
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Development of the marine predators algorithm for optimizing the 
performance of water supply reservoirs

Permalink
https://escholarship.org/uc/item/4kg5w98v

Authors
Moradi-Far, Shirin
Ashofteh, Parisa-Sadat
Loáiciga, Hugo A

Publication Date
2024

DOI
10.1007/s10668-023-04450-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kg5w98v
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)

Environment, Development and Sustainability
https://doi.org/10.1007/s10668-023-04450-z

1 3

Development of the marine predators algorithm 
for optimizing the performance of water supply reservoirs

Shirin Moradi‑Far1 · Parisa‑Sadat Ashofteh1 · Hugo A. Loáiciga2

Received: 12 January 2023 / Accepted: 29 December 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
Optimal reservoir operation involves complex decision making. The marine predators algo-
rithm (MPA) is herein applied and evaluated with several mathematical functions and with 
the optimized operation of the Aydogmush reservoir (East Azerbaijan province, Iran) that 
minimizes the deficit of agricultural water supplied to downstream lands. Reservoir opera-
tion covers a baseline period (1987–2000) and a period of climate change (2026–2039). 
The MPA’s reservoir operation results are compared those obtained with the genetic algo-
rithm (GA). The calculated operating policies are evaluated based on indexes of reliability, 
resiliency and vulnerability. A comparison of reservoir water releases, water supply deficit 
and reservoir storage from five runs under baseline and climate change periods indicates 
better performance of the MPA-calculated reservoir operation than the GAs in meeting 
downstream water demand. The efficiency indexes show that, for example, the reliability of 
the operating policy obtained with the MPA is larger by 54 and 34% compared to the GAs 
in the baseline and the climate change periods, respectively.

Keywords  Optimization · Reservoir management · Marine predators algorithm · Efficiency 
indexes · Climate change

1  Introduction

Population growth in developing countries has increased the water demand to improve 
health, social welfare, economic development and food production, and to protect ecosys-
tems. Reservoir operation is central to achieving sustainable development. The application 
of optimization algorithms is necessary in reservoir operation to achieve best management 
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solutions. Evolutionary and meta-heuristic algorithms are applied to find the near-optimal 
solutions of complex problems efficiently (Bozorg-Haddad et al., 2017). The genetic algo-
rithm (GA) (see, e.g., Goldberg & Holland, 1988, Holland, 1992), for instance, is a pio-
neering evolutionary algorithm that has been applied to solve reservoir operation problems 
that could not be solved with classic linear (LP) or nonlinear programing (NLP) (Louati 
et al., 2011; Jothiprakash & Shanthi, 2006). Hincal et al. (2011) investigated the efficiency 
of the GA in determining the optimal operation of multiple reservoirs. Three reservoirs 
were optimized in the Colorado River project to maximize energy production. Results were 
compared with data of actual operation, and the GAs results proved superior relative to 
traditional optimization methods.

