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ABSTRACT OF THE DISSERTATION

Multiclass Boosting for Fast Multiclass Object Detection

by

Mohammad Saberian

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2014

Professor Nuno Vasconcelos, Chair

In this dissertation the problem of designing a fast multiclass object detec-

tor based on cascade architecture is considered. A classifier cascade is a sequence

of simple to complex sub-classifiers where each stage either rejects the input or

pass it to the next stage. Since most of the non-target inputs get rejected with the

simple sub-classifiers in the early stages of the cascade, the overall classification

will be fast.

Since cascade sub-classifier are usually trained with Boosting algorithms,

the dissertation starts with proposing TaylorBoost which explains Boosting al-

gorithms as iterative descent algorithms for minimizing Taylor expansion of risk

of classification in function space. In the rest of this dissertation TaylorBoost is

used to derive appropriate Boosting algorithms based on the requirements of the

problems.
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The main challenge in designing a classifier cascade is to tune speed-

accuracy trade-off, e.g. more complex early stages in the cascade may increase

accuracy but degrades speed of classification significantly. To address this issue,

this dissertation proposes a new Boosting algorithm, FCBoost, for designing a

classifier cascade by minimizing a a Lagrangian risk that jointly accounts for clas-

sification accuracy and speed of classification.

While FCBoost enables designing cascade detectors for single class of

objects, designing detectors for multiple objects is still problematic. This is because

each of the object detectors has to be trained independently which results in many

redundant computational complexity. To address this issue, the dissertation next

proposes a new multiclass Boosting framework, MCBoost. Combining FCBoost

and MCBoost, makes it possible to learn detector cascade for detecting multiple

objects. The remaining challenge is that in a multiclass cascade, early stages

should implement binary target vs. non-target detectors of high simplicity and

false-positive rate, and late stages should be multiclass classifiers of high accuracy

and complexity to distinguish between target classes. The dissertation proposes

a method to manipulate cost of classification in MCBoost based on cascade false-

positive rate to address this issue. Experiments on the problems of multi-view

car detection and simultaneous detection of multiple traffic signs show that the

proposed detector is faster and more accurate than previous approaches.

xvii
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I.A Real-time multiclass object detector

The problem of simultaneous real-time detection of multiple classes of

objects is a challenging problem and subsumes various important applications in

computer vision. These range from the literal detection of many objects (e.g. an

automotive vision system that must detect cars, pedestrians, traffic signs), to the

detection of objects at multiple semantic resolutions (e.g. a camera that can both

detect faces and recognize certain users), to the detection of different aspects of

the same object (e.g. by defining classes as different poses).

In most of the object detectors a sliding window is scanned throughout an

image, generating hundreds of thousands of image sub-windows. A classifier must

then decide if each sub-window contains certain target objects, ideally at video

frame-rates, i.e. less than a micro second per window. The major challenge is the

design of a very fast and accurate classifier to use in the object detector. A popular

classification architecture for this task is the detector cascade of Figure I.1-a [91].

This detector is implemented as a sequence of simple to complex classification

stages, each of which can either reject the example x to classify or pass it to the

next stage. An example that reaches the end of the cascade is classified as a target.

Since targets (or similar patterns) only occupy a very small portion of the image

sub-windows, most examples are rejected in the early cascade stages, by classifiers

of very limited computation. In result, the average computation per image is small,

and the cascaded detector is very fast. This architecture has shown outstanding

results for the tasks of face, pedestrian and car detection [92, 103, 69].

While the design of cascades for real-time detection of a single object

class has been the subject of extensive research [92, 103, 60, 81, 8, 64, 69], the

simultaneous detection of multiple objects has received much less attention. In

fact, most existing solutions simply decompose this problem into several binary

(single class) detection sub-problems. They can be grouped as follows.

Parallel cascades [96]: these methods learn a cascaded detector per
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Figure I.1: a) detector cascade [91], b) parallel cascade [96], c) parallel cascade
with pre-estimator [90] and d) all-class cascade with post-estimator.

object class (e.g. view), as shown in Figure I.1-b, and rely on some post-processing

to combine their decisions. This has two limitations. The first is the well known

sub-optimality of one-vs.-all multiclass classification, since scores of independently

trained detectors are not necessarily comparable [54]. Second, because there is

no sharing of features across the detectors, the overall classifier performs many

redundant computations and tends to be very slow.

Parallel cascades with pre-estimator [90]: The complexity of the

parallel architecture can be reduced by first making a rough guess of the target

class and running only one of the binary detectors, as illustrated in Figure I.1-c.

While, for some applications (e.g. where classes are object poses), it is possible

to obtain a reasonable pre-estimate of the target class, pre-estimation errors are

difficult to undo. Hence, this classifier must be fairly accurate. This is difficult to

guarantee, in particular because it must also have reduced computation. In [36],

authors proposed a variant of this method, where multiple detectors are run after

the pre-estimate. This improves accuracy but increases complexity.

All-class cascade with post-estimator: In this architecture, all target

classes are first grouped into an abstract class of positive patches. A detector

cascade is then trained to distinguish these patches from everything else. A patch

identified as positive is finally fed to a multiclass classifier, for assignment to one



4

of the target classes. This architecture is shown in Figure I.1-d. In comparison

to parallel cascades, this architecture has the advantage of sharing features across

all classes, eliminating redundant computation. When compared to the parallel

cascade with pre-estimator, it has the advantage that the complexity of its class

estimator has little weight in the overall computation, since it only processes a

small percentage of the examples. This allows the use of very accurate/complex

estimators. The main limitation is that the design of a cascade that detects all

positive patches can be problematic. Due to the large variability of the examples

in this abstract class, this can be difficult to do accurately. For example, Viola

and Jones declared this strategy hopelessly inaccurate [90].

In this dissertation, we address the limitations of all previous architec-

tures, by proposing a true multiclass method for cascade learning. The proposed

detector has the structure of Figure I.1-a, but implements each cascade stage with

a multiclass classifier.

I.B Contributions of the dissertation

Designing a fast and accurate multiclass object detector requires address-

ing several challenges such as 1) how to design a classier, 2) how to design a classifier

under complexity/time constraints, or 3) how to design multiclass classifiers with

minimal complexity. Each chapter of this dissertation is focused on one of these

sub-problems. In the last chapter, we will put together our solutions for these

sub-problems and propose a multiclass object detector. In more details, the main

contributions of the dissertation are as follows.

I.B.1 TaylorBoost

Most of the classifiers used for object detection are based on Boosting

[26]. In Chapter II of this dissertation, the differences between Boosting and op-

timization methods in function space is discussed and a new family of Boosting
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algorithms, denoted TaylorBoost, is proposed. TaylorBoost supports any combina-

tion of loss function and first or second order optimization, and includes classical

algorithms such as AdaBoost[26], AnyBoost[53], or LogitBoost [27] as special cases.

TaylorBoost is then use for designing new Boosting algorithms in the rest of this

dissertation.

I.B.2 A family of Boosting algorithm for designing detector cascade

Designing a detector cascade for real-time object detection [91] is very

complicated, requires lots of trial-and-errors and often results in sub-optimal detec-

tors. In Chapter III of this dissertation, the problem of learning optimal classifier

cascade is considered. A new cascade Boosting algorithm, fast cascade Boosting

(FCBoost), is proposed. FCBoost is shown to have a number of interesting prop-

erties, namely that it 1) minimizes a Lagrangian risk that jointly accounts for

classification accuracy and speed, 2) generalizes AdaBoost, 3) can be made cost-

sensitive to support the design of high detection rate cascades, and 4) is compatible

with many predictor structures suitable for sequential decision making. It is shown

that a rich family of such structures can be derived recursively from cascade pre-

dictors of two stages, denoted cascade generators. Generators are then proposed

for two new cascade families, last-stage and multiplicative cascades, that general-

ize the two most popular cascade architectures in the literature. The concept of

neutral predictors is finally introduced, enabling FCBoost to automatically deter-

mine the cascade configuration, i.e. number of stages and number of weak learners

per stage, for the learned cascades. Experiments on face and pedestrian detection

show that the resulting cascades outperform current state-of-the-art methods in

both detection accuracy and speed.

I.B.3 Theory and algorithm of multiclass Boosting

One of the main challenges for designing a multiclass object detector is

designing an accurate and efficient multiclass object detector. Since Boosting is
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the dominant learning method in object detection, in Chapter IV the problem of

multiclass Boosting is considered. A new framework, based on multi-dimensional

codewords and predictors is introduced. The optimal set of codewords is derived,

and a margin enforcing loss proposed. The resulting risk is minimized by gradient

descent on a multidimensional functional space. Two algorithms are proposed:

1) CD-MCBoost, based on coordinate descent, updates one predictor component

at a time, 2) GD-MCBoost, based on gradient descent, updates all components

jointly. The algorithms differ in the weak learners that they support but are both

shown to be Bayes consistent and margin enforcing. They also reduce to AdaBoost

when there are only two classes. Experiments show that both methods outperform

previous multiclass Boosting approaches in a number of data sets.

I.B.4 Multi-Resolution detector cascades

In theory, by combining FCBoost and MCBoost algorithms it is possible

to design a multiclass detector cascade. In practice, however, a multiclass detector

cascade has to have a behavior denoted multi-resolution. In Chapter IV of this

dissertation we introduce this behavior and propose a solution to guarantee it. In

particular, we argue that in a multiclass cascade, 1) early stages should implement

binary target vs. non-target detectors of high simplicity and false-positive rate,

2) late stages should be multiclass classifiers of high accuracy and complexity to

distinguish between target classes, 3) middle stages can have intermediate numbers

of classes, determined based on structure of the data. We show that learning such

detector is possible using cost-sensitive Boosting. By manipulating the costs of the

associated Boosting risk, it is possible to emphasize 1) discrimination between the

target classes and the negative class, or 2) discrimination among the target classes.

Moreover, by tying this costs to the false positive rates of the cascade stages it is

possible to guarantee the multi-resolution behavior. We use this strategy to design

a Boosting algorithm for learning multiclass detector cascades and show, through

experiments in multi-view car detection and detection of multiple traffic signs,
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that the resulting classifiers are faster and more accurate than those previously

available.

I.C Organization of the dissertation

The rest of the dissertation is organized as follows. In Chapter II, we

present a new framework (TaylorBoost) for understanding Boosting and deriving

new Boosting algorithms. TaylorBoost is then use for designing new Boosting al-

gorithms in the rest of this dissertation. In Chapter III, the problem of learning

optimal classifier cascade for detecting single class of objects is considered. A new

cascade Boosting algorithm, fast cascade Boosting (FCBoost), is propose. In Chap-

ter IV, we start the transition to multiclass object detection by considering the

problem of multiclass Boosting. In this chapter, we formulate multiclass Boosting

as an optimization in multi-dimensional function space and propose two Boosting

algorithms (CD-MCBoost & GD-MCBoost) to solve this problem. In Chapter V,

we introduce the concept of multi-resolution detector and use the MCBoost and

FCBoost algorithms to design a multiclass detector cascade. Finally, conclusions

are provided in Chapter VI.



Chapter II

TaylorBoost

8
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II.A Introduction

Modern solutions to many machine learning and computer vision prob-

lems involve designing a classifier. Boosting is a reliable tool for this task and can

produce a very accurate classifier by combining several weak classifiers. The first

successful Boosting algorithm, AdaBoost, was introduced in [26] and since then

a number explanations have been proposed to justify the effectiveness of Boosting

including [27, 74, 53]. In particular, [27] showed that from statistical point of view

AdaBoost is equivalent to gradient descent in function space to minimizing risk

of exponential loss. In addition, [53] proposed more a general algorithm that can

implement first order descent methods such as gradient descent, for any arbitrary

loss function.

In this chapter, we 1) overview the statistical view of Boosting and show

the characteristics of its optimization problem, 2) show that the current statistical

view of Boosting is only valid when using gradient descent and will fail if using

second-order-descent methods, 3) propose a new Boosting framework TaylorBoost.

TaylorBoost is based on the Taylor series expansion of the risk, that can be ap-

plied to any loss function. It leads to a family of Boosting algorithms of either

first or second order (depending on the approximation), denoted GradBoost and

QuadBoost respectively. It is shown that first order TaylorBoost is equivalent to

AnyBoost [53, 28] and when applied to logistic and exponential losses QuadBoost

is identical to LogitBoost and GentleBoost [27]. Moreover although QuadBoost is

a second order method it dose not require the computational intensive task of ma-

trix inversion and its complexity is the same as GradBoost. Finally TaylorBoost

frameworks shows that there are two different weighting mechanisms in Boost-

ing. The first one originates form the first order derivative and concentrates on

harder examples. The second one originates form the second order derivative and

concentrates on points that are close to the boundary of classification.
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II.B Boosting and optimization in function space

A binary classifier is a mapping F : X → Y which maps example x ∈ X
to its label y ∈ Y = {+1,−1} where x, y are random variables. F (x) is usually

implemented as

F (x) = sign[f(x)], (II.1)

where f(x) is a real valued function called predictor. If H is the set of all possible

real-valued functions, i.e. H = {f |f : X → R}, then the optimal predictor is the

minimizer of






minf(x) Rc(f)

s.t f(x) ∈ H
(II.2)

where

Rc(f) = EX,Y {L[yf(x)]}, (II.3)

is called risk of classification and L(.) is a loss function that penalizes the errors.

The commonly used losses are functions of margin, yf(x).

The optimization problem of (II.2) does not have a closed form solution

and is usually solved by iterative descent methods in function space called Boosting.

At kth iteration of any Boosting method, an update hk(x) ∈ H is added to the

current estimate, i.e. fk+1(x) = fk(x) + hk(x), to reduce the objective function.

Most Boosting methods rely on Gradient descent or Newton methods which require

computation of the first and second order derivatives of the objective function,

Rc(f), in the function space of H which is an infinite dimensional space. However,

the concept of derivative in this space is different than the traditional Gradient and

Hessian in finite dimensional vector spaces. In this case there are several definition:

Gautex derivative [80], Frechet derivative [29] and derivative with conditioning

[27]. In this work we mainly consider Gautex derivative because of its convenient

definition and properties.
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II.B.1 Gautex derivative

Gautex derivative is the analogous of the directional gradient in finite

dimensional case. The Gautex derivative of Rc : H → R at point f ∈ H along a

direction g ∈ H is [80]

δRc(f ; g) =
∂Rc(f + ξg)

∂ξ

∣

∣

∣

∣

ξ=0

, (II.4)

where we omitted x for notational simplicity. Therefore δRc(f ; g) is a real number

which indicates the changes in the surface of Rc at point f if a particle moves along

the direction g.

Using (II.3) and linear property of expected value

δRc(f ; g) =
∂

∂ξ
EX,Y {L[y(f(x) + ξg(x))]}

∣

∣

∣

∣

ξ=0

(II.5)

= EX,Y

{

∂L[yf(x) + ξyg(x)]

∂ξ

∣

∣

∣

∣

ξ=0

}

(II.6)

= EX,Y {yg(x)L′[yf(x)]} , (II.7)

where L′(v) = dL(v)
dv

. Similarly the second order variation of Rc at point f along a

direction g ∈ H is [29]

δ2Rc(f ; g) =
∂2Rc(f + ξg)

∂ξ2

∣

∣

∣

∣

ξ=0

(II.8)

=
∂2

∂ξ2
EX,Y {L[yf(x) + ξyg(x)]}

∣

∣

∣

∣

ξ=0

(II.9)

= EX,Y

{

∂2L[yf(x) + ξyg(x)]

∂ξ2

∣

∣

∣

∣

ξ=0

}

(II.10)

= EX,Y

{

y2g2(x)L′′[yf(x)]
}

(II.11)

= EX,Y

{

g2(x)L′′[yf(x)]
}

, (II.12)

where L′′(v) = d2L(v)
dv2

. δ2Rc(f ; g) is also a real number measuring the curvature

of the path of a particle which moves on the surface of Rc at point f along the

direction g.

Using (II.4), (II.8) the first order Taylor approximation of Rc around f(x) in
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function space is

Rc(f + ǫg) = Rc(f) + ǫδRc(f ; g) + o(ǫ2), (II.13)

and the second order approximation would be

Rc(f + ǫg) = Rc(f) + ǫδRc(f ; g) +
ǫ2

2
δ2Rc(f ; g) + o(ǫ3). (II.14)

II.B.2 Practical limitations

In theory, the definitions presented in the previous section can be used

for solving optimization problem of (II.2) by any first or second-order methods.

In practice, however, there are two main limitations: 1) only a relatively small set

of examples from X and Y , named training samples, are available and 2) only a

small portion of functions, named weak learners, are available to use. We call this

problems sampling and function limitations respectively.

Sampling effect

The training set in most of the learning problems are only a small set

of examples along with their labels, St = {(xi, yi)|xi ∈ X , yi ∈ Y = {+1,−1}}.
Given the limited training data, computing the expected values over the whole

example space of X in (II.17), (II.7) and (II.12) is impossible and they should be

approximated by the empirical averages

δRc(f ; g) ≈ 1

|St|
∑

(xi,yi)∈St

yig(xi)L
′[yif(xi)] (II.15)

δ2Rc(f ; g) ≈ 1

|St|
∑

(xi,yi)∈St

g2(xi)L
′′[yif(xi)] (II.16)

Rc(f) ≈ 1

|St|
∑

(xi,yi)∈St

L[yif(xi)]. (II.17)

Function limitations

In practice only a limited part of H is available for use and most of

the elements (function) of H are either unknown or very expensive to find and
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compute. The available function, g : X → R are called weak learner and let G
be the set of all weak learners, i.e. G = {g1(x), .., gm(x)}. This limitation make

it impossible to find the best predictor, f ∗ ∈ H and f ∗ should be approximated

as a combination of weak learners. For this purpose, Boosting methods usually

consider f ∗ as a linear combination of weak learners i.e. f ∗(x) =
∑

k αkgk(x). In

this case Boosting algorithms solve







minf(x) Rc(f) =
1

|St|

∑

(xi,yi)∈St
L[yif(xi)]

s.t f(x) ∈ ΩG ,
(II.18)

where ΩG is the set of all linear combinations of weak learners in G. Note that

there is no limitation on the magnitude of weak learners, and they only represents

directions in the function space, therefore in the rest of this dissertation we assume

gi ∈ G are normalized i.e. < g, g >= 1. We next propose a family of optimization

algorithms for solving (II.18).

II.C TaylorBoost

In this section, we derive a new family of Boosting algorithms, Taylor-

Boost, for solving (II.18). The distinguishing features of TaylorBoost are 1) it relies

on Taylor series expansion of the risk Rc in the function space, 2) encompasses first

and second order descent methods, and 3) generalizes previous Boosting methods.

At kth iteration of TaylorBoost an update, g∗(x) ∈ G, is selected and

added to the current predictor as

fk+1(x) = fk(x) + α∗cg∗g ∗ (x), (II.19)

where cg in (II.19) is the best step size along a weak learner g to minimize the

approximation Rc(f
k + cg)

cg = argmin
c∈R

Rc(f
k + cg), (II.20)
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Rc(f
k + cg) is the Taylor series expansion of the risk Rc around the current pre-

dictor, fk

Rc(f
k + cg) = Rc(f

k) + cδRc(f
k; g) +

c2

2
δ2Rc(f

k; g) + .. (II.21)

and g∗ is the best weak learner

g∗ = argmin
g∈G

Rc(f
k + cgg). (II.22)

Finally, α∗ is another step size to guarantee minimization of the true objective

function Rc(f)

α∗ = argmin
α≥0

Rc(fk + αhk). (II.23)

Note that α∗ may have a closed form as in AdaBoost [26] or should be found by a

line search.

By controlling the order of the approximation in (II.19), it is possible to

obtain different Boosting algorithms. For an approximation of the second order

cg = argmin
c∈R

Rc(f
k) + cδRc(f

k; g) +
c2

2
δ2Rc(f

k; g) (II.24)

= − δRc(f
k; g)

δ2Rc(fk; g)
. (II.25)

and

g∗ = argmin
g∈G

Rc(f
k) + cgδRc(f

k; g) +
c2g
2
δ2Rc(f

k; g) (II.26)

= argmin
g∈G

Rc(f
k)− δRc(f

k; g)

δ2Rc(fk; g)
δRc(f

k; g) (II.27)

+
1

2

[δRc(f
k; g)]2

[δ2Rc(fk; g)]2
δ2Rc(f

k; g) (II.28)

= argmin
g∈G

Rc(f
k)− 1

2

[δRc(f
k; g)]2

δ2Rc(fk; g)
(II.29)

≡ argmax
g∈G

[δRc(f
k; g)]2

δ2Rc(fk; g)
. (II.30)

Using (II.25) , (II.30) and (II.23) the predictor is updated according to (II.19). We

denote this method Quadratic Boosting , or QuadBoost.
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For an approximation of the first order

cg = argmin
c∈R

Rc(f
k) + cδRc(f

k; g) (II.31)

g∗ = argmin
g∈G

Rc(f
k) + cgδRc(f

k; g), (II.32)

but in this case cg is not well defined and the optimization problem of (II.31) is

unbounded. In addition, the optimization of (II.32) is sensitive to the magnitude

of weak learners. Therefore we assume weak learners are normalized i.e. < g, g >=

1 ∀g ∈ G, and set cg = 1 ∀g ∈ G. It follows that

g∗ = argmin
g∈G

Rc(f
k) + δRc(f

k; g) (II.33)

≡ argmax
g∈G

−δRc(f
k; g). (II.34)

Using (II.34), cg = 1 and (II.23) the predictor is updated according to (II.19). This

method is identical to GradientBoost or AnyBoost [28, 53] and is called GradBoost

in the rest of this dissertation.

In summary, the weak learner selection rule for first order method is

g∗ = argmax
g∈G

−δRc(f
k; g), cg∗ = 1, (II.35)

and the second order method is

g∗ = argmax
g∈G

[δRc(f
k; g)]2

δ2Rc(fk; g)
, cg∗ = − δRc(f

k; g∗)

δ2Rc(fk; g∗)
. (II.36)

The first and second order TaylorBoost algorithms are presented in Algorithm

1. These algorithms are simple and compatible with any definition of risk of

classification, Rc. However, the classical definition of risk, (II.3), has a special

form which makes it possible to further simplify these algorithms.

