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Abstract

In hierarchical perception-action (PA) learning, agents dis-
cover invariants between percepts and actions that are struc-
tured hierarchically, from very basic immediate links to higher-
level, more abstract notions. In practice, existing work tends to
either focus on the general theory at the expense of details of
the proposed mechanisms, or specify a-priori the contents of
some layers. Here, we introduce a framework that does with-
out such constraints. We demonstrate the framework in a sim-
ple 2D environment using an agent that has minimal percep-
tual and action abilities. We vary the perceptual abilities of the
agent to explore how the specifics of this aspect of the agent’s
body might affect PA learning and find unexpected conse-
quences. The contribution of this paper is therefore twofold,
(1) we add a novel framework to the literature on PA learn-
ing, using, in particular curiosity-based reinforcement learning
(RL) to implement the necessary learning mechanisms, and (2)
we demonstrate that even for very simple agents, the relation
between the specifics of an agent’s body and its cognitive abil-
ities is not straightforward.

Keywords: Perception Action Learning; Embodiment

Introduction
The common ground in theories of embodiment tends to be an
emphasis that cognition does not exist in some abstract vac-
uum but, rather, in a biological body acting in a physical and
social reality (Thill, 2019). What exactly this implies remains
a matter of debate, for example whether or not rejecting cog-
nitivism (as such positions tend to do) also entails rejecting
computationalism and/or representationalism (Villalobos &
Dewhurst, 2017), or what exactly the body actually adds. For
example, if the body is just a data source and sink, then this
need not have any strong consequences at all: one could still
conceive of the mind as computational, with the hard problem
being how whatever is being computed is connected to these
data sources and sinks. This route tends to lead to the symbol
grounding problem (Harnad, 1990), and is popular in areas
such as cognitive and developmental robotics (Cangelosi &
Schlesinger, 2015; Vernon, 2014).

With stronger notions of embodiment, such conclusions are
no longer straightforward (Ziemke & Thill, 2014; Ziemke,
2016) since those must also make stronger commitments to
what the body provides beyond the data source and sink.
One can thus argue that the body must somehow shape the
cognitive mechanisms themselves. In non-representationalist
paradigms, for example, much of enactivism and those that
group together under the term “4E cognition” (Newen, Bruin,

& Gallagher, 2018), this is a straightforward claim. In com-
putationalist paradigms, a possible way such shaping could
take place could be by determining either the representations
that computations operate on and/or the computational mech-
anisms themselves (Windridge & Thill, 2018). For exam-
ple, in the Semantic Pointer Architecture (Eliasmith, 2013),
the symbol-like “semantic pointers” are determined by the
sensorimotor experience of an agent, and are thus not arbi-
trary. Among the computational paradigms that are suited
for exploring the role of the body, those that explicitly fo-
cus on examining the linkage between perception and action
are particularly interesting. For the present purposes, we fo-
cus on perception-action (PA) learning (Felsberg, Wiklund, &
Granlund, 2009), chiefly because it offers a straightforward
approach to hierarchical architectures that are organised in
terms of levels of abstraction: lower levels of the hierarchy
learn very immediate linkages between perception and action
while higher levels build on those to learn increasingly ab-
stract notions. Such architectures tend to be subsumptive,
that is that higher level subsume the lower ones and con-
sequently, they provide a theory for how low-level subsym-
bolic cognitive mechanisms (such as sensorimotor cognition)
can be linked to higher ones that might operate in a symbol-
like manner. However, the actual learning mechanisms of PA
learning remain understudied, as a significant proportion of
the research is primarily theoretical, with very few actual im-
plementations (Granlund, 2006; Windridge, 2017). Further-
more, such implementations typically do not address all as-
pects of the architecture. The different layers can, for exam-
ple, be assigned roles a priori instead of allowing the system
to self-determine the appropriate level of abstraction for each
(Windridge, Felsberg, & Shaukat, 2013; Granlund & Moe,
2004).