Akbari-Alashti et  al. (2014) implemented nonlinear programming (NLP), fixed length 
gene genetic programming (FLGGP) and GA to operate a three-reservoir system in Iran in 
real time to predict the hydroelectric power generated. The results showed that FLGGP pro-
vided the most flexible and efficient performance for extracting operating rules. Bashiri-Atrabi 
et al. (2015) developed the algorithm of harmony search (HS) to optimize reservoir operation 
to minimize water supply shortages and flood damage in the reservoir downstream. The HS 
results were compared with other methods with a single-reservoir operation problem. The HS 
featured superior performance based on convergence speed and accuracy to an optimal value 
compared to other methods [such as the honeybee mating optimization (HBMO) and nonlin-
ear programming]. Bozorg-Haddad et al. (2015a) introduced the bat algorithm (BA) applied 
to the reservoir operation. It was applied to the Karun four-reservoir system (Iran) and a hypo-
thetical four-reservoir system. Results showed that BA’s performance was superior compared 
to LP, NLP and the GA from the perspective of convergence to a global optimal. Bozorg-
Haddad et al. (2015b) applied the water cycle (WC) algorithm to obtain the operation optimal 
policies of the Karun four-reservoir system (Iran) and a four-reservoir system. Results showed 
high efficiency of WC in reservoir operation. Azizipour et al. (2016) applied the invasive weed 
optimization (IWO) algorithm to optimally operate hydropower plant for single-reservoir and 
multi-reservoir systems during short-term, medium-term and long-term periods. Results were 
compared with particle swarm optimization (PSO) and the GA, and demonstrated that IWO 
was more reliable than PSO and GA for single- and multi-reservoir power plants. Akbarifard 
et al. (2020) conducted the moth swarm algorithm (MS) to optimize the hydropower operation 
(Karun four-reservoir system) (in Iran). Results revealed that MS was preferable relative to 
PSO and the GA in calculating optimal hydropower reservoir policies. Rani et al. (2020) pro-
posed an integrated dynamic programing-particle swarm optimization (DP-PSO) algorithm, 
to detect the optimal policies of release from the Mola Reservoir in India. The results were 
compared from the point of view of objective function values and the central processing unit 
(CPU) time. Liu et al. (2020) used the NSGA-II and lion pride (LP) algorithm to optimize 
reservoir operation. Results indicated that the LP was preferable relative to the NSGA II. Don-
yaii et  al. (2021) implemented the whale algorithm (WA), the gray wolf algorithm (GWA) 
and the crow search algorithm (CSA) to the Golestan single-reservoir optimal operation (Iran) 
to supply the water needs of downstream agriculture. The results demonstrated that GWA 
presented the better performance than the other two-algorithm. Bozorg-Haddad et al. (2021) 
applied the flower pollination (FP) algorithm to single-reservoir and multi-reservoir optimal 
operation. The results showed the FP results were close to those of NLP, and it was better than 
PSO from the point of view of reducing the optimization run-time and accuracy. Niu et al. 
(2021) proposed the hybrid gray wolf optimizer (HGWO) for enhancement of the efficiency 
and resolve the gray wolf optimizer’s (GWO) deficiencies. The HGWO formulated water res-
ervoir operation policies with objective function of maximizing total revenue. Results indi-
cated that HGWO calculated accurate multi-objective reservoir operation policies with rapid 
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convergence. Nematollahi and Zarif Sanayei (2023) developed a groundwater operation model 
based on Harris hawk optimization (HHO) algorithm for conjunctive use of surface water and 
groundwater resources. The HHO provided the appropriate allocation of surface water and 
groundwater resources. Choi et al. (2023) developed an optimal hydropower reservoir rule by 
applying the improved gray wolf optimizer (IGWO). The results demonstrated that IGWO was 
a robust tool for reservoir operation.

There have been many studies related to the optimization of river–reservoir–irrigation net-
work system based on meta-heuristic algorithms. The problem of integrated water resource 
management is inherently complex and nonlinear, and the complexity increases under climate 
change conditions. Therefore, this research develops a method or algorithm that has high 
accuracy and is cost-effective in terms of its computational burden. Specifically, the marine 
predators algorithm (MPA) is developed for river–reservoir–irrigation network system optimi-
zation. The developed algorithm’s performance is compared with GA, which is a widely used 
benchmark algorithm. Previous research shows that evolutionary algorithms perform better in 
solving complex problems dealing with the operation of water systems than DP, LP, NLP and 
dynamic programing (DP). The MPA is a meta-heuristic algorithm that has not been applied 
in hydro-systems. This work evaluates the MPA with mathematical functions and reservoir 
operation optimization.

2 � Methodology

This section describes the MPA. This is followed by a description of the mathematical func-
tions used in this study. The reservoir operation model is then defined. Lastly, the performance 
indexes of the reservoir are presented. This paper’s methodology is displayed in Fig. 1.