II.C.1 Simplified TaylorBoost

The classical definition of risk of classification is the summation of the

loss function over all training examples (II.17). This summation form induces

several simplification on TaylorBoost. First, using (II.15), (II.16) the expressions
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Algorithm 1 TaylorBoost

Input: Training set St = {(x1, y1), . . . , (xn, yn)}, where y ∈ {1,−1} is the class

label of example x. A normalized set of weak learners G = {g1, ...gm}. Number

of weak learners in the final classifier N . A definition of risk of classification Rc.

Initialization: Set k = 0 and fk(x) = 0.

while k < N do

For first order TaylorBoost (GradBoost)

g∗ = argmax
g∈G

−δRc(f
k; g), cg∗ = 1.

For second order TaylorBoost (QuadBoost)

g∗ = argmax
g∈G

[δRc(f
k; g)]2

δ2Rc(fk; g)
, cg∗ = − δRc(f

k; g∗)

δ2Rc(fk; g∗)
.

Set hk(x) = cg∗g
∗(x) and find the optimal step size

α∗ = argmin
α≥0

Rc(f
k + αhk).

Update fk+1(x) = fk(x) + α∗hk(x).

Update k = k + 1.

end while

Output: decision rule: sign[fN(x)]

for δRc(f
k; g) and δ2Rc(f

k; g) are simple summations of derivatives of the loss

function. Second, as shown in appendix II.G.1, solving the weak learner selection

rules in TaylorBoost (II.35) and (II.36) can be summarized as

g∗ = argmax
g∈G

[
∑

i yiw
f
i g(xi)]

2

∑

iw
s
i g(xi)

2
, cg∗ =

∑

i yiw
f
i g(xi)

∑

iw
s
i g(xi)

2
, (II.37)

where

wf
i = wf (xi) = −L′(yif(xi)) (II.38)

ws
i = ws(xi) =







1 in GradBoost

L′′(yif(xi)) in QuadBoost.
(II.39)
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Algorithm 2 Simplified TaylorBoost

Input:Training set St = {(x1, y1), . . . , (xn, yn)}, where y ∈ {1,−1} is the class

label of example x. A normalized set of weak learners G = {g1,−g1, ..., gm,−gm}.
Number of weak learners in the final classifier N . A convex loss function,

L[yf(x)].

Initialization: Set k = 0 and fk(x) = 0.

while k < N do

Compute wf
i = −L′[yif

k(xi)].

For first order TaylorBoost (GradBoost) set ws
i = 1.

For second order TaylorBoost (QuadBoost) set ws
i = L′′[yif

k(xi)].

Find the best update hk(x) = cg∗g
∗(x) using

g∗ = argmax
g∈G

[
∑

i yiw
f
i g(xi)]

2

∑

iw
s
i g(xi)

2
, cg∗ =

∑

i yiw
f
i g(xi)

∑

iw
s
i g(xi)

2
,

or

(g∗, cg∗) = arg max
g∈G,cg∈R

∑

i

ws
i

[

yi
wf

i

ws
i

− cgg(xi)

]2

.

Find the optimal step size α∗ = argminα≥0Rc(f
k + αhk).

Update fk+1(x) = fk(x) + α∗hk(x).

Update k = k + 1.

end while

Output: decision rule: sign[fN(x)]

Third, Appendix II.G.2 shows that solving (II.37) is equivalent to solving

the least square problem of

(g∗, cg∗) = arg max
g∈G,cg∈R

∑

i

ws
i

[

yi
wf

i

ws
i

− cgg(xi)

]2

. (II.40)

Using these results, the simplified TaylorBoost is presented in Algorithm

2. In addition for more convenient use of Algorithm 2, Table II.1 shows wf
i and ws

i

for four loss functions of Exponential loss, Logistic loss, Canonical Boosting loss



18

(CBL) [51] and laplace loss [70]. The definition and shape of these loss functions

are presented in Figure II.1. Note that when using exponential and Logistic losses

QuadBoost is equivalent to GentleBoost and LogitBoost respectively [27].

II.D Properties

The TaylorBoost family has a number of interesting properties. The

first property of TaylorBoost is its insight to Boosting. This makes it possible to

modify current Boosting methods or create new Boosting algorithms to address

requirements of specific problems where different definitions for loss functions, risk

of classification or weak learners are required. In the rest of this dissertation,

TaylorBoost will be used for this purpose. Second, TaylorBoost generalizes the

classical Boosting methods and unify them on a simple framework of algorithm 2.

In particular GradientBoost or AnyBoost [28, 53] are equivalent to TaylorBoost

of first order (GradBoost) and LogitBoost and GentleBoost are application of

second order TaylorBoost (QuadBoost) to logistic and exponential loss respectively.

Third, due to more accurate approximation of second order methods, QuadBoost

selects better weak learners and has faster rate of convergence than GradBoost.

Finally, although second order methods are sometimes expensive (need to invert

the Hessian), in QuadBoost there is no need for inverting the hessian either in

the Simplified TaylorBoost or the regular TaylorBoost. Therefore TaylorBoost

framework makes it possible to build faster Boosting method with no additional

computational cost.

II.D.1 Weights in TaylorBoost

From the algorithmic point of view, Boosting is about reweighing training

examples and focusing on more difficult ones in each iteration [26]. This section

clarifies the origin and functionality of those weighting mechanisms.

Using the notations of algorithm 2, in AdaBoost and first order methods,
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Loss L[y, f(x)]

Exponential e−yf(x)

Logistic log(1 + e−2yf(x))

Laplace e−|yf(x)| + |yf(x)| − yf(x)

CBL [
√

4 + (yf(x))2 − yf(x)]
−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

v

L
(v

)

 

 

Exponental
Logistic
Laplace
CBL

Figure II.1: Left: Definition of different loss function. Right: Plots of different
losses as a function of v = yf(x).

Table II.1: Formula for computing first order weights, wf (x), and second order
weights, ws(x), for different loss function.

Loss wf (x) ws(x)

Exponential e−yfk(x) e−yf(x)

Logistic 2e−2yf(x)

1+e−2yf(xi)

[

2
eyf(x)+e−yf(x)

]2

Laplace sign[yf(x)][1− e−|yf(x)|]− 1 e−|yf(x)|

CBL 1− f(x)√
4+f(x)2

4√
(4+f(x)2)3

wf is known as weight [27]. Similarly for LogitBoost and GentleBoost, which are

second order methods, the coefficients ws are called the weights [27]. Therefore,

algorithm 2 clarifies that 1) there are two type of weighting mechanisms in Boost-

ing, 2) the first kind originates form the first order derivative of the loss function

while the other kind originates from the second order derivative and, 3) first order

methods use only wf while second order methods use both wf and ws. Figure II.2-

a,b show wf (.) and ws(.) as functions of margin v = yf(x) for loss functions

shown in Figure II.1. As shown in the Figure II.2-a, wf is always larger for points

with negative margin. But negative margin indicates misclassification, therefore

wf helps Boosting to concentrate on misclassified (harder) examples. Moreover,

Figure II.2-b shows that, except for exponential loss, ws is larger if v is close to

zero. But v = 0 represent the classification boundary, therefore ws helps Boosting

to concentrate on the examples that are closer to the boundary. Note that for

exponential loss the effect of ws is the same as wf .
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Figure II.2: a) first, wf , and b) second, ws, type of weights in Boosting as functions
of margin v = yf(x) for different loss functions.

The effect of ws can be explained by statistical view of Boosting. In [27]

it is shown that Boosting learns the log-likelihood ratio (LLR) surface. However

this only holds asymptotically (infinite training sets) and [54, 49] showed that, for

finite samples, Boosting only learns the LLR surface in a neighborhood NB of the

classification boundary. Outside this neighborhood the approximation can be very

weak. Therefore using ws Boosting can trades-off the quality of the approximation

within NB, by that of outside NB.

II.D.2 Convexity

If Rc(f) of (II.3) is a (strictly) convex function of f inH, then (II.2) would

be a (strictly) convex optimization problem and will have a (unique) solution. On

the other hand Rc(f) is convex if and only if δ2Rc(f ; g) ≥ 0 ∀f, g ∈ H which,

using (II.12), is equivalent to

∀f ∈ H, ∀x, y ∈ X ,Y L′′(yf(x)) ≥ 0. (II.41)

II.E Experiments

In this section several experiments were performed to evaluate our the-

ory and algorithms. The first experiment compares first and second order methods

(GradBoost vs QuadBoost) both on synthetic and real data sets. The second exper-

iment illustrates application of QuadBoost in discriminant tracking, and compares



21

0 5 10 15 20

0.2

0.25

0.3

0.35

Iteration

R
is

k

 

 

GradBoost

QuadBoost

0 5 10 15 20
0.03

0.04

0.05

Iteration

Er
ro

r r
at

e

 

 

GradBoost

QuadBoost

(a) (b)

Figure II.3: a) Risk of classification, Rc(f) and b) error rates as function of
iterations for classifiers trained with GradBoost and QuadBoost.

its performance with previous Boosting methods. Similar to [27], In all experiments

the weak learners are regression on the example coordinates, (features).

II.E.1 GradBoost vs. QuadBoost

We start with comparing the first and second order Boosting methods on

synthetic and real data sets.

Synthetic data

The data set in this section is based on random sampling from two Gaus-

sian distribution in R
2 with means [2, 2], [2,−2] and covariance matrices [1, 0.5; 0.5, 2],

[0.4, 0.1; 0.1, 0.8] respectively. Both training and test set have 1, 000 example form

each distribution. We trained first and second order Boosted classifiers using logis-

tic loss. Figure II.3 shows the evolution of risk of classification (left) and error rate

(right) on the test set. As this figure shows when using the second order method,

Boosting converges to the minimum faster and results in better performance.

Real Data

For comparing GradBoost and QuadBoost on real data we have selected 6

UCI data set and three large object detection data sets for face, car and pedestrian

detection. The UCI data set are ‘Image’, ‘Ringnorm’, ‘Splice’, ‘Thyroid’, ‘Titanic’,

‘Twonorm’, ‘Waveform’. This data comes with 100 predefined splits for training
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and test sets [1] 1 and we report the average results. The face data set consists

of 9, 000 face and 9, 000 non-face images, of size 24 × 24. Car detection is based

on the UIUC data set [3] of 1, 100 positives and 10, 000 negatives, of size 20× 50.

Pedestrian detection is based on the MIT Pedestrian data set [59] of 1, 000 positives

and 10, 000 negatives, of size 40×20. In all cases, the data was split into five folds,

four of which were used for training and one for testing. All experiments were

repeated with each fold taking the role of test set, and the results averaged.

Table II.2 presents the error rates of classifiers learned with 20 iterations

of all combinations of GradBoost, QuadBoost and the losses of Figure II.1. A

number of observation can be made. First, in 28/36 cases QuadBoost has bet-

ter performance in 5/36 GradBoost was better and in 3/36 the performance of

Grad and QuadBoost are the same. Second, the improvements of QuadBoost vs

GradBoost is up to 51% in car data set when using CBL loss function and in the

worst case using QuadBoost degrades the results by 2% (Thyroid and Exp loss).

Third comparing the best result on each data set (bold entries on Table II.2) in

6/9 QuadBoost had the best performance, in 2/9 GradBoost was better and in

1/9 Quad and GradBoost have the same accuracy. Fourth, comparing the loss

functions, CBL loss achieved the best detectors in 5 data sets, Laplace in 4 data

sets, logistic loss in 2 data sets and exponential loss in 1 data sets. Fifth, note that

the improvements in QuadBoost are gained without any substantial increase in

learning complexity because, according to algorithm 2, the only difference between

QuadBoost and GradBoost is in the definition of coefficient ws(x).

In summary, comparing to GradBoost, QuadBoost has better perfor-

mance without any increase in complexity of training. This is a consequence of

its tighter local approximation of Rc (second order vs first order) which results in

selection of more efficient weak learners and faster convergence.

1For ‘Ringnorm’, ‘Splice’ the data has 20 splits
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II.E.2 Discriminant Tracking

Discriminant tracking is a state-of-the-art object tracking approach. In

this method, a classifier is trained to distinguish the target object from the sur-

rounding background in each video frame. This classifier is then applied to the

next frame in order to detect the object. This procedure is repeated and results

in tracking the object of interest [5]. Various methods have been proposed for

learning the classifiers, including AdaBoost [5], discriminant saliency [48], and a

combination of discriminant saliency and TangentBoost [52]. The latter has been

reported to achieve the best results in the literature.

One of the main challenges in design of the classifiers for this approach

is the rate of convergence of the learning method. This is in particular important

because of the time constraints, such as real-time tracking, requires the learning

algorithm to run only for a small number of iterations, i.e. 10 to 20. Therefore

if a learning method has faster rate of convergence then it will produce more

accurate classifier with small number of iterations and result in more accurate

tracker. Using this fact and the results of previous experiment, in this section we

combine discriminant tracking with QuadBoost.

For QuadBoost-discriminant tracking we used regression of discriminant

saliency features provides by [48] as weak learners and the classifier for each frame

was learned with up to 20 iterations. The experiment is repeated with four loss

functions of exponential, logistic, CBL and laplace loss. In addition we have also

implemented the TangentBoost [52] for comparison. Note that TangentBoost is

a first order method and its loss function, Tangent loss, is not convex. Therefore

it is not possible to create a proper second order Boosting, QuadBoost, using

the tangent loss. Table II.3 presents the error rates (as defined in [48]) for each

method on five video clips. The combination of Laplace, CBL and QuadBoost

each achieves the best result on two clips, while TangentBoost has the lowest error

rate on the last one.
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Table II.3 Tracking accuracy for five video clips.

Method Tangent Log+Quad Exp+Quad Lap+Quad CBL+Quad
Gravel 18.6 % 18.8 % 19.2% 18.8 % 17.8 %
Athlete 36.6 % 37.2 % 36.4% 35.8 % 35.4 %
Karls 79.9 % 31.7 % 33.7% 31.4 % 35.3 %

Montins 86.9 % 92.2 % 92.5% 83.4 % 87.7 %
Plush 8.9% 9.4 % 9.5% 10.2 % 10.9 %
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II.G Appendix

II.G.1 Weak learner selection rule for simplified TaylorBoost

We start with the assumption that if ∀g ∈ G ⇒ −g ∈ G. This is a valid

assumption in most of the cases because we can build −g(x) by simply changing

the sign of g(x). Using this assumption,

g∗ = argmax
g∈G

−δRc(f
k; g) = g × sign

[

−δRc(f
k; g)

]

, (II.42)

where

g = argmax
g∈G

[

δRc(f
k; g)

]2
. (II.43)

In this case g = g∗ or g = −g∗ and sign
[

−δRc(f
k; g)

]

corrects the sign such that

(II.42) holds. Combining (II.30), (II.42) and using the normalization assumption

about weak learners, results in

g∗ = argmax
g∈G

[
∑

i yiw
f
i g(xi)]

2

∑

iw
s
i g(xi)

2
, cg∗ =

∑

i yiw
f
i g(xi)

∑

iw
s
i g(xi)

2
(II.44)

where

wf
i = wf (xi) = −L′(yif(xi)) (II.45)

ws
i = ws(xi) =







1 in GradBoost

L′′(yif(xi)) in QuadBoost.
(II.46)

II.G.2 Least square interpretation

Solving

(g∗, cg∗) = arg min
g∈G,cg∈R

∑

i

ws
i

[

yi
wf

i

ws
i

− cgg(xi)

]2

, (II.47)

we first compute the derivative with respect to cg and set it to zero

∑

i

ws
i g(xi)[yi

wf
i

ws
i

− cgg(xi)] =
∑

i

g(xi)yiw
f
i − cg

∑

i

g2(xi)w
s
i = 0. (II.48)

Therefore

cg =

∑

i g(xi)yiw
f
i

∑

i g
2(xi)ws

i

, (II.49)
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and using this in (II.47)

g∗(x) = argmin
g∈G

∑

i

ws
i

[

yi
wf

i

ws
i

− cgg(xi)

]2

= argmin
g∈G

∑

i

y2i
[wf

i ]
2

ws
i

+ c2g
∑

i

ws
i g(xi)

2 − 2cg
∑

i

yiw
f
i g(xi)

= argmin
g∈G

[

∑

i g(xi)yiw
f
i

∑

i g
2(xi)ws

i

]2
∑

i

ws
i g(xi)

2 − 2

∑

i g(xi)yiw
f
i

∑

i g
2(xi)ws

i

∑

i

yiw
f
i g(xi)

= argmax
g∈G

[
∑

i g(xi)yiw
f
i ]

2

∑

i g
2(xi)ws

i

. (II.50)
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III.A Introduction

Designing an object detector requires designing a classifier to distinguish

between target and non-target input images. This classifier is then applied to all

candidate regions in an image to find all instance of a target. The main challenge

in designing a real-time detector is that in each image there are millions of candi-

date region and the classifiers has to process all these candidates in a fraction of a

second. One possibility to deal with this problem is to adopt sophisticated search

strategies, such as branch-and-bound or divide-and-conquer, to reduce the number

of sub-windows to classify [40, 89, 39]. While these methods are compatible with

popular classification architectures, e.g. the combination of a support vector ma-

chine (SVM) and the bag-of-words image representation, they do not speed up the

classifier itself. An alternative solution is to examine all sub-windows but adapt

the complexity of the classifier to the difficulty of their classification. This strategy

has been the focus of substantial attention since the introduction of the detector

cascade architecture in [91]. As illustrated in Figure III.1 a) this architecture is

implemented as a sequence of binary classifiers h1(x), . . . hm(x), known as the cas-

cade stages . These stages have increasing complexity, ranging from a few machine

operations for h1(x) to extensive computation for hm(x). An example x is declared

a target by the cascade if and only if it is declared a target by all its stages. Since

the overwhelming majority of sub-windows in an image do not contain the target

object, a very large portion of the image is usually rejected by the early cascade

stages. This makes the average detection complexity quite low. However, because

the later stages can be arbitrarily complex, the cascade can have very good clas-

sification accuracy. This was convincingly demonstrated by [91], who used the

cascade architecture to design the first real-time face detector with state-of-the-art

classification accuracy. This detector has since found remarkable practical success,

and is today popular in applications of face detection involving low-complexity

processors, such as digital cameras or cell phones.
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Figure III.1: (a) detector cascade and (b) examples of weak learners used for face
detection [91].

In the method of [91], cascade stages are designed sequentially, by simply

training each detector on the examples rejected by its predecessors. Each stage

is designed by Boosting decision stumps that operate on a space of Haar wavelet

features, such as those shown in Figure III.1-b). Hence, each stage is a linear

combination of weak learners, each consisting of a Haar wavelet and a threshold.

This has two appealing properties. First, because it is possible to evaluate each

Haar wavelet with a few machine operations, cascade stages can be very efficient.

Second, it is possible to control the complexity of each stage by controlling its

number of weak learners. However, while fast and accurate, the detector of [91] is

not optimal under any sensible definition of cascade optimality. For example, it

does not address the problems of 1) how to automatically determine the optimal

cascade configuration, e.g. the numbers of cascade stages and weak learners per

stage, 2) how to design individual stages so as to guarantee optimality of the

cascade as a whole, or 3) how to factor detection speed as an explicit variable of the

optimization process. These limitations have motivated many enhancements to the

various components of cascade design, including 1) new features [45, 15, 63, 60],

2) faster feature selection procedures [97, 62], 3) post-processing procedures to

optimize cascade performance [45, 47, 82], 4) extensions of AdaBoost for improved

design of the cascade stages [92, 50, 81, 76, 44, 87], 5) alternative cascade structures

[99, 8, 98, 81], and 6) joint, rather than sequential stage design [22, 42, 81, 8].

While these advances improved on [91], the optimal design of a whole cascade is

still an open problem. Most existing solutions rely on assumptions, such as the
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independence of cascade stages, that do not hold in practice.

In this section, we address the problem of automatically learning both

the configuration and the stages of a high detection rate detector cascade, un-

der a definition of optimality that accounts for both classification accuracy and

speed. This is accomplished with the fast cascade Boosting (FCBoost) algorithm,

an extension of AdaBoost derived from a Lagrangian risk that trades-off detection

performance and speed. FCBoost optimizes this risk with respect to a predictor

that complies with the sequential decision making structure of the cascade archi-

tecture. These predictors are called cascade predictors , and it is shown that a rich

family of such predictors can be derived recursively from a set of cascade gener-

ator functions, which are cascade predictors of two stages. Boosting algorithms

are derived for two elements of this family, last-stage and multiplicative cascades.

These are shown to generalize the cascades of embedded [99, 8, 98, 81, 50, 64] or

independent [91, 76, 9, 97, 78, 79] stages commonly used in the literature. The

search for the cascade configuration is naturally integrated in FCBoost by the in-

troduction of neutral predictors . This allows FCBoost to automatically determine

1) number of cascade stages and 2) number of weak learners per stage, by simple

minimization of the Lagrangian risk. The procedure is compatible with existing

cost-sensitive extensions of Boosting [92, 50, 64, 49] that guarantee cascades of

high detection rate, and generalizes AdaBoost in a number of interesting ways. A

detailed experimental evaluation on face and pedestrian detection shows that the

resulting cascades outperform current state-of-the-art methods in both detection

accuracy and speed.

The rest of this chapter is organized as follows. Section III.B reviews the

challenges of cascade learning and previously proposed solutions. Section III.C

briefly reviews AdaBoost, the most popular stage learning algorithm, and pro-

poses its generalization for the learning of detector cascades. Section III.D studies

the structure of cascade predictors, introducing the concept of cascade generators.

Two generators are then proposed, from which two cascade families (last-stage
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and multiplicative) are derived. The search for the cascade configuration is then

studied in Section III.E. In this section the Lagrangian extension of the cascade

Boosting algorithm is introduced, so as to account for detector complexity in the

cascade optimization, and a procedure for the automatic addition of cascade stages

during Boosting is developed, using neutral predictors. All these contributions are

consolidated into the FCBoost algorithm in Section III.F, whose specialization to

last-stage and multiplicative cascades is shown to generalize the two main previous

approaches to cascade design. A number of interesting properties of the algorithm

are also discussed, and a cost-sensitive extension is derived. Finally, an exper-

imental evaluation is presented in Section III.G and some conclusions drawn in

Section III.H. An early version of this work was presented in [71].

