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Abstract

In this paper we show that a Dupin hypersurface with constant Möbius curvatures is

Möbius equivalent to either an isoparametric hypersurface in the sphere or a cone over

an isoparametric hypersurface in a sphere. We also show that a Dupin hypersurface with

constant Laguerre curvatures is Laguerre equivalent to a flat Laguerre isoparametric hy-

persurface. These results solve the major issues related to the conjectures of Cecil et al on

the classification of Dupin hypersurfaces.

2000 Mathematics Subject Classification: 53A30, 53C40;

Key words: Dupin hypersurfaces, Möbius curvatures, Laguerre curvatures, Codazzi tensors,
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1 Introduction

Let Mn be an immersed hypersurface in Euclidean space Rn+1. A curvature surface of Mn

is a smooth connected submanifold S such that for each point p ∈ S, the tangent space TpS

is equal to a principal space of the shape operator A of Mn at p. The hypersurface Mn is

called Dupin hypersurface if, along each curvature surface, the associated principal curvature

is constant. The Dupin hypersurface Mn is called proper Dupin if the number r of distinct
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principal curvatures is constant on Mn. Both Dupin and properness are invariant under the

group of Lie sphere transformations, which was verified by Pinkall [35]. The group of Lie sphere

transformations is generated by its two subgroups: the group of Möbius transformations and

the group of Laguerre transformations. Hence, due to Möbius invariance, the theory of Dupin

submanifolds is essentially the same whether it is considered in Rn+1, Sn+1, or Hn+1.

Dupin surfaces were first studied by Dupin [13] in 1822. Since then, Dupin hypersurfaces have

been studied extensively (cf. [3, 4, 6, 8, 9, 10, 14, 26, 27, 28, 34, 38, 40]). The classification of

Dupin hypersurfaces is far from complete, especially for higher dimensions. An important class

of examples are the isoparametric hypersurfaces in Rn+1, Hn+1, and Sn+1. An isoparametric

hypersurface is a hypersurface with constant principal curvatures. In Rn+1 as well as Hn+1, an

isoparametric hypersurface has no more than 2 distinct principal curvatures and is completely

classified (cf. [3]). On the other hand, in Sn+1, there are many more examples (cf. [5, 12, 18,

42, 44]). Münzner ([30, 31]) showed that the number r of distinct principal curvatures of an

isoparametric hypersurface in Sn+1 must be 1, 2, 3, 4 or 6. Cartan [2] classified those with r ≤ 3.

Thorbergsson [43] showed the restriction that r = 1, 2, 3, 4 or 6 on the number of distinct

principal curvatures also holds for compact proper Dupin hypersurfaces embedded in Sn+1.

Compact proper Dupin hypersurfaces with r ≤ 3 are completely classified (cf. [11, 26]). How-

ever, it is a different story if the compactness is dropped. In fact, Pinkall [35] discovered the

basic constructions of building tubes, cylinders, cones and surfaces of revolution over a Dupin

hypersurface. It is important to note that these constructions may yield a compact proper

Dupin hypersurface only if the original one is a sphere (cf. [3, 35]). A Dupin hypersurface

which is locally equivalent by a Lie sphere transformation to a hypersurface Mn obtained by

one of these four basic constructions is said to be reducible, otherwise, the Dupin hypersurface

is said to be irreducible. Local classifications have been obtained for irreducible connected

proper Dupin hypersurfaces with r ≤ 3 (cf. [8, 9, 33, 35]).

In all of the above cases when r ≤ 3, compact (or irreducible) Dupin hypersurfaces are known

to be Lie equivalent to isoparametric hypersurfaces (cf. [9, 26, 33]). In addition, Stolz [40] in the

cases r = 4 and Grove and Halperin [14] in the cases r = 6 have shown that the multiplicities of

the principal curvatures of a compact proper Dupin hypersurface must be the same as that of an

isoparametric hypersurface. Hence it was conjectured that, at least for compact cases, proper

Dupin hypersurface is always Lie equivalent to an isoparametric hypersurface (see for instance

[8, p.184]). However, this conjecture was shown to be false by Pinkall and Thorbergsson [36]

for r = 4 and separately by Miyaoka and Ozawa [29] for r = 4 and r = 6. The compact proper

Dupin hypersurfaces for counterexamples in [36, 29] have non-constant Lie curvatures. For an

oriented hypersurface Mn with r(≥ 4) distinct principal curvatures λ1, · · · , λr, Miyaoka [27]

2



introduced Lie curvatures as the cross-ratios of the principal curvatures

Ψijst =
(λi − λj)(λt − λs)

(λi − λs)(λt − λj)

and verified that Lie curvatures Ψijst are invariant under Lie sphere transformations. Obviously,

that the Lie curvatures are constant is a necessary condition for a Dupin hypersurface to be

Lie equivalent to an isoparametric hypersurface. Therefore Cecil, Chi and Jensen [8] proposed

the following conjecture.

Conjecture 1.1. ([8]) Every compact connected proper Dupin hypersurface with four or six

principal curvatures and constant Lie curvatures is Lie equivalent to an isoparametric hyper-

surface in a sphere.

Analogously, on local classifications of irreducible connected proper Dupin hypersurfaces,

Cecil, Chi and Jensen [8] proposed the following conjecture.

Conjecture 1.2. ([8]) If Mn is an irreducible connected proper Dupin hypersurface with four

principal curvatures having respective multiplicities m1,m2,m3,m4 and constant Lie curvature,

then m1 = m2, m3 = m4, and Mn is Lie equivalent to an isoparametric hypersurface in a

sphere.

In [6], Cecil, Chi and Jensen have verified both Conjecture 1.1 and Conjecture 1.2 for Dupin

hypersurfaces with four principal curvatures and multiplicities m1 = m2 ≥ 1, m3 = m4 = 1. In

this paper we will shed different lights on Conjecture 1.1 and Conjecture 1.2. More precisely,

we will consider Möbius (Laguerre) curvatures instead of Lie curvatures and show Conjecture

1.1 and Conjecture 1.2 hold in stronger ways where Lie equivalence is replaced by Möbius

(Laguerre) equivalence respectively.

For an oriented hypersurface Mn with r(≥ 3) distinct principal curvatures λ1, · · · , λr, the

Möbius curvatures are defined by

Mijs =
λi − λj

λi − λs
.

It is known that the Möbius curvatures Mijs are invariant under the Möbius transformations

but not under Lie sphere transformations in general (cf. [27]). Obviously, Lie curvatures are

products of two Möbius curvatures

Ψijst = MijsMtsj

and therefore Möbius curvatures are finer than Lie curvatures. On a seemingly different thread,

Hu, Li, and Wang [15, 16, 17] classified the hypersurfaces with vanishing Möbius form and

constant Möbius principal curvatures, which are called Möbius isoparametric hypersurfaces,
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provided that the dimension of the hypersurface or the number of distinct principal curva-

tures is small. Until Rodrigues and Tenenblat [39] observed that an oriented hypersurface is a

Dupin hypersurface with constant Möbius curvatures if and only if it is a Möbius isoparametric

hypersurface.

Our first main result is the following classification theorem:

Theorem 1.1. Let Mn be a Dupin hypersurface in R
n+1 with r(≥ 3) distinct principal

curvatures. If the Möbius curvatures are constant, then locally Mn is Möbius equivalent to one

of the following hypersurfaces:

(1) the image of the stereograph projection of an isoparametric hypersurface in Sn+1;

(2) a cone over an isoparametric hypersurface in Sk ⊂ Rk+1 ⊂ Rn+1.

A Dupin hypersurface with constant Möbius curvatures turns out to be proper (cf. Corollary

2.1). As a consequence of the constraint on the number of distinct principal curvatures for

isoparametric hypersurfaces established by Münzner ([30, 31]), we may conclude

Corollary 1.1. Let Mn be a Dupin hypersurface in Rn+1 with r(≥ 3) distinct principal

curvatures. If the Möbius curvatures are constant, then r = 3, 4, 5, 6, 7.

As argued in [6] based on the analyticity of Dupin hypersurfaces established in [7], we can

use Theorem 1.1 to solve some major issues related Conjecture 1.1 and Conjecture 1.2 on the

classification of Dupin hypersurfaces.

Corollary 1.2. Let Mn be a compact connected Dupin hypersurface with r(≥ 3) distinct

principal curvatures. Then Mn is Möbius equivalent to an isoparametric hypersurface in Sn+1

if and only if its Möbius curvatures are all constant.

and

Corollary 1.3. Let Mn be an irreducible connected Dupin hypersurface with r(≥ 3) distinct

principal curvatures. Then Mn is Möbius equivalent to an isoparametric hypersurface in Sn+1

if and only if its Möbius curvatures are all constant.

For an oriented hypersurfaceMn inRn+1 with non-vanishing principal curvatures λ1, λ2, · · · , λr,

let Ri =
1
λi

be the curvature radius. Then one can define the Laguerre curvatures of Mn as

Υijs =
Ri −Rj

Ri −Rs
.

It is clear that Υijk are invariant under Laguerre transformations in the light of (5.66) in Section

5. Again, obviously, the Lie curvature is a product of two Laguerre curvatures

Ψijst = ΥijsΥtsj
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and therefore Laguerre curvatures are finer than Lie curvatures. Analogous to Möbius cases, it

turns out, as expected, an oriented hypersurface is a Dupin hypersurface with constant Laguerre

curvatures if and only if its Laguerre form vanishes and its Laguerre principal curvatures are

all constant (see Proposition 5.1 and also [37]).

Our second main theorem is the following result:

Theorem 1.2. Let Mn be a Dupin hypersurface in Rn+1 with r(≥ 3) distinct non-vanishing

principal curvatures. Then Mn is Laguerre equivalent to flat Laguerre isoparametric hypersur-

face in Rn+1 if and only if the Laguerre curvatures are all constant.

Flat Laguerre isoparametric hypersurfaces will be reviewed in Section 6.1. We note that

a flat Laguerre isoparametric hypersurface is a Dupin hypersurface with any given number k

of principal curvatures with any prescribed multiplicities m1, · · · ,mk and that a flat Laguerre

isoparametric hypersurface is reducible and non-compact.

Our approach is to recognizeMöbius (Laguerre) second fundamental formB (B) and Blaschke

(Laguerre) tensor A (L) are commuting isoparametric tensors. Isoparametric tensors on a Rie-

mannian manifold (Mn, g) are the Codazzi tensors with constant eigenvalues. The name comes

from the fact that the second fundamental form of an isoparametric hypersurface in space forms

is an isoparametric tensor. We will play with the integrability conditions (2.6) and (5.63) and

generalized Cartan identity (A.77) to pin down the specific behaviors of Möbius (Laguerre)

second fundamental form B (B) and Blaschke (Laguerre) tensor A (L). In Möbius cases it

turns out miraculously we are able to show that either the Möbius second fundamental form

and Blaschke tensor are linearly dependent (cf. Definition 4.1) or they behave as in (3.17) and

(3.18). Then one may conclude the Dupin hypersurface is Möbius equivalent to an isoparamet-

ric hypersurface in the sphere in the former cases following [21, Main Theorem], and to a cone

over an isoparametric hypersurface in a sphere in the latter cases in the light of Theorem 3.1.

In Laguerre cases the situation is much simpler. We will be able to show that the Laguerre

second fundamental form B in our consideration is in fact parallel. Then Theorem 1.2 follows

from the classification result in [23].

We now give a brief outline of the paper. In Sections 2, we will recall some facts about the

Möbius geometry of a hypersurface in Rn+1 and [21, Main Theorem]. In Section 3, we will give

a Möbius characterization of the cone hypersurfaces. In Section 4, we will present the proof

of our first main classification Theorem 1.1. In Section 5, we will recall some facts about the

Laguerre geometry of a hypersurface in Rn+1. In Section 6, we will first review two families of

examples of Dupin hypersurface and then we will present the proof of our second main Theorem

1.2. In Appendix A, we will discuss some properties of isoparametric tensors and applications.
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2 Möbius invariants of hypersurfaces in Rn+1

In this section, to set the notations, we will briefly review the Möbius geometry of hypersur-

faces in Rn+1 via the Minkowski spacetime Rn+3
1 . For details readers are referred to [1, 25, 46].