2.1 � The MPA

MPA as an evolutionary algorithm is inspired by the random walk strategy of marine preda-
tors applied when trapping their prey in the ocean (Faramarzi et al., 2020). The MPA, in the 
same fashion as other population-based evolutionary algorithms, begins by generating a popu-
lation of possible solutions. The generating equation of MPA is given by Eq. (1):

where X = vector of generated possible solutions; Xmax and Xmin = the upper and the lower 
boundary in the search space, respectively, and rand = uniform random vector in the range 
0–1.

The stronger hunters have a greater chance to secure food. Therefore, they are chosen as the 
best solution to build an elite matrix. The matrix elements quantify the process of searching 
for prey according to prey position:

where XI
i,j, j = 1, 2,… , d = ith vector of solutions (predators), N = number of solutions and 

d = number of dimensions of the search space.

(1)X = Xmin + +rand ⋅
(
Xmax − Xmin

)

(2)Elite =

⎡⎢⎢⎣

XI
1,1

⋯ XI
1,d

⋮ ⋮ ⋮

XI
1,N

⋯ XI
N,d

⎤⎥⎥⎦
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A second matrix called the elite prey is constructed on the basis of which hunters update 
their positions. The initialization creates the primary prey associated with the most suitable 
predator elite. Once a superior hunter is replaced by a better hunter at the end of each itera-
tion, the elite matrix is updated to produce the elite prey matrix shown in Eq. (3):

where Xi,j = the i, jth element of the elite prey matrix.
The exploration and exploitation processes in the search for the best predator set is 

divided into three main optimization phases according to the speeds of predator and prey, 
which are described below. These phases are defined according to the rules governing the 
movements of the predator and prey in nature. A specific iteration period is specified for 
each iteration step. The predator and the prey are regarded as search variables. The prey 
searches for food and the predators search for prey.

2.1.1 � First phase: ratio of high velocity

When there is a ratio of high velocity, the prey moves faster than the predator, and this hap-
pens in the first third of the total number of generations (i.e., tmax/3). In this case, the prey 

(3)Prey =

⎡⎢⎢⎣

X1,1 ⋯ X1,d

⋮ ⋮ ⋮

X1,N ⋯ XN,d

⎤⎥⎥⎦

Fig. 1   Flowchart of the methodology
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features Brownie motion. This scenario occurs in the early iterations of optimization where 
exploration is important. The best strategy for a predator is not to move at all. If prey is 
more successful in its search for food than a predator, it can be considered a predator. This 
means that the degree of fitness of prey is calculated, and, if better, it replaces the previous 
predator. Therefore, the updated prey matrix is obtained with Eqs. (4) and (5):

where RB = a vector including random numbers that represents Brownian motion; Preyi = 
the ith row of the updated prey matrix; Si = the ith row of the first update of the prey matrix; 
Elitei = the ith row of the elite matrix; ⊗ = symbol for the element-by-element multiplica-
tion of vectors or matrices; RB ⊗ Preyi = simulation of the movement of prey; P = a con-
stant number (equal to 0.5); R = a vector including random numbers in the range [0, 1]; and 
N = number of solutions.

2.1.2 � Second phase: ratio of unit velocity

The predator and prey in this phase move at nearly the same velocity. To make a good tran-
sition from exploration to exploitation, first phase is designed. Half the population is for 
exploration and the rest for exploitation. The exploitation is for prey, and exploration is for 
predator. Therefore, predator–prey search for their food. The predator begins to search for 
his prey as a Brownian motion, while prey turns to Levy motion to search for an immediate 
neighbor and, if not found, the prey takes a long jump.

As hunters become closer to each other the jump length becomes shorter than in the 
previous stage. Environmental factors such as formation effects or fish aggregating devices 
(FADs) and the Levy strategy prevent the MPA from being trapped at local optima, thus 
achieving successful and rapid convergence to a near-optimal global solution. Equa-
tions (6)–(10) describe this stage of optimization:

For the first half of population:

For the second half of population:

where RL = a vector containing random numbers, which represents the Levy motion 
RL ⊗ Preyi = simulation of the prey movement in a Levy pattern while increasing the step 
size toward the prey position; CF = an adaptive parameter (coefficient of convergence). 