The primary contribution of this paper is to address these
gaps with a general framework for PA learning. As a sec-
ondary contribution, we then use this framework to pro-
vide an example of how such architectures can help address
the question raised above – how precisely the body might
shape cognitive mechanisms. In the case of PA learning, this
amounts to what kind of links between percepts and actions
can be discovered by the architecture.

In the following, we first give the promised brief additional
details of PA learning, followed by a description of our frame-
work. We then describe a very simple simulated agent that
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implements this framework to learn a two-layer architecture
with no a priori roles defined from the outside. We vary the
perceptual abilities of this agent to demonstrate consequences
for the resulting architecture. Lastly, we discuss the impli-
cations. The code for the PA learning implementation and
results is available as a Github repository1.

Fundamental principles of PA learning
An agent that acts upon the world can learn to map those ac-
tions to the expected percepts (Granlund, 2006). The defining
feature of PA learning is then an “action first” approach, as it
is actions that are mapped onto expected percepts rather than
percepts mapped onto next actions. This therefore breaks
with the classic view of cognition as collecting percepts first,
reasoning about them second, and acting only as a conse-
quence (or what is known in robotics as the sense-think-act
paradigm). In practice, action and perception continuously
co-occur, and theories in embodied cognition routinely em-
phasise that it is not meaningful to clearly delineate perceiv-
ing, thinking and acting in the first place. Nonetheless, there
is clearly some relationship between percepts and actions and
taking an action-first approach has some immediate tangi-
ble consequence for how cognition is viewed – for example.
since the action space is much smaller than the theoretical
perceptual space, the fact that actions are used to gather per-
cepts, rather than the other way around, limits an agent’s ac-
tual perceptual space to only what it can observe as a result
of its actions. In other words, the agent learns to perceive
that which it is capable of changing within its environment
(Windridge, 2017).

Restricting the learning space to what the agent might fea-
sibly encounter is an important step, but it is insufficient by it-
self to capture all of the key elements of learning, or to enable
the emergence of more complex behaviours. To address this,
PA learning makes use of a subsumption hierarchy, in which
each layer of the hierarchy works at a different level of ab-
straction. Higher levels subsume the lower levels, such each
layer is defined by the invariants learned by the lower levels
of the hierarchy (Shevchenko, Windridge, & Kittler, 2009).
As lower levels get more fully developed, the level above can
be further abstracted and accomplish more complex tasks.

The general principle behind the development of such a hi-
erarchy involves exploration at each level (Windridge, 2017):
agent initially rely on motor babbling to randomly explore
their action space. This allows a basic mapping between ac-
tions and percepts to be created. The agent can now, through
such explorations, learn underlying principles of what pre-
ceptual changes stem from what actions. This allows the
identification of invariants in the linkage between action and
perception. Meaningful perceptual features and action com-
binations can be identified by the agent, and this forms the
initial layer of the hierarchy, from which it is now possible to
learn the next layer.

Once again, the agent will begin motor babbling, but this

1https://github.com/TaraCarette/PA_Learning_Agent

time using the invariants and increased pool of possible action
sequences from the layer below, leading eventually to the dis-
covery of more complex invariants. The same process can
repeat to learn increasingly complex mappings in successive
layers. PA learning thus mimics random exploration of dif-
ferent levels of complex behaviour that can also be observed
in humans: babies motor babble in fairly obvious ways when
first learning to navigate the world (Oudeyer, Kaplan, Hafner,
& Whyte, 2005). Adults do this as well, when they are pre-
sented with a new type of problem (Felsberg et al., 2009), al-
beit in a manner that might appear as meaningful exploration
as adults already have many established concepts about the
world. Nonetheless, within the new space, the actions can be
fairly randomized.

Agents that develop, over time, such a subsumption archi-
tecture using PA learning appear to carry out progressively
more meaningful actions, even if there is no explicit goal
to their behaviour. They simply become more adept at ex-
ploring increasingly complex relations between increasingly
complex action sequences and percepts in their environment.
Shevchenko et al. (2009) demonstrate this using a PA learning
agent that eventually solves a shape sorting task even without
being directly guided towards that goal.

