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In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and
foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e.,
conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully
defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two
zero-volume membranes each of film tension cf and a membrane model with a single zero-volume mem-
brane of membrane tension 2cm. In both models, detailed thermodynamic analysis gives rise to thin-film
Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of
disjoining-pressure isotherms. A modified Young–Laplace equation arises in the film model to calculate
film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation
exists in the membrane model.

Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient
theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thick-
ness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molec-
ular simulations reinforce this finding.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Emulsions and foams are important dispersions with large
application in industrial technologies. When two suspended bub-
bles or drops come into close contact, the continuous liquid sepa-
rating the dispersed phases thins, eventually flattening the bubbles
or drops in the contact region. If the intervening gap separation is
small enough, thin films emerge. Whenever the bounding inter-
faces are both fluid, the film is referred to as a free thin liquid film.
All free thin liquid films are thermodynamically unstable
because coalescence reduces the overall system surface area and,
accordingly, diminishes the system free energy. However, net
repulsive interaction forces arising in free thin liquid films can
impart considerable metastability. Indeed, some foams and emul-
sions are persistent enough to warrant considerable efforts to
destroy them.

The governing interaction forces in free thin films have held the
attention of colloid scientists for many decades. Although both
attractive (conjoining) and repulsive (disjoining), Deryagin and
coworkers defined ‘‘disjoining pressure’’ to quantify thin-film
interaction forces [1–5]. Much of the early work is in Russian,
but a helpful summary of the initial work became available in
1987 [6]. Scheludko and coworkers in the 1960s were the first to
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measure film thickness by thin-film micro-interferometry thereby
launching continuing studies on disjoining-pressure isotherms in
what is now called a ‘‘Scheludko cell’’ [7–9]. In the 1980s, the
school of Wasan pioneered in bringing concepts of disjoining/con-
joining forces in free thin films to the forefront of colloid research
specifically in the areas of structural forces and film-drainage
kinetics [10–37].

In stable (i.e., metastable) thin films, disjoining pressure is a
reversible function of film thickness so that thermodynamic prin-
ciples apply. After a brief summary in Section 2 of thin-film defini-
tions and concepts, we focus on the thermodynamics of free thin
liquid films. A large effort is available on this topic [6,38–58]. Fas-
cinatingly, much of it is contradictory due to the lack of consistent
definition of film properties in terms of density distributions. In
Section 3, we present two self-consistent Gibbs thermodynamic
frameworks to describe thin-film equilibria: a film model and a
membrane model. Careful definition of the reversible work to
expand/contract flat thin films leads to two different definitions
of surface tension in thin films. In the film model, two interfaces
are present bounding a bulk liquid film and surrounded by vapor.
In the membrane model, no liquid film is present, only a zero-
thickness membrane surrounded by vapor. A modified Young–
Laplace equation emerges within the film model to predict film-
thickness profiles adjacent to a bulk meniscus. The modified
Young–Laplace equation reduces to the classic augmented Young
Laplace equation [4–6] under well-defined approximations. No
film-thickness profiles exist in the membrane model. Film contact
angle is derived for both film and membrane models consonant
with the classic Deryagin–Frumkin equation [4,5,59] but with dif-
ferent meanings of film thickness. Section 4 illustrates the thin-
film thermodynamic formulations using square-gradient theory
(SGT) for a single-component flat film. Brief review is then made
of available molecular simulations of free thin liquid films, fol-
lowed by Conclusions.
2. Background

2.1. Definition

Fig. 1 presents molecular-dynamics simulations of one half of
the mass-density profile, qw(z), across a thin water film sur-
rounded by water vapor at 479 K [60]. Five films of differing thick-
ness are shown. Thinner films merge into the vapor phase at
smaller z values. The thickest film, Film 1, attains the bulk density
of water at the film center and exhibits negligible thin-film forces.
Remaining thinner films do not reach a centerline bulk density. The
thinner is the film, the lower is the center mass density relative to
that in the bulk. The definition of a thin film is that nowhere in the
Fig. 1. Mass-density profiles of water in free liquid thin films from molecular
simulation. Reprinted with permission from Bhatt et al. [60].
film is a bulk thermodynamic density reached. This definition
holds not only for mass density, but, for example, also for energy
density (i.e., ~uðzÞ ¼ U=V) or entropy density (i.e., ~sðzÞ ¼ S=V). Film
1 in Fig. 1 is a bulk liquid film, whereas Films 2–5 are thin films.
Surface tension in Film 1 corresponds to the bulk value, whereas
Films 2–5 do not exhibit a bulk surface tension. According to
Fig. 1, completely inhomogeneous (i.e., thin) films of water appear
at about 2-nm thickness or at about 8 layers of closed-packed
water molecules. Because no bulk liquid property exists within a
thin film, definition of interface excess properties requires thought.
We must identify excess interface thermodynamic properties rela-
tive to properties other than those actually in the inhomogeneous
film.

Free thin films are classified by the fluids surrounding the liquid
from which the film is formed. Foams correspond to a liquid film
surrounded by gas. Emulsions correspond to liquid films sur-
rounded by a second immiscible liquid, such as oil-in-water or
water-in-oil dispersions. A liquid film surrounded by gas on one
side and an immiscible liquid on the other is coined a pseudo-
emulsion film. Gas films surrounded by liquids do not bare a mon-
iker, apparently because their short life times do not permit exten-
sive study.

Thin fluid films that abut against at least one solid phase are
also defined by exhibiting no bulk property within the film. If the
second interface of the film is adjacent to a fluid, the films are des-
ignated as adsorbed or wetting depending on film thickness. If,
however, the second interface of the film is also a solid, the film
is designated as confined. The distinguishing feature of solids is
the lack of well-defined equilibrium stresses. Accordingly, the
solid/fluid interface is usually treated as solid atoms exerting an
external force on the fluid molecules. No external force field is
present in free thin films. Although we focus on free liquid thin
films, many of the concepts apply to adsorbed/wetting and con-
fined thin films.
2.2. Disjoining pressure

Fig. 2 illustrates the definition of disjoining pressure originally
put forth by Deryagin et al. [1–6]. A flat foam film (highlighted
by dots) terminates at a capillary wall through a liquid meniscus
known as a Plateau border [61–63]. In Fig. 2, the film is stabilized
by adsorbed anionic surfactant. A small port in the capillary wall
permits injection/withdrawal of liquid at pressure PL into or out
of the meniscus thereby thickening/thinning the film. The gas
phase is at pressure PG. In the absence of external forces, conserva-
tion of momentum demands that divergence of the stress tensor in
the film is zero. Consequently, the normal stress in the flat film, PN,
is constant across film thickness [51,62–67]. According to the law
of Young–Laplace, the product of bulk-meniscus curvature and sur-
face tension is balanced by a pressure difference between the gas
Fig. 2. Schematic of a Sheludko cell. A surfactant-stabilized foam film exhibiting
disjoining pressure P is formed inside a capillary. Disjoining pressure balances the
imposed capillary pressure on the film. Liquid is injected/withdrawn through a side
port to probe various thickness films. Drawing is not to scale.



Fig. 3. Schematic of a Mysels cell to measure disjoining-pressure isotherms [68,69].
A center-bored porous plate is encased in a sealed chamber. Gas pressure is
increased relative to atmospheric setting the capillary pressure. Film thickness is
obtained from micro-interferometry [7–9]. Drawing is not to scale.

Fig. 4. Schematic of apparatus to measure disjoining-pressure isotherms with a
porous-plate cell. A halogen lamp illuminates the film. Reflected light is transmitted
through a fiber-optic probe to a photometer allowing thickness measurement. Gas
pressure is carefully set by a computer-controlled pump and measured by a
pressure transducer. A video camera allows film visualization. Reprinted with
permission from Bergeron and Radke [69].
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and liquid phases in the Plateau border and is designated as the
capillary pressure [62–67]

PC � PG � PL ¼ 2cCm bulk meniscus ð1Þ

where c is surface tension and Cm is the meniscus mean curvature.
Because the meniscus is convex to the gas phase, liquid pressure is
lower than that in the gas phase. In the flat film, however, curvature
is zero. Here, the Young–Laplace law enforces equality of normal
stress across the two interfaces of the film or PG = PN. Thus, the
liquid pressure in the meniscus is lower than the normal pressure
in the flat film to which it is connected. Mechanical equilibrium is
not satisfied; the film drains.

To permit (metastable) equilibrium, Deryagin postulated the
existence of disjoining forces per unit area of film, P, the disjoining
pressure [1–6]. Thus, as illustrated in Fig. 2, the normal pressure in
the liquid film is larger than that in the meniscus liquid by the
magnitude of the disjoining pressure: PG = PN = PL + P. Because
the gas pressure is everywhere constant, mechanical equilibrium
between the flat film and the meniscus is, accordingly, established
by equality of capillary and disjoining pressures

PC ¼ PG � PL ¼ P flat film ð2Þ

Eq. (2) defines disjoining pressure. The capillary-suction pressure in
the bulk meniscus is balanced by disjoining pressure in the flat film.
At equilibrium, chemical potentials of all components in the system
are uniform and equal in the film, the gas phase, and the liquid
meniscus [51]. However, bulk liquid in the meniscus is at a lower
pressure than that in the gas phase. For a pure liquid, this means
that the meniscus liquid lies along a pressure/volume isotherm at
a pressure below the binodal value while the high-pressure gas
phase lies above the binodal value. Neither phase exhibits the bin-
odal saturation vapor pressure.

As the flat film transitions continuously into the bulk-liquid
meniscus in Fig. 2, curvatures of the two film interfaces increase
as does film thickness. PC for (meta)stable thin films is a positive
constant. To maintain a constant capillary pressure as curvature
rises, disjoining pressure falls laterally along the film interfaces
toward the bulk meniscus. This idea undergirds the augmented
Young–Laplace equation and is discussed further in Section 3.7.
The conclusion is that in regions of film thickness where free thin
films are stable, disjoining pressure is a positive, decreasing func-
tion of film thickness, h (i.e., P > 0 and dP/dh < 0).