(4)Si = RB ⊗
(
Elitei − RB ⊗ Preyi

)
, i = 1, 2,… ,N

(5)Preyi = Preyi +
(
P ⋅ R⊗ Si

)
, 1, 2,… ,N

(6)
1

3
tmax < t <

2

3
tmax

(7)Si = RL ⊗
(
Elitei − RL ⊗ Preyi

)
, i = 1, 2, … , N∕2

(8)Preyi = Preyi +
(
P ⋅ R⊗ Si

)
, i = 1, 2,… ,N∕2

(9)Si = RB ⊗
(
RB ⊗ Elitei − Preyi

)
, i = 1, 2,… ,N∕2

(10)Preyi = Elitei +
(
P ⋅ CF ⊗ Si

)
, i = 1, 2,… ,N∕2
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RL ⊗ Elitei = simulation of the motion of predators in the Brownian mode when prey 
changes position based on the Brownian motion of predators.

The convergence coefficient (CF) is calculated with Eq. (11):

where Iter = the current iteration and Max − Iter = the maximum iteration.
There are many environmental issues, including the FADs, that affect the behavior of 

marine predators. The effect of the FADs is calculated with Eqs. (12) and (13):

when FADs is equal to 0.2 there is a possibility of FADs affecting the simulation process; 
U = a binary vector consisting of zeros and ones; Xmin and Xmax = respectively the smallest 
and largest values of X ; r1 and r2 = the random indexes of the predator matrix, respectively.

2.1.3 � Third phase: ratio of low‑velocity

The predator in this stage is traveling faster than prey. This scenario is related to the last 
stage of optimization when there is high capture of prey. The predator changes his behavior 
from Brownian motion to Levy motion for a more efficient search of a particular area. The 
CF helps the predator to limit the search areas in a particular area for exploitation. Equa-
tions (14) through (16) govern this stage of optimization:

where RL ⊗ Elitei = simulation of the predator’s movement with the Levy strategy by add-
ing step size to the Elite position and to aid in the upgrade of prey tracking process.

The MPA is summarized in Fig. 2, where the three stages of optimization are displayed 
graphically.

2.1.4 � Benchmark functions

Several mathematical functions are used to evaluate the convergence properties of MPA. 
The mathematical functions are the Sphere, Ackley, Rosenbrock, Rastrigin and Zakharov 
functions. There is a number of benchmark mathematical functions available for the initial 
evaluation of evolutionary and meta-heuristic algorithms, in both constrained and uncon-
strained optimization. The absolute optimal value, equations and constraints are known in 
the case of constrained functions. Therefore, these functions are suitable to test the per-
formance of algorithms and they solution accuracy. This work implements five common 
benchmark functions to evaluate algorithmic performance. These benchmark functions 

(11)CF =
(
1 −

Iter

Max − Iter

)2
Iter

Max−Iter

(12)Preyi = Preyi + CF ⋅
[
Xmin + r3 ⋅

(
Xmin − Xmax

)]
⊗ U ifr < FADs

(13)Preyi = Preyi + [FADs ⋅ (1 − r) + r]
(
Preyr1 − Preyr2

)
if r ≥ FADs

(14)t >
2

3
tmax

(15)Si = RL ⊗
(
RL ⊗ Elitei − Preyi

)
, i = 1, 2,… , n

(16)Preyi = Elitei + P ⋅ CF⊗ Si, i = 1, 2,… , n
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have been used in previous studies successfully (Garousi-Nejad et  al., 2016; Bozorg-
Haddad et al. 2016; Bahrami et al. 2018; Rahmati et al. 2021). The equations and graphs of 
these functions are given in Table 1.

