
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Cohomology of Symplectic Manifolds

Permalink
https://escholarship.org/uc/item/4kj6k8ft

Author
Morrison, Daniel

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kj6k8ft
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Cohomology of Symplectic Manifolds

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Daniel Morrison

Dissertation Committee:
Associate Professor Li-Sheng Tseng, Chair

Professor Vladimir Baranovsky
Associate Professor Jesse Wolfson

2024



© 2024 Daniel Morrison



DEDICATION

To my family, for keeping me anchored to the world outside of math.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES v

ACKNOWLEDGMENTS vi

VITA vii

ABSTRACT OF THE DISSERTATION viii

1 Background 1
1.1 Symplectic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lefschetz Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Filtered Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Cone Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Computing the Cone Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Maps on Cone Cohomology 20
2.1 Restriction Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Inverting the Restriction Map . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Filter Reduction Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Gysin Sequence for Filtered Cohomology 31
3.1 Integration Along Fibers for Filtered Forms . . . . . . . . . . . . . . . . . . 32
3.2 Thom Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Inverse of the Thom Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 The Gysin Sequence for p-Filtered Cone Complex . . . . . . . . . . . 42

4 Applying Mayer-Vietoris to Cone Cohomology 44
4.1 Primitive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Higher Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Case 1: p < m− 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Case 2: p = m− 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Case 3: p = m− 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.4 Case 4: p = m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.5 Case 5: p > m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iii



5 Cone Cohomology on Non-Symplectic Manifolds 73
5.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Properties of the Cone Cohomology . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Application to Nilmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 82

Appendix A Cone Cohomology of Nilmanifolds 83

Appendix B Mathematica Code for Computing Cone Cohomology Dimen-
sions 102

iv



LIST OF TABLES

Page

4.1 Summary of cone cohomologies for M2, M1 ∩M2, and M̃2. . . . . . . . . . . 50
4.2 Dimension of kernel and cokernel terms in the primitive m > 2 case. . . . . . 58
4.3 Dimension of kernel and cokernel terms in the primitive m = 2 case. . . . . . 60
4.4 Action of Lefschetz map on a CPm−1 bundle. . . . . . . . . . . . . . . . . . . 62
4.5 Dimension of kernel and cokernel terms in the non-primitive p < m− 2 case. 68
4.6 Dimension of kernel and cokernel terms in the non-primitive p = m− 2 case. 69
4.7 Dimension of kernel and cokernel terms in the non-primitive p = m− 1 case. 70

v



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Li-Sheng Tseng for his consistent guidance and en-
couragement while completing this work.

vi



VITA

Daniel Morrison

EDUCATION

Doctor of Philosophy in Mathematics 2024
University of California - Irvine Irvine, California

Bachelor of Science in Mathematics 2018
University of Wisconsin - La Crosse Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2018–2022
University of California - Irvine Irvine, California

RESEARCH EXPERIENCE

Graduate Research Assistant 2022–2024
University of California, Irvine Irvine, California

vii



ABSTRACT OF THE DISSERTATION

Cohomology of Symplectic Manifolds

By

Daniel Morrison

Doctor of Philosophy in Mathematics

University of California, Irvine, 2024

Associate Professor Li-Sheng Tseng, Chair

Symplectic manifolds have many connections to complex manifolds but lack many of the

nice properties that come with a complex structure, especially the fact that symplectic man-

ifolds have no local properties that can differentiate them from other symplectic manifolds.

One of the most common global invariants of manifolds is the de Rham cohomology, but

this can only detect the topological structure of the manifold and discards the additional

symplectic structure. This work expands upon the definition of a cohomology theory specific

to symplectic manifolds, specifically based on a viewpoint which comes from the concept

of a mapping cone from homological algebra. We demonstrate how common operations on

differential forms can be extended to these cone cohomologies with particular focus on the

blowup along a symplectic submanifold. Additionally, we show how this approach can be

extended to other types of manifolds using nilmanifolds as an example.
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Chapter 1

Background

1.1 Symplectic Manifolds

The concept of a symplectic manifold has its origin in physics as a way of generalizing the

rules of classical mechanics. Namely, it isolates the properties that a 2-form needs to induce a

vector field which describes flow lines through phase space and a corresponding Hamiltonian.

In order for the system to have the properties that (1) the Hamiltonian is constant along

the flow and (2) the 2-form does not change along the flow it is necessary for the 2-form to

be closed and non-degenerate. This determines the definition of a symplectic manifold.

Definition 1.1. A symplectic manifold consists of a pair (M,ω) where ω ∈ Ω2(M) is both

closed and non-degenerate. We call ω the symplectic form.

One immediate consequence of the non-degeneracy of ω is that M must have even dimension,

say dimM = 2n, and ωn is a volume form which means M is orientable. Another important

result in symplectic manifolds is Darboux’s Theorem which states that symplectic manifolds

are locally the same.
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Theorem 1.2 (Theorem 8.1 of [2]). Let (M,ω) be a 2n-dimensional symplectic manifold

and p be any point in M . Then there is a coordinate chart (U , x1, . . . , xn, y1, . . . , yn) such

that on U

ω =
n∑

i=1

dxi ∧ dyi

Such a chart is called a Darboux chart.

This implies that symplectic manifolds cannot be distinguished by local invariants - only

global invariants can tell symplectic manifolds apart.

A common global invariant is the de Rham cohomology. The problem for symplectic mani-

folds is that de Rham cohomology only contains topological information about the manifold

so the choice of symplectic form isn’t represented. So if we want to study two different

symplectic forms on the same underlying manifold then de Rham cohomology is no help. A

different point of view taking into account the symplectic form is necessary to create a useful

cohomology.

1.2 Lefschetz Decomposition

The method used to develop the symplectic cohomology is similar to the Dolbeault coho-

mology on a complex manifold. On a complex manifold we can separate 1-forms into groups

of holomorphic and anti-holomorphic forms, which in turn induces a decomposition of the

exterior derivative as d = ∂ + ∂. We can then construct a chain complex with differential ∂

which produces the Dolbeault cohomology. In the symplectic case we use a decomposition

based on the symplectic form called the Lefschetz decomposition which produces a similar

decomposition of the exterior derivative.

We can define a trio of maps L = ω∧, Λ, and H which induce an sl2 structure on Ω(M) and
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allows us to uniquely decompose a general k-form as

Ak =
∑
r

LrBk−2r =
∑
r

ωr ∧Bk−2r

where the Bk−2r are all primitive forms [5]. We denote the collection of primitive s-forms as

Ps(M) all forms of the type LrBs with Bs primitive as Lr,s(M).

In Section 2.2 of [5] it is then shown that the exterior derivative decomposes as

d : Lr,s → Lr,s+1 ⊕ Lr+1,s−1

If we write d(LrBs) = LrBs+1 +Lr+1Bs−1 where Bs ∈ Ps(M) and Bs−1 ∈ Ps−1(M) then we

say that ∂+Bs = Bs+1 and ∂−Bs = Bs−1. This leads to the decomposition of the exterior

derivative

d = ∂+ + L∂−

From here [5] constructs two sets of primitive cohomologies:

PHs
∂+

(M) =
ker ∂+ ∩ Ps

∂+Ps−1

and

PHs
∂−(M) =

ker ∂− ∩ Ps

∂−Ps+1

for all s < n.

Unfortunately, these complexes are not elliptic on their own, but Proposition 2.8 of [5] shows

they can be connected by the map ∂+∂− : Pn(M) → Pn(M) to create a combined elliptic

complex, proving that they are finite dimensional.
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1.3 Filtered Cohomology

The cohomologies from the previous section are called primitive cohomologies since they

consist of only primitive forms - we have removed all other information. One could ask if

we could extend the ideas from the primitive cohomologies while keeping more than just

the primitive forms. The answer is to use a filter p, and increase our view to the set of all

forms whose Lefschetz decomposition has no more than a p power of ω. These forms are

called p-filtered and the space of all p-filtered k-forms is denoted F pΩk(M) [4]. Note that

this contains primitive forms as F 0Ωk(M) = Pk(M).

Section 2.2 of [4] shows that we can similarly extend the differential operators ∂+ : Ps(M) →

Ps+1(M) and ∂− : Ps(M) → Ps−1(M) to operators d+ : F pΩk(M) → F pΩk+1(M) and

d− : F pΩk(M) → F pΩk−1(M). As before, a connecting map is needed to create an elliptic

complex.

Theorem 1.3 (Theorem 3.1 of [4]). The following differential complex is elliptic for 0 ≤

p ≤ n.

0 F pΩ0 F pΩ1 · · · F pΩn+p−1 F pΩn+p

0 F pΩ0 F pΩ1 · · · F pΩn+p−1 F pΩn+p

d+ d+ d− d+

∂+∂−

d− d− d− d−

We denote these cohomologies by F pH0
+, . . . , F

pHn+p
+ , F pHn+p

− , . . . , F pH0
−. Note that since

each degree appears twice in the complex we distinguish the cohomologies on the the top

part of the complex with H+ and those on the bottom as H−. However, Proposition 4.8 of [4]

states that in the case that (M,ω) being a closed symplectic manifold we have F pHk
+(M) ∼=

F pHk
−(M).

While these cohomologies do satisfy our goal of being dependent on the choice of symplectic
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form (Section 4 of [5] computes an example where two different symplectic forms on a 6-

dimensional nilmanifold produce distinct cohomologies), a few problems remain. For one,

they are difficult to compute since we need to know how each form decomposes. They are also

not compatible with the wedge product. The fact that the degree of the forms increases from

0 to n + p then decreases back to 0 in particular means that the degrees are incompatible

with the wedge product, let alone the filter. This contrasts with the de Rham case with

Ω(M), d, and ∧ where we get a differential graded algebra structure. Section 5 shows that

we can define a product on the filtered cohomology but it is quite difficult to compute in

practice and fails to be associative. Instead an A∞ structure is needed for the filtered case.

1.4 Cone Representation

The answer to the computational issues raised by the filtered cohomology is by using an

isomorphic cone cohomology. From homological algebra we get the concept of the mapping

cone of a cochain complec. For each filter p we consider the cone due to the map

∧ωp+1 : Ωk(M) → Ωk+2p+2(M)

Section 3.1 of [3] discusses the details of this construction, but the result is a new cone

complex Cp(M) which consists of spaces

Ck
p (M) := Ωk(M) ⊕ Ωk−2p−1(M)

with differential dC (usually simply denoted d when there is no confusion) defined by

dC(Aj, Bk−2p−1) = (dAj + ωp+1 ∧Bk−2p−1,−dBk−2p−1)
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We will use a few notation conventions that make computations less confusing. The simplest

is that we will use jp = j − 2p − 1 since this will appear frequently and the standard

convention is that a cone element Cj ∈ Cj
p(M) has elements (Aj, Bjp) where it is understood

that Aj ∈ Ωj(M) and Bjp ∈ Ωjp(M) = Ωj−2p−1(M). The other notation is that we will write

a single element rather than an order pair by writing

(Aj, Bjp) = Aj + θBjp

where θ is a formal variable of degree 2p + 1 satisfying dθ = ωp+1. Using this notation the

exterior derivative and wedge product act as

dCj = d(Aj + θBjp) = dAj + ωp+1Bjp − θdBjp

and

Cj ∧ Ck = (Aj + θBjp) ∧ (Ak + θBkp) = Aj ∧ Ak + θ(Bjp ∧ Ak + (−1)jAj ∧Bkp)

The second equation uses that fact that since θ is odd degree we have θ2 = 0. This makes

the cone complex into a differential graded algebra.

At this point we need to show how this cone complex relates to the filtered complex. Defi-

nition 3.4 of [3] describes a pair of maps between the complexes.

Definition 1.4 (Definition 3.4 of [3]). f : Cj
p(M) → F j

p(M) is defined as

f(Cj) =


ΠpAj j ≤ n+ p

−Πp ∗r (dL−(p+1)Aj +Bjp) j > n+ p

6



and g : F j
p(M) → Cj

p(M) is defined as


g(αj) = αj −θL−(p+1)dαj j ≤ n+ p

g(αl) = −θ ∗r αl j > n+ p, l = 2n+ 2p+ 1 − j

Note here that because for j ≥ n+ p+ 1 a degree j element of F j
p(M) is actually an l-form

where l = 2n + 2p + 1 − j. The bar is used to denote that αl is a degree j element of the

complex and not a degree l element.

Remark 1.5. The notation has been altered from [3] to match the notation used here. The

other simplification in f is rewriting the Aj terms as Πp∗LpdΠp ∗r Aj = Lp∂+Π0 ∗r Aj =

Πp ∗r dL−(p+1)Aj. The proof of the final equality comes from:

Proof. First since ∗r is invertible it suffices to show for elements of the form ∗rAj. Then we

want to show Lp∂+Π0Aj = Πp ∗r dL−(p+1) ∗r Aj. Now,

Πp ∗r dL−(p+1) ∗r Aj = Πp(∗rd∗r)Lp+1Aj

= Πpd−L
p+1Aj

Since d− = ∂− + ∂+L
−1 can only decrease the grading by one, we only get something p-

graded from the primitive part of Aj and the ∂+L
−1 term of d−. Thus Πpd−L

p+1Aj =

∂+L
−1Lp+1Π0Aj. Now suppose we have a primitive element βj, we must show that ∂+L

pβj =

∂+L
−1Lp+1βj. Then Lpβj = L−1Lp+1βj unless we have Lp+1βj = 0 while Lpβj ̸= 0. This

requires p + 1 > n − j and p ≤ n − j respectively. Combining we get p = n − j. But then

Lp∂+βj = 0 as well since then n− (j + 1) = n− j − 1 = p− 1 < p.

These provide the quasi-isomorphisms we need:
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Lemma 1.6 (Lemma 3.7 of [3]). Both f and g are quasi-isomorphisms and H∗(F) ∼= H∗(C).

One result is that f and g allow the differential and wedge product on Cp to induce the

differential and product on Fp.

Lemma 1.7. dF = f ◦ dC ◦ g

Proof. Consider αj where j < n+ p, so

f(dC(g(αj))) = f(dC(αj − θL−(p+1)dαj))

= f(dαj − Lp+1L−(p+1)dαj + θdL−(p+1)dαj)

= Πp(dαj − Lp+1L−(p+1)dαj)

= Πpdαj

= d+αj

If j = n+ p then αj = Lpβn−p for βn−p primitive. Then,

f(dC(g(αj))) = f(dC(αj − θL−(p+1)dαj))

= f(dαj − Lp+1L−(p+1)dαj + θdL−(p+1)dαj)

= f(Πpdαj + θ∂+∂−βn−p)

= −Πp ∗r (∂+∂−βn−p)

= −ΠpLp(∂+∂−βn−p)

= −∂+∂−Lpβn−p

= −∂+∂−αj

8



Finally, if j > n+ p we have

f(dC(g(αl))) = f(dC(−θ ∗r αl))

= f(−Lp+1 ∗r αl + θd ∗r αl

= f(θd ∗r αl)

= −Πp ∗r d ∗r αl

= −Πpd−αl

= −d−αl

All match the definition of dF so the equality holds.

Lemma 1.8. αj × αk = f(g(αj) ∧ g(αk)).

Proof. First suppose that j, k ≤ n+ p. Then

g(αj) ∧ g(αk) =
(
αj − θL−(p+1)dαj

)
∧
(
αk − θL−(p+1)dαk

)
= αj ∧ αk − θ[(L−(p+1)dαj) ∧ αk + (−1)jαj ∧ (L−(p+1)dαk)]

If j + k ≤ n+ p applying f results in Πp(αj ∧ αk), if j + k > n+ p we get

Πp ∗r [−dL−(p+1)(αj ∧ αk) + (L−(p+1)dαj) ∧ αk + (−1)jαj ∧ (L−(p+1)dαk)]

9



Finally if j > n+ p, k ≤ n+ p we have

f [g(αj) ∧ g(αk)] = f [(−θ ∗r αj) ∧ (αk − θL−(p+1)dαk)]

= f [−θ(∗rαj) ∧ αk]

= Πp ∗r ((∗rαj) ∧ αk)

= ∗r((∗rαj) ∧ αk)

All cases match the definition of αj × αk.

Since Fp is an A∞ structure we need to consider the possibility of higher order maps.

Proposition 1.9 (Theorem 3.8 of [3]). With g1 as above, g2 = −θL−(p+1)m2
C(g ⊗ g), and

gl = 0 for l > 2 form an A∞ map gl : Fp → Cp.

We have f 1, and f 2 has been determined to be the below map. The existence of higher order

maps are unknown, but are hypthesized to be all zero like gl.

Theorem 1.10. f 2 = f
[
m2

C(G⊗ 1
2
(1 + gf)) +m2

C(1
2
(1 + gf) ⊗G

]
. Explicitly,

f 2(Cj ⊗ Ck) = f

[
GCj ∧

1

2
(1 + g ◦ f)Ck + (−1)j

1

2
(1 + g ◦ f)Cj ∧GCk

]

Proof. For simplicity we will simply write f and g instead of f and g.

(i) From the lemma we can see that we may rewrite

f(Cj) × f(Ck) = f [gf(Cj) ∧ gf(Ck)]

10



(ii)

dFf
2(Cj ⊗ Ck) = f [d(GCj ∧

1

2
(1 + gf)Ck + (−1)j

1

2
(1 + gf)Cj ∧GCk)]

= f [dGCj ∧
1

2
(1 + gf)Ck − (−1)jGCj ∧

1

2
(1 + gf)dCk

+ (−1)j
1

2
(1 + gf)dCj ∧GCk +

1

2
(1 + gf)Cj ∧ dGCk]

(iii)

f 2(d⊗ 1)(Cj ⊗ Ck) = f [GdCj ∧
1

2
(1 + gf)Ck − (−1)j

1

2
(1 + gf)Cj ∧GCk]

(iv)

f 2(1 ⊗ d)(Cj ⊗ Ck) = f [(−1)jGCj ∧
1

2
(1 + gf)dCk +

1

2
(1 + gf)Cj ∧GdCk]

Summing parts (ii), (iii), and (iv) gives

f [(dG+Gd)Cj ∧
1

2
(1 + gf)Ck +

1

2
(1 + gf)Cj ∧ (dg +Gd)Ck]

= f [(1 − gf)Cj ∧
1

2
(1 + gf)Ck

+
1

2
(1 + gf)Cj ∧ (1 − gf)Ck]

=
1

2
f [Cj ∧ Ck + Cj ∧ gfCk − gfCj ∧ Ck

− gfCj ∧ gfCk + Cj ∧ Ck − Cj ∧ gfCk

+ gfCk ∧ Ck − gfCj ∧ gfCk]

= f [Cj ∧ Ck] − f [gfCj ∧ gfCk]

= f [Cj ∧ Ck] − f(Cj) × f(Ck)

11



as desired. Note the final equality is due to the observation in (i).

Proposition 1.11. f 2(Cj ⊗ Ck) = (−1)jkf 2(Ck ⊗ Cj).