III.B Prior work

A large literature on detector cascade learning has emerged over the past

decade. In this section, we briefly review the main problems in this area and their

current solutions.

III.B.1 The problems of cascade learning

As illustrated in Figure III.1, a cascaded detector is a sequence of detec-

tor stages . The aim is to detect instances from a target class. Examples from this

class are denoted positives while all others are denoted negatives . An example re-

jected, i.e. declared a negative, by any stage is rejected by the cascade. Examples

classified as positives are propagated to subsequent stages. To be computationally

efficient, the cascade must use simple classifiers in the early stages and complex

ones later on. Under the procedure proposed by [91] the cascade designer must

first select a number of stages and the target detection/false-positive rate for each

stage. A high detection rate is critical, since improperly rejected positives cannot

be recovered. The false-positive rate is less critical, since the cascade false-positive
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rate can be decreased by addition of stages, although at the price of extra compu-

tation. The stages are designed with AdaBoost. The target detection rate is met

by manipulating the stage threshold, and the target false-positive rate by increas-

ing the number of weak learners. This frequently leads to an exceedingly complex

learning procedure. One difficulty is that the optimal cascade configuration (num-

ber of stages and stage target rates) is unknown. We refer to this as the cascade

configuration problem. While some configurations have evolved by default, e.g. 20

stages, with a detection rate of 99.5% and a false-positive rate of 50%, there is

nothing special about these values. This problem is compounded by the fact that,

for late stages where negative examples are close to the classification boundary,

it may be impossible to meet the target rates. In this case, the designer must

backtrack (redesign some of the previous stages). Frequently, various iterations of

parameter tuning are needed to reach a satisfactory cascade. Since each iteration

requires Boosting over a large set of examples and features, the process can be

tedious and time consuming. We refer to this as the design complexity problem.

Even when a cascade is successfully designed, the process has no guaran-

tees of optimal classification performance. One problem is that, while computa-

tionally efficient, the feature set of [91] lacks discriminant power for many applica-

tions. This is the feature design problem. This problem is frequently compounded

by lack of convergence of AdaBoost. Note that while AdaBoost is consistent [6],

there are no guarantees that a classifier with small number of Boosting iterations,

e.g. early stages of a cascade, will produce classifiers that generalize well.

We refer to this as the convergence problem. This problem is magnified by

the mismatch between the AdaBoost risk, which penalizes misses/false-positives

equally, and the asymmetry of the target detection and false-positive rates used in

practice. Although a stage can always meet the target detection rate by threshold

manipulation, the resulting false-positive rate can be strongly sub-optimal [49].

In general, better performance is obtained with asymmetric learning algorithms,

that optimize the detector explicitly for the target detection rate. This is the cost-
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sensitive learning problem. Besides classification optimality, the learned cascade

is rarely the fastest possible. This is not surprising, since speed is not an explicit

variable of the cascade optimization process. While the specification of stage false-

positive rates can be used to shuffle computation between stages, there is no way

to predict the amount of computation corresponding to a particular rate. This is

the complexity optimization problem.

III.B.2 Previous solutions

Over the last ten years, significant research has been devoted to all of the

above problems.

Feature design: [91] introduced a very efficient set of Haar wavelets.

They showed that these features could be extracted, with a few operations, from an

integral image (cumulative image sum). While all features in the original Haar set

were axis-aligned, [45] developed an extension for 45◦ rectangles and several authors

pursued extensions to other orientations [10, 19, 55]. More recently, [63] have shown

how to compute integral images over arbitrary polygonal regions. Beyond these

features, integral images can also be used to efficiently compute histograms [65].

This reduces to quantizing the image into a set of channels (associated with the

histogram bins) and computing an integral image per channel. A computationally

efficient version of the HOG descriptor [15] was then developed by [103], and used

to design a real-time pedestrian detector cascade. More recently, [60] extended

the idea to multiple other channels. Finally, extensions have been developed for

more general statistical descriptors, e.g. the covariance features of [87]. While the

algorithms proposed in this work support any of these features, we adopt the Haar

set of [91]. This is mostly for consistency with the cascade learning literature,

where Haar wavelets are predominant.

Design of stage classifiers: A number of enhancements to the stage

learning method of [91] have been proposed specifically to address the problems

of convergence rate, cost-sensitive learning, and training complexity. One poten-
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tial solution to the convergence problem is to adopt recent extensions of AdaBoost,

which converge with smaller numbers of weak learners. Since AdaBoost is a greedy

feature selection algorithm, the effective number of weak learners can be reduced

by using forward-backward feature selection procedures [101] or reweighing weak

learners by introduction of sparsity constraints in the optimization [11, 20]. This

results in more accurate classification with less weak learners, i.e. a faster classifier.

While these algorithms have not been used in the cascade learning literature, sev-

eral authors have used similar ideas to improve stage classifiers. For example, [44]

augmented AdaBoost with a floating search that eliminates weak learners of small

contribution to classifier performance. [78, 79] proposed a similar idea, based on

linear discriminant analysis (LDA). Moreover, by interpreting the Boosted clas-

sifier as a hyperplane in the space of weak learner outputs, several authors have

shown how to refine the hyperplane normal so as to maximize class discrimina-

tion. Procedures that recompute the weight of each weak learner have been im-

plemented with SVMs [99], variants of LDA [97, 78, 79], and non-linear feature

transformations [76]. The hyperplane refinement usually optimizes classification

error directly, rather than the exponential loss of AdaBoost, further improving the

match between learning objective and classification performance.

Finally, faster convergence is usually possible with different weak learners,

e.g. linear SVMs [103] or decision trees of depth two [60], and Boosting algorithms

such as realBoost or logitBoost [81, 76, 44, 87].

Beyond classification performance, some attention has been devoted to

design complexity. Since the bulk of the learning time is spent on weak learner

selection, low-complexity methods have been proposed for this. For example, [97]

proposed a forward feature selection method that trades off memory for compu-

tational efficiency. An alternative, proposed by [62], is to model Haar wavelet re-

sponses as Gaussian variables, whose statistics can be computed efficiently. While

speeding up the design of each stage, these methods do not eliminate all aspects of

threshold tunning, stage backtracking, etc. It could be argued that this is the worst



36

component of design complexity, since these operations require manual supervision.

A number of enhancements have been proposed in this area. While [91] proposed

stage-specific threshold adjustments, [47, 82] formulated threshold adjustments as

an a-posteriori optimization of the whole cascade. These methods are hampered by

the limited effectiveness of threshold adjustments when stage detectors have poor

ROC performance, [49]. Better performance is usually achieved with cost-sensitive

extensions of Boosting, which optimize a cost-sensitive risk directly. An early al-

gorithm was proposed by [92] and later extended by [50, 64]. More recently, [49]

proposed Bayes consistent cost-sensitive extensions of AdaBoost, logitBoost, and

realBoost. These algorithms were shown to substantially improve the false-positive

performance of cascades of high detection rate [50]. These could be combined with

the method of [9], which devised a predictor of the optimal false positive and de-

tection rate for each stage, from statistics of the previous stages, so as to design

a cascade of cost-sensitive stages automatically. An alternative procedure for the

joint optimization of all stages of a cascade of known configuration was proposed

in [22].

Cascade configuration: Most of the above enhancements are within

the framework of [91], i.e. assume a known cascade configuration and sequential

stage learning. This is a suboptimal design strategy and the assumed cascade

configuration may not be attainable in practice. An alternative is to adopt cascades

of embedded stages where each stage is the starting point for the design of the next

[99, 8, 98, 81, 50, 64]. The main advantage of this structure is that the whole

cascade can be designed with a single Boosting run, and adding exit points to a

standard classifier ensemble. This also minimizes the convergence rate problems of

individual stage design. [81] derived a method for learning embedded stages from

Wald’s theory of sequential decision making. While attempting to optimize the

whole cascade, these approaches do not fully address the configuration problem.

Some simply add an exit point per weak learner [50, 98, 81], while others use

post-processing [8, 99] or pre-specified detection and false-positive rates [64] to
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determine exit point locations. More recently, [42, 66] propose to learn all stages

simultaneously, by modeling a cascade as the product, or logical “AND”, of its

stages.

Overall, despite substantial progress, no method addresses all problems

of cascade learning. Since few approaches explicitly optimize the cascade configu-

ration, fewer among these rely on cost-sensitive learning, and no method optimizes

detection speed explicitly, cascade learning can require extensive trial and error.

This can be quite expensive from a computational point of view and leads to a te-

dious design procedure, which can produce sub-optimal cascades. In the following

sections we propose an alternative framework, which is fully automated and jointly

determines 1) the number of cascade stages, 2) the number of weak learners per

stage, and 3) the predictor of each stage, by minimizing a Lagrangian risk that is

cost-sensitive and explicitly accounts for detection speed.

III.C A Boosting algorithm for the design of classifier cas-

cades

A detailed overview of Boosting and algorithm for designing new Boosting

algorithms are presented in Chapter II. In this section we start with a brief review

the main concepts of that chapter and use it for training a classifier cascade.

III.C.1 Boosting

A binary classifier h : X → {−1, 1} maps an example x into a class label

y(x). A learning algorithm seeks the classifier of minimum probability of error,

PX(h(x) 6= y(x)), in the space of binary mappings

H = {h|h : X → {−1, 1}} .
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Since H is not convex and h ∈ H not necessarily differentiable, this is usually done

by restricting the search to mappings of the form

h(x) = sign[f(x)],

where f : X → R, is a predictor. The goal is then to learn the optimal f(x) in a

set of predictors

F = {f |f : X → R} .

This is the predictor which minimizes the classification risk, RE : F → R,

RE[f ] = EX,Y {L(y(x), f(x))} ≃ 1

|St|
∑

i

L(yi, f(xi)), (III.1)

where L : {+1,−1} ×R → R is a loss function, and St = {(x1, y1), . . . , (xn, yn)} is

a set of training examples xi of labels yi.

Boosting algorithms are iterative procedures that learn f as a combina-

tion of simple predictors, known as weak learners, from a setG = {g1(x), . . . , gn(x)} ⊂
F. The optimal combination is the solution of







minf(x) RE[f ]

s.t : f(x) ∈ span(G).
(III.2)

Each Boosting iteration reweights the training set and adds the weak learner of

lowest weighted error rate to the weak learner ensemble. When G is rich enough,

i.e. contains a predictor with better than chance-level weighted error rate for

any distribution over training examples, the Boosted classifier can be arbitrarily

close to the minimum probability of error classifier [26]. For most problems of

practical interest, G is an overcomplete set and the solution of (III.2) can have

many decompositions in span(G). In this case, sparser decompositions are likely

to have better performance, i.e. faster computation and better generalization.

Boosting can be interpreted as a greedy forward feature selection procedure to

find such sparse solutions.

Although the ideas proposed in this work can be combined with most

Boosting algorithms, we limit the discussion to AdaBoost [26]. This is an algorithm
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that learns a predictor f by minimizing the risk of (III.1) when L is the negative

exponential of the margin y(x)f(x)

L(y(x), f(x)) = e−y(x)f(x). (III.3)

This is known as the exponential loss function [73].

The Boosting algorithms proposed in this section are inspired by the

statistical view of AdaBoost, introduced in [53, 28]. Under this view, each iteration

of Boosting computes the functional derivatives of the risk along the directions of

the weak learners gk(x), at the current solution f(x). This can be written as

< δRE[f ], g > =
d

dǫ
RE[f + ǫg]

∣

∣

∣

∣

ǫ=0

=
1

|St|
∑

i

[

d

dǫ
e−yi(f(xi)+ǫg(xi))

]

ǫ=0

= − 1

|St|
∑

i

yiwig(xi), (III.4)

where yi = y(xi) and

wi = w(xi) = e−yif(xi), (III.5)

is the weight of example xi. The latter measures how well xi is classified by the

current predictor f(x). The predictor is then updated by selecting the direction

(weak learner) of steepest descent

g∗(x) = argmax
g∈G

< −δRE[f ], g >

= argmax
g∈G

1

|St|
∑

i

yiwig(xi), (III.6)

and computing the optimal step size along this direction

α∗ = argmin
α∈R

RE[f + αg∗]. (III.7)

While the optimal step size has a closed form for AdaBoost [26], it can also be

found by a line search. The predictor is finally updated according to

f(x) = f(x) + α∗g∗(x), (III.8)

and the procedure iterated, as summarized in Algorithm 3.
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Algorithm 3 adaboost

Input: Training set St = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {1,−1} is the class

label of example xi, and number of iterations N .

Initialization: Set f(x) = 0.

for t = 1 to N do

Compute < −δRE[f ], g > for all weak learners using (III.4).

Select the best weak learner g∗(x) using (III.6).

Find the optimal step size α∗ along g∗(x) using (III.7).

Update f(x) = f(x) + α∗g∗(x).

end for

Output: decision rule: sign[f(x)]

III.C.2 Cascade Boosting

In this work, we consider the question of whether Boosting can be ex-

tended to learn a detector cascade. We start by introducing some notation. As

shown in Figure III.1-a), a classifier cascade is a binary classifier H(x) ∈ H imple-

mented as a sequence of classifiers

hi(x) = sgn[fi(x)] i = 1, . . . ,m, (III.9)

where the predictors fi(x) can be any real functions, e.g. linear combinations of

weak learners. The cascade implements the mapping H : X → {−1, 1} where

H(x) = Hm[h1, . . . , hm](x) =







−1 if ∃ k : hk(x) < 0

+1 otherwise,
(III.10)

and Hm[h1, . . . , hm] is a classifier cascading (CC) operator, i.e. a functional map-

ping Hm : Hm → H of the stage classifiers h1, . . . , hm into the cascaded classifier1

H. Similarly, it is possible to define a cascade predictor F (x) for H(x), i.e. a

mapping F : X → R such that

H(x) = sign[F (x)], (III.11)

1The notation H
m[h1, . . . , hm](x) should be read as: the value at x of the image of (h1, . . . , hm) under

operator Hm.
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where

F (x) = Fm[f1, . . . , fm](x), (III.12)

and Fm : Fm → F is a predictor cascading (PC) operator, i.e. a functional mapping

of the stage predictors f1, . . . , fm into the cascade predictor F . We will study the

structure of this operator in Section III.D. For now, we consider the problem of

learning a cascade, given that the operator Fm is known.

To generalize AdaBoost to this problem it suffices to use the predictor

F (x) in the exponential loss of (III.3) and solve the optimization problem































minm,f1,...fm RE[F ] =
1

|St|

∑

i e
−yiF (xi)

s.t : F (x) = Fm[f1, . . . , fm](x)

∀i fi(x) ∈ span(G)

(III.13)

by gradient descent in span(G). The main difference with respect to AdaBoost is

that, since any of the cascade stages can be updated, multiple gradient steps are

possible per iteration. The directional gradient for updating the predictor of the

kth stage is

< δRE[F ], g >k=
d

dǫ
RE[Fm[f1, . . . fk + ǫg, . . . fm]]

∣

∣

∣

∣

ǫ=0

=
1

|St|
∑

i

[

d

dǫ
e−yiFm[f1,...fk+ǫg,...fm](xi)

]

ǫ=0

=
1

|St|
∑

i

{

(−yi)e−yiFm[f1,...fm](xi)

[

d

dǫ
Fm[f1, . . . fk + ǫg, . . . fm]

]

ǫ=0

(xi)

}

= − 1

|St|
∑

i

yiw(xi)bk(xi)g(xi), (III.14)

with

w(xi) = e−yiFm[f1,...fm](xi) = e−yiF (xi) (III.15)

bk(xi) =
d

dǫ
Fm[f1, . . . fk + ǫg, . . . fm]

∣

∣

∣

∣

ǫ=0

(xi). (III.16)
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The optimal descent direction for the kth stage is then

g∗k = argmax
g∈G

< −δRE[F ], g >k

= argmax
g∈G

1

|St|
∑

i

yiw(xi)bk(xi)g(xi), (III.17)

the optimal step size along this direction is

α∗
k = argmin

α∈R
RE[Fm[f1, .., fk + αg∗k, ..fm]], (III.18)

and the optimal stage update is

fk(x) = fk(x) + α∗g∗(x). (III.19)

The steps of (III.15), (III.17), and (III.19) constitute a functional gradient

descent algorithm for learning a detector cascade, which generalizes AdaBoost. In

particular, the weight of (III.15) generalizes that of (III.5), reweighing examples

by how well the current cascade classifies them. The weak learner selection rule

of (III.17) differs from that of (III.6) only in that this weight is multiplied by

coefficient bk(xi). Finally, (III.19) is an additive update, similar to that of (III.8).

If the structure of the optimal cascade were known, namely how many stages it

contains, these steps could be used to generalize Algorithm 3. It would suffice to, at

each iteration t, select the stage k such that g∗k achieves the smallest risk in (III.18)

and update the predictor of that stage. This only has a fundamental difference

with respect to AdaBoost: the introduction of the coefficients bk(xi) in the weak

learner selection. We will see that the procedure above can also be extended into

an algorithm that learns the cascade configuration. Since these extensions depend

on the PC operator F of (III.12), we start by studying its structure.

III.D The structure of cascade predictors

In this section, we derive a general form for Fm. We show that any

cascade is compatible with an infinite set of predictors and that these can be com-

puted recursively. This turns out to be important for the efficient implementation
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of the learning algorithm of the previous section. We next consider a class of PC

operators synthesized by recursive application of a two-stage PC operator, denoted

the generator of the cascade. Two generators are then proposed, from which we

derive two new cascade predictor families that generalize the two most common

cascade structures in the literature.

III.D.1 Cascade predictors

From (III.10), a classifier cascade implements the logical-AND of the

outputs of its stage classifiers, i.e. Hm is the pointwise logical-AND of h1, . . . , hm,

Hm[h1, . . . , hm](x) = h1(x) ∧ . . . ∧ hm(x), (III.20)

where ∧ is the logical-AND operation. Since, from (III.10)-(III.12),

Hm[h1, . . . , hm](x) = sgn[Fm[f1, . . . , fm](x)], (III.21)

it follows from (III.9) that

sign[Fm[f1, . . . , fm](x)] = sgn[f1(x)] ∧ . . . ∧ sgn[fm(x)]. (III.22)

This holds if and only if







Fm[f1, . . . , fm](x) < 0 if ∃ k : fk(x) < 0

Fm[f1, . . . , fm](x) > 0 otherwise.
(III.23)

Since (III.22) holds for any operator with this property, any such Fm is denoted a

pointwise soft-AND of its arguments. In summary, while a cascade implements the

logical-AND of its stage decisions, the cascade predictor implements a soft-AND

of the corresponding stage predictions. Note that there is an infinite number of

soft-AND operators which will implement the same logical-AND operator, once

thresholded according to (III.21). This makes the set of cascade predictors much

richer than that of cascades.
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III.D.2 Recursive implementation

For any m, it follows from (III.20) and the associative property of the

logical-AND that

Hm[h1, . . . , hm] =







H2[h1, h2], m = 2

H2 [h1,Hm−1[h2, . . . , hm]] m > 2.
(III.24)

A similar decomposition holds for the soft-AND operator of (III.23), since

sgn [Fm[f1, . . . , fm](x)] =







sgn [F2[f1, f2](x)] , m = 2

sgn [F2 [f1,Fm−1[f2, . . . , fm]] (x)] m > 2.
(III.25)

The main difference between the two recursions is that, while there is only one

logical-AND H2[f1, f2], an infinite set of soft-AND operators F2[f1, f2] can be

used in (III.25). In fact, it is possible to use a different operator F2 at each level

of the recursion, i.e. replace F2 by F2
m, to synthesize all possible sequences of

soft-AND operators {F i}mi=2 for which the left-hand side of (III.25) is the same.

For simplicity, we only consider soft-AND operators of the form of (III.25) in this

work.

The recursions above make it possible to derive a recursive decomposition

of both the cascade and the sign of its predictor. In particular, defining

Hk(x) = Hm−k+1[hk, . . . , hm](x),

(III.24) leads to the cascade recursion

Hk(x) =







hm(x), k = m

H2 [hk, Hk+1] (x), 1 ≤ k < m,

with H1(x) = H(x). Similarly, for any sequence of soft-AND operators {F i}mi=2

compatible with (III.25), defining

Fk(x) = Fm−k+1[fk, . . . , fm](x),

leads to the predictor recursion

sgn[Fk(x)] =







sgn[fm(x)], k = m

sgn [F2 [fk, Fk+1] (x)] , 1 ≤ k < m,
(III.26)
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with sgn[F1(x)] = sgn[F (x)]. Simplifying (III.26), in the remainder of this work

we consider predictors of the form

Fk(x) =







fm(x), k = m

F2 [fk, Fk+1] (x), 1 ≤ k < m.
(III.27)

Since the core of this recursion is the two-stage predictor

G[f1, f2] = F2[f1, f2], (III.28)

this is denoted the generator of the cascade. We will show that the two most

popular cascade architectures can be derived from two such generators. For each,

we will then derive the cascade predictors Fk(x), the cascade Boosting weights

w(xi) of (III.15), and the coefficients bk(xi) of (III.16). We start by defining some

notation to be used in these derivations.

III.D.3 Some definitions

Some of the computations of the following sections involve derivatives of

Heaviside step functions u(.), which are not differentiable. As is common in the

neural network literature, this problem is addressed with the sigmoidal approxi-

mation

u(x) ≈ σ(x) =
1

2
(tanh(µx) + 1). (III.29)

The parameter µ controls the sharpness of the sigmoid. This approximation is

well known to have the symmetry σ(−x) = 1 − σ(x) and derivative σ′(x) =

2µσ(x)σ(−x). We also introduce the sequence of cascaded Heaviside functions

γk(x) =







1, k = 1
∏

j<k u[fj(x)], k > 1,
(III.30)

and cascaded rectification functions

ξk(x) =







1, k = 1
∏

j<k fj(x)u[fj(x)], k > 1,
(III.31)
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where u(.) is the Heaviside step. The former generalize the Heaviside step, in the

sense that γk(x) = 1 if fj(x) > 0 for all j < k and γk(x) = 0 otherwise. The latter

generalize the half-wave rectifier, in the sense that γk(x) =
∏

j<k fj(x) if fj(x) > 0

for all j < k and γk(x) = 0 otherwise.