2.1.5 � Reservoir operation model

Objective function of the study is to minimize the relative deficit of water supply with opti-
mal operation of reservoir over a period of time according to Eq. (17). Decision variable of 
the optimized model is the amount of water volume released from reservoir:

where Rt = water release volume from reservoir during period t; Dt = water demand volume 
downstream of reservoir at during period t; Dmax = the maximum water demand down-
stream from reservoir; and Def = the volume of water deficit.

The equation of the continuity governing the reservoir and the imposed constraints are 
presented in Eqs. (18) through (23):

Continuity or conservation of water volume:

Evaporation losses:

(17)Minimize Def =

T∑
t=1

(
Dt − Rt

Dmax

)2

(18)St+1 = St + Qt − SPt − Et − Rt t = 1, 2,… , T

Fig. 2   Flowchart of the MPA
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Storage area function:

Constraint on reservoir storage:

Constraint on reservoir spill:

where St+1 = reservoir storage at time t + 1; SPt = reservoir spill volume at during period t; 
T = time interval of operation period; Et = evaporation volume from the reservoir lake sur-
face at during period t; et = evaporation rate (mm) from the reservoir lake surface at during 
period t; Qt = reservoir inflow at during period t; Smin = minimum reservoir water storage; 
Smax = maximum reservoir water storage; and At = reservoir lake area at time t.

Penalty functions that are introduced in Eqs. (24) and (25) are added to the objec-
tive function to avoid violating the set constraints on reservoir storage and the release 
volume from the reservoir lake surface:

where Dmint = the minimum downstream water demand volume at time t and Dmax,t = the 
maximum demand at time t.

Objective function of problem herein presented is the minimization of the rela-
tive deficit amount during the time period. Decision variable is water release volume 
from reservoir. State variable is reservoir storage and it depends on decision variable. 
The constraints of reservoir operation are imposed on the volume of water storage and 
released water from reservoir. Decision space is defined as the constraints set. All the 
reservoir operation problem components are incorporated in the solution algorithm to 
yield an optimal solution.

(19)Et = (et ⋅ At∕1000) t = 1, 2,⋯ , T

(20)At = aSt + b a = 0.03, b = 0.8

(21)Dmin ≤ Rt ≤ Dmax

(22)Smin ≤ St ≤ Smax t = 1, 2, … , T

(23)SPt =

{
St + Qt − Et − Rt − Smax ifSt + Qt − Et − Rt > Smax

0 otherwise

(24)Penalty 1 =

⎧
⎪⎪⎨⎪⎪⎩

T∑
t=1

�
St−Smin

Smin

�2

if St < Smin

T∑
t=1

�
St−Smax

Smax

�2

if St > Smax

0 if Smin ≤ St ≤ Smax

(25)Penalty 2 =

⎧
⎪⎪⎨⎪⎪⎩

T∑
t=1

�
Rt−Dmin,t

Dmin,t

�2

if Rt < Dmin

T∑
t=1

�
Rt−Dmax,t

Dmax,

�2

if Rt > Dmax

0 if Dmin, ≤ Rt ≤ Dmax
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2.1.6 � Comparison of the MPA and the GA performances

The MPA’s and GA’s performances in solving the reservoir operation problem are com-
pared. The reader is referred to Goldberg and Holland (1988), Holland (1975), Holland 
(1992) and Bozorg-Haddad et al. (2017) for a review of the GA.

2.1.7 � Indexes of reservoir efficiency

Indexes of reliability–resiliency–vulnerability are employed to evaluate reservoirs opera-
tion in the study. Reliability [Eq.  (26)] measures the fraction of time that water demand 
is met during operation. Resiliency [Eq.  (27)] calculates the probability of meeting the 
demand of downstream water (satisfaction mode) after a deficit in supply (failure mode). 
Vulnerability [Eq. (28)] defines the ratio of deficit of water supply to the total water demand 
(Ashofteh et al., 2013a). The better the reservoir performance in meeting the downstream 
water demand, the higher the reliability. The higher the resiliency, the more likely it is that 
water demand will be met after a shortage. The vulnerability measures the degree to which 
the reservoir might not meet the water demand.

