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Functional Microbiomics Reveals 
Alterations of the Gut Microbiome and 
Host Co-Metabolism in Patients With 
Alcoholic Hepatitis
Bei Gao,1* Yi Duan ,1,2* Sonja Lang,1 Dinesh Barupal,3 Tsung-Chin Wu,4 Luis Valdiviez,3 Bryan Roberts,3 Ying Yng Choy,3  
Tong Shen,3 Gregory Byram,3 Ying Zhang,3 Sili Fan,3 Benjamin Wancewicz,5 Yan Shao ,6 Kevin Vervier,6 Yanhan Wang,1,2 
Rongrong Zhou,1 Lu Jiang,1 Shilpa Nath,1 Rohit Loomba,1 Juan G. Abraldes,7 Ramon Bataller ,8 Xin M. Tu,9 Peter Stärkel,10 
Trevor D. Lawley,6 Oliver Fiehn,3 and Bernd Schnabl1,2

Alcohol-related liver disease is a major public health burden, and the gut microbiota is an important contributor to 
disease pathogenesis. The aim of the present study is to characterize functional alterations of the gut microbiota and 
test their performance for short-term mortality prediction in patients with alcoholic hepatitis. We integrated shotgun 
metagenomics with untargeted metabolomics to investigate functional alterations of the gut microbiota and host co-
metabolism in a multicenter cohort of patients with alcoholic hepatitis. Profound changes were found in the gut micro-
bial composition, functional metagenome, serum, and fecal metabolomes in patients with alcoholic hepatitis compared 
with nonalcoholic controls. We demonstrate that in comparison with single omics alone, the performance to predict 
30-day mortality was improved when combining microbial pathways with respective serum metabolites in patients with 
alcoholic hepatitis. The area under the receiver operating curve was higher than 0.85 for the tryptophan, isoleucine, 
and methionine pathways as predictors for 30-day mortality, but achieved 0.989 for using the urea cycle pathway in 
combination with serum urea, with a bias-corrected prediction error of 0.083 when using leave-one-out cross validation. 
Conclusion: Our study reveals changes in key microbial metabolic pathways associated with disease severity that predict 
short-term mortality in our cohort of patients with alcoholic hepatitis. (Hepatology Communications 2020;4:1168-1182).

Alcohol-related liver disease is a major health 
care burden and a leading cause of morbid-
ity and mortality worldwide.(1) The individual 

susceptibility of patients with alcohol use disorder to 

liver disease is highly variable. Some patients develop 
alcoholic hepatitis, a severe manifestation of alcohol- 
related liver disease with a short-term mortality of 
about 40%-50%(2) Pharmacologic treatment options 

Abbreviations: AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; AH_c, patients with alcoholic hepatitis 
with cirrhosis; AUD_nc, patients with alcohol use disorder without cirrhosis; AUD_c, patients with alcohol use disorder with cirrhosis; Ctrl, control; 
FIB-4, Fibrosis-4 index; G1, controls; G2, patients with alcohol use disorder without cirrhosis; G3, patients with alcohol use disorder with cirrhosis; 
G4, patients with alcoholic hepatitis without cirrhosis; G5, patients with alcoholic hepatitis with cirrhosis; INR, international normalized ratio; 
LDA, linear discriminant analysis; LEfSe, LDA effect size; MaAsLin2, multivariate association with linear models; MELD, Model for End-Stage 
Liver Disease; N.S., not signif icant; PWY, pathway.
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for patients with alcoholic hepatitis include cortico-
steroids and pentoxifylline; however, they only provide 
a minimal survival benefit.(3) The risk of progres-
sion from liver steatosis to more advanced disease is 
affected by many factors, including the duration and 
extent of alcohol misuse, gender, and genetic factors.(1) 
Recent studies showed that gut microbiota, a poten-
tially modifiable factor, plays an important role in 
alcohol-related liver disease.(4–6)

Colonization of mice with fecal material from 
patients with alcoholic hepatitis increased susceptibil-
ity to ethanol-induced liver disease.(7) A small pilot 
study showed that fecal microbiota transplantation 
from heathy subjects to steroid-ineligible patients 
with severe alcoholic hepatitis improved patient sur-
vival.(8) Therefore, microbiota-centered therapeutic 
approaches might be developed to reduce alcohol- 
related liver disease.(9) Several single-center studies 
have analyzed changes in the microbial composition 
in patients with alcohol-related liver diseases and 
alcoholic hepatitis.(10–13) In addition, metabolomic 
studies have been performed in patients with alco-
holic hepatitis.(14,15) Recently, an integrated analysis of 
bile acid homeostasis and gut microbiota composition 

was performed in patients with alcoholic hepatitis.(16) 
However, other host-microbiota co-metabolism and 
their impact on alcohol-related liver disease are not 
well characterized and understood.