Proof. Using the same notation as above:

f 2(Cj ⊗ Ck) =
1

2
f
[
GCj ∧ (1 + gf)Ck + (−1)j(1 + gf)Cj ∧GCk

]
=

1

2
f
[
(−1)(j−1)k(1 + gf)Ck ∧GCj + (−1)j(−1)j(k−1)GCk ∧ (1 + gf)Cj

]
= (−1)jk

1

2
f
[
GCk ∧ (1 + gf)Ck + (−1)k(1 + gf)Ck ∧GCj

]
= (−1)jkf 2(Ck ⊗ Cj)

Proposition 1.12. f 2(Cj ⊗ Ck) = (−1)jkf 2(Ck ⊗ Cj).

Proof. Using the same notation as above:

f 2(Cj ⊗ Ck) =
1

2
f
[
GCj ∧ (1 + gf)Ck + (−1)j(1 + gf)Cj ∧GCk

]
=

1

2
f
[
(−1)(j−1)k(1 + gf)Ck ∧GCj + (−1)j(−1)j(k−1)GCk ∧ (1 + gf)Cj

]
= (−1)jk

1

2
f
[
GCk ∧ (1 + gf)Ck + (−1)k(1 + gf)Ck ∧GCj

]
= (−1)jkf 2(Ck ⊗ Cj)

12



1.5 Computing the Cone Cohomology

One may have noticed that the cone complex is very similar to the complex of differential

forms on a sphere bundle

S2p+1 E

M

where θ acts like the global angular form. In fact, if ω is integral class this does correspond to

a sphere bundle but the cone complex can be constructed for any ω. While we don’t always

have a sphere bundle, it is possible to resolve the Lefschetz maps via a Gysin sequence.

Namely, we have an exact triangle

H∗(X) H∗(X)

H∗Cp(X)

ωp+1∧

π∗π∗

where the maps are given by

π∗(ω) = ω π∗(Aj + θXBjp) = Bjp

This is the primary method of computing the cone cohomology when the de Rham coho-

mology is explicitly known. There is a filtered version of this exact triangle as Theorem 4.2

of [4] which we could also obtain by mapping the cone exact triangle via the maps f and g,

but this is much harder to compute.

We end the section with an explicit computation of the cone cohomologies of even dimensional

spheres and CPn as examples.
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Lemma 1.13.

HjCp(CPn) ∼=


R 0 ≤ j ≤ 2p even

R 2p+ 1 ≤ j ≤ 2n+ 1 odd

0 else

Proof. By the resolution sequence we have an exact sequence

· · · Hj
d(CPn) HjCp(CPn) Hj−2p−1

d (CPn) · · ·Lp+1 π∗ π∗ Lp+1

Since powers of the symplectic form generates the cohomology of CPn we have that Lp+1 :

H2k
d (CPn) → H2k+2p+2

d (CPn) is an isomorphism as long as k + p < n. Recall the odd

cohomology groups are all zero.

Then for j = 2k even we have H2kCp(CPn) ∼= H2k(CPn)/Lp+1(H2k−2p−2). By the above this

gives R when k ≤ p and 0 otherwise.

If j = 2k + 1 odd then H2k+1Cp(CPn) ∼= kerLp+1 : H2k−2p
d (CPn) → H2k+2

d (CPn). By the

above we then get R when p ≤ k ≤ n and 0 otherwise.

Lemma 1.14.

HjCp(S2n) ∼=


R j = 0, 2n+ 2p+ 1

R j = 2n, 2p+ 1, n ̸= p+ 1

0 else

Proof. Since Hj
d(S2n) = R for j = 0, 2n and is zero otherwise we can only expect non-zero

cone cohomology in indices j = 0, 2n, 2p + 1, 2n + 2p + 1. For each relevant index j the

resolution sequence gives:

j = 0 : 0 → H0(S2n) → H0Cp(S2n) → 0
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so H0Cp(S2n) ∼= H0(S2n) ∼= R.

j = 2n+ 2p+ 1 : 0 → H2n+2p+1Cp(S2n) → H2n(S2n) → 0

so H2n+2p+1Cp(S2n) ∼= H2n(S2n) ∼= R. If n ̸= p+ 1:

j = 2n : 0 → H2n(S2n) → H2nCp(S2n) → 0

so H2nCp(S2n) ∼= H2n(S2n) ∼= R

j = 2p+ 1 : 0 → H2p+1Cp(S2n) → H0(S2n) → 0

so H2p+1Cp(S2n) ∼= H0(S2n) ∼= R. If n = p+ 1:

j = 2n : H0(S2n) → H2n(S2n) → H2nCp(S2n) → 0

where the first map is an isomorphism. Then H2n(S2n) → H2nCp(S2n) must be surjective

and the zero map, so H2nCp(S2n) = 0.

j = 2p+ 1 : 0 → H2p+1Cp(S2n) → H0(S2n) → H2n(S2n)

where again the last map is an isomorphism. Then H2p+1Cp(S2n) injects into H0(S2n) via

the zero map so H2p+1Cp(S2n) = 0.

1.6 Summary of Results

In Chapter 2 we will study how common maps such as restrictions and projections extend

to the cone cohomology. Proposition 2.1 describes how we can extend the pullback of an
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embedding ι : X →M which preserves the symplectic structure:

Proposition 1.15. ι∗ : Cj
p(N) → Cj

p(M) is a chain map which commutes with the wedge

product.

Afterward we discuss how this restriction interacts with the resolution sequence and how

this result can be translated to a statement on the filtered cohomology. A computation of

the induced restriction map on the filtered complex is given in Proposition 2.2.

Lemma 2.2 then describes how a similar process works for a projection map which almost

preserves the symplectic structure.

Lemma 1.16. Let (X,ωX) and (Y, ωY ) be symplectic manifolds with dimY > dimX. Let

2n = dimX and 2m = dimY − dimX. Suppose that there is a map π : Y → X such that

π∗ωX = ωY + dµ for some µ ∈ Ω1(Y ). Then the following defines a chain map π̃ : Cj
p(X) →

Cj
p(Y ):

π̃(Aj + θXBjp) = π∗(Aj) − µ2p+1 ∧ π∗(Bjp) + θY π
∗(Bjp)

where µ2p+1 = µ ∧
∑p

j=0(π
∗ωX)p−j ∧ ωj

Y so that dµ2p+1 = (π∗ωX)p+1 − ωp+1
Y

Finally, the chapter ends with Proposition 2.3 and Proposition 2.4 which describe how re-

ducing the filter induces a map on the cone or filtered complex respectively.

Chapter 3 outlines the process for defining a Gysin sequence for the cone cohomology. To

start Lemmas 3.1 and 3.2 describe how to integrate over a fiber, for the sphere and disk case

respectively. The definition of integrating over a fiber is given by the below:

Lemma 1.17. π̃S
∗ (Aj + θE0Bjp) = πS

∗ (Aj + µ2p+1 ∧ Bjp) + θXπ
S
∗ (Bjp) defines a chain map

from Cj
p(E0) → Cj−2m+1

p (X).

where we use πS
∗ to denote integration of a standard form over the spherical fiber. Integrating
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over a disk, denoted π̃D
∗ , is defined in the same way except with πD

∗ which is the standard

integration over the disk fiber.

We can then use these maps to create the Thom isomorphism. Proposition 3.2 defines the

map

Proposition 1.18. The map π̃∗(Cj, Cj−1) = π̃S
∗ (Cj−1) − 1

2
π̃D
∗ (Cj) defines a homomorphism

from HCj
p(E,E0) to HCj−2m

p (X).

where the conjugate is defined so that Aj + θBjp = Aj − θBjp . Then Theorem 3.1 shows

that this map is an isomorphism. This results in the Gysin sequence in Theorem 3.2

Theorem 1.19 (Gysin Sequence for p-Filtered Cone Complex).

· · · Hj−2mCp(X) HjCp(X) HjCp(E0) Hj−2m+1Cp(X) · · ·∧(−1)je π̃ π̃S
∗

is an exact sequence of cohomology.

The first map is given by wedging with the Euler class, the second is induced by the projection

π : E0 → X, and the third is integration over the sphere fiber.

The objective of Chapter 4 is to establish how the dimension of the cone cohomology changes

when blowing-up a manifold along a submanifold. The main primitive case is shown below,

and Theorem 4.4 gives the corresponding non-primitive case.
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Theorem 1.20. The cone cohomology of M and M̃ are related by the formulas:

dimH2C0(M̃) = dimH2C0(M) + 1 − k1

dimH3C0(M̃) = dimH3C0(M) + 2g − k1 − k2

dimH4C0(M̃) = dimH4C0(M) + 1 − k2

dimH2m−1C0(M̃) = dimH2m−1C0(M) + k′2

dimH2mC0(M̃) = dimH2mC0(M) − 1 + k′1 + k′2

dimH2m+1C0(M̃) = dimH2m+1C0(M) + 1 − 2g + k′1

dimHkC0(M̃) = dimHkC0(M) otherwise

where k1, k2, k
′
2, k

′
1 are the rank of the restriction maps from H∗C0(M1) → H∗C0(M1 ∩M2)

in degrees 2, 3, 2m− 1, and 2m respectively.

Finally, in Chapter 5 we will explore how cone cohomology can be considered in a broader

context than just symplectic manifolds. Rather than specifically computing with the sym-

plectic form we change focus to see how the cone cohomology changes as we let dθ vary

over an entire cohomology space. Lemma 5.1 creates a bound on the dimension of the cone

cohomology.

Lemma 1.21. Let ψ ∈ H l(M). Then

dimHkC(ψ,M) ≤ dimHk(M) + dimHk−l+1(M)

for all k.

Then Proposition 5.1 specifies some cases where the cone cohomology in certain degrees is

equal to the de Rham cohomology.
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Proposition 1.22. Let ψ ∈ H l(M). If k < l then HkC(ψ,M) ∼= Hk(M), and if k > n then

HkC(ψ,M) ∼= Hk−l+1(M).

Corollaries 5.1 and 5.2 use this result to fully determine the cone cohomology of a n- or

n− 1- form on a n-dimensional manifold.

Appendix B describes Mathematica code for computing the cone cohomology of a nilman-

ifold, and Appendix A lists information about the cone cohomology of small dimension

nilmanfolds. Complete information is available for dimensions 3 through 5, as well as the

cone cohomology of 1-forms on a 6-dimensional nilmanifolds. Section 5.3 explains the process

used to compute this data and observes some patterns for potential future study.

The work in Chapters 2 through 4 is based on collaborations with Poom Lertpinyowong,

Chung-Jun Tsai, Li-Sheng Tseng, and Shing-Tung Yau and will appear in future publications.
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Chapter 2

Maps on Cone Cohomology

2.1 Restriction Map

The pullback is the primary map used in the study of forms so we’d like to determine how this

operation can be extended to cone elements. Consider two symplectic manifolds (M,ωM)

and (N,ωN), and suppose that ι : M → N is a map which preserves the symplectic structure

so that ι∗(ωN) = ωM . We may then extend the pullback ι∗ to cone elements by defining

ι∗ : Cj
p(N) → Cj

p(M) in the natural way:

ι∗(Aj + θNBjp) = ι∗(Aj) + θM ι
∗(Bjp)

Since the exterior derivative and wedge product commute with ι∗ and we assume ι∗(ωN) =

ωM we get the following proposition.

Proposition 2.1. ι∗ : Cj
p(N) → Cj

p(M) is a chain map which commutes with the wedge

product.
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Of particular interest is the case of an embedding ι : X → M of a submanifold X into M .

In that case we see ι∗ as restricting the domain of forms on M to forms on X, and this

extended pullback map as the restriction of cone elements to a submanifold.

Remark 2.2. This map is also compatible with the restriction map on the filtered cohomology

r : F j
p(M) → F j

p(X). Recall the maps f : Cp(M) → Fp(M) and g : Fp(M) → Cp(M) which

induce the isomorphism of the filtered cohomology and cone cohomology. We can compute

that r = f ◦ ι∗ ◦ g which gives the commutative diagram

Cp(M) Cp(X)

Fp(M) Fp(X)

ι∗

fg

r

This also demonstrates the benefit of working with the cone cohomology over the filtered

version - the cone version of the restriction map is much easier and clearer than the filtered

version.

We can explicitly compute the restriction map r : Fp(M) → Fp(X):

Proposition 2.3. r : F j
p → F j

p defined by


r(αj) = Πp(ι∗αj) j ≤ n+ p

r(αj) = Πp ∗r [ι∗(L−(p+1)dαj) − dL−(p+1)(ι∗αj)] n+ p < j ≤ n+m+ p

r(αl) = ∗r[ι∗(∗rαl)] j > n+m+ p

where l = 2(n+m+ p) + 1 − j, is a chain map.

Proof. Since r = f ◦ ι∗ ◦ g the chain map property is immediate, all we need to do is

compute the composition and show that it matches what is listed above. First suppose that
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j ≤ n+m+ p. Then

ι∗(g(αj)) = ι∗(αj − θML
−(d+1)αj) = ι∗(αj) − θXι

∗(L−(p+1)dαj)

If j < n+ p then f(ι∗(g(αj))) = πpι∗(αj) while if n+ p < j ≤ n+m+ p then

f(ι∗(g(αj))) = πp ∗r
[
ι∗(L−(p+1)dαj) − dL−(p+1)(ι∗(αj)

]
Now if j > n+m+ p we have

f(ι∗(g(αj))) = f(ι∗(−θM ∗r αj)) = f(−θXι∗(∗rαj)) = Πp ∗r ι∗(∗rαj) = ∗rι∗(∗rαj)

In all cases these match r(αj).

Since Fp is an A∞ algebra there is the potential for higher order parts of the restriction map.

We can compute r2 from the composition rules for A∞ morphisms, namely if g : A→ B and

f : B → C are A∞ morphisms then (f ◦ g)2 = f ◦ g2 + f 2(g ⊗ g). This results in

r2 = f ◦ ι∗ ◦ g2 + f 2((ι∗ ◦ g) ⊗ (ι∗ ◦ g))

Note there is no term for ι∗ since (ι∗)2 = 0. We can then compute each term directly:

f(ι∗(g2(αj ⊗ αk))) =


Πp ∗r

[
ι∗(L−(p+1)(αj ∧ αk))

]
j, k ≤ n+m+ p, j + k > n+ p+ 1

0 otherwise

f 2(ι∗(g(αj)) ⊗ ι∗(g(αk))) =
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(a) j + k ≤ n+ p+ 1

−LpΠ0ι∗
[
(L−(p+1)dαj) ∧ αk + (−1)jαj ∧ (L−(p+1)dαk)

]

(b) j ≤ n+ p, k > n+m+ p

1

2
(−1)jΠp ∗r

[
dL−(p+1) ((1 + Πp)ι∗αj ∧ Lpι∗(∗rαk))

− L−(p+1)dΠpι∗αj ∧ Lpι∗(∗rαk

]

(c) j, k ≤ n+ p, j + k > n+ p+ 1

1

2
Πp ∗r

[
(1 + Πp)ι∗αj ∧ L−(p+1)ι∗αk − L−(p+1)ι∗αj ∧ (1 + Πp)ι∗αk

+ (−1)jLpι∗(L−(p+1)dαj) ∧ L−(p+1)dΠpι∗αk)

− (−1)jL−(p+1)dΠpι∗αj ∧ Lpι∗L−(p+1)dαk

+ dL−(p+1)
[
Lpι∗L−(p+1)dαj ∧ (1 + Πp)ι∗αk

+ (−1)j(1 + Πp)ι∗αj ∧ Lpι∗L−(p+1)dαk

]]
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(d) j ≤ n+ p, n+ p < k ≤ n+m+ p, j + k > n+ p+ 1

−1

2
Πp ∗r

[
L−(p+1)ι∗αj ∧ ι∗αk − (1 + Πp)ι∗αj ∧ L−(p+1)ι∗αk

+ (−1)jLpι∗L−(p+1)dαj ∧ Πp∗(dL−(p+1)ι∗α + k − ι∗L−(p+1)dαk)

+ (−1)jL−(p+1)dΠpι∗αj ∧ Lpι∗L−(p+1)dαk

− dL−(p+1)(Lpι∗L−(p+1)dαj ∧ (1 + Πp)ι∗αk

+ (−1)j(1 + Πpι∗αj ∧ Lpι∗L−(p+1)dαk)
]

Proof. By the graded anti-symmetry of f 2 it suffices to compute f 2(Cj ⊗ Ck) when j ≤ k.

As usual we use f and g instead of f and g for simplicity in these calculations.

(a) First suppose that j, k ≤ n + p. Then ι∗g(αj)) = ι∗αj − θι∗(L−(p+1)dαj), Gι
∗g(αj) =

−Lpι∗(L−(p+1)dαj) + θL−(p+1)ι∗αj, and gf(ι∗g(αj)) = Πpι∗αj − θL−(p+1)dΠpι∗αj. The same

calculations hold for αk. Note that since in this case we assume j + k − 1 ≤ n + p we may

neglect the θ terms. Then:

f 2(Cj ⊗ Ck) =
1

2
f
[
(−Lpι∗(L−(p+1)dαj)) ∧ ((1 + Πp)ι∗αk)

+ (−1)j((1 + Πp)ι∗αj) ∧ (−Lpι∗(L−(p+1)dα)k)
]

= −1

2
ΠpLp

[
(ι∗(L−(p+1)dαj)) ∧ ((1 + Πp)ι∗αk)

+ (−1)j((1 + Πp)ι∗αj) ∧ (ι∗(L−(p+1)dα)k)
]

= −1

2
LpΠ0

[
(ι∗(L−(p+1)dαj)) ∧ ((1 + Πp)ι∗αk)

+ (−1)j((1 + Πp)ι∗αj) ∧ (ι∗(L−(p+1)dα)k)
]
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While the wedge product of primitive forms may not be primitive, we do know that only the

primitive terms can wedge to give a primitive result. Therefore we can simplify by adding

or removing higher order terms to the wedge products:

= −1

2
LpΠ0

[
(ι∗(L−(p+1)dαj)) ∧ (2ι∗αk) + (−1)j(2ι∗αj) ∧ (ι∗(L−(p+1)dα)k)

]
= −LpΠ0ι∗

[
(L−(p+1)dαj) ∧ αk + (−1)jαj ∧ (L−(p+1)dαk)

]

There is also the possibility that j = 0 and k = n+ p+ 1. Note that since αj is a zero form

this forces L−(p+1)dαj = 0 so ι∗g(αj) = ι∗αj and Gι∗g(αj) = 0. αk follows the same relations

as above except now gf(ι∗g(αk)) = −θΠp∗ι∗(∗rαk). Again since j+ k− 1 ≤ n+ p we neglect

θ terms so we get

f 2(Cj ⊗ Ck) =
1

2
f
[
(1 + Πp)ι∗αj ∧ (−Lpι∗(L−(p+1)dαk))

]
Now the same simplification techniques as in the first case apply so this reduces to

f 2(Cj ⊗ Ck) = −LpΠ0ι∗
[
αj ∧ (L−(p+1)dαk)

]
Finally we notice that this is equivalent to applying the j, k ≤ n + p formula taking j = 0

since the first term vanishes.