Reliability:

Resiliency:

Vulnerability:

where � = reliability index; NT
t=1

(Dt ≤ Rt) = number of water supply periods in which 
water demand is less than water release; 

∑T

t=1

�
Dt − Rt�Dt > Rt

�
 = number of periods in 

which water demand exceeds water supply; � = resiliency index; S = satisfactory operation; 
F = failure in operation; PROB = probability function; SYt = state of the system of water 
supply in period t; SYt+1 = state of the system of water supply in period t + 1; and � = vul-
nerability index.

2.1.8 � Goodness‑of‑fit criteria

The criteria of the mean absolute error (MAE), root mean square error (RMSE), Nash–Sut-
cliffe efficiency (NSE) and correlation coefficient (r) are applied to evaluate the goodness 
of fit between the reservoir releases and the downstream water demand. The equations 
related to these criteria are listed in Table 2.

2.1.9 � Case study

The studied basin is the Aydogmush river basin with an area of about 1802 km2, which 
is located in East Azerbaijan province. This river, 80  km long, originates in Ghur-
gard in Hashtroud highlands and flows to Qezal Ozen River (Ashofteh et  al., 2013b) 

(26)� = [NT
t=1

(Dt ≤ Rt)]∕T

(27)� = PROB
[
SYt+1 ∈ S||SYt ∈ F

]

(28)𝜐 =
[∑T

t=1
(Dt − Rt

||Dt > Rt )
]
∕
[∑T

t=1
Dt

]
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(Fig. 3a). The dam under study in this research is the Aydogmush Dam on the Aydog-
mush River, which has two water intake towers and an outlet valve, in the water 
intake tower there are four inlet valves at elevations of 1305.88, 1317.74, 1326.49 and 
1332.5 m (above sea level) (Azadi et al., 2021a). Also, the outlet valve is located at a 
level of 1319.55 m (above sea level). Figure 3b) shows a view of the reservoir water 
intake tower. Some characteristics of the studied dam are shown in Fig. 4.

The Aydogmush dam has several structures with the following characteristics: (1) 
Dam body: the Aydogmush dam body is of gravel type with an impermeable clay core. 
The height of the body from the foundation is 87 m. The depth of to bedrock under 
the river bed is about 20 m. The dam crest length is 297 m, its width is 12 m and its 
elevation is 1350 m above the sea level; (2) Spillway: the free spillway has a capacity 
of 2450 m3/s with a threshold length of 65 m; (3) Water diversion system: It consists of 
2 tunnels (circular cross section) with a diameter of 4.5 m and a total length of 648 m. 
The capacity of the water diversion is 310 m3/s; and (4) water intake and outlet valve 
system. Water intake for agricultural purposes is through a water intake tower with 
a discharge capacity of 14.7  m3/s, which consists of four valves located at different 
elevations, and the outlet valve is also installed with a discharge capacity of 55 m3/s. 
Figure 5 shows the storage volume–water level diagram for Aydogmush reservoir.

Figure 6a–d displays the reservoir inflow, the water demand, changes in rainfall and 
temperature for the 14-year base period (1987–2000).

The periods of reservoir operation herein considered are the baseline time series 
(1987–2000) and the 14-year period of climate change (2026–2039), which simu-
lates the inflow and demand of agricultural water under climate change conditions. 
The climate change projections for the study area have been previously calculated by 
Ashofteh et  al. (2013b) and Azadi et  al. (2021b), and are applied in this work. The 
HadCM3 model and the A2 emission scenario were employed to generate the climate 
scenarios. Input data to the optimization model include reservoir specifications [such 
as maximum reservoir storage volume (145.7 × 106 m3) and minimum reservoir storage 
volume (8.7 × 106 m3)], monthly reservoir inflow time series, evaporation rates of res-
ervoir lake surface and water demand time series downstream of the reservoir.