In the present study, we investigated alterations 
in the functional capacities of the gut microbiota by 
shotgun metagenomic sequencing, and gut microbi-
ome and host co-metabolism by untargeted metab-
olomic profiling. We first identified key metabolites 
through a discovery patient cohort and further vali-
dated these metabolites through a validation patient 
cohort. The goal of the present study is to characterize 
the metabolic reprogramming of the gut microbiota 
and host co-metabolism in a cohort of patients with 
alcohol-related liver disease and predict short-term 
mortality in patients with alcoholic hepatitis.

Materials and Methods
patient CoHoRts

Patient cohorts have been described.(17-20) For this 
untargeted metabolomics study, serum and fecal samples 
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were collected from a discovery cohort that included 
17 nonalcoholic controls, 32 patients with alcohol use 
disorder, and 13 patients with alcoholic hepatitis for 
the comparison among three groups to identify key 
metabolites. These 13 patients with alcoholic hepatitis 
were selected because they did not receive antibiotics, 
steroids, or pentoxifylline at the time of specimen col-
lection. As a validation cohort, 141 more serum sam-
ples were used from patients with alcoholic hepatitis 
for correlation analysis and mortality-prediction model 
development. For shotgun metagenomic analysis, fecal 
DNA was extracted from 9 nonalcoholic controls, 41 
patients with alcohol use disorder, and 81 patients with 
alcoholic hepatitis. Nonalcoholic controls are social 
drinkers who consumed less than 20 g of alcohol per 
day. Patients were diagnosed as having alcohol use dis-
order if they fulfilled the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition, crite-
ria.(21) Different stages of liver disease are present in 
the patients with alcohol use disorder, ranging from 
steatosis to steatohepatitis, with or without significant 
fibrosis. Nonalcoholic controls or patients with alcohol 
use disorder did not take antibiotics or immunosup-
pressive medication during the 2 months preceding 
enrollment. Inclusion and exclusion criteria of patients 
with alcoholic hepatitis are included in the Supporting 
Information, as reported in our previous publica-
tion.(17) Patients with alcoholic hepatitis were enrolled 
in 10 different medical centers in Europe and North 
America. The clinical picture was consistent with alco-
holic hepatitis in all patients. Liver biopsies were done 
only if indicated as part of routine clinical care for the 
purpose of alcoholic hepatitis diagnosis. For patients 
who underwent liver biopsy, the liver histology was in 
line with the diagnosis of alcoholic hepatitis. The pro-
tocol was approved by the Ethics Committee of each 
participating center. Written informed consent was 
obtained from each subject. Metabolomic and metag-
enomic data acquisition and data analysis are included 
in the Supporting Information.

statistiCal analysis
Statistical analysis was performed using R statis-

tics software (version 3.5.1). Metabolomics data were 
normalized using the sum of all identified metabolites 
to scale each sample. Kruskal-Wallis test was used to 
calculate the P values in multiple groups, and Mann-
Whitney-Wilcoxon test was used for the comparison 

between two groups. Adjusted P values were calcu-
lated using the Benjamini–Hochberg procedure to 
control the false discovery rate. Principal component 
analysis plots and heatmap were generated using 
MetaboAnalyst 4.0.(22) A random forest model was 
built to predict the 30-day mortality in patients with 
alcoholic hepatitis using serum metabolites. Synthetic 
minority oversampling technique was used to over-
sample the minor class to obtain balanced data. Extra-
trees classifier was used to select 10 variables from all 
annotated serum metabolites based on the feature 
importance. Random forest model was built using 
the H2O platform (https://www.h2o.ai). The data 
set was split into training and test data sets (80:20 
stratified splits). Stratified 5-fold cross-validation was 
performed on the training set to choose the tuning 
parameters for the random forest model.