We observe there is a straightforward way to see that a Dupin hypersurface of constant Möbius

curvatures is always proper. We will also recall the characterization of Dupin hypersurfaces

of constant Möbius curvatures in terms of Möbius invariants given in [39]. We will also de-

rive the characterization of Dupin hypersurfaces that are Möbius equivalent to isoparametric

hypersurfaces based on [21, Main Theorem].

Let Rn+3
1 be the Minkowski spacetime, i.e., Rn+3 with the standard spacetime metric

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xn+2yn+2

for x = (x0, x1, · · · , xn+2) and y = (y0, y1, · · · , yn+2). One may identify the conformal round

sphere Sn+1 as the projective positive light cone

Cn+2
+ = {y = (y0, y1) ∈ R× R

n+2|〈y, y〉 = 0, y0 > 0} ⊂ R
n+3
1 .

Let O+(n+2, 1) be the Lorentz group of linear transformations of Rn+3
1 that preserve the time

orientation and the spacetime metric, and let M(Sn+1) be the group of Möbius transformations

of Sn+1. One knows from Liouville Theorem that the group M(Rn+1) of Möbius transformations

on Rn+1 is the same as M(Sn+1). It is then useful to mention the natural isomorphism

L : O+(n+ 2, 1) → M(Sn+1) = M(Rn+1).

Let f : Mn → R
n+1 be a hypersurface without umbilical points and {ei} be an orthonormal

basis with respect to the induced metric I = df ·df with the dual basis {θi}. Let II =
∑

ij hijθiθj

and H =
∑

i
hii

n be the second fundamental form and the mean curvature of f respectively. To

study the Möbius geometry of f , as in [25, 46], one considers the Möbius position vector

Y = ρ(f)

(
1 + |f |2

2
,
1− |f |2

2
, f

)

: Mn → Cn+2
+ ⊂ R

n+3
1

and the Möbius metric

g =< dY, dY >= (ρ(f))2df · df,

where (ρ(f))2 = n
n−1 (|II|2 − nH2). One basic fact for this approach is

Lemma 2.1. Suppose that f : Mn → Rn+1 is an immersed hypersurface and

Y = ρ(f)

(
1 + |f |2

2
,
1− |f |2

2
, f

)

: Mn → Cn+2
+ ⊂ R

n+3
1

6



is the Möbius position vector of f . Then, for any T ∈ O+(n+ 2, 1), we have

(2.1) TY = ρ(L(T )f)

(
1 + |L(T )f |2

2
,
1− |L(T )f |2

2
, L(T )f

)

: Mn → Cn+2
+ ⊂ R

n+3
1

and therefore the Möbius metric g stays invariant.

To build a moving frame along Y in R
n+3
1 , as in [25, 46], one starts with the so-called

conformal Gauss map

ξ = H

(
1 + |f |2

2
,
1− |f |2

2
, f

)

+ (f · en+1,−f · en+1, en+1)

that represents the mean curvature sphere, where en+1 is the unit normal vector field of f

in Rn+1. One can pick up a moving frame {Y1 = Y∗(E1), · · · , Yn = Y∗(En)} for the tangent

space of Y along Mn with its dual {ω1, · · · , ωn}. To complete a moving frame, as in [25, 46],

one chooses another null normal vector N to Y in R
n+3
1 such that < N, Y >= 1. Thus

{Y,N, Y1, · · · , Yn, ξ} forms a moving frame in R
n+3
1 along Y and the structure equations are:

dY =
∑

i

Yiωi,

dN =
∑

ij

AijωiYj +
∑

i

Ciωiξ,

dYi = −
∑

j

AijωjY − ωiN +
∑

j

ωijYj +
∑

j

Bijωjξ,

dξ = −
∑

i

CiωiY −
∑

ij

ωiBijYj ,

(2.2)

where ωij is the connection form of the Möbius metric g with respect to the dual {ω1, · · · , ωn}
and the range of Latin indices are in 1, 2, · · · , n. The tensors

A =
∑

ij

Aijωi ⊗ ωj, B =
∑

ij

Bijωi ⊗ ωj , C =
∑

i

Ciωi

are called the Blaschke tensor, the Möbius second fundamental form and the Möbius form of f

respectively (cf. [25, 46]). In [46], the integrability conditions for {A,B,C} are identified as

Aij,k −Aik,j = BikCj −BijCk,(2.3)

Ci,j − Cj,i =
∑

k

(BikAkj −BjkAki),(2.4)

Bij,k −Bik,j = δijCk − δikCj ,(2.5)

Rijkl = BikBjl −BilBjk + δikAjl + δjlAik − δilAjk − δjkAil,(2.6)

Rij :=
∑

k

Rikjk = −
∑

k

BikBkj + (trA)δij + (n− 2)Aij ,(2.7)

∑

i

Bii = 0,
∑

ij

(Bij)
2 =

n− 1

n
, trA =

1

2n
(1 + n2κ),(2.8)
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where Rijkl denote the curvature tensor of g, κ = 1
n(n−1)

∑

ij Rijij is its normalized scalar

curvature. Most importantly, it was shown in [46] that {g,B} determines the hypersurface f

up to Möbius transformations provided that n ≥ 3.

We would also like to recall from [25, 46] how {A,B,C} can be calculated in terms of the

geometry of f in Rn+1:

Bij = ρ−1(hij −Hδij),

Ci = −ρ−2[ei(H) +
∑

j

(hij −Hδij)ej(log ρ)],

Aij = −ρ−2[Hessij(log ρ)− ei(log ρ)ej(log ρ)−Hhij ]

− 1

2
ρ−2(|∇ log ρ|2 +H2)δij ,

(2.9)

where Hessian and ∇ are with respect to I = df ·df . The eigenvalues of B are called the Möbius

principal curvatures of f . Let {b1, · · · , bn} be the Möbius principal curvatures and {λ1, · · · , λn}
be the principal curvatures of f , then, from (2.9),

(2.10) bi = ρ−1(λi −H).

Clearly the number of distinct Möbius principal curvatures is the same as that of principal

curvatures of f and

(2.11) Mijk =
λi − λj

λi − λk
=

bi − bj
bi − bk

,

which confirms that the Möbius curvatures are Möbius invariants. It is then rather easily seen

from (2.8) that, if Möbius curavtures Mijk are constant for all 1 ≤ i, j, k ≤ n, then all Möbius

principal curvatures {bi} are constant.

Proposition 2.1. Let f : Mn → Rn+1 be an immersed hypersurface with r(≥ 3) distinct

principal curvatures. Then the Möbius curvatures Mijk are constant if and only if the Möbius

principal curvatures {b1, · · · , bn} are constant.

Proof. It suffices to prove that the Möbius curvatures Mijk are constant implies all Möbius

principal curvatures bi are constant. First, for any tangent vector X ∈ TMn, it is not hard to

calculate that
X(bi)−X(bj)

bi − bj
=

X(bi)−X(bk)

bi − bk
=

X(bj)−X(bk)

bj − bk

from Mijk being constant for all 1 ≤ i, j, k ≤ n. Hence there exist µ and d such that

(2.12) X(bj) = µbj + d for j = 1, · · · , n.

It is then immediate that (2.8) implies d = 0 and b1X(b1) + · · ·+ bnX(bn) = 0, which implies

µ = 0. Thus all b1, · · · , bn are constant.
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As a consequence of Proposition 2.1 and (2.10), one easily derives

Corollary 2.1. A Dupin hypersurface of constant Möbius curvature is always proper.

As another consequence of Proposition 2.1, we can characterize the Dupin hypersurfaces of

constant Möbius curvature in terms of Möbius invariants, which were observed by Rodrigues

L.A. and Tenenblat K. [39]. In fact, from (2.9), we have

Ci = −ρ−2[ei(H) +
∑

j

ej(ρBij)− ρej(Bij)] = −ρ−2[ei(λi)− ρei(bi)].

Hence one easily derives

Theorem 2.1. ([39]) Let f : Mn → Rn+1 be an immersed hypersurface with r(≥ 3) distinct

principal curvatures. Then it is a Dupin hypersurface of constant Möbius curvatures if and only

if its Möbius form vanishes and its Möbius principal curvatures are all constant, i.e. it is a

Möbius isoparametric hypersurface.

Recall from [15, 16, 20], an immersed hypersurface is said to be a Möbius isoparametric

hypersurface if its Möbius form vanishes and its Möbius principal curvatures are all constant.

We would like to remind readers that a Möbius isoparametric hypersurface is not necessarily

Möbius equivalent to an isoparametric hypersurface.

The following result [21, Main Theorem] enables us to characterize Dupin hypersurfaces that

are Möbius equivalent to isoparametric hypersurfaces.

Theorem 2.2. [21, Main Theorem] Let x : Mn → Sn+1 be an immersed hypersurface.

Suppose that it satisfies that C = 0 and A = λB + µg for some functions λ and µ. Then x

is Möbius equivalent to a hypersurface with constant mean curvature and scalar curvature in

Euclidean space Rn+1, or sphere Sn+1, or hyperbolic space Hn+1.

Consequently we have

Corollary 2.2. Suppose that f : Mn → Rn+1 is a Dupin hypersurface with r(≥ 3) dis-

tinct principal curvatures and constant Möbius curvatures. Then it is Möbius equivalent to an

isoparametric hypersurface in the sphere Sn+1 if and only if A = λB + µg for some numbers λ

and µ.

Proof. If A = λB + µg for some numbers λ and µ, by the definition of the function ρ, it is

immediate that ρ is constant when the mean curvature and the scalar curvature of a hypersurface

in a space form are constant. Then one can conclude that the Dupin hypersurface under the

assumptions is Möbius equivalent to an isoparametric hypersurface in space forms in the light of

9



the first equation in (2.9). Therefore, with the assumption that f has r(≥ 3) distinct principal

curvatures, the proof is complete due to known classifications of isoparametric hypersurafces in

Rn+1 and Hn+1 (cf. [3, Chap. 3]).

On the contrary, If f is an isoparametric hypersurface in the sphere S
n+1, then the mean

curvature and the scalar curvature are constant. Hence ρ is constant and A = λB + µg for

some numbers λ and µ by the equations (2.9).

3 Cones over isoparametric hypersurfaces

Remarkably in [35], Pinkall discovered the cone over a Dupin hypersurface is still a Dupin

hypersurface. In fact it is easily seen that the cone over an isoparametric hypersurface in a sphere

is always a Dupin hypersurface of constant Möbius curvatures. In this section we will calculate

the Möbius invariants, and using Möbius invariants to characterize cones over isoparametric

hypersurfaces in spheres. Let us start with the construction of cones over hypersurfaces in

spheres.

Definition 3.1. For 1 ≤ k ≤ n−1, let u : Mk −→ Sk+1 ⊂ Rk+2 be an immersed hypersurface

in Sk+1. The cone over u in Rn+1 is given as

f(t, y, p) = (y, tu(p)) : R+ × R
n−k−1 ×Mk −→ R

n+1.

It is easily calculated that the first fundamental form of the cone f is If = dt2+ |dy|2+ t2Iu

and the second fundamental form of the cone is IIf = t IIu, where Iu and IIu are the first and

second fundamental forms of the hypersurface u in the sphere Sk+1 respectively. The principal

curvatures of the cone f are

(3.13) 0, · · · , 0
︸ ︷︷ ︸

n−k

,
1

t
λ1, · · · ,

1

t
λk,

where {λ1, · · · , λk} are the principal curvatures of u. Hence

ρ2 =
n

n− 1
(|IIu|2 −

k2

n
H2

u)
1

t2
,

the Möbius metric of the cone is

(3.14) g = ρ2If = ρ20(
dt2 + |dy|2

t2
+ Iu),

and the Möbius position vector of the cone is

Y (t, y, p) =
ρ0
t
(
1 + t2 + |y|2

2
,
1− t2 − |y|2

2
, y, tu(p)) : R+ × R

n−k−1 ×Mk → Cn+2
+ ⊂ R

n+3
1 ,

10



where ρ20 = n
n−1 (|IIu|2 − k2

n H2
u). Note that

(3.15) i(t, y) = (
1 + t2 + |y|2

2t
,
1− t2 − |y|2

2t
,
y

t
) : R+ × R

n−k−1 = H
n−k → H

n−k ⊂ R
n−k+1
1

is nothing but the identity map of Hn−k, since R+ × Rn−k−1 = Hn−k is the upper half-space

endowed with the standard hyperbolic metric. We may now rewrite the Möbius position vector

of the cone f as

(3.16) Y = ρ0(i(t, y), u) : R
+ × R

n−k−1 ×Mk → Cn+2
+ ⊂ R

n+3
1 .

