w) = (2 (1 +w), =) : SF x H'F - R+,
w

gl=

where u : S¥ — R*¥*! is the standard embedding of round sphere.

As was verified in [23], the hypersurface given in ([G.G8)) is a Laguerre isoparametric hyper-
surface with two distinct Laguerre principal curvatures and, in fact, is Lie equivalent to the

classical cyclide of Dupin of characteristic (k,n — k).

Flat Laguerre isoparametric hypersurface. For any positive integers myq,--- ,ms with
my + - -+ + mg = n and any non-zero constants k1, - , ks, we consider the hypersurface

(669) I(ula U, - 7u5) = (wa ((1 + <P/<’1)u17 ) (1 + @HS)US)) (R" — Rn+la

where

_ /11|u1|2 + "'+KS|US|2
Rilua |+ wfus 2 41

for (u1,usg, -+ ,us) € R™M x R™2 x ... R™s = R™.
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Again, as was shown in [23], the hypersurface given in (G.69) is a Laguerre isoparametric
hypersurface with s distinct Laguerre principal curvatures and, moreover, its Laguerre metric
g =< dY,dY > is flat, that is, R;j;[g] = 0. Hence we call such hypersurfaces flat Laguerre

isoparametric hypersurfaces.

6.2 Proof of Theorem

The proof of Theorem similar to that of Mobius cases uses isoparametric tensors. From
the integrability conditions for the Laguerre invariants L, B, C and the Laguerre metric ¢ it
is clear that the Laguerre second fundamental form B is an isoparametric tensor on a Dupin
hypersurface with constant Laguerre curvatures in the light of Proposition[5.1l For the definition
and basic properties for isoparametric tensors readers are referred to Appendix A. First we want
to show that the Laguerre symmetric 2-tensor L is also an isoparametric tensor on a Dupin
hypersurface with constant Laguerre curvatures. From (B.60), it suffices to show that the

eigenvalues of IL are all constant, according to Definition [A1]
Lemma 6.1. Let x : M™ — R"™! be a Laguerre isoparametric hypersurface. Then the

eigenvalues of the Laguerre tensor I are all constant.

Proof. This lemma in the cases when x has more than 2 distinct principal curvatures follows

from Remark 1] after the proof of Theorem Next we consider » = 2. And

(Lij) = diag(ﬁ,Tg, s ,Tn) and (BU) = diag(bl, s ,bl, bg, e ,bg).
—_——— ——
S n—s
Since B is an isoparametric tensor with two distinct eigenvalues, from Proposition [A.1] and

Proposition [A2] we know that
Rijij =0, 1<i<s, s+1<j<n.

On the other hand, from (5.63) we know R;j;; = —7; — 7; and then

(LU) — diag(7—177—2, e 7Tn) — diag(fr, e T, =T, _7—)'
k n—k
Therefore
2T
Ey(1) = Ex(1y) = Lisp = Liky = ———Bir; =0
b1 — bs
forie {1,2,---,s}tifke{s+1,s+2,---,n}and
2T
Ey(1) = —Ep(1i) = —Liig = —Lik,; = Bk =0
by — by
fori € {s+1,s+2,---,n}and i # k if k € {1,2,---, s}, in the light of (AT4). Thus 7 is
constant. O
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Now we know, under the assumptions of Lemma [6.1] B and IL are commuting isoparametric

tensors. We may choose a local orthonormal frame so that
(Bij) = diag(by,- -+ ,by)
(Lij) = diag(my, -+ ;) = diag(ri, -+ 71, Ta, -+, T30+ 5 by o T),
where ¢ denotes the number of the distinct eigenvalues of L. We then define the index set
{i} ={ke{l,2,-- ,n}|m =7}

according to the repeated eigenvalues of Laguerre tensor L in this section. The main observation

that leads to the proof of Theorem is the following:

Theorem 6.1. Let x : M™ — R""! be a Laguerre isoparametric hypersurface. Then the

Laguerre second fundamental form B is parallel.

Proof. First, from (5.63) and Cartan identity (AT7T), we have

Riiii —ri— T 2 — 72
(6.70) Z—“_:Z%:Zﬁzo.