Linear discriminant analysis (LDA) effect size 
(LEfSe) was performed on the metagenomic data.(23) 
Multivariate association with linear models (MaAsLin2) 
was used to check the association among the amount of 
alcohol intake, gender, and metagenomics and metab-
olomics data. Spearman correlation was conducted to 
correlate serum metabolites with clinical parameters. 
Univariate Cox regression model was used to detect 
associations of serum metabolites with 30-day mortal-
ity. Additionally, a multivariate Cox regression model 
was performed to adjust for different variables. Patients 
who were lost to follow-up were censored at the day 
they were last seen alive. Maximally selected rank statis-
tic was used to determine the optimal cutoff value that 
represents the maximum difference of two alcoholic 
hepatitis groups regarding 30-day survival.(24) Kaplan-
Meier curves, along with log-rank test, were used to 
compare 30-day survival between two groups. To test 
the diagnostic value of multi-omics and to improve 
the performance of the single omics, we modeled the 
binary 30-day mortality outcome using a logistic regres-
sion with microbial pathways and serum metabolites 
as the predictors. To be included in the model, serum 
metabolites need to be either a direct substrate or prod-
uct for certain microbial pathways. Only models with 
an area under the receiver operating characteristic curve 
(AUROC) score larger than 0.85 are discussed in our 
study. Furthermore, we performed leave-one-out cross 
validation to validate our prediction model in this 
patient cohort, which uses a single observation from the 
original sample as the validation data and the remaining 
observations as the training data.(25)

https://www.h2o.ai
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Results
patient CoHoRts

Untargeted metabolomic analysis was first per-
formed on serum and fecal samples collected from a 
discovery cohort consisting of 17 nonalcoholic controls, 
18 patients with alcohol use disorder without cirrho-
sis, 3 patients with alcohol use disorder with cirrhosis 
(Fibrosis-4 index [FIB-4] > 3.25), and 6 patients with 
alcoholic hepatitis with cirrhosis (fibrosis stage F3-F4). 
The stage of cirrhosis was assessed using noninvasive 
assessment of fibrosis, FIB-4 score in patients with 
alcohol use disorder, and using liver biopsy in patients 
with alcoholic hepatitis. The first set of 6 patients with 
alcoholic hepatitis was biopsied among the 13 patients 
who did not receive antibiotics, steroids, or pentoxi-
fylline (Supporting Table S1 and Supporting Fig. S1). 
The median age and body mass index were higher in 
patients with alcoholic hepatitis, compared with con-
trols or patients with alcohol use disorder. Increased 
body mass index is likely due to the presence of ascites 
in 62% of patients with alcoholic hepatitis. Untargeted 
metabolomic analysis was further performed on serum 
samples collected from a second set of 141 patients 
with alcoholic hepatitis (validation cohort) for the 
purpose of correlation analysis and prediction model 
development. There was no significant difference in 
the characteristics between the two sets of patients 
with alcoholic hepatitis, although the median age for 
the 141 patients was lower than that of the 13 patients 
with alcoholic hepatitis (Supporting Tables  S1 and 
S2). The median of the Model for End-Stage Liver 
Disease (MELD) score in the first and second set of 
patients with alcoholic hepatitis was 22 and 24, respec-
tively. In the second set of patients with alcoholic hep-
atitis, 43% of patients received treatment with steroids, 
6% with pentoxifylline, and 27% were treated with 
antibiotics. Liver biopsy was performed in 54% of the 
patients in both sets. Based on the liver biopsy, these 
patients with alcoholic hepatitis were stratified into 
a noncirrhosis group (F0-F2) and a cirrhosis group  
(F3-F4) for the comparison of metabolomics data.