The above describes the fundamental principles underly-
ing this type of learning: an action-first philosophy and a
subsumption architecture (Windridge et al., 2013; Granlund
& Moe, 2004). It also illustrates how PA learning is distinct
from similar theories, such as (hierarchical) predictive coding
(Clark, 2013; Rao & Ballard, 1999; Wacongne et al., 2011)
– for example, there is no particular committent to generative
models in a Bayesian sense. Beyond this core, however, many
specifics are left unarticulated in theoretical work or differ be-
tween implementations. How invariants are extracted from
the exploration, how new actions are meaningfully found,
how perceptual goals are decided upon, when the learning
is moved to a new layer, how layers pass commands to each
other, if upper layers should have an impact on the learning
of lower layers and to what extent (for example, Windridge
et al. (2013) improved a PA learning hierarchy implement-
ing a driver assistance system by adding top-down modula-
tion from an added top layer implementing fuzzy logic) and
other such questions still need to be asked when designing a
PA learning approach. The following section describes how
these are addressed here in a manner that is generalisable.

A general framework for PA learning
Scope
Here, we will focus on the necessary aspects for a function-
ing implementation of PA learning. The important elements
are therefore learning the relationships between percepts and
actions in an ‘action-first’ manner, and all the necessary ele-
ments to enable learning the subsumption hierarchy. In other
words, actions exploring the environment should guide learn-
ing, and learning should exist in multiple explicit layers that
handle different levels of action and percept complexities.
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This means that we do not address secondary aspects, such
as top-down feedback (mentioned above) here. Learning will
clearly still be possible, albeit possibly less efficient.

We also disregard very formal discoveries of actions.
Shevchenko et al. (2009) defines distinct stages of finding
perceptual goals, discovering which actions consistently lead
to those goals, and then pruning that action sequence down
to only what is actually required. Here, we only implement
one intrinsic motivation – curiosity – that implicitly leads the
agent to explore how to improve its internal models, resulting
in an implicit pruning process. As the agent learns to improve
its ability to predict what will happen next, if a sequence of
actions does not result in any learning, the agent will learn to
avoid that sequence.

Lastly, as will be evident in the next subsection, we use re-
inforcement learning (RL) for the actual learning. There are
no particularly strong constraints on how learning is imple-
mented exactly in PA approaches, however, since interaction
with the environment is key, RL is a good conceptual fit.

Putting the “learning” into “PA learning”

We implement learning using proximal policy optimisation
(PPO; Schulman, Wolski, Dhariwal, Radford, & Klimov,
2017), which is well suited to continuous control problems
that one would expect an agent implementing PA learning
to have to tackle. PPO can be implemented in actor-critic
algorithms, meaning that two elements get trained. The ac-
tor, which decides what action the agent should take (in other
words, the policy), and the critic, which predicts the value of
the state resulting from an action.

The choice of action to be carried out will thus be made in
function of the reward signal. The key is then to ensure that
rewards are given in a manner that promotes the successful
development of an internal model of the PA mappings. The
reward should therefore promote exploration of different ac-
tions in different areas of the environment as the agent learns
the ways it can interact with the world around it.

Exploration-based learning within an RL framework brings
us to curiosity-based learning, which has a number of paral-
lels with what PA learning intends to achieve. Both have an
intrinsic drive to improve their internal model of the world
rather than externally-set goals and achieve this by learning
to predict the consequences of their actions upon an external
world. In other words, if the actions of the policy are guided
by a curiosity-based reward, then the exploration-based ele-
ments of PA learning are captured. In addition, as informa-
tion only follows from the actions the agent takes, the ‘action
first’ philosophy is maintained. However, it is important to
note that curiosity-driven RL is not sufficient to implement
a full PA learning as it misses the subsumption architecture
aspect; we will address this in the next section.