III.D.4 Last stage cascades

The first family of cascade predictors that we consider is derived from the

generator

G1[f1, f2](x) = f1(x)u[−f1(x)] + u[f1(x)]f2(x)

=







f1(x) if f1(x) < 0

f2(x) if f1(x) ≥ 0,
(III.32)

Using (III.27), the associated predictor recursion is

Fk(x) =







fm(x), k = m

fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x), 1 ≤ k < m.
(III.33)

The kth stage of the associated cascade passes example x to stage k+1 if fk(x) ≥ 0.

Otherwise, the example is rejected with prediction fk(x). Hence,

Fm[f1, . . . , fm](x) =



















fj(x) if fj(x) < 0 and

fi(x) ≥ 0 i = 1, . . . , j − 1

fm(x) if fi(x) ≥ 0 i = 1 . . . ,m− 1,

i.e. the cascade prediction is that of the last stage visited by the example. For this

reason, the cascade is denoted a last-stage cascade.

This property makes it trivial to compute the weights w(x) of the cascade

Boosting algorithm, using (III.15). It suffices to evaluate

w(xi) = e−yifj∗ (xi), (III.34)

where j∗ is the smallest k for which fk(xi) is negative and j∗ = m if there is no

such k. The computation of bk(x) with (III.16) requires a differentiable form of
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Fm[f1, . . . , fm] with respect to fk. This can be obtained by recursive application

of (III.33), since

Fm[f1, . . . , fm](x) = F1(x)

= f1(x)u[−f1(x)] + u[f1(x)]F2(x)

= f1(x)u[−f1(x)] + u[f1(x)] {f2(x)u[−f2(x)] + u[f2(x)]F3(x)}

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]
∏

j<i

u[fj(x)]

]

+ Fk(x)
∏

j<k

u[fj(x)]

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)
]

+ Fk(x)γk(x) k = 1 . . . m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)
]

+ γk(x) {fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x)} k < m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)
]

+ γk(x) {fk(x) + u[fk(x)][Fk+1(x)− fk(x)]}

≈
[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)
]

+ γk(x)fk(x) + γk(x)σ[fk(x)][Fk+1(x)− fk(x)](III.35)

where γk(x) are the cascaded Heaviside functions of (III.30) and we used the differ-

entiable approximation of (III.29) in (III.35). Note that neither the first term on

the right-hand side of (III.35) nor γk or Fk+1 depend on fk. It follows from (III.16)

that

bk(x) =







γk(x), k = m

γk(x){1 + 2µσ[fk(x)][Fk+1(x)− fk(x)]}σ[−fk(x)] 1 ≤ k < m,
(III.36)

where σ(.) is defined in (III.29). Given x, all these quantities can be computed with

a sequence of a forward, a backward, and a forward pass through the cascade. The

initial forward pass computes γk(x) for all k according to (III.30). The backward

pass then computes Fk+1(x) using (III.33). The final forward pass computes the

weight w(x) and coefficients bk(x) using (III.34) and (III.36). These steps are sum-

marized in Algorithm 4. The procedure resembles the back-propagation algorithm

for neural network training [67].
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Algorithm 4 Last-stage cascade

Input: Training example (x, y), stage predictors fk(x), k = 1, . . . ,m, sigmoid

parameter µ.

Evaluation:

Set γ1(x) = 1.

for k = 2 to m do

Set γk(x) = γk−1(x)u[fk(x)].

end for

Set Fm(x) = fm(x).

for k = m− 1 to 1 do

Set Fk(x) = fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x).

end for

Learning:

Set w(x) = e−yfj∗ (x) where j∗ is the smallest k for which fk(xi) < 0 and j∗ = m

if there is no such k.

for k = 1 to m− 1 do

Set bk(x) = γk(x){1 + 2µσ[fk(x)][Fk+1(x)− fk(x)]}σ[−fk(x)].
end for

Set bk(x) = γm(x).

Output: w(x), {Fk(x), bk(x)}mk=1.

III.D.5 Multiplicative cascades

The second family of cascade predictors has generator

G2[f1, f2](x) = f1(x)u[−f1(x)] + u[f1(x)]f1(x)f2(x)

=







f1(x) if f1(x) < 0

f1(x)f2(x) if f1(x) ≥ 0.
(III.37)

Using (III.27), the associated predictor recursion is

Fk(x) =







fm(x), k = m

fk(x)u[−fk(x)] + u[fk(x)]fk(x)Fk+1(x), 1 ≤ k < m
(III.38)
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and

Fm[f1, . . . , fm](x) =



















∏

i≤j fi(x) if fj(x) < 0 and

fi(x) ≥ 0 i = 1..j − 1
∏m

i=1 fi(x) if fi(x) ≥ 0 i = 1..m− 1.

Hence, the cascade predictor is the product of all stage predictions up-to and

including that where the example is rejected. This is denoted a multiplicative

cascade.

The weights w(x) of the cascade Boosting algorithm are

w(xi) = e−yi
∏

k≤j∗ fk(xi),

where j∗ is the smallest k for which fk(xi) is negative and j∗ = m if there is no

such k. The computation of bk(x) with (III.16) requires a differentiable form of

Fm[f1, . . . , fm] with respect to fk. This can be obtained by recursive application

of (III.38), since

Fm[f1, . . . , fm](x) = F1(x)

= f1(x)u[−f1(x)] + u[f1(x)]f1(x)F2(x)

= f1(x)u[−f1(x)] + u[f1(x)]f1(x){f2(x)u[−f2(x)] + u[f2(x)]f2(x)F3(x)}

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]
∏

j<i

fj(x)u[fj(x)]

]

+ Fk(x)
∏

j<k

fj(x)u[fj(x)]

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)
]

+ Fk(x)ξk(x) k = 1 . . . m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)
]

+ ξk(x) {fk(x)u[−fk(x)] + u[fk(x)]fk(x)Fk+1(x)} k < m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)
]

+ ξk(x)fk(x) {1 + u[fk(x)][Fk+1(x)− 1]}

≈
[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)
]

+ ξk(x)fk(x) {1 + σ[fk(x)][Fk+1(x)− 1]} (III.39)

where ξi(x) are the rectification functions of (III.31) and we used (III.38) and the

differentiable approximation of (III.29) in (III.39). Since neither the first term on
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Algorithm 5 multiplicative cascade

Input: Training example (x, y), stage predictors fk(x), k = 1, . . . ,m, sigmoid

parameter µ.

Evaluation:

Set ξ1 = 1.

for k = 2 to m do

Set ξk(x) = ξk−1(x)fk(x)u[fk(x)].

end for

Set Fm(x) = fm(x).

for k = m− 1 to 1 do

Set Fk(x) = fk(x)u[−fk(x)] + u[fk(x)]fk(x) F k+1(x).

end for

Learning:

Set w(x) = e−y
∏

k≤j∗ fk(x) where j∗ is the smallest k for which fk(xi) < 0 and

j∗ = m if there is no such k.

for k = 1 to m− 1 do

Set bk(x) = ξk(x){1 + σ[fk(x)][Fk+1(x)− 1]}{1 + 2µfk(x)σ[−fk(x)]}.
end for

Set bm(x) = ξm(x).

Output: w(x), {Fk(x), bk(x)}mk=1.

the right hand side, ξk, or Fk+1 depend on fk, it follows from (III.16) that

bk(x) =







ξm(x), k = m

ξk(x){1 + σ[fk(x)][Fk+1(x)− 1]}{1 + 2µfk(x)σ[−fk(x)]} 1 ≤ k < m,
(III.40)

where σ(.) is defined in (III.29). Again, these coefficients can be computed with

a forward, a backward, and a forward pass through the cascade, which resembles

back-propagation, as summarized in Algorithm 5.
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III.E Learning the cascade configuration

Given a cascade configuration, Algorithms 4 or 5, could be combined

with the algorithm of section III.C.2 to extend AdaBoost to the design of last-

stage or multiplicative cascades, respectively. However, the cascade configuration

is usually not known and must be learned. This consists of determining the number

of cascade stages and the number of weak learners per stage.

III.E.1 Complexity Loss

We start by assuming that the number of cascade stages is known and

concentrate on the composition of these stages. So far, we have proposed to simply

update, at each Boosting iteration, the stage k with the weak learner g∗k that

achieves the smallest risk in (III.18). While this will produce cascades with good

detection accuracy, there is no incentive for the cascade configuration to be efficient,

i.e. achieve an optimal trade-off between detection accuracy and classification

speed. To guarantee such a trade-off it is necessary to search for the most accurate

detector under a complexity constraint. This can be done by minimizing the

Lagrangian

L[F ] = RE[F ] + ηRC [F ], (III.41)

where F (x) and RE[F ] are the cascade predictor and classification risk of (III.13),

respectively,

RC [F ] = EX|Y {LC(F, x)|y(x) = −1} ≃ 1

|S−
t |

∑

xi∈S
−
t

LC(F, xi),

is a complexity risk and η a Lagrange multiplier that determines the trade-off

between accuracy and computational complexity. RC [F ] is the empirical average

of a computational loss LC(F, x), which reflects the number of machine operations

required to evaluate F (x) = Fm[f1, . . . , fm](x), over the set S−
t of negatives in

St. The restriction to negative examples is not necessary but common in the
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classifier cascade literature, where computational complexity is usually defined as

the average computation required to reject negative examples. This is mostly

because positives are rare and contribute little to the overall computation.

As is the case for the classification risk, where the loss of (III.3) is an upper

bound on the margin and not the margin itself, the computational loss LC [F ] is a

surrogate for the computational cost C(F, x) of evaluating the cascade prediction

F (x) for example x. Using the predictor recursions of Section III.D.2, this cost

can itself be computed recursively. Since, by definition of cascade, example x is

either rejected by the predictor fk of stage k or passed to the remaining stages,

C(Fk, x) =







Ω(fk) + u[fk(x)]C(Fk+1, x), k < m

Ω(fm), k = m,
(III.42)

where Fk(x) is as defined in (III.27) and Ω(fk) is the computational cost of evalu-

ating stage k. Defining C(Fm+1, x) = 0, it follows that

C(F, x) = Ω(f1) + u[f1(x)]C(F2, x)

= Ω(f1) + u[f1(x)][Ω(f2) + u[f2(x)]C(F3, x)]

=

[

k−1
∑

i=1

Ω(fi)
∏

j<i

u[fj(x)]

]

+ C(Fk, x)
∏

j<k

u[fj(x)]

=

[

k−1
∑

i=1

Ω(fi)γi(x)

]

+ Ω(fk)γk(x) + u[fk(x)]C(Fk+1, x)γk(x)

= δk(x) + Ω(fk)γk(x) + θk(x)u[fk(x)], (III.43)

where γi(x) are the cascaded Heaviside functions of (III.30) and

δk(x) =
k−1
∑

i=1

Ω(fi)γi(x),

θk(x) = C(Fk+1, x)γk(x). (III.44)

This relates the cascade complexity to the complexity of the kth stage, Ω(fk). The

surrogate computational loss LC [F, x] is inspired by the surrogate classification loss

of AdaBoost, which upper bounds the zero-one loss u[−yf(x)] by the exponential
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e−yf(x). Using the bound u[f(x)] ≤ ef(x) on (III.43) leads to

LC [F, x] = δk(x) + Ω(fk)γk(x) + θk(x)e
fk(x),

and the computational risk

RC [F ] =
1

|S−
t |

∑

xi∈S
−
t

δk(xi) + Ω(fk)γk(xi) + θk(xi)e
fk(xi). (III.45)

To evaluate this risk, it remains to determine the computational cost

Ω(fk) of the predictor of the kth cascade stage. Since fk(x) =
∑

l αlgl(x), gl ∈ G,

is a linear combination of weak learners, we define

Ω(fk) =
∑

l

Ω(gl). (III.46)

LetW(fk) ⊂ G be the set of weak learners, gl, that appear in (III.46). In this work,

we restrict our attention to the case where all gl have the same complexity and

Ω(fk) is proportional to |W(fk)|. This is the most common scenario in computer

vision problems, such as face detection, where all weak learners are thresholded

Haar wavelet features [91] and have similar computational cost. We will, however,

account for the fact that there is no cost in the repeated evaluation of a weak

learner. For this, W(fk) is split into two sets. The first, O(fk), contains the weak

learners used in some earlier cascade stage fj, j ≤ k. Since the outputs of these

learners can be kept in memory, they require minimal computation (multiplication

by αl and addition to cumulative sum). The second is the set N (fk) of weak

learners unused in prior stages. The computational cost of fk is then

Ω(fk) = |N (fk)|+ λ|O(fk)|, (III.47)

where λ < 1 is the ratio of computation required to evaluate a used vs. new weak

learner. This implies that when updating the kth stage predictor

Ω(fk + ǫg) = Ω(fk) + ρ(g, fk),

with

ρ(g, fk) =







λ if g ∈ O(fk)

1 if g ∈ N (fk).
(III.48)
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III.E.2 Boosting with complexity constraints

Given the computational risk of (III.45), it is possible to derive a Boosting

algorithm that accounts for cascade complexity. We start by deriving the steepest

descent direction of the Lagrangian of (III.41), with respect to stage k

< −δL[F ], g >k = < −δ (RE[F ] + ηRC [F ]) , g >k

= < −δRE[F ], g >k +η < −δRC [F ], g >k .

The first term is given by (III.14), the second requires the descent direction with

respect to the complexity risk RC [F ]. Using (III.45),

< δRC [F ], g >k=
d

dǫ
RC(Fm[f1, .., fk + ǫg, ..fm])

∣

∣

∣

∣

ǫ=0

=
1

|S−
t |

∑

i

ysi
d

dǫ
LC [Fm[f1, .., fk + ǫg, ..fm], xi]

∣

∣

∣

∣

ǫ=0

=
1

|S−
t |

∑

i

ysi
d

dǫ

[

δk(xi) + [Ω(fk) + ρ(fk, g)]γk(xi) + θk(xi)e
fk(xi)+ǫg(xi)

]

∣

∣

∣

∣

ǫ=0

=
1

|S−
t |

∑

i

ysiψk(xi)θk(xi)g(xi), (III.49)

where ysi = I(yi = −1), I(x) is the indicator function, θk(xi) as in (III.44) and

ψk(xi) = efk(xi). (III.50)

Finally, combining (III.14) and (III.49),

< −δL[F ], g >k =
∑

i

(

yiw(xi)bk(xi)

|St|
− η

ysiψk(xi)θk(xi)

|S−
t |

)

g(xi),(III.51)

where w(xi) = e−yiF (xi) and bk(xi) is given by (III.36) for last-stage and by (III.40)

for multiplicative cascades.

It should be noted that, although (III.51) does not depend on ρ(fk, g), the

complexity of the optimal weak learner g∗ affects the computational risk in (III.45)

and thus the magnitude of the steepest descent step. To account for this, we find

the best update for fk in two steps. The first step searches for the best update
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Algorithm 6 BestStageUpdate

Input: Training set St, trade-off parameter η, cascade [f1, . . . , fm], index k of

the stage to update, sigmoid parameter µ.

for each pair (xi, yi) in St do

Compute w(xi), bk(xi), Fk(xi) e.g. using Algorithm 4 for last-stage or Algo-

rithm 5 for multiplicative cascades.

Compute θk(xi), ψk(xi) with (III.44) and (III.50).

end for

Find the best update (α∗
k, g

∗
k(x)) for the k

th stage using (III.51)-(III.54).

Output: α∗
k, g

∗
k(x)

within O(fk) and N (fk)

g∗1,k = arg max
g∈O(fk)

< −δL[F ], g >k (III.52)

g∗2,k = arg max
g∈N (fk)

< −δL[F ], g >k, (III.53)

and computes the corresponding optimal steps sizes

α∗
j,k = argmin

α∈R
L[Fm[f1, ..fk + αgj,k, ..fm]], (III.54)

for j = 1, 2. The second step chooses the update that most reduces L[F ] as the

best update for the kth stage. The overall procedure is summarized in Algorithm 6.

Using this procedure to cycle through all cascade stage updates within each iter-

ation of the algorithm of section III.C.2 and selecting the one that most reduces

L[F ] produces an extension of AdaBoost for cascade learning that optimizes the

trade-off between detection accuracy and complexity.

III.E.3 Growing a detector cascade

So far, we have assumed that the number of cascade stages is known.

Since this is usually not the case, there is a need for a procedure that learns this

component of the cascade configuration. In this work, we adopt a greedy strategy,

where cascade stages are added by the Boosting algorithm itself, whenever this
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leads to a reduction of the risk. It is assumed that a new stage, or predictor g,

can only be added at the end of the existing cascade, i.e. transforming a m-stage

predictor Fm[f1, . . . , fm](x) into a m + 1-stage predictor Fm+1[f1, . . . , fm, g](x).

This is consistent with current cascade design practices, where stages are appended

to the cascade when certain heuristics are met.

The challenge of a risk-minimizing formulation of this process is to pose

the addition of a new stage as a possible gradient step. Recall that, at each iteration

of a gradient descent algorithm, the current solution, vt, is updated by

vt+1 = vt + αv,

where v is the gradient update and α is step size found by a line search. An

immediate consequence is that, if no update is taken in an iteration, i.e. α = 0

or v = 0, the value of the objective function should remain unaltered. For the

proposed cascade Boosting algorithms this condition is not trivial to guarantee

when a new stage is appended to the current cascade. For example, choosing

g(x) = 0 may change the current solution since, in general,

Fm+1[f1, . . . , fm, 0](x) 6= Fm[f1, . . . , fm](x).

To address this problem, we introduce the concept of neutral predictors . A stage

predictor n(x) : X → R is neutral for a cascade of predictor Fm[f1, . . . , fm] if and

only if

Fm+1[f1, . . . , fm, n](x) = Fm[f1, . . . , fm](x). (III.55)

If such a neutral predictor exists, then it is possible to grow a cascade by defining

the new stage as

fm+1(x) = n(x) + g(x),

where g(x) is the best update found by gradient descent. In this case, it follows

from (III.55) that a step of g(x) = 0 will leave the cascade risk unaltered. Given

a cascade generator, a predictor n that satisfies (III.55) can usually be found
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with (III.28), i.e. it suffices that n satisfies

fm(x) = G[fm, n](x), (III.56)

where G is the generator that defines the PC operator Fm. For example, from (III.32),

the neutral predictor of a last-stage cascade must satisfy

fm(x) = fm(x)u[−fm(x)] + u[fm(x)]n(x),

a condition met by

n(x) = fm(x). (III.57)

Similarly, from (III.37), the neutral predictor of a multiplicative cascade must

satisfy

fm(x) = fm(x)u[−fm(x)] + u[fm(x)]fm(x)n(x),

which is met by

n(x) = 1. (III.58)

These neutral predictors are also computationally efficient. In fact, (III.57)

and (III.58) add no computation to the evaluation of predictor fm+1(x), i.e. to the

computation of g(x) itself. This is obvious for (III.58) which is a constant, and

follows from the fact that fm(x) has already been computed in stage m for (III.57).

This computation can simply be reused at stage m+ 1 with no additional cost.

Hence, for both models

C(Fm+1[f1, . . . , fm, n], x) = C(Fm[f1, . . . , fm], x),

and

L[Fm+1[f1, . . . , fm, n]] = L[Fm[f1, . . . , fm]].

In summary, the addition of stages does not require special treatment in

the proposed cascade learning framework. It suffices to append a neutral predictor

to the cascade and find the best update for this new stage. If this reduces the

objective function of (III.41) further than updating other stages, the new stage
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is automatically created and appended to the cascade. In this way, the cascade

grows organically, as a side effect of the risk optimization, and there is no need for

heuristics.

III.F The FCBoost cascade learning algorithm

In this section, we combine the contributions from the previous sections

into the Fast Cascade Boosting (FCBoost) algorithm, discuss its connections with

the previous literature and some interesting properties.

III.F.1 FCBoost

FCBoost is initialized with a neutral predictor. At each iteration, it

finds the best update g∗k(x) for each of the cascade stages and the best stage to

add at the end of the cascade. It then selects the stage k∗ whose update g∗k∗(x)

most reduces the Lagrangian L[F ]. If k∗ is the newly added stage, a new stage is

created and appended to the cascade. The procedure is summarized in Algorithm

7. Note that the only parameters are the multiplier η of (III.41), which encodes the

relative importance of cascade speed vs. accuracy for the cascade designer, and the

sigmoid parameter µ that controls the smoothness of the Heaviside approximation.

In our implementation we always use µ = 5. Given these parameters, FCBoost

will automatically determine both the cascade configuration (number of stages and

number of weak learners per stage) and the predictor of each stage, so as to optimize

the trade-off between detection accuracy and complexity which is specified by η.

III.F.2 Connections to the previous cascade learning literature

FCBoost supports a large variety of cascade structures. The cascade

structure is defined by the generator G of (III.28), since this determines the neutral

predictor n(x), according to (III.56), and consequently how the cascade grows as

Boosting progresses.
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Algorithm 7 FCBoost

Input: Training set S = {(x1, y1) . . . , (xn, yn)}, trade-off parameter η, sigmoid

parameter µ, and number of iterations N .

Initialization: Set m = 0 and f1(x) = n(x), e.g. using (III.57) for last-stage

and (III.58) for multiplicative cascade.

for t = 1 to N do

for k = 1 to m do

(α∗
k, g

∗
k) = BestStageUpdate(S, η, [f1, ...fm], k, µ).

end for

(α∗
m+1, g

∗
m+1) = BestStageUpdate(S, η, [f1, ...fm+1],m+ 1, µ).

for k = 1 to m do

Set L̂(k) = L [Fm(f1, .., fk + α∗
kg

∗
k, .., fm)] using (III.41).

end for

Set L̂(m+ 1) = L
[

Fm+1(f1, .., fm, fm+1 + α∗
m+1g

∗
m+1(x))

]

using (III.41).

Find k∗ = argmink∈{1,...,m+1} L̂(k).
Set fk∗ = fk∗ + α∗

k∗g
∗
k∗ .

if k∗ = m+ 1 then

Set m = m+ 1 .

Set fm+1(x) = n(x).

end if

end for

Output: decision rule: sgn[Fm(f1, . . . , fm)].