For shotgun metagenomic analysis, limited by the 
availability of stool specimens, 9 nonalcoholic con-
trols, 21 patients with alcohol use disorder without 
cirrhosis (FIB-4  ≤  3.25), 4 patients with alcohol use 
disorder with cirrhosis (FIB-4  >  3.25), 7 patients 
with alcoholic hepatitis without cirrhosis (F0-F2), 

and 38 patients with cirrhosis (F3-F4) were evaluated 
(Supporting Tables S3 and S4). The stage of cirrho-
sis in patients with alcoholic use disorder was assessed 
using a noninvasive assessment of fibrosis, the FIB-4 
score. The stage of cirrhosis in patients with alco-
holic hepatitis was assessed based on liver biopsy. 
Liver biopsy was available from 58% of patients with 
alcoholic hepatitis. At the time of specimen collec-
tion, 39% of patients with alcoholic hepatitis received 
steroids, 9% received pentoxifylline, and 23% of 
patients were treated with antibiotics. Metabolomic 
and metagenomic data did not differ significantly 
among the regions/centers, where patients with alco-
holic hepatitis were enrolled (Supporting Fig. S2). In 
addition, treatment of patients with alcoholic hepati-
tis with antibiotics (Supporting Fig.  S3) or steroids 
(Supporting Fig.  S4) did not significantly affect the 
metabolomic or metagenomic data.

gut miCRoBiota Composition 
is CHangeD in patients WitH 
alCoHoliC Hepatitis

To determine microbial organisms that are most 
likely to explain the differences among patients with 
alcoholic hepatitis, alcohol use disorder, and control 
individuals, LEfSe was performed based on metag-
enomic sequencing, along with additional statistical 
tests for biological consistency and effect relevance.(23) 
LEfSe analysis revealed 6, 7, 2, 4, and 3 bacteria 
species with LDA score larger than 4.0 in controls, 
patients with alcohol use disorder without cirrho-
sis, patients with alcohol use disorder with cirrhosis, 
patients with alcoholic hepatitis without cirrhosis, and 
patients with alcoholic hepatitis with cirrhosis, respec-
tively (Fig. 1A). Taxonomic representation of statisti-
cally and biologically consistent differences in the five 
groups was shown in Fig. 1B.

alteRations in tHe 
FunCtional metagenome in 
patients WitH alCoHoliC 
Hepatitis

A total of 474 MetaCyc pathways (Supporting 
Table  S5) were detected in the metagenomics analy-
sis. Hierarchical clustering of these pathways showed 
that the functional metagenome profile of patients 
with alcoholic hepatitis was different from controls or 
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Fig. 1. LEfSe analysis of the gut microbial taxonomy. (A) Enriched species (LDA score > 4) in controls, patients with alcohol use disorder 
without cirrhosis, patients with alcohol use disorder with cirrhosis, patients with alcoholic hepatitis without cirrhosis, and patients with 
alcoholic hepatitis with cirrhosis. (B) Taxonomic representation of statistically and biologically consistent differences in the five groups. 
Differences are represented in the color of the most abundant class. Each circle’s diameter is in proportion to that taxon’s abundance. 
Abbreviations: G1_Ctrl, controls; G2_AUD_nc, patients with alcohol use disorder without cirrhosis; G3_AUD_c, patients with alcohol 
use disorder with cirrhosis; G4_AH_F0_2, patients with alcoholic hepatitis without cirrhosis; G5_AH_F3_4, patients with alcoholic 
hepatitis with cirrhosis.
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Fig. 2. Pathway analysis of the gut metagenome. (A) Hierarchical clustering of microbial pathways in controls, patients with alcohol use 
disorder without cirrhosis, patients with alcohol use disorder with cirrhosis, patients with alcoholic hepatitis without cirrhosis, and patients 
with alcoholic hepatitis with cirrhosis. Enriched microbial pathways (LDA score > 3) in controls (B), patients with alcohol use disorder 
without cirrhosis (C), patients with alcohol use disorder with cirrhosis (D), patients with alcoholic hepatitis without cirrhosis (E), and 
patients with alcoholic hepatitis patients with cirrhosis (F). Abbreviation: PWY, pathway.
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patients with alcohol use disorder (Fig.  2A). LEfSe 
analysis showed that 26, 10, 8, 29, and 23 pathways 
with LDA score larger than 3.0 were found in control 
subjects, patients with alcohol use disorder without 
cirrhosis, patients with alcohol use disorder with cir-
rhosis, patients with alcoholic hepatitis without cirrho-
sis, and patients with alcoholic hepatitis with cirrhosis, 
respectively (Fig. 2B-F). The name and LDA score of 
these pathways are listed in Supporting Table S6.