Table 2   Equations of the mathematical goodness-of-fit criteria

Criteria Equations

RMSE
RMSE =

�∑T

t=1 (Dt
−R

t)
2

T

MAE
MAE =

∑T

t=1 �Dt
−R

t�
T

NSE
NSE = 1 −

∑T

t=1 (Dt
−R

t)
2

∑T

t=1

�
D

t
−D

�2

r
r =

∑T

t=1

�
D

t
−D

�
⋅

�
R
t
−R

�
�∑T

t=1

�
D

t
−D

�2

⋅
∑T

t=1

�
R
t
−R

�2
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Fig. 3   a Geographical location of the Aydogmush dam study area, b a view of the intake tower of the 
Aydogmush reservoir
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Fig. 4   Specifications of the study 
dam

Fig. 5   Reservoir water storage 
volume–water level diagram
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2.1.10 � Results and discussion

The results of the MPA evaluation using the Sphere, Ackley, Rosenbrock, Rastrigin and 
Zakharov mathematical functions are indicated in Fig.  7. Figure  7 shows that the MPA 
achieved fast convergence to the minima of the benchmark functions. The function of 
Rosenbrock converged to zero, and the other functions converged to zero with a close 
approximation.

After evaluating the successful performance of MPA with five mathematical functions, 
the MPA was applied to solve a reservoir operation problem. Results from the MPA the 
GA in five runs under the baseline and climate change periods are presented in Table 3 and 
Fig.  8. Table  3 lists results indicating that the MPA provided superior performance that 
the GA, and its results are closer to the absolute optimal solution than the GAs. The dif-
ference between the values of the best MPA and GA solutions is significant. Moreover, the 

Fig. 6   Graphs of the volume 
of a reservoir inflow, b water 
demand, c rainfall, dtemperature 
for the baseline 14-year period 
(1987–2000)
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run-time of the MPA is one twenty-sixth of the GAs. The graphs in Fig. 8 graphs establish 
that the MPA convergence curves for the baseline and future periods for the five runs were 
close to each other and reached the solution quickly, while the convergence curves of the 
GA did not feature good convergence. Evidently, the MPA performed better than the GA.

The volumes water release, reservoir storage, spill, water supply deficit and reservoir 
inflow were calculated with the MPA and are displayed in Fig. 9a–e, respectively. The GA-
calculated results for optimal reservoir operation rules are shown in terms of the volumes 
of reservoir storage, water release, spill, water supply deficit and reservoir in Fig. 10a–e, 
respectively.

Figure  9a shows that due to increase in water demand in future period compared to 
baseline in the previous study (Ashofteh et al., 2013a) the water releases in future period 
would be higher than in the baseline period. Meanwhile, reservoir storage in future would 
be smaller than in baseline (Fig. 9b), which is due to increase in future water release. Also, 
the spill volume in future period would decrease compared to baseline period (Fig.  9c) 
because the reservoir inflow declines in future period (Ashofteh et  al., 2013a) (Fig. 9e), 

Fig. 7   MPA convergence diagrams for the a Sphere, b Ackley, c Rosenbrock, d Rastrigin, e Zakharov func-
tions



Development of the marine predators algorithm for optimizing…

1 3

and this decrease occurs in the wet months (April and May). Therefore, according to 
Fig. 9d the reservoir performance in regulating the discharge in the future would be more 
successful than in the baseline. A comparison of Figs. 9 and 10 reveals that the MPA yields 

Table 3   Comparison of the 
value of the objective function 
obtained with the MPA and the 
GA in the baseline and climate 
change periods corresponding to 
five runs

Number of runs Baseline Climate change

MPA GA MPA GA

1 1.621 10.341 0.465 7.318
2 1.607 9.253 0.457 7.765
3 1.638 9.205 0.456 7.929
4 1.635 9.750 0.444 5.310
5 1.631 10.028 0.448 8.020
The best 1.607 10.341 0.444 7.929
The worst 1.638 9.205 0.448 5.310
average 1.626 9.715 0.454 7.268
Standard deviation 12.60 268.63 0.008 370.42
Coefficient of variation 0.002 0.850 0.018 0.789
Average run-time 19.44 523 19.44 525
Absolute optimal solution 0.444

Fig. 8   MPA convergence diagram in five runs corresponding to the a baseline and b climate change peri-
ods; GA convergence diagram corresponding to the c baseline and d climate change periods
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better reservoir operation rules than the GA, and the MPA results meet downstream water 
demand more successfully than the GAs.