The other cases follow from similar computations but with less simplifications.

Since the resolution sequence of the Lefschetz map is a common way to compute the cone

cohomology using the de Rham cohomology, it is also useful to point out that this cone

restriction map is compatible with the resolution sequence. Recall that in cone representation

25



the resolution sequence looks like

H∗(M) H∗(M)

H∗Cp(M)

ωp+1
M ∧

π∗π∗

where

π∗(ω) = ω π∗(Aj + θMBjp) = Bjp

Then the restriction map is compatible with the resolution sequence in the following sense:

Lemma 2.4. If ι : X → M is an inclusion which preserves the symplectic structure, then

the following diagram commutes:

Hj
d(M) HjCp(M) Hj−2p−1

d (M)

Hj
d(X) HjCp(X) Hj−2p−1

d (X)

π∗

ι∗ ι∗

π∗

ι∗

π∗ π∗

Proof. This is immediate from the fact that the restriction map on cone elements acts on

each term separately.

While this is essentially a trivial statement in the cone setting it is worth mentioning that

there is an analogous statement about filtered cohomology and r that is still true but much

harder to verify computationally. In many cases it makes sense to show statements in

the cone cohomology setting and then use f and g to convert to statements about filtered

cohomology.
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2.2 Inverting the Restriction Map

Returning to the case of a submanifold (X,ωX) embedded in (M,ωM), we can choose to

identify a tubular neighborhood U of X in M such that ωM |U = ωX +dµ for some µ ∈ Ω1(U)

such that µ|X = 0. In this case ι∗ is an isomorphism of the de Rham cohomologies of X

and U , and the Five Lemma combined with the previous lemma implies an isomorphism

HjCp(U) ∼= HjCp(X). We compute this inverse map in a slightly more general case.

Lemma 2.5. Let (X,ωX) and (Y, ωY ) be symplectic manifolds with dimY > dimX. Let

2n = dimX and 2m = dimY − dimX. Suppose that there is a map π : Y → X such that

π∗ωX = ωY + dµ for some µ ∈ Ω1(Y ). Then the following defines a chain map π̃ : Cj
p(X) →

Cj
p(Y ):

π̃(Aj + θXBjp) = π∗(Aj) − µ2p+1 ∧ π∗(Bjp) + θY π
∗(Bjp)

where µ2p+1 = µ ∧
∑p

j=0(π
∗ωX)p−j ∧ ωj

Y so that dµ2p+1 = (π∗ωX)p+1 − ωp+1
Y

Proof.

π̃(dCj) = π̃(dAj + ωp+1
X ∧Bjp − θXdBjp)

= π∗(dAj + ωp+1
X ∧Bjp) − µ2p+1 ∧ π∗(dBjp) − θY π

∗(dBjp)

= dπ∗(Aj) + (π∗ωX)p+1 ∧ π∗(Bjp) − µ2p+1 ∧ π∗(dBjp) − θY π
∗(dBjp)

= dπ∗(Aj) + (ωp+1
Y + dµ2p+1) ∧ π∗(Bjp) − µ2p+1 ∧ π∗(dBjp) − θY π

∗(dBjp)

= d(π∗(Aj) − µ2p+1 ∧ π∗(Bjp) + θY π
∗(Bjp))

= dπ̃(Cj)

27



2.3 Filter Reduction Map

Another basic operation we can do is to reduce the filtration, in the filtered cohomology case

this corresponds to removing terms from the Lefschetz decomposition of a form. Consider a

symplectic manifold (M,ωM). Since the manifold doesn’t change but the filter does we will

use θp+q for the formal variable on Cp+q(M) and θp for the variable on Cp(M). We will define

the cone representation of this map by q : Cj
p+q(M) → Cj

p(M) where

q(Ap+q + θp+qBjp+q) = Ap+q + θωq
M ∧Bjp+q

Proposition 2.6. q is a chain map which commutes with the wedge product.

Proof. To show it is a chain map:

q(dCj) = q(dAp+q + ωp+q
M ∧Bjp+q − θp+qdBjp+q)

= dAp+q + ωp+q
M ∧Bjp+q − θpω

q
M ∧ dBjp+q

= d(Ap+q + θpω
q
M ∧Bjp+q)

= dq(Cj)

For the wedge product, consider cone elements Cj and Ck in Cp+q(M) of degree j and k
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respectively. Then,

q(Cj ∧ Ck) = q(Aj ∧ Ak + θp+q(Bjp+q ∧ Ak + (−1)jAj ∧Bkp+q))

= Aj ∧ Ak + θpω
q
M ∧ (Bjp+q ∧ Ak + (−1)jAj ∧Bkp+q)

= Aj ∧ Ak + θp((ω
q
M ∧Bjp+q) ∧ Akp+q + (−1)jAj ∧ (ωq

M ∧Bkp+q))

= (Aj + θpω
q
M ∧Bjp+q) ∧ (Ak + θpω

q
M ∧Bkp+q)

= q(Cj) ∧ q(Ck)

Again we can use this to find the correspoding map on the filtered cohomology.

Proposition 2.7. l : F j
p+q(M) → F j

p(M) defined by


l(αj) = Πp(αj) j ≤ n+ p

l(αj) = −Πp ∗r dL−(p+1)αj n+ p < j ≤ n+ p+ q

l(αl) = L−qαl j > n+ p+ q, l = 2(n+ p+ q) + 1 − j

is a chain map.

Proof. As with r this is immediate from l = f ◦ q ◦ g and all we need to do is compute. First

suppose that j ≤ n+ p+ q so

q(g(αj)) = q(αj − θp+qL
−(p+q+1)dαj) = αj − θpL

qL−(p+q+1)dαj

If j ≤ n+ p then

f(q(g(αj))) = Πpαj
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and if n+ p < j ≤ n+ p+ q

f(q(g(αj))) = Πp ∗r
[
LqL−(p+q+1)dαj − dL−(p+1)αj

]
= −Πp ∗r dL−(p+1)αj

The first term vanishes since L−(p+q+1)dαj is only non-zero for terms of the form Lp+qβj−2p−2q

where βj−2p−2q ∈ Pj−2p−2q(M). Then we get

Πp ∗r Lq∂−βj−2p−2q = ΠpLn−j+2p+q+1∂−βj−2p−2q

Then we only get a non-zero term if n− j + 2p+ q + 1 ≤ p, or j ≥ n+ p+ q + 1. But then

αj = 0 since p+ q < p+ q + 1 ≤ j − n.

Now if j > n+ p+ q we have

f(q(g(αj))) = f(q(−θp+q ∗r αj)) = f(−θpLq ∗r αj) = Πp ∗r (Lq ∗r αj) = ΠpL−qαj = L−qαj

since αj is p+ q graded.

All terms match l(αj).

As with r2 we can compute l2 = f ◦ q ◦ g2 + f 2((q ◦ g)⊗ (q ◦ g)). Computing each term gives:

f(q(g2(αj ⊗ αk))) =


Πp ∗r (LqL−(p+1)(αj ∧ αk)) j, k ≤ n+ p+ q, j + k > n+ p+ 1

0 otherwise
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Chapter 3

Gysin Sequence for Filtered

Cohomology

Another potential action we can consider is the idea of mapping a bundle and the base

manifold by integrating over fibers. One application of this idea is to use these actions

to relate the cohomologies of a base manifold and a sphere bundle, and in this section we

develop those techniques for the cone cohomology.

Setting 3.1. The following notions will be used throughout this section.

1. (X2n, ωX) is a symplectic manifold with Cm-vector bundle π : E → X such that ω =

π∗ωX + dµ

2. µ2p+1 = µ ∧
∑p

j=0 ω
p−j ∧ π∗ωj

X so that dµ2p+1 = ωp+1 − π∗ωp+1
X

3. E0 = E \X is also a symplectic manifold with ω

4. Fix a disk bundle D ⊂ E, and let S = ∂D be the boundary sphere bundle

5. πD
∗ : Ωj(E) → Ωj−2m(X) is an operator defined by restriction to D then integration
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along fibers. It commutes with the exterior derivative and πD
∗ (π∗(τk)∧Cj = τk∧πD

∗ (Cj)

for τk ∈ Ωk(X), Cj ∈ Ωj(E)

6. πS
∗ : Ωj(E0) → Ωj−2m+1(X) is an operator defined by restriction to S then integration

along fibers. It commutes with the exterior derivative and πS
∗ (π∗(τk)∧Cj) = τk∧πS

∗ (Cj)

for τk ∈ Ωk(X), Cj ∈ Ωj(E0)

7. By Stoke’s Theorem πS
∗ (Cj) = πD

∗ (dCj) = dπD
∗ (Cj) for Cj ∈ Ωj(E)

8. There exists Ψ ∈ Ω2m−1(E0) such that πS
∗ (Ψ) = 1 and dΨ = −π∗e for e ∈ Ω2m(X)

3.1 Integration Along Fibers for Filtered Forms

First we define what it means to integrate cone forms over a fiber, both in the sphere bundle

and disk bundle case.

Lemma 3.2. π̃S
∗ (Aj +θE0Bjp) = πS

∗ (Aj +µ2p+1∧Bjp)+θXπ
S
∗ (Bjp) defines a chain map from

Cj
p(E0) → Cj−2m+1

p (X).
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Proof.

dπ̃S
∗ (Cj) = d(πS

∗ (Aj + µ2p+1 ∧Bjp) + θXπ
S
∗ (Bjp)

= πS
∗ (dAj + dµ2p+1 ∧Bjp − µ2p+1 ∧ dBjp) + ωp+1

X ∧ πS
∗ (Bjp) − θXπ

S
∗ (dBjp)

= πS
∗ (dAj + ωp+1 ∧Bjp − π∗ωp+1

X ∧Bjp − µ2p+1 ∧ dBjp)

+ ωp+1
X ∧ πS

∗ (Bjp) − θXπ
S
∗ (dBjp)

= πS
∗ (dAj + ωp+1 ∧Bjp − µ2p+1 ∧ dBjp) − θXπ

S
∗ (dBjp)

= π̃S
∗ (dAj + ωp+1 ∧Bjp − θE0dBjp)

= π̃S
∗ (dCj)

Note that the above proof only uses the properties of π̃S
∗ that are shared with π̃D

∗ . Therefore

we also have that

Lemma 3.3. π̃D
∗ (Aj +θEBjp) = πD

∗ (Aj +µ2p+1∧Bjp)+θXπ
D
∗ (Bjp) defines a chain map from

Cj
p(E) → Cj−2m

p (X).

Now we define the conjugate of a cone form which will let us form a relation between π̃D
∗

and π̃S
∗ .

Definition 3.4. For Cj ∈ Cj
p(M) we define the conjugate Cj = Aj − θMBjp.

Lemma 3.5. dCj + dCj = 2(dAj + θdBjp)
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Proof.

dCj + dCj = d(Aj − θBjp) + dAj + ωp+1 ∧Bjp − θdBjp

= dAj − ωp+1 ∧Bjp + θdBjp + dAj + ωp+1 ∧Bjp + θdBjp

= 2(dAj + θdBjp)

Proposition 3.6. dπ̃D
∗ (Cj) + π̃D

∗ (dCj) = 2π̃S
∗ (Cj)

Proof. From the previous lemma and the definition of π̃D
∗ we have

dπ̃D
∗ (Cj) + π̃D

∗ (dCj) = 2(dπD
∗ (Aj + µ2p+1 ∧Bjp) + θXdπ

D
∗ (Bjp))

= 2(πS
∗ (Aj + µ2p+1 ∧Bjp) + θXπ

S
∗ (Bjp))

= 2π̃S
∗ (Cj)

3.2 Thom Isomorphism

At this point we can follow the usual method of proving the Thom Isomorphism:

Definition 3.7. The relative p-filtered cone complex is defined to be

Cj
p(E,E0) = Cj

p(E) ⊕ Cj−1
p (E0)

with differential d(Cj, Cj−1) = (dCj, Cj − dCj−1)
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Lemma 3.8. The relative p-filtered cone cohomology satisfies the following long exact se-

quence:

· · · → HjCp(E,E0) → HjCp(E) → HjCp(E0) → Hj+1Cp(E,E0) → · · ·

Proof. The proof of this statement is the exactly the same as the de Rham version. See Prop

6.49 of [1] for more details.

Proposition 3.9. The map π̃∗(Cj, Cj−1) = π̃S
∗ (Cj−1) − 1

2
π̃D
∗ (Cj) defines a homomorphism

from HCj
p(E,E0) to HCj−2m

p (X).

Proof.

π̃∗(d(Cj, Cj−1)) = π̃∗(dCj, Cj − dCj−1)

= π̃S
∗ (Cj − dCj−1) −

1

2
π̃D
∗ (dCj)

= π̃S
∗ (Cj) − dπ̃S

∗ (Cj−1) +
1

2
dπ̃D

∗ (Cj) − π̃S
∗ (Cj)

= −dπ̃S
∗ (Cj−1) +

1

2
dπ̃D

∗ (Cj)

= −dπ̃∗(Cj, Cj−1)

The following is a useful lemma for reducing

Lemma 3.10. Hj(M) = Hj−2p−1(M) = 0 implies that HCj
p(M) = 0.

Proof. Suppose Cj ∈ HCj
p(M) is closed, so

0 = dCj = dAj + ωp+1 ∧Bjp − θMdBjp
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so dBjp = 0 and dAj +ωp+1∧Bjp = 0. Then Bjp ∈ Hj−2p−1(M) and therefore must be exact,

say Bjp = −dBjp−1. Now

d(Aj − ωp+1 ∧Bj−1) = dAj − ωp+1 ∧ dBjp−1 = dAj + ωp+1 ∧Bjp = 0

so Aj − ωp+1 ∧Bjp−1 is also exact and then equal to dAjp−1. Finally

d(Ajp−1 + θMBj−1) = Aj − ωp+1 ∧Bjp−1 + ωp+1 ∧Bjp−1 − θMdBjp−1 = Aj + θMBjp = Cj

is exact.

Lemma 3.11 (Poincaré Lemma for Cp). Let U be diffeomorphic to a disk with symplectic

form ω, then HjCp(U) = 0 for all j ̸= 0, 2p+1. H0Cp(U) = H2p+1Cp(U) = R with generators

1 and ωp ∧ a− θU where ω = da for some a ∈ Ω1(U).

Proof. By the de Rham Poincaré Lemma the only non-trivial de Rham cohomology is in

degree zero generated by 1. From the previous lemma we then only get non-zero cohomology

in degree j = 0 and j = 2p+ 1. The j = 0 case is immediate from H0Cp(U) = H0(U).

For j = 2p+ 1, Cj ∈ HjCp(U) means that Bjp ∈ Ω0(U) and therefore proportional to 1. For

convenience we will take Bjp = −1. Then the closed condition requires dAj = ωp+1, and

Aj = ωp ∧ a satisfied this condition giving the generator ωp ∧ a− θU . Any other solution is

cohomologous to ωp ∧ a and so gives no new cohomology classes.

Lemma 3.12. Let U ⊂ X be an open set diffeomorphic to a disk. Then π̃∗ induces an

isomorphism between HjCp(E|U , E0|U) and Hj−2mCp(U).

Proof. Let ωX |U = da for a ∈ Ω1(U) and e|U = db for b ∈ Ω2m−1(U). By previous lemma

we have
⊕

j H
jCp(U) = R2 with generators 1 and ωp ∧ a− θU . Similarly EU is topologically

a disk so it has generators 1 and ωp ∧ (π∗a + µ) − θE, note the addition of µ since ω =
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π∗ωX + dµ = d(π∗a+ µ).

E0|U is a (2m−1)-sphere with generator Ψ+π∗b for H2m−1(E0|U). By the resolution sequence

and Lemma 3.10 we may only have non-trivial cohomology in degree 0, 2p+ 1, 2m− 1, and

2m + 2p. As before we have generators 1 and ωp ∧ (π∗a + µ) − θE0 . The degree 2m − 1

generator is Ψ + π∗b, taken from H2m−1(E0|U). The final element is the wedge product

(ωp ∧ (π∗a+ µ) − θE0) ∧ (Ψ + π∗b).

Now by Lemma 3.11 ⊕jH
jCp(E|U , E0|U) = R2 with generators in degree 2m and 2m+2p+1

given by those on E0|U . What remains is to check that these map to the corresponding

generators of ⊕jH
jCp(U) under π̃ which acts as π̃S

∗ on these generators.

π̃S
∗ (Ψ + π∗b) = πS

∗ (Ψ + π∗b) = 1 + b ∧ πS
∗ (1) = 1

for degree reasons.

For the second generator we have

π̃S
∗ ((ωp∧(π∗a+µ)−θE0)∧(Ψ+π∗b)) = πS

∗ ((ωp∧(π∗a+µ)−µ2p+1)∧(Ψ+π∗b))−θUπS
∗ (Ψ+π∗b)

By the same calculation as above we immediately see the second term is −θU as desired. It

remains to show the first term is equal to ωp ∧ a.

We will show that the first term maps to ωp ∧ a by induction on p. If p = 0, then µ2p+1 = µ

and we have

πS
∗ (π∗a ∧ (Ψ + π∗b)) = a ∧ πS

∗ (Ψ + π∗b) = a

Now take p > 0. Similar to µ2p+1 we can define µ2p−1 = µ ∧
∑p−1

j=0 ω
j ∧ π∗ωp−1−j

X which

satisfies the relation ωp = π∗ωp
X + dµ2p−1. From the similar structure of µ2p+1 and µ2p−1 we
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also obtain the relation µ2p+1 = π∗ωX ∧ µ2p−1 + µ ∧ ωp. Then

ωp ∧ (π∗a+ µ) − µ2p+1 = ωp ∧ π∗a− π∗ωX ∧ µ2p−1

= (π∗ωX + dµ) ∧ ωp−1 ∧ π∗a− π∗ωX ∧ µ2p−1

= π∗ωX ∧ (ωp−1 ∧ π∗a− µ2p−1) + dµ ∧ ωp−1 ∧ π∗a

= π∗ωX ∧ (ωp−1 ∧ π∗a− µ2p−1) + d(µ ∧ ωp−1 ∧ π∗a)

+ µ ∧ ωp−1 ∧ π∗ωX

= π∗ωX ∧ (ωp−1 ∧ (π∗a+ µ) − µ2p−1) + d(µ ∧ ωp−1 ∧ π∗a)

Since πS
∗ is a chain map and Ψ + π∗b is closed, the d(µ ∧ ωp−1 ∧ π∗a) will result in an exact

term which can be neglected. What remains is

πS
∗ [π∗ωX ∧ (ωp−1 ∧ (π∗a+ µ)−µ2p−1) ∧ (Ψ + π∗b)]

= ωX ∧ πS
∗ [(ωp−1 ∧ (π∗a+ µ) − µ2p−1) ∧ (Ψ + π∗b)]

= ωX ∧ ωp−1
X ∧ a

= ωp ∧ a

as was desired.