To implement curiosity-based RL, we build on the Intrin-
sic Curiosity Module (ICM; Pathak, Agrawal, Efros, & Dar-
rell, 2017). ICM uses a forward model to predict the next
state given the current state and chosen action by the agent

as an input.2 The reward signal is then inversely related to
the quality of the prediction. In other words, if the forward
model can perfectly predict the outcome of an action, there is
nothing left to learn, so such actions get deprioritised, causing
the agent to explore less well understood parts of the environ-
ment. This operationalises curiosity.

ICM further implements feature detectors. These turn raw
sensory inputs into a lower-dimensional representation that
filters out meaningless information about states (in the sense
that it is not useful for training the forward model). From a
PA perspective, these feature detectors can be understood as
picking up on the invariants in the perception-action linkages
that the forward model can pick up on.

Subsumption architecture

Figure 1: The structure within a single layer of the PA archi-
tecture (explained in more detail in the text)

Each layer of our subsumption architecture first imple-
ments ICM’s forward model to obtain the rewards for the
curiosity-driven RL algorithm. The feature detector of each
layer will, however, serve as a perceptual input to the next
layer given that it will learn accessible invariants the cur-
rent layer. In other words, unlike the ICM implementation,
the forward model of the first layer does actually receive raw
perceptual inputs and the feature detector learns to represent
the invariants that the agent is able to discover on that basis.
The feature detector then serves as the input to the next layer,
where a new feature detector will learn the invariants that a
new forward model is capable of discovering given those in-
puts. This creates the subsumption hierarchy: each layer acts
given invariants from the layer below as inputs, thus moves
into increasingly complex spaces while subsuming the layer
below.

A notable difference between this implementation and
ICM is that the feature detector and the forward model it re-

2We note that the ICM implementation also includes inverse
models that help with planning goal-directed actions. We omit these
since they are not critical to our framework
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lates to exist on different layers and will not co-develop, since
layers are trained subsequently in PA architectures. We there-
fore use a separate “temporary” forward model (in the sense
that it is only active while the layer it belongs to is being
trained) to train the feature detectors of each layer.

Figure 2: The first and second layer of the PA architecture.
Note that, for illustrative purposes, we explicitly depict the
trained feature detectors that would belong to the first layer
(but, once trained, become available as inputs to the second
layer).

This concludes the general framework for PA learning pre-
sented here. Figure 1 visualises the implementation of a sin-
gle layer, while Figure 2 shows how multiple layers connect,
and thereby the final architecture. We now move on to the
proof of concept implementation.

Proof of concept
Simulation environment

Figure 3: The simple enclosed environment with various ob-
jects in purple and the agent in red

A minimalist 2D environment and agent (Figure 3) are cre-
ated using Unity3. As previously mentioned the mlagents
library4 is used for an off-the-shelf RL implementation. The
environment consists of a bounded arena filled with move-
able objects. The agent consists of a simple circular body.

3wwww.unity.com
4https://github.com/Unity-Technologies/ml-agents

In terms of actions, the agent is capable of (1) moving along
its 4 cardinal directions, (2) rotating on the spot, and (3) tog-
gling a “sticky” state on and off. If the sticky state is on,
objects touched by the agent become attached to it and will
move along. In other words, this is a rudimentary grasping
ability. In terms of sensing, the agent has proprioceptive abil-
ities, that is, it has information about its speed, whether it is
currently “sticky”, and current orientation with respect to the
environment. It has a touch sensor that informs about whether
or not it is currently in contact with something (but not what
that thing is) and, most importantly, its visual sensor is im-
plemented as a ray-tracing proximity sensor that for each of
the rays, returns the distance and colour of objects (includ-
ing the walls of the environment) up to some maximum dis-
tance. The agent implements the PA architecture described
above and has no externally assigned goals, all behaviour be-
ing driven by the curiosity-based RL within the architecture.