Consequently we have

Lemma 3.1. Let u : Mk → Sk+1 be an immersed hypersurface in Sk+1 ⊂ Rk+2 and

1

ρ0
Y = (i(t, y), u) : R+ × R

n−k−1 ×Mk → H
n−k × S

k+1 ⊂ R
n+3
1

for smooth positive function ρ0. Suppose that Y is the Möbius position vector for an immersed

hypersurafce

f : R+ × R
n−k−1 ×Mk → R

n+1.

Then f is a cone over u and ρ20 = n
n−1 (|IIu|2 − k2

n H2
u).

Lemma 3.1 is useful when we derive the cone structure of a Dupin hypersurface f from the

cone structure of its Möbius position vector Y . It is also easily seen that

Lemma 3.2. Let u : Mk −→ S
k+1 be an immersed hypersurface. Then the cone

f(t, y, p) = (y, tu(p)) : R+ × R
n−k−1 ×Mk −→ R

n+1

is a Dupin hypersurface of constant Möbius curvatures if and only if the hypersurface u is an

isoparametric hypersurface in Sk+1.

Proof. From (3.13) it is very clear that, if u is isoparametric, then the cone f is a Dupin

hypersurface of constant Möbius curvatures. To see the other direction, assume f is Dupin of

constant Möbius curvatures. Then, from (3.13) and the fact that all Möbius curvatures are

constant, it is straightforward to see that all the ratios λi

λj
are constant. Now, one knows from

the fact that f is Dupin, each principal curvature λi is constant along the principal direction

ei that is perpendicular to the homogeneous direction t. Therefore each principal curvature λi

is in fact constant in all directions. Thus the proof is complete.

For the cone f over an isoparametric hypersurface u in the sphere Sk+1 the eigenvalues of

the Blaschke tensor and the Möbius second fundamental form are

(3.17) A = diag(µ, · · · , µ
︸ ︷︷ ︸

n−k

, an−k+1, · · · , an), B = diag(λ, · · · , λ
︸ ︷︷ ︸

n−k

, bn−k+1, · · · , bn), and C = 0,
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where

(3.18) aα = −λbα − µ

and

µ = − 1

2ρ20
(1 +

k2

n2
H2

u), λ = − 1

ρ0

k

n
Hu, bα =

1

ρ0
(λα−n+k − k

n
Hu),

for n−k+1 ≤ α ≤ n, following the equations (2.9). From (3.14), we know that the Möbius metric

g is a Riemannian product, that is, (Mn, g) = (Hn−k, ρ20gH)× (Mk, ρ20Iu) locally. Moreover

B|THn−k = λρ20gH, A|THn−k = µρ20gH, A|TMk = −λB|TMk − µρ20Iu, and λ2 + 2µ = − 1

ρ20
< 0.

It is very important to observe that both the Blaschke tensor A and the Möbius second funda-

mental form B are so-called isoparametric tensors according to Definition A.1. Moreover, and

equations (3.17) and (3.18) are sufficient to characterize a cone f over an isoparametric surface

u in a sphere. Namely,

Theorem 3.1. Suppose that f : Mn → Rn+1 is a Dupin hypersurface with r(≥ 3) distinct

principal curvatures and constant Möbius curvature. And suppose that (3.17) and (3.18) hold

for some constants aα, bα, λ, µ. Then f is Möbius equivalent to a cone over an isoparametric

hypersurface in S
k+1.

Proof. The equations (3.17) and (3.18) implies that the Blaschke tensor A and the Möbius

second fundamental form B are not linearly dependent, since λ2 + 2µ < 0. From Theorem 4.1

and its proof in Section 4, we know

(3.19) Rjαjα = 0 and ωjα = 0 for j = 1, · · · , n− k and α = n− k + 1, · · · , n

and therefore






dωj =
∑

m

ωm ∧ ωmj =
∑

m≤n−k

ωm ∧ ωmj, 1 ≤ j ≤ n− k

dωβ =
∑

m

ωm ∧ ωmβ =
∑

α≥n−k+1

ωα ∧ ωαβ , n− k + 1 ≤ β ≤ n
.

Thus the distributions D1 = Span{E1, · · · , En−k} and D2 = Span{En−k+1, En−k+2, · · · , En}
are integrable. Recall the corresponding Möbius position vector

Y = ρ(
1 + |f |2

2
,
1− |f |2

2
, f) : Mn → Cn+2

+ ⊂ R
n+3
1

and set

F = λY + ξ, P =
1√
−K

[−(λ2 + µ)Y +N − λξ],

T =
−1√
−K

(µY +N − λξ), and K = λ2 + 2µ.

(3.20)
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Then {F, P, T, Y1, · · · , Yn}, where Yi = Y∗(Ei), is a local orthogonal frame along Mn in R
n+3
1 .

From the structure equations (2.2) and (3.19), we get the new structure equations

(3.21)







dF =
∑

α≥n−k+1

(λ − bα)ωαYα

dP =
√
−K

∑

α≥n−k+1

ωαYα

dYα = ((bα − λ)F −
√
−KP )ωα +

∑

β≥n−k+1

ωαβYβ







dT =
√
−K

n−k∑

j=1

ωjYj

dYj = ωj

√
−KT +

n−k∑

k=1

ωjkYk

From (3.21), we know that the subspace V = Span{P, Yn−k+1, · · · , Yn, F} and the orthogo-

nal complement V ⊥ = Span{T, Y1, · · · , Yn−k} are parallel along Mn. We can assume that

V = Rk+2 and V ⊥ = R
n−k+1
1 . Let Mn−k be an integrable submanifold of the distribu-

tion D1 = {E1, E2, · · · , En−k} and Mk an integrable submanifold of the distribution D2 =

{En−k+1, · · · , En}. From (3.21), we know that P is constant along the variables in Mn−k and

hence

P : Mk → R
n+3
1

is an k−dimensional immersed submanifold. Similarly, we know that

T : Mn−k → R
n+3
1

is an (n − k)−dimensional immersed submanifold. One may calculate that < P,P >= 1 and

conclude that

P : Mk → S
k+1 ⊂ V = R

k+2 ⊂ R
n+3
1

since V is a fixed space-like subspace. Similarly, one may calculate < T, T >= −1 and conclude

that, up to a Möbius transformation,

T : Mn−k → H
n−k ⊂ V ⊥ = R

n−k+1
1 ⊂ R

n+3
1

since V ⊥ is a fixed Lorentzian subspace in R
n+3
1 . In the light of (4.30), which is a consequence

of the integrability condition (2.6), we know that the sectional curvature for the manifold Mn−k

is, for i, j = 1, · · · , n− k,

Rijij [g1] =
1

−K
Rijij [g] =

1

−K
(λ2 + 2µ) = −1,

which implies that T is an isometry of Hn−k.
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Moreover we have

Y =
1√
−K

(T + P ) =
1√
−K

(T, P ) : Mn−k ×Mk → H
n−k × S

k+1 ⊂ R
n+3
1

is the Möbius position vector of the cone over an isoparametric hypersurface P according to

Lemma 3.1 and Lemma 3.2. Thus the proof is complete.

4 Proof of Theorem 1.1

In this section we present the proof for Theorem 1.1. By now, according to Corollary 2.2

and Theorem 3.1, to prove Theorem 1.1 it suffices to prove the following:

Theorem 4.1. Let f : Mn → Rn+1 be a Dupin hypersurface with r(≥ 3) distinct principal

curvatures and constant Möbius curvatures. Then either

(a) A and B are linearly dependent, that is, A = λB + µg for some constants λ and µ, or

(b) the Riemannian manifold (Mn, g) is locally reducible, that is, (Mn, g) = (M1, g1) ×
(M2, g2) locally. Moreover

B|TM1
= λg1, A|TM1

= µg1, and A|TM2
= −λB|TM2

− µg2,

for some constants λ and µ such that λ2 + 2µ < 0.

4.1 Outline of the proof of Theorem 4.1

The main idea of the proof of Theorem 4.1 is to use two commuting isoparametric tensors

(cf. Definition A.1) to capture the geometric structure. We leave the discussions on basics

of isoparametric tensors including two commuting isoparametric tensors in Appendix A. We

will first show that the Möbius second fundamental form B and the Blaschke tensor A are

commuting isoparametric tensors. Then we will show that commuting isoparametric tensors A

and B that satisfy the condition (2.6) will be either linearly dependent or cause the hypersurface

to be reducible.

Let f : Mn → Rn+1 be a Dupin hypersurface of constant Möbius curvatures. From Theorem

2.1 (cf. [39]) we know that its Möbius form C vanishes and its Möbius principal curvatures {bi}
are all constant. Immediately from equations (2.3), (2.4) and (2.5), we know that the Möbius

second fundamental form B and the Blaschke tensor A are two commuting Codazzi tensors.

Moreover, B is in fact an isoparametric tensor according to Definition A.1.
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To make it more clearer about the behaviors of these two tensors, we can choose a local

orthonormal basis {E1, · · · , En} for TMn with respect to the Möbius metric g such that

(Aij) = diag(a1, · · · , an),

(Bij) = diag(b1, · · · , bn) = diag(b1̄, · · · , b1̄, b2̄, · · · , b2̄, · · · , br̄, · · · , br̄).
(4.22)

Let [i] = {k|bk = bi}. Then Vbi = Span{Ek|k ∈ [i]} is the eigenspace of B corresponding to the

eigenvalue bi. Since B is an isoparametric tensor, from (A.74) and (A.75), we know

(4.23)







Bij,k = 0 when [i] = [j] or [i] = [k],

ωij =
∑

k

Bij,k

bi − bj
ωk when [i] 6= [j]

and

(4.24) Rijij =
∑

k/∈[i],[j]

2B2
ij,k

(bi − bk)(bj − bk)
when [i] 6= [j].

One of the important steps in our proof is to show that the Blaschke tensor A is also an

isoparametric tensor. That is to show that eigenvalues {a1, · · · , an} are all constant according

to Definition A.1.

Theorem 4.2. Let f : Mn → R
n+1 be a Möbius isoparametric hypersurface without umbilical

points. Then the eigenvalues of the Blaschke tensor {a1, · · · , an} are all constant.

Proof. In the light of the classification result in [20], we may assume that the number r of

distinct principal curvatures is greater than 2. Since the Blaschke tensor is a Codazzi tensor,

we have

(ai − aj)ωij =
∑

k

Aij,kωk,

which implies, from (4.23),

(4.25) (ai − aj)
Bij,k

bi − bj
= Aij,k when [i] 6= [j].

Hence we know

(4.26) Ei(aj) = Ajj,i = Aij,j = 0 when [i] 6= [j]

from Bij,j = 0. Now to verify that aj is a constant, we only need to prove

(4.27) Ei(aj) = 0, i ∈ [j].

For a fixed point p ∈ Mn and j ∈ {1, · · · , n}, it is either Bjk,l = 0 for all 1 ≤ k, l ≤ n or

Bjk,l 6= 0 for some 1 ≤ k, l ≤ n. First assume it is the second case. In fact we may assume
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Bjk,l 6= 0 in a neighborhood of p for some j, k, l that have to be associated to three distinct

Möbius principal curvatures. Therefore, from (4.25), we obtain

aj − ak
bj − bk

=
Ajk,l

Bjk,l
=

Alk,j

Blk,j
=

al − ak
bl − bk

,

which implies

(4.28) aj = (al − ak)
bj − bk
bl − bk

+ ak.

This easily implies (4.27). Next, suppose it is the first case. If there is a sequence of point

pi → p in Mn such that the second cases happen on pi for some 1 ≤ k, l ≤ n, then (4.27) holds

at p due to the continuity. Otherwise, there is an open neighborhood U ⊂ Mn of p such that

Bjk,l = 0 for all 1 ≤ k, l ≤ n in U . Therefore Rjkjk = 0 in U from (4.24). Hence, from (2.6),

we derive

(4.29) aj = −bjbk − ak in U when k /∈ [j],

which obviously implies (4.27). Thus the proof is complete.

Remark 4.1. From the above proof it is clear that the following statement is true. Suppose

that A and B are two commuting Codazzi tensors and that B is an isoparametric tensor of

r(≥ 3) distinct eigenvalues. In addition assume Rijij = −ai − aj (cf. (5.63)). Then A is also

an isoparametric tensor.