Theorem 3.13. Suppose X is of finite type. Then π̃∗ : HjCp(E,E0) → Hj−2mCp(X) is an

isomorphism.

Proof. By standard Mayer-Vietoris argument if U and V are open subsets of X we then have

a short exact sequence of the relative cone complex
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0 → Cj
p(E|U∪V , E0|U∪V ) → Cj

p(E|U , E0|U) ⊕ Cj
p(E|V , E0|V ) → Cj

p(E|U∩V , E0|U∩V ) → 0

which induces a long exact sequence of relative cohomology. Similarly there is a correspond-

ing sequence of cone cohomology on U ∪ V . π̃∗ maps between these two sequences. If the

diagram commutes, since π̃∗ is an isomorphism over U, V, U ∩ V the five lemma implies the

isomorphism on U ∪ V . The only non-trivial part to check is with the connecting homomor-

phisms:

· · · HjCp(E|U∩V , E0|U∩V ) Hj+1Cp(E|U∪V , E0|U∪V ) · · ·

· · · Hj−2mCp(U ∩ V ) Hj−2m+1Cp(U ∪ V ) · · ·

π̃∗

gj

π̃∗

fj−2m

Let ρ be a smooth function defined on U ∪ V which is 1 on U \ V and 0 on V \ U . The

connecting homomorphisms are defined by

fj−2m(Cj−2m) = d(ρCj−2m)

gj(Cj, Cj−1) = (−d(π∗ρ Cj), d(π∗ρ Cj−1) − π∗ρ Cj)

Here gj differs from the usual definition by a minus sign. Note that the result looks like an

exact form, but is not the case since a term like ρCj−2m is only defined on V because on

U \ V Cj−2m is undefined but ρ ̸= 0. Then the result is not a smooth j − 2m form on U ∪ V

and then cannot be exact.
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With this setup we need to check that (fj−2m ◦ π̃∗ − π̃∗ ◦ gj)(Cj, Cj−1) is trivial:

(fj−2m ◦ π̃∗ − π̃∗◦gj)(Cj, Cj−1)

= d(ρπ̃S
∗ (Cj−1)) −

1

2
d(ρπ̃D

∗ (Cj))

− π̃S
∗ (d(π∗ρ Cj−1)) + π̃S

∗ (π∗ρ Cj) −
1

2
π̃D
∗ (d(π∗ρ Cj))

= d(ρπ̃S
∗ (Cj−1)) −

1

2
d(ρπ̃D

∗ (Cj)) − dπ̃S
∗ (π∗ρ Cj−1) +

1

2
dπ̃D

∗ (π∗ρ Cj)

= d

[
ρπ̃S

∗ (Cj−1) − π̃S
∗ (π∗ρ Cj−1) −

1

2
(ρπ̃D

∗ (Cj) − π̃D
∗ (π∗ρ Cj))

]
= d

[
ρπ̃S

∗ (Cj−1) − π̃S
∗ (π∗ρ Cj−1) −

1

2
(ρπ̃D

∗ (Cj) − π̃D
∗ (π∗ρ Cj))

]

Then it suffices to show ρπ̃S
∗ (Cj−1) − π̃S

∗ (π∗ρ Cj−1) and ρπ̃D
∗ (Cj) − π̃D

∗ (π∗ρ Cj) are smooth

on U ∪ V .

π̃D
∗ (π∗ρ Cj) = πD

∗ (π∗ρ ∧ (Aj + µ2p+1Bjp) + θXπ
D
∗ (π∗ρ ∧Bjp)

= ρπD
∗ (Aj + µ2p+1Bjp) + θXρπ

D
∗ (Bjp)

= ρπ̃D
∗ (Cj)

This calculation only requires shared properties of π̃D
∗ and π̃S

∗ so the same holds for π̃S
∗ .

Therefore in fact fj−2m ◦ π̃∗ = π̃∗ ◦ gj.
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3.3 Inverse of the Thom Isomorphism

Proposition 3.14. Suppose X is of finite type. Then

π̃∗(Cj) = (d(π̃(Cj) ∧ Ψ), π̃(Cj) ∧ Ψ)

is the inverse of π̃∗.

Proof. We first note that if Cj is closed, then π̃∗(Cj) must be as well.

Now

π̃∗ ◦ π̃∗(Cj) = π̃S
∗ (π̃(Cj) ∧ Ψ) − 1

2
dπ̃D

∗ (π̃(Cj) ∧ Ψ)

Starting with the first term we compute:

π̃S
∗ (π̃(Cj) ∧ Ψ) = π̃S

∗ ([π∗Aj − µ2p+1 ∧ π∗Bjp ] ∧ Ψ + θE0 [π
∗Bjp ∧ Ψ])

= πS
∗ ([π∗Aj − µ2p+1 ∧ π∗Bjp ] ∧ Ψ + µ2p+1 ∧ π∗BjpΨ + θXπ

S
∗ (π∗Bjp ∧ Ψ)

= πS
∗ (π∗Aj ∧ Ψ) + θXπ

S
∗ (π∗Bjp ∧ Ψ)

= Aj ∧ πS
∗ (Ψ) + θXBjp ∧ πS

∗ (Ψ)

= Aj + θXBjp

= Cj

Therefore it suffices to show the second term is zero. By similar calculation as above we

have

π̃D
∗ (π̃(Cj) ∧ Ψ) = Aj ∧ πD

∗ (Ψ) + θXBjp ∧ πD
∗ (Ψ) = 0

since πD
∗ (Ψ) = 0 for degree reasons.
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3.3.1 The Gysin Sequence for p-Filtered Cone Complex

Rewriting Lemma 3.8 as a Gysin sequence using the just established isomorphism gives

· · · → Hj−2mCp(X) → HjCp(X) → HjCp(E0) → Hj−2m+1Cp(X) → · · ·

The map HjCp(E0) → Hj−2m+1Cp(X) is given by

[Cj] 7→ [π̃∗(Cj, 0)] = [π̃S
∗ (Cj)]

The map HjCp(X) → HjCp(E0) is

[Cj] 7→ [π̃(Cj)]

The final map Hj−2mCp(X) → HjCp(X) is defined by the negation of the composition of the

first component of π̃∗ with the pullback ι∗(Aj + θEBjp) = ι∗Aj + θXι
∗Bjp . Then

−ι∗(d(π̃(Cj) ∧ Ψ)) = −(−1)jι∗(π̃(Cj) ∧ dΨ)

= −(−1)jι∗([π∗Aj − µ2p+1 ∧ π∗Bjp ] ∧ dΨ + θEπ
∗Bjp ∧ dΨ

= (−1)jι∗([π∗Aj − µ2p+1 ∧ π∗Bjp ] ∧ π∗e) + θXι
∗(π∗Bjp ∧ π∗e)

= (−1)j(Aj ∧ e + θXBjp ∧ e)

= Cj ∧ (−1)je

since ι∗ ◦ π∗ is the identity and µ2p+1|X = 0.

Therefore we can summarize this Gysin sequence by
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Theorem 3.15 (Gysin Sequence for p-Filtered Cone Complex).

· · · Hj−2mCp(X) HjCp(X) HjCp(E0) Hj−2m+1Cp(X) · · ·∧(−1)je π̃ π̃S
∗

is an exact sequence of cohomology.
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Chapter 4

Applying Mayer-Vietoris to Cone

Cohomology

As another example we will demonstrate using the Mayer-Vietoris sequence to compute how

the cone cohomology of a manifold changes after blowing up along a submanifold.

Setting 4.1. In this section we will use the following notation:

1. (M2n+2m, ω) is a symplectic manifold

2. (X2n, ωX) is a codimension 2m submanifold of M with symplectic form ωX = ω|X ,

where m ≥ 1

3. M2 is a tubular neighborhood of X in M

4. M̃2 will denote the blowup of M2 along X

5. M1 is M without a tubular neighborhood around X (we will assume this is a smaller

neighborhood than with M2 so M1 and M2 overlap)

6. M̃ = M1 ∪ M̃2 is the blowup of M at X
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The goal of this section is to use the Mayer-Vietoris sequence for the cone cohomology to

relate the cohomologies of M and M̃ . Namely we have two short exact sequences on M and

M̃ :

0 → Cp(M) → Cp(M1) ⊕ Cp(M2) → Cp(M1 ∩M2) → 0

0 → Cp(M̃) → Cp(M1) ⊕ Cp(M̃2) → Cp(M1 ∩ M̃2) → 0

We will simplify to the case where X is 2-dimensional so n = 1 and we know all information

about the de Rham cohomology of X. From that information we can compute the de Rham

cohomologies of M2, M̃2, and M1 ∩M2 = M1 ∩ M̃2 by noting that they deformation retract

to X, a S2m−1 bundle over X, and a CPm−1 bundle over X respectively.

4.1 Primitive Case

We will consider separately the primitive case where p = 0. Then the de Rham cohomologies

of the basic component parts are:

H∗
d(M2) ∼= H∗

d(X)

H∗
d(M1 ∩M2) ∼= H∗

d(X) ⊗ R⟨1, ψ2m−1⟩

H∗
d(M̃2) ∼= H∗

d(X) ⊗ R⟨1, ωF , . . . , ω
m−1
F ⟩

where ψ2m−1 is the global angular form of the sphere bundle and ωF is the symplectic form

on the CPm−1 fibers.
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Lemma 4.2. The primitive cone cohomology of X is

H0C0(X) = H0(X)

H1C0(X) = H1(X)

H2C0(X) = θXH
1(X)

H3C0(X) = θXH
2(X)

all other cohomology groups are zero.

Proof. The resolution sequence immediately gives H0C0(X) ∼= H0(X) and H3C0(X) ∼=

H2(X). In fact H0C0(X) = H0(X) and H3C3(X) = θXH
2(X). For the other indices:

j = 1 : 0 → H1(X) → H1C0(X) → H0(X) → H2(X)

The last map is an isomorphism so we have H1(X) injects into H1C0(X) which then maps

to zero in H0(X). In fact have H1C0(X) = H1(X) ∼= R2g.

j = 2 : H0(X) → H2(X) → H2C0(X) → H1(X) → 0

As before the first map is an isomorphism so H2(X) maps to zero in H2C0(X) which surjects

onto H1(X). Therefore H2C0(X) = θXH
1(X) ∼= R2g.
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Lemma 4.3. If m > 2, then

H0C0(M1 ∩M2) ∼= H0(X)

H1C0(M1 ∩M2) ∼= H1(X)

H2C0(M1 ∩M2) ∼= θM1∩M2H
1(X)

H3C0(M1 ∩M2) ∼= θM1∩M2H
2(X)

H2m−1C0(M1 ∩M2) ∼= ψ2m−1 ∧H0(X)

H2mC0(M1 ∩M2) ∼= ψ2m−1 ∧H1(X)

H2m+1C0(M1 ∩M2) ∼= θM1∩M2ψ2m−1 ∧H1(X)

H2m+2C0(M1 ∩M2) ∼= θM1∩M2ψ2m−1 ∧H2(X)

and are otherwise zero.

Proof. We can only have non-zero cohomologies in indices 0 ≤ j ≤ 3 and 2m−1 ≤ j ≤ 2m+2.

Since m ≥ 3, ψ2m−1 is at least a degree 5 form. This is sufficient to so that the Hj(X) terms

and ψ2m−1 ∧ Hj(X) terms do not interact in the resolution sequence. Then the 0 ≤ j ≤ 3

indices compute exactly as above, and the 2m − 1 ≤ j ≤ 2m + 2 terms are the same but

shifted by ψ2m−1.

The assumption that m > 2 is necessary to ensure the H∗(X) and θM1∩M2H
∗(X) parts of

H∗
d(M1 ∩M2) do not interfere with each other. We will later handle the case when m = 1

and m = 2 which corresponds to M being 4- or 6-dimensional.
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Lemma 4.4. The primitive cone cohomology of M̃2 is given by

H0C0(M̃2) ∼= H0(X)

H1C0(M̃2) ∼= H1(X)

H2C0(M̃2) ∼= H2(X)

H2m−1C0(M̃2) ∼= θM̃2
(ωm−1

F − ωX ∧ ωm−2
F ) ∧H0(X)

H2mC0(M̃2) ∼= θM̃2
ωm−1
F ∧H1(X)

H2m+1C0(M̃2) ∼= θM̃2
ωm−1
F ∧H2(X)

and zero otherwise.

Proof. First note that the de Rham cohomologies are of the form

H2k(M̃2) ∼= ωk
F ∧H0(X) + ωk−1

F ∧H2(X)

H2k+1(M̃2) ∼= ωk
F ∧H1(X)

depending on whether the index is even or odd. Then the Lefschetz map acts as

(ωX + ωF ) ∧ (ωk
F ∧ η0 + ωk−1

F ∧ η2) = ωX ∧ ωk
F ∧ η0 + ωk+1

F ∧ η0 + ωk
F ∧ η2

(ωX + ωF ) ∧ (ωk
F ∧ η1) = ωk+1

F ∧ η1

where we take ηk ∈ Hk(X). From this we see the Lefschetz map is an isomorphism for

indices 1 ≤ j ≤ 2m − 3 (note that there is no η2 term when j = 0 and no η0 term when

j = 2m). For 3 ≤ j ≤ 2m− 2 we have
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Hj−2(M̃2) Hj(M̃2) HjC0(M̃2) Hj−1(M̃2) Hj+1(M̃2)
∼ 0 0 ∼

So HjC0(M̃2) = 0 when 3 ≤ j ≤ 2m− 2. Therefore we only have nonzero cohomology when

j = 0, 1, 2, 2m− 1, 2m, 2m+ 1. In the following we denote θM̃2
as simply θ for convenience.

For the relevant indices we have:

j = 0 : 0 → H0(M̃2) → H0C0(M̃2) → 0

so H0C0(M̃2) = H0(M̃2) ∼= H0(X).

j = 1 : 0 → H1(M̃2) → H1C0(M̃2) → H0(M̃2) → H2(M̃2)

The final map is injective so H1C0(M̃2) = H1(M̃2) ∼= H1(X).

j = 2 : H0(M̃2) → H2(M̃2) → H2C0(M̃2) → H1(M̃2)
∼−→ H3(M̃2)

Since the last map is an isomorphism then H2(M̃2) surjects onto H2C0(M̃2). The kernel of

that map is elements of the form (ωX + ωF ) ∧ η0, so since ωX is an isomorphism of H0(X)

and H2(X) we can represent any element of H2C0(M̃2) uniquely by an element of H2(X).

So H2C0(M̃2) ∼= H2(X).

j = 2m− 1 : H2m−3(M̃2)
∼−→ H2m−1(M̃2) → H2m−1C0(M̃2) → H2m−2(M̃2) → H2m(M̃2)

Since the first map is an isomorphism then H2m−1C0(M̃2) injects to H2m−2(M̃2) and is isomor-

phic to the kernel of the Lefschetz map from Hm−2(M̃2) to Hm(M̃2). Then H2m−1C0(M̃2) ∼=

θ(ωm−1
F − ωX ∧ ωm−2

F ) ∧H0(X).

j = 2m : H2m−2(M̃2) → H2m(M̃2) → H2mC0(M̃2) → H2m−1(M̃2) → 0
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Since the first map is surjective this gives H2mC0(M̃2) = θH2m−1(M̃2) ∼= θωm−1
F ∧H1(X)

j = 2m+ 1 : 0 → H2m+1C0(M̃2) → H2m(M̃2) → 0

Then H2m+1C0(M̃2) = H2m(M̃2) ∼= θωm−1
F ∧H2(X)

The following table summarizes the above results:

H0C0 H1C0 H2C0 H3C0

M2 H0(X) H1(X) θH1(X) θH2(X)

M1 ∩M2 H0(X) H1(X) θH1(X) θH2(X)

M̃2 H0(X) H1(X) H2(X) 0

H2m−1C0 H2mC0 H2m+1C0 H2m+2C0

M2 0 0 0 0

M1 ∩M2 H0(X)θ2m−1 H1(X)θ2m−1 θH1(X)θ2m−1 θH2(X)θ2m−1

M̃2 θH0(X)ωm−2
F (ωF − ωX) θH1(X)ωm−1

F θH2(X)ωm−1
F 0

Table 4.1: Summary of cone cohomologies for M2, M1 ∩M2, and M̃2.

Note that in this table θ always represents the appropriate formal variable for each space.

This also provides the information we need about the restriction maps from M2 and M̃2 into

M1 ∩M2, defined by r(Aj + θBjp) = ι∗(Aj) + θι∗(Bjp) where ι is the specified inclusion map.

Lemma 4.5. The restriction map r : H∗C0(M2) → H∗C0(M1 ∩M2) is an isomorphism for

degree 0 ≤ j ≤ 3 and is the zero map otherwise.

Proof. This follows from the definition of the restriction map.
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Lemma 4.6. The restriction map r : H∗C0(M̃2) → H∗C0(M1 ∩M2) is an isomorphism in

degrees 0, 1, 2m− 1, 2m and is the zero map otherwise.

Proof. First we consider degrees 0 ≤ j ≤ 2. Here HjC0 doesn’t depend on the fibers at

all so the restriction map on the cone cohomology is given by the restriction of de Rham

cohomology from which we see that this is an isomorphism in degree 0 and 1 but the zero

map in degree 2.

The interesting case occurs in degrees 2m − 1 through 2m + 1. The complication here is

that now the cone cohomology depends on the fibers and we have considered M1 ∩M2 as

its deformation retract to a sphere bundle. Therefore we also have to take this retract into

consideration when computing the restriction map. The key observation is how to handle the

global angular form ψ2m−1, namely that a de Rham cohomology element η∧ψ2m−1 represents

an de Rham cohomology element of M1 ∩M2 which becomes η after integrating over the

fibers. Hence we first need to restrict to M1 ∩ M2 and then integrate over the fibers to

compute the coefficient form in front of ψ2m−1.

After restricting to M1 ∩M2, ωF becomes exact so the symplectic form of M1 ∩M2 can be

written ω = ωX + dµ. Then the map πS
∗ given by integrating over the fibers of M1∩M2 over

X induces a corresponding chain map

π̃S
∗ (Aj + θBjp) = πS

∗ (Aj + µ ∧Bjp) + θπS
∗ (Bjp)

per Lemma 3.2. Note that this map decreases the degree by 2m− 1.