Eq. (2) provides the foundation to measure disjoining-pressure
isotherms. Bulk liquid in the Scheludko cell [7–9] of Fig. 2 is
injected/withdrawn at measured gas and liquid pressures setting
the capillary pressure and, hence, the equilibrium disjoining pres-
sure: PC = P. Once film thickness stabilizes, it is usually measured
by micro-interferometry [7–9]. Since film thickness is optically
determined, it may not be identical to that defined thermodynam-
ically. Disjoining-pressure isotherms, P(h), are probed only along
positive stable branches. Typically in a Scheludko cell, the gas
phase is exposed to atmosphere while the liquid solution is at
sub-atmospheric pressure.

The radius of the side port in a Scheludko cell limits the maxi-
mum capillary pressure (i.e., maximum disjoining pressure) that
can be applied. To overcome this deficiency, Mysels and Jones
[68] replaced the capillary in Fig. 2 by an annular liquid-wetting
porous plate. The thin film is formed in the tapered bore of the por-
ous plate. Fig. 3 illustrates the cell. It proves convenient to encase
the annular porous disk in a sealed chamber where gas pressure is
adjusted to set the capillary pressure. Film thickness is measured
by the micro-interferometry technique of Scheludko [7–9]. Fig. 4
shows the necessary ancillary equipment of a measuring cell.
Details may be found elsewhere [9,69–71].

Fig. 5 reports example disjoining-pressure isotherms here for an
aqueous solution of 10�3-M sodium dodecyl sulfate (SDS) below
the critical micelle concentration [71]. Typical values for disjoining
pressure are of order kPa. With no added salt and with 10�2-M
added NaCl, films are weak and rupture near 1 kPa close to
20 nm in thickness. Rupture is statistical with the symbol R locat-
ing the lowest-observed rupture pressure. Films are reversible
below the rupture pressure. As salt concentration increases to
0.18 M, films are stronger and thinner with a steeper isotherm.
Again reversible traverses along the isotherm can be made. Above
about 0.25-M NaCl, instead of rupture, a second, very steep iso-
therm branch appears near 4.5 nm in thickness. This inner branch
does not rupture up to the maximum allowed capillary pressure of
the particular porous plate. Both branches of the 0.25-M NaCl iso-
therm are again reversible. Nonetheless, there is a difference in
behavior between thinning and thickening the films. Upon thin-
ning, the outer film transitions directly to the inner branch. Upon
thickening of the inner branch, however, the outer branch does
not appear. Rather, the film thickens to a biconcave meniscus.



Fig. 5. Ambient-temperature disjoining-pressure isotherms of aqueous sodium
dodecyl sulfate (SDS) for increasing NaCl concentrations. The symbol R labels the
lowest observed rupture pressure along the particular isotherm branch. Symbols
NBF and CBF denote Newton black films and common black films, respectively.
Reprinted from Aronson et al. [71] with permission.

Fig. 6. A rectangular box of width w out of the paper and containing a free thin
liquid film (shown dotted). The upper gas reservoir is connected to the gas below
the film (not shown). PG > PL due to terminating menisci (not shown). The right
piston is infinitesimally translated to the right while the gas-reservoir and liquid-
reservoir pistons are infinitesimally depressed to maintain constant film thickness.
Drawing is not to scale.
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Details of the thinning transitions between branches are well doc-
umented [12,16,19,21,22,72]. Thin inner-branch films are desig-
nated as Newton black films (NBF), whereas outer thicker films
are designated as common black films (CBF). These designations
conform to the early Russian observations of a and b branches of
wetting films [6]. CBFs in Fig. 5 are amenable to DLVO theory
[62,63,73]. The molecular origin of disjoining forces in Newton
black films, however, is not completely clear [74]. Water and ion
structuring are paramount in these thin films [75–77].

The main feature of measured disjoining-pressure isotherms
pertinent here is that they are reversible functions of film thick-
ness. Thermodynamic analysis is applicable. Measurement of iso-
therms for identical chemical systems is reproducible among
various laboratories using differing apparatus [69]. Somewhat dif-
fering-size films in Mysels porous-plate cells or Scheludko capil-
lary cells yield identical isotherms within experimental error.
This means that disjoining-pressure isotherms, such as those in
Fig. 5, are a material property characteristic of the chemical system
and not the apparatus. This finding demands that film thickness is
an intensive thermodynamic variable.
3. Thermodynamics

Thermodynamic analysis of free thin liquid films rests on two
disparate views. In the first analysis, the film is viewed as a homo-
geneous liquid slab of finite thickness h with two zero-volume
interfaces and surrounded by a homogeneous vapor phase. This
is, perhaps, the most common viewpoint. In the second treatment,
the film is conceived as a single zero-volume membrane encom-
passed by homogeneous vapor. We designate the first alternative
as the ‘‘film’’ model and the second as the ‘‘membrane’’ model.
Each has its own definition of surface tension. In either case, the
key to the thermodynamic analysis is the reversible mechanical
work [78] to enlarge/diminish film thickness and to expand/con-
tract film area.

3.1. Film-model tension

In the film model, work expressions to expand/contract film
area and to enlarge/diminish film thickness are different. The first
corresponds to work against film surface tension, whereas the sec-
ond corresponds to work against disjoining pressure.

Fig. 6 illustrates a simple thermodynamic system to establish
the reversible work for expanding (contracting) a liquid film. A
gravity-free thin liquid film of thickness h and container xy-
cross-sectional area A is enclosed in a rectangular parallel-piped,
translationally invariant in the y direction, and in direct communi-
cation with a bulk liquid reservoir. The entire surrounding contin-
uous gas phase is similarly connected to a separate gas reservoir.
The right wall of the rectangular container is an inert frictionless
piston allowing film expansion/contraction. Height of the rectan-
gular container, s, is much larger than film thickness; precise def-
inition of film thickness remains to be specified. The menisci
connecting the film with the liquid reservoir and with the con-
tainer wall are not shown for convenience.

As opposed to confined thin films, free liquid films are not sub-
ject to an external field. Accordingly, the divergence of the stress
tensor is zero [51,63–67]. The film is assumed transversely isotro-
pic meaning that all properties are independent of coordinates x
and y, but they do vary normal to the film (in the z direction). These
two statements demand that the normal pressure in the film, PN, is
constant independent of the z coordinate and, therefore, equals the
surrounding homogeneous gas pressure, PG. Conversely, the tan-
gential stress, PT(z), varies normal to the film until it attains the
gas pressure outside the film. Arrows in Fig. 6 indicate schemati-
cally the film tangential stress acting on the piston. Temperature,
as well as chemical potentials of all components, are equal
throughout the system and accompanying reservoirs [51]. How-
ever, the pressure in the bulk liquid reservoir, PL, is not identical
to that in the gas phase surrounding the film due to curvature of
the meniscus. As mentioned above, equality of component chemi-
cal potentials for phases with unequal pressure means that the
bulk-gas and meniscus-liquid phases do not lie on the binodal
phase envelope but rather along the pressure–volume isotherm
in the metastable regions between the binodal and spinodal enve-
lopes. From Eq. (2), the difference between the bulk gas and liquid
pressures (i.e., the capillary pressure) defines the disjoining pres-
sure. Composition of the reservoir liquid phase is not that of the
film which is inhomogeneous (in the z direction). By definition,
there is no bulk region in thin films (see Fig. 1).

Consider an infinitesimal withdrawal of the film-container right
piston in Fig. 6 while simultaneously inserting the gas-reservoir
and liquid-reservoir pistons such that film area increases at
constant film thickness. No fluid volumes change magnitude. The
net result of this process is film-area expansion with no change
in total gas and liquid volumes. Film center of mass simply shifts
to the right [78].



(a) real film (b) film model

Fig. 7. Schematic of the transverse stress profile normal to the film. Dotted region
locates the film. (a) Real system (see also Fig. 19). PT does not attain the bulk gas
value in the film. (b) Film-model system in which the tangential stress in the gas is
uniform at PG outside the film of thickness h and uniform in the liquid phase at PL

inside the film. Equivalence of the net force on the vertical plane gives rise to film
surface tensions at ±zc. Drawing is not to scale.

Fig. 8. A rectangular box of width w out of the paper and containing a free thin
liquid film (shown dotted). The upper gas reservoir is connected to the gas below
the film (not shown). PG > PL due to terminating menisci (not shown). Gas is injected
by infinitesimally depressing the gas-reservoir piston while liquid from the film is
ejected by infinitesimally withdrawing the liquid-reservoir piston to reduce film
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Differential reversible work for this process is given by

dWf
rev1 ¼ �2dA

Z s=2

0
PTðzÞdz� PGdVGR � PLdVLR constant T ð3Þ

where again A is the container xy-cross-sectional area or equiva-
lently, the single-interface area of the film. Subscripts GR and LR
denote the gas and liquid reservoirs, respectively. During piston
withdrawal (insertion) liquid-reservoir and gas-reservoir volumes
change according to

dVGR ¼ �ðs� hÞdA and dVLR ¼ �hdA ð4Þ

Substitution of this result into Eq. (3) gives

dWf
rev1 ¼ 2dA

Z h=2

0
½PL � PTðzÞ�dzþ

Z s=2

h=2
½PG � PTðzÞ�dz

( )
ð5Þ

Note that the liquid pressure appearing in Eq. (5) corresponds to
that in the bulk-liquid reservoir. In effect, Eq. (5) replaces the inho-
mogeneous stress distribution by that in a homogeneous liquid slab
exhibiting two zero-thickness interfaces in tension. Although others
use differing designations [40,41,48,51,52], we label the term in
braces as film tension, cf, or

cf �
Z h=2

0
½PL � PTðzÞ�dzþ

Z s=2

h=2
½PG � PTðzÞ�dz ð6Þ

With no loss in generality, the upper limit of the second integral
may be replaced by infinity. The product of twice the film tension
times film area A corresponds to the reversible work to increase film
area at constant film thickness or

dWf
rev1 ¼ 2cf dA constant h ð7Þ

Film tension reduces exactly to the bulk liquid/gas surface tension,
c, in the limit of large film thickness where liquid and gas-reservoir
pressures approach each other ði:e:; where PG ¼ PL ¼ PNÞ

limh!12cf ¼
Z þs=2

�s=2
½PN � PTðzÞ�dz ¼

Z þ1

�1
½PN � PTðzÞ�dz � 2c ð8Þ

The factors of two appear so that an infinitely thick film displays
two bulk surface tensions.

