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Abstract
Background and Objectives
To study human leukocyte antigen (HLA) allele associations in anti-leucine–rich glioma-
inactivated 1 (LGI1) encephalitis.

Methods
A multiethnic cohort of 269 patients with anti-LGI1 encephalitis and 1,359 controls was
included. Four-digit HLA sequencing and genome wide association single-nucleotide poly-
morphism typing imputation (0.99 concordance) were used for HLA typing. Significance of
primary and secondary associations was tested using χ2, Fisher exact tests, or logistic regression
with the control of population stratification covariates when applicable.

Results
DRB1*07:01 and DQA1*02:01, 2 alleles in strong linkage disequilibrium, were associated with the
disease (90% vs 24%,OR= 27.8, p< 10e−50) across ethnicity independent of variation at DRB3 and
DQB1, 2 flankingHLA loci. DRB1*07:01 homozygosity was associated with a doubling of risk (OR
= 2.1, p = 0.010), suggesting causality. DRB1*07:01 negative subjects were younger (p = 0.003) and
more frequently female (p = 0.015). Three patients with malignant thymomas did not carry
DRB1*07:01, whereas patients with other tumors had high DRB1*07:01 frequency, suggesting that
the presence of tumors other than thymomas may be coincidental and not causal. In both
DRB1*07:01 heterozygous individuals and DRB1*07:01 negative subjects, DRB1*04:02 was as-
sociated with anti-LGI1 encephalitis, indicating an independent effect of this allele (OR = 6.85, p =
4.57 × 10−6 and OR = 8.93, p = 2.50 × 10−3, respectively). DRB1*04:02 was also independently
associatedwith younger age at onset (β = −6.68, p= 9.78 × 10−3).Major histocompatibility complex
peptide-binding predictions using LGI1-derived peptides revealed divergent binding propensities
for DRB1*04:02 and DRB1*07:01 alleles, suggesting independent pathogenic mechanisms.

Discussion
In addition to the established primary DRB1*07:01 association in anti-LGI1 encephalitis, we
observe a secondary effect of DRB1*04:02 with lower age at onset. Our study provides evidence
for secondary effects within HLA locus that correlate with clinical phenotypes in anti-LGI1
encephalitis.
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Anti-leucine–rich glioma-inactivated 1 (LGI1) encephalitis is
one of the most common autoimmune encephalitis with ap-
proximate incidence of 0.83/million/year in Europe.1 The
classic presentation is in men (66%) of around 65 years.
Faciobrachial dystonic seizures (FBDSs) are a characteristic
and often presenting clinical feature of the disease, with other
focal seizures in addition to amnesia, disorientation, and
psychiatry features following.1-4 Despite an initial good re-
sponse to most immunotherapies,5,6 cognitive sequelae after
the disease are common and disabling.1,7,8

LGI1 is a secreted neuronal protein preferentially expressed in
the hippocampus, which forms a trans-synaptic complex be-
tween Kv1.1 potassium channels and AMPA receptors
through its partners ADAM23 and ADAM22.9 Human anti-
bodies against LGI1 block these interactions,10,11 although
they have different properties depending on the location of
their epitopes, for example, if targeting the leucine-rich repeat
(LRR) domain, which forms LGI1 homodimers, or the epi-
tempin (EPTP) domain that binds to ADAM22/23.12,13 No
consistent environmental triggers have been described, and
anti-LGi1 cases are only rarely paraneoplastic, with a few cases
associated with thymoma.1,14

Strikingly, anti-LGI1 encephalitis is strongly associated with
the human leukocyte antigen (HLA) allele DRB1*07:01 in
;90% of Whites15-17 and Koreans,18 although a recent study
found an association with DRB1*03:01 in 11 Chinese cases.19

Additional weaker effects have been suggested in HLA-DPB1
and HLA class I genes, although these remain unconfirmed.15

In this article, we extended the analysis of HLA genotypes in
approximately 200 patients across 3 ethnic groups, confirming
and extending results and their clinical relevance.