E70 S FTO B jgtay
Let 72 = max{r{,--- ,72}. And let i = io in equation (B.70), we have
72 _ g2
Z ( - J)z =0,
T; — Ty
ggGo)

which implies that Ti20 — Tf =0 for j € {1,2,--- ,n} and therefore t < 2.

If t = 2, then

(Ll]) = diag(T17T27"' 7Tn) = diag(Tu"' 3Ty =Ty 7_T)
—_——— N —’

S n—s
for some constant 7 # 0. Moreover, from Proposition [A 1] and Proposition [A.2, we know L is

parallel and
(6.71) Riji; =0, 1<i<s, s+1<j<n.
Now we switch the order of {Ey,- -, Es} such that
(Bij)icijes = diag(by, -+ ,bs) = diag(by,--+ by, by, by, -+ by, -+, bp)
and by < by < --- < b;. Assume that [ > 2. From the Cartan identity (A7) and G.7I), we

have
Yo X e
) b; — b3 ) b; — by
1<5<n,b; #b; 1<5<s,b; #by
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which leads to the contradiction to 7 # 0. Therefore [ = 1 and, in fact, the Laguerre second
fundamental form B has at most two distinct principal curvatures. Thus, from Proposition [A.T],

B is parallel.

If otherwise t = 1, then we can assume L;; = 76;;. Let b; be the smallest eigenvalues of B.

We then consider the Cartan identity (A.77)

Rl’l‘ —27
> e > bj—blzo

. 7 bl .
1<j<n,b; #b1 1<j<n,b;#b1

and conclude that 7 = 0, which implies R;;;; = 0 and the Laguerre second fundamental form

is parallel using Theorem [A.Tl So the proof is complete. O

Finally Theorem [[.2] follows from Theorem [G.1] and the classification result in [23].

Theorem 6.2. ([23]) Let x : M™ — R"*! be an umbilical free hypersurface with non-
vanishing principal curvatures. If its Laguerre second fundamental form is parallel, then locally
x is Laguerre equivalent to one of the following hypersurfaces,

(1) the Cyclide of Dupin x : S¥ x H*=% — R"*! given in (6.68)

(2) the flat Laguerre isoparametric hypersurface x : R™ — R ! given in (G.69).

A Isoparametric tensors

A.1 Definition and properties of isoparametric tensors

A symmetric (0,2) tensor field ' = 7, Tjjw; ® w; on a Riemannian manifold (M™, g) is

said to be a Codazzi tensor if it satisfies the Codazzi equation
(A.72) VxT(Y,2)=VyT(X,2),
for arbitrary vector fields X, Y, Z, where V denotes the Riemannian connection.

Definition A.1. A Codazzi tensor on a Riemannian manifold (M™, g) is said to be an

isoparametric tensor if the eigenvalues are all constant.

Let T =3, Tijw; ® w; be an isoparametric tensor on a Riemannian manifold (M", g). We

can choose a local orthonormal basis {Ey, -, E,} such that
(Tl]) = dmg(bi, 7b17b§7"' 7b§7"' 7bfa"' 7b’F)7
where b7 < --- < by are constants. Hence

(A.73) (bi — bj)wij = Z Tij kW,
k
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which gives
Tijr =0, when [i] = [j], or [j] = [k], or [i] = [K],

A4 T T . .
( ) wij = 7 _J’k Wy, = Z _J’Zwk, when [i] # [J],
kS REEL

where [i] ;== {m € {1,2,--- ,n}|by, = b;}. Consequently we have

Proposition A.1. Let (M",g) be a Riemannian manifold. If an isoparametric tensor T

on (M™,g) has only two distinct eigenvalues, then T is parallel.

It is well-known that a nontrivial parallel 2-tensor on a Riemannian manifold induces a

splitting of Riemannian structure. Namely,

Proposition A.2. ([19, Chap.4]). Let (M™,g) be a Riemannian manifold. If T is a parallel
symmetric (0,2) tensor field on (M™,g), then, locally,

(Mnag) = (Mlagl) X (MQ,QQ) X X (MTng)'
and there exist r constants A1,--- , \. such that
T=Xg1®Aga® D A\gr.

Meanwhile, one may calculate from (A 74), for [i] # [j],

2T7 ). 2T7
Tij,ij = Z b _be,’ Tij ji = Z b _Jﬁb,’
— .1 Uk i .1 Uk j
k¢ [il,[] k¢ [i],[5]
and
272 &
(A.75) Rijij = Y zE ,
b — b;) (b, — b,
ket (06~ )k = b))

using the Ricci identity. It is important that one immediately sees from (ATH) the following

useful fact in this paper.