Surface tension in the film model is a function film thickness
and corresponds to two zero-thickness membranes located in each
half of the film. Fig. 7 illustrates force equivalence of the film model
to the real system. Fig. 7a shows a schematic of the expected tan-
gential-stress variation normal to the film [5,51] (see also Fig. 19).
Because the film is thin, PT(z) does not attain the bulk gas stress at
the film center. In Fig. 7b, two model membranes of tension are
shown at positions ± zf. The film-model system in Fig. 7b consists
of a bulk gas phase at pressure PG surrounding the film, a bulk
homogeneous liquid in the film at pressure PL, and two zero-thick-
ness membranes of tension at positions ± zf. We emphasize that
liquid stress in the film model is that of the bulk liquid in the
meniscus. This choice is demanded by the definition of area exten-
sion/contraction reversible work in Eqs. (5) and (6). Fig. 7b defines
the film model.

Exact location of the two zero-volume tension membranes is
not necessary to evaluate Eq. (6). Nevertheless, specifying where
the membranes are located is important for complete mechanical
equivalence. To establish that location (i.e., ±zf), we invoke equiva-
lence of angular momentum about the zf plane in the actual and
model systems of Fig. 7 [64]Z s=2

0
½z� zf �PTðzÞdz ¼

Z h=2

0
½z� zf �PLdzþ

Z s=2

h=2
½z� zf �PGdz ð9Þ

or after rearrangement and substitution of Eq. (6), we find that

zf cf ¼
Z h=2

0
z½PL � PTðzÞ�dzþ

Z s=2

h=2
z½PG � PTðzÞ�dz ð10Þ
Thus, location of the film-tension membranes is related to the first
moment of the excess-stress distribution across each half film. Once
the tangential stress profile is established, Eq. (10) sets the film
membrane-of-tension locations rigorously.

The second work exchange in the film model is depicted in
Fig. 8. The right piston of the rectangular container in Fig. 6 is
replaced by a fixed wall. Consider a reversible infinitesimal inser-
tion of the gas-reservoir piston while simultaneously withdrawing
the liquid-reservoir piston but maintaining constant total volumes
of gas (that surrounding the film plus that in the gas reservoir) and
liquid (that in the film plus that in the liquid reservoir). No fluid
volumes change magnitude. The net result of this process is thin-
ning of the film as film liquid recedes into the liquid reservoir. A
reverse process can also be envisioned of injecting bulk liquid into
the film from the liquid reservoir while withdrawing the gas-reser-
voir piston, but again maintaining constant total liquid and gas
thickness at constant film area. Drawing is not to scale.



Fig. 9. A rectangular box of width w out of the paper and containing a free thin
liquid film (shown dotted). The upper gas reservoir is connected to the gas below
the film (not shown). PL – PG due to terminating menisci (not shown). The right
piston is infinitesimally translated to the right while the gas-reservoir piston is
infinitesimally depressed while maintaining constant total gas and film volumes.
Both film thickness and film area change at constant film volume. Drawing is not to
scale.
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volumes. It is clear that measurement of disjoining-pressure iso-
therms in the Scheludko or Mysels cells proceeds by the work pro-
cess outlined in Fig. 8.

Differential isothermal work exchange done on the system in
Fig. 8 is given by

dWf
rev2 ¼ �PGdVGR � PLdVLR constant T ð11Þ

where VGR and VLR are the volumes of the gas and liquid reservoirs,
respectively. Because there is no compression or expansion of either
phase, volumes of total liquid and gas are constant. Thus, for a con-
stant-area change in film volume, we write that

dVGR ¼ �Adðs� hÞ ¼ Adh and dVLR ¼ �Adh ð12Þ

Combination of Eqs. (11) and (12) gives

dWf
rev2 ¼ �ðPG � PLÞAdh ð13Þ

or from Eq. (2), we have that

dWf
rev2 ¼ �PAdh ð14Þ

We find that the measurement process of thickening or thinning the
film in a Scheludko or Mysels’ cell gives film reversible work in
addition to the disjoining-pressure isotherm. Let the potential
energy of the film or the disjoining potential, PE, be defined by
P � �dPE/dh. Eq. (14) is then rewritten in integral form as

Wf
rev2

A
¼ �

Z h

1
Pðh0Þdh0 ¼ PEðhÞ constant A ð15Þ

where the film potential energy is zero at infinite thickness (i.e.,
corresponding to a bulk liquid phase exhibiting two bulk inter-
faces). The disjoining potential is equivalent to the reversible work
per unit area necessary to thin the film from infinity to thickness h.

In summary, work exchange in the film model consists of two
independent contributions corresponding to area change at con-
stant thickness and thickness change at constant area or

dWf
rev ¼ dWf

rev1 þ dWf
rev2 ¼ 2cf dA�PAdh ð16Þ

This result and the accompanying film-model schematic of Fig. 7b
underpin film-model thermodynamics. Namely, all film-model
thermodynamic properties are defined analogous to Eq. (6) as illus-
trated in Fig. 7b. That is, the actual inhomogeneous thin film exhib-
iting property density profiles is replaced by a hypothetical or
model system consisting of a homogeneous continuous gas phase
outside the film, a homogeneous bulk liquid phase of the same
thickness and area as the film but consisting of thermodynamic
properties identical to those in the liquid reservoir in equilibrium
with the film, and surface excess properties located in two inter-
faces of zero thickness.

3.2. Membrane-model tension

Capillary work in the membrane model of a free thin liquid film
is captured in Fig. 9. This figure is identical to Fig. 6 except that the
liquid reservoir is eliminated. Menisci terminate the film but are
not shown. Consider an infinitesimal withdrawal of the right pis-
ton while injecting gas from the reservoir while maintaining a con-
stant total gas volume (i.e., reservoir plus container). Because no
pressure–volume work is envisioned, film volume remains con-
stant. This means that both film area and film thickness change
during the work process: the film expands and thins such that
the product Ah remains constant. Differential work for the revers-
ible process in Fig. 9 is

dWm
rev3 ¼ �2dA

Z s=2

0
PTðzÞdz� PGdVGR ð17Þ
But for constant film volume, we have that

dVGR ¼ �d½Aðs� hÞ� ¼ �sdA ð18Þ

Substitution of Eq. (18) into Eq. (17) gives the desired result

dWm
rev3 ¼ 2dA

Z s=2

0
½PG � PTðzÞ�dz ð19Þ

We identify the integral in Eq. (19) as the membrane tension

cm �
Z s=2

0
½PG � PTðzÞ�dz ð20Þ

Thus, in the membrane model, the actual transverse stress distribu-
tion is replaced by a single zero-thickness membrane of tension, as
shown in Fig. 10. Liquid-film thickness, h, does not appear. Revers-
ible work in the membrane model is then

dWm
rev3 ¼ 2cmdA ð21Þ

No accounting is given for disjoining pressure because no liquid film
exists in the membrane model, only vapor phase at pressure PG and
a zero-thickness membrane with tension 2cm (see Fig. 10b). The fac-
tor of 2 in the definition of membrane tension is consistent with the
idea that as film thickness in Fig. 10a increases, two bulk interfaces
are produced whose tensions are ascribed to a single zero-volume
membrane.

Exact location of the membrane of tension, zm, is established by
equivalence of moments in the real and membrane-model systems.
Following the same analysis as that in Eq. (9) for the film model,
we find that zm = 0 in obedience to symmetry. Again, location of
the plane of membrane tension is immaterial to its evaluation. In
the membrane model, however, the tension membrane (here of
magnitude 2cm) remains fixed at the center of the film even for
thick films beyond the range of disjoining forces.

Comparison of Eqs. (6) and (20) along with Eq. (2) gives the oft-
cited relation between film and membrane tensions [44–49,51,52]

2cm ¼ 2cf þ hðPG � PLÞ ¼ 2cf þPh ð22Þ

Film and membrane tensions both refer to zero-thickness mem-
branes. They both depend on film thickness. They differ simply by
the product of disjoining pressure and film thickness. However,



(a) real film (b) membrane model

Fig. 10. Schematic of the transverse stress profile normal to the film. Dotted region
locates the film. (a) Real system. PT does not attain the bulk gas value in the film (see
Fig. 19). (b) Membrane-model system in which the tangential stress in the gas is
uniform at PG throughout the container volume. Equivalence of the net force on the
vertical plane gives rise to a single zero-thickness membrane surface tension at z = 0
of magnitude 2cm. Drawing is not to scale.
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their meanings are disparate. Film tension refers to a surface ten-
sion relative to a bulk liquid core of thickness h, whereas membrane
tension, as defined here, does not require a film thickness for eval-
uation. There is no liquid phase in the membrane model.

As expected from Eq. (22), reversible capillary work expressions
in the film and membrane models are related. It is straightforward
to show that

dWm
rev3 ¼ dWf

rev1 þ dWf
rev2 ð23Þ

That is, the two work processes in Figs. 6 and 8 are encompassed in
the single work process of Fig. 9 where film area and film thickness
change simultaneously.

As with the film model, thermodynamic properties in the mem-
brane model are defined analogous to Eq. (20) and illustrated in
Fig. 10. Excess density (molar, energy, entropy, etc.) relative to that
in the gas phase is integrated across the film and assigned to a
zero-thickness membrane at zm. Notably, film thickness does not
appear.

3.3. Film-model thermodynamics

In the film model, a homogeneous slab of thickness h and with
bulk-liquid properties replaces the region of density profiles. Upon
allowing reversible heat and work exchange with the environment,
including mass exchange, the first and second laws of thermody-
namics for the gas/film system read

dU ¼ TdSþ 2cf dA�PAdh� PLdVf � PGdVG þ
X

i

lidni ð24Þ

where U, S, and ni are container (gas plus liquid film) internal
energy, entropy, and mole numbers of component i, respectively.
li is the chemical potential of component i, which along with tem-
perature, is uniform throughout the system. The first term on the
right of Eq. (24) describes reversible heat exchange while the
remaining five terms reflect reversible work exchange. The second
and third right factors correspond to reversible excess film work
expressed in Eq. (16). Fourth and fifth terms account for reversible
compression/expansion work of the homogeneous gas and liquid
phases in the film-model system, whereas the last additive term
on the right corresponds to reversible mass exchange. Note that
the liquid pressure in term four corresponds to that in the film
meniscus. Each extensive property is defined in terms of singlet
density profiles. For example, the total system entropy is given by

S � 2A
Z þs=2

0
~sðzÞdz ð25Þ

where the over tilde indicates per unit volume so that ~sðzÞ is the
entropy density profile normal to the film (i.e., entropy per unit vol-
ume), and likewise for U and ni.