From now on in this section we will focus to studying Riemmannian manifolds with two

commuting isoparametric tensors T1 and T2 that satisfy the condition

(4.30) Rijkl =
1

2
(T1

⊙

T1)ijkl + (T2

⊙

g)ijkl

according to (2.6), where
⊙

denotes the Kulkarni-Nomizu product (cf. Section A.1). We will

complete the proof of Theorem 4.1 in Section 4.2 and Section 4.3. For basic properties of

isoparametric tensors readers are referred to Section A.1 and Section A.2 in Appendix A.

4.2 Linear relations of commuting isoparametric tensors

Definition 4.1. Let (Mn, g) be a Riemannian manifold. Two symmetric 2-tensors T1 and

T2 are said to be linearly dependent, if there exist constants λ, µ, ε such that λT1 + µT2 = εg.

Clearly two linearly dependent symmetric 2-tensors are always commuting. It turns out the

converse is not true. In fact, two commuting isoparametric tensors on a Riemannian manifold

are not necessarily linearly dependent. In this subsection we want to give a sufficient condition
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for two commuting isoparametric tensors that satisfy the (4.30) to be linearly dependent. Our

approach is to carefully study the linear co-relations of all distinct pairs of eigenvalues of two

commuting isoparametric tensors. First of all, given two commuting isoparametric tensors that

satisfy (4.30), by Lemma A.3, we may choose the orthonormal basis {E1, · · · , En} such that

(Tij) = diag(b1̄, · · · , b1̄
︸ ︷︷ ︸

, b2̄, · · · , b2̄
︸ ︷︷ ︸

, · · · , br̄, · · · , br̄
︸ ︷︷ ︸

),

(

T̂ij

)

= diag(a1̄, · · · , a1̄, ā1̄, · · · , ā1̄
︸ ︷︷ ︸

, · · · , ar̄, · · · , ar̄, ār̄, · · · , ār̄
︸ ︷︷ ︸

),

where aī and āī may be same and b1̄ < · · · < br̄. We then define the following two index sets

[i] = {k ∈ {1, 2, · · · , n}| bk = bi} and (i) = {k ∈ [i]| ak = ai}.

Let s be the number of the distinct groups of indices in the collection {(1), (2), · · · , (n)} and

label these distinct groups of indices as {(1̄), (2̄), · · · , (s̄)}. Clearly, we have (i) ⊆ [i] and s ≥ r.

For any i ∈ {1, 2, · · · , n}, we consider the pair (ai, bi) and observe that

(ai, bi) = (aj , bj) if and only if (i) = (j).

Hence one may write (ai, bi) = (a(i), b(i)) and there are exactly s distinct pairs. Let W denote

the set of all of the pairs, that is,

W = {(a(1̄), b(1̄)), (a(2̄), b(2̄)), · · · , (a(s̄), b(s̄))}.

For a number ε (including ∞) and a group (i) fixed, we define the set of pairs

S(i)(ε) := {(ak, bk) ∈ W | ai − ak
bi − bk

= ε, k /∈ (i)}
⋃

{(a(i), b(i))}.

From Lemma A.3 and the above definition of S(i)(ε), it is easy to verify the following properties:

Lemma 4.1. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rieman-

nian manifold (Mn, g) and satisfy the relation (4.30). For a fixed index set (i), the following

hold:

(1) S(i)(∞) can have at most two pairs;

(2) For two non-empty sets S(i)(εk), S(i)(εl) and εk 6= εl, S(i)(εk) ∩ S(i)(εl) = {(a(i), b(i))};
(3) There exist only finitely many constants (including ∞) ε1, · · · , εl such that S(i)(ε1), · · · , S(i)(εl)

are non-empty;

(4) If the set S(i)(ε) = {(a(i), b(i)), (a(j), b(j))} for j /∈ (i), then

(4.31) Rklkl = bibj + ai + aj = 0 for all k ∈ (i) and l ∈ (j).
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Proof. These properties are all trivial except (4). It suffices to show that Tkl,m = 0 for all

m = 1, 2, · · · , n when k ∈ (i) and l ∈ (j). The nontrivial cases are k ∈ (i) ⊂ [i], l /∈ [i] and

m /∈ [i] ∪ [l]. Hence, from the third equation in (A.81), we would have

am − ak
bm − bk

=
T̂km,l

Tkm,l
=

T̂lk,m

Tlk,m
=

al − ak
bl − bk

if Tkl,m = Tkm,l were not vanishing. That would imply (am, bm) ∈ S(i)(ε) and a contradiction

to assumption that S(i)(ε) has only two pairs. Thus the proof is complete.

Next we want to understand the geometric impacts for the set S(i)(ε) to contain more than

two pairs. Again the key is to establish the generalized Cartan identity that relates the sectional

curvatures in the planes generated by the eigenvectors whose eigenvalues lie in the set S(i)(ε).

Lemma 4.2. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rie-

mannian manifold (Mn, g) and satisfy the relation (4.30). And suppose that, for some i and

ε,

S(i)(ε) = {(ai1 , bi1), (ai2 , bi2), · · · , (ait , bit)}

has t number of distinct pairs for t ≥ 3. Then, for j ∈ (ik), h ∈ (il), ik 6= il,

(4.32) Rjhjh =
∑

m∈(i1)∪(i2)∪···∪(it),m/∈(ik)∪(il)

T 2
jh,m

(bik − bm)(bil − bm)
.

Consequently, if bi1 < bi2 < · · · < bit , then

Rijij = bimbim+1
+ aim + aim+1

≥ 0, i ∈ (im), j ∈ (im+1), m = 1, 2, · · · , t− 1,

Rijij = bi1bit + ai1 + ait ≤ 0, i ∈ (i1), j ∈ (it).
(4.33)

More importantly, for each ik fixed and j ∈ (ik), we have the following generalized Cartan

identity,

(4.34)
∑

m∈(i1)∪(i2)∪···∪(it),m/∈(ik)

Rjmjm

bik − bm
= 0.

Proof. It suffices to prove that

Tjh,m = 0 when j, h ∈ (i1), (i2), · · · , (it), and m /∈ (i1), (i2), · · · , (it).

The argument is exactly the same as the proof of (4) in the above lemma. Because Tjh,m 6= 0

would imply that (am, bm) ∈ S(i)(ε), which is a contradiction.

Consequently we observe
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Lemma 4.3. Under the same assumptions as in Lemma 4.2,

bi1 + ε < 0, bit + ε > 0.

Proof. From Lemma 4.2, we have

(4.35) Ri1i2i1i2 ≥ 0, Ri1iti1it ≤ 0.

In the light of the assumption (4.30), we arrive at

0 ≤ Ri1i2i1i2 −Ri1iti1it = bi1(bi2 − bit) + ai2 − ait

= (bi2 − bit)(bi1 +
ai2 − ait
bi2 − bit

) = (bi2 − bit)(bi1 + ε),

which implies bi1 + ε ≤ 0. To prove that bi1 + ε < 0 we do it by contradiction. We assume

otherwise bi1 + ε = 0 and hence bit + ε > bi1 + ε = 0. Immediately we have

Ri1ki1k −Ri1li1l = bi1(bk − bl) + ak − al = (bk − bl)(bi1 + ε) = 0 for any k ∈ (ik) and l ∈ (il).

That is

Ri1ki1k = Ri1li1l for any k ∈ (ik) and l ∈ (il),

which forces, from (4.35), Ri1ki1k = 0 for any k ∈ (i2) ∪ (i3) · · · ∪ (it). On the other hand,

Ritkitk −Ritlitl = bit(bk − bl) + ak − al = (bk − bl)(bit + ε) for any k ∈ (ik) and l ∈ (il),

which implies

0 = Riti1iti1 < Ritii2 itii2
< · · · < Ritit−1itit−1

and hence

Ritmitm > 0 for any m ∈ (i2) ∪ (i3) · · · ∪ (it−1).

Therefore, in the light of the generalized Cartan identity (4.34) for i = it,

∑

m∈(i2)∪(i3)∪···∪(it−1)

Ritmitm

bit − bm
= 0

and therefore Ritmitm = 0 form ∈ (i1)∪(i2)∪· · ·∪(it−1) and bit+ε = 0, which is a contradiction

when t ≥ 3.

To prove bit + ε > 0, similarly from Lemma 4.2, we start with

Ririt−1itit−1
≥ 0 and Ri1iti1it ≤ 0

and

0 ≤ Ritit−1itit−1
−Ri1iti1it = (bit−1

− bi1)(bit + ε),

to conclude bit + ε ≥ 0. Then, with the argument similar as that in the above, we can derive a

contradiction if bit + ε = 0. Thus the proof is complete.
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The following is another technical lemma we will use to discover the structure of the distri-

bution of pairs (ai, bi) in the plane and facilitate the proof of Theorem 1.1. It is clear that pairs

in each set S(i)(ε) lie in a line with the slope ε if S(i)(ε) has more than one pairs. We observe

Lemma 4.4. Under the same assumptions as that in Lemma 4.2, if the set S(i)(ε) has at

least three distinct pairs and the line equation for the set S(i)(ε) is

a = εb+ d

for some constant d, then

(4.36) ε2 − 2d < 0.

Proof. As in the above, let S(i)(ε) = {(ai1 , bi1), (ai2 , bi2), · · · , (ait , bit)} and bi1 < bi2 < · · · < bit .

By the assumption, each pair (aik , bik) in S(i)(ε) satisfies the line equation

aik = εbik + d.

Hence, for i ∈ (ik) and j ∈ (il), from the assumption (4.30), we obtain

(4.37) Rijij = bibj + ai + aj = (bik + ε)(bil + ε) + 2d− ε2.

For the simplicity, we will use the notations b̃i = bi + ε in the following.

We first claim that 2d − ε ≥ 0. Assume otherwise that 2d − ε < 0. From Lemma 4.2, we

know that

0 ≤ Rimim+1imim+1
= b̃im b̃im+1

+ 2d− ε2, m = 1, 2, cdots, t− 1,

which implies

(4.38) b̃im b̃im+1
> 0,

for all m ∈ {1, 2, · · · , t − 1}. Under the assumptions, we know from Lemma 4.3 that b̃i1 < 0.

Therefore we may conclude that b̃it < 0 in the light of (4.38), which is a contradiction to b̃it > 0

in Lemma 4.3. So we have 2d− ε ≥ 0.

Next we want to exclude the cases that 2d− ε = 0. Assume again otherwise that 2d− ε = 0.

From the generalized Cartan identity for i = ik in Lemma 4.2, we write

0 =
∑

m∈(i),(i1),(i2),··· ,(it),m/∈(ik)

b̃ik b̃m

b̃ik − b̃m
=

∑

m∈(i),(i1),(i2),··· ,(it),m/∈(ik)

1
1

b̃im
− 1

b̃ik

.

This is impossible if one takes ik = i1 or ik = it. Thus 2d− ε2 > 0.
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It is obvious that, in order for tensors T1 and T2 to be linearly dependent, all the pairs have

to be lined in one set S(i)(ε). Particularly it is necessary that (i) = [i] for each i = 1, 2, · · · , n,
i.e. r = s. Let us list all the sets S(1̄)(ε) which have more than one pairs

S(1̄)(ε1), S(1̄)(ε2), · · · , S(1̄)(εt),

where ε1 < ε2 < · · · < εt. Now we are ready to state a theorem for linear dependence of two

commuting isoparametric tensors.

Theorem 4.3. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rie-

mannian manifold (Mn, g) and satisfy the relation (4.30). And suppose that r = s. If the set

S(1̄)(ε1) has at least three distinct pairs, or r = s ≤ 2, then there exists constant µ such that

(4.39) T2 = ε1T1 + µg.

Before the proof of Theorem 4.3, we first establish a sequence of lemmas. Let

S(1̄)(ε1) = {(a1, b1), (ai1 , bi1), · · · , (aik , bik)}

and b1 < bi1 < · · · < bik for some k ≥ 2.

Lemma 4.5. Under the assumptions in Theorem 4.3,

(4.40) b1̄ + εi < 0

for all i = 1, 2, · · · , t.

Proof. In the light of Lemma 4.3 one may only need to consider the cases when S(1̄)(εi) has

exactly two pairs, say, S(1̄)(εi) = {(a1, b1), (aj , bj)} for some i = 2, 3, · · · , t. Hence, from Lemma

4.2, we know that

b1bj + a1 + aj = 0.