Lemma A.1. LetT = >i; Tijwi®wj be an isoparametric tensor on the Riemannian manifold
(M™,g). Under the orthonormal basis {E1,--- , E,}, the coefficients of T have the following
form

(TZJ) = dla’g(bia 7bivb27"' abéa"' 7b?7"' ab’F)v bi << b'F-
Then

R <0, when i¢cll], j€lr,
(A.76) " Joe

Riji; >0, when i€k], je[k+1], for k=1,--- ,7—1,

where [i] = {m|b, = b;}.
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As a consequence, for instance, one can obtain the following strong geometric constraints

for a Riemannian manifold to have an isoparametric tensor.

Theorem A.1. Let T = > Tijwi ® w; be an isoparametric tensor on a Riemannian man-
ifold (M™,g). If (M™, g) has non-negative sectional curvature (or non-positive sectional curva-

tures), then T is parallel.

Proof. Let us first present a proof in the cases when (M™, g) has non-positive sectional curva-

ture. We start with ¢ € [1] and j € [2] in equation (A7H). Notice that
(b, — b7)(br, — b3) >0, when k ¢ [1JU[2].

From (A.75) we therefore observe that

Tk =0, when i€[l], j€2], 1<k<n.
We then consider i € [1] and j € [3] in equation (A75). This time we notice that

(by — b1)(b — b3) >0, when k¢ [1JU[2]U[3]
and T;;, =0, 7 € [1], k € [2]. From (A7) again we observe that

Tijx =0, when i€[l], j€[2JU[3], 1<k<n.

Repeatedly we can prove that T;;, = 0 for ¢ € [1] and j € [2] U [3]--- U [F]. Similarly we can
prove T}; ;, = 0 for all indices, thus 7" is parallel.

The proof for the cases when (M™,g) has non-negative curvature uses the same idea but

one starts with ¢ € [1] and j € [F] instead. O

Next we want to derive the other important fact in this paper, the generalized Cartan

identity (cf. [22]) on Riemannian manifolds with an isoparametric tensor 7.

(A.77) Z Mijij Z 2Tk =0
b (b — bi) (b, — b;)(bi — bj)

which is easily seen as we note that the matrix, for each 7 fixed,

277
((bk —b;) (b, — b;)(bi — bj))

is antisymmetric for indices j, k.

To show that the generalized Cartan identity is powerful in understanding the curvature
structure of Riemannian manifolds with isoparametric tensors, we present a proof of the follow-

ing interesting result that is believed to be known. Before we state the result we want to recall
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the Kulkarni-Nomizu product of tensors T7 = Zij Tijw; ® w; and To = Zij Tijwi ® w; defined
by
(Th @ To)ijer = Tiijl + leTik — TilTjk - TjkTiz-

It its then known that, on a locally conformally flat manifold (M™ g) (n > 3),

(A.78) Rijir = (S ) 9)in,

where S = —15(Ric — Q(n—]il) g) is the so-called Schouten tensor.

Theorem A.2. Let (M™,g),(n > 3) be a locally conformally flat Riemannian manifold. If
the eigenvalues of the Schouten tensor S are constant, then either,
(a) (M™,g) is of constant curvature, or
(b) (M™, g) is locally reducible, (M™, g) = (M1, 91) x (M2, g2), and there exists constant A such
that

TS = Ag1, T2.5 = —Ago.

Where w1 : M™ — My, w9 : M™ — My are the standard projections.