Corresponding expressions for the differential internal energy
of the homogeneous gas and liquid phases, respectively, are

dUG ¼ TdSG � PGdVG þ
X

i

lidnG
i ð26Þ

and

dUL ¼ TdSL � PLdVf þ
X

i

lidnL
i ð27Þ

Subtraction of Eqs. (26) and (27) from Eq. (24) gives the excess film
differential internal energy

dUf ¼ TdSf þ 2cf dA�PAdhþ
X

i

lidnf
i ð28Þ

where Uf is the total excess internal energy of the film located at the
two film-model interfaces and is defined by

Uf ¼ U � UL � UG

¼ 2A
Z h=2

0
½~uðzÞ � ~uL�dzþ

Z þs=2

h=2
½~uðzÞ � ~uG�dz

" #
� 2Auf ð29Þ

The liquid internal energy density, ~uL in Eq. (29), is that of the bulk-
meniscus liquid in equilibrium with the film. The last identity in Eq.
(29) defines excess interfacial internal energy per unit area, uf, for
each of the two film-model interfaces. Similarly, all extensive
film-model properties are defined analogous to Eqs. (6) and (29).
Thus, film interface excess entropy is

Sf ¼ S� SL � SG

¼ 2A
Z h=2

0
½~sðzÞ � ~sL�dzþ

Z þs=2

h=2
½~sðzÞ � ~sG�dz

" #
� 2Asf ð30Þ

and, in particular, component i excess moles of the two interfaces is

nf
i ¼2A

Z h=2

0
qiðzÞ�qL

i

� �
dzþ

Z þs=2

h=2
qiðzÞ�qG

i

� �
dz

" #
� 2ACf

i ð31Þ

The far-right identity in Eq. (31) defines the adsorption (moles per
unit area) of component i per interface of the film and is symbolized
by Cf

i . Again, component i liquid density appearing in the first inte-
gral of Eq. (31) is that of the bulk liquid in the film meniscus.

Fig. 11 illustrates the meaning of film-model excess adsorption.
A solvent density profile (e.g., water) is shown on the left for a thin
liquid film where q1(z) is the local molar density of the solvent.
This density profile is replaced in the film model by a slab of sol-
vent at the bulk liquid reservoir density, qL

1, surrounded by homo-
geneous equilibrium vapor at bulk density, qG

1 . Once film thickness
is specified, excess mass is attributed to two zero-volume planes
located at ±h/2. Note in Fig. 11a that the solvent bulk liquid density
nowhere appears in the actual film. As discussed above, qL

1 and qG
1

are not the densities on the bimodal-phase envelop since the pres-
sure in the meniscus liquid is not that of the gas phase. In the limit
of an infinitely thick film, Cf

i becomes the Gibbsian excess mass or
adsorption of component i at a single liquid/gas interface [78].



Fig. 11. Schematic of real and film-model systems for solvent density in a free thin liquid film. (a) The actual density distribution is replaced in (b) by a slab of density
corresponding to the bulk liquid reservoir. Excess mass, positive or negative, is attributed to two zero-volume planes at ±h/2 (gray vertical solid lines).
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To establish the film-model excess internal energy, Eq. (28) is
integrated at constant intensive properties of T, h, and li

[48,51,78–80] or

Uf ¼ TSf þ 2cf Aþ
X

i

lin
f
i ð32Þ

The process of integrating Eq. (28) is equivalent to assembling a lar-
ger film from smaller ones by Euler’s rule. This requires the smaller
films to be of identical intensive properties including thickness so
that the disjoining pressures are identical. As noted above in Sec-
tion 2.2, the disjoining-pressure isotherm is a material property fur-
ther accentuating that film thickness is an intensive variable.

Many interfacial thermodynamic free energies may be defined
as convenience dictates. For example, film-model excess Helm-
holtz free energy, Ff, is defined as

Ff =2A ¼ f f � uf � Tsf ¼ cf þ
Xc

i¼1

liC
f
i ð33Þ

If no components adsorb, then the film-model Helmholtz excess
free energy per unit area, Ff/A, is equivalent to twice the film surface
tension. This case arises for a single component in the Gibbs zero-
solvent-adsorption convention, as discussed below.

3.4. Film-model Gibbs adsorption equation

Following classical procedures [64,81–83], differentiation of Eq.
(32) followed by comparison to Eq. (28) reveals that [78,79]

�dcf ¼ sf dT þPdH þ
Xc

i¼1

Cf
i dli ð34Þ

where H = h/2 is the half thickness of the film. This expression is an
analogue of the Gibbs adsorption equation for a single interface
[63,64,78,82,83]. Unfortunately, Eq. (34) is over specified [64,78].
It indicates that film tension is a function of c + 2 variables, whereas
the phase rule accounting for the curved meniscus demands c + 1
independent variables [63,64]. To relieve this inconsistency, we
combine the Gibbs–Duhem equations for the bulk liquid and gas
phases as follows

D~sdT þ dPC þ
Xc

i¼1

Dqidli ¼ 0 ð35Þ

where the operator D indicates the difference between liquid and
gas (e.g., D~s � ~sL � ~sG). Thus, of the c + 2 system variables only
c + 1 are independent. Elimination of the solvent chemical potential,
l1, between Eqs. (34) and (35) and implementation of the definition
of disjoining pressure in Eq. (2) give

�dcf ¼ sf � Cf
1

D~s
Dq1

� �
dT þ P� Cf

1
dP=dH

Dq1

� �
dH

þ
Xc

i¼2

Cf
i � Cf

1
Dqi

Dq1

� �
dli ð36Þ
Film tension in Eq. (36) is now correctly a function of c + 1 indepen-
dent thermodynamic variables. Appendix A demonstrates that the
coefficients multiplying temperature and chemical-potential differ-
entials in Eq. (36) are independent of the choice of film thickness
(i.e., they are Gibbs invariants [64,78,83]). However, the coefficient
of the thickness variable is not. Apparently, this means that film
tension is not a thermodynamic measureable property, but rather
is model dependent. One resolution is to change variables in Eq.
(36), for example, by subtracting the term d(PH) from both sides

�dðcf þPHÞ � �dcm ¼ sf � Cf
1

D~s
Dq1

� �
dT � H þ Cf

1

Dq1

" #
dP

þ
Xc

i¼2

Cf
i � Cf

1
Dqi

Dq1

� �
dli ð37Þ

Here all coefficients of the independent differential variables are
Gibbs invariants. That is, they do not depend on the precise location
of the film-model dividing surfaces, meaning that the quantity
cf + PH is thermodynamically well defined. As the first equality in
Eq. (37) indicates, cf + PH is the membrane tension cm (compare
Eq. (22)). We conclude that membrane tension is a Gibbs invariant
[64,78,83].

Nevertheless, Eq. (36) is useful when, following Gibbs
[64,78,83], we set the film thickness corresponding to zero adsorp-
tion of component 1, typically the solvent.

Cf
1 ¼

Z h1=2

0
q1ðzÞ � qL

1

� �
dzþ

Z þs=2

h1=2
q1ðzÞ � qG

1

� �
dz ¼ 0 ð38Þ

This convention is appealing because, for thick films, it coincides
with the classic Gibbs convention [62–65,67,78,82,83]. Fig. 12 illus-
trates calculation of the two film-model dividing surfaces at ±h1/
2 = ±H1 according to Eq. (38). Mole densities of the bulk solvent
gas and liquid phases are extrapolated to the dividing surfaces such
that the cross-hatched areas above solvent density profile up to the
liquid density equal those below the solvent density profile down to
the gas density. Upon multiplying Eq. (38) by 2 and re-expressing
the various integrals gives [48,51]

h1 ¼
n1=A� qG

1s
Dq1

ð39Þ

where n1 is the total moles of solvent in the system. Eq. (39) is com-
monly adopted in molecular simulations of disjoining pressures in
free thin liquid films [60,84,85].

Fig. 13 illustrates how the zero-solvent-adsorption convention
applies to component adsorption. A schematic molar-density pro-
file is highlighted for a somewhat surface-active, low volatility
aqueous solute (such as a higher molecular-weight alcohol). The
alcohol preferentially partitions near the two film interfaces but
does not attain the bulk-component liquid density in the film core



Fig. 12. Schematic for constructing film thickness according to Gibbs convention in the film model. (a) Real system. (b) Film-model system in which adsorption of solvent is
zero at each dividing surface. Illustrated areas above and below the solvent density profile are equal specifying h1. The liquid density adopted in the film-thickness calculation
is that of the bulk liquid meniscus.

Fig. 13. Schematic for determining component adsorption (e.g., alcohol) according to Gibbs convention in the film model. (a) Real system. (b) Model system in which
adsorption of solvent is zero at each dividing surface, ±h1/2. Illustrated areas in (b) establish alcohol adsorption which is attributed to the two zero-thickness dividing
surfaces. Liquid-component molar density employed for calculation is that of the bulk liquid meniscus.
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corresponding to that in the meniscus. Alcohol film-model adsorp-
tion at each interface, symbolized by Cf

a1; is given by

Cf
a1 ¼

Z h1=2

0
qaðzÞ � qL

a

� �
dzþ

Z þs=2

h1=2
qaðzÞ � qG

a

� �
dz ð40Þ

Thus in Fig. 13b, bulk gas and liquid alcohol densities are extrapo-
lated to the dividing surfaces at ±h1/2, and the cross-hatched areas
are calculated. All excess moles of alcohol are then assigned to the
two zero-thickness dividing surfaces, shown by the gray solid verti-
cal lines at ±h1/2 in Fig. 13b.