The two cascade predictors used in this work, last-stage and multiplica-

tive, cover the two predominant cascade structures in the literature. The first,

introduced in [91], is the independent stage (IS) structure. In this structure stage

predictors are designed independently2, in the sense that the learning of fk starts

from an empty predictor which is irrespective of the composition of the previous

2Note that the predictors are always statistically dependent, since the role of hi+1 is to classify
examples not rejected by hi.
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(a) (b)

Figure III.2: Illustration of the different configurations produced by identical
steps of (a) last-stage and (b) multiplicative cascade learning.

stages, fj, j < k. The second structure is the embedded stage (ES) structure of [99]

where predictors of consecutive stages are related by

fk+1(x) = fk(x) +w(x),

and w(x) is a single or linear combination of weak learners. Under this struc-

ture, each stage predictor contains the predictor of the previous stage, which is

augmented with some weak learners.

The connection between these structures and the models proposed in this

dissertation can be understood by considering the neutral predictors of the latter.

For multiplicative cascades, it follows from (III.58) that

fm+1(x) = 1 + αg(x),

and there is no dependence between consecutive stages. Hence, multiplicative

cascades have the IS structure. For last stage cascades, it follows from (III.57)

that

fm+1(x) = fm(x) + αg(x).

If FCBoost always updates the last two stages, this produces a cascade with the

ES structure. Since FCBoost is free to update any stage, it can produce more

general cascades, i.e. a superset of the set of cascades with the ES structure.

It is interesting that two predictors with the very similar generators of

(III.32) and (III.37) produce very different cascade structures. This is illustrated in
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Figure III.2, where we consider the cascades resulting from the following sequence

of operations:

• iteration 1: start form an empty classifier, create first stage.

• iteration 2: add a new stage.

• iteration 3: update first stage.

• iteration 4: add a new stage.

Note that while the last-stage cascade of a) has substantial weak learner sharing

across stages, this is not true for the multiplicative cascade of b), which is similar

to the cascades of [91].

III.F.3 Properties

Beyond these connections to the literature, FCBoost has various inter-

esting properties as a cascade Boosting algorithm. First, its example weighing is

very similar to that of AdaBoost [26]. A comparison of (III.5) and (III.15) shows

that FCBoost reweights examples by how well they are classified by the current

cascade. As in AdaBoost, this is measured by the classification margin, but now

with respect to the cascade predictor, F , (margin yF ) rather than a simple pre-

dictor f (margin yf). Second, the weak learner selection rule of FCBoost is very

similar to that of AdaBoost. While in (III.6) AdaBoost selects the weak learner g

that maximizes
1

|St|
∑

i

yiwig(xi),

in (III.52)-(III.53) FCBoost selects the stage k and weak learner g that maximize

∑

i

(

yiw(xi)bk(xi)

|St|
− η

ysiψk(xi)θk(xi)

|S−
t |

)

g(xi). (III.59)

When η = 0, the only significant difference is the inclusion of bk(xi) in (III.59). To

understand the role of this term note that, from (III.36) and (III.40), bk(xi) = 0

whenever γk(xi) = 0 in (III.30), and ξk(xi) = 0 in (III.31). This implies that
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there is at least one stage j < k such that fj(xi) < 0, i.e. where xi is rejected.

When this holds, bk(xi) = 0 prevents xi from influencing the update of fk(x).

This is sensible: since xi will not reach the kth stage, it should not affect its

learning. Hence, the coefficients bk(xi) can be seen as gating coefficients , which

prevent examples rejected by earlier stages from affecting the learning of stage k.

If η 6= 0, a similar role is played by θk(xi) in the second term of (III.59) since,

from (III.44), θk(xi) = 0 whenever γk(xi) = 0. Thus, if xi is rejected by a stage

j < k, its processing complexity is not considered for any stage posterior to j. Due

to the gating coefficients bk(xi) and θk(xi), FCBoost emulates the bootstrapping

procedure commonly used in cascade design. This is a procedure that eliminates

the examples rejected by each stage from the training set of subsequent stages.

These examples are replaced with new false positives [91, 84]. While FCBoost

emulates “example discarding” with the gating coefficients bk(xi) and θk(xi), it does

not seek new false positives. This still requires the “training set augmentation” of

bootstrapping.

A third interesting property of FCBoost is the complexity penalty (second

term) of (III.59). From (III.44) and (III.50) this is, up to constants,

−ysi γk(xi)efk(xi)C(Fk+1, xi)g(xi).

Given example xi and cascade stage k, all factors in this product have a meaningful

interpretation. First, since ysi γk(xi) is non-zero only for negative examples which

have not been rejected by earlier cascade stages (j < k), it acts as a selector of

the false-positives that reach stage k. Second, since fk(xi) measures how deeply xi

penetrates the positive side of the stage k classification boundary, efk(xi) is large

for the false-positives that stage k confidently assigns to the positive class. Third,

since C(Fk+1, xi) is the complexity of processing xi by the stages beyond k, it

measures how deeply xi penetrates the cascade, if not rejected by stage k. Finally,

g(xi) is the label given to xi by weak learner g(x). Since only g(xi) can be negative,

the product is maximized when g(xi) = −1, γk(xi) = 1 and fk(xi) and C(Fk+1, xi)

are as large as possible. Hence, the best weak learner is that which, on average,
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declares as negatives the examples which 1) are false-positives of the earlier stages,

2) are most confidently accepted as false-positives by the current stage, and 3)

penetrate the cascade most deeply beyond this stage. This is intuitive, in the

sense that it encourages the selection of the weak learner that most contradicts

the current cascade on its most costly mistakes.

In summary, FCBoost is a generalization of AdaBoost with similar ex-

ample weighting, gating coefficients that guarantee consistency with the cascade

structure, and a cost function that accounts for classifier complexity. This en-

courages the selection of weak learners that correct the false-positives of greatest

computational cost. It should be mentioned that while we have used AdaBoost to

derive FCBoost, similar algorithms could be derived from other forms of Boosting,

e.g. logitBoost, gentle Boost [27], KLBoost [46] or float Boost [44]. This would

amount to replacing the exponential loss, (III.3), with other loss functions. While

the resulting algorithms would be different, the fundamental properties (example

reweighing, additive updates, gating coefficients) would not. We next exploit this

to develop a cost-sensitive extension of FCBoost.

III.F.4 Cost-sensitive FCBoost

While positive examples rejected by a cascade stage cannot be recovered

by subsequent stages, the cascade false positive rate can always be reduced through

addition of stages. Hence, in cascade learning, maintaining a high detection rate

across stages is more critical than maintaining a low false positive rate. This is

difficult to guarantee with the risk of (III.1), which is an upper bound on the

error rate, treating misses and false positives equally. Several approaches have

been proposed to enforce asymmetry during cascade learning. One possibility

is to manipulate the thresholds of the various detector stages to guarantee the

desired detection rate [91, 81, 47]. This is usually sub-optimal, since Boosting

predictors are not well calibrated outside a small neighborhood of the classification

boundary [54]. Threshold tuning merely changes the location of the boundary
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and can perform poorly [49]. An alternative is to use cost sensitive Boosting

algorithms [92, 50], derived from asymmetric losses that weigh miss-detections

more than false-positives, optimizing the cost-sensitive boundary directly. This

usually outperforms threshold tuning.

In this work we adopt the cost sensitive risk of [92],

Rc
E(f) =

C

|S+
t |

∑

xi∈S
+
t

e−yif(xi) +
1− C

|S−
t |

∑

xi∈S
−
t

e−yif(xi)

=
∑

xi∈St

yci e
−yif(xi), (III.60)

where C ∈ [0, 1] is a cost factor,

yci =
C

|S+
t |
I(yi = 1) +

1− C

|S−
t |

I(yi = −1),

I(.) the indicator function, and the relative importance of positive vs. negative ex-

amples is determined by the ratio C
1−C

. This leads to the cost-sensitive Lagrangian

Lc[F ] = Rc
E[F ] +RC [F ]. (III.61)

A derivation similar to that of (III.14) can be used to show that

< δRc
E[F ], g >k= −

∑

i

yiy
c
iw(xi)bk(xi)g(xi), (III.62)

where w(xi) = e−yiF (xi) and bk(xi) is given by (III.36) for last-stage and by (III.40)

for multiplicative cascades. Finally, combining (III.61), (III.62), and (III.49),

< −δLc[F ], g >k =
∑

i

(

yiy
c
iw(xi)bk(xi)− η

ysiψk(xi)θk(xi)

|S−
t |

)

g(xi).(III.63)

The cost-sensitive version of FCBoost replaces (III.51) with (III.63) in (III.52)-

(III.53) and L by Lc in (III.54).

III.F.5 Open issues

One subtle difference between AdaBoost and FCBoost, with η = 0, is

the feasible set of the underlying optimization problems. Rewriting the FCBoost
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problem of (III.13) as






minf RE[f ]

s.t : f ∈ ΩG,
(III.64)

where

ΩG = {f |∃f1, ...fm ∈ G such that f(x) = Fm[f1, . . . , fm](x) ∀x} .

and comparing (III.64) to (III.2), the two problems differ in their feasible sets,

span(G) for AdaBoost vs. ΩG for FCBoost. Since any f̂ ∈ span(G) is equivalent

to a one-stage cascaded predictor, it follows that f̂ ∈ ΩG and

span(G) ⊂ ΩG.

Hence, the feasible set of FCBoost is larger than that of AdaBoost, and FCBoost

can, in principle, find detectors of lower risk. Hence, all generalization guarantees of

AdaBoost hold, in principle, for cascades learned with FCBoost. There is, however,

one significant difference. Since span(G) is a convex set, the optimization problem

of (III.2) is convex whenever RE(f) is a convex function of f . This is the case

for the AdaBoost risk, and AdaBoost is thus guaranteed to converge to a global

minimum. However, since ΩG can be a non-convex set, no such guarantees exist

for FCBoost. Hence, FCBoost can converge to a local minimum. We illustrate

this with an example in section III.G.1. In general, the convexity of ΩG depends

on the PC operator Fm and the set of weak learners G. There is currently little

understanding on what conditions are necessary to guarantee convexity.

III.G Evaluation

In this section, we report on several experiments conducted to evaluate

FCBoost. We start with a set of experiments designed to illustrate the properties

of the algorithm. We then report results on its use to build face and pedestrian

detectors with state-of-the-art performance in terms of detection accuracy and

complexity. In all cases, the training set for face detection contained 4, 500 faces
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(along with their flipped replicas) and 9, 000 negative examples, of size 24 × 24

pixels, while pedestrian detection relied on a training set of 2, 347 positive and

2, 000 negatives examples, of size 72×30, from the Caltech Pedestrian data set [18].

All weak learners were decision-stumps on Haar wavelets [91].

III.G.1 Effect of η

We started by studying the impact of the Lagrange multiplier η, of (III.41),

on the accuracy vs. complexity performance of FCBoost cascades. The test set

consisted of 832 faces (along with their flipped replicas) and 1, 664 negatives. All

detectors were trained for 50 iterations. The unit computational cost was set to

the cost of evaluating a new Haar feature. This resulted in a cost of 1
5
units for

feature recycling, i.e. λ = 1
5
in (III.47). Figure III.3 quantifies the structure of the

cascades learned by FCBoost with η = 0 and η = 0.04: multiplicative in a) and

last-stage in b). The top plots summarize the number of features assigned to each

cascade stage, and those at the bottom the computational cost per stage. Note

that since, from (III.57), the neutral predictor of the last-stage cascade is its last

stage, each of the last-stage cascade stages benefits from the features evaluated in

the previous stages. Hence, as shown in the top plot of Figure III.3-b, the number

of weak learners per stage is monotonically increasing. However, because most

features are recycled, the cost is still dominated by the early stages, when η = 0.

With respect to the impact of η, its is clear that, for both structures, a small η

produces short cascades whose early stages contain many weak learners. On the

other hand, a large η leads to much deeper cascades, and a more uniform distribu-

tion of weak learners and computation. This is sensible, since larger η place more

emphasis on computational efficiency and this requires that the early stages, which

tend to be evaluated for most examples, be very efficient. Hence, long cascades

with a few weak learners per stage tend to be computationally more efficient than

short cascades with many learners per stage.

The accuracy vs. complexity trade-off of these cascades was compared
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Figure III.3: Number of features (top) and computational cost (bottom) per stage
of an FCBoost cascade: (a) multiplicative, (b) last-stage.

to those of a non-cascaded AdaBoost detector and a cascade of embedded stages

derived from this detector, by the procedure of [50]. This converts the detector

into a cascade by inserting a rejection point per weak learner. The resulting cas-

cade has embedded stages which add a single weak learner to their predecessors

and is equivalent to the chain Boost cascade [99]. Figure III.4 depicts the trade-off

between computation and accuracy of AdaBoost, chain Boost, and FCBoost cas-

cades with η ∈ [0, 0.04]. The left-most (right-most) point on the FCBoost curves

corresponds to η = 0 (η = 0.04). AdaBoost and ChainBoost points were ob-

tained by limiting the number of weak learners, with a single weak learner (full

detector) for the right-most (left-most) point. Several observations can be made

from the figure. First, as expected, increasing the trade-off parameter η produces

FCBoost cascades with less computation and higher error. Second, FCBoost has

a better trade-off between complexity and accuracy (curves closer to the origin).

Third, among FCBoost models, last-stage cascades have uniformly better trade-off
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Figure III.4: Computational cost vs. error rate of the detectors learned with
AdaBoost, chain Boost, and FCBoost with the last-stage and multiplicative
structures.

than their multiplicative counterparts. Since last-stage are generalized embedded

cascades, this confirms previous reports on the advantages of embedded over in-

dependent stages [64, 99]. Finally, it is interesting to note that, when η = 0,

the Lagrangian of (III.41) is equivalent to the AdaBoost risk, i.e. FCBoost and

AdaBoost minimize the same objective. However, due to their different feasible

sets, they can learn very different detectors (see section III.F.5). While the larger

feasible set of FCBoost suggests that it should produce detectors of smaller risk

than AdaBoost, this did not happen in our experiments.

Table III.1 summarizes the error and cost of AdaBoost and the two FC-

Boost methods for η = 0. Note that the AdaBoost detector has a slightly lower

error. The weaker accuracy of the FCBoost detectors suggests that the latter does

get trapped in local minima. This is, in fact, intuitive as the decision to add a

cascade stage makes it impossible for the gradient descent procedure to revert back

to a non-cascaded detector. By making such a decision, FCBoost can compromise

the global optimality of its solution, if the global optimum is a non-cascaded de-

tector. Interestingly, FCBoost sometimes decides to add stages even when η = 0

(see Figure III.3). As shown in Table III.1, this leads to a slightly more error-prone

but much more efficient detector than AdaBoost. In summary, even without pres-
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Table III.1 Performance comparison between AdaBoost and FCBoost, for η = 0.

AdaBoost FCBoost+last-stage FCBoost+multiplicative
Err. rate 4.03% 4.51% 4.15%
Eval. cost 50 11.74 42.54

sure to minimize complexity (η = 0), FCBoost may trade-off error for complexity.

This may be desirable or not, depending on the application. In the experiment of

Table III.1, FCBoost seems to make sensible choices. For the last-stage structure,

it trades a small increase in error (0.48%) for a large decrease in computation

(76.5%). For the multiplicative structure, it trades-off a very small increase in

error (0.12%) for a moderate (16%) decrease in computation.

III.G.2 Cost-Sensitive FCBoost

We next consider the combination of FCBoost and the cost sensitive risk

of (III.60). Since the advantages of cost-sensitive Boosting over threshold tuning

are now well established [92, 49], we limit the discussion to the effect of the cost fac-

tor C on the behavior of FCBoost cascades. Cascaded face detectors were learned

for cost factors C ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Figure III.5 a) presents the

trade-off between detection and false positive rate for last-stage and multiplicative

cascades. In both cases, the leftmost (rightmost) point corresponds to C = 0.5

(C = 0.99). Figure III.5 b) presents the equivalent plot for computational cost.

Several observations can be made. First, as expected, larger cost factors C pro-

duce detectors of higher detection and higher false-positive rate. Second, they lead

to cascades of higher complexity. This is intuitive since, for large cost factors,

FCBoost aims for a high detection rate and is very conservative about rejecting

examples. Hence, many negatives penetrate deep into the cascade, and compu-

tation increases. Third, comparing the curves of the last-stage and multiplicative

cascades, the former again has better performance. In particular, last-stage cas-

cades combine higher ROC curves in Figure III.5 a) with lower computational cost
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Figure III.5: Performance of cascades learned with cost-sensitive FCBoost, using
different cost factors C. (a) ROC curves, (b) computational complexity.

in Figure III.5 b).

III.G.3 Face and pedestrian detection

Over the last decade, there has been significant interest in the problem

of real-time object detection from video streams. In particular, the sub-problems

of face and pedestrian detection have been the focus of extensive research, due to

the demand for face detection in low-power consumer electronics (e.g. cameras or

smart-phones) and pedestrian detection in intelligent vehicles. In this section, we

compare the performance of FCBoost cascades with those learned by several state

of the art methods in the face and pedestrian detection literatures.

We start with face detection, where cascaded detectors have become pre-

dominant, comparing FCBoost to the method of Viola and Jones (VJ) [91], Wald

Boost [81] and the multi-exit approach of [64]. Since extensive results on these and

other methods are available on the MIT-CMU test set, all detectors were evaluated

on this data set. The methods above have been shown to outperform a number

of other cascade learning algorithms [64] and, to the best of our knowledge, hold

the best results in this data set. In all cases, the target detection rate was set

to DT = 95%. For Wald Boost, multi-exit, and VJ, the training set was boot-

strapped when a new stage was added to the cascade, for FCBoost when the false

positive rate dropped below 95%. For VJ and multi-exit cascades, which require
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the specification of the number of cascade stages and a target false-positive and

detection rate per stage, we used 20 stages, and the popular strategy of setting

the false positive rate to 50% and the detection rate to D
1
20
T . For FCBoost we

used a last-stage cascade, since this structure achieved the best balance between

accuracy and speed in the previous experiment. We did not attempt to optimize

η, simply using η = 0.02. The cost factor C was initialized with C = 0.99. If after

a Boosting update the cascade did not meet the detection rate, C was increased

to

Cnew =
Cold + 1

2
. (III.65)

This placed more emphasis on avoiding misses than false positives, and was re-

peated until the updated cascade satisfied the rate constraint. The final value of

C was used as the initial value for the next Boosting update.

Figure III.6 show the ROCs of all detectors. The average evaluation cost,

i.e.average number of features evaluated per sub-window, is shown in the legend

for each method. Note that the FCBoost cascade is simultaneously more accurate

and faster than those of all other methods. For example, at 100 false positives,

FCBoost has a detection rate of 91% as opposed to 88% for multi-exit, 83% for VJ,

and 80% for Wald Boost. With regards to computation, FCBoost is 7.1, 4, and

2.5 times faster than multi-exit, VJ, and Wald Boost, respectively. Overall, when

compared to the FCBoost cascade, the closest cascade in terms of detection rate

(multi-exit, 3% drop) is significantly slower (7 times) and the closest cascade in

terms of detection speed (Wald Boost, 2.5 times slower) has a very poor detection

rate (11% smaller).

We next considered the problem of pedestrian detection, comparing re-

sults to a large set of state-of-the-art pedestrian detectors on the Caltech Pedestrian

data set [18]. In this literature, it is well known that a good representation for

pedestrians must account for both edge orientation and color [15, 60]. Similarly

to [60], we adopted an image representation based on a 10 channel decomposition.

This included 3 color channels (YUV color space), 6 gradient orientation channels,
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Figure III.6: ROCs of various face detectors on MIT-CMU. The number in the
legend is the average evaluation cost, i.e.average number of features evaluated per
sub-window.

and a gradient magnitude channel. In all other aspects, the cascade architecture

was as before, e.g. using Haar wavelet features and decision stumps as weak learn-

ers, the previously used values for parameters DT , and η, etc. When compared to

the face detection experiments, the only difference is that the set of weak learners

was replicated for each channel. At each iteration, FCBoost chose the best weak

learner and the best channel to add to the cascade predictor. The performance of

the FCBoost cascade was evaluated with the toolbox of [18]. Figure III.7 compares

its complexity and curve of miss-detection rate vs number of false positives per im-

age (FPPI) to those of a number of recent pedestrian detectors. The comparison

was restricted to the popular near scale-large setting, which evaluates the detection

of pedestrians with more than 100 pixels in height. The numbers shown in the left

of the legend summarize the detection performance by the miss rate at 0.1 FPPI.

The numbers shown in the right indicated the average time, in seconds, required

for processing a 480× 640 video frame. Note that the evaluation is not restricted

to fast detectors, including the most popular architectures for object detection in

computer vision, such as the HOG detector of [15] or the latent SVM of [24]. For

more information on the curves and other methods the reader is referred to [18].

Two sets of conclusions can be derived from these results. First, they con-
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firm the observation that the FCBoost cascade significantly outperforms previous

cascaded detectors. A direct comparison is in fact possible against the ChnFtrs

approach of [60]. This work introduced the multi channel features that we adopt

but uses the SoftCascade algorithm [8] for cascade learning. The resulting detector

is among the top methods on this data set, missing 30% of the pedestrians at 0.1

FPPI and using 0.85 seconds to process a frame. Nevertheless, the FCBoost cas-

cade has substantially better accuracy, missing only 23% of the pedestrians at 0.1

FPPI, and requires less time (a 6% speed up). Second, the results of Figure III.7

show that the FCBoost cascade is one of the most accurate pedestrian detectors in

the literature, and significantly faster than the detectors of comparable accuracy.