On the other hand,

b21 + 2a1 − (b1bi1 + a1 + ai1) = (b1 − bi1)(b1 +
a1 − ai1
b1 − bi1

) = (b1 − bi1)(b1 + ε1) > 0.

Since b1 + ε1 < 0 due to Lemma 4.3. Therefore

b21 + 2a1 > b1bi1 + a1 + ai1 = R1i11i1 ≥ 0

by Lemma 4.2 again. Thus

0 < b21 + 2a1 − (b1bj + a1 + aj) = (b1 − bj)(b1 + εi),

which implies that b1 + εi < 0. So the proof is complete.
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To set some notations, let the line equation for each set S(1̄)(εm) is

a = εmb+ dm, m = 1, 2, · · · , t.

Then we have

(4.41) − b1̄ =
di − dj
εi − εj

for all i, j = 1, 2, · · · , t.

Lemma 4.6. Under the assumptions in Theorem 4.3,

(4.42) b2j + 2ai > 0

for all j = 1, 2, · · ·n.

Proof. First, for a given pair (aj , bj), it lies in S(1̄)(εm) for some m = 1, 2, · · · , t. Then

b2j + 2aj = (bj + εm)2 − ε2m + 2dm.

To prove b2j + 2aj > 0 one may verify that −ε2m + 2dm > 0. From Lemma 4.4, we know that

−ε21 + 2d1 > 0. Hence we use (4.41) to calculate

−ε2m + 2dm − (−ε21 + 2d1) = (ε1 − εm)(2b1 + ε1 + εm),

which is positive according to Lemma 4.5. Therefore −ε2m+2dm > 0 and the proof is complete.

The following lemma is very useful to understand what are the possible lines that connect

all pairs in W . Notice that, if S(1̄)(ε1) does not contain all the pairs, then the set S(il)(ε) for

some ε 6= ε1 must contain more than one pairs.

Lemma 4.7. Assume the same assumptions of Theorem 4.3 hold. Then, for any set S(il)(ε), l =

1, · · · , k, that contains more than one pairs, if ε < ε1, then bil + ε > 0 and bil ≥ bj for all

(aj , bj) ∈ S(il)(ε). Similarly, if ε > ε1, then bil + ε < 0 and bil ≤ bj for all (aj , bj) ∈ S(il)(ε).

Proof. Let dj = aj − ε1bj for j = 1, 2, · · · , n. Then it is clear that dj = d1 when j ∈ [1] ∪ [i1] ∪
· · · ∪ [ik]. On the other hand, if j /∈ [1] ∪ [i1] · · · ∪ [ik], then

d1 − dj = (b1 − bj)(−ε1 +
a1 − aj
b1 − bj

) < 0.

Because ε1 is the smallest slope among all lines passing through (a1, b1). Therefore

(4.43) d1 = dj = min{d1, d2, · · · , dn}, j ∈ [1] ∪ [i1] ∪ · · · ∪ [ik].
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First, we consider ε < ε1. for any (aj , bj) ∈ S(il)(ε) \ {(ail , bil)}, we have

dj − dil = (bj − bil)(
ail − aj
bil − bj

− ε1) = (bj − bil)(ε− ε1).

Thus, by (4.43), we see that bj ≤ bil .

Again, to show bil + ε > 0, in the light of Lemma 4.3, one may assume that S(il)(ε) has

exactly two pairs, say, S(īl)(ε) = {(aj , bj), (ail , bil)}. From Lemma 4.2, we know

Rjiljil = bjbil + aj + ail = 0.

Similar to the proof of Lemma 4.5, we calculate

b2il + 2ail = b2il + 2ail − (bjbil + aj + ail) = (bil − bj)(bil + ε),

which implies bil + ε > 0 due to Lemma 4.6. The above proof works for the case ε > ε1. Thus

the proof is complete.

We now are ready to present the proof for Theorem 4.3.

Proof of Theorem 4.3. For the case r = s ≤ 2, obviously T2 = ε1T1 + µg for some constant µ.

Next let r = s ≥ 2. We assume otherwise that S(1̄)(ε1) does not contain all the pairs. Recall

S(1̄)(ε1) = {(a1, b1), (ai1 , bi1), · · · , (aik , bik)}

and b1 < bi1 < · · · < bik for some k ≥ 2. For each il ∈ {i1, · · · , ik} fixed, let

S(il)(ε1), S(il)(ε
l
j1), · · · , S(il)(ε

l
jh)

be the full list of the set that contain more than just the pair (ail , bil) and εlj1 < · · · < εljh ,

where h ≥ 1 and may depend of l. Our argument is to show there is no way to compare ε1 with

the rest slopes εljm when l = k.

It is easy to see that ε1 has to be large than each slope εkjm . Assume otherwise ε1 < εkjm for

some m. Then, on one hand, applying Lemma 4.3 to S(1̄)(ε1), we obtain

bik + ε1 > 0.

On the other hand, applying Lemma 4.7 to S(ik)(ε
k
jm

), we obtain

bik + ε1 < bik + εkjm < 0,

which is a contradiction.
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Next we want to show that it is also impossible to have ε1 larger than each slope εkjm . But,

first, we can easily see that ε1 can not lie in between two slopes εljm for any l = 1, 2, · · · , k.
Because, if it happened, then we would have from Lemma 4.7 that

bil + εljm−1
> 0 and bil + εljm < 0,

which is a contradiction. To finish the proof we show inductively for l = 1, 2, · · · , k that it is

impossible that

εlj1 < εlj2 < · · · < εljh < ε1.

Before we start the induction, we define

bj0 = min{bj| (aj , bj) /∈ S(1̄)(ε1)}.

When l = 1, if ε1 is larger than every other slope ε1jm , then using Lemma 4.7, we know bi1

and bj0 are the largest and the smallest for pairs in the line that connects (aj0 , bj0) to (ai1 , bi1).

Therefore, by Lemma 4.2,

R1i11i1 = b1bi1 + a1 + ai1 ≥ 0, Ri1j0i1j0 = bi1bj0 + ai1 + aj0 ≤ 0,

which implies 0 ≤ R1i11i1 −Ri1i0i1i0 = (b1 − bj0)(bi1 +
a1−aj0

b1−bj0
) and hence

bi1 +
a1 − aj0
b1 − bj0

≤ 0.

On the other hand, from Lemma 4.7, we have

0 < bi1 + ε1jm < bi1 +
a1 − aj0
b1 − bj0

which is a contradiction. Here we used the fact that ε1 <
a1−aj0

b1−bj0
. So ε1 can only be smaller

than every other slope ε1jm and

(4.44) ε1 <
ai1 − aj0
bi1 − bj0

and bi1 < bj0 .

Similarly, from Lemma 4.2,

Ri1i2i1i2 ≥ 0 and Ri2j0i2j0 ≤ 0,

which implies 0 ≤ Ri1i2i1i2 − Ri2j0i2j0 = (bi1 − bj0)(bi2 +
ai1

−aj0

bi1−bj0
) and

bi2 +
ai1 − aj0
bi1 − bj0

≤ 0.

If otherwise ε1 is larger than every slope ε2jm , then, from Lemma 4.7,

0 < bi2 + ε2jm < bi2 + ε1 < bi2 +
ai1 − aj0
bi1 − bj0

,
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which is a contradiction and implies

(4.45) ε1 <
ai2 − aj0
bi2 − bj0

and bi2 < bj0 .

By induction, we can prove ε1 cannot be larger than every slope εkjm . Thus the proof is

finished.

4.3 Reducible cases

In this subsection we want to show that, if the assumptions in Theorem 4.3 for two com-

muting isoparametric tensors that satisfy (4.30) are not true, then the underlined Riemannain

manifold has to be reducible. The first cases are when r < s, that is, when T2 restricted to

some eigensapce Vbi has two distinct eigenvalues. The other cases are when the set S(1̄)(ε1) has

two distinct pairs.

Let us deal with the first cases. In the light of Lemma A.3, we may assume that for some

k̄ = 1̄, 2̄, · · · , r̄

(4.46) [k̄] = (k1)
⋃

(k2) and ak1
< ak2

.

Lemma 4.8. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rie-

mannian manifold (Mn, g) that satisfy the condition (4.30). And suppose that (4.46) holds for

some k̄ = 1̄, 2̄, · · · , r̄. Then any set S(k1)(ε) has at most two pairs.

Proof. We assume otherwise that the S(k1)(ε) has at least three distinct pairs for some ε, say,

S(k1)(ε) = {(ak1
, bk1

), (aj1 , bj1), · · · , (ajt , bjt)}

for some t ≥ 2, where bj1 < bj2 < · · · < bjt . Our argument is again to show that there is no

way to compare bk1
with the rest bj1 , bj2 , · · · , bjt .

First we want to show that bk1
cannot be in between the rest. Assume otherwise that for

some l = 1, 2, · · · , t− 1

bjl < bk1
< bjl+1

.

From Lemma 4.2, we know that

bjlbk1
+ ajl + ak1

≥ 0 and bjl+1
bk1

+ ajl+1
+ ak1

≥ 0.

And, from Lemma A.3, we know that b2k1
+ ak1

+ ak2
= 0. Hence, on one hand,

0 ≤bjl+1
bk1

+ ajl+1
+ ak1

− (b2k1
+ ak1

+ ak2
)

= (bjl+1
− bk1

)(bk1
+

ajl+1
− ak2

bjl+1
− bk2

) = (bjl+1
− bk1

)(bk̄ + ε+
ak1

− ak2

bjl+1
− bk̄

),
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which implies

bk̄ + ε > bk̄ + ε+
ak1

− ak2

bjl+1
− bk̄

≥ 0.

On the other hand,

0 ≤ bjlbk1
+ ajl + ak1

− (b2k1
+ ak1

+ ak2
) = (bjl − bk1

)(bk1
+

ajl − ak2

bjl − bk2

),

which implies

bk̄ + ε < bk̄ + ε+
ak1

− ak2

bjl − bk̄
≤ 0,

which is a contradiction.

Next we want to show that bk1
cannot be smaller than all the rest. Assume otherwise

bk1
< bj1 < bj2 < · · · < bjt .

From Lemma 4.3, we know that bk̄ + ε < 0. But, on the other hand, applying Lemma 4.2, we

know that

0 ≤ bk1
bj1 + ak1

+ aj1 − (b2k1
+ ak1

+ ak2
) = (bj1 − bk1

)(bk1
+

aj1 − ak2

bj1 − bk2

),

which implies

bk̄ + ε > bk̄ + ε+
ak1

− ak2

bj1 − bk̄
≥ 0,

which is a contradiction. One may find similarly bk̄ cannot be larger than the rest. Thus the

proof is complete.

Now we are ready to solve the cases when s > r.

Theorem 4.4. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rie-

mannian manifold (Mn, g) that satisfy the condition (4.30). And suppose that there exists an

eigenspace Vbk̄ of T1 such that T2|Vb
k̄
has two distinct eigenvalues ak1

< ak2
. Then

(4.47) b2k̄ + 2ak1
< 0

and the Riemannian manifold (Mn, g) is locally reducible, that is, (Mn, g) = (M1, g1)×(M2, g2)

locally. Moreover

T1|TM1
= bk̄g1, T2|TM1

= ak1
g1 and T2|TM2

= −bk̄T1|TM2
− ak1

g2.

Proof. In the light of Lemma 4.8 we know each set Ŝ(k1)(ε) has at most two pairs, where

[k̄] = (k1) ∪ (k2). Then, from Lemma 4.1, we know

Rijij = bk̄bj + ak1
+ aj = 0 for all i ∈ (k1) and j /∈ (k1)
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Therefore, for j /∈ [k̄], we calculate from

0 = bk̄bj + ak1
+ aj − (b2k̄ + ak1

+ ak2
) = (bj − bk̄)(bk̄ +

aj − ak2

bj − bk̄
).

that
aj − ak2

bj − bk̄
= −bk̄.

Thus each pair (aj , bj) for any j /∈ (k1) falls in S(k2)(−bk̄) and satisfies

aj = −bk̄bj − ak1
.

To finish the proof we only need to verify that both the distribution Vak1
= span{Ei| i ∈

(k1)} and its orthogonal compliment V ⊥ = span{Ei| i /∈ (k1)} are integrable and parallel.