Methods
Subjects
A total number of 269 patients (246Whites and 23 of Asian or
African descent) diagnosed with anti-LGI1 encephalitis and
referred to (1) the Oxford Autoimmune Neurology Group in
England with the contribution of the University of California,
San Francisco, and Mayo Clinic, Rochester, MN (n = 121),
and (2) the French Reference Center for Paraneoplastic
Neurological Syndromes and Autoimmune Encephalitis in
Lyon, France (n = 148), were included. Detection of anti-LGI1
antibodies in serum and/or CSF was performed, as previously
reported.2,20 HLA typing data on a subset of 68 patients
recruited through Oxford and 72 patients recruited through
Lyon have been previously published.8,16 The presence of FBDS

and clinical severity measured by the modified Rankin score
(mRS) at different stages of the disease (onset, maximum, and
last follow-up) and tumoral status were determined from clinical
or notes review.

Patients and controls recruited in Lyon were genotyped using
the Affymetrix PMRA array, whereas patients recruited in
Oxford were genotyped on Illumina GSAMD v1.0 and v2.0. A
subset of controls were drawn from a different cohort and
were genotyped with Illumina Infinium PsychArray-24 and
had high-resolution HLA sequencing. All genotype data op-
erations were performed using PLINK. All cohorts were im-
puted to the 1000 Genome Phase III21 after haplotype
phasing and merged using QCTOOL. High-quality imputed
calls (R2 ≥ 0.9) were used to extract genetic principal com-
ponents using PLINK. A Euclidean distance-based measure
was used to automatically match patients to the closest con-
trols in a 1:5 ratio.

HLA imputation was performed using HLA Genotype Im-
putation with Attribute Bagging.22,23 Overall HLA imputation
concordance was evaluated within a subset of 111 Oxford-
recruited patients16 and 71 patients recruited in Lyon8 who
were next-generation HLA-typed and found DRB1 concor-
dance to be 99.4% and 99.6%, respectively. No differences
were found between the Oxford and Lyon cohorts; thus, the
results were analyzed as a single group after matching control
subjects using principal component analysis (PCA). Geno-
types with an imputation probability lower than 0.3 were
removed.

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by local ethics committees, and
written informed consent was obtained from all the patients
for the storage and use of biological samples and clinical in-
formation for research purposes.

Statistical Analyses
Categorical variables are presented as percentages and
quantitative variables as means with SD. Although we report
uncorrected p values, our primary analyses were Bonferroni or
false discovery rate (FDR) corrected per allele over 5% carrier
frequency so that only findings corrected for multiple com-
parisons were discussed and pursued. These primary analyses
included (1) comparisons of HLA frequencies in all subjects
(HLA phenotype carrier analysis) and (2) effects of the “other
alleles” in DRB1*07:01 heterozygous subjects (compared with
heterozygous subjects and expected allele counts derived from
the control population). After these findings, we subsequently

Glossary
EPTP = epitempin; FBDS = faciobrachial dystonic seizure; FDR = false discovery rate; HLA = human leukocyte antigen;
LGI1 = leucine-rich glioma-inactivated 1; LRR = leucine-rich repeat; mRS = modified Rankin score; PCA = principal
component analysis.
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analyzed the effects of DRB1*07:01 homozygosity, differential
effects of DRB3;DRB1*07:01;DQA1*02:01;DQB1 hap-
lotypes, and effects in DRB1*07:01 negative cases, both within
the White subgroup using χ2 statistics and across ethnic groups
using general logistic regressions, with successive conditioning
of the various HLA-associated alleles and using population
principal component matching when necessary. These sec-
ondary analyses were not Bonferroni-corrected or FDR-
corrected because these were considered confirmatory. The
analytical plan followed was similar to that reported for nar-
colepsy by Ollila et al.24 A significance level was set at p < 0.05.
Analyses were performed using R.

Data Availability
Raw data are available on request to the corresponding author.

Results
Primary Association of DRB1*07:01 in Anti-
LGI1 Encephalitis
Consistent with previous studies,8,15-17,19 88.9% of the cases
(239/266, 3 patients removed because of low imputation
probability) carried HLA-DRB1*07:01 (Table 1), independent
of ethnicity. DRB1*07:01 homozygosity was associated with an
approximate doubling of risk in homozygous cases vs hetero-
zygous without the effects of homozygosity on disease onset
age or sex ratio (Table 1).