First we compute the map in degree 2m + 1. An element of H2m+1C0(M̃2) is of the form

θη2 ∧ ωm−1
F where η2 ∈ H2(X). Then

π̃S
∗ (θη2 ∧ ωm−1

F ) = πS
∗ (µ ∧ η2 ∧ ωm−1

F ) + θπS
∗ (η2 ∧ ωm−1

F )
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Immediately we have πS
∗ (η2 ∧ ωm−1

F ) = η2 ∧ π∗
S(ωm−1

F ) = 0 since ωm−1
F has degree less than

2m − 1. To compute the first term we note that we can consider the sphere bundle as the

boundary of a disk bundle in M̃2 over X, and we can denote integration over those disks by

a map πD
∗ . By Stokes’ Theorem these are related by πS

∗ (Cj) = πD
∗ (dCj). Therefore

πS
∗ (µ ∧ η2 ∧ ωm−1

F ) = πD
∗ (dµ ∧ η2 ∧ ωm−1

F ) = πD
∗ (η2 ∧ ωm

F ) = η2 ∧ πD
∗ (ωm

F )

But ωF is the symplectic form on the fibers and so ωm
F is the volume form which means

πD
∗ (ωm

F ) is simply the volume of the fibers. Hence the image of this map is a scalar multiple

of η2ψ2m−1. But since ωX is an isomorphism of H0(X) and H2(X) we can find η0 ∈ H0(X)

such that ωXη0 = η2 which also implies that d(θη0∧ψ2m−1) = η2∧θ2m−1 ∈ H2m+1C0(M1∩M2)

so this is a trivial element. Hence the restriction map is trivial as well.

Now consider degree 2m. An element of H2mC0(M̃2) is of the form θη1 ∧ ωm−1
F . Then

π̃S
∗ (θη1 ∧ ωm−1

F ) = πS
∗ (µ ∧ η1 ∧ ωm−1

F ) + θπS
∗ (η1 ∧ ωm−1

F )

Then πS
∗ (η1 ∧ ωm−1

F ) = η1 ∧ πS
∗ (ωm−1

F ) = 0 for degree reasons. As before we pass to the disk

bundle to compute

πS
∗ (µ ∧ η1 ∧ ωm−1

F ) = πD
∗ (η1 ∧ ωm

F ) = η1 ∧ πD
∗ (ωm

F )

so for the same reasoning above the restriction map results in a scalar multiple of η1θ2m−1

and therefore the restriction map is an isomorphism.

Finally an element of H2m−1C0(M̃2) is of the form θ(η0 ∧ ωm−1
F − ωX ∧ η0 ∧ ωm−2

F ) for some

η0 ∈ H0(X). When integrating over fibers the second term will vanish for degree reasons

and the first term computes to a multiple of η0 analogously to the previous case and again

we have an isomorphism.
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Theorem 4.7. The cone cohomology of M and M̃ are related by the formulas:

dimH2C0(M̃) = dimH2C0(M) + 1 − k1

dimH3C0(M̃) = dimH3C0(M) + 2g − k1 − k2

dimH4C0(M̃) = dimH4C0(M) + 1 − k2

dimH2m−1C0(M̃) = dimH2m−1C0(M) + k′2

dimH2mC0(M̃) = dimH2mC0(M) − 1 + k′1 + k′2

dimH2m+1C0(M̃) = dimH2m+1C0(M) + 1 − 2g + k′1

dimHkC0(M̃) = dimHkC0(M) otherwise

where k1, k2, k
′
2, k

′
1 are the rank of the restriction maps from H∗C0(M1) → H∗C0(M1 ∩M2)

in degrees 2, 3, 2m− 1, and 2m respectively.

Proof. The primary tool for these computations is the Mayer-Vietoris sequence for both M

and M̃ . From the two long exact sequences combined with the Five Lemma we immediately

get that if r : HjC0(M̃2) → HjC0(M2) is an isomorphism and the same holds for degree j−1

then dimHjC0(M̃) = dimHjC0(M). This holds for j = 0, 1, 5, . . . , 2m− 2, 2m+ 3.

We will handle the remaining indices one at a time:

j = 2: Since both H1C0(M̃2) and H1C0(M2) surject onto H1C0(M1 ∩M2) the connecting

homomorphism is trivial in both cases. Then H2C0(M) and H2C0(M̃) are isomorphic to the

kernel of H2C0(M1)⊕H2(M2) and H2C0(M1)⊕H2C0(M̃2) respectively into H2C0(M1 ∩M2).
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Then

dimH2C0(M) = dimH2C0(M1)

dimH2C0(M̃) = 1 + dim ker r : H2C0(M1) → H2C0(M1 ∩M2)

so that

dimH2C0(M̃) = dimH2C0(M) + 1 − k1

where k1 = rank(r : H2C0(M1) → H2C0(M1 ∩M2).

j = 3: Since r : H2C0(M2) → H2C0(M1 ∩M2) is surjective, we have H3C0(M) is isomorphic

to its image in H3C0(M1) ⊕ H3(M2). This is equal to ker r : H3C0(M1) ⊕ H3C0(M2) →

H3C0(M1∩M2). As H3C0(M2) already is surjective, we have dimH3C0(M) = dimH3C0(M1).

In the blow-up case we get

H2C0(M1) ⊕H2C0(M̃2) → H2C0(M1 ∩M2) → H3C0(M̃) → H3C0(M1) → H3C0(M1 ∩M2)

Then

dimH3C0(M̃) = dim ker r : H3C0(M1) → H3C0(M1 ∩M2) + 2g

− rank r : H2C0(M1) → H2C0(M1 ∩M2)

and so

dimH3C0(M̃) = dimH3C0(M) + 2g − k1 − k2

where k2 = rank r : H3C0(M1) → H3C0(M1 ∩M2).

j = 4: Since H3C0(M2) → H3C0(M1∩M2) is surjective and H4C0(M1∩M2) = H4C0(M2) = 0
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then dimH4C0(M) = dimH4C0(M1).

In the blow-up case we have

H3C0(M1) → H3C0(M1 ∩M2) → H4C0(M̃) → H4C0(M1) → 0

Then

dimH4C0(M̃) = dimH4C0(M1) + 1 − rank r : H3C0(M1) → H3C0(M1 ∩M2)

so

dimH4C0(M̃) = dimH4C0(M) + 1 − k2

j = 2m− 1: Since H2m−2C0(M1 ∩M2) = 0 we have H2m−1C0(M) is isomorphic to its image

in H2m−1C0(M1). Therefore dimH2m−1C0(M) = dim ker r : H2m−1C0(M1) → H2m−1C0(M1 ∩

M2). For M̃ the same logic applies but we have to account for the fact that H2m−1C0(M̃2)

exists and the restriction to M1 ∩M2 is an isomorphism. So dimH2m−1C0(M̃) = dim ker r :

H2m−1C0(M1) → H2m−1C0(M1∩M2) + dim im r : H2m−1C0(M1) → H2m−1C0(M1∩M2). This

second term is k′2, thus dimH2m−1C0(M̃) = dimH2m−1C0(M) + k′2.

j = 2m: We have

H2m−1C0(M1) ⊕H2m−1C0(M2) → H2m−1C0(M1 ∩M2) → H2mC0(M) →

→ H2mC0(M1) ⊕H2mC0(M2) → H2mC0(M1 ∩M2)
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and similar with M̃2 and M̃ . Then

dimH2mC0(M) = dim kerH2mC0(M1) ⊕H2mC0(M2) → H2mC0(M1 ∩M2)

+ dim cokerH2m−1C0(M1) ⊕H2m−1C0(M2) → H2m−1C0(M1 ∩M2)

and again a corresponding equation for the blow-up. Since the restriction maps from

M2 into M1 ∩ M2 is zero in degrees 2m − 1, 2m, we can neglect the M2 parts of that

equation. However the restriction from M̃2 to M1 ∩ M2 is an isomorphism in these de-

grees so dimH2mC0(M̃) = dim ker r : H2mC0(M1) ⊕ H2mC0(M̃2) → H2mC0(M1 ∩ M2) +

dim cokerH2m−1C0(M1) ⊕H2m−1C0(M̃2) → H2m−1C0(M1 ∩M2). Therefore

dimH2mC0(M̃) = dimH2mC0(M) − 1 + k′1 + k′2

j = 2m + 1: The same reasoning applies as in the j = 2m case but with degree 2m and

2m+ 1 instead, and we get

dimH2m+1C0(M̃) = dimH2m+1C0(M) + 1 − 2g + k′1

j = 2m + 2: Since H2m+2C0(M2) = H2m+2C0(M̃2) = 0 the image of the restriction map

acting on H2m+2C0(M) and H2m+2C0(M̃) are the same so any difference in dimension comes

from the image of the connecting homomorphism. But then Hk−1C0(M2) and Hk−1C0(M̃2)

both restrict trivially so the connecting homomorphisms are the same as well. Hence

dimH2m+2C0(M̃) = dimH2m+2C0(M).

We can also prove the same result by using the fact that

HjC0(M) ∼= kerω∧ : Hj(M) → Hj+2(M) ⊕ cokerω∧ : Hj−1(M) → Hj+1(M)
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and then computing how the dimensions of the kernel and cokernel of the ω∧ map change

between M and M̃ will also provide the result.

Alternate Proof. From the two Mayer-Vietoris sequences combined with the Five Lemma we

immediately get that if r : HjC0(M̃2) → HjC0(M2) is an isomorphism and the same holds for

degree j−1 then dimHjC0(M̃) = dimHjC0(M). This holds for j = 0, 1, 5, . . . , 2m−2, 2m+3.

Now from the Mayer-Vietoris sequence we immediately get that

dimHjC0(M) = dim coker r : Hj−1C0(M1) ⊕Hj−1C0(M2) → Hj−1C0(M1 ∩M2)

+ dim ker r : HjC0(M1) ⊕HjC0(M2) → HjC0(M1 ∩M2)

and the same for M̃ and M̃2. Therefore we can compute the change in dimension by finding

the change in dimension of the above kernel and cokernel terms.

In the following N will represent M2 or M̃2. The restriction maps from H∗C0(N) →

H∗C0(M1 ∩ M2) are either the zero map or an isomorphism. Then the restriction maps

on the direct product have images

• Zero Map: im r : HjC0(M1) → HjC0(M1 ∩M2)

• Isomorphism: HjC0(M1 ∩M2)

which implies that the cokernel dimensions are

• Zero Map: dimHjC0(M1 ∩M2) − rank r : HjC0(M1) → HjC0(M1 ∩M2)

• Isomorphism: 0

and the kernels have dimensions
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• Zero Map: dim ker r : HjC0(M1) → HjC0(M1 ∩M2) + dimHjC0(N)

• Isomorphism: dim ker r : HjC0(M1) → HjC0(M1 ∩ M2) + rank r : HjC0(M1) →

HjC0(M1 ∩M2)

Note that in the kernel case the dim ker r : HjC0(M1) → HjC0(M1 ∩ M2) term shows in

both cases and doesn’t depend on N so it contributes no change in dimension. Therefore

the change in dimensions are:

j Kernel Term (degree j) Cokernel Term (degree j − 1) Total

2 1 − k1 0 1 − k1

3 −k2 2g − k1 2g − k1 − k2

4 0 1 − k2 1 − k2

2m− 1 k′2 0 k′2

2m k′1 k′2 − 1 −1 + k′1 + k′2

2m+ 1 1 k′1 − 2g 1 − 2g + k′1

2m+ 2 0 0 0

Table 4.2: Dimension of kernel and cokernel terms in the primitive m > 2 case.

which completes the proof.

We now discuss the m = 2 case where X is embedded in a 6-dimensional manifold. The

difference here is that the cone cohomology H∗C0(M1 ∩M2) changes slightly due to having

two contributions in degree 3:

Lemma 4.8. For m = 2, H∗C0(M1 ∩M2) ∼= H∗C0(X) ⊗ R⟨1, ψ3⟩.

Remark 4.9. The change here is that dimH3C0(M1 ∩M2) = 2 since 2m − 1 = 3 so there

are two contributions to this index.
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Theorem 4.10. Suppose m = 2. The cone cohomology of M and M̃ are related by the

formulas:

dimH2C0(M̃) = dimH2C0(M) + 1 − k1

dimH3C0(M̃) = dimH3C0(M) + 2g − k1 + k2 − k′2

dimH4C0(M̃) = dimH4C0(M) + k′1 + k2 − k′2

dimH5C0(M̃) = dimH5C0(M) + 1 − 2g + k′1

dimHkC0(M̃) = dimHkC0(M) otherwise

where k1 and k′1 are the rank of the restriction maps from H∗C0(M1) → H∗C0(M1 ∩M2) in

degrees 2 and 4 respectively and k2 and k
′
2 are the rank of the restriction map from H3C0(M1)

to H3C0(M1 ∩M2) in the H0(X)θ3 and H2(X)θ components respectively.

Proof. The only change from the above is in degrees 3 and 4, the rest stay the same. This is

due to the fact that H3C0(M1 ∩M2) is now two-dimensional, which also adds the additional

complication that the image of H3C0(M1) may be split between the H0(X)θ3 and H2(X)θ

components of H3C0(M1 ∩M2). We will use a slightly different method of calculation for

this case, where we know that we can write both dimH∗C0(M) and dimH∗C0(M̃) in terms

of the kernel and cokernel of the restriction maps in the proper degrees. Then we need only

compute how the dimension of the kernel and cokernel change when moving from M to M̃

and sum to get the total difference in dimension. We list the change in dimension in the

following table.

Since H3(M2) and H3(M̃2) restrict isomorphically onto H2(X)θ and H0(X)θ3 respectively.

This gives that
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j Kernel Term (degree j) Cokernel Term (degree j − 1) Total

3 k2 − k′2 2g − k1 2g − k1 + k2 − k′2

4 k′1 k2 − k′2 k′1 + k2 − k′2

Table 4.3: Dimension of kernel and cokernel terms in the primitive m = 2 case.

which completes the proof.

Finally we compute the In this case the 2-dimensional manifold X is embedded into the

4-dimensional manifold M .

Theorem 4.11. When m = 1 the cone cohomology of M and M̃ are isomorphic.

Proof. When m = 1, H∗(M̃2) ∼= H∗(X) ∼= H∗(M2). Then the cone cohomologies will be the

same and so H∗C0(M) and H∗C0(M̃) satisfy the same long exact sequence and therefore are

isomorphic.

4.2 Higher Filtration

In this section we assume that p > 0.

Lemma 4.12. If p > 0 then H∗Cp(X) = H∗(X) ⊗ R⟨1, θX⟩.

Proof. For degree reasons all Lefschetz maps are zero, so the resolution sequence splits into

0 → Hk(X) → HkCp(X) → Hk−2p−1(X) → 0

Since 2p+ 1 ≥ 3 only one of the de Rham cohomology terms is non-zero at a time.
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Lemma 4.13. In this lemma θ will refer to θM̃2
. If m > p+ 1 then

HkCp(M̃2) =



Hk(M̃2) 0 ≤ k ≤ 2p+ 1

H2(X)ωp
F k = 2p+ 2

0 2p+ 2 < k < 2m− 1

θ kerLp+1(H2m−2p−2(M̃2)) k = 2m− 1

θHk−2p−1(M̃2) 2m ≤ k ≤ 2m+ 2p+ 1

If m = p+ 1 then

HkCp(M̃2) =


Hk(M̃2) 0 ≤ k ≤ 2m− 1

θHk−2p−1(M̃2) 2m ≤ k ≤ 2m+ 2p+ 1

If m < p+ 1 then H∗Cp(M̃2) = H∗(M̃2) ⊗ R⟨1, θ⟩.

Proof. From above we know that L is an isomorphism for indices 1 ≤ j ≤ 2m−3, injective in

index 0, and surjective in index 2m−2. L is the zero map for higher indices. This generalizes

to Lp+1 being injective in degree 0, isomorphism from degree 1 to degree 2m−2p−3, surjective

in degree 2m− 2p− 2, and zero map in higher degrees.

First we consider the case when m < p + 1, so all Lefschetz maps are zero which gives

H∗Cp(M̃2) = H∗(M̃2) ⊗ R⟨1, θ⟩. When m = p + 1 all Lefschetz maps are zero except

Lp+1 : H0(M̃2) → H2m(M̃2) which is an isomorphism. In degrees k ̸= 2m − 1, 2m the

resolution sequence becomes

0 → Hk(M̃2) → HkCp(M̃2) → Hk−2p−1(M̃2) → 0
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Only one of the de Rham cohomology terms can be zero for degree reasons so HkCp(M̃2) =

Hk(M̃2) for 0 ≤ k < 2m− 1 and HkCp(M̃2) = θHk−2p−1Cp(M̃2) for 2m < k ≤ 2m + 2p + 1.

For the last two degrees we have

H0(M̃2)
∼−→ H2m(M̃2) → H2mCp(M̃2) → H1(M̃2) → 0

and

0 → H2m−1(M̃2) → H2m−1Cp(M̃2) → H0(M̃2)
∼−→ H2m(M̃2)

which imply H2m−1Cp(M̃2) = H2m−1(M̃2) and H2mCp(M̃2) = θH1(M̃2).

Now suppose m > p+ 1. We compute HkCp(M̃2) by

HkCp(M̃2) ∼= kerLp+1 : Hk−2p−1(M̃2) → Hk+1(M̃2) ⊕ cokerLp+1 : Hk−2p−2(M̃2) → Hk(M̃2)

Then Lp+1 acts as follows in these degrees:

degree k kernel cokernel

0 0 H2(X)ωp
F

1 ≤ k ≤ 2m− 2p− 3 0 0

2m− 2p− 2 kerLp+1(H2m−2p−2(M̃2)) 0

k > 2m− 2p− 2 Hk(M̃2) 0

Table 4.4: Action of Lefschetz map on a CPm−1 bundle.

which gives the desired results.

Lemma 4.14. HkCp(M1 ∩M2) = Hk(M1 ∩M2) ⊕ θM1∩M2H
k−2p−1(M1 ∩M2).
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Proof. All Lefschetz maps are zero so the resolution sequence splits as

0 → Hk(M1 ∩M2) → HkCp(M1 ∩M2) → Hk−2p−1(M1 ∩M2) → 0

from which the direct sum formula follows. Note that overlap only happens when m− 2 ≤

p ≤ m.

We now split into cases based on the filtration.

4.2.1 Case 1: p < m− 2

Lemma 4.15. The restriction map r : H∗Cp(M2) → H∗Cp(M1 ∩M2) is an isomorphism in

degrees 0, 1, 2, 2p+ 1, 2p+ 2, and 2p+ 3 and the zero map otherwise.

The restriction map r : H∗Cp(M̃2) → H∗Cp(M1 ∩M2) is an isomorphism in degrees 0, 1,

2m − 1, and 2m and surjective in degrees 2 and 2m + 1. It is the zero map in all other

degrees.

Proof. The restriction map on M2 follows immediately from the definition.