According to [19], that amounts to show that ωij = 0 for all i ∈ (k1) and j /∈ (k1). We first

verify that, for i ∈ (k1) and j ∈ (k2), ωij = 0. This is because, using (A.83), one only needs to

see that T̂ij,l = 0 when l ∈ [k̄] = (k1)∪ (k2) from the second equation in (A.81). We then claim

T̂ij,m = 0 for all i ∈ (k1), j /∈ [k̄[,m = 1, 2, · · · , n. We are proving this claim by repeatedly

using the Cartan identity (A.75) and (4.31) in Lemma 4.1

(4.48) 0 = Rijij =
∑

m/∈[k̄],[j]

2T 2
ij,m

(bm − bk̄)(bm − bj)
, when i ∈ (k1) ⊂ [k̄], j /∈ [k̄].

First, let j ∈ [k + 1] in (4.48), and we note that

(bm − bk̄)(bm − bj) > 0, when m /∈ [k̄], [k + 1],

which forces

(4.49) Tij,m = 0, when i ∈ (k1), j ∈ [k + 1], 1 ≤ m ≤ n.

Then let j ∈ [k + 2] in (4.48) and obtain

0 =
∑

m/∈[k̄],[k+2]

2T 2
ij,m

(bm − bk̄)(bm − bk+2)
=

∑

m/∈[k̄],[k+1],[k+2]

2T 2
ij,m

(bm − bk̄)(bm − bk+2)

due to (4.49), which in turn improves (4.49) into

Tij,m = 0, when i ∈ (k1), j ∈ [k + 1] ∪ [k + 2], 1 ≤ m ≤ n.

Repeatedly extending in both directions we can prove the claim Tij,m = 0 for all i ∈ (k1), j /∈ [k̄]

and all 1 ≤ m ≤ n. Therefore, from (A.74), ωij = 0 for all i ∈ (k1) and j /∈ [k̄]. So the proof is

complete.
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The rest cases are when r = s but S(1̄)(ε1) has two pairs. Let

(4.50) S(1̄)(ε1) = {(a1̄, b1̄), (ak̄, bk̄)}.

The patterns of correlations among all the pairs are exactly the same as what they are in the

cases of Theorem 4.4, that is, every S(k̄)(ε) has at most two pairs and therefore all pairs except

(ak̄, bk̄) lie in one line.

Theorem 4.5. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rie-

mannian manifold (Mn, g) and satisfy the relation (4.30). And suppose that r = s > 2 and

(4.50) holds. Then

(4.51) b2k̄ + 2ak̄ < 0

and the Riemannian manifold (Mn, g) is locally reducible, that is, (Mn, g) = (M1, g1)×(M2, g2)

locally. Moreover

T1|TM1
= bk̄g1, T2|TM1

= ak̄g1, and T2|TM2
= −bk̄T1|TM2

− ak̄g2.

Proof. We claim that the set S(k̄)(ε) has at most two pairs. One only needs to prove this claim

for ε 6= ε1. Assume otherwise S(k̄)(ε) has at least three pairs, say,

S(k̄)(ε) = {(ak̄, bk̄), (ai1 , bi1), · · · , (aih , bih)}

and bi1 < bi2 < · · · < bih , for some ε 6= ε1 and h ≥ 2.

Let dj = aj − ε1bj for j = 1, 2, · · · , n. Then it is clear that dj = d1 when j ∈ [1̄] ∪ [k̄]. On

the other hand, if j /∈ [1̄] ∪ [k̄], then

d1 − dj = (b1 − bj)(−ε1 +
a1 − aj
b1 − bj

) < 0.

Because ε1 is the smallest slope among all lines passing through (a1, b1). Therefore

(4.52) d1 = min{d1, d2, · · · , dn}.

Now, for any i ∈ [k̄] and j ∈ [i1] ∪ [i2] · · · ∪ [ih], we have

(4.53) 0 < dj − di = (bj − bk̄)(ε− ε1).

Let us assume ε > ε1 first, which immediately implies bk̄ < bi1 < · · · < bih and hence bk̄+ ε < 0

from Lemma 4.3. We then calculate

0 > bk̄ + ε > bk̄ + ε1 = bk̄ +
ak̄ − a1̄
bk̄ − b1̄

=
b2
k̄
+ 2ak̄

bk̄ − b1̄
,
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where we used

b1̄bk̄ + a1̄ + ak̄ = 0

from Lemma 4.1. Therefore b2
k̄
+2ak̄ < 0. Meanwhile, applying Lemma 4.2 to S(k̄)(ε), we have,

bk̄bi1 + ak̄ + ai1 ≥ 0.

Then

0 < bk̄bi1 + ak̄ + ai1 − (b2k̄ + 2ak̄) = (bi1 − bk̄)(bk̄ + ε),

which implies that bk̄ + ε > 0. This is a contradiction and concludes that ε < ε1.

From (4.53), when ε < ε1, we have bi1 < bi2 < · · · < bih < bk̄ and hence bk̄ + ε > 0 from

Lemma 4.3. Similarly, applying Lemma 4.2 to S(k̄)(ε) again, we have

bk̄bi1 + ak̄ + ai1 ≤ 0.

Then

0 ≥ bk̄bi1 + ak̄ + ai1 − (bk̄b1̄ + ak̄ + a1̄) = (bi1 − b1̄)(bk̄ +
ai1 − a1
bi1 − b1

),

which implies that bk̄ + ε1 ≤ 0 and therefore bk̄ + ε < bk̄ + ε1 ≤ 0. This is a contradiction again

and concludes that no S(k̄)(ε) has more than two pairs.

Consequently, as in the proof of Theorem 4.4, we know S(1̄)(−bk̄) contains all pairs except

(ak̄, bk̄) and aj = −bk̄bj − ak̄ for j /∈ [k̄]. By the minimality of ε1, we find that bk̄ + ε1 < 0,

which implies

0 > bk̄ + ε1 = bk̄ +
ak̄ − a1
bk̄ − b1

=
b2
k̄
+ 2ak̄

bk̄ − b1

and therefore

b2k̄ + 2ak̄ < 0.

Finally, by a bootstrapping argument similar to that in the proof of Theorem 4.4, repeatedly

using the Cartan identity (A.75) and (4.31) in Lemma 4.1, we can show that

Tij,m = 0, when i ∈ [k̄], 1 ≤ j,m ≤ n,

which implies that

(4.54) ωij = 0, when i ∈ [k̄], j /∈ [k̄].

Thus both the distribution Vbk̄ and its orthogonal complement are integrable and parallel ac-

cording to [19]. The proof is completed
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5 Laguerre invariants of hypersurfaces in Rn+1

In this section we first recall Laguerre invariants of hypersurfaces in R
n+1. For the details

we refer readers to [23, 24]. We then present the characterization of Dupin hypersurfaces with

constant Laguerre curvatures in terms of Laguerre invariants.

The group of Laguerre transformations is not as well known as the group of Möbius trans-

formations. It is the other important subgroup of the group of Lie sphere transformations. Let

us first introduce the group of Lie sphere transformations (cf. [3]). It starts with the space

of all oriented hyperspheres in Rn+1, which are, points, oriented n-spheres, and oriented hy-

perplanes in Rn+1. One may use the so-called Lie quadric Qn+1 to represent the space of all

oriented hyperspheres. The Lie quadric is the projectivized light cone Cn+3 in the Minkowski

spacetime Rn+4
2 , where the Minkowski spacetime Rn+4

2 is the vector space Rn+4 equipped with

the quadratic

< x, y >= −x1y1 + x2y2 + · · ·+ xn+3yn+3 − xn+4yn+4

and the light cone is given as

Cn+3 = {x ∈ R
n+4| < x, x >= 0}.

The group of Lie sphere transformation is the orthogonal group O(n + 2, 2)/{±1} of the

Minkowski spacetime R
n+4
2 . And the group of Laguerre transformations is the isotropy sub-

group of O(n+ 2, 2)/{±1} at p = (1,−1,~0, 0) ∈ Cn+3 ⊂ R
n+4
2 .

A more geometric way to introduce the group of Lie sphere transformations is to consider the

unit tangent bundle URn+1 over Rn+1, which represents the space of lines on the Lie quadric

Qn+1. It is clear that

UR
n+1 = R

n+1 × S
n = {(x, ξ)|x ∈ R

n+1, ξ ∈ S
n} ⊂ C

n+1

and there is a standard contact structure on URn+1 defined by the standard contact form

ω = dx · ξ.

We then recall that oriented hypershperes in URn+1 are the following three types:

• oriented n-sphere S(p, r) = {(x, ξ) ∈ URn+1|x − p = rξ} for a point p ∈ Rn+1 and a

nonzero real number r

• point sphere S(p, 0) = {(p, ξ) URn+1|ξ ∈ UTpR
n+1} for a point p ∈ Rn+1, a ”sphere” of

radius 0,
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• oriented hyperplane P (ξ, λ) = {(x, ξ) ∈ URn+1|x · ξ = λ} for a fixed unit vector ξ and a

real number λ, a ”sphere” of infinite radius.

It turns out that the group of Lie sphere transformations is also the group of diffeomorphisms

of UR
n+1 that take oriented hyperspheres to oriented hyperspheres and preserve the contact

structure ω. Particularly, a Laguerre transformation is a Lie sphere transformation that takes

oriented spheres to oriented spheres and takes oriented hyperplanes to oriented hyperplanes.

Let x : Mn → Rn+1 be an oriented hypersurface in Rn+1 with non-vanishing principal

curvatures. Then the unit normal ξ : Mn → Sn is an immersion and x induces a Laguerre

surface f = (x, ξ) : Mn → URn+1. Let x and x̃ be two oriented hypersurfaces in Rn+1 with

non-vanishing principal curvatures. We say x and x̃ are Laguerre equivalent, if there is a

Laguerre transformation φ : URn+1 → URn+1 such that (x̃, ξ̃) = φ ◦ (x, ξ).

Let x : Mn → Rn+1 be an umbilical free hypersurface with non-vanishing principal curva-

tures. Let {e1, e2, · · · , en} be the orthonormal basis for TMn with respect to dx ·dx, consisting
of unit principal vectors. We write the structure equation of x : Mn → Rn+1 by

ej(ei(x)) =
∑

k

Γk
ijek(x) + λiδijξ; ei(ξ) = −λiei(x), 1 ≤ i, j, k ≤ n,

where λi 6= 0 is the principal curvature corresponding to ei. Let

Ri =
1

λi
and R =

R1 +R2 + · · ·+Rn

n

be the curvature radius and mean curvature radius of x. As in [23, 24], we call

(5.55) Y = ρ(x · ξ,−x · ξ, ξ, 1) : Mn → Cn+3 ⊂ R
n+4
2

the Laguerre position vector of the hypersurface x, where ρ =
√∑n

i=1(Ri −R)2. It is important

to realize the following covariant property.

Theorem 5.1. ([24]) Let x and x̃ be two umbilical free oriented hypersurfaces in Rn+1 with

non-vanishing principal curvatures. Then x and x̃ are Laguerre equivalent if and only if their

Laguerre positions Y and Ỹ are the same up to a Laguerre transformation.

Let Y the Laguerre position vector of a hypersurface x : M → Rn+1. We want to build

a natural orthogonal moving frame along the surface Y in R
n+4
2 . Analogous to the cases of

Möbius geometry,

g =< dY, dY >

is then called the Laguerre metric and the null normal vector

N =
1

n
∆Y +

1

2n2
< ∆Y,∆Y > Y
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to the surface Y in R
n+4
2 that is paired with the tautological null normal Y such that

< Y,N >= −1,

where the Laplacian operator ∆ is that of the Laguerre metric g. In contrast to the cases of

Möbius geometry, we have a constant null normal vector p and a canonical null normal vector

η = (
1

2
(1 + |x|2), 1

2
(1 − |x|2), x, 0) +R (x · ξ,−x · ξ, ξ, 1)

such that

< η, p >= −1 and < η, Y >=< η,N >=< p, Y >=< p, N >= 0.

Therefore, if let {E1, E2, · · · , En} be an orthonormal basis for g =< dY, dY > that are tangent

to Y with dual basis {ω1, ω2, · · · , ωn}, then, as given in [23, 24], we have the following orthogonal

moving frame along Y in R
n+4
2

{Y,N,E1, E2, · · · , En, η, p}.