Extending on a previous study that has shown that the association
fades in the DQ region,16 we next explore the influence of poly-
morphisms closely linked toDRB1*07:01 in theDRB3 andDQB1
loci. Because DRB1*07:01 haplotypes come in 3 frequent cate-
gories,25 DQB1*03:03;DQA1*02:01;DRB1*07:01;DRB3*01:
03N, DQB1*02:02;DQA1*02:01;DRB1*07:01;DRB3*01:01,
and DQB1*02:02;DQA1*02:01;DRB1*07:01; DRB3*01:03,
we explored whether these haplotypes confer differential

predisposition. As given in Table 2, these haplotypes had
identical effects on disease predisposition. Because both
DQA1 and DQB1 variations contribute to the HLA binding
of the DQ molecule, this result suggests a primary effect of
DRB1*07:01 on disease predisposition.

Secondary Association of DPB1*03:01 and
DRB1*04:02 in Anti-LGI1 Encephalitis
We next studied the effects of DRB1 alleles in trans of DRB1*07:
01. To do so, we compared non-DRB1*07:01DRB1 allele counts
in trans of DRB1*07:01 positive cases (1) vs non-DRB1*07:01
DRB1 allele counts in trans of DRB1*07:01 positive controls
(Table 3, top) and (2) vs all non-DRB1*07:01 allele counts in
controls, a comparison which should be identical to that of non-
DRB1*07:01 allele counts in controls considering the Hardy-
Weinberg equilibrium (Table 3, middle and bottom, this com-
parison has more statistical power). Any identified allelic associ-
ation in the Hardy-Weinberg study was sequentially and
iteratively removed to explore whether another, yet unidentified
allele remained significant until no alleles remained significant. To
avoid issues with population structure matching in each stratum,
this analysis was performed inWhites only. DRB1*04:02, an allele
found in only 1.9% of controls, was significantly associated with
the disease (OR = 4.41, p = 2.16 × 10−3 in DRB1*07:01 positive
controls, and OR = 6.85, p = 4.57 × 10−6 in all controls’ allele
counts) in the DR7 heterozygous patients. Other effects included
the susceptibility effects of DRB1*09:01 and DRB1*01:01 and
protective effects of DRB1*15:01 and DRB1*13:02.

Similar results were observed using logistic regression analysis
across all ethnic groups in DRB1*07:01 heterozygous only
(eTable 1, links.lww.com/NXI/A694) and all loci with con-
trolling PCA (eTable 2, links.lww.com/NXI/A694), with an
addition of DPB1*03:01, another rare allele. DPB1*03:01 was
present in 218/1,358 controls and 8/269 patients in the
context of the DPA1*01:02;DPB1*03:01 (3% vs 16%, OR =
0.16, p = 3.56 × 10−04), and the effect was independent of

Table 1 Effect of DRB1*07:01 Zygosity on Anti-LGI Encephalitis Risks (Top), Age, and Sex (Bottom)

DRB1-DRB1 Casesa (n = 266) Controls (n = 1,330) p Valueb OR (95% CI) p Value OR (95%) CI)

07:01-07:01 0.113 (30) 0.017 (22) 8.18E-65 50.50 (25.84–98.68) 0.01 2.01 (1.13–3.58)

07:01-no 07:01 0.786 (209) 0.232 (308) 7.26E-84 25.97 (16.94–39.81) Ref Ref

No 07:01-no 07:01 0.102 (27) 0.752 (1,000) Ref Ref N/A N/A

DRB1-DRB1 Mean age ± SD

p Value

Male Female

Homozygous Heterozygous

t Test cis t Test trans p Value OR (95% CI) p Value OR (95% CI)

07:01-07:01 65.30 ± 9.24 0.916 N/A 0.122 (22) 0.091 (8) 0.831 0.83 (0.30–2.06) N/A N/A

07:01-no 07:01 65.50 ± 10.56 Ref 0.003 0.807 (146) 0.727 (64) Ref Ref 0.015 2.79 (1.18–6.68)

No 07:01-no 07:01 56.21 ± 15.31 N/A Ref 0.072 (13) 0.182 (16) N/A N/A Ref Ref

Abbreviations: LGI1 = leucine-rich glioma-inactivated 1; N/A = not applicable; Ref = reference.
Reference groups were used to compute p values and ORs. Cases and controls are reported in frequencies and sample size.
a Three patients were excluded because of low DRB1 imputation probability.
b Bonferroni corrected.
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other DRB1 effects. Unlike previously reported,16 we could
not confirm any independent effects in HLA-A, B, or C loci,
although expected class I alleles associated with DR7 haplo-
types were enriched in cases vs controls when not controlled
for the presence of DR7 (data not shown).