In addition to the LEfSe analysis based on the dis-
ease status, we performed MaAsLin2 analysis to iden-
tify the microbes and microbial pathways that were 
associated with the alcohol intake. We found nine 
bacteria and six microbial pathways that were asso-
ciated with alcohol intake (P < 0.05). The results are 
summarized in Supporting Table S7.

seRum anD FeCal metaBolome 
aRe signiFiCantly DiFFeRent 
in alCoHoliC Hepatitis 
patients

A total of 546 metabolites were annotated in the 
discovery cohort (Supporting Table S8). Multivariate 
analysis of the annotated metabolites showed that 
fecal and serum metabolome in patients with alco-
holic hepatitis was separated from control and alcohol 
use disorder groups, as shown in heatmap and princi-
pal component analysis plots (Fig. 3A-D). Compared 
to patients with alcohol disorder with cirrhosis, a total 
of 128 serum metabolites were significantly different 
(P  <  0.05) in patients with alcoholic hepatitis with 
cirrhosis, with 75 increased and 51 decreased (Fig. 3E 
and Supporting Table S9).

We further performed untargeted metabolomics on 
serum samples collected from the validation cohort to 
study the association with 30-day mortality in patients 
with alcoholic hepatitis. Compared to patients with 
alcoholic hepatitis without cirrhosis, a total of 45 
metabolites were significantly different in patients 
with alcoholic hepatitis with cirrhosis (P < 0.05), with 
26 increased and 19 decreased (Fig. 3F and Supporting 
Table S10). We built a random forest model to predict 
the 30-day mortality in patients with alcoholic hep-
atitis using serum metabolomics data. The AUROC 
was 0.96 (Fig. 3G). The variable importance is shown 
in Fig. 3H. Furthermore, to evaluate the performance 
of the multi-omics, we modeled the binary 30-day 
mortality outcome using a logistic regression with 

microbial pathways and serum metabolites as the pre-
dictors. Models with AUROC score larger than 0.85 
are discussed in the following functional metagenomic 
part of this study, including tryptophan, isoleucine, 
methionine, and urea cycle. Spearman correlation of 
these metabolites with clinical parameters and out-
comes are shown in Supporting Fig. S5.

miCRoBial-DepenDent 
tRyptopHan metaBolism is 
DysRegulateD in alCoHoliC 
Hepatitis