The efficiency indexes for reservoir operation corresponding to the MPA and the 
GA under the baseline and climate change periods are listed in Table  4. According 

Fig. 9   Volumes of a water release, b storage, c spill, d deficit and e reservoir inflow, under the baseline and 
climate change periods based on the MPA-calculated reservoir operation rule
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to Table  4 the vulnerability, reliability and resiliency under the baseline and climate 
change periods calculated with the MPA are significantly different and of superior qual-
ity that the GAs, indicating the better performance of the MPA in meeting downstream 

Fig. 10   Volumes of a water release, b storage, c spill, d deficit and e reservoir inflow, under the baseline 
and climate change periods based on the GA-calculated reservoir operation rule
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water demand. The higher vulnerability calculated with the GA indicates that the sys-
tem is less likely to meet downstream water needs.

The goodness-of-fit criteria used to evaluate the monthly water allocation under the 
baseline and climate change periods corresponding to the MPA and GA are listed in 
Table 5. Table 5 clearly shows the MPA results have smaller errors than the GAs. More-
over, the MPA and the GA-calculated reservoir operation rules meet the downstream 
agricultural water demand well under the baseline and future periods.

3 � Concluding remarks

This work developed a new algorithm to optimize the reservoir operation rules with 
high accuracy and low run-time. This work’s results indicate that the MPA model deter-
mined the optimal policies of reservoir operation accurately with fast convergence to the 
optimum solution. The obtained results indicated that the MPA produced a better perfor-
mance in optimization of the Aydogmush reservoir operation. Comparison of reservoir 
release obtained with the MPA and GA in five runs under baseline and climate change 
periods indicates better performance of MPA in meeting downstream water demand as 
well as minimizing the objective function. Comparison of MPA and GA performances 
with respect to optimal reservoir operation demonstrated that the MPA-calculated relia-
bility under the baseline and climate change periods is 65 and 58% higher, respectively, 
that the GAs, the MPA-calculated vulnerability is 75 and 83% lower, respectively, than 
the GAs, and the MPA-calculated resiliency is by 35% lower under baseline and climate 
change periods than the GAs.

Table 4   Comparison of efficiency indexes for optimal reservoir operation calculated with the MPA and the 
GA under the baseline and climate change periods

Model Baseline period Climate change period

Reliability (%) Vulner-
ability (%)

Resiliency (%) Reliability (%) Vulner-
ability (%)

Resiliency (%)

MPA 89 1.5 15 93 1 15
GA 54 6 23 59 6 23

Table 5   Comparison of the goodness-of-fit criteria between reservoir releases and water demand for opti-
mal reservoir operation based on the MPA and GA in the baseline and climate change periods

Model Baseline period Climate change period

r (%) RMSE 
(× 106 m3)

MAE 
(× 106 m3)

NSE 
(dimension-
less)

r (%) RMSE 
(× 106 m3)

MAE 
(× 106 m3)

NSE 
(dimen-
sionless)

MPA 99.96 1.8 1.3 0.98 99.99 1.3 0.9 0.99
GA 98.98 7.9 5.3 0.7 99.48 8.1 5.6 0.7



Development of the marine predators algorithm for optimizing…

1 3

Data availability  Some or all data, models or code that support the findings of this study are available from 
the corresponding author upon reasonable request. (Case study data, MPA code and applied simulation 
models are available.)
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