Association of DRB1*04:02 in Non-DRB1*07:01
Positive Anti-LGI1 Encephalitis Cases
We next explored the possibility of a residual HLA association in
the rare DRB1*07:01 negative patients with European ancestry
(Table 4). Strikingly, DRB1*04:02 was also overrepresented in

Table 2 Differential Effects of Various DR-DQ Haplotypes Carrying DRB1*07:01 on Disease Susceptibility

DQA1-DQB1-DRB1-DRB4 Casesa (n = 266) Controls (n = 1,329) p Valueb OR (95% CI) p Valueb OR (95% CI)

02:01-03:03-07:01-01:03 0.234 (62) 0.071 (95) 7.31E-39 24.17 (14.68–39.79) 0.195 0.76 (0.51–1.13)

02:01-02:02-07:01-01:03 0.309 (82) 0.081 (108) 7.31E-39 28.12 (17.43–45.35) 0.573 0.89 (0.61–1.28)

02:01-02:02-07:01-01:01 0.502 (133) 0.117 (156) 2.41E-72 31.57 (20.19–49.36) Ref Ref

Non-DRB1*07:01 0.102 (27) 0.752 (1,000) Ref Ref N/A N/A

Abbreviations: N/A = not applicable; Ref = reference.
Cases and controls are reported in frequencies and sample size.
a Three patients have been removed because of low imputation probability.
b Bonferroni corrected.

Table 3 Heterozygous and Hardy-Weinberg Study on DRB1*07:01 Anti-LGI1 White Patients

DRB1*07:01–X Cases (n = 190) Controls (n = 294) p Valuea OR (95% CI)

15:01 0.068 (13) 0.156 (46) 5.98E-03 0.40 (0.21–0.75)

13:02 0.005 (1) 0.061 (18) 4.29E-03 0.08 (0.01–0.61)

01:01 0.200 (38) 0.082 (24) 2.47E-04 2.81 (1.63–4.87)

04:02 0.084 (16) 0.020 (6) 2.16E-03 4.41 (1.70–11.49)

09:01 0.084 (16) 0.014 (4) 3.47E-04 6.67 (2.19–20.26)

Other alleles 0.556 (106) 0.667 (196) Ref Ref

Hardy-Weinberg DRB1*07:01–X Controls (n = 2,114) p Valueb OR (95% CI) Controls (n = 2,087) p Valueb OR (95% CI)

15:01 0.148 (313) 4.94E-02 0.42 (0.24–0.75) 0.150 (313) 4.98E-02 0.42 (0.23–0.74)

13:02 0.061 (128) 7.38E-03 0.08 (0.01–0.59) 0.061 (128) 7.33E-03 0.08 (0.01–0.58)

01:01 0.086 (181) 1.20E-04 2.67 (1.81–3.93) 0.087 (181) 1.48E-04 2.63 (1.79–3.88)

04:02 0.013 (28) 4.57E-06 6.85 (3.64–12.91) 0.013 (28) 5.38E-06 6.76 (3.59–12.74)

09:01 0.013 (27) 3.22E-06 7.11 (3.76–13.44) N/A N/A N/A

Other alleles 0.680 (1,437) Ref Ref 0.689 (1,437) Ref Ref

Hardy-Weinberg DRB1*07:01–X Controls (n = 2,059) p Valueb OR (95% CI) Controls (n = 1,878) p Valueb OR (95% CI)

15:01 0.152 (313) 3.61E-02 0.41 (0.23–0.73) 0.167 (313) 4.95E-03 0.37 (0.21–0.65)

13:02 0.062 (128) 7.46E-03 0.08 (0.01–0.57) 0.068 (128) 1.95E-03 0.07 (0.01–0.52)