As an essential aromatic amino acid, tryptophan 
is the precursor of various other metabolites, such as 
indole derivatives. Tryptophan metabolism and pro-
duction of indole derivatives is under the direct con-
trol of the gut microbiota.(26) As an alternative source 
to dietary intake, gut microbes have the ability to 
synthesize tryptophan. In patients with alcoholic hep-
atitis with cirrhosis, the microbial tryptophan biosyn-
thesis pathway was significantly increased (Fig.  4A). 
Despite the increase in the functional capacity of 
microbial tryptophan biosynthesis, metabolomic 
analysis revealed that serum levels of tryptophan 
and tryptophan-derived metabolites, and indole-3- 
propionic acid, were decreased in patients with alco-
holic hepatitis with cirrhosis (Fig.  4B). Fecal levels 
of indole-3-propionic acid (Fig.  4C) and indole-3- 
lactic acid (Fig.  4D) were also significantly reduced 
in the patients with alcoholic hepatitis with cirrhosis. 
There was no significant difference in the serum level 
of tryptophan, indole-3-propionic acid, and indole-
3-lactic acid when comparing patients with alcoholic 
hepatitis without cirrhosis and alcoholic hepatitis 
patients with cirrhosis (Fig. 4B-D). To test the diag-
nostic value of microbial pathways and serum metab-
olites, we used either serum metabolites or microbial 
tryptophan biosynthesis pathway alone, or a combi-
nation of both serum metabolites and microbial tryp-
tophan biosynthesis pathway, as predictors of 30-day 
mortality. The resulting scores for AUROC ranged 
from 0.479 to 0.571 when using single serum metab-
olites or microbial tryptophan biosynthesis pathway 
alone, whereas using a combination of microbial 
tryptophan biosynthesis, indole-3-propionic acid and 
tryptophan, the AUROC score achieved an AUROC 
of 0.891 (Fig. 4E). To assess generalizability of our 
logistic regression analysis results, leave-one-out cross 
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Fig. 3. Untargeted metabolomics profiling of fecal and serum samples. Hierarchical clustering of fecal (A) and serum metabolites (B). 
Principal component analysis of fecal metabolites (C) and serum metabolites (D). (E) Significantly altered serum metabolites in patients 
with alcoholic hepatitis with cirrhosis (AH_c) compared to patients with alcohol use disorder with cirrhosis (AUD_c). Fold change = 
AH_c/AUD_c. (F) Significantly altered serum metabolites in patients with alcoholic hepatitis with cirrhosis (AH_F3_4) compared 
to patients with alcoholic hepatitis without cirrhosis (AH_F0_2). Fold change = AH_F3_4/AH_F0_2. (G) Random forest model for 
the 30-day mortality prediction using serum metabolomics data. Alive group, n = 99; deceased group, n = 19. (H) Variable importance. 
Abbreviations: AH_c, patients with alcoholic hepatitis with cirrhosis; AUD_nc, patients with alcohol use disorder without cirrhosis; 
AUD_c, patients with alcohol use disorder with cirrhosis; Ctrl, control; AH_F0_2, patients with alcoholic hepatitis without cirrhosis; 
AH_F3_4, patients with alcoholic hepatitis with cirrhosis. PCA, principal component analysis.
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Fig. 4. Tryptophan metabolism. (A) Relative abundance of microbial superpathway of L-tryptophan biosynthesis. G5 versus G2: 
P = 0.039. Fecal and serum level of tryptophan (B), indole-3-propionic acid (C), and indole-3-lactic acid (D). (E) Area under the curve 
using different predictors related to tryptophan metabolism. Alive group, n = 38; deceased group, n = 5. P > 0.05, *P < 0.05, **P < 0.01, 
***P  <  0.001, ****P  <  0.0001. Abbreviations: AH_F0_2, patients with alcoholic hepatitis without cirrhosis; AH_F3_4, patients with 
alcoholic hepatitis with cirrhosis; AH_c, patients with alcoholic hepatitis with cirrhosis; AUD_nc, patients with alcohol use disorder 
without cirrhosis; AUD_c, patients with alcohol use disorder with cirrhosis; Ctrl, control; AUC, area under the curve; G1, controls; G2, 
patients with alcohol use disorder without cirrhosis; G3, patients with alcohol use disorder with cirrhosis; G4, patients with alcoholic 
hepatitis without cirrhosis; G5, patients with alcoholic hepatitis with cirrhosis; N.S., not significant.
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validation was performed on this patient cohort. The 
bias-corrected prediction error was 0.124 for our 
multi-omics model using the leave-one-out cross vali-
dation method, which is small relative to 0.891. Thus, 
our prediction results based on the entire sample seem 
reliable.

DeCReaseD seRum isoleuCine 
is assoCiateD WitH inCReaseD 
melD sCoRe

In addition to the aromatic amino acids, the gut 
microbiota are also essential factors for the supply of 
branch chain amino acids such as isoleucine to the 
host.(27) The microbial isoleucine biosynthesis path-
way was not significantly different in the five groups 
(Fig.  5A), whereas the serum level of isoleucine was 
decreased in patients with alcoholic hepatitis with cir-
rhosis in the exploratory cohort (Fig.  5B). In addi-
tion, the serum level of isoleucine was significantly 
decreased in patients with alcoholic hepatitis with 
cirrhosis compared with patients with alcoholic hep-
atitis without cirrhosis (Fig.  5B). The serum level 
of isoleucine was positively correlated with gamma- 
glutamyl-transferase, alanine aminotransferase, and 
negatively correlated with international normalized 
ratio (INR) and MELD score (Fig. 5C). Multi-omics 
integration of the isoleucine biosynthesis pathway 
and serum level of isoleucine as a predictor of 30-day 
mortality in patients with alcoholic hepatitis achieved 
an AUROC score of 0.897, which performed better 
than using single omics data as predictors (Fig. 5D). 
The bias-corrected prediction error was 0.107 using 
the leave-one-out cross validation method.