In degrees 0 through 2p+ 2 the restriction map on M̃2 is the inclusion map which gives the

desired results. In degrees 2m − 1 through 2m + 2p + 1 there is the added complication

of restricting to the sphere bundle and then integrating over fibers. Recall that this occurs

because ωF is exact on M1∩M2 so the symplectic form becomes ω = ωX +dµ, which induces

a form µ2p+1 such that dµ2p+1 = ωp+1 − ωp+1
X . Then integration over fibers is defined as

π̃S
∗ (θBjp) = πS

∗ (µ2p+1 ∧Bjp) + θπS
∗ (Bjp)
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In degree 2m − 1, H2m−1Cp(M̃2) = θ kerLp+1(H2m−2p−2(M̃2)), which has elements of the

form θ(η0 ∧ ωm−p−1
F − ωX ∧ η0 ∧ ωm−p−2

F ) for η0 ∈ H0(X). Then because integrating over the

fiber decreases the degree by 2m− 1 we have

π̃S
∗ (θ(η0 ∧ ωm−p−1

F − ωX ∧ η0 ∧ ωm−p−2
F )) = πS

∗ (µ2p+1 ∧ (η0 ∧ ωm−p−1
F

− ωX ∧ η0 ∧ ωm−p−2
F ))

= πS
∗ (µ2p+1 ∧ η0 ∧ ωm−p−1

F )

= πD
∗ (dµ2p+1 ∧ η0 ∧ ωm−p−1

F )

= πD
∗ (η0 ∧ ωm

F )

= η0π
D
∗ (ωm

F )

which is a scalar multiple of η0 since ωm
F is the volume form on the fibers. Then the restriction

map is an isomorphism.

In degree 2m we have H2mCp(M̃2) has elements of the form θη1ω
m−p−1
F so

π̃S
∗ (θη1 ∧ ωm−p−1

F ) = πS
∗ (µ2p+1 ∧ η1 ∧ ωm−p−1

F )

= πD
∗ (dµ2p+1 ∧ η1 ∧ ωm−p−1

F )

= πD
∗ (η1 ∧ ωm

F )

= η1π
D
∗ (ωm

F )

which is a scalar multiple of η1 therefore the restriction is an isomorphism.

H2m+1Cp(M̃2) consists of elements of the form η0 ∧ ωm−p
F + η2 ∧ ωm−p−1

F where η0 ∈ H0(X)
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and η2 ∈ H2(X).

π̃S
∗ (θ(η0 ∧ ωm−p

F + η2 ∧ ωm−p−1
F )) = πS

∗ (µ2p+1 ∧ (η0 ∧ ωm−p
F + η2 ∧ ωm−p−1

F ))

= πD
∗ (dµ2p+1 ∧ (η0 ∧ ωm−p

F + η2 ∧ ωm−p−1
F ))

= πD
∗ ((ωX ∧ η0 + η2) ∧ ωm

F + η0 ∧ ωm+1
F )

= (ωX ∧ η0 + η2)π
D
∗ (ωm

F ) + η0 ∧ πD
∗ (ωm+1

F )

Since H2m+1Cp(M1 ∩M2) = H2(X)θ2m−1 by setting η0 = 0 we see that the restriction map

is surjective by choosing the proper η2.

65



Theorem 4.16. When p < m− 2 the cone cohomology of M and M̃ are related by:

dimH2Cp(M̃) = dimH2Cp(M) + 1

dimH3Cp(M̃) = dimH3Cp(M) + 2g

dimH4Cp(M̃) = dimH4Cp(M) + 2

dimH5Cp(M̃) = dimH5Cp(M) + 2g

...

dimH2p+1Cp(M̃) = dimH2p+1Cp(M) + 2g − k1

dimH2p+2Cp(M̃) = dimH2p+2Cp(M) + 2 − k1 − k2

dimH2p+3Cp(M̃) = dimH2p+3Cp(M) + 2g − k2 − k3

dimH2p+4Cp(M̃) = dimH2p+4Cp(M) + 1 − k3

dimH2m−1Cp(M̃) = dimH2m−1Cp(M) + k′3

dimH2mCp(M̃) = dimH2mCp(M) − 1 + k′2 + k′3

dimH2m+1Cp(M̃) = dimH2m+1Cp(M) + 1 − 2g + k′1 + k′2

dimH2m+2Cp(M̃) = dimH2m+2Cp(M) − 1 + 2g + k′1

...

dimH2m+2p−2Cp(M̃) = dimH2m+2p−2Cp(M) + 2g

dimH2m+2p−1Cp(M̃) = dimH2m+2p−1Cp(M) + 2

dimH2m+2pCp(M̃) = dimH2m+2pCp(M) + 2g

dimH2m+2p+1Cp(M̃) = dimH2m+2p+1Cp(M) + 1

dimHkCp(M̃) = HkCp(M) otherwise

where k1, k2, k3 and k
′
3, k

′
2, k

′
1 are the ranks of the restriction maps H∗Cp(M1) → H∗Cp(M1∩

M2) in degrees 2p+ 1, 2p+ 2, 2p+ 3 and 2m− 1, 2m, and 2m+ 1 respectively.
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Proof. From the Mayer-Vietoris sequence we get that the difference between dimH∗Cp(M)

and dimH∗Cp(M̃) can be computed by finding the difference in dimension of the kernel and

cokernel of the restriction maps

rk : HkCp(M1) ⊕HkCp(M2) → HkCp(M1 ∩M2)

and

r̃k : HkCp(M1) ⊕HkCp(M̃2) → HkCp(M1 ∩M2)

This uses information about the restrictions from M1, M2, and M̃2 into M1 ∩M2. r
′
k will be

used to denote the restriction map r′k : HkCp(M1) → HkCp(M1 ∩M2).

There are two possibilities for dim ker rk and dim coker rk. If k=0, 1, 2, 2p + 1, 2p + 2,

2p+3 then HkCp(M2) restricts isomorphically onto HkCp(M1∩M2) in that case dim ker rk =

dim ker r′k + rank r′k and dim coker rk = 0. Otherwise, HkCp(M2) = 0 so dim ker rk =

dim ker r′k and dim coker rk = dimHkCp(M1 ∩M2)− rank r′k. Note that this cokernel term is

only non-zero when HkCp(M1 ∩M2) is non-zero.

Now we wish to compute dim ker r̃k and dim coker r̃k. In degrees 0, 1, 2m − 1, and 2m

HkCp(M̃2) restricts isomorphically onto HkCp(M1 ∩M2) so again we get that dim ker r̃k =

dim ker r′k + rank r′k and dim coker r̃k = 0. Similarly when HkCp(M̃2) restricts trivially again

we get dim ker r̃k = dim ker r′k + dimHkCp(M̃2) and dim coker r̃k = dimHkCp(M1 ∩M2) −

rank r′k. The final case is in degrees 2 and 2m + 1 where HkCp(M̃2) is only surjective. As

before dim coker r̃k = 0, but dimHkCp(M1∩M2) = 1 so dim ker r̃k = dim ker r′k +1+rank r′k.

The change in dimension is then given by the following table, excluding degrees where the

change in dimension is zero.

67



k Kernel Term (degree k) Cokernel Term (degree k − 1) Total

2 1 0 1

3 2g 0 2g

4 2 0 2

5 2g 0 2g

...
...

2p+ 1 2g − k1 0 2g − k1

2p+ 2 1 − k2 1 − k1 2 − k1 − k2

2p+ 3 −k3 2g − k2 2g − k2 − k3

2p+ 4 0 1 − k3 1 − k3

2m− 1 k′3 0 k′3

2m k′2 −1 + k′3 −1 + k′2 + k′3

2m+ 1 1 + k′1 −2g + k′2 1 − 2g + k′1 + k′2

2m+ 2 2g −1 + k′1 −1 + 2g + k′1
...

...

2m+ 2p− 2 2g 0 2g

2m+ 2p− 1 2 0 2

2m+ 2p 2g 0 2g

2m+ 2p+ 1 1 0 1

Table 4.5: Dimension of kernel and cokernel terms in the non-primitive p < m− 2 case.
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4.2.2 Case 2: p = m− 2

Theorem 4.17. When p = m − 2 the cone cohomology of M and M̃ is the same as in

Theorem 4.16 but with the change that

dimH2m−1Cp(M̃) = dimH2m−1Cp(M) + 2g − k2 + k3 − k′3

dimH2mCp(M̃) = dimH2mCp(M) + k′2 + k3 − k′3

where now we define k3 and k′3 to be the rank of the restriction map from H2m−1Cp(M1) onto

the θ2m−1H
0(X) and θH2(X) components of H2m−1Cp(M1∩M2) respectively. Note also that

since 2p + 3 = 2m− 1 and 2p + 4 = 2m there are no longer separate cohomologies in these

degrees.

Proof. The change from the previous case is due to the fact that 2p + 3 = 2m − 1 so

dimH2m−1Cp(M1 ∩M2) = 2. This only affects the calculation of degree 2m − 1 and 2m.

Redoing these cases gives

k Kernel Term (degree k) Cokernel Term (degree k − 1) Total

2m− 1 k3 − k′3 2g − k2 2g − k2 + k3 − k′3

2m k′2 k3 − k′3 k′2 + k3 − k′3

Table 4.6: Dimension of kernel and cokernel terms in the non-primitive p = m− 2 case.

which gives the desired result.
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4.2.3 Case 3: p = m− 1

Theorem 4.18. When p = m− 1 then cone cohomology of M and M̃ are related the same

as in Theorem 4.16 in degrees less than 2m− 1 and degrees above 2m+ 2. In the middle we

have

H2m−1Cp(M̃) = H2m−1Cp(M) + 2g − k′1

H2mCp(M̃) = H2mCp(M) + 1 − k′1 + k2 − k′2

H2m+1Cp(M̃) = H2m+1Cp(M) + 1 + k2 − k′2 + k3 − k′3

H2m+2Cp(M̃) = H2m+2Cp(M) + 2g − 1 + k3 − k′3

where k1, k2, k3 are the rank of the restriction map from H∗Cp(M1) to the ψ2m−1H
∗(X)

components of H∗Cp(M1 ∩M2) in degrees 2m− 1, 2m, and 2m+ 1 respectively. Likewise k′1,

k′2, and k
′
3 are the rank onto the θH∗(X) components of H∗Cp(M1 ∩M2).

Proof. Much like the p = m− 2 there is overlap of the 2m− 1, 2m, and 2m + 1 terms and

the 2p+ 1, 2p+ 2, and 2p+ 3 terms. Recomputing these terms we get

k Kernel Term (degree k) Cokernel Term (degree k − 1) Total

2m− 1 2g − k′1 0 2g − k′1

2m k2 − k′2 1 − k′1 1 − k′1 + k2 − k′2

2m+ 1 1 + k3 − k′3 k2 − k′2 1 + k2 − k′2 + k3 − k′3

2m+ 2 2g −1 + k3 − k′3 2g − 1 + k3 − k′3

Table 4.7: Dimension of kernel and cokernel terms in the non-primitive p = m− 1 case.
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4.2.4 Case 4: p = m

Theorem 4.19. When p = m, dimHkCp(M̃) =


dimHkCp(M) + dimHk(M̃2) − dimHk(M2) 0 ≤ k ≤ 2m+ 1

dimHkCp(M) + dimHk−2p−1(M̃2) − dimHk−2p−1(M2) 2m+ 2 ≤ k ≤ 2m+ 2p+ 3

Proof. The only non-zero Lefschetz map in this case is the one from degree 0 to degree

2m + 2. Then for k < 2m + 1 we have HkCp(M) = HkCp(M) and for k > 2m + 2 we have

HkCp(M) = θHk−2p−1(M). For k = 2m+ 1 we have

0 → H2m+1(M) → H2m+1Cp(M) → H0(M) → H2m+2

Since the last map is an isomorphism we have H2m+1Cp(M) = H2m+1(M). For k = 2m + 2

we have

H0(M) → H2m+2(M) → H2m+2Cp(M) → H1(M) → 0

Since the first map is an isomorphism we get H2m+1Cp(M) = θH1(M). The same calculations

hold for M̃ so the difference in dimension is due to the difference in de Rham cohomology.

4.2.5 Case 5: p > m

Theorem 4.20. When p > m, dimHkCp(M̃) =


dimHkCp(M) + dimHk(M̃2) − dimHk(M2) 0 ≤ k ≤ 2m+ 2

dimHkCp(M) + dimHk−2p−1(M̃2) − dimHk−2p−1(M2) 2p+ 1 ≤ k ≤ 2m+ 2p+ 3

for all indices k.
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Proof. For degree reasons all Lefschetz maps are zero in M and M̃ so

H∗Cp(M̃) = H∗(M̃) ⊗ R⟨1, θ⟩

H∗Cp(M) = H∗(M) ⊗ R⟨1, θ⟩

Hence the change in dimension of the cone cohomology is purely due to the change in

dimension of the de Rham cohomology.
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Chapter 5

Cone Cohomology on Non-Symplectic

Manifolds

Recall that the definition of the filtered cohomology required having a symplectic form so we

could take advantage of the Lefschetz decomposition to build a cohomology that depends on

the symplectic structure. However, the cone representation only requires that dθ is a closed

form. Note that dθ = 0 is a valid choice but the result always has dimension twice that of

the de Rham cohomology of the same degree. The result is that we could consider the cone

cohomology over any manifold with respect to any closed form. For symplectic structure it

only made sense to consider the cone over the symplectic form, or a power of the symplectic

form, otherwise we wouldn’t be studying the symplectic structure. However, with a general

manifold there is no such distinct form. So rather than studying a single form, instead we

will study how the cone cohomology changes as we vary over an entire cohomology space.
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5.1 Motivating Example

Nilmanifolds are a useful class of manifolds for this work because their forms have a relatively

simple structure. As an example let’s use the 4-dimensional nilmanifold M with signature

(0, 0, 0, 12). This means we have a basis of one forms e1, e2, e3, e4 satisfying the relations

de1 = 0, de2 = 0, de3 = 0, de4 = e1 ∧ e2

Let’s see how the cone cohomology changes as we vary over H1(M) which is generated by

e1, e2, and e3. The cone cohomology with respect to a 1-form will be non-zero in degrees 0

through 4. The degree 0 space will be 1-dimensional and generated by 1 as with de Rham

cohomology. Additionally, the cone dimensions will be symmetric so it suffices to compute

what happens in degree 1 and 2.

We want to compute the cone cohomology with respect to a general closed 1-form of the

form ψ = a1e1 + a2e2 + a3e3, we denote this H1C(ψ,M) or simply H1C(ψ). ψ ̸= 0 implies

one of a1, a2, and a3 are non-zero. Now C1(ψ) = Ω1(M) + θΩ1(M) and θ is considered to be

a zero form since it has degree one less than ψ. Now

H1C(ψ) ∼= kerψ∧ : H1(M) → H2(M) ⊕ cokerψ∧ : H0(M) → H1(M)

The second term is always the same, the image of ψ∧ : H0(M) → H1(M) will always be

the subspace generated by ψ, so the cokernel has dimension 2 regardless of the choice of

coefficients. But something does change in the kernel term. Regardless of ψ, the kernel will

always be at least 1-dimensional since ψ2 = 0. There is another way for a one-form η to

be in the kernel of ψ∧ and that is when ψ ∧ η = e1 ∧ e2 and becomes exact. This cannot

happen when a3 is non-zero but will occur otherwise. Therefore the cone dimension jumps

74



at a3 = 0. To summarize,

dimH1C(a1e1 + a2e2) = 4

dimH1C(a1e1 + a2e2 + a3e3) = 3 (for a3 ̸= 0)

There are two pieces of information that can be derived from this, both how much the

dimension jumps and the location of the subspace where the dimension jumps.

H2C(ψ) is very similar in nature. Again,

H2C(ψ) ∼= kerψ∧ : H2(M) → H3(M) ⊕ cokerψ∧ : H1(M) → H2(M)

If we uses the bases

{e1, e2, e3} ∈ H1(M)

{e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4} ∈ H2(M)

{e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4} ∈ H3(M)

Then the matrix of ψ∧ : H2(M) → H3(M) is given by


0 −a2 0 a1

0 −a3 0 0

0 0 0 −a3
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and the matrix of ψ∧ : H1(M) → H2(M) is



−a3 0 a1

0 0 0

0 −a3 a2

0 0 0


The result is that dim kerψ∧ : H2(M) → H3(M) is 2 if a3 ̸= 0 and 3 if a3 = 0 (remember

that at least one coefficient must be non-zero), and dim cokerψ∧ : H1(M) → H2(M) is 2 if

a3 ̸= 0 and 3 if a3 = 0. Then

dimH2C(a1e1 + a2e2) = 6

dimH2C(a1e1 + a2e2 + a3e3) = 4 (for a3 ̸= 0)

Again the jump happens when a3 = 0 because without e3 we can utilize e1 ∧ e2 being exact.

5.2 Properties of the Cone Cohomology

One immediate observation we can make is that as we restrict to smaller subsets the cone

dimension is non-decreasing. This happens because when the cone cohomology changes

dimension it is because the kernel of the ψ∧ map is changing. Then when we drop to a

smaller subset anything that was in the kernel remains in the kernel, but we may have also

gained new elements of the kernel. Therefore we hit a limit with the trivial element.

Lemma 5.1. Let ψ ∈ H l(M). Then

dimHkC(ψ,M) ≤ dimHk(M) + dimHk−l+1(M)
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for all k.

Proof. From the observation we made above we just need to show that the right hand

side of the inequality is dimHkC(0,M), where we consider 0 ∈ H l(M). But then the

differential on C∗(M) is simply the differential on each component and so HkC(0,M) ∼=

Hk(M) ⊕Hk−l+1(M).

The other primary limitation on the cone dimension is that the low and high degree coho-

mologies are determined by the de Rham cohomology. We saw this effect with the blowup

calculations - for high filtration which corresponds to a higher degree ψ we got two copies

of the de Rham cohomology. The same happens here, as the degree of ψ decreases the two

copies of de Rham cohomology overlap more and more and there is less determined structure.

Proposition 5.2. Let ψ ∈ H l(M). If k < l then HkC(ψ,M) ∼= Hk(M), and if k > n then

HkC(ψ,M) ∼= Hk−l+1(M).

Proof. This relies on the isomorphism

HkC(ψ,M) ∼= kerψ∧ : Hk−l+1(M) → Hk+1(M) ⊕ cokerψ∧ : Hk−l(M) → Hk(M)

If k < l then k − l + 1 ≤ 0 which means the kernel term is zero and the cokernel term is

Hk(M). On the other hand, if k > n then the kernel term is Hk−l+1(M) and the cokernel

term is zero.

This in turn completely defines the cone cohomology of high degree forms.

Corollary 5.3. Let M be compact and orientable with dimM = n and ψ ∈ Hn(M). Then

dimHkC(ψ,M) =


dimHk(M) k < n

dimHk−n+1(M) k ≥ n
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Proof. The k < n and k > n are handled by the previous proposition with l = n. For k = n

we have

HnC(ψ,M) ∼= kerψ∧ : H1(M) → Hn+1(M) ⊕ cokerψ∧ : H0(M) → Hn(M)

Then ψ∧ is an isomorphism between H0(M) and Hn(M) so the cokernel term is zero. In

the kernel term ψ∧ is the zero map and therefore HnC(ψ,M) ∼= H1(M) as desired.