We designate film-model thermodynamic properties based on a
thickness corresponding to zero-solvent adsorption (i.e., based on
setting the location of the two interface dividing surfaces at ±h1/
2 in Fig. 13) with a unity subscript. All excess thermodynamic
properties follow as in Eqs. 29–31, but with h replaced by h1.
According to this Gibbs-motivated convention, Eq. (36) transforms
to

�dcf ¼ sf
1dT þPdH1 þ

Xc

i¼2

Cf
i1dli ð41Þ

Film tension remains a function of c + 1 independent variables, but
now all coefficients are carefully defined. Eq. (41) is the film-model
Gibbs adsorption equation: an analogue of the Gibbs adsorption
equation for single interfaces. As film thickness increases beyond
the range of thin-film forces, Eq. (41) reduces to the classic Gibbs
adsorption equation [64,78,83].

Since film tension is not directly measureable, the film-model
Gibbs adsorption equation is not as useful as is the Gibbs adsorp-
tion equation. Nevertheless, it is a helpful result. Following others
[6,79,80], the disjoining-pressure isotherm can be established from
the thickness dependence of component adsorption. Cross-differ-
entiation of Eq. (41) gives
@P
@li

� �
T;h1 ;lj–i;1

¼ @Cf
i1

@H1

 !
T;li–1

ð42Þ

This result may be integrated to quantify the contribution of dis-
solved solutes to disjoining pressure

Pðh1Þ �Poðh1Þ ¼ 2RgT
Xc

i¼2

Z ai

0

@Cf
i1

@h1

 !
d ln ai constant T;h1; aj–i;1

ð43Þ

where Po denotes the disjoining pressure of pure solvent, Rg is the
ideal-gas constant, and ai is the activity of component i. For an ideal
aqueous alcohol solution, the alcohol contribution to the disjoining-
pressure isotherm follows as

Pðh1Þ �Poðh1Þ ¼ 2RgT
Z xa

0

@Cf
i1

@h1

 !
d ln xa constant T; h1 ð44Þ

where xa is the mole fraction of alcohol in the aqueous liquid menis-
cus. If theory or experiment is available for how solute adsorption
changes with film thickness at given bulk concentration, Eq. (44)
establishes the solute contribution to the disjoining-pressure iso-
therm. Considerable effort has been focused on this approach, espe-
cially for confined films [79,86–94].

The pure liquid/vapor disjoining pressure, Po, is often expressed
in terms of the equilibrium fugacity (or pressure) in the gas phase
surrounding the film. Although pressures in the liquid meniscus
and vapor phase are different, their chemical potentials are identi-
cal (i.e., lG = lL � l). Integration of Gibbs–Duhem equations for the
bulk liquid and gas phases specifies that

l� lsat ¼
Z PL

Psat
vLdP ¼

Z PG

Psat
vGdP constant T ð45Þ
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where v is molar volume, and superscript sat indicates the saturated
phase equilibrium for a planar interface. Eq. (45) is particularly use-
ful in molecular simulation of single-component free thin liquid
films for it establishes the disjoining pressure for a simulated film
of given thickness [60,84]. It is restricted to a pure component.
For an incompressible liquid, the first right equality is re-expressed
as v sat

L ðPG � Psat �PoÞ ¼ l� lsat ¼ RgT ln f G=f sat . Rewriting this
result gives

Poðh1Þ ¼ �qsat
L RgT ln f G=f sat � ðPsat � PGÞ constant T ð46Þ

where f denotes fugacity [95]. The second term on the right of this
expression is commonly neglected [6]. Eq. (46) bares strong resem-
blance to that of Kelvin for vapor-pressure lowering of a vapor bub-
ble [63,64]. As above, let Cm denote the mean curvature in the bulk
meniscus designated positive on the concave (gas) side of the inter-
face. Substitution of the rigorous form of Kelvin’s equation then
yields

Poðh1Þ ¼ 2cCm � PC ð47Þ

The second equality follows from the Young–Laplace equation and
confirms the consistency of the definition of disjoining pressure in
Eq. (2). Eqs. (46) and (47) reveal that the gas phase over a free liquid
thin film is conceptually identical to that inside an isolated vapor
bubble. As the film thins for a positive, negative-sloped disjoin-
ing-pressure isotherm, meniscus curvature increases reflecting an
increase in capillary pressure.

A second important result from the film-model Gibbs adsorp-
tion equation is calculation of film tension from the measured dis-
joining-pressure isotherm. Integration of Eq. (41) gives

2cf ðh1Þ ¼ 2c�
Z h1

1
Pðh01Þdh01 constant T; li–1 ð48Þ

or from Eq. (15), we have that

2cf ðh1Þ ¼ 2cþ PEðh1Þ constant T; li–1 ð49Þ

Accordingly, film tension equals the bulk liquid/gas surface tension
plus one-half the disjoining potential of the film, which is a function
of film thickness. This result allows the film-model Helmholtz
excess free energy to be written as

2f f ¼ 2cþ PEðh1Þ þ 2
Xc

i¼2

Cf
i1li ð50Þ

An even more simple and appealing result emerges for a single-
component film

2f f ¼ 2cþ PEðh1Þ ð51Þ

Film-model Helmholtz excess free energy is the film surface tension
plus one-half the film disjoining potential. This result is often
invoked intuitively, although the zero-solvent-adsorption thickness
convention is not emphasized [96].

3.5. Membrane-model thermodynamics

In the membrane model, the combined first and second law for
the film/gas system is written analogous to that for the film model
in Eq. (24) but now consonant with the definition of membrane
tension depicted in Fig. 10b

dU ¼ TdSþ 2cmdA� PGdV þ
X

i

lidni ð52Þ

where V is the entire volume of the container. In this expression,
disjoining pressure is absent consistent with the definition of mem-
brane tension in Eq. (20) and capillary work in Eq. (21). Pressure–
volume work for a liquid phase is also missing because only a bulk
gas phase and a zero-thickness membrane are present in the mem-
brane-model system. Consequently, the container system consti-
tutes a bulk gas occupying total container volume plus a zero-
volume membrane (i.e., U = UG + Um). Eq. (26) holds (with the bulk
gas phase occupying the entire container volume) giving the mem-
brane differential excess internal energy as

dUm ¼ TdSm þ 2cmdAþ
X

i

lidnm
i ð53Þ

where Um is the total excess internal energy of the membrane
defined by

Um ¼ U � UG ¼ 2A
Z s=2

0
½~uðzÞ � ~uG�dz � 2Aum ð54Þ

Again no liquid-phase properties appear. The factor of 2 in Eq. (54)
is convenient for comparison to film-model thermodynamic proper-
ties. Other membrane-model properties are defined analogously.
For example, membrane excess entropy and excess component
mole numbers read

Sm ¼ S� SG ¼ 2A
Z s=2

0
½~sðzÞ � ~sG�dz � 2Asm

; ð55Þ

and

nm
i ¼ 2A

Z s=2

0
qiðzÞ � qG

i

� �
dz

� �
� 2ACm

i ð56Þ

As pictured in Fig. 14, component adsorption includes the entire
moles in the film in excess of the gas phase. No film thickness need
be specified to determine excess membrane-model properties.
Fig. 15 illustrates the meaning of membrane-model adsorption.
Excess component moles over that of the gas are lumped into a
zero-thickness surface. Where the surface of excess moles is located
is immaterial, since thermodynamic properties in the membrane
model do not require a film thickness. For thick films, membrane-
model adsorption does not reduce to the Gibbs adsorption for each
bulk interface but includes the bulk moles distributed across the
film core. From the definitions of excess surface moles in the film
and membrane models (compare Eqs. (31) and (56)), we find that

Cm
i ¼ Cf

i þ HDqi ð57Þ

where H is, again, the film half thickness. This expression is analo-
gous to Eq. (22) relating membrane tension and film tension. Other
thermodynamic properties of the two thin-film models are similarly
related, such as entropy

sm ¼ sf þ HD~s ð58Þ

Various excess free energies in the membrane model follow similar
definitions as in Eqs. (54)–(56) and can be similarly related to those
in the film model.

3.6. Membrane-model Gibbs adsorption equation

Eq. (53) is integrated at constant intensive variables to give

Um ¼ TSm þ 2cmAþ
X

i

lin
m
i ð59Þ

This result is closely allied to Eq. (32), but the meaning of the super-
scripted variables is quite different. In the membrane model, no film
thickness is invoked. Differentiation of Eq. (59) and comparison to
Eq. (53) gives the membrane-model analogue of the Gibbs adsorp-
tion equation

�dcm ¼ smdT þ
Xc

i¼1

Cm
i dli ð60Þ

which correctly specifies membrane tension as a function of c + 1
intensive variables. By definition, the coefficients of differential



Fig. 14. Schematic for constructing the excess component moles in the membrane-model system. (a) Real system. (b) Membrane-model system in which adsorption of
solvent is reflected by the area of the under the density profile and over the bulk gas density. There is no dividing surface.

Fig. 15. Schematic of real (a) and membrane-model system (b) for solvent molar density in a free thin liquid film. Excess moles defined in Fig. 14 (b) are collapsed to a
membrane of zero thickness surrounded by vapor (gray vertical solid line in b). Exact location of the membrane is immaterial.
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temperature and chemical potential are well-defined Gibbs invari-
ants. They do not involve film thickness. Unfortunately, no explicit
information is available for disjoining forces as in Eq. (34) of the
film model. Elimination of the solvent chemical potential in Eq.
(60) in favor of capillary pressure from Gibbs–Duhem in Eq. (35)
provides that information

�dcm ¼ sm � Cm
1

D~s
Dq1

� �
dT � Cm

1

Dq1
dPþ

Xc

i¼2

Cm
i � Cm

1
Dqi

Dq1

� �
dli ð61Þ

Again, all coefficients of the differentials on the right are Gibbs
invariants. As opposed to the film model, it is not possible to set
Cm

1 ¼ 0. Substitution of Eqs. (57) and (58) (i.e., the relations between
membrane and film-model properties) exactly reproduces Eq. (37).
This exercise proves the consistency of the two thermodynamic
models.