inCReaseD seRum metHionine 
is assoCiateD WitH loWeR  
30-Day suRViVal

As an essential amino acid containing sulfur, 
methionine is the precursor of various other metabo-
lites, including quorum-sensing molecules such as acyl 
homoserine lactones and autoinducer-2, which are 
key molecules for the communication in bacteria.(28) 
In patients with alcoholic hepatitis with cirrhosis, 
the microbial methionine biosynthesis was reduced 
(Fig. 6A). Consistently, fecal methionine and methi-
onine sulfoxide were also decreased in patients with 
alcoholic hepatitis with cirrhosis. Meanwhile, serum 

methionine and methionine sulfoxide were increased 
in patients with alcoholic hepatitis with cirrhosis 
(Fig. 6B,C). In the validation cohort of patients with 
alcoholic hepatitis, no significant difference was found 
in the serum level of methionine and methionine sulf-
oxide between patients with alcoholic hepatitis with-
out cirrhosis and with cirrhosis (Fig.  6B,C). Higher 
serum level of methionine or methionine sulfoxide 
was associated with increased INR and MELD score 
(Fig.  6D). A combination of microbial methionine 
biosynthesis and serum level of methionine sulfox-
ide as a predictor for 30-day mortality achieved an 
AUROC score of 0.914, with a bias-corrected pre-
diction error of 0.077 using the leave-one-out cross 
validation method. Again, multi-omics performed 
better than the microbial methionine biosynthesis 
pathway (AUROC = 0.805), serum level of methi-
onine (AUROC = 0.651), or methionine sulfoxide 
alone (AUROC = 0.621) (Fig.  6E). Using the max-
imally selected rank method, we found that patients 
with serum methionine greater than an intensity of 
456 had a significantly lower 30-day survival, com-
pared with patients with serum methionine level 
lower than or equal to 456, with a hazard ratio of 8.01 
under univariate Cox regression analysis and a haz-
ard ratio of 12.09 under multivariate Cox regression 
when adjusted for MELD score, antibiotics, steroids, 
and pentoxifylline treatment (Fig. 6F and Supporting 
Table S11).

HigHeR seRum uRea is 
assoCiateD WitH loWeR  
30-Day suRViVal

Hepatocytes metabolize ammonia into urea, 
which is then excreted as waste product into the 
urine and transported into the intestine to be hydro-
lyzed by bacterial urease into carbon dioxide and 
ammonia.(28) In patients with alcoholic hepatitis 
with cirrhosis, microbial urea cycle was significantly 
increased (Fig. 7A), meanwhile the fecal and serum 
levels of urea were decreased (Fig. 7B). No signifi-
cant difference was found in the serum level of urea 
between patients with alcoholic hepatitis without 
cirrhosis and with cirrhosis (Fig.  7B). In patients 
with alcoholic hepatitis, the higher serum level of 
urea is significantly correlated with elevated creati-
nine and higher MELD score (Fig. 7C). Integration 
of microbial urea cycle and the serum level of urea 
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Fig. 5. Isoleucine metabolism. (A) Relative abundance of microbial L-isoleucine biosynthesis III in five groups. (B) Fecal and serum 
level of isoleucine. (C) Spearman correlation between isoleucine level (log transformation) in the serum of patients with alcoholic hepatitis 
and gamma-glutamyl-transferase, alanine aminotransferase, INR, and MELD score. (D) AUROC using different predictors related the 
isoleucine metabolism. Alive group, n = 38; deceased group, n = 5. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Abbreviations: ALT, 
alanine aminotransferase; GGT, gamma-glutamyl-transferase.
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Fig. 6. Methionine metabolism. (A) Relative abundance of microbial L-methionine biosynthesis III in five groups. G5 versus G1: P =  
0.004; G5 versus G2: P = 0.013. Fecal and serum level of methionine (B) and methionine sulfoxide (C). (D) Spearman correlation between 
methionine level (log transformation) in the serum (left panel) or methionine sulfoxide level (log transformation) in the serum (right 
panel) of patients with alcoholic hepatitis with INR and MELD score. (E) AUROC using different predictors related to methionine 
metabolism. Alive group, n = 38; deceased group, n = 5. (F) Kaplan-Meier curve of 30-day mortality for patients with alcoholic hepatitis. 
Patients were grouped according to their serum levels of methionine. Patients lost to follow-up were censored at the time they were last 
seen alive. P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 7. Urea cycle. (A) Relative abundance of microbial urea cycle pathway in five groups. G2 versus G1: P = 0.038; G3 versus G1: 
P = 0.022; G5 versus G2: P = 0.012; G5 versus G3: P = 0.029. (B) Fecal and serum level of urea. (C) Spearman correlation between urea 
level (log transformation) in the serum of patients with alcoholic hepatitis with creatinine and MELD score. (D) Receiver operating curves 
with AUC using different predictors related to urea cycle. Alive group, n = 38; deceased group, n = 5. (E) Kaplan-Meier curve of 30-day 
mortality for patients with alcoholic hepatitis. Patients were grouped according to their serum levels of urea. Patients lost to follow-up were 
censored at the time they were last seen alive. P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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as a predictor for 30-day mortality achieved an 
AUROC score of 0.989, with a bias-corrected pre-
diction error of 0.083 using the leave-one-out cross 
validation method, which was higher than AUROC 
for microbial urea cycle (0.860) or for the serum 
level of urea (0.851) (Fig.  7D). Using the maxi-
mally selected rank method, we found that patients 
with serum level of urea greater than an intensity 
of 115876 had a significantly lower 30-day sur-
vival, compared to those with serum urea level 
lower than or equal to 115876, with a hazard ratio 
of 11.92 using univariate Cox regression and 10.72 
using multivariate Cox regression when adjusted for 
MELD score, treatment of antibiotics, steroids, and 
pentoxifylline (Fig. 7E and Supporting Table S11).