Corollary 5.4. Let M be compact and orientable with dimM = n and ψ ∈ Hn−1(M). Then

dimHkC(ψ,M) =


dimHk(M) k < n− 1

2 dimH1(M) − 2 k = n− 1

dimHk−n+2(M) k > n− 1

Proof. The proposition handles k < n−1 and k > n. Similarly to before we getHnC(ψ,M) ∼=

H2(M). Finally,

Hn−1C(ψ,M) ∼= kerψ∧ : H1(M) → Hn(M) ⊕ cokerψ∧ : H0(M) → Hn−1(M)

Then the kernel term has dimension dimH1(M) − 1 since dimHn(M) = 1, and the kernel

term has the same dimension since the image of ψ∧ is 1-dimensional and Hn−1(M) ∼=

H1(M).

One question we could ask is if there is a relationship between cone cohomologies of two

forms and that of their wedge product, namely if ψ ∈ H l(M) and ϕ ∈ Hm(M) is there a

relationship between H∗C(ψ,M), H∗C(ϕ,M), and H∗C(ψ ∧ ϕ,M)? The answer is unclear,

but there is potential by adapting the filter reducing map to this more general setting.
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Lemma 5.5. The map q : Ck(ψ ∧ ϕ,M) → Ck(ψ,M) defined by

q(Ak + θl+mBkl+m
) = Ak + θlϕ ∧Bkl+m

is a chain map.

Proof. The proof is identical to the filter reducing map case replacing ωq with ϕ.

5.3 Application to Nilmanifolds

In this section we will describe how to apply the cone cohomology to small dimension nil-

manifolds. Nilmanifolds are a convenient area for examples because they have a basis of

1-forms that also generate a basis for all higher degree forms. This will allow us to write the

ψ∧ map as a matrix with respect to this convenient basis which allows us to determine how

the kernel and cokernel change. Appendix B has complete Mathematica code, but here’s the

basic process:

1. Use the nilmanifold class to define the action of the differential

2. Use the basis to write forms as vectors and maps as matrices

3. Define closed forms to be those vectors in the kernel of the d matrix

4. Define exact forms as those that can be written as a linear combination of d of the

basis one degree less

5. Compute the de Rham cohomology by finding a basis for the kernel of the d matrix

and converting back to a form

6. Define ψ as an arbitrary linear combination of the cohomology basis elements
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7. Write ψ∧ in matrix form by first applying it to each cohomology basis element and

writing the result as a linear combination of cohomology elements plus an exact term,

then discard the exact term

8. Determine the dimension of the kernel and cokernel in terms of the coefficients in ψ

The challenging part is the last step because we need to determine the kernel and cokernel

of a matrix with variable entries. This becomes more complex as the de Rham cohomology

dimension increases since there are more variables to ψ and the matrices become larger.

The method outlined in the code of Appendix B is to compute the minors of the matrix

and find what conditions on the variables makes all minors of a certain size vanish. This

corresponds to changing the rank of the matrix, and then after identifying these conditions

we can explicitly compute the cone dimensions from a single element of the set.

Appendix A contains all cone cohomology information for nilmanifolds of dimension 3

through 5, and the 1-form cone cohomology information in dimension 6. There are a few

observations we can make right away. First, there are some nilmanifolds where the cone

cohomology is fixed for all forms of the same degree, here these are only the nilmanifolds

(0, 0, 12), (0, 0, 12, 13), and (0, 0, 12, 13, 23). Notably there is one of each dimension, and

there are possible candidates in 6 dimensions. The question is if this pattern of one such

manifold per dimension continues and if there is any significance to these nilmanifolds.

One can also ask if, in the case we have a symplectic manifold, we can derive more information

about the manifold than just computing with a symplectic form. As an example, consider

the Kodaira-Thurston manifold which is a nilmanifold with signature (0, 0, 0, 12). H2(M)

then has 4 generators - e1∧e3, e1∧e4, e2∧e3, and e2∧e4. The symplectic forms are generated

by two symplectic forms: e1 ∧ e3 + e2 ∧ e4 and e1 ∧ e4 + e2 ∧ e3. From the information in

the appendix, we see that these forms will have cone dimensions 1, 3, 4, 4, 3, 1. However,

the cone dimension of a 2-form will jump to 1, 3, 6, 6, 3, 1 if there are no e1 ∧ e4 and e2 ∧ e4
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terms, but this cannot happen with a symplectic form. So indeed, the considering the cone

cohomology over the space of all 2-forms will in general give more information than just

considering the symplectic structure.

Another observation is that we do have some cases where the de Rham cohomology of two

nilmanifolds is isomorphic but the cone dimensions differ or change on different subsets. For

example, in 5 dimensions we have (0, 0, 12, 13, 14) and (0, 0, 12, 13, 23) which both have de

Rham cohomologies of dimensions 1, 2, 3, 3, 2, 1 but the first has a 1-form cone cohomology

jump when the coeffient on e2 vanishes but the second does not. Additionally, the 1-form

cone cohomologies all have different dimension.

Finally, we’ll identify a few patterns in the cone cohomology dimensions. For one, there

seems to be a contingent of nilmanifolds where their 1-form cone dimensions are the same as

the corresponding de Rham dimensions, but there are also plenty of cases where that doesn’t

happen. Interestingly, when the cone dimensions don’t match the de Rham case, it is also

quite common for the cone dimensions to match the de Rham or cone dimensions for other

nilmanifolds. As an example, the 1-form cone cohomology for (0, 0, 12, 13) doesn’t match its

de Rham cohomology but it does match the cone cohomology for (0, 0, 0, 12). There may be

a connection between nilmanifolds that is suggested by the cone cohomology.
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Appendix A

Cone Cohomology of Nilmanifolds

We will use specific notation and organization to simplify the data provided here. Each

nilmanifold will have its own table with the list of degrees across the top followed by the

de Rham cohomology dimensions, and finally distinct sections that correspond to the cone

cohomology dimensions due to a 1-form, 2-form, and so on. At the top of each section is

the general case which refers to any form that does not fall into any of the subsets listed

after. Form are always assumed to be non-zero so at least one coefficient is non-zero. When

describing subsets we use the notation a1, a2, etc. for the coefficient on the cohomology

classes of e1, e2, etc. which are implicit from the class of the nilmanifold. For higher degrees

we use notation of the form a12 to represent the coefficient on the cohomology class of e1∧e2

and something of the form a12−34 for the coefficient on the class of e1 ∧ e2 − e3 ∧ e4. For

example, on (0, 0, 12) the subset a3 = 0 corresponds to forms of the type a1e1 + a2e2 while

the general case (assuming there are no other subsets) corresponds to those forms of the

type a1e1 + a2e2 + a3e3 where a3 ̸= 0.
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A.1 Dimension 3

A.1.1 Nilmanifold Class (0,0,12)

Degree 0 1 2 3 4 5

de Rham 1 2 2 1

General 1-Form 1 3 3 1

General 2-Form 1 2 2 2 1

General 3-Form 1 2 2 2 2 1

Table A.1: Cone Dimensions on (0,0,12)

A.2 Dimension 4

A.2.1 Nilmanifold Class (0,0,0,12)

Degree 0 1 2 3 4 5 6 7

de Rham 1 3 4 3 1

General 1-Form 1 3 4 3 1

a3 = 0 1 4 6 4 1

General 2-Form 1 3 4 4 3 1

a14 = a24 = 0 1 3 6 6 3 1

General 3-Form 1 3 4 4 4 3 1

General 4-Form 1 3 4 3 3 4 3 1

Table A.2: Cone Dimensions on (0,0,0,12)
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A.2.2 Nilmanifold Class (0,0,12,13)

Degree 0 1 2 3 4 5 6 7

de Rham 1 2 2 2 1

General 1-Form 1 3 4 3 1

General 2-Form 1 2 3 3 2 1

General 3-Form 1 2 2 2 2 2 1

General 4-Form 1 2 2 2 2 2 2 1

Table A.3: Cone Dimensions on (0,0,12,13)

A.3 Dimension 5

A.3.1 Nilmanifold Class (0,0,0,0,12)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 4 7 7 4 1

General 1-Form 1 4 7 7 4 1

a3 = a4 = 0 1 5 10 10 5 1

General 2-Form 1 4 6 6 6 4 1

a34 = 0 1 4 7 8 7 4 1

General 3-Form 1 4 7 6 6 7 4 1

a135a245 − a145a235 = 0 1 4 7 8 8 7 4 1

a125 = a145 = a235 = a135 = 0 1 4 7 10 10 7 4 1

General 4-Form 1 4 7 7 6 7 7 4 1

General 5-Form 1 4 7 7 4 4 7 7 4 1

Table A.4: Cone Dimensions on (0,0,0,0,12)
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A.3.2 Nilmanifold Class (0,0,0,0,12+34)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 4 5 5 4 1

General 1-Form 1 4 7 7 4 1

General 2-Form 1 4 8 10 8 4 1

General 3-Form 1 4 5 4 4 5 4 1

a135a245 − a145a235 + a2345−125 = 0 1 4 5 6 6 5 4 1

General 4-Form 1 4 5 5 6 5 5 4 1

General 5-Form 1 4 5 5 4 4 5 5 4 1

Table A.5: Cone Dimensions on (0,0,0,0,12+34)

A.3.3 Nilmanifold Class (0,0,0,12,13+24)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 3 4 4 3 1

General 1-Form 1 3 4 4 3 1

a3 = 0 1 4 6 6 4 1

General 2-Form 1 3 4 4 4 3 1

a25−34 = 0 1 3 5 6 5 3 1

a14 = a25−34 = 0 1 3 6 8 6 3 1

General 3-Form 1 3 4 4 4 4 3 1

a145 = a245−135 = 0 1 3 4 6 6 4 3 1

General 4-Form 1 3 4 4 4 4 4 3 1

General 5-Form 1 3 4 4 3 3 4 4 3 1

Table A.6: Cone Dimensions on (0,0,0,12,13+24)
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A.3.4 Nilmanifold Class (0,0,0,12,13)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 3 6 6 3 1

General 1-Form 1 4 7 7 4 1

a2 = a3 = 0 1 5 9 9 5 1

General 2-Form 1 3 5 6 5 3 1

a14 = a15 = a24a35 − a225+34 1 3 6 8 6 3 1

a14 = a24 = a25+34 = 0 1 3 6 8 6 3 1

a15 = a35 = a25+34 = 0 1 3 6 8 6 3 1

a24 = a35 = a25+34 = 0 1 3 6 8 6 3 1

a14 = a15 = a24 = a35 = a25+34 = 0 1 3 8 12 8 3 1

General 3-Form 1 3 6 6 6 6 3 1

a145 = 0 1 3 6 8 8 6 3 1

General 4-Form 1 3 6 6 4 6 6 3 1

General 5-Form 1 3 6 6 3 3 6 6 3 1

Table A.7: Cone Dimensions on (0,0,0,12,13)
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A.3.5 Nilmanifold Class (0,0,0,12,14)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 3 4 4 3 1

General 1-Form 1 3 4 4 3 1

a3 = 0 1 4 7 7 4 1

General 2-Form 1 3 5 6 5 3 1

a15 = a24 = 0 1 3 6 8 6 3 1

General 3-Form 1 3 4 4 4 4 3 1

a145 = a245 = 0 1 3 4 6 6 4 3 1

General 4-Form 1 3 4 4 4 4 4 3 1

General 5-Form 1 3 4 4 3 3 4 4 3 1

Table A.8: Cone Dimensions on (0,0,0,12,14)

A.3.6 Nilmanifold Class (0,0,12,13,14)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 4 5 5 4 1

General 1-Form 1 3 4 4 3 1

a2 = 0 1 3 5 5 3 1

General 2-Form 1 2 2 2 2 2 1

a34−25 = 0 1 2 3 4 3 2 1

a15 = a34−25 = 0 1 2 4 6 4 2 1

General 3-Form 1 2 3 4 4 3 2 1

General 4-Form 1 2 3 3 2 3 3 2 1

General 5-Form 1 2 3 3 2 2 3 3 2 1

Table A.9: Cone Dimensions on (0,0,12,13,14)
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A.3.7 Nilmanifold Class (0,0,12,13,23)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 2 3 3 2 1

General 1-Form 1 3 6 6 3 1

General 2-Form 1 2 4 6 4 2 1

General 3-Form 1 2 3 4 4 3 2 1

General 4-Form 1 2 3 3 2 3 3 2 1

General 5-Form 1 2 3 3 2 2 3 3 2 1

Table A.10: Cone Dimensions on (0,0,12,13,23)

A.3.8 Nilmanifold Class (0,0,12,13,14+23)

Degree 0 1 2 3 4 5 6 7 8 9

de Rham 1 2 3 3 2 1

General 1-Form 1 3 4 4 3 1

a2 = 0 1 3 5 5 3 1

General 2-Form 1 2 2 2 2 2 1

a25−34 = 0 1 2 3 4 3 2 1

a25−34 = a15+24 = 0 1 2 4 6 4 2 1

General 3-Form 1 2 3 4 4 3 2 1

General 4-Form 1 2 3 3 2 3 3 2 1

General 5-Form 1 2 3 3 2 2 3 3 2 1

Table A.11: Cone Dimensions on (0,0,12,13,14+23)
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A.4 Dimension 6 (Only 1-Forms)

A.4.1 Nilmanifold Class (0,0,12,13,14,15)

Degree 0 1 2 3 4 5 6

de Rham 1 2 3 4 3 2 1

General 1-Form 1 3 5 6 5 3 1

a2 = 0 1 3 6 8 6 3 1

Table A.12: Cone Dimensions on (0,0,12,13,14,15)

A.4.2 Nilmanifold Class (0,0,12,13,14,34+52)

Degree 0 1 2 3 4 5 6

de Rham 1 2 2 2 2 2 1

General 1-Form 1 3 4 4 4 3 1

Table A.13: Cone Dimensions on (0,0,12,13,14,34+52)

A.4.3 Nilmanifold Class (0,0,12,13,14,23+15)

Degree 0 1 2 3 4 5 6

de Rham 1 2 3 4 3 2 1

General 1-Form 1 3 5 6 5 3 1

a2 = 0 1 3 6 8 6 3 1

Table A.14: Cone Dimensions on (0,0,12,13,14,23+15)

90



A.4.4 Nilmanifold Class (0,0,12,13,23,14)

Degree 0 1 2 3 4 5 6

de Rham 1 2 4 6 4 2 1

General 1-Form 1 3 6 8 6 3 1

a2 = 0 1 3 7 10 7 3 1

Table A.15: Cone Dimensions on (0,0,12,13,23,14)

A.4.5 Nilmanifold Class (0,0,12,13,23,14-25)

Degree 0 1 2 3 4 5 6

de Rham 1 2 4 6 4 2 1

General 1-Form 1 3 6 8 6 3 1

Table A.16: Cone Dimensions on (0,0,12,13,23,14-25)

A.4.6 Nilmanifold Class (0,0,12,13,23,14+25)

Degree 0 1 2 3 4 5 6

de Rham 1 2 4 6 4 2 1

General 1-Form 1 3 6 8 6 3 1

Table A.17: Cone Dimensions on (0,0,12,13,23,14+25)
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A.4.7 Nilmanifold Class (0,0,12,13,14+23,34+52)

Degree 0 1 2 3 4 5 6

de Rham 1 2 2 2 2 2 1

General 1-Form 1 3 4 4 4 3 1

Table A.18: Cone Dimensions on (0,0,12,13,14+23,34+52)

A.4.8 Nilmanifold Class (0,0,12,13,14+23,24+15)

Degree 0 1 2 3 4 5 6

de Rham 1 2 3 4 3 2 1

General 1-Form 1 3 5 6 5 3 1

a2 = 0 1 3 6 8 6 3 1

Table A.19: Cone Dimensions on (0,0,12,13,14+23,24+15)

A.4.9 Nilmanifold Class (0,0,0,12,13,14+35)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 4 7 8 7 4 1

a2 = a3 = 0 1 5 9 10 9 5 1

Table A.20: Cone Dimensions on (0,0,0,12,13,14+35)
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A.4.10 Nilmanifold Class (0,0,0,12,13,14+23)

Degree 0 1 2 3 4 5 6

de Rham 1 3 6 8 6 3 1

General 1-Form 1 4 7 8 7 4 1

a3 = 0 1 4 9 12 9 4 1

a2 = a3 = 0 1 5 11 14 11 5 1

Table A.21: Cone Dimensions on (0,0,0,12,13,14+23)

A.4.11 Nilmanifold Class (0,0,0,12,13,24)

Degree 0 1 2 3 4 5 6

de Rham 1 3 6 8 6 3 1

General 1-Form 1 4 7 8 7 4 1

a3 = 0 1 4 9 12 9 4 1

a2 = a3 = 0 1 5 10 12 10 5 1

Table A.22: Cone Dimensions on (0,0,0,12,13,24)

A.4.12 Nilmanifold Class (0,0,0,12,13,14)

Degree 0 1 2 3 4 5 6

de Rham 1 3 6 8 6 3 1

General 1-Form 1 4 7 8 7 4 1

a3 = 0 1 4 9 12 9 4 1

a2 = a3 = 0 1 5 11 14 11 5 1

Table A.23: Cone Dimensions on (0,0,0,12,13,14)
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A.4.13 Nilmanifold Class (0,0,0,12,13,23)

Degree 0 1 2 3 4 5 6

de Rham 1 3 8 12 8 3 1

General 1-Form 1 5 11 14 11 5 1

Table A.24: Cone Dimensions on (0,0,0,12,13,23)

A.4.14 Nilmanifold Class (0,0,0,12,14,15+23)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 7 8 7 4 1

a2 = a3 = 0 1 4 8 10 8 4 1

Table A.25: Cone Dimensions on (0,0,0,12,14,15+23)

A.4.15 Nilmanifold Class (0,0,0,12,14,15+23+24)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 7 8 7 4 1

a2 = a3 = 0 1 4 8 10 8 4 1

Table A.26: Cone Dimensions on (0,0,0,12,14,15+23+24)
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A.4.16 Nilmanifold Class (0,0,0,12,14,15+24)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 7 8 7 4 1

a2 = a3 = 0 1 4 8 10 8 4 1

Table A.27: Cone Dimensions on (0,0,0,12,14,15+24)

A.4.17 Nilmanifold Class (0,0,0,12,14,15)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 7 8 7 4 1

a2 = a3 = 0 1 4 8 10 8 4 1

Table A.28: Cone Dimensions on (0,0,0,12,14,15)

A.4.18 Nilmanifold Class (0,0,0,12,14,24)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 9 12 9 4 1

Table A.29: Cone Dimensions on (0,0,0,12,14,24)
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A.4.19 Nilmanifold Class (0,0,0,12,14,13+42)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 9 12 9 4 1

Table A.30: Cone Dimensions on (0,0,0,12,14,13+42)

A.4.20 Nilmanifold Class (0,0,0,12,14,23+24)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 9 12 9 4 1

Table A.31: Cone Dimensions on (0,0,0,12,14,23+24)

A.4.21 Nilmanifold Class (0,0,0,12,23,14+35)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 4 7 8 7 4 1

a1 = a3 = 0 1 5 8 8 8 5 1

a2 = a1 + a3 = 0 1 4 8 10 8 4 1

a2 = a1 − a3 = 0 1 4 8 10 8 4 1

Table A.32: Cone Dimensions on (0,0,0,12,23,14+35)
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A.4.22 Nilmanifold Class (0,0,0,12,23,14-35)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 4 7 8 7 4 1

a1 = a3 = 0 1 5 8 8 8 5 1

Table A.33: Cone Dimensions on (0,0,0,12,23,14-35)