We next recall from [23, 24] the following structure equations:

Ei(N) =
∑

j

LijEj + Cip;(5.56)

Ej(Ei) = LijY + δijN +
∑

k

Γk
ijEk +Bijp;(5.57)

Ei(η) = −CiY +
∑

j

BijEj .(5.58)

Analogous to the cases of Möbius geometry, besides the Laguerre metric g =< dY, dY >, we

have the following Laguerre invariants:

(5.59) B =
∑

ij

Bijωi ⊗ ωj , L =
∑

ij

Lijωi ⊗ ωj , and C =
∑

i

Ciωi,

where B is called the Laguerre second fundamental form, L is called the Laguerre tensor, and

C is called the Laguerre form. In [24], the integrability conditions for {L,B,C} are identified

as

Lij,k = Lik,j ;(5.60)

Ci,j − Cj,i =
∑

k

(BikLkj −BjkLki);(5.61)

Bij,k −Bik,j = Cjδik − Ckδij ;(5.62)

Rijkl = Ljkδil + Lilδjk − Likδjl − Ljlδik;(5.63)
∑

ij

B2
ij = 1,

∑

i

Bii = 0,
∑

i

Bij,i = (n− 1)Cj ; .(5.64)
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where Rijkl is the curvature tensor of g. More importantly, in [24], it was shown that, up to a

Laguerre transformation, an umbilical free oriented hypersurfaces in R
n+1 with non-vanishing

principal curvatures is completely determined by the Laguerre invariants {g,B} when n > 2

and by the Laguerre invariants {g,B,L} when n = 2.

Finally we recall from [23, 24] how {g,B,C} can be calculated in terms of the geometry of

x in Rn+1:

g =

√
∑

i

(Ri −R)2III, Bij = ρ−1(Ri −R)δij ,

Ci = −ρ−2{Ẽi(R) + Ẽi(logρ)(Ri −R)},
(5.65)

here Ẽi = Riei and {ei} is an orthonormal frame with respect to the metric dx · dx, consisting
of unit principal vectors.

Definition 5.1. Let x : Mn → Rn+1 be an immersed hypersurface with non-vanishing

principal curvatures, and the principal curvature radius {R1 = 1
λ1
, R2 = 1

λ2
, · · · , Rr = 1

λr
}. For

any three principal curvature radius λi, λj , λs, We define the Laguerre curvature of x

Υijs =
Ri −Rj

Ri −Rs
.

The eigenvalues of B are called the Laguerre principal curvatures of x. Then, from (5.65),

the Laguerre principal curvature bi = ρ−1(Ri −R). Hence

(5.66) Υijs =
Ri −Rj

Ri −Rs
=

bi − bj
bi − bs

,

which implies that the Laguerre curvatures Υijs are Laguerre invariants.

We now are ready to give the characterization of Dupin hypersurfaces with constant Laguerre

curvatures in terms of Laguerre invariants.

Proposition 5.1. Let x : Mn → Rn+1 be an oriented hypersurface with r(≥ 3) distinct

non-vanishing principal curvatures. Then x is a Dupin hypersurface with constant Laguerre

curvatures if and only if its Laguerre form vanishes and all Laguerre principal curvatures are

constant.

Proof. First of all it is easily seen that, with a proof that is almost identical to the proof of

Proposition 2.1, the Laguerre curvatures Υijs are constant if and only if the Laguerre principal

curvatures are constant.

Secondly, from (5.65), we have

Ci = −ρ−2{Ẽi(r) + Ẽi(ρ)ρ
−1(ri − r)} = −ρ−2{Ẽi(r) + Ẽi(ρ)bi}

= −ρ−2{Ẽi(r) + Ẽi(ρbi)− ρ−1Ẽi(bi)} = −ρ−2{Ẽi(ri)− ρ−1Ẽi(bi)}

= −ρ−2{− Ẽi(λi)

λ2
i

− ρ−1Ẽi(bi)}.

(5.67)
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Therefore the proof of Proposition 5.1 can easily be completed.

In [41], an immersed hypersurface is said to be a Laguerre isoparametric hypersurface if its

Laguerre form vanishes and its Laguerre Principal curvatures are all constant. And Song [41]

has classified the Laguerre isoparametric hypersurfaces with two distinct principal curvatures.

In these terminology, Theorem 5.1 then says that, a hypersurface in R
n+1 is a Dupin surface

with constant Laguerre curvatures if and only if it is a Laguerre isoparametric hypersurface.

We would like to mention that Proposition 5.1 recently has also been observed in [37].

6 Dupin Hypersurfaces with constant Laguerre curvatures

In this section we will present the proof of Theorem 1.2. We will first study examples of

Dupin hypersyrfaces with constant Laguerre curvatures. Then we will proceed similar to the

Möbius cases to study the isoparametric tensors. This time the proof will be significantly

simpler than that in Möbius cases because of (5.63) in contrast to (2.6).

6.1 Examples

Cyclide of Dupin. For any integer k with 1 ≤ k ≤ n− 1, let

H
n−k = {(v, w) ∈ R

n−k+1||v|2 − w2 = −1 and w > 0}

be the hyperboloid in the Minkowski space R
n−k+1
1 . We then consider the hypersurface

(6.68) x(u, v, w) = (
u

w
(1 + w),

v

w
) : Sk ×H

n−k → R
n+1,

where u : Sk → Rk+1 is the standard embedding of round sphere.

As was verified in [23], the hypersurface given in (6.68) is a Laguerre isoparametric hyper-

surface with two distinct Laguerre principal curvatures and, in fact, is Lie equivalent to the

classical cyclide of Dupin of characteristic (k, n− k).

Flat Laguerre isoparametric hypersurface. For any positive integers m1, · · · ,ms with

m1 + · · ·+ms = n and any non-zero constants κ1, · · · , κs, we consider the hypersurface

(6.69) x(u1, u2, · · · , us) =
(
ϕ, ((1 + ϕκ1)u1, · · · , (1 + ϕκs)us)

)
: Rn → R

n+1,

where

ϕ =
κ1|u1|2 + · · ·+ κs|us|2

κ2
1|u1|2 + · · ·+ κ2

s|us|2 + 1

for (u1, u2, · · · , us) ∈ Rm1 × Rm2 × · · ·Rms = Rn.
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Again, as was shown in [23], the hypersurface given in (6.69) is a Laguerre isoparametric

hypersurface with s distinct Laguerre principal curvatures and, moreover, its Laguerre metric

g =< dY, dY > is flat, that is, Rijij [g] = 0. Hence we call such hypersurfaces flat Laguerre

isoparametric hypersurfaces.

6.2 Proof of Theorem 1.2

The proof of Theorem 1.2 similar to that of Möbius cases uses isoparametric tensors. From

the integrability conditions for the Laguerre invariants L,B,C and the Laguerre metric g it

is clear that the Laguerre second fundamental form B is an isoparametric tensor on a Dupin

hypersurface with constant Laguerre curvatures in the light of Proposition 5.1. For the definition

and basic properties for isoparametric tensors readers are referred to Appendix A. First we want

to show that the Laguerre symmetric 2-tensor L is also an isoparametric tensor on a Dupin

hypersurface with constant Laguerre curvatures. From (5.60), it suffices to show that the

eigenvalues of L are all constant, according to Definition A.1.

Lemma 6.1. Let x : Mn → Rn+1 be a Laguerre isoparametric hypersurface. Then the

eigenvalues of the Laguerre tensor L are all constant.

Proof. This lemma in the cases when x has more than 2 distinct principal curvatures follows

from Remark 4.1 after the proof of Theorem 4.2. Next we consider r = 2. And

(Lij) = diag(τ1, τ2, · · · , τn) and (Bij) = diag(b1, · · · , b1
︸ ︷︷ ︸

s

, b2, · · · , b2
︸ ︷︷ ︸

n−s

).

Since B is an isoparametric tensor with two distinct eigenvalues, from Proposition A.1 and

Proposition A.2, we know that

Rijij = 0, 1 ≤ i ≤ s, s+ 1 ≤ j ≤ n.

On the other hand, from (5.63) we know Rijij = −τi − τj and then

(Lij) = diag(τ1, τ2, · · · , τn) = diag(τ, · · · , τ
︸ ︷︷ ︸

k

,−τ, · · · ,−τ
︸ ︷︷ ︸

n−k

).

Therefore

Ek(τ) = Ek(τi) = Lii,k = Lik,i =
2τ

b1 − b2
Bik,i = 0

for i ∈ {1, 2, · · · , s} if k ∈ {s+ 1, s+ 2, · · · , n} and

Ek(τ) = −Ek(τi) = −Lii,k = −Lik,i =
2τ

b2 − b1
Bik,i = 0

for i ∈ {s + 1, s + 2, · · · , n} and i 6= k if k ∈ {1, 2, · · · , s}, in the light of (A.74). Thus τ is

constant.
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Now we know, under the assumptions of Lemma 6.1, B and L are commuting isoparametric

tensors. We may choose a local orthonormal frame so that

(Bij) = diag(b1, · · · , bn)

(Lij) = diag(τ1, · · · , τn) = diag(τ1̃, · · · , τ1̃, τ2̃, · · · , τ2̃, · · · , bt̃, · · · , τt̃),

where t denotes the number of the distinct eigenvalues of L. We then define the index set

{i} = {k ∈ {1, 2, · · · , n}|τk = τi}

according to the repeated eigenvalues of Laguerre tensor L in this section. The main observation

that leads to the proof of Theorem 1.2 is the following:

Theorem 6.1. Let x : Mn → Rn+1 be a Laguerre isoparametric hypersurface. Then the

Laguerre second fundamental form B is parallel.

Proof. First, from (5.63) and Cartan identity (A.77), we have

(6.70)
∑

j /∈{i}

Rijij

τj − τi
=

∑

j /∈{i}

−τj − τi
τj − τi

=
∑

j /∈{i}

τ2i − τ2j
(τj − τi)2

= 0.

Let τ2i0 = max{τ21 , · · · , τ2n}. And let i = i0 in equation (6.70), we have

∑

j /∈(i0)

τ2i0 − τ2j
(τj − τi0)

2
= 0,

which implies that τ2i0 − τ2j = 0 for j ∈ {1, 2, · · · , n} and therefore t ≤ 2.

If t = 2, then

(Lij) = diag(τ1, τ2, · · · , τn) = diag(τ, · · · , τ
︸ ︷︷ ︸

s

,−τ, · · · ,−τ
︸ ︷︷ ︸

n−s

)

for some constant τ 6= 0. Moreover, from Proposition A.1 and Proposition A.2, we know L is

parallel and

(6.71) Rijij = 0, 1 ≤ i ≤ s, s+ 1 ≤ j ≤ n.

Now we switch the order of {E1, · · · , Es} such that

(Bij)1≤i,j≤s = diag(b1, · · · , bs) = diag(b1̂, · · · , b1̂, b2̂, · · · , b2̂, · · · , bl̂, · · · , bl̂)

and b1̂ < b2̂ < · · · < bl̂. Assume that l ≥ 2. From the Cartan identity (A.77) and (6.71), we

have
∑

1≤j≤n,bj 6=b
1̂

R1j1j

bj − b1̃
=

∑

1≤j≤s,bj 6=b1̃

−2τ1̃
bj − b1̃

= 0,
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which leads to the contradiction to τ 6= 0. Therefore l = 1 and, in fact, the Laguerre second

fundamental form B has at most two distinct principal curvatures. Thus, from Proposition A.1,

B is parallel.

If otherwise t = 1, then we can assume Lij = τδij . Let b1 be the smallest eigenvalues of B.

We then consider the Cartan identity (A.77)

∑

1≤j≤n,bj 6=b1

R1j1j

bj − b1
=

∑

1≤j≤n,bj 6=b1

−2τ

bj − b1
= 0

and conclude that τ = 0, which implies Rijkl = 0 and the Laguerre second fundamental form

is parallel using Theorem A.1. So the proof is complete.

Finally Theorem 1.2 follows from Theorem 6.1 and the classification result in [23].

Theorem 6.2. ([23]) Let x : Mn → Rn+1 be an umbilical free hypersurface with non-

vanishing principal curvatures. If its Laguerre second fundamental form is parallel, then locally

x is Laguerre equivalent to one of the following hypersurfaces,

(1) the Cyclide of Dupin x : Sk ×Hn−k → Rn+1 given in (6.68)

(2) the flat Laguerre isoparametric hypersurface x : Rn → Rn+1 given in (6.69).

A Isoparametric tensors

A.1 Definition and properties of isoparametric tensors

A symmetric (0, 2) tensor field T =
∑

ij Tijωi ⊗ ωj on a Riemannian manifold (Mn, g) is

said to be a Codazzi tensor if it satisfies the Codazzi equation

(A.72) ∇XT (Y, Z) = ∇Y T (X,Z),

for arbitrary vector fields X,Y, Z, where ∇ denotes the Riemannian connection.