Although the membrane model does not invoke film thickness,
the second term on the right of Eq. (61) motives an apparent thick-
ness defined by

Hm ¼ hm=2 � Cm
1

Dq1
ð62Þ

With this convention and with the definition of film potential
energy in Eq. (15), integration of Eq. (61) yields

2cm ¼ 2cþPhm þ PEðhmÞ constant T; li–1 ð63Þ

Substitution of the relation between membrane and film tension,
Eq. (22), shows that

2cf ðhmÞ ¼ 2cþ PEðhmÞ constant T; li–1 ð64Þ

This result is consistent with but not identical to Eq. (49). The dis-
tinction arises because film potential energy is evaluated at hm

rather than h1 in Eq. (49). As confirmed in Fig. 20 below, small dif-
ferences in the exact definition of film thickness for evaluating dis-
joining forces are most likely not of practical import especially since
experimental film thicknesses are almost always optical in origin.
Finally analogous to Eq. (33), excess film Helmholtz free energy
in the membrane model is given by

Fm=2A ¼ f m � um � Tsm ¼ cm þ
Xc

i¼1

liC
m
i ð65Þ

which is identical in form to Eq. (33) except the superscripted terms
have different definitions.

3.7. Meniscus profile

Meniscus shape is couched only in the film model. In this sec-
tion, we adopt Gibbs’ zero-solvent-adsorption convention and dis-
card the subscript unity on film half thickness so that H = h1/2. The
goal is to predict the meniscus profile, H(x), from the film lateral
center into the meniscus as depicted in Fig. 16. Film half thickness
at x = 0 is Hf. The meniscus triple line terminates at x = L with half
thickness HL and with a solid/liquid/gas equilibrium contact angle
of h. Container walls are diathermal; menisci are presumed suffi-
ciently large such that small changes in film volume and area do
not alter meniscus composition.

Since temperature, volume, solid-container surface area, and
component chemical potentials are constant, it is convenient to
introduce the grand-potential free energy: X � U � TS�Pc

i¼1lini. Euler integration of Eq. (24), including surface energies
of the solid/liquid and solid/gas interfaces, gives

X ¼ �PGVG � PLVL þ 2cf ALG þ 2cSLASL þ 2cSGASG ð66Þ

where volume VL and liquid/gas surface half-area ALG correspond to
those exhibited by the film plus the meniscus region. Superscripts
SL and SG denote the solid/liquid and solid/gas container interfaces.
Factors of 2 arise because areas correspond to half of the film. The
bulk liquid pressure in the meniscus appears (as opposed to the
normal stress of the film) consistent with the thermodynamic def-
inition of film tension in Eq. (6). Similarly, disjoining pressure does
not appear in Eq. (66) because film thickness is an intensive vari-
able. Film tension is recognized as a function of film thickness,



Fig. 16. Schematic of thin film in the rectangular container of Figs. 2 and 3 with
attached meniscus. Film upper-interface profile, H(x), is labeled. Drawing is not to
scale.

Fig. 17. Control volume enclosed in dashed lines for x-force balance on a free liquid
thin film shown dotted. x-Tension and pressure forces acting on the control volume
are indicated by arrows. The local tangent angle with the horizontal axis is u, while
the macroscopic contact angle of the film is hf. Resolution of z-forces is by film
symmetry.
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and possibly other thickness characteristics such as the square of
the profile slope [97,98]. Here, we treat cf as a function of film thick-
ness only, neglecting higher-order contributions [99,100].

Evaluation of volumes and areas in Eq. (66) is presented in
Appendix B. Let w represent container width in Fig. 16. The grand
potential then becomes

X ¼ �PG2wsLþ 4wPC

Z L

0
HðxÞdxþ 4w

Z L

0
cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

x

q
dx

þ cSG2wsþ ðcSL � cSGÞ4wHL ð67Þ
Subscript x on film half thickness indicates a derivative. The grand
potential is an extremum for differential changes about equilibrium
at constant temperature, container volume and area, and compo-
nent chemical potentials. Thus, we desire that particular meniscus
profile, H(x), that extremizes grand free energy [19,97–103].
Accordingly, we functionally differentiate Eq. (67) as

0 ¼ d
Z L

0
cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

x

q
þ PCH

� �
dxþ ðcSL � cSGÞdHL ð68Þ

where d denotes functional differentiation. Constraints are fixed
film half thickness at x = 0 and fixed contact angle at x = L. As dem-
onstrated in Appendix B, performing the functional differentiation
yields two independent equilibrium relations

c cos h ¼ cSG � cSL ð69Þ
and

cf Hxx

ð1þ H2
x Þ

3=2 �
dcf

dH

� �
1

ð1þ H2
x Þ

1=2 � PC ¼ 0 ð70Þ

The first condition, Eq. (69), is the classic Young–Dupré solid/liquid/
gas contact-angle condition [62–64]. Eq. (70), however, is a new
result. Following Deryagin and coworkers [4–6], we assume that
Eq. (49) holds locally even though film thickness varies. Substitu-
tion of Eq. (49) into Eq. (70) gives a modified Young–Laplace equa-
tion allowing calculation of film profiles

cþ 1
2

PEðh1Þ
� �

Hxx

ð1þ H2
x Þ

3=2 þPðh1Þ
1

ð1þ H2
x Þ

1=2 ¼ PC ð71Þ

Eq. (71) correctly reduces to that of Young and Laplace in the film
meniscus where film thickness is large and disjoining forces vanish

c
Hxx

ð1þ H2
x Þ

3=2 ¼ 2cCm ¼ PC meniscus ð72Þ

In the flat portion of the film where Hx and Hxx vanish and disjoining
forces dominate, the definition of disjoining pressure in Eq. (2) cor-
rectly emerges
Pðh1Þ ¼ PC flat film ð73Þ

Nevertheless, the classic augmented Young–Laplace equation of
Deryagin [4,6,45–47,97,98,104]:

c
Hxx

ð1þ H2
x Þ

3=2 þPðh1Þ ¼ PC ; ð74Þ

is not reproduced exactly. Quantitative difference between the
modified and augmented Young–Laplace equations, however, is
not significant. In the meniscus region, PE < c, and P vanishes. In
the flat portion of the film, profile curvature and slope do not con-
tribute. Still, the modified Young–Laplace equation is not an ansatz.
It arises directly from the thermodynamic formulation presented in
Section 3.3. Extension of Eqs. (71) and (74) to cylindrical films is
straightforward [97,98].

In the membrane model, no film thickness directly appears.
Rather, the single zero-thickness film membrane intersects the
bulk meniscus discontinuously at a film/meniscus contact line.
There is no analogous augmented Young–Laplace equation. Never-
theless, a finite contact angle at the contact line does result as out-
lined below.

3.8. Film contact angle

3.8.1. Film model
Thin-film forces distort the meniscus profile from that of con-

stant curvature. For this reason, the continuous film-thickness pro-
file appears to intersect the flat portion of the film with a finite
contact angle, hf, illustrated in Fig. 17. In the film model, the film
contact angle is conveniently defined as that extrapolated from
the constant-curvature portion of the meniscus to the film mid-
plane at z = 0 [4,6,48,52,97,98,104] An expeditious route to estab-
lish hf is through an equilibrium force balance on the film as
portrayed in Fig. 17. Bulk liquid pressure appears in the balance
even though PL does not actually exist in the thin film. Appearance
of PL is demanded by the definition of film tension in Eqs. (6) and
(66).

As outlined in Appendix C, resolution of x-forces in Fig. 17 gives

cf ðHÞ cos uðHÞ ¼ cf ðHf Þ þPðHf ÞHf � PCH ð75Þ

where u is the local angle between the profile tangent and the hor-
izontal and H is the local half-film thickness defined in the Gibbs
convention of Eq. (38). Far into the meniscus where film thickness
is large, film tension becomes the bulk surface tension, c, so that
Eq. (75) reduces to

c cos uðHÞ ¼ cf ðHf Þ þPðHf ÞHf � PCH; H large ð76Þ

Hence, the cosine of the local angle u is linear in H for large film
thickness. Evaluation of the intercept in Eq. (76) conveniently gives
the film contact angle

c cos hf ¼ cf ðHf Þ þPðHf ÞHf ð77Þ



Fig. 18. Schematic of x-force balance for the upper half of the membrane model.
The film is pictured as a zero-thickness membrane located at the film midplane
which meets the bulk liquid meniscus (shown dotted) with a finite contact angle hm.
Resolution of z-forces is by film symmetry.
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Substitution of Eq. (48) gives the desired result

cos hf ¼ 1þ 1
2c

Pðhf Þhf þ
Z 1

hf

Pðh01Þdh01

" #

¼ 1þ 1
2c

Z Pðhf Þ

0
h1ðP0ÞdP0 ð78Þ

where hf is the film-model zero-solvent-adsorption film thickness
in the flat region. The factor of 2 arises from the symmetry of the
film. This expression is well cited, especially when written for wet-
ting/adsorbed solid-supported liquid films [6,46,47,51,57,63,104–
106] as the Frumkin/Deryagin relation [4,5,59]. A deep attractive
minimum must be present in the disjoining-pressure isotherm to
produce finite film contact angles.

Eq. (78) can also be derived from the augmented Young–Laplace
equation, Eq. (74), by reduction-of-order integration to specify Hx

[98,99]. Because cos u ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

x

q
, Eq. (76) emerges from this

analysis at large film separations. Eq. (78) follows [98,99]. Appen-
dix D demonstrates that the modified Young–Laplace equation, Eq.
(71), also yields the Frumkin–Deryagin expression for the film con-
tact angle.

3.8.2. Membrane model
In the membrane model, there is no film profile only gas and a

zero-volume membrane. Nevertheless, a film contact angle can be
defined. As shown in Fig. 18, the bulk meniscus meets the zero-
thickness membrane of tension with a finite contact angle hm. An
x-force balance performed near the contact line is illustrated in
Fig. 18

c cos hm ¼ cmðHmÞ ð79Þ

where Hm is the apparent half-film thickness defined in Eq. (62).
Substitution of Eqs. (15) and (63) reveals that

cos hm ¼ 1þ 1
2c

Z PðhmÞ

0
hmðP0ÞdP0 ð80Þ

This result is identical in form to Eq. (78), strengthening the consis-
tency of the two thermodynamic models. However, there is a subtle
difference. The film thicknesses at which disjoining pressures are
evaluated are slightly different, similar to Eqs. (49) and (64) dis-
cussed above.