01:01 0.088 (181) 2.79E-04 2.59 (1.76–3.82) N/A N/A N/A

04:02 N/A N/A N/A N/A N/A N/A

09:01 N/A N/A N/A N/A N/A N/A

Other alleles 0.754 (1,437) Ref Ref 0.765 (1,437) Ref Ref

Abbreviations: LGI1 = leucine-rich glioma-inactivated 1; N/A = not applicable; Ref = reference.
Reference groups were used to compute p values and ORs. Cases and controls reported in frequencies and sample size.
a Not corrected because of low sample size.
b False discovery rate corrected.
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these cases, indicating the effects of this allele both in DR7
positive and negative cases (OR = 8.93, p = 0.003). By contrast,
DRB1*09:01 and DRB1*01:01 were not associated with the
disease.

Clinical Associations
As reported previously,8 DRB1*07:01 negative subjects had a
younger age at onset (56.7 vs 65.5 years, mean age, p = 0.003)
and were more frequently female (53% vs 46%, p = 0.015).
Intriguingly, the presence of DRB1*04:02 was also associated
with reduced disease onset age (−6.7 years, p < 0.01, eTable 3,
links.lww.com/NXI/A694). However, this finding could not
be confirmed in DRB1*04:02 positive/DRB1*07:01 negative
cases because of the small sample size (n = 4), despite a very
low average age at onset (mean age;40 years old, p = 0.057)
in comparison with DRB1*07:01 positive patients (Table 5).

Next, these striking findings led us to examine whether
DRB1*04:02 could also associate with a different clinical pre-
sentation. To address this, we analyzed the effect of DRB1*07:
01 and DRB1*04:02 on the mRS scores at onset, maximal mRS
score, mRS score in the last visit, and the presence of FBDS
(eTable 4, links.lww.com/NXI/A694). The results showed a
moderate association of DRB1*04:02 with an increased mRS
score at onset (p = 0.049).

Additionally, we studied the association of DRB1*07:01 and
DRB1*04:02 in patients with tumors (n = 32) and matched
controls. Of 32 patients, 3 were diagnosed with malignant
thymoma, none of them carryingDRB1*07:01 or DRB1*04:02.

Conversely, in patients with tumors other than malignant
thymomas, we found that the association of DRB1*07:01 with
the disease status was also present and of the same magnitude
as in patients without tumor (eTable 5, links.lww.com/NXI/
A694).

HLA Binding Predictions
AsDRB1*07:01 andDRB1*04:02 share some residues (eFigure 1,
links.lww.com/NXI/A694), we finally examined if specific LGI-
derived peptides could bind uniquely to these subtypes. We
parsed the full-length sequences of LGI1 from the UniProt da-
tabase26 in the FASTA format (accession number O95970). We
used NetMHCIIpan4.027 with offset correction for DRB1*07:01
and DRB1*04:02 HLA binding prediction in consecutive over-
lapping peptides with a length of 15 amino acids. We considered
rank values ≤1 as strong binders, and >1 but ≤3 as medium
binders and compared DRB1*07:01 and DRB1*04:02 binding
spectrums with that of the remaining DRB1 (eTables 6 and 7,
links.lww.com/NXI/A694).

Thirty-three LGI1-derived peptides with a length of 15 amino
acids were predicted as medium/strong binders for DRB1*07:
01, encompassing 12 core-peptides located in both the LRR
and EPTP domains. This binding peptide-spectrum was
shared in more than 50% with DRB1*01:01, DRB1*04:01,
DRB1*09:01, and DRB1*16:01. However, only;18% of the
peptides predicted as medium/strong binders for DRB1*07:
01 (;30% of the binding cores) were predicted as well for
DRB1*04:02; thus, overlap with these predisposing subtypes
was low. The common medium/strong binders between

Table 4 Carriers Frequencies in European DRB1*07:01 Negative Subjects

Allele Cases (n = 25) Controls (n = 910) p Valuea OR (95% CI)

DRB1*04:02 0.160 (4) 0.021 (19) 2.50E-03 8.93 (2.79–28.54)

DRB1*09:01 0.000 (0) 0.025 (23) 1.000 0.00 (0.00–6.61)

DRB1*01:01 0.200 (5) 0.169 (154) 0.598 1.22 (0.35–3.43)

Cases and controls are reported in frequencies and sample size.
a p Value not corrected for multiple testing because of low sample size.