A.4.23 Nilmanifold Class (0,0,0,12,14-23,15+34)

Degree 0 1 2 3 4 5 6

de Rham 1 3 4 4 4 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 6 6 6 4 1

a2 = a3 = 0 1 4 7 8 7 4 1

Table A.34: Cone Dimensions on (0,0,0,12,14-23,15+34)

A.4.24 Nilmanifold Class (0,0,0,12,14+23,13+42)

Degree 0 1 2 3 4 5 6

de Rham 1 3 5 6 5 3 1

General 1-Form 1 3 5 6 5 3 1

a3 = 0 1 4 9 12 9 4 1

Table A.35: Cone Dimensions on (0,0,0,12,14+23,13+42)
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A.4.25 Nilmanifold Class (0,0,0,0,12,15+34)

Degree 0 1 2 3 4 5 6

de Rham 1 4 6 6 6 4 1

General 1-Form 1 4 7 8 7 4 1

a3 = a4 = 0 1 5 9 10 9 5 1

Table A.36: Cone Dimensions on (0,0,0,0,12,15+34)

A.4.26 Nilmanifold Class (0,0,0,0,12,15)

Degree 0 1 2 3 4 5 6

de Rham 1 4 7 8 7 4 1

General 1-Form 1 4 7 8 7 4 1

a3 = a4 = 0 1 5 11 14 11 5 1

Table A.37: Cone Dimensions on (0,0,0,0,12,15)

A.4.27 Nilmanifold Class (0,0,0,0,12,14+25)

Degree 0 1 2 3 4 5 6

de Rham 1 4 7 8 7 4 1

General 1-Form 1 4 7 8 7 4 1

a3 = a4 = 0 1 5 10 12 10 5 1

a1 = a3 = a4 = 0 1 5 11 14 11 5 1

Table A.38: Cone Dimensions on (0,0,0,0,12,14+25)
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A.4.28 Nilmanifold Class (0,0,0,0,12,14+23)

Degree 0 1 2 3 4 5 6

de Rham 1 4 8 10 8 4 1

General 1-Form 1 4 9 12 9 4 1

a3 = a4 = 0 1 5 11 14 11 5 1

Table A.39: Cone Dimensions on (0,0,0,0,12,14+23)

A.4.29 Nilmanifold Class (0,0,0,0,12,34)

Degree 0 1 2 3 4 5 6

de Rham 1 4 8 10 8 4 1

General 1-Form 1 4 9 12 9 4 1

a1 = a2 = 0 1 5 11 14 11 5 1

a3 = a4 = 0 1 5 11 14 11 5 1

Table A.40: Cone Dimensions on (0,0,0,0,12,34)

A.4.30 Nilmanifold Class (0,0,0,0,12,13)

Degree 0 1 2 3 4 5 6

de Rham 1 4 9 12 9 4 1

General 1-Form 1 4 9 12 9 4 1

a4 = 0 1 5 11 14 11 5 1

a2 = a3 = a4 = 0 1 6 14 18 14 6 1

Table A.41: Cone Dimensions on (0,0,0,0,12,13)
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A.4.31 Nilmanifold Class (0,0,0,0,13+42,14+23)

Degree 0 1 2 3 4 5 6

de Rham 1 4 8 10 8 4 1

General 1-Form 1 4 9 12 9 4 1

Table A.42: Cone Dimensions on (0,0,0,0,13+42,14+23)

A.4.32 Nilmanifold Class (0,0,0,0,0,12+34)

Degree 0 1 2 3 4 5 6

de Rham 1 5 9 10 9 5 1

General 1-Form 1 5 9 10 9 5 1

a5 = 0 1 5 11 14 11 5 1

Table A.43: Cone Dimensions on (0,0,0,0,0,12+34)

A.4.33 Nilmanifold Class (0,0,0,0,0,12)

Degree 0 1 2 3 4 5 6

de Rham 1 5 11 14 11 5 1

General 1-Form 1 5 11 14 11 5 1

a3 = a4 = a5 = 0 1 6 15 20 15 6 1

Table A.44: Cone Dimensions on (0,0,0,0,0,12)
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A.4.34 Nilmanifold Class (0,0,0,0,0,0)

Degree 0 1 2 3 4 5 6

de Rham 1 6 15 20 15 6 1

General 1-Form 1 6 15 20 15 6 1

Table A.45: Cone Dimensions on (0,0,0,0,0,0)
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Appendix B

Mathematica Code for Computing

Cone Cohomology Dimensions

(∗∗ Clear a l l data to prepare f o r d e f i n i n g a new mani fo ld . ∗∗)

ResetForms [ ] := Module [{} ,

BasisForms = {} ;

Bases = <||>;

dRe lat ions = <||>;

dMatrix = <||>;

Cohomology = <||>;

] ;

(∗∗ Generate b a s i s forms , d i f f e r e n t i a l map , and cohomology

f o r a ’dim ’ dimensiona l mani fo ld where ’ dRe lLis t ’ d e f i n e s

the d i f f e r e n t i a l o f the b a s i s o f 1−forms . ∗∗)

Setup [ dim , dRe lL i s t ] := Module [{} ,

ResetForms [ ] ;
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GenerateBas is [ dim ] ;

GenerateBases [ ] ;

For [ i = 1 , i <= Length [ dRe lL i s t ] , i ++,

AppendTo [ dRelat ions , BasisForms [ [ i ] ] → dRelL i s t [ [ i ] ] ] ] ;

GeneratedMatrix [ ] ;

GenerateCohomology [ ] ;

] ;

(∗∗ Def ines what i t means to be a b a s i s form and a

genera l form . ∗∗)

BasisFormQ [ form ] := MemberQ[ BasisForms , form ] ;

FormQ[ a Wedge ] := True ;

FormQ[ a Symbol ] := BasisFormQ [ a ] ;

FormQ[ a + b ] := FormQ[ a ] && FormQ[ b ] ;

FormQ[ r ?NumericQ∗ a ] := FormQ[ a ] ;

(∗∗ Generates the b a s i s forms in each degree . ∗∗)

GenerateBas is [ d im Integer ?NonNegative ] :=

For [ i = 1 , i <= dim , i ++,

AppendTo [ BasisForms , Symbol [ ” e” <> ToString [ i ] ] ] ] ;

GenerateBases [ ] :=

For [ k = 0 , k <= Length [ BasisForms ] + 1 , k++,

AppendTo [ Bases , k → GenerateBas is InDegree [ k ] ] ] ;

GenerateBas is InDegree [ n ] := Module [{ l i s t , f l i s t } ,

I f [ n == 0 , Return [ { 1 } ] ] ;

I f [ n == 1 , Return [ BasisForms ] ] ;

I f [ n > Length [ BasisForms ] , Return [ { 0 } ] ] ;

103



l i s t = Subsets [ BasisForms , {n } ] ;

f l i s t = {} ;

For [ i = 1 , i <= Length [ l i s t ] , i ++,

AppendTo [ f l i s t , Wedge @@ l i s t [ [ i ] ] ] ] ;

Return [ f l i s t ] ;

] ;

(∗∗ Creates the matrix r e p r e s en t a t i on o f the d i f f e r e n t i a l

map with r e s p e c t to the b a s i s forms . ∗∗)

GeneratedMatrix [ ] :=

For [ k = 0 , k <= Length [ BasisForms ] , k++,

AppendTo [ dMatrix , k → dMatrixInDegree [ k ] ] ] ;

dMatrixInDegree [ k ] :=

Transpose [ ToMatrix [ d [#] , k + 1 ] & /@ Bases [ k ] ] ;

(∗∗ Def ines the wedge product and i t s p r o p e r t i e s . ∗∗)

Wedge [ a ?FormQ] := a ;

Wedge [ a ?FormQ, x ?FormQ + y ?FormQ, z ?FormQ] :=

Wedge [ a , x , z ] + Wedge [ a , y , z ] ;

Wedge [ a ?FormQ, s ?NumericQ∗ x ?FormQ, z ?FormQ] :=

s Wedge [ a , x , z ] ;

Wedge [ a ?FormQ, r ?NumericQ , z ?FormQ] := r Wedge [ a , z ] ;

Wedge [ a ?BasisFormQ , x ?BasisFormQ , b ?BasisFormQ , x ,

c ?BasisFormQ ] := 0 ;

Wedge [ a r g s ?BasisFormQ ] / ; ! OrderedQ [{ args } ] :=

Signature [{ args } ] Wedge @@ Sort [{ args } ] ;

SetAttributes [ Wedge , {Listable , Flat } ] ;
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(∗∗ Def ines the degree o f a form and i t s p r o p e r t i e s . ∗∗)

Deg [ a ?BasisFormQ ] := 1 ;

Deg [ r ?NumericQ ] := 0 ;

Deg [ a ?FormQ + b ?FormQ] := Deg [ a ] ;

Deg [ a ?FormQ ∧ b ?FormQ] := Deg [ a ] + Deg [ b ] ;

Deg [ r ?NumericQ∗ f ?FormQ] := Deg [ f ] ;

(∗∗ Def ines the e x t e r i o r d e r i v a t i v e and i t s p r o p e r t i e s . ∗∗)

d [ a ?FormQ, x ?FormQ + y ?FormQ, z ?FormQ] :=

d [ a , x , z ] + d [ a , y , z ] ;

d [ r ?NumericQ∗ f ?FormQ] := r d [ f ] ;

d [ r ?NumericQ ] := 0 ;

d [ a ?FormQ ∧ b ?FormQ] :=

d [ a ] ∧ b + (−1)ˆDeg [ a ] a ∧ d [ b ] ;

d [ a ?BasisFormQ ] := dRe lat ions [ a ] ;

(∗∗ Def ines what i t means f o r a form to be c l o s ed . ∗∗)

ClosedQ [ form ?FormQ | form ?NumericQ ] := d [ form ] === 0 ;

(∗∗ Def ines what i t means f o r a form to be exac t . Checks to

see i f the form can be wr i t t en as a l i n e a r combination o f the

d i f f e r e n t i a l o f lower degree forms . I f the r e s u l t i s a L i s t

t h a t means t ha t i t found a s o l u t i o n and the form i s exac t . ∗∗)

ExactQ [ form ?FormQ] := Head [ Exact [ form ] ] === List ;

ExactQ [ n ?NumericQ ] := False ;

Exact [ form ?FormQ] :=
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Quiet@Check [

LinearSolve [ dMatrix [ Deg [ form ] −1] , ToMatrix [ form , Deg [ form ] ] ] ,

False , LinearSolve : : no so l ] ;

(∗∗ Computes a b a s i s f o r the de Rham cohomology o f the mani fo ld

in each degree . ∗∗)

GenerateCohomology [ ] :=

For [ k = 0 , k <= Length [ BasisForms ] + 1 , k++,

AppendTo [ Cohomology , k → GenerateCohomologyInDegree [ k ] ] ] ;

GenerateCohomologyInDegree [ k ] :=

Module [{ formList , matList = {{}} , cohL i s t = {} , dup} ,

I f [ k > Length [ BasisForms ] , Return [ { 0 } ] ] ;

f o rmList = Reverse [ Bases [ k ] . # & /@ NullSpace [ dMatrix [ k ] ] ] ;

For [ i = 1 , i <= Length [ f o rmList ] , i ++,

dup =

Quiet@Check [

LinearSolve [ Join [ dMatrix [ k − 1 ] , matList , 2 ] ,

ToMatrix [ formList [ [ i ] ] , k ] ] , False , LinearSolve : : no so l ] ;

I f [Head [ dup ] =!= List ,

AppendTo [ cohList , fo rmList [ [ i ] ] ] ;

matList =

Join [ matList , Transpose [{ ToMatrix [ formList [ [ i ] ] , k ] } ] , 2 ] ;

] ;

] ;

Return [ cohL i s t ] ;

] ;
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(∗∗ Returns a l i s t o f the de Rham cohomology dimensions . ∗∗)

CohomologyDims [ ] :=

Length [ Cohomology [ # ] ] & /@ Range [ 0 , Length [ BasisForms ] ] ;

(∗∗ Converts a form of degree ’ deg ’ to a vec t o r form in the b a s i s

o f e i t h e r the b a s i s forms o f t h a t degree or the cohomology

e lements o f t h a t degree . ∗∗)

ToMatrix [ form , deg ] :=

I f [ 0 < deg && deg <= Length [ BasisForms ] ,

Coefficient [ form , #] & /@ Bases [ deg ] , { form } ] ;

MatrixInCohomology [ form , deg ] :=

LinearSolve [

Join [Transpose [ ToMatrix [# , deg ] & /@ Cohomology [ deg ] ] ,

dMatrix [ deg − 1 ] , 2 ] , ToMatrix [ form , deg ] ] [ [

1 ; ; Length [ Cohomology [ deg ] ] ] ] ;

(∗∗ Writes the ’ form ’ ∧ map on the index ’ ind ’ cohomology . ∗∗)

CohomologyWedgeMatrix [ form , ind ] :=

Transpose [

MatrixInCohomology [ Wedge [ form , #] , Deg [ form ] + ind ] & /@

Cohomology [ ind ]

] ;

(∗∗ Computes the dimension o f the k e rne l or coke rne l . ∗∗)

DimKer [ mat ] := Length [NullSpace [ mat ] ] ;

DimCoker [ mat ] :=

Dimensions [ mat ] [ [ 1 ] ] − Dimensions [ mat ] [ [ 2 ] ] + DimKer [ mat ] ;
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(∗∗ Compute the k e rne l / coke rne l matrix o f the ’ form ’ ∧

map tha t appears in the d e f i n i t i o n o f the index ’ ind ’ cone

cohomology . ∗∗)

KernelMatrix [ p s i , i nd ] :=

CohomologyWedgeMatrix [ ps i , ind + 1 − Deg [ p s i ] ] ;

CokernelMatrix [ p s i , i nd ] :=

CohomologyWedgeMatrix [ ps i , ind − Deg [ p s i ] ] ;

(∗∗ Compute the dimension o f the cone cohomology wi th r e s p e c t

to ’ ps i ’ in index ’ ind ’ . ∗∗)

ConeCohomologyDim [ p s i , i nd ] := Module [{ t o t a l = 0} ,

I f [ ind + 1 − Deg [ p s i ] >= 0 ,

t o t a l +=

I f [ ind >= Length [ BasisForms ] ,

Length [ Cohomology [ ind + 1 − Deg [ p s i ] ] ] ,

DimKer [ CohomologyWedgeMatrix [ ps i , ind + 1 − Deg [ p s i ] ] ] ] ;

] ;

I f [ ind <= Length [ BasisForms ] ,

t o t a l +=

I f [ ind − Deg [ p s i ] < 0 , Length [ Cohomology [ ind ] ] ,

DimCoker [ CohomologyWedgeMatrix [ ps i , ind − Deg [ p s i ] ] ] ] ;

] ;

Return [ t o t a l ] ;

] ;

(∗∗ L i s t s a l l cone cohomology dimensions wi th r e s p e c t to
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the form ’ ps i ’ . ∗∗)

ConeCohomologyDims [ p s i ] :=

ConeCohomologyDim [ ps i , #] & /@

Range [ 0 , Length [ BasisForms ] + Deg [ p s i ] − 1 ] ;

(∗∗ Abbrev ia t ion f o r GerKerMatrix [ 1 , ind ] . ∗∗)

GenKerMatrix [ ind ] :=

Sum[ I f [ ClosedQ [ BasisForms [ [ i ] ] ] ,

Symbol [ ”a”<>ToString [ i ] ] KernelMatrix [ BasisForms [ [ i ] ] , ind ] ,

0 ] , { i , 1 , Length [ BasisForms ] } ] ;

(∗∗ Abbrev ia t ion f o r GenCokerMatrix [ 1 , ind ] . ∗∗)

GenCokerMatrix [ ind ] :=

Sum[ I f [ ClosedQ [ BasisForms [ [ i ] ] ] ,

Symbol [ ”a”<>ToString [ i ] ] CokernelMatrix [ BasisForms [ [ i ] ] , ind ] ,

0 ] , { i , 1 , Length [ BasisForms ] } ] ;

(∗∗ Computes the matrix o f ψ∧ needed to compute the

k e rne l par t o f the index ’ ind ’ cone cohomology wi th r e s p e c t to

ψ , where ψ i s a genera l l i n e a r combination o f the

degree ’ deg ’ cohomology b a s i s forms . ∗∗)

GenKerMatrix [ deg , ind ] :=

Sum[Symbol [ ”a”<>ToString [ i ] ] KernelMatrix [ Cohomology [ deg ] [ [ i ] ] ,

ind ] , { i , 1 , Length [ Cohomology [ deg ] ] } ] ;

(∗∗ Computes the matrix o f ψ∧ needed to compute the

coke rne l par t o f the index ’ ind ’ cone cohomology wi th r e s p e c t
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to ψ , where ψ i s a genera l l i n e a r combination o f the

degree ’ deg ’ cohomology b a s i s forms . ∗∗)

GenCokerMatrix [ deg , ind ] :=

Sum[Symbol [ ”a”<>ToString [ i ] ]

CokernelMatrix [ Cohomology [ deg ] [ [ i ] ] ,

ind ] , { i , 1 , Length [ Cohomology [ deg ] ] } ] ;

(∗∗ A 4−Dimensional Example wi th ψ a 2−form ∗∗)

Setup [ 4 , {0 , 0 , 0 , e1 ∧ e2 } ]

CohomologyDims [ ]

(∗∗ Output : {1 , 3 , 4 , 3 , 1} ∗∗)

Cohomology [ 2 ]

(∗∗ Output : {e1 ∧ e3 , e1 ∧ e4 , e2 ∧ e3 , e2 ∧ e4} ∗∗)

ind = 2 ;

GK = GenKerMatrix [ 2 , ind ] ;

GC = GenCokerMatrix [ 2 , ind ] ;

For [ i = 1 , i <= Min [Dimensions [GK] ] , i ++,

Print [ ”Rank  >= ” , i , ” :  ” ,

Solve [ De l e t eDup l i ca t e s [ Flatten [Minors [GK, i ] ] ] == 0 , { } ] ] ]

(∗∗ Output :

Rank >= 1: {{a2 → 0 , a4 → 0}}

Rank >= 2: {{a2 → 0 , a4 → 0}}

Rank >= 3: {{}}
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∗∗)

For [ i = 1 , i <= Min [Dimensions [GC] ] , i ++,

Print [ ”Rank  >= ” , i , ” :  ” ,

Solve [ De l e t eDup l i ca t e s [ Flatten [Minors [GC, i ] ] ] == 0 , { } ] ] ]

(∗∗ Output :

Rank >= 1: {{a1 → 0 , a2 → 0 , a3 → 0 , a4 → 0}}

∗∗)
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