4. Theory

4.1. Square-gradient theory (SGT)

Perhaps the simplest theory to illustrate the properties of thin
liquid films is that of van der Waals [65,67,107] later referred to
as Cahn–Hilliard [108] and/or square-gradient theory (SGT) [67].
In van der Waals’ picture of an interface for a single component,
the local free-energy density profile consists of a homogeneous
free energy evaluated at the local molar density and a second term
to account for local gradients in molar density. The correction term
for density inhomogeneity is proportional to the density gradient
squared (i.e., to q2
z ). This formulation leads to a spatially uniform

chemical potential, l, as the sum of two terms

l ¼ loðqÞ � cqzz constant T ð81Þ

where lo is the chemical potential of a homogeneous fluid evalu-
ated at the local density and c is the influence parameter taken here
as constant. Given an appropriate equation of a state (EOS) to spec-
ify lo (and l), Eq. (81) is solved numerically to predict density pro-
files of single gas/liquid interfaces [109–111]. The spatially constant
chemical potential, l, is predetermined from the EOS at a set tem-
perature [95,112]. Surface tension follows by quadrature [67,109–
111].

Although written for a single-component, flat gas/liquid inter-
face, Eq. (81) applies equally well to thin gas/liquid films with a
simple change to a symmetry boundary condition at the film cen-
ter. In a thin film, however, the chemical potential, l, no longer
characterizes saturated vapor/liquid phase equilibrium (i.e., lsat)
because the film-meniscus liquid and the gas phase surrounding
the film are not at the same pressure (i.e., there are 2 thermody-
namic degrees of freedom). By definition from Eq. (2), this pressure
difference gives the disjoining pressure. Upon fixing the bulk gas
density, the chemical potential and the homogeneous gas pressure
are calculated from the chosen EOS at the given temperature. Bulk
liquid density in the meniscus is established from equality of
chemical potential. Corresponding bulk liquid-meniscus pressure
and, accordingly the disjoining pressure, follow from the EOS.
Equivalently, the first equality in Eq. (45) [60] or Eq. (46) may be
utilized to ascertain P. Finally, the density profile is calculated
from solution to Eq. (81) to assess the corresponding film-model
thickness, h1, according to Gibbs convention in Eq. (38). The calcu-
lation proceeds through different disjoining pressures and film
thicknesses as different bulk gas densities are chosen. Additional
detail is available in Appendix E.

In the case of a multicomponent mixture, gas density and com-
position are fixed at a given temperature. Equality of chemical
potentials establishes the liquid density and composition. With
densities and compositions set, gas and liquid pressures, and,
hence, the disjoining pressure are calculated from the EOS. Again,
the gas density is in the metastable phase plane and is not that cor-
responding to planar liquid/vapor equilibrium. Once the chemical
potential of each component is known (from the set gas density
and composition), the appropriate multicomponent embodiment
of Eq. (81) [67,110] are solved to give density profiles and, finally,
film thickness.

Because most equations of state account only for finite molecu-
lar size and attractive intermolecular interactions, thin-film forces
from SGT are net attractive. Consequently, disjoining pressure is
negative with liquid-meniscus pressure larger than that of the
gas phase. Square-gradient theory thus predicts so-called Hamaker
conjoining forces [63,64,73,113,114]. Calculation detail and chosen
parameters for water are given in Appendix E using the Peng–Rob-
inson EOS.

Fig. 19 gives predicted density profiles (compare Fig. 1) and tan-
gential-stress profiles predicted from square-gradient theory for
water at 479 K with c = 4.95 � 10�9 cm8 bar/(mol)2 and for two
example values of film thickness: h1 = 1.3 and 3.5 nm. The thicker
film attains close to bulk liquid density and tangential stress (equal
to the vapor pressure) at the film center. As portrayed in Figs. 21
and 22 below, the thick film exhibits a small negative disjoining
pressure of about �0.001 MPa confirming weak attractive
Hamaker forces. Conversely, the thinner of the two films does
not attain bulk values at the film center and, by definition, is a thin
film. It exhibits a significant attractive disjoining pressure of
�14.5 MPa.

Fig. 20 quantifies the film thickness, hm (defined in Eqs. (56)
and (62)) as filled squares in the membrane model versus film



Fig. 19. Mass density and tangential stress profiles for water at 479 K from SGT and
Peng–Robinson EOS. Dashes lines are for a thick film with h1 = 3.5 nm evidenced by
the near bulk density and stress at the film center. Solid lines correspond to a thin
film with h1 = 1.3 nm.

Fig. 20. Membrane-model thickness versus film-model thickness (filled squares)
from SGT for water at 479 K and c = 4.95 � 10�9 cm8 bar/(mol)2. The dashed line
indicates coincidence of the two thicknesses.

Fig. 21. Disjoining-pressure isotherms as a function of 1=h3
1 for water at 479 K from

SGT and Peng–Robinson EOS. Solid lines correspond to two values of the influence
parameter: c = 4.95 � 10�9 and 9.21 � 10�9 cm8 bar/(mol)2. The smaller value of c
matches Lifshitz theory (dotted line) at large thickness, whereas the larger value of
c matches the bulk surface tension.

Fig. 22. Disjoining-pressure isotherms as a function of 1=h3
1 for water at 479 K from

MD simulations (filled diamonds) [60] compared to SGT (solids lines). Lifshitz’s
theory is shown as a dotted line. Much larger attractive forces arise in thin films
than predicted by Hamaker theory. Simulations are reprinted with permission from
Bhatt et al. [60].
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thickness, h1 (defined in Eq. (38)) in the film model from SGT for
water at 479 K. The dashed line designates exact agreement
between the two thicknesses. Over the range of thickness probed,
the difference between the two definitions is imperceptible.

Fig. 21 displays disjoining-pressure isotherms for water plotted
as solid lines against 1=h3

1 suggested by Hamaker theory
[63,64,73,113,114]. Also shown at the top of the figure are selected
values of h1. The straight dotted line corresponds to the Lifschitz’s
embodiment [60,114,115] of Hamaker theory for water taken from
Bhatt et al. [60]. Two values of the influence parameter are illus-
trated: c = 4.95 � 10�9 and 9.21 � 10�9 cm8 bar/(mol)2. For all val-
ues of the influence parameter, SGT predicts that disjoining
pressure approaches zero linearly in 1=h3

1 at large film thickness,
consonant with Hamaker theory. The smaller value of the influence
parameter in Fig. 21 is chosen so that disjoining pressure at large
thickness coincides with the Lifshitz calculation. The larger value
of c is chosen to reflect the experimental surface tension for water
(35 mN/m). Disjoining pressures for this c value exhibit a Hamaker
constant slightly smaller than that of Lifshitz (i.e., the linear slope
at large film thickness in Fig. 21 is slightly smaller in magnitude
than that of Lifshitz).

In all cases, however, SGT deviates significantly from Hamaker
theory for thinner films. Although narrow portions of the SGT-pre-
dicted disjoining-pressure isotherms are linear in 1=h3

1, they are
not so over a wide range. For thin films, disjoining pressures from
SGT are much larger in magnitude compared to Hamaker theory.
Although helpful for simple molecules, SGT is inappropriate for
structured molecules as Eq. (81) cannot account for orientation
changes near an interface. Our predictions for water disjoining
pressures in Fig. 21 are illustrative.
4.2. Molecular simulation

Compared to wetting and confined films, molecular simulations
of free thin liquid films are surprisingly rare. Most focus on the
structure of NBFs [76,77,116–118] or film dynamics and rupture
[74,119–121]. To our knowledge, only two groups have simulated
disjoining-pressure isotherms for free thin liquid films. Bhatt et al.
considered single-component SPC-E water [60] and Lennard-Jones
(LJ) films [84]. Because only attractive forces are present with a
positive-sloping disjoining-pressure isotherm, single-component
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films are unstable. Nevertheless, the most probable mechanism of
hydrodynamic curvature-driven film breakup commences at large
disturbance wavelengths. Adequate simulation lateral box sizes are
typically smaller than the critical wavelength for rupture (i.e.,
kc � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðdP=dhÞ

p
). Hence, purely attractive unstable films can

be simulated. Very thin films, however, where dP/dh becomes
large, cannot be maintained [74,119–121]. Moreover, simulations
lose precision at larger film thicknesses. Only a limited range of
thickness can, thus, be studied.

Fig. 22 shows as closed diamonds the molecular-dynamics (MD)
disjoining-pressure simulations of SPC-E water films at 479 K from
Bhatt et al. [60] again plotted against 1=h3

1. These points corre-
spond to the mass-density profiles in Fig. 1. Similar to SGT, MD-
simulated water films are considerably more attractive than those
predicted by classical Hamaker theory (i.e., as estimated from Lif-
shitz’s formulation [60,114,115]). Also shown for comparison are
SGT predictions from Fig. 21. Disjoining pressures calculated with
the larger value of c in Fig. 22 agree with those of MD from Bhatt
et al. [60]. This comparison provides confidence in the results for
both MD simulations and SGT. Presumably, MD simulation at large
thicknesses conforms more closely to Hamaker theory than does
SGT. Unfortunately, lack of precision in the MD simulations pre-
vents consideration of thicker films where Hamaker theory applies.
We conclude that the continuum approximation of a uniform-den-
sity liquid film in Hamaker’s analysis is suspect for films thinner
than about 8–10 molecular diameters.

Bhatt et al. [85] also simulated disjoining-pressure isotherms
for surfactant-stabilized thin films, but with LJ surfactants in an
LJ solvent. Repulsive disjoining pressures emerged originating from
entropic overlap and interdigitation of the adsorbed nonionic-sur-
factant head groups [85]. More recently, Jang and Goddard [77]
simulated aqueous surfactant-stabilized free thin films in the
thickness range of Newton black films. Their disjoining-pressure
isotherms are also repulsive and monotonically increasing for
decreasing film thicknesses. The stated origin of the repulsive force
is changes in solvation of counterions in NBFs compared to that in
the bulk. Equilibration of film molecules with those in the sur-
rounding bulk meniscus was apparently not attempted so no infor-
mation is available on the role of surfactant (or indifferent-
electrolyte) concentration on disjoining pressure.
5. Conclusions

Free liquid thin films display no bulk homogeneous densities.
Rather, thin films exhibit inhomogeneous density profiles of com-
ponent mass, stress, energy, entropy, etc. that do not attain bulk
liquid values. Because of their thinness, thin-film forces arise, des-
ignated by Deryagin as disjoining (conjoining) pressures that are
unique functions of film thickness. Disjoining pressure is a material
property of the chemical system and, therefore, amenable to ther-
modynamic analysis.