Table 5 DRB1*07:01 and DRB1*04:02 Alleles Effect on Age and Sex

Allele 1 Allele 2 Cases (n = 269) Mean age ± SD p Value Male (n = 181) Female (n = 88) p Value OR (95% CI)

DRB1*07:01 neg DRB1*04:02 pos 0.015 (4) 40.00 ± 17.14 0.057a 0.011 (2) 0.023 (2) 0.588 0.43 (0.59–0.40)

DRB1*07:01 pos DRB1*04:02 pos 0.059 (16) 63.00 ± 11.33 0.369 0.061 (11) 0.057 (5) 1.000 0.96 (0.31–2.89)

DRB1*07:01 neg DRB1*04:02 neg 0.093 (25) 58.00 ± 13.63 0.021 0.061 (11) 0.159 (14) 0.013 0.34 (0.15–0.80)

DRB1*07:01 pos DRB1*07:01 pos 0.112 (30) 65.30 ± 9.24 0.828 0.122 (22) 0.061 (8) 0.831 1.20 (0.50–2.85)

DRB1*07:01 pos DRB1*04:02 neg 0.721 (195) 65.70 ± 10.49 Ref 0.746 (135) 0.670 (59) Ref Ref

Abbreviation: Ref = reference.
Reference groups were used to compute p values and ORs. Cases and controls reported in frequencies and sample size.
a Note that DRB1*04:02 has an association with lower age at onset across all cases with the disease (eTable 3, links.lww.com/NXI/A694).
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DRB1*07:01 and DRB1*04:02 were predicted to bind with
other DRB1 as well (eTable 6, links.lww.com/NXI/A694).

In the LRR domain, 4 peptides with core FLFTPSLQL were
predicted to bind with DRB1*07:01 with ranks ≤1%, 3 of them
also binding to DRB1*09:01 and DRB1*16:01 with ranks >1%.
On the other hand, in the EPTP 6 domain, 4 peptides with
binding core IQRMPSRGSwere predicted as strong binders to
DRB1*04:01 with ranks ≤1% (Figure 1), only sharing binding
prediction with ranks >1%, with DRB1*04:04 (3 peptides),
DRB1*08:01 (1 peptide), and DRB1*11:04 (1 peptide).

Discussion
This study expands our understanding of the role ofHLA in anti-
LGI1 encephalitis. First, we confirmed that the disease is strongly
associated with DRB1*07:01 across different ethnicities. Second,
homozygosity for the main disease association allele was found
to be linked with an increased risk of developing the disease with
minor or no effects on disease presentation or age at onset,
suggesting a causal effect. This effect is similar to that observed in
other HLA class II autoimmune diseases associated with single
HLA class II heterodimers, such as narcolepsy with DQA1*01:
02-DQB1*06:02,24,28,29 celiac disease with DQA1*05-
DQB1*02,30,31 and rheumatoid arthritis with DRB1*04.32 An
explanation for these “allele dosage” effects may be that the
encounter between the HLA-DRB1*07:01, the initial auto-
antigen trigger, and CD4+ autoreactive T cells is a rare event that
can bemodeled as a stochastic process proportional toHLA class
II molecule amounts. This may contrast with effects on age at
onset, which has been shown to involve different HLA associa-
tions in many instances, possibly reflecting regulatory CD4+

T cells or subsequent CD8+ T-cell or B-cell effects. For instance,

DQB1*06:02/DQB1*03:01 heterozygosity but not DQB1*06:
02 homozygosity is strongly associated with an earlier age at
onset in narcolepsy.33

Another finding of this study is the observation of a strong
secondary predisposing association with a rare DRB1*04 sub-
type, DRB1*04:02. This association was significant in both
DRB1*07:01 heterozygous and DRB1*07:01 negative subjects.
DRB1*04:02 carriers appeared with an earlier age at onset and a
slightly increased severity. Younger age at onset was also ob-
served in DRB1*07:01 negative subjects, which moreover
showed a female predominance, confirming our previous re-
sults.8 Of interest, 3 rare cases withmalignant thymoma did not
carry DRB1*07:01 or DRB1*04:02, suggesting the absence of
HLA association. This mirrors our finding in diseases with
antibodies against contactin-associated protein-like 2 where
only nonparaneoplastic cases were associated with DRB1*11:
01.34 Patients with nonthymoma tumors did not differ in
DRB1*07:01 carrier frequency compared with nonparaneo-
plastic cases, suggesting that the presence of these diverse tu-
mors, unlike malignant thymoma, is coincidental.1,7,8 Of note,
the association between DRB1*07:01 or DRB1*04:02 and anti-
LGI1 encephalitis would increase in significance if these
thymoma-associated cases are removed from the analysis.