In fact, only two detectors have been reported to achieve equivalent or lower miss

rates. The Hog-Lbp detector [94] has the same miss rate (23% at 0.1 FPPI) but

is 20 times slower. The MultiFtr+Motion [93] detector has a smaller miss rate

of 16% (at 0.1 FPPI) but is 62 times slower (almost 1 minute per frame). The

inclusion of this method in Figure III.7 is somewhat unfair, since it is the only ap-

proach that exploits motion features. All other detectors, including the FCBoost

cascade, operate on single-frames. We did not investigate the impact of adding

motion features to FCBoost. Finally, it should be noted that the FCBoost cas-

cade could be enhanced with various computational speed ups proposed by [17] in

the design of the FPDW detector. This is basically a fast version of the ChnFtrs

detector, using several image processing speed-ups to reduce the time necessary

to produce the image channels on which the classifier operates. These speed-ups

lead to a significant increase in speed (0.15 vs 0.85 seconds) at a marginal cost

in terms of detection accuracy (33% vs. 30% miss rate at 0.1 FPPI). Since these

enhancements are due to image processing, not better cascade design, we have not

considered them in our implementation. We would expect, however, to see similar

computational gains in result of their application to the FCBoost cascade.
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Figure III.7: Accuracy curves and complexity of various pedestrian detectors on
the Caltech data set. Legend: (left) miss rates at 0.1 FPPI, (right) average time,
in seconds, required to process 480× 640 frame.

III.H Conclusions

In this work we have addressed the problem of detector cascade learning

by introducing the FCBoost algorithm. This algorithm optimizes a Lagrangian risk

that accounts for both detector speed and accuracy with respect to a predictor that

complies with the sequential decision making structure of the cascade architecture.

By exploiting recursive properties of the latter, it was shown that many cascade

predictors can be derived from generator functions, which are cascade predictors

of two stages. Variants of FCBoost were derived for two members of this family,

last-stage and multiplicative cascades, which were shown to generalize the popular

independent and embedded stage cascade architectures. The concept of neutral

predictors was exploited to integrate the search for cascade configuration into the

Boosting algorithm. In result, FCBoost can automatically determine 1) the num-

ber of cascade stages and 2) the number of weak learners per stage, by minimizing

the Lagrangian risk. It was also shown that FCBoost generalizes AdaBoost, and

is compatible with existing cost-sensitive extensions of Boosting. Hence, it can be

used to learn cascades of high detection rate. Experimental evaluation has shown
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that the resulting cascades outperform current state-of-the-art methods in both

detection accuracy and speed.
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IV.A Introduction

Boosting is a popular approach for classifier design in machine learning.

It is a simple and effective procedure to combine many weak learners into a strong

classifier. However, most existing Boosting methods were designed primarily for

binary classification. In many cases, the extension to M -ary problems (of M > 2)

is not straightforward. Nevertheless, the design of multiclass Boosting algorithms

has been investigated since the introduction of AdaBoost in [26].

Two main approaches have been attempted. The first is to Boost multi-

class weak learner, e.g. decision trees, such as AdaBoost-M1[25], [23], SAMME[102],

and AdaBoost-Cost [56]. These methods may require strong weak learners, spe-

cially AdaBoost-M1, which substantially increase complexity and have high po-

tential for over-fitting.

The second approach is to reduce the multiclass problem into a collection

of binary sub-problems. Beyond the popular methods of “one vs all” [57] and “all

pairs” [33] the rest of these methods fall into three branches. The first branch

started with work of Sejnowski et al. [77] and error correcting output coding

approach of [16], where a binary code is assigned to each class and independent

binary classifiers are trained to predict the bits of those codes. Schapire [72]

used this approach in Boosting and proposed AdaBoost.OC [72]. This method

uses the pseudo loss definition of AdaBoost.M2 [25] which makes it possible to

learn binary sub-classifiers jointly. This approach then followed and improved by

many other algorithms including AdaBoost.ECC [32],[4], AdaBoost.SECC [83],

AdaBoost.ERP [43], AdaBoost.SIP [100] and HingBoost [30]. The main difficulty

for these methods is the lack of optimal code for each class which is NP-hard [14].

The Second branch of reduction to binary approaches includes AdaBoost-

M2 [25], AdaBoost-MR and AdaBoost-MH [73]. In these approaches class num-

bers c ∈ {1 . . .M} are coupled with the example x ∈ X and a binary predictors

f : X × {1 . . .M} → R is trained to predict responses of example x for all classes.
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The class with largest response then is declared as the prediction. This will ef-

fectively converts the multiclass problem into a binary problem where examples

are augmented with their class numbers [27]. The resulting binary classification

problem is more complicated and requires weak learners with very high discrimi-

native power and thus the resulting Boosting algorithms may not work well with

the regular weak learners such as decision stumps.

The third branch of binary approaches started with multiclass LogitBoost

[27] which jointly trains M regression classifiers for solving M -ary classification

problem. This approach later followed by [37] to propose multiclass GentleBoost

and by [104] to propose AdaBoost.ML.

In this work, we introduce a new formulation for multiclass Boosting

based on 1) multi-dimensional predictor, 2) multi-dimensional real-value code-

words and 3) a new family of multiclass loss functions. Using these definitions,

we then formulate multiclass Boosting as an optimization in multi-dimensional

function space and propose two Boosting algorithms to solve this problem. The

first is CD-MCBoost which implements functional coordinate descent procedure.

CD-MCBoost supports any type of weak learners, updating one component of

the predictor per Boosting iteration. This method is similar to reduction to bi-

nary approach but in CD-MCBoost 1) codewords are real values and 2) predictor

components are learned jointly. The second algorithm, GD-MCBoost, implements

functional gradient descent, uses multiclass weak learners and updates all compo-

nents of the predictor simultaneously. We also show that both MCBoost algorithms

are maximizing the margin, however, the selected codewords will impose an up-

per bound on the maximum achievable margin. We then find the optimal set of

codewords that maximized this upper bound. In addition we show that MCBoost

algorithms converge to a Bayes consistent predictor and reduce to Binary Boosting

for binary problems. Experiments show that the MCBoost algorithms outperform

comparable prior methods on a number of data sets.
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IV.B Previous works

The problem of multiclass classification has attracted significant attention

since the early days of machine learning. The first and most popular methods for

solving M -class classification problem is to build M classifiers each separating one

class form the other classes [57]. At the test time score of each classifier is computed

and the class with highest score is declared as the prediction. Later Sejnowski et

al [77] extend this idea by assigning a binary string of length l to each class and

training l classifiers for learning bits of those strings, similar to “one-vs-all”, at

the test time bits of the string are predicted and the class with lowest Hamming

distance is selected. In 1995, Dietterich et al. [16] improve this method by using

Error Correcting Output Codes, ECOC, which made it possible to extract the true

class even if there are a few errors in the predicted bits. Similarly [33] suggested

designing M(M−1)
2

classifiers discriminating all pairs of classes and make a vote

among these classifiers at the test time. Allwein et al. [4] unified all these binary

based classification and showed that they are all reducing multiclass problem into

binary sub-problems for some specific coding matrix.

After introduction of AdaBoost [26] in 1995, there was a great effort to

extend this simple and effective binary classification algorithm to the multiclass

case. These efforts fall into two main categories 1) Boosting multiclass weak learn-

ers and 2) converting the multiclass problem into binary sub-problems.

IV.B.1 Boosting multiclass weak learners

The first method in this class is AdaBoost.M1 [26, 25] which is a direct

extension of AdaBoost to multiclass case. However, unlike AdaBoost which only

requires “better than random” base learners, AdaBoost.M1 needs more stronger

base learners, i.e. error rate less than 50%, for Boosting. The weak learner slection

criteria of this method was furthur relaxed by [23]. Recently [56] provided a game

theoric framework for analyzing the required condition of Boostable base learners
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and proposed a more relaxed base learner selection criteria. However, finding the

optimal criteria for selection of base learners is still an open problem.

The other method in this class is SAMME [102] which defines an exponen-

tial loss for multiclass classification in multi-dimensional function space. SAMME

then minimizes this loss using by gradient descent. However, as we will show in

section IV.I, the defined loss function is not margin enforcing and thus SAMME

is not a margin maximizer algorithm.

IV.B.2 Reduction to binary

The multiclass classification algorithms based on reduction to binary fall

into three branches. The first branch follows the error correcting output coding ap-

proach [16]. Schapire [72] combined it with pseudo-loss definition of AdaBoost.M2

[25] and proposed AdaBoost.OC. He also proposed using binary random codes

for finding codes with highest error correcting ability using ”max-cut” algorithms.

Later [32] modified the pseudo-loss definition of AdaBoost.OC and proposed Ad-

aBoost.ECC with better generalization guarantees and performance. In 2000, [4]

proposed to use loss-based distance instead of Hamming distance in prediction and

training. Connecting these methods with margin framework, in 2005 [83] showed

that AdaBoost.OC and AdaBoost.ECC were in fact maximizing multiclass defini-

tion of margin. In 2002 Crammer et al. [14] showed that the problem of finding

the optimal coding matrix is NP-hard and suggested to use real-valued codes. The

problem of finding optimal binary coding matrix was also studied in [43, 100, 30]

where they proposed optimization methods to find a good set of binary codes in

each iteration. Performance of these methods depends on two factors 1) The er-

ror correction quality of the coding matrix and weighting algorithms used in the

training binary classifiers. However optimizing these two factors as pointed out by

[14] is NP-hard and these method often require extensive computations.

The second branch of reduction to binary methods started with the intro-

duction of AdaBoost-M2 [26, 25]. In this method class numbers c ∈ {1 . . .M} are
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coupled with the examples x ∈ X and a real-valued predictor f : X ×{1 . . .M} →
R is trained to predict response of example x for the class numbers. This predictor

is trained by minimizing a pseudo-loss function that is defined over all pairs of ex-

amples and their corresponding incorrect labels to penalize the errors. At the test

time for a given example x, this predictor is evaluated over all pairs of x and class

numbers, and the class with largest response is declared as the prediction. Schapire

et al. [73], extend AdaBoost.M2 to AdaBoost.MR for multi-label problems. He

also improved this algorithm by introducing AdaBoost-MH whose weights were

updated using Hamming loss. As it shown by [27], coupling examples with their

class numbers effectively converts the multiclass problem into a new binary prob-

lem for learning responses of each example to different class numbers. However,

this binary problem is very complicated and requires weak learners with very high

discriminative power which may result in over-fitting.

The third branch started with multiclass LogitBoost proposed by [27].

This method uses statistical view of Boosting as gradient descent in function space

and learns additive logistic regression models for each class using LogitBoost. The

key difference between multiclass LogitBoost and “one-vs-all” approach is that

in this method binary predictors are learned jointly and sums up to zeros. Later

[37] adapted this framework for GentleBoost and proposed GAMMBLE algorithm.

This framework was further extend by [104] to be used with any Fisher consistent

loss function.

IV.C Multiclass Boosting

We start by reviewing the fundamental ideas behind the classical use of

Boosting for the design of binary classifiers, and then extend these ideas to the

multiclass setting.
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IV.C.1 Binary classification

A binary classifier, F (x), implements a decision rule that maps examples

x ∈ X to classes c ∈ {1, 2}. The classifier is optimal when this decision rule min-

imizes some classification risk . A classical risk is the probability of classification

error, which is minimized by the Bayes decision rule

F (x) = arg min
c∈{1,2}

PC|X(c|x). (IV.1)

This rule is not easy to implement, due to the difficulty of estimating the proba-

bilities PC|X(c|x). Large margin methods, such as Boosting, avoid this difficulty

by adopting alternative risks. They implement the classifier as

F (x) =







1 if f ∗(x) < 0

2 if f ∗(x) > 0.
(IV.2)

where f ∗(x) : X → R is the continuous valued predictor that minimizes the risk

f ∗(x) = argmin
f
RL(f), (IV.3)

where

RL(f) = EX,C{L[yc, f(x)]}, (IV.4)

defined by a loss function L[., .] and a set of class labels yc, where yc is the label

of class c ∈ {1, 2}. If the loss L[., .] is Bayes consistent, the minimization of (IV.4)

results in the Bayes decision rule, i.e. (IV.1) and (IV.2) are equivalent.

To learn the optimal classifier, the risk of (IV.4) is estimated by the

empirical risk

RL(f) ≈
1

n

n
∑

i=1

L[yci , f(xi)] (IV.5)

over a training sample D = {(xi, ci)}ni=1. Large margin methods use the labels

y1 = −1 and y2 = 1 and a Bayes consistent loss function that only depends on the

classification margin ycf(x), i.e.

L[yc, f(x)] = L[ycf(x)]. (IV.6)
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This guarantees that the classifier has good generalization for finite training sam-

ples [88]. Boosting learns the optimal predictor f ∗(x) : X → R as the solution

of






minf(x) RL(f)

s.t f(x) ∈ span(H),
(IV.7)

where RL(f) is the empirical risk of (IV.5), and H = {h1(x), ...hr(x)} a set of

weak learners hi(x) : X → R. The optimization is carried out by gradient descent

in the function space span(H) of linear combinations of hi(x) [27, 53, 70]. The

extension of binary Boosting to the multiclass setting requires multiclass definitions

of class labels, predictor, margin, decision rule, loss function and risk minimization

procedure.

IV.D Multiclass class labels, predictors and margin

We start by introducing a set of multiclass definitions for class labels,

predictor, and margin.

IV.D.1 Class labels and predictor

The definition of the classification labels as yc = ±1 plays a significant

role in the binary formulation. One of the difficulties of the multiclass extension is

that these labels do not have an obvious generalization. For M -ary classification,

c ∈ {1, . . . ,M}, each class c must be mapped into a distinct class label yc ∈ Y =

{y1 . . . yM}. This label can be thought of as a codeword that identifies the class.

In the binary case, the predictor is a real-valued function, i.e. f(x) ∈ R, and the

codewords ±1 are the two directions on the line. To generalize these concepts to

the multiclass setting, we introduce a multi-dimensional predictor f(x) ∈ R
d and

codewords yk which are directions in this space

yc ∈ R
d, ‖yc‖ = 1. (IV.8)
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At this point, there is no restriction on the dimension d or the codeword directions,

which can be any M distinct directions in R
d. In Section IV.E we will discuss

how the selection of codewords affects learning performance and procedures for

determining optimal sets of codewords.

IV.D.2 Margin

Given a multi-dimensional predictor and codewords, we rely on the fol-

lowing definition of multiclass margin.

Definition 1. Let yk ∈ R
d, k ∈ {1, . . . ,M}, be the set of codewords of an M-ary

classification problem and f : X → R
d. The margin of example x with respect to

class k is

M(yk, f(x)) =
1

2
min
l 6=k

[〈

yk, f(x)
〉

−
〈

yl, f(x)
〉]

=
1

2

[

〈

yk, f(x)
〉

−max
l 6=k

〈

yl, f(x)
〉

]

(IV.9)

where < ., . > is the Euclidean dot-product.

This definition is closely related to previous definitions of multiclass mar-

gin. For example, it generalizes that of [31], where the codewords yk are restricted

to binary vectors in the canonical basis of Rd, and is a special case of that of [4],

where the dot products
〈

yk, f(x)
〉

are replaced by a generic function of f, x, and

k. Furthermore, when M = 2 y1 = −y2 = 1,

M(yk, f(x)) =
1

2
[ykf(x)−max

l 6=k
ylf(x)]

=
1

2
[ykf(x) + ykf(x)] = ykf(x), (IV.10)

and (IV.9) is identical to the classic definition of margin. We next generalize the

concept of the predictor margin.

Definition 2. The margin of a predictor f(.) with respect to a set of codewords

Y = {y1, ..yM} and examples D = {(xi, ci)}ni=1 is

Mp(D,Y , f) = min
(xi,y

ci )∈D
M(yci , f(xi)). (IV.11)



85

Similarly to the binary case, this can be seen as a measure of the distance

between the classification boundary and the point closest to it.

IV.D.3 Decision Rule

For a binary classifier, when y1 = 1, y2 = −1 the decision rule of (IV.2)

can be written as

F (x) = arg max
k={1,2}

ykf ∗(x), (IV.12)

i.e. the classifier simply chooses the class of largest margin for example x. This

has the following straightforward extension to the multiclass case.

Definition 3. Consider aM-ary classification problem with codewords yk ∈ R
d, k ∈

{1, . . . ,M}. A maximum margin classifier of predictor f : X → R
d implements

the decision rule

F (x) = arg max
k∈{1,...,M}

M(yk, f(x)). (IV.13)

This can be shown equivalent to selecting the class whose codeword has

largest dot-product with the prediction f(x).

Lemma 1. The decision rule of the maximum margin classifier of (IV.13) is equiv-

alent to

F (x) = arg max
k∈{1,...,M}

〈

yk, f(x)
〉

. (IV.14)

Proof. Consider a prediction f(x). Defining

k∗ = arg max
k∈{1,...,M}

〈

yk, f(x)
〉

, (IV.15)

it follows from (IV.9) that

M(yk
∗

, f(x)) ≥ 0 ≥ M(yl, f(x)) ∀ l 6= k∗ (IV.16)
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and thus

k∗ = arg max
k∈{1,...,M}

M(yk, f(x)). (IV.17)

Conversely, if

k∗ = arg max
k∈{1,...,M}

M(yk, f(x)) (IV.18)

it follows from (IV.9) that

〈

yk
∗

, f(x)
〉

≥ max
l 6=k∗

〈

yl, f(x)
〉

(IV.19)

and thus

k∗ = arg max
k∈{1,...,M}

〈

yk, f(x)
〉

. (IV.20)

As in binary classification, an example x of class c is correctly classified

by the max margin classifier of predictor f(x) if and if and only if the example

margin of x with respect to class c is positive.

Corollary 1. Let c be the class of example x and f(x) the predictor of a maximum

margin classifier F (x). Then F (x) = c if and only if

M(yc, f(x)) > 0. (IV.21)

Proof. If F (x) = c, it follows from Lemma 1 that

c = arg max
k∈{1,...,M}

〈

yk, f(xi)
〉

(IV.22)

and (IV.21) follows from (IV.9). Conversely, If M(yc, f(x)) > 0, it follows from

(IV.9) that

〈yc, f(x)〉 > max
k 6=c

〈

yk, f(x)
〉

(IV.23)

and, from (IV.14), F (x) = c.
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Finally, a maximum margin classifier classifies all examples in a data set

D correctly if and only if its predictor margin with respect to D is positive.

Corollary 2. Let f(.) be the predictor of a maximum margin classifier F (x) and

D a set of examples (xi, ci). f(.) classifies all xi ∈ D correctly if and only if

Mp(D, f,Y) > 0. (IV.24)

Proof. If Mp(D, f,Y) > 0, it follows from (IV.11) that

M(yci , f(xi)) > 0 ∀xi ∈ D (IV.25)

and, from Corollary 1, all examples are classified correctly. Conversely, if all ex-

amples are classified correctly, then (IV.25) follows from Corollary 1, and

Mp(D, f,Y) = min
(xi,y

ci )∈D
M(yci , f(xi)) > 0. (IV.26)

These corollaries extend the equivalent properties of binary large margin

predictors to the multiclass case.

IV.E Optimal codewords

Since, from (IV.14), the score of example xi under class k is the dot

product between the prediction f(xi) and the class codeword yk, the choice of

codewords has an impact on classification results. If, for example, two classes

were to share a codeword, it would impossible to distinguish them with (IV.14)

or (IV.13). Hence, some codeword sets are better than others. In this section, we

search for an optimal set of codewords.

IV.E.1 Optimality criterion

The proposed optimality criterion is based on the definition of margin

of (IV.9)-(IV.9). We note, however, that margin optimization is not enough to
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constrain the learning problem. Two issues arise. The first is that, because the

addition of a constant to all codewords leaves (IV.9) unaltered, a margin-based cri-

terion cannot fully constrain the codeword set Y . This problem can be eliminated

by complementing the unit norm constraint of (IV.8) with the constraint that the

codewords be centered .

Definition 4. A set of vectors Y = {y1, ...yM} ∈ R
d is denoted an (M,d) codeword

set if

∑M

k=1 y
k = 0, ‖yk‖ = 1 ∀k = 1 . . .M. (IV.27)

The set of all (M,d) codeword sets is denoted S(M,d).

The second is that the margin of (IV.9) can be arbitrarily increased with-

out fundamentally changing the associated decision rule, by simply rescaling the

predictor f(.). This can be avoided by introducing a predictor normalization.

Definition 5. A predictor f(x) is normalized if ||f(x)|| = 1, ∀x. F is the set of

normalized predictors.

Under these conditions, which we will adopt in the reminder of this work,

the margin achievable with a codeword set Y is bounded. This leads to the notion

of the margin capacity of Y .

Definition 6. Consider a M-ary classification problem with a codeword set Y ∈
S(M,d). The margin capacity of Y is

C[Y ] = min
k=1...M

M(yk, ξk), (IV.28)

where

ξk = arg max
||v||=1

M(yk, v). (IV.29)

is the predictor direction of largest margin for class k.

The margin capacity C[Y ] is the maximum margin achievable by any

predictor in F using codewords Y on any data set D. Note, from (IV.11), that it is
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the margin, with respect to Y and D, of a predictor which maps all examples from

class k into the direction ξk of largest margin. A large capacity implies that the

codeword set is such that a large margin can be achieved for all classes. A small

capacity implies that there is at least one class for which the largest achievable

margin is small. The optimal codeword set is that of largest capacity.

Definition 7. Y∗ ∈ S(M,d) is a codeword set of maximum capacity if

Y∗ = arg max
Y∈S(M,d)

C[Y ]. (IV.30)

IV.E.2 Maximum capacity codeword sets

In this section, we study the properties of the margin capacity. We start

by deriving an upper bound on the margin achievable along any direction of largest

margin, ξk, (IV.29).

Theorem 1. Let Y ∈ S(M,d) be a codeword set with directions of largest margin

ξk, k ∈ {1, . . . ,M}. Then, ∀k

M(yk, ξk) ≤ M

2(M − 1)
, (IV.31)

with equality if and only if

〈

yl, yk
〉

= − 1

M − 1
∀l 6= k. (IV.32)

In this case, ξk = yk.

Proof. Consider any direction v such that ||v|| = 1. Using (IV.9), (IV.27) and the
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fact that the minimum cannot be larger than the average

M(yk, v) = min
l 6=k

1

2

〈

yk − yl, v
〉

≤ 1

2(M − 1)

∑

l 6=k

〈

yk − yl, v
〉

=
1

2(M − 1)

〈

∑

l 6=k

(yk − yl), v

〉

=
1

2(M − 1)

〈

(M − 1)yk −
∑

l 6=k

yl, v

〉

=
1

2(M − 1)

〈

Myk −
M
∑

l=1

yl, v

〉

=
M

2(M − 1)

〈

yk, v
〉

. (IV.33)

Equality holds if and only if, for all l 6= k

1

2

〈

yk − yl, v
〉

= min
l 6=k

1

2

〈

yk − yl, v
〉

=
M

2(M − 1)

〈

yk, v
〉

, (IV.34)

i.e. if and only if, for all l 6= k,

〈

yl, v
〉

= − 1

M − 1

〈

yk, v
〉

. (IV.35)

It follows from (IV.29) that

M(yk, ξk) ≤ M

2(M − 1)

〈

yk, ξk
〉

, (IV.36)

with equality if and only if, for all l 6= k

〈

yl, ξk
〉

= − 1

M − 1

〈

yk, ξk
〉

. (IV.37)

Hence,

M(yk, ξk) =
M

2(M − 1)
, (IV.38)

if and only if ξk = yk, ∀k and

〈

yl, yk
〉

= − 1

M − 1
∀l 6= k. (IV.39)
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We next derive the necessary and sufficient conditions for optimality of a

codeword set.

Theorem 2. Let Y be any codeword set in S(M,d). Then

C[Y ] ≤ M

2(M − 1)
. (IV.40)

The left and side of (IV.40) is denoted the capacity bound of S(M,d). This bound

is met with equality if and only if

〈

yk, yl
〉

= − 1

M − 1
∀k, l, k 6= l. (IV.41)

In this case, the directions of largest margin are ξk = yk, ∀k.

Proof. The bound of (IV.40) is a straightforward consequence of (IV.28) and (IV.31).

To prove the equality conditions assume that (IV.41) holds and ξk = yk. Then,

∀l 6= k,

〈

yl, ξk
〉

=
〈

yl, yk
〉

= − 1

M − 1

= − 1

M − 1

〈

yk, yk
〉

= − 1

M − 1

〈

yk, ξk
〉

, (IV.42)

where we have used the fact that ||yk|| = 1. It follows, from Theorem 1, that

M(yk, ξk) =
M

2(M − 1)
, (IV.43)

From (IV.28),

C[Y ] =
M

2(M − 1)
. (IV.44)

Conversely, assume that

C[Y ] =
M

2(M − 1)
, (IV.45)

holds. Then, from (IV.28) and (IV.31), there is a set of largest margin directions

ξk such that

M(yk, ξk) =
M

2(M − 1)
∀k. (IV.46)
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From Theorem 1, these are the directions ξk = yk and

〈

yl, yk
〉

= − 1

M − 1
∀k, l 6= k. (IV.47)

The theorem shows that, if there is a codeword set that meets the capacity

bound, the codewords in this set are also the directions of largest margin. We next

derive the conditions under which such a set of codewords exists.

Theorem 3. S(M,d) contains a set of codewords Yc(M,d) that meets the capacity

bound if and only if d ≥ M − 1. In this case, the codewords in Yc(M,d) are the

vertices of a regular simplex in R
d.

Proof. We start by recalling that Yc(M,d) is a set of M centered, unit norm,

d-dimensional vectors yk, such that

〈

yk, yl
〉

= − 1

M − 1
, ∀k, l 6= k. (IV.48)

The proof is by construction and uses a known method for the design of regular

simplexes [12]. Let yk be the codewords in Yc(M,d). Without loss of generality

we can set y1 = [1, 0, . . . , 0]T ∈ R
d. From (IV.48) it follows that

yk1 = − 1

M − 1
∀k > 1, (IV.49)

where yki is the ith coordinate of vector yk. Defining

ȳk =
M − 1

√

M(M − 2)
[yk+1

2 , . . . , yk+1
d ] ∈ R

d−1 k = 1, . . . ,M − 1, (IV.50)

it follows that
∑M−1

k=1 ȳk = 0,

‖ȳk‖2 =
(M − 1)2

M(M − 2)
[‖yk+1‖2 − [yk+1

1 ]2]

=
(M − 1)2

M(M − 2)

[

1− 1

(M − 1)2

]

= 1 ∀k, (IV.51)
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and

〈

ȳk, ȳl
〉

=
(M − 1)2

M(M − 2)

[〈

yk+1, yl+1
〉

− yk+1
1 yl+1

1

]

=
(M − 1)2

M(M − 2)

[

− 1

M − 1
− 1

(M − 1)2

]

= − (M − 1)2

M(M − 2)

M

(M − 1)2
= − 1

M − 2
∀k, l 6= k. (IV.52)

Hence, the codewords ȳk are the elements of Yc(M − 1, d − 1), the codeword set

that meets the capacity bound of S(M − 1, d − 1). In summary, the application

of the simplex design procedure of (IV.50) to a codeword set Yc(M,d) produces a

codeword set Yc(M − 1, d− 1).

If d ≤ M − 2, the procedure can be applied d − 1 times, to produce a

codeword set Yc(M−d+1, 1). This is a set ofM−d+1 centered, unit norm, scalars

that satisfy (IV.48). It follows from the unit norm constraint that ȳk ∈ {+1,−1}
and thus, for k 6= l,

〈

ȳk, ȳl
〉

= −1. This, however, contradicts (IV.48), since

− 1
M−d+1−1

= − 1
M−d

≥ −1
2
. Hence, S(M,d) contains no set of codewords that

meets the capacity bound, when d ≤M − 2.

If d ≥ M − 1, the procedure can be applied M − 2 times, to produce a

codeword set Yc(2, d−M +2). This is a set of 2 centered, unit norm, (d−M +2)-

dimensional vectors that satisfy (IV.48), i.e. 〈ȳ1, ȳ2〉 = −1. Since ȳ1 = [1, 0...0] and

ȳ2 = [−1, 0...0] in R
d−M+2 satisfy these conditions, there exists a sequence Yc(2, d−

M + 2), . . . ,Yc(M,d) of codeword sets that meet the capacity bounds of S(2, d−
M+2), . . . ,S(M,d), respectively. Since the procedure used to design this sequence

is the regular simplex design procedure of (IV.50), the codewords in Yc(2, d−M +

2), . . . ,Yc(M,d) form a regular simplex in R
d−M+2, . . . ,Rd, respectively.

The following corollary is a straightforward consequence of Theorems 1

and 3.

Corollary 3. Let Y∗ be a codeword set of maximum capacity in S(M,d). If d ≥
M − 1, the codewords (y∗)k of Y∗ are the vertices of a regular simplex in R

d. In



94

1

1.5

-0.5

0

0.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

1

1.5

-0.5

0

0.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

1

0

1

-1
0

1

-1
0

1

-1

(M = 2, d = 1) (M = 3, d = 2) (M = 4, d = 3)

Figure IV.1 Codewords of maximal capacity for M = 2, 3, 4.

this case, the directions of largest margin are ξk = (y∗)k,

〈

(y∗)k, (y∗)l
〉

= − 1

M − 1
∀k, l 6= k, (IV.53)

and thus

C[Y∗] =
M

2(M − 1)
. (IV.54)

This corollary characterizes the optimal set of codewords of S(M,d),

whenever d ≥ M − 1. It also shows that, under this constraint, the capacity

bound of (IV.40) is achieved. Since this maximal capacity only depends on the

number of classes M , not in the dimension d, and the complexity of the maximum

margin decision rule of (IV.13) is linear in d, there is no benefit in adopting a di-

mension larger than M − 1. Hence, when the classification problem has no further

constraints, it is natural to rely on codeword sets of dimension

d =M − 1. (IV.55)

Figure IV.1 presents the optimal codeword sets for various M . Note that in the

binary case, M = 2, the optimal codewords are the classical {+1,−1} labels. A

Matlab script that determines the optimal codeword set for any M is available

from [2].



95

IV.E.3 Low-dimensional predictors

When d < M−1, there is no guarantee that a codeoword set of maximum

capacity will achieve the capacity bound. Nevertheless, the choice of d < M−1 can

be appealing for applications where it is critical to use low-dimensional predictors.

For example, the design of a M -ary classifier with a two-dimensional predictor. In

this case, the search for the codeword set of maximum capacity requires, according

to (IV.28), the solution of

Y∗ = arg max
Y∈S(M,d)

min
k=1,...,M

max
||v||=1

min
l 6=k

[〈

yk, v
〉

−
〈

yl, v
〉]

. (IV.56)

This, however, is a very non-trivial optimization for which, to the best of our

knowledge, there are no efficient algorithms. Hence, it is of interest to consider

alternative optimality criteria. One possibility is the maxmin codeword distance

criterion.

Definition 8. Let Y be a codeword set in S(M,d). The minimum distance of Y
is

dmin[Y ] = min
k,l 6=k

‖yk − yl‖2. (IV.57)

Y∗ is a maxmin distance codeword set in S(M,d) if

Y∗ = arg max
Y∈S(M,d)

dmin[Y ]. (IV.58)

The problem of (IV.58) is equivalent to determining the maximum diam-

eter ofM equal circles that can be placed on the surface of the unit sphere without

overlap. This is known as the Tammes problem [85], and does not have closed-form

solution in general. The solution is also not unique, since any rotation of a valid

solution is a valid solution. However, its numerical solution is much simpler than

that of (IV.56). The maximization of dmin[Y ] is also intuitive. From (IV.14), the

decision rule of the maximum margin classifier is based on the projections
〈

f, yk
〉

of the predictor f along the codewords. If the codewords are similar, the same
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will hold for the projections, resulting in lower margins. In fact, it can be shown

that the optimal codeword sets under the optimality criteria of Definitons 7 and 8

are identical when d > M − 1. For this, we start by showing that there is a close

relationship between the capacity and the minimum distance of any codeword set

in S(M,d).

Lemma 2. Let Y be a codeword set in S(M,d). Then

1

4
dmin[Y ] ≤ C[Y ] <

1

2
dmin[Y ] (IV.59)

and

dmin[Y ] ≤ 2M

M − 1
. (IV.60)

Proof. We start with (IV.59). The left inequality follows from (IV.28), (IV.29)

and (IV.9), since

C[Y ] = min
k=1...M

max
||v||=1

M(yk, v) (IV.61)

≥ min
k=1...M

M(yk, yk) (IV.62)

=
1

2
min

k=1...M
min
l 6=k

[

‖yk‖ −
〈

yk, yl
〉]

(IV.63)

=
1

4
min

k=1...M
min
l 6=k

[

2‖yk‖ − 2
〈

yk, yl
〉]

(IV.64)

=
1

4
min

k=1...M
min
l 6=k

[

‖yk‖+ ‖yl‖ − 2
〈

yk, yl
〉]

(IV.65)

=
1

4
min
k,l 6=k

‖yk − yl‖2. (IV.66)

The right inequality follows from (IV.9) since, for any v such that ||v|| = 1,

M(yk, v) =
1

2
min
l 6=k

〈

yk − yl, v
〉

(IV.67)

≤ 1

2
min
l 6=k

‖yk − yl‖2, (IV.68)

and thus

C[Y ] = min
k=1...M

max
||v||=1

M(yk, v) (IV.69)

≤ min
k=1...M

max
||v||=1

1

2
min
l 6=k

‖yk − yl‖2 (IV.70)

=
1

2
min
k,l 6=k

‖yk − yl‖2. (IV.71)
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(IV.60) follows from the left inequality of (IV.59) and (IV.40).

We next use this result to show that, when d ≥M −1, the codeword sets

of maximum capacity and maxmin distance are identical.

Theorem 4. Let Y∗ be a codeword set of maximum margin capacity in S(M,d).

If d ≥M − 1 then Y∗ is a codeword set of maximum capacity, i.e.

C[Y∗] =
M

2(M − 1)
, (IV.72)

if and only if Y∗ is a codeword set of maxmin distance, i.e.

dmin[Y∗] =
2M

M − 1
. (IV.73)

Proof. Let Y∗ be a codeword set of maximum capacity. From (IV.57) and (IV.53)

dmin[Y∗] = min
k,l 6=k

‖(y∗)k − (y∗)l‖2 (IV.74)

= min
k,l 6=k

[

2− 2
〈

(y∗)k, (y∗)l
〉]

(IV.75)

= min
k,l 6=k

[

2 +
2

M − 1

]

(IV.76)

=
2M

M − 1
(IV.77)

and Y∗ meets the bound of (IV.60). Hence, it is a maxmin distance codeword set.

Let Y∗ be a codeword set of maxmin distance, i.e.

dmin[Y∗] =
2M

M − 1
. (IV.78)

From (IV.59) it follows that

C[Y∗] ≥ M

2(M − 1)
, (IV.79)

and Y∗ meets the capacity bound of (IV.40). Hence, it is a codeword set of

maximum capacity.
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Figure IV.2 maxmin codeword sets for several values of d and M .

In summary, in the regime of d ≥M −1, the vertices of a regular simplex

in R
d are both a maximum capacity and a maxmin distance codeword sets of

S(M,d). These codeword sets achieve both the capacity and maxmin distance

bounds of S(M,d). The main difference between the two optimality criteria is the

difficulty of finding an optimal solution for d < M − 1. While the optimization

problem of (IV.56) is difficult, there are many algorithms for the solution of (IV.58).

A Matlab implementation of one of these algorithms, based on a barrier method

[58], is available from [2]. Figure IV.2 presents maxmin codewords sets for different

values of M and d.

IV.F Multiclass losses

Given a set of codewords Y , a multiclass predictor is learned by minimiz-

ing a risk derived from a loss function. In this section, we introduce a family of

margin losses for multiclass classification.

IV.F.1 Risk

Let Y be a set of codewords, x an example from the class whose codeword

is y, and LM [y, f(x)] the loss of prediction f(x) for example x. A predictor is

optimal if it minimizes the multiclass classification risk

RM(f) = EX,C{LM [yc, f(x)]}, (IV.80)
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For classifier design, this is approximated by an empirical estimate

RM(f) =
1

n

n
∑

i=1

LM [yci , f(xi)], (IV.81)

derived from a training sample D = (xi, ci)
n

i=1. If the minimization of (IV.81)

encourages predictors for which the margin of (IV.11) is large, LM [., .] is denoted

a margin loss. This property guarantees that the optimal predictor f ∗(.) has good

generalization, i.e. good small sample performance. If it it is possible to recover

class posterior probabilities PC|X(c|x), C = 1 . . .M, for all x from the predictions

f ∗(x), LM [., .] is denoted a proper loss. This property is important for applications

that require a confidence score for the classification.

In this work, we seek multiclass proper margin losses. As in the binary

case of (IV.6), it is natural to start from functions of the margin, now defined

in (IV.9). However, in the M -ary case this leads to a very non-linear function of

the predictor f(.). To simplify the minimization of the empirical risk, we consider

a family of losses that approximate the discontinuous min operator of (IV.9) by a

continuous function.

Definition 9. Let Y = {y1, . . . , yM} be a set of codewords and f(x) : X → R
M a

predictor. A loss

Lφ
M [yc, f(x)] =

M
∑

l=1,l 6=c

φ

(

1

2

[

〈f(x), yc〉 −
〈

f(x), yl
〉]

)

, (IV.82)

where φ : R → R
+ is a strictly positive function, φ(x) > 0 ∀x, is denoted a φ-loss.

We next investigate under which conditions these losses are margin en-

forcing and proper.

IV.F.2 Margin losses

We start by considering the relationship between empirical risk minimiza-

tion and predictor margins.
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Theorem 5. Consider a training set D, a codeword set Y = {y1, . . . , yM}, and
a predictor f(x). Let R

L
φ
M
(f) be the empirical risk of (IV.81) for the φ-loss of

(IV.82). Then,

∀x Lφ
M [yc, f(x)] > φ[M(yc, f(x))] (IV.83)

R
L
φ
M
(f) >

1

n
φ[Mp(D, f,Y)], (IV.84)

where M and Mp are defined in (IV.9), (IV.11) respectively.

Proof. To prove (IV.83), let

l∗ = argmin
l 6=c

1

2

[

〈yc, f(x)〉 −
〈

yl, f(x)
〉]

. (IV.85)

Then

Lφ
M [yc, f(x)] = φ

(

1

2

[

〈yc, f(x)〉 −
〈

yl
∗

, f(x)
〉]

)

+
∑

l 6=c,l∗

φ

(

1

2

[

〈yc, f(x)〉 −
〈

yl, f(x)
〉]

)

, (IV.86)

and it follows from (IV.9) that

Lφ
M [yc, f(x)] = φ[M(yc, f(x))]

[

1 +
∑

l 6=c,l∗

φ(1
2
[〈yc, f(x)〉 −

〈

yl, f(x)
〉

])

φ[M(yc, f(x))]

]

.

The inequality of (IV.83) follows from the fact that φ(.) is strictly positive.

To prove (IV.84) we start by using (IV.83)

R
L
φ
M
(f) =

1

n

n
∑

i=1

Lφ
M [yci , f(xi)]

>
1

n

n
∑

i=1

φ[M(yci , f(xi))], (IV.87)

and let i∗ = argmini M(yci , f(xi)). From (IV.11) and the strict positivity of φ(.)

R
L
φ
M
(f) >

1

n
φ[Mp(D, f,Y)]

[

1 +
∑

i 6=i∗

φ[M(yci , f(xi))]

φ[Mp(D, f,Y)]

]

>
1

n
φ[Mp(D, f,Y)]. (IV.88)
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It follows from (IV.84) that the minimization of the empirical risk en-

courages small values of φ[Mp(D, f,Y)]. If φ(.) is decreasing, i.e. φ′(x) ≤ 0 ∀x,
this encourages large predictor margins and Lφ

M [., .] is a margin loss. In summary,

if φ(.) is a decreasing function, Lφ
M [., .] is a margin loss.

IV.F.3 Convexity

We next investigate the conditions under which φ-losses lead to convex

risks. For simplicity, we will adopt the notation

ηk(x) = PC|X(k|x), (IV.89)

for the posterior class probabilities and

uk(x) =
1

2

〈

yk, f(x)
〉

, k = 1, . . . ,M. (IV.90)

for associated codeword projections. We start by noting that, to minimize (IV.80),

it suffices to determine the predictor f ∗(x) of minimum conditional risk

RM(f |x) = EC|X{LM [yc, f(x)]|x}, (IV.91)

for all x. The following theoremm characterizes the convexity of the conditional

risk of a φ-loss.

Theorem 6. Let Y = {y1, . . . , yM} ∈ R
d be a codeword set, f(x) : X → R

d a

predictor with the codeword projections of (IV.90), ηk(x) the posterior probabilities

of (IV.89), and Rφ
M(f |x) the conditional risk of (IV.91) when LM [., .] is a φ-loss,

as in (IV.82), and φ is twice differentiable. Then

Rφ
M(f |x) =

∑

k,l 6=k

ηkφ(u
k − ul), (IV.92)

is a convex function of f if φ is strictly convex. Its unique minimizer f ∗ is the

solution of

YQφ
f∗η = 0, (IV.93)
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where Y ∈ R
d×M is the matrix whose columns are the codewords yk, η ∈ R

M is

the posterior probability vector, Qφ
f ∈ R

M×M with

Qφ
f (k, l) =







−φ′(ul − uk) k 6= l
∑M

j=1,j 6=k φ
′(uk − uj) k = l,

(IV.94)

and we have omitted the dependency of all terms on x for notational simplicity.

Proof. From (IV.91),

Rφ
M(f |x) =

M
∑

k=1

ηk(x)LM [yk, f(x)]

=
M
∑

k=1

ηk(x)
M
∑

l=1,l 6=k

φ(uk(x)− ul(x)). (IV.95)

The derivative of Rφ
M(f |x) with respect to f(x) is

∂Rφ
M(f |x)
∂f(x)

=
∂

∂f(x)

∑

l,k|k 6=l

ηkφ(u
k − ul)

=
1

2

∑

l,k|k 6=l

ηkφ
′(uk − ul)[yk − yl]

=
1

2

∑

l,k|k 6=l

ykηkφ
′(uk − ul)− 1

2

∑

l,k|k 6=l

ylηkφ
′(uk − ul)

=
1

2

∑

j,k|k 6=j

ykηkφ
′(uk − uj)− 1

2

∑

l,k|k 6=l

ykηlφ
′(ul − uk)

=
1

2

M
∑

k=1

ykηk

M
∑

j=1,j 6=k

φ′(uk − uj)− 1

2

M
∑

k=1

yk
M
∑

l=1,l 6=k

ηlφ
′(ul − uk)

=
1

2

M
∑

k=1

yk

[

ηk

M
∑

j=1,j 6=k

φ′(uk − uj)−
M
∑

l=1,l 6=k

ηlφ
′(ul − uk)

]

=
1

2
YQφ

fη. (IV.96)

Hence, (IV.93) holds for any minimizer of Rφ
M(f |x). The second order derivative

of Rφ
M(f |x) with respect to f(x) is

∂2Rφ
M(f |x)

∂f(x)2
=

∂

∂f(x)

∑

l,k|k 6=l

ηkφ
′(uk − ul)[yk − yl]

=
∑

l,k|k 6=l

ηkφ
′′(uk − ul)[yk − yl][yk − yl]T . (IV.97)
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If φ is strictly convex, then φ′′ > 0. Since the codewords are different, i.e. yk−yl 6=
0 ∀k, l, the matrices [yk − yl][yk − yl]T are positive definite ∀k, l. Since ηk ≥ 0 ∀k
and

∑M

k=1 ηk = 1, it follows that ηj > 0 for at least one j. Hence, (IV.97) is strictly

positive definite, Rφ
M(f |x) strictly convex, and has a unique minimum.

IV.F.4 Proper φ-losses

The previous theorem shows that, as long as φ is strictly convex, Rφ
M(f |x)

has a unique minimizer, f ∗. We next consider the conditions under which the

posterior probability vector η can be recovered from f ∗, i.e. Lφ
M is proper. In

this and the following results, we use |A| to denote the dimensionality of a space

A, and Rank(A), Null(A), and Range(A) to denote the rank, null space, and

column space of matrix A, respectively. From (IV.93), it follows that η can be

recovered uniquely only when Null(Y Qφ
f∗) is a one-dimensional space that contains

a probability vector. The following lemma gives sufficient conditions for the first

property to hold.

Lemma 3. Let Y ∈ R
d×M be a matrix whose columns are the codewords in a set

Y ∈ S(M,d), (IV.27), ηk(x) the posterior probabilities of (IV.89), and f ∗(x) the

solution of (IV.93) when Qφ
f∗ is as defined in (IV.94).

1. If Rank(Y) ≤M − 2 then |Null(Y Qφ
f∗)| ≥ 2.

2. If Rank(Y) =M − 1 then Null(Y Qφ
f∗) = Null(Qφ

f∗).

3. If φ is strictly decreasing then |Null(Qφ
f∗)| = 1.

Proof. We start by assuming that Rank(Y) < M−1 and consider two possibilities.

1. The set Null(Y)
⋂

Range(Qφ
f ) is empty. In this case, since

Null(Y)
⋃

Range(Qφ
f ) ⊂ R

M
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and

M ≥ |Null(Y)|+ |Range(Qφ
f )|

= M −Rank(Y) + |Range(Qφ
f )|

≥ 2 + |Range(Qφ
f )|. (IV.98)

Since Qφ
f ∈ R

M×M , it follows that |Null(Qφ
f )| ≥ 2. Since Null(Qφ

f ) ⊂
Null(YQφ

f ), it follows that |Null(YQφ
f )| ≥ 2.

2. The set Null(Y)
⋂

Range(Qφ
f ) is non-empty. Hence, there is at least one

vector v1 ∈ Null(Y)
⋂

Range(Qφ
f ). Since v1 ∈ Range(Qφ

f ), there exists a

vector v2 such that Qφ
fv2 = v1, i.e. v2 6∈ Null(Qφ

f ). Since v1 ∈ Null(Y), it

follows that YQφ
fv2 = 0 and v2 ∈ Null(YQφ

f ). On the other hand, it follows

from (IV.94) that the rows of Qφ
f sum to zero and

|Null(Qφ
f )| ≥ 1. (IV.99)

Hence, there is at least a vector v0 6= 0 such that Qφ
fv0 = 0. It follows that

v0 ∈ Null(YQφ
f ). In summary, there is a vector v0 ∈ Null(Qφ

f ) and a vector

v2 6∈ Null(Qφ
f ) such that v0, v2 ∈ Null(YQφ

f ). Hence, |Null(YQφ
f )| ≥ 2.

Statement 1. of the lemma follows from the combination of the two possibilities.

To prove statement 2. assume that Rank(Y) =M−1. Since Y ∈ R
d×M ,

|Null(Y)| = 1. Since the codewords are centered, as in (IV.27), Y1 = 0 and

Null(Y) = Range(1), i.e. the null space of Y is spanned by the vector 1. Hence,

for any η ∈ Null(YQφ
f ) there is a scalar λ such that

Qφ
fη = λ1. (IV.100)

Denoting by riQ the ith row ofQφ
f , it follows that< riQ, η >= λ and<

∑M

i=1 r
i
Q, η >=

Mλ. Since, from (IV.94),
∑M

i=1 r
i
Q = 0 it follows that λ = 0. Hence, η ∈ Null(Qφ

f )

and Null(YQφ
f ) ⊂ Null(Qφ

f ). Statement 2. follows from the fact that Null(Qφ
f ) ⊂

Null(YQφ
f ) always holds.
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To prove statement 3. let Q
φ

f ∈ R
M−1×M−1 be the matrix obtained by

eliminating the first row and column of Qφ
f . From (IV.94),

|Qφ
f (k, k)| =

∣

∣

∣

∣

∣

M
∑

j=1,j 6=k

φ′(uk − uj)

∣

∣

∣

∣

∣

, (IV.101)

and

|Qφ

f (k, k)| =
M
∑

j=1,j 6=k+1

|φ′(uk+1 − uj)|

=
M
∑

j=1,j 6=k+1

|Qφ
f (j, k + 1)|

= |Qφ
f (1, k + 1)|+

M−1
∑

j=1,j 6=k

|Qφ

f (j, k)| (IV.102)

If φ is strictly decreasing, it follows that

|Qφ

f (k, k)| >

M−1
∑

j=1,j 6=k

|Qφ

f (j, k)|, (IV.103)

i.e. Q
φ

f is strictly diagonally dominant and thus non-singular [34]. It follows that

rows riQ, i = 2, . . . ,M of Qφ
f are linearly independent and Rank(Qφ

f ) ≥ M − 1.

Since, from (IV.94),

r1Q = −
M
∑

i=2

riQ (IV.104)

it follows that Rank(Qφ
f ) =M − 1. Hence, |Null(Qφ

f )| = 1.

The lemma shows that, if Rank(Y) =M −1 and φ is strictly decreasing,

the set of vectors η for which (IV.93) holds is one-dimensional. It remains to verify

if this set contains a probability vector, i.e. a vector of non-negative entries that

sum to one. The following lemma provides the conditions under which this holds.

Lemma 4. Let Qφ
f be as defined in (IV.94) and φ differentiable. Then Qφ

fη = 0

if and only if

ηk =

∑M

l=1 ηlφ
′(ul − uk)

∑M

l=1 φ
′(uk − ul)

, ∀k. (IV.105)
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If φ is also twice differentiable, strictly decreasing, and strictly convex, then any

solution η has the following properties

1. if uk ≥ uj then ηk ≥ ηj, with equality of the probabilities only if uk = uj.

2. if η 6= 0 then all ηk 6= 0 have the same sign and
∑

k ηk 6= 0.

Proof. From (IV.94), Qφ
fη = 0 when, for all k

0 = ηk

M
∑

j=1,j 6=k

φ′(uk − uj)−
M
∑

l=1,l 6=k

ηlφ
′(ul − uk)

= ηk

M
∑

j=1,j 6=k

φ′(uk − uj) + ηkφ
′(uk − uk)− ηkφ

′(uk − uk)−
M
∑

l=1,l 6=k

ηlφ
′(ul − uk)

= ηk

M
∑

j=1

φ′(uk − uj)−
M
∑

l=1

ηlφ
′(ul − uk) (IV.106)

and (IV.105) follows. In this case, for all k, j

ηk
ηj

=

∑M

l=1 ηlφ
′(ul − uk)

∑M

l=1 ηlφ
′(ul − uj)

∑M

l=1 φ
′(uj − ul)

∑M

l=1 φ
′(uk − ul)

(IV.107)

and, if φ is strictly decreasing,

ηk
ηj

=

∑M

l=1 ηl|φ′(ul − uk)|
∑M

l=1 ηl|φ′(ul − uj)|

∑M

l=1 |φ′(uj − ul)|
∑M

l=1 |φ′(uk − ul)|
. (IV.108)

If φ is strictly decreasing and strictly convex then |φ′| is strictly decreasing. Hence,

if uk > uj for all l = 1 . . .M

|φ′(ul − uk)| > |φ′(ul − uj)| (IV.109)

|φ′(uj − ul)| > |φ′(uk − ul)|, (IV.110)

and, from (IV.108), ηk
ηj
> 1. On the other hand, if uk = uj it follows from (IV.105)

that ηk = ηj. Assume that η 6= 0 and let k∗ = argmaxk u
k. Then ηk∗

ηk
≥ 1 >

0 ∀k = 1 . . .M . Hence, all ηk are either zero or have the same sign as ηk∗ . Since

η 6= 0, it follows that
∑

k ηk 6= 0.
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The lemma provides a condition under which, for any η 6= 0 ∈ Null(Qφ
f ),

all ηk 6= 0 have the same sign and
∑

k ηk 6= 0. This implies that η̄ = η∑
k ηk

is a probability vector. Together, Lemmas 3 and 4 show that, if Rank(Y) =

M − 1 and φ is strictly decreasing and strictly convex, the space of vectors η that

satisfy (IV.93) is spanned by a probability vector. Under these conditions, the class

posterior probabilities can be recovered from the optimal predictor f ∗ as follows.

Theorem 7. Let Y ∈ R
d×M be a matrix whose columns are the codewords in a set

Y ∈ S(M,d), Rφ
M(f |x) the conditional risk of (IV.91), when LM [., .] is a φ-loss,

as defined in (IV.82) and φ twice differentiable, and η the vector of the posterior

probabilities of (IV.89). If Rank(Y) =M − 1, φ is strictly decreasing and strictly

convex, and f ∗ globally minimizes Rφ
M(f |x), then η can be recovered from f ∗ using

η = Qφ
f∗

−1
e1, (IV.111)

where e1 = [1, 0 . . . 0]T ∈ R
M and

Qφ
f (k, l) =







1 k = 1

Qφ
f (k, l) k > 1.

(IV.112)

Moreover, the codeword projections u∗k = 1
2

〈

yk, f ∗
〉

have the property

argmax
k
u∗k = argmax

k
ηk. (IV.113)

Proof. From Lemmas 3 and 4, if Rank(Y) = M − 1, φ is strictly decreasing and

strictly convex, the solution of (IV.93) is identical to the solution of Qφ
fη = 0 and,

up to a normalization constant, a probability vector. It follows that It follows that

the system of equations







Qφ
fη = 0

1Tη = 1,
(IV.114)

has a unique solution. Denoting by riQ the ith row of Qφ
f , it also follows from

(IV.94) that r1Q =
∑M

i=2 r
i
Q. Hence, the equality r

1
Qη = 0 follows from the equalities
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riQη = 0, ∀i = 2, . . . ,M . This implies that removing the equation associated with

r1Q from (IV.114) has no effect on the solution. The system of equations of (IV.114)

can thus be written as

Qφ
fη = e1, (IV.115)

with Qφ
f as defined in (IV.112). Since (IV.114) has a unique solution, Qφ

f can be

inverted and η = Qφ
f∗

−1
e1. (IV.113) follows from statement 1. of Lemma 4.

IV.F.5 Discussion

Theorems 3 and 4 show that, for a M -ary classification problem, a code-

word space of dimension M − 1 is the smallest to contain a set of codewords that

achieve either the capacity or maxmin distance bounds. In this case, the optimal

codeword set consists of the M vertices of the regular simplex in R
M−1 and can

be obtained with the procedure of [12]. The associated matrix Y has rank M − 1

and the codewors are the directions of largest margin for each of the M classes.

Lemma 3 shows that this is also the smallest rank to support the design of a proper

loss φ. Theorem 6 states that this choice of codewords leads to a convex risk if φ is

strictly convex. Finally, Theorem 7 shows that, if φ is also strictly decreasing, then

φ is a proper margin loss and the posterior probability vector η can be recovered

from the unique minimizer f ∗ of the risk using (IV.111). In summary, the com-

bination of the M − 1 dimensional simplex codewords with a strictly decreasing

and strictly convex loss φ are sufficient conditions for a proper margin φ-loss of

maximum margin capacity and a convex risk.

IV.G Risk minimization

In this section we introduce two Boosting algorithms for the minimiza-

tion of the empirical risk of (IV.81). Both are gradient descent procedures in

the function space of weak learner linear combinations and can be seen as gen-

eralizations of GradientBoost [53]. The first is a functional coordinate descent
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algorithm, which updates the components of the multi-dimensional predictor se-

quentially. The second is a functional gradient descent algorithm that updates all

components simultaneously.

IV.G.1 Coordinate descent

The first formulation of Boosting searches for the predictor f ∗(x) =

[f ∗
1 (x), ..f

∗
d (x)] that solves the optimization problem







minf1(x),...,fd(x) R
L
φ
M
([f1(x), ..., fd(x)])

s.t fj(x) ∈ span(H) ∀j = 1 . . . d,
(IV.116)

where H = {h1(x), ...hr(x)} is a set of scalar weak learners hi(x) : X → R. These

can be stumps, regression trees, or members of any other suitable model fam-

ily. We denote by f t(x) = [f t
1(x), ..., f

t
d(x)] the predictor available after t Boost-

ing iterations. At iteration t + 1 a single component fj(x) of f(x) is updated

with a step in the direction of the scalar functional g that most decreases the

risk R
L
φ
M
[f t

1, ..., f
t
j + α∗

jg, ..., f
t
d]. For this, we consider the functional derivative of

R
L
φ
M
[f(x)] along the direction of the functional g : X → R, at point f(x) = f t(x),

with respect to the jth component fj(x) of f(x) [29],

δR
L
φ
M
[f t; j, g] =

∂R
L
φ
M
[f t + ǫg1j]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

, (IV.117)

where 1j ∈ R
d is a vector whose jth element is one and the remaining zero, i.e.

f t+ ǫg1j = [f t
1, .., f

t
j + ǫg, ..f

t
d]. Using (IV.80), it is shown in Appendix IV.L.1 that

−δR
L
φ
M
[f t; j, g] =

n
∑

i=1

g(xi)w
j
i , (IV.118)

with

wj
i = −1

2

M
∑

k=1,k 6=ci

〈

1j, y
ci − yk

〉

φ′

(

1

2
[
〈

yci , f t(xi)
〉

−
〈

yk, f t(xi)
〉

]

)

. (IV.119)
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The direction of largest descent is then

g∗j (x) = argmin
g∈H

δR
L
φ
M
[f t; j, g]

= argmax
g∈H

n
∑

i=1

g(xi)w
j
i , (IV.120)

and the optimal step size along this direction

α∗
j = argmin

α∈R
R[f t(x) + αg∗j (x)1j]. (IV.121)

Note that α∗
j may not have a closed form and a line search might be required. The

predictor is finally updated with

f t+1 = f t(x) + α∗
jg

∗
j (x)1j = [f t

1, ..., f
t
j + α∗

jg
∗
j , ..., f

t
d]. (IV.122)

This procedure is summarized in Algorithm 8-left and denoted CD-MCBoost. It

has initial condition f 0(x) = 0 ∈ R
d and updates the predictor components se-

quentially. Note that if Lφ
M is proper, then CD-MCBoost will converge to the

optimal solution.

IV.G.2 Gradient descent

Alternatively, (IV.81) can be minimized by learning a linear combination

of multiclass weak learners. In this case, the optimization problem is






minf(x) R
L
φ
M
[f(x)]

s.t f(x) ∈ span(H),
(IV.123)

where H = {h1(x), ..., hr(x)} is a set of multiclass weak learners,

hi(x) : X → R
d, (IV.124)

such as decision trees. Note that, under this definition, the output of the multiclass

weak classifiers (usually a class number) should be expressed as a codeword.

As before, let f t(x) ∈ R
d be the predictor available after t Boosting

iterations. At iteration t+1 a step is given along the direction g(x) ∈ H of largest
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decrease of the risk R
L
φ
M
[f(x)]. For this, we consider the directional functional

derivative of R
L
φ
M
[f(x)] along the direction of the functional g : X → R

d, at point

f(x) = f t(x)

δR
L
φ
M
[f t; g] =

∂R
L
φ
M
[f t + ǫg]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

. (IV.125)

As shown in Appendix IV.L.2,

−δR
L
φ
M
[f t; g] =

n
∑

i=1

〈g(xi), wi〉 , (IV.126)

where wi ∈ R
d

wi = −1

2

M
∑

k=1,k 6=ci

(yci − yk)φ′

(

1

2
[
〈

yci , f t(xi)
〉

−
〈

yk, f t(xi)
〉

]

)

. (IV.127)

The direction of steepest descent is the weak learner

g∗(x) = argmin
g∈H

δR[f t; g]

= argmax
g∈H

n
∑

i=1

〈g(xi), wi〉 , (IV.128)

and the optimal step size along this direction

α∗ = argmin
α∈R

R
L
φ
M
[f t(x) + αg∗(x)]. (IV.129)

Again, this step size may not have a closed form and a line search might be required.

The predictor is finally updated according to

f t+1(x) = f t(x) + α∗g∗(x). (IV.130)

This procedure is summarized in Algorithm 8-right, and denoted GD-MCBoost.

Similarly to CD-MCBoost, it converges to an optimal predictor whenever Lφ
M is

proper.

IV.H Properties of MCBoost

MCBoost has a number of interesting and intuitive properties which we

will discuss in this section.
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Algorithm 8 CD-MCBoost and GD-MCBoost

Input: Number of classes M , dimension d, a set of codewords,
Y = {y1, . . . , yM} ∈ R

d number of iterations N and data set D = {(xi, ci)}ni=1,
where xi are training examples and ci ∈ {1 . . .M} their classes.
Initialization: set t = 0, and f t = 0 ∈ R

d.

CD-MCBoost GD-MCBoost

while t < N do
for j = 1 to d do
Compute wj

i with (IV.119).
Find g∗j (x), α∗

j using (IV.120)
and (IV.121).
Set f t+1

j (x) = f t
j (x) + α∗

jg
∗
j (x).

Set f t+1
k (x) = f t

k(x) ∀k 6= j.
Set t = t+ 1.

end for
end while

while t < N do
Compute wi with (IV.127).
Find g∗(x), α∗ by (IV.128) and
(IV.129).
Set f t+1(x) = f t(x) + α∗g∗(x).
Set t = t+ 1.

end while

Output: decision rule: F (x) = argmaxyk
〈

fN(x), yk
〉

IV.H.1 Predictor

In MCBoost algorithms the predictor is initialized with f(x) = 0 ∀x
i.e. all example are mapped into the origin. Minimizing (IV.81), MCBoost learns

a predictor f(xi) to maximize margin. Using (IV.9), maximizing the margin of

example xi requires maximizing projection of f(xi) over yci while minimizing its

projection over other codewords. However, when optimal codewords are used, the

predictor of the largest margin must be aligned with the direction of yci , (see

Theorem 1). In addition if margin of xi is positive, increasing magnitude of f(x)

will the increase the margin. Therefore MCBoost learns a predictor f(xi) that

1) is as align as possible with yci and 2) have the largest magnitude, i.e. as

far as possible from the origin. Hence starting from the origin MCBoost pushes

example’s predictions in the direction of their class codewords. This mechanism

results in higher margins and thus more robust and accurate classification when

using decision rule of (IV.14).
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IV.H.2 Weights

Similar to binary Boosting, weights of MCBoost algorithms are very in-

tuitive. First note that weights in CD-MCBoost, (IV.119), and GD-MCBoost,

(IV.127), are closely related as

wj
i = 〈1j, wi〉 , (IV.131)

where the left w represents CD-MCBoost weights and the right one is weights

in GD-MCBoost. This is not surprising since these weights are derivatives of

the same objective function in optimization problems of (IV.116) and (IV.123).

At each iteration, GD-MCBoost updates all coordinates of the multi-dimensional

predictor simultaneously and thus its weights (IV.127) contain information about

all coordinates. On the other hand CD-MCBoost updates only one coordinate at

a time and thus its weights (IV.119) contain information about that coordinate.

Given this in the rest of this section we mainly focus on the weights for GD-

MCBoost which also contain weights of CD-MCBoost.

According to (IV.127), the weight of example xi belonging to class ci at

iteration t is

wi = −1

2

M
∑

k=1,k 6=ci

(yci − yk)λ(uk), (IV.132)

where uk = 1
2

[

〈f t(xi), y
ci〉 −

〈

f t(xi), y
k
〉]

and λ(uk) = −1
2
φ(uk). This weight

vector is consist of two parts 1) vectors of yci − yk and 2) coefficients λ(uk). The

vector portion of these weights contains the directions that the current predictor

should follow and the coefficient λ(uk) indicates the importance of each direction.

Those directions are then amplified with their importance and summed to form the

final vector wi. MCBoost selects a weak learner g∗ that has the largest similarity,

dot product, with this weight vector wi (IV.128) and add it to the ensemble.

Addition of g∗ will push predictor f t towards yci − yk k 6= ci and therefore

increases the projection of f t+1 on yci and decreases its projection on other yk k 6=
ci. To illustrated this effect, assume that example xi is mis-classified by the current
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predictor and has projections

〈

yll , f t(xi)
〉

<
〈

yci , f t(xi)
〉

<
〈

ylb , f t(xi)
〉

. (IV.133)

In this case ulb < 0 < ull and if φ is strictly convex (see Theorem 7), φ′ will be an

increasing function and thus

λ(ull) < λ(ulb). (IV.134)

Therefore the vector yci − ylb has larger impact in wi than yci − yll and thus wi

will have less projection on ylb .

The other property of (IV.132) is that magnitude of weights for example

that are mis-classified are usually larger than the correctly classified example and

thus have larger impact on the weak learner selection rule of (IV.128). Therefore

in each iteration, MCBoost focuses more on mis-classified examples. To illustrate

this effect assume that after adding sufficient number of weak learners, 〈f(xi), yci〉
is more than all other

〈

f(xi), y
k
〉

k 6= ci, and f(xi) correctly assigns example xi

to class ci. In this case, all uk k 6= ci will be positive, therefore λ(uk) will be

small and thus wi will have smaller magnitude comparing to those examples that

are not correctly classified.

Finally note that in the case of binary Boosting where M = 2, y1 =

1, y2 = −1 and φ(v) = e−v, the predictor of MCBoost would be one dimensional

and the weights in CD-MCBoost and GD-MCBoost would be

wi = −1

2
[yci − (−yci)][−e−[ 1

2
[yci−(−yci )]f(xi)] = ycie−ycif(xi), (IV.135)

which is the same as the weights in AdaBoost [26] multiplied with the labels.

IV.H.3 Complexity of multiclass classifier

A major draw back in most of the multiclass Boosting algorithms is that

their required number of evaluated classifiers, denoted complexity, increase with

the number of classes. For example in the case of “one vs all” or “all pairs” com-

plexity increase linearly or quadratically with the number of classes, respectively.
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However in MCBoost the complexity of the final predictor is determined by the

its dimension, d, not number of classes, M . In fact MCBoost is even able to

solve any M -array classification problem by using only a two dimensional predic-

tor, d = 2. However, while using smaller dimension will decrease the complexity,

it also limits the margin capacity and reduces the accuracy of resulted classifier.

This is a complexity-accuracy trade-off which can be tuned by selection of a proper

dimension, d, according to the requirements of the problem.

IV.H.4 Weak learners

While the current multiclass Boosting method are mostly designed for

specific type of weak learners, e.g regression or decision stumps, MCBoost frame

work can Boost any type of weak learner. In fact in MCBoost weak learners

can be any arbitrary function e.g. they are not necessary to be classifiers. More

specifically, CD-Boost can be used with any set of real-valued functions h : X → R

and GD-MCBoost can work with any set of multi-dimensional functions h : X →
R

d.

IV.I Comparison to previous methods

According to the algorithms 8 the resulting multiclass Boosting algo-

rithms are as simple as binary Boosting and consist of only a few lines of code.

The main differences between these and the binary Boosting algorithm are 1) using

multi-dimensional predictor and codewords and 