Definition A.1. A Codazzi tensor on a Riemannian manifold (Mn, g) is said to be an

isoparametric tensor if the eigenvalues are all constant.

Let T =
∑

ij Tijωi ⊗ ωj be an isoparametric tensor on a Riemannian manifold (Mn, g). We

can choose a local orthonormal basis {E1, · · · , En} such that

(Tij) = diag(b1̄, · · · , b1̄, b2̄, · · · , b2̄, · · · , br̄, · · · , br̄),

where b1̄ < · · · < br̄ are constants. Hence

(A.73) (bi − bj)ωij =
∑

k

Tij,kωk,
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which gives

Tij,k = 0, when [i] = [j], or [j] = [k], or [i] = [k],

ωij =
∑

k

Tij,k

bi − bj
ωk =

∑

k/∈[i],[j]

Tij,k

bi − bj
ωk, when [i] 6= [j],

(A.74)

where [i] := {m ∈ {1, 2, · · · , n}|bm = bi}. Consequently we have

Proposition A.1. Let (Mn, g) be a Riemannian manifold. If an isoparametric tensor T

on (Mn, g) has only two distinct eigenvalues, then T is parallel.

It is well-known that a nontrivial parallel 2-tensor on a Riemannian manifold induces a

splitting of Riemannian structure. Namely,

Proposition A.2. ([19, Chap.4]). Let (Mn, g) be a Riemannian manifold. If T is a parallel

symmetric (0, 2) tensor field on (Mn, g), then, locally,

(Mn, g) = (M1, g1)× (M2, g2)× · · · × (Mr, gr).

and there exist r constants λ1, · · · , λr such that

T = λ1g1 ⊕ λ2g2 ⊕ · · · ⊕ λrgr.

Meanwhile, one may calculate from (A.74), for [i] 6= [j],

Tij,ij =
∑

k/∈[i],[j]

2T 2
ij,k

bk − bi
, Tij,ji =

∑

k/∈[i],[j]

2T 2
ij,k

bk − bj
,

and

(A.75) Rijij =
∑

k/∈[i],[j]

2T 2
ij,k

(bk − bi)(bk − bj)
,

using the Ricci identity. It is important that one immediately sees from (A.75) the following

useful fact in this paper.

Lemma A.1. Let T =
∑

ij Tijωi⊗ωj be an isoparametric tensor on the Riemannian manifold

(Mn, g). Under the orthonormal basis {E1, · · · , En}, the coefficients of T have the following

form

(Tij) = diag(b1̄, · · · , b1̄, b2̄, · · · , b2̄, · · · , br̄, · · · , br̄), b1̄ < · · · < br̄.

Then

Rijij ≤ 0, when i ∈ [1̄], j ∈ [r̄],

Rijij ≥ 0, when i ∈ [k̄], j ∈ [k + 1], for k̄ = 1̄, · · · , r − 1,
(A.76)

where [̄i] = {m|bm = bī}.
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As a consequence, for instance, one can obtain the following strong geometric constraints

for a Riemannian manifold to have an isoparametric tensor.

Theorem A.1. Let T =
∑

ij Tijωi ⊗ ωj be an isoparametric tensor on a Riemannian man-

ifold (Mn, g). If (Mn, g) has non-negative sectional curvature (or non-positive sectional curva-

tures), then T is parallel.

Proof. Let us first present a proof in the cases when (Mn, g) has non-positive sectional curva-

ture. We start with i ∈ [1̄] and j ∈ [2̄] in equation (A.75). Notice that

(bk − b1̄)(bk − b2̄) > 0, when k /∈ [1̄] ∪ [2̄].

From (A.75) we therefore observe that

Tij,k = 0, when i ∈ [1̄], j ∈ [2̄], 1 ≤ k ≤ n.

We then consider i ∈ [1̄] and j ∈ [3̄] in equation (A.75). This time we notice that

(bk − b1̄)(bk − b3̄) > 0, when k /∈ [1̄] ∪ [2̄] ∪ [3̄]

and Tij,k = 0, i ∈ [1̄], k ∈ [2̄]. From (A.75) again we observe that

Tij,k = 0, when i ∈ [1̄], j ∈ [2̄] ∪ [3̄], 1 ≤ k ≤ n.

Repeatedly we can prove that Tij,k = 0 for i ∈ [1̄] and j ∈ [2̄] ∪ [3̄] · · · ∪ [r̄]. Similarly we can

prove Tij,k = 0 for all indices, thus T is parallel.

The proof for the cases when (Mn, g) has non-negative curvature uses the same idea but

one starts with i ∈ [1̄] and j ∈ [r̄] instead.

Next we want to derive the other important fact in this paper, the generalized Cartan

identity (cf. [22]) on Riemannian manifolds with an isoparametric tensor T .

(A.77)
∑

j /∈[i]

Rijij

bj − bi
=

∑

j,k/∈[i]

2T 2
ij,k

(bk − bi)(bk − bj)(bi − bj)
= 0,

which is easily seen as we note that the matrix, for each i fixed,

( 2T 2
ij,k

(bk − bi)(bk − bj)(bi − bj)

)

is antisymmetric for indices j, k.

To show that the generalized Cartan identity is powerful in understanding the curvature

structure of Riemannian manifolds with isoparametric tensors, we present a proof of the follow-

ing interesting result that is believed to be known. Before we state the result we want to recall
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the Kulkarni-Nomizu product of tensors T1 =
∑

ij Tijωi ⊗ ωj and T2 =
∑

ij T̂ijωi ⊗ ωj defined

by

(T1

⊙

T2)ijkl = TikT̂jl + TjlT̂ik − TilT̂jk − TjkT̂il.

It its then known that, on a locally conformally flat manifold (Mn g) (n ≥ 3),

(A.78) Rijkl = (S
⊙

g)ijkl,

where S = 1
n−2 (Ric− R

2(n−1)g) is the so-called Schouten tensor.

Theorem A.2. Let (Mn, g), (n ≥ 3) be a locally conformally flat Riemannian manifold. If

the eigenvalues of the Schouten tensor S are constant, then either,

(a) (Mn, g) is of constant curvature, or

(b) (Mn, g) is locally reducible, (Mn, g) = (M1, g1)× (M2, g2), and there exists constant λ such

that

π1∗S = λg1, π2∗S = −λg2.

Where π1 : Mn → M1, π2 : Mn → M2 are the standard projections.

Proof. First of all, from the assumption that g is locally conformally flat, we know that the

Schouten tensor S is an isoparametric tensor. Hence, under a properly chosen a local orthonor-

mal basis,

(Sij) = diag(b1, b2, · · · , bn) = diag(b1̄, · · · , b1̄, · · · , br̄, · · · , br̄),

for some constants b1̄ < · · · < br̄. From (A.77) and (A.78), for each i fixed, we have

(A.79) 0 =
∑

j /∈[i]

Rijij

bj − bi
=

∑

j /∈[i]

bj + bi
bj − bi

=
∑

j /∈[i]

b2j − b2i
(bj − bi)2

.

Now let b2i0 = max{b21, · · · , b2n} and let i = i0 in equation (A.79), we have

∑

j /∈[i0]

b2j − b2i0
(bj − bi0)

2
= 0,

which implies that b2i0 − b2j = 0 and therefore r ≤ 2. It is clear that (Mn, g) is of constant

curvature if r = 1 and the proof is complete in the light of Proposition A.1 and Proposition

A.2.

A.2 Commuting isoparametric tensors

Suppose that (Mn, g) is a Riemannian manifold. Then we say that two (0, 2)-tensors are

commuting if they are commuting as linear transformations. Given two commuting isopara-

metric tensors

T1 =
∑

ij

Tijωi ⊗ ωj and T2 =
∑

ij

T̂ijωi ⊗ ωj ,
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we may choose a local orthonormal frame {E1, E2, · · · , En} so that

(A.80)







(Tij) = diag(b1̄, · · · , b1̄, b2̄, · · · , b2̄, · · · , br̄, · · · , br̄)
(

T̂ij

)

= diag(a1, · · · , an)

for constants b1̄ < b2̄ < · · · < br̄ and a1, a2, · · · , an. Immediately we know

Tij,k = 0, when [i] = [j], or [j] = [k],

T̂ij,k = 0, when ai = aj, or aj = ak,

ai − aj
bi − bj

Tij,k = T̂ij,k, when [i] 6= [j].

(A.81)

Particularly the third equation in (A.81) and T̂ij,k = T̂ik,j implies

(A.82) T̂ij,k = 0 for [j] = [i] and k /∈ [j],

which means more components of the commuting isoparametric tensors are forced to vanish

and allows us to focus on the behavior of T2 restricted to an eigenspace of T1

Vbi = Span{Em : m ∈ [i]} or Vbk̄ = Span{Em : m ∈ [k̄]}.

We can change the order of the subbasis in the eigenspace Vbk̄ such that

(

T̂ij

)

|i,j∈[k̄] = diag(ak1
, · · · , ak1

︸ ︷︷ ︸
, ak2

, · · · , ak2
︸ ︷︷ ︸

· · · , akm
, · · · , akm

︸ ︷︷ ︸
)

for ak1
< ak2

< · · · < akm
. We then define the index sets

(i) := {l ∈ [i]| al = ai} and (k̄i) := {l ∈ [k̄]| al = aki
}.

From (A.82), we have the following lemma.

Lemma A.2. Suppose that T1 and T2 are two commuting isoparametric tensors as in the

above. Then, for some [k̄] fixed, (i), (j) ∈ [k̄] and (i) 6= (j),

(A.83) (ai − aj)ωij =
∑

l∈[k̄]

T̂ij,lωl

and

(A.84) Rijij =
∑

l∈[k̄],l/∈(i),(j)

2T̂ 2
ij,l

(ai − al)(aj − al)
.

More importantly we have the generalized Cartan identity for i ∈ [k̄]

(A.85)
∑

j∈[k̄],j /∈(i)

Rijij

ai − aj
=

∑

j,l∈[k̄],j,l/∈(i)

T̂ 2
ij,l

(ai − al)(aj − al)(ai − aj)
= 0.
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One important relation that ties two commuting isoparametric tensors more intimately to

the geometry of the underlined manifold and comes naturally from the integrability conditions

(2.6) when we are concerned with the Möbius second fundamental form T1 = B and the Blaschke

tensor T2 = A for a hypersurface in f : Mn → Rn+1 is

(A.86) Rijkl =
1

2
(T1

⊙

T1)ijkl + (T2

⊙

g)ijkl .

Lemma A.3. Suppose that T1 and T2 are two commuting isoparametric tensors on a Rieman-

nian manifold (Mn, g) and satisfy the relation (A.86). Then T2|Vb
k̄
has two distinct eigenvalues

at most. Moreover

b2k̄ + ak̄ + āk̄ = 0

when T2|Vb
k̄
has two distinct eigenvalues ak̄ and āk̄.

Proof. For ak1
< ak2

< · · · < akm
and i ∈ (k1) and j ∈ (k2), it is easily seen from (A.84) that

Rijij =
∑

l∈[k̄],l/∈(k̄1),(k̄2)

2T̂ 2
ij,l

(ak1
− al)(ak2

− al)
≥ 0.

Hence, from (A.86),

(A.87) Rijij = b2k̄ + ai + aj ≥ b2k̄ + ak1
+ ak2

≥ 0, i, j ∈ [k̄] and (i) 6= (j).

Therefore, from the generalized Cartan identity (A.85) in Lemma A.2, we get

(A.88) Rijij = b2k̄ + ak1
+ aj = 0, i ∈ (k̄1) and j ∈ [k̄], j /∈ (k̄1).

The key of this proof is to realize that (A.88) allows us to further trim the generalized Cartan

identity (A.85) for i ∈ (k̄2) into

(A.89)
∑

j∈[k̄],j /∈(k̄1),j /∈(k̄2))

Rijij

ak2
− aj

= 0,

which in turn implies

Rijij = b2k̄ + ak2
+ aj = 0, i ∈ (k̄2) and j ∈ [k̄], j /∈ (k̄2).

Thus, repeating the above argument, we can get

(A.90) Rijij = b2k̄ + ai + aj = 0 for all i, j ∈ [k̄] and (i) 6= (j),

which forces m ≤ 2 and completes the proof.
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