Experimental design

Figure 4: The three perceptual abilities implemented here,
varying number of rays and field of view. We term these mid-
dle, sparse, and wide agents respectively

We address two things in this environment. First, we
demonstrate that the agent is capable of developing the lay-
ers of the PA architecture, validating the general framework.
Second, we explore what consequences there are to changing
some aspects of the agent’s body. Given that this is a sim-
ple agent and environment, the options are rather limited. We
therefore manipulate the agent’s visual abilities by varying
the number of rays it can cast within a specific field of view
and improving its sensing abilities of the environment both by
increasing the field of view of the sensor and adding a second
one (Figure 4).

There is not that much that one can expect form these kind
of agents in this environment. Changes in percepts will be
driven by movement, and the sticky function might lead to
initially unexpected perceptual consequences. One would ex-
pect a PA hierarchy to capture these aspects, but there is no
a priori reason to expect the variations in sensing abilities to
significantly affect what the models and feature detectors in
each layer learn. It is also worth repeating that an important
aspect of this architecture is that there are no external con-
straints on what each layer should end up discovering. In
other words, the agent will develop its own levels of abstrac-
tion that do not necessarily have to map onto what humans
would find appropriate. This is a subtle point, but it follows
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from strong notions of embodiment that, if the embodiment
is very different from a human one, the same would be ex-
pected to apply to the agent’s cognitive abilities (Thill, Padó,
& Ziemke, 2014).

For the purposes of evaluation, we are primarily interested
in qualitative descriptions of the behaviour that the agent dis-
plays when driven by each layer of the architecture. Since the
architecture is sub-symbolic and no pre-conceived notions of
percepts, actions, or links between these are provided, there is
no straightforward way to inspect what each layer has learned
directly.

Results
PA learning

Figure 5: The losses during the development of the forward
models for two layers of the middle, sparse, and wide agents’
architecture respectively (with the second layer on the right).
Two example runs are shown to indicate the variation between
runs

Since we are training two separate aspects in each layer,
the forward model and the feature detector, we can inspect
the evolution of their loss during the lifetime of the agent.
Low losses for the forward model indicate learning of link-
ages between action and percepts, and low losses for the fea-
ture detector that the invariants are well captured. Note that
this says nothing about the quality of the behaviours discov-
ered, the completeness of the behavioural repertoire of the
agent, or similar aspects – just that, given the percepts and
actions available at that layer, a decent ability to model their
relationship has been achieved.

We find that the losses associated with feature detectors
consistently move to near-zero in all cases, indicating that the
feature detectors are able to learn invariants of whatever link-
ages exist between percepts and actions. We omit graphs for
these given their trivial nature and lack of space. As far as
the losses associated with the forward model are concerned
(Fig 5), they drop to low values for all agents on the first
layer, indicating that there remain some aspects that the for-
ward model cannot fully capture yet. For two of the agents,
the forward loss of the second layer then drops to near-zero,
indicating that those have now successfully explored their be-
havioural repertoire. For the wide agent, however, we find
an inability to improve the loss of the second layer’s forward
model. This suggests that this agent requires additional layers
to fully map its behavioural repertoire. Allowing it to develop
a third layer confirms this, with a loss that now settles at near-
zero (with the graph again omitted as it mimics those of the
second layer for the other two agents).

Overall, this demonstrates that the framework described
here is able to lead to the development of a PA architecture.
As noted, it says nothing about what behaviours are learned
at each layer, so we investigate these qualitatively.

Behaviours
Although the agent does not have any preconceptions about
what its percepts and action spaces are, we do, as previously
noted, have some notion of the kind of behaviours an agent
can discover in the given setting, and can therefore look at the
frequency of certain behaviours at different layers of the hier-
archy. We do this for touching walls, or objects, for toggling
the sticky function, for being in contact with objects while
sticky, and for movement and rotation (Figure 6 shows some
examples).