The key to understanding thin-film thermodynamics is revers-
ible mechanical work to expand/contract the film. When film
expansion/contraction is carried out at constant thickness, a film
model emerges in which the inhomogeneous film is replaced by
a bulk liquid layer surrounded by a bulk gas phase. Excess film
properties are attributed to two zero thickness membranes with
film tension cf on each side of the film. Careful thermodynamic
analysis of the film model leads to a thin-film Gibbs adsorption
equation that relates film tension and disjoining pressure. A mod-
ified Young–Laplace equation is derived that reduces to the classi-
cal augmented Young–Laplace equation of Deryagin. Likewise, the
classical Frumkin–Deryagin result is confirmed for the contact
angle that the film makes with the bulk meniscus.
Conversely, when film expansion/contraction occurs at constant
film volume, reversible mechanical work specifies a membrane
model. In the membrane model, a single zero-thickness membrane
appears with membrane tension, 2cm, separating two bulk gas
phases. There is no liquid film, only a single zero-volume mem-
brane. A thin-film Gibbs adsorption equation in the membrane
model relates membrane tension to disjoining pressure although
with a different meaning for film thickness. No modified Young–
Laplace equation applies in the membrane model. However, the
film membrane does meet the bulk meniscus with a finite contact
angle also given by the Frumkin–Deryagin formula. Comparison of
the various mechanical work expressions provides a rigorous rela-
tion between film and membrane tensions.

Illustrative calculations of disjoining-pressure isotherms for
water are presented by square-gradient theory (SGT) and molecu-
lar-dynamics (MD) simulations. SGT confirms Hamaker theory at
large film thicknesses, but predicts considerably larger attractive
forces for thin films of order 10 molecular diameters and less.
MD confirms the SGT predictions at small film thicknesses and pro-
vides a more quantitative assessment.
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Appendix A. Film-model Gibbs invariants

When the locations of the dividing surfaces at ±h/2 in the film
model are altered, excess properties change. This situation is iden-
tical to that of changing the location of the Gibbs dividing surface
for a single interface [78]. Let subscripts j and k denote locations of
film half thickness, Hj and Hk, respectively. Then from Eq. (30), the
excess film entropy per area of each dividing surface reads

sf
k ¼ sf

j � D~sðHk � HjÞ ðA1Þ

Likewise film-model component adsorption of each dividing surface
changes following Eq. (31)

Cf
ik ¼ Cf

ij � DqiðHk � HjÞ ðA2Þ

Substitution of Eqs. (A1) and (A2) into Eq. (36) establishes that the
coefficients multiplying dT and dli are independent of a change in
half thickness from Hj to Hk [78], whereas the coefficient multiply-
ing dH is not.

Appendix B. Modified Young–Laplace equation

Volume and area expressions in Eq. (66) from Fig. 16 are given

by: VL ¼ 4w
R L

0 HðxÞdx, VG = 2wsL � VL, ALG ¼ 2w
R L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

x

q
dx,

ASL = 2wHL, and ASG = sw � ASL. Substitution of these expressions
into Eq. (66) yields Eq. (67). Since the first and fourth terms on
the right of Eq. (67) are constants, variational differentiation gives
Eq. (68). It remains to evaluate the functional derivative of the inte-
gral in Eq. (68). Let F(H, Hx; x) symbolize the integrand in Eq. (68).
Euler–Lagrange conditions then read [122,123]

d
Z L

0
cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

x

q
þPcH

� �
dx¼ d

Z L

0
FðH;Hx;xÞdx

¼
Z L

0

@F
@H
� d

dx
@F
@Hx

� �� �
dHdxþ @F

@Hx
dH

� �L

0

ðB1Þ

Evaluation of the derivatives in the last equality transforms this
expression to
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d
Z L

0
cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

x

q
þPC H

� �
dx¼

Z L

0
�cf Hxx

ð1þH2
x Þ

3=2þ
dcf

dH
1

ð1þH2
x Þ

1=2þPC

" #
dHdx

þ cf Hx

ð1þH2
x Þ

1=2 dH

 !L

0

ðB2Þ

The second term on the right is zero at x = 0 because film half thick-
ness is fixed at Hf. In this term at x = L, the solid/liquid contact angle
is fixed and cf = c. Geometry gives Hx(L) = ctnh. Accordingly, the last
term on the right reduces to

cf Hx

ð1þ H2
x Þ

1=2 dH

 !L
0

¼ c cos hdHL ðB3Þ

Substitution of Eqs. (B2) and (B3) into Eq. (68) of the text results in

0 ¼
Z L

0
�cf Hxx

ð1þ H2
x Þ

3=2 þ
dcf

dH
1

ð1þ H2
x Þ

1=2 þ PC

" #
dHdx

þ ðc cos hþ cSL � cSGÞdHL ðB4Þ

Because functional variations are arbitrary, each term on right of Eq.
(B4) equals zero independently. This observation leads to Eqs. (69)
and (70) of the text.

Appendix C. Film contact angle

Equality of x-forces per unit width of the rectangular parallel-
piped in Fig. 17 reads

PLHf þ PGðH � Hf Þ þ cf ðHÞ cos uðHÞ ¼ PLH þ cf ðHf Þ ðC1Þ

where H is the half thickness of the symmetric film. Substitution of
Eq. (2) into Eq. (C1) gives Eq. (76) of the text. Resolution of z-forces
is by symmetry.

Appendix D. Film contact angle from modified Young–Laplace

To derive an expression for the film contact angle from the
modified Young–Laplace relation, Eq. (71) is rewritten as

dðyf Þ
dh
þ PC

2
¼ 0 ðD1Þ

where yðhÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

x

q
¼ cosu, f(h) = c + PE(h)/2, and the sub-

script unity on film thickness is dropped. Integration of Eq. (D1)

yields

cos u ¼ ½1þ PEðhf Þ=2c�
½1þ PEðhÞ=2c� �

PCðh� hf Þ
2c½1þ PEðhÞ=2c� ðD2Þ

For large film thickness where disjoining forces disappear, Eq. (D2)
reduces to

cos u ¼ 1þ PEðhf Þ þ PChf

2c
� PCh

2c
ðD3Þ

Thus, at large film thicknesses, cosine of the tangent angle is linear
in film thickness. The intercept of that straight line gives the film
contact angle [98,99]

cos hf ¼ 1þ ½PChf þ PEðhf Þ�=2c ðD4Þ

Substitution of Eqs. (2) and (15) into this expression gives Eq. (78)
of the text.

Appendix E. Square-gradient theory for thin films (SGT)

Considerable detail is available on SGT using the Peng–Robin-
son EOS for single interfaces [109–111,124]. Here we provide a
brief summary of the calculations appropriate to thin films. Before
solving Eq. (81), the gas/liquid binodal phase boundary is located at
the specified temperature. Simultaneous equality of chemical
potentials (relative to a reference value)

l ¼ l�ðTÞ � RgT ln
1� qb

qb

� �
þ qbRgT

1� qb
� qa

1þ 2qb� ðqbÞ2

� a

2
ffiffiffi
2
p

b
ln

1þ qbð1þ
ffiffiffi
2
p
Þ

1þ qbð1�
ffiffiffi
2
p
Þ

 !
ðE1Þ

and pressures

P ¼ qRgT
1� qb

� q2a

1þ 2qb� ðqbÞ2
ðE2Þ

in the gas and liquid phases yields the saturated gas and liquid
molar densities: qsat

G and qsat
L and, accordingly, the vapor pressure.

In Eqs. (E1) and (E2), a and b are the Peng–Robinson interaction
and size parameters, respectively. We chose a = 7.2 � 106 cm6 bar/
(mol)2 and b = 17.204 cm3/mol.

These values give reasonable estimates for the saturated liquid
density and vapor pressure for water at 479 K. Once qsat

G and qsat
L

are known, the saturated bimodal chemical potential, lsat, is calcu-
lated from Eq. (E1).

To begin the thin-film density-profile calculation from Eq. (81),
the bulk gas density is set in the spinodal region at a value above
qsat

G . Substitution of this value into Eq. (E1) specifies the constant
chemical potential, l, in Eq. (81). lo in this expression is a function
of density following Eq. (E1). Solution to Eq. (81) is by a marching
routine where Eq. (81) is re-written as two simultaneous first-
order ordinary-differential equations. The algorithm marches the
inhomogeneous density in position from the chosen gas-phase
density toward that in the film center. Since the slope at the bulk
gas density is zero, we employ an asymptotic expression to initiate
the calculation

qð�zÞ ¼ qG 1þ a
c

�z2
	 


ðE3Þ

where

a ¼ RgT
qGð1� qGbÞ þ

aþ bRgT

ð1� qGbÞ2
� a½1þ ðqGbÞ2�

½1þ qGb� ðqGbÞ2�
2 ðE4Þ

and �z is a linear coordinate of origin in the bulk gas phase and direc-
ted toward the film center. To start the marching process, a small
enough value of ~z is chosen such that the final profile is indepen-
dent of that choice. Marching continues until the maximum density
at the film center is located. The z = 0 coordinate is then set at this
position. Once the density profile is found, film thickness follows
from the Gibbs construction in Eq. (38) with the liquid density set
at qsat

L . Disjoining pressure at this thickness follows from Eq. (46)
as approximated by P ¼ qsat

L ½lsat � lðqGÞ�:
Thus, varying the gas density in the spinodal region allows con-

struction of the disjoining-pressure isotherm. Tangential stress
emerges from the density profile as [109–111,124]

PT ¼ PðqÞ � c q
d2q
dz2

 !
� 1

2
dq
dz

� �2
" #

ðE5Þ

where local pressure, P, obeys Eq. (E2) at the local density. Surface
tension for a bulk interface is given by quadrature from the expres-
sion [109–111,124]

c ¼ c
Z 1

�1

dq
dz

� �2

dz ðE6Þ
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