Proof. First of all, from the assumption that g is locally conformally flat, we know that the
Schouten tensor S is an isoparametric tensor. Hence, under a properly chosen a local orthonor-
mal basis,

(SU) = diag(b17b27 U 7b7l) = dia/g(bia U 7biu o 7b’F7 T 7bf)7
for some constants by < - -+ < by. From (AT7) and (A7])), for each i fixed, we have

Rivi bi + b b2 — 12
AT 0= gl NI N T
( ) ij—bi ij—bi Z (b — b;)?
J¢ld] J¢ld] J¢[d]
Now let b7 = maz{b?, -- b2} and let i = i¢ in equation (ATJ), we have
b2 — 12
2 T hyr =
gglio)

which implies that bfo — bf = 0 and therefore 7 < 2. It is clear that (M™, g) is of constant
curvature if r = 1 and the proof is complete in the light of Proposition [A.I] and Proposition
[A.2] O

A.2 Commuting isoparametric tensors

Suppose that (M"™, g¢) is a Riemannian manifold. Then we say that two (0,2)-tensors are
commuting if they are commuting as linear transformations. Given two commuting isopara-
metric tensors

T = ZTijwi & wj and Ty = Zﬂjwi R wj,

ij ij

40



we may choose a local orthonormal frame {FE1, Es,--- , E,} so that

(Tij):diag(b1,~- by, bg, e by, by, ,bf)

(A.80) R
(Tij> = diag(ay,- -+ ,an)

for constants b; < b3 < --- < by and a1, as,- - ,a,. Immediately we know

Tij,k = 07 when [Z] = [j]u or [.7] = [k]u
(A.81) Tuk =0, when a; =a,;, or aj = ag,

a; — a; - 2

LTk = Tije, when [i] # [j].
by — b,

Particularly the third equation in (A8I) and T}; = Tjx; implies
(A.82) Tijx = 0 for [j] = [i] and k ¢ [j],

which means more components of the commuting isoparametric tensors are forced to vanish
and allows us to focus on the behavior of T3 restricted to an eigenspace of Tj
Vi, = Span{E,, : m € [i]} or Vi, = Span{E,, : m € [k]}.

We can change the order of the subbasis in the eigenspace V3, such that

(E) |i>]'€[ff] = diag(a’ku"' y Ay Aoyt t 5 Qkg =t 3 Ay * 7a’km)

for a, < ag, <--- <ayg,, . We then define the index sets
() :={l€li]] a=a;}and (k;):={l€[k]] a=ag}
From (A:82), we have the following lemma.

Lemma A.2. Suppose that Ty and T are two commuting isoparametric tensors as in the
above. Then, for some [k] fized, (i), (j) € [k] and (i) # (j),

(A.83) (ai — aj)wij = Y Tijuw
le[k]

and

272

i7,l
(ai —ar)(aj —ar)’

(A.84) Rijij = Y
e[k (1), ()

More importantly we have the generalized Cartan identity for i € [k]

72
(A.85) > Ry _ > Tt =0.

jelioe® MY g (@ T @ —a)(ai—a)

41



One important relation that ties two commuting isoparametric tensors more intimately to
the geometry of the underlined manifold and comes naturally from the integrability conditions
(2:8) when we are concerned with the Mobius second fundamental form T} = B and the Blaschke

tensor Th = A for a hypersurface in f : M™ — R is

1
(A.86) Riji = 5(Th O Tiw + (T2 ) 9)igia-

Lemma A.3. Suppose that T) and Ty are two commuting isoparametric tensors on a Rieman-
nian manifold (M", g) and satisfy the relation (A86). Then T2|Vb7€ has two distinct eigenvalues
at most. Moreover

b2 +ap+ap=0

when T2|Vb),€ has two distinct eigenvalues ay and ay,.

Proof. For ay, < ag, <---<ag,, and i € (k1) and j € (k2), it is easily seen from (A.84)) that

m

i7,l >0

RZJ’LJ = Z (akl — al)(a:k2 — al) =

Le[k] 1¢ (K1), (k2)

Hence, from (A 80,

(A.87) Rijij = b2 +a;+a; > b2 +ap, +ap, >0, 4,5 € [k] and (i) # (j).
Therefore, from the generalized Cartan identity (A8 in Lemma [A2] we get
(A88) Rijij = b% + ag, + a; = O, 1€ (k_l) andj S [15],] ¢ (k_l)

The key of this proof is to realize that (A.88) allows us to further trim the generalized Cartan
identity (A.85) for i € (k2) into

(A.89) 3 Ragis

JElR g (k)¢ k2 Y

which in turn implies
Riji; = b% +ag, +a; =0, i€ (ko) and j € [k],j & (k2).
Thus, repeating the above argument, we can get
(A.90) Rijij = b2 +a; +a; =0 for all 4,j € [k] and (i) # (j),
which forces m < 2 and completes the proof. o
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