In general, all agents appear to end up with navigation abil-
ities in the first layer of the architecture, with significant ex-
ploration through movement but not much usage of the sticky
function. If the sticky function is used, this seems to be
brief and random, and not explored further. The behaviours
learned within the second layer – which now operates on the
invariants discovered in the first layer rather than the raw per-
cepts themselves – appear more interesting. The middle agent
appears to focus primarily on rotation, de-prioritising other
types of movement and not making use of its ability in prin-
ciple to interact with objects, or using its sticky function. In
comparison, while it likewise tends to favour rotation over
movement, the sparse agent explores contact with both ob-
jects and the walls. It learns to toggle its sticky function the
majority of the time, as it experiments with sticking primarily
to a single object. In other words, it acquires a new behaviour,
sticking to a single object, that it did not develop in the first
layer.

Finally, the wide agent also touches objects and walls. In
contrast to the sparse agent, it learns to toggle the sticky func-
tion less, thus staying in contact with an object whether sticky
or not. Unlike other agents, we also observe that the wide
agent tends to be in touch with multiple objects, sometimes
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Figure 6: Example frequencies of behaviours that agents show at each layer of the architecture. Figures show the amount of
time spent touching walls, using the sticky function on one or multiple objects, and the amount of time spent stationary (though
possibly still rotating). Not shown due to lack of space are the amount of time spent toggling the sticky function, touching
walls, and rotating.

wedging itself between them, and focuses more on movement
than rotation. We noted before that the forward loss for this
agent and layer does not decrease. Together, this suggests that
the wide agent, because of its increased interactions with ob-
jects compared to the other two agents, fails to learn to fully
predict the consequences of movements in all such situations.
Adding a third layer to this agent then reveals behaviour that
is similar to the second layer of the middle agent, indicating
that once more, the agent has discovered everything it is able
to discover about its perception-action abilities.

Discussion and conclusion
To summarise the results, our agents were able to develop
a PA architecture with different behaviours available at each
layer. Manipulating the perceptual abilities also resulted
in architectural differences that were somehow unexpected.
While all agents essentially develop movement behaviours
initially, only the sparse and wide agent go on to discover
object interactions subsequently. There are also qualitative
differences to their style of object interaction, with the sparse
agent more focussed on sticking to one object and the wide
agent exploring manipulating multiple objects.

It seems straightforward that the wide agent discovers more
complex object interaction abilities: given its nearly all-
encompassing field of view (Figure 4), it is better placed
than either other agent to actually perceive perceptual con-
sequences of multiple object interaction. It is less obvious
that the sparse agent discovers object interaction while the
middle agent does not. After all, the sparse agent has the
most restricted perceptual ability of all. There is not too much
point in speculating in detail as to why this may be the case.
We suspect that the richer perceptual field of the middle agent
causes more difficulty in learning to predict the consequences
of movement, so the curiosity-based RL continues to focus on

movement and rotation. For the sparse agent, because there
is less to predict, this problem might be reduced, leading to
increased curiosity about other possible actions. Similarly,
this would suggest that the wide agent is less concerned with
actual object interaction than it is with multiple objects in its
field of view causing perceptual changes that are difficult to
predict. Thus it seeks out situations involving multiple ob-
jects but without really exploring its ability to stick to them.

The curious result is therefore that it is the agent with the
poorest perceptual abilities that discovers the most about its
ability to move objects. In particular, this means that all other
agents also had access to the necessary perceptual informa-
tion, so their failure to discover their sticky abilities is not a
consequence of a lack of information. Even though this is a
simplistic setting, it therefore demonstrates how the body can
shape cognitive abilities of an agent in ways that are not triv-
ial to expect, and that there are relations between perceptual
and action abilities that traditional sense-think-act paradigms
cannot capture.

More generally, we have also demonstrated a framework
for PA learning that imposes no constraints on what any of
the layers can pick up on, demonstrating, in particular, the
viability of curiosity-based RL as a concrete learning mecha-
nism in PA architectures. There remains, of course, plenty of
scope to develop this further. In particular, the framework still
lacks top-down mechanisms that would allow the agent to use
its PA architecture for goal-directed (as opposed to merely
curiosity-driven) behaviour. Such improvements can be the
subject of future work.
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