Possible associations were found with DRB1*09:01, a subtype
also associated with DQA1*03:01;DQB1*03:03.25 Because
DQB1*03:03 is also present in approximately one-third of
DRB1*07:01 haplotypes associated with the disease
(Table 2), this could suggest DQB1 effects additional to
DRB1*07:01 effects. We, however, believe this to be unlikely
because DRB1*07:01 predisposes to anti-LGI1 encephalitis,
independently of DQB1*03:03 (Table 1). Furthermore, this
association was present in Whites and Asians in trans of

Figure 1 Binding Affinities of LGI1 Cores to DRB1 Alleles AssociatedWith Anti-LGI1 Encephalitis andOther Common Alleles

Strong binders: rank ≤1% and medium binders: rank >1% and ≤3%. EPTP = epitempin; LGI1 = leucine-rich glioma-inactivated 1; LRR = leucine-rich repeat.
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DRB1*07:01 (eTable 1, links.lww.com/NXI/A694) but not
in DRB1*07:01 negative subjects (eTable 8). A predisposing
effect of DRB1*01:01 was also evident in trans of DRB1*07:
01 but was not present in DRB1*07:01 negative subjects. For
these reasons, these weaker and less consistent associations
will need confirmation alongside that of DRB1*04:02.

In addition to the above, we explored the possibility of residual
effects in other HLA genes after controlling for DRB1 effects. A
notable finding was a strong independent protective effect of
DPA1*01:02;DPB1*03:01, a finding distinct from previously
reported DPA1*02:01;DPB1*11:01 predisposing effects.16 Of
interest, DPB1*03:01 is a high-expression allele35 and has been
involved in susceptibility (not protection) to a number of other
autoimmune diseases, such as multiple sclerosis,36-38 severe
aplastic anemia,39 primary biliary cholangitis,40 and B27 negative
ankylosing spondylitis.41 By contrast, although HLA class I al-
leles known to be associated withDRB1*07:01, such as B*57:01,
B*44:03, C*06:02, and C*16:01, were increased in the sample
uncorrected for DRB1*07:01 (data not shown) as previously
reported,16 all HLA class I association disappeared after con-
trolling for the main DR7 association (data not shown).

To explore whether specific motifs of LGI1 could be involved in
these effects, we finally conducted peptide-binding prediction
analysis for critical DRB1 alleles. In contrast to other DRB1*04
molecules, DRB1*04:02, like DRB1*07:01, shares I and D at
positions 67 and 70 (eFigure 1, links.lww.com/NXI/A694),
positions critical to HLA pocket binding 4 (P4), possibly sug-
gesting that a similar LGI1 epitope could be involved. None-
theless, HLA binding predictions of LGI1-derived peptides in
addition to the differential association with age at onset and
severity suggest a different mechanism. Although DRB1*07:01
binds most strongly and independently of other alleles to the
beginning of the LRR 1 domain, DRB1*04:02 binds to higher
affinity at the beginning of the EPTP 6 domain (Figure 1). These
results suggest that the DRB1*04:02 association is related to an
independent epitope leading to anti-LGI1 autoimmunity. Tet-
ramer studies will be needed to explore these hypotheses.

In conclusion, our study confirmed a primary effect of DRB1*07:
01 on disease susceptibility and revealed solid novel HLA asso-
ciations with DRB1*04:02 and DPB1*03:01. The DRB1*04:02
association was notable because of a secondary effect on age at
onset and a slight increase of severity in bothDRB1*07:01 positive
and negative patients. This suggests that DRB1*04:02 positive
patients could represent a different subgroup or a modulation of
the existing sporadic phenotype that should be further explored.
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