Discussion
There are several limitations of this study. Most 

patients had cirrhosis in the alcoholic hepatitis 
cohort, whereas only three patients with alcohol 
use disorder had F3-4 disease. This small sam-
ple size is one limitation of this study. In addition, 
our study lacks additional control cohorts such as 
patients with alcoholic cirrhosis without hepatitis 
and patients with cirrhosis without alcoholic hep-
atitis. Lack of additional controls is another limita-
tion of this study. Although we did not stratify our 
patients by gender, we performed MaAsLin2 anal-
ysis to reveal significant microbes, microbial path-
ways (Supporting Table S12), and fecal and serum 
metabolites (Supporting Table S13) associated with 
gender. Despite these limitations, our study showed 
that multi-omics integration is a promising approach 
to predict the short-term mortality in patients with 
alcoholic hepatitis.

As a key metabolic function of the liver, urea syn-
thesis plays a regulatory role in nitrogen homeo-
stasis. Impaired urea cycle in fatty liver disease has 
been reported previously.(29-32) The capacity of urea 
synthesis is decreased in patients with compromised 
liver function but increases in patients with inflamma-
tion.(33) Interestingly, both mechanisms are involved in 
alcoholic hepatitis. As a result of two opposite effects, 
decreased capacity for urea synthesis has been reported 
in patients with alcoholic hepatitis.(33) Consistently, a 
decrease of urea was observed in the serum samples 
of patients with alcoholic hepatitis compared with 

controls in our patient cohort, which is likely due to 
the decrease in hepatic urea synthesis. In line with 
the decrease of hepatic urea synthesis in the cohort of 
patients with alcoholic hepatitis, the contribution of 
microbial urea synthesis to the total urea pool might 
increase. Within the cohort of patients with alcoholic 
hepatitis, increased serum urea correlates with disease 
outcome, which could reflect its role as biomarker of 
kidney function. When combining the microbial urea 
cycle pathway with the serum level of urea to predict 
the 30-day mortality in patients with alcoholic hepati-
tis, the AUROC score is as high as 0.989. Engineering 
the gut microbiome has been proposed for the treat-
ment of hyperammonemia.(34)

Although our prediction model was not validated 
in an independent patient cohort, the results from this 
patient cohort were validated using the leave-one-out 
cross validation method, and we reported the bias-cor-
rected prediction error. Our results showed that when 
integrating microbial pathways with the serum metab-
olites, the performance of prediction was better than 
using traditional metabolites alone, with bias-corrected 
prediction errors ranging from 0.077 to 0.124 to pre-
dict the 30-day mortality. Our study provides valuable 
information for the identification of new drug targets 
and development of personalized therapeutic strate-
gies for patients with alcohol-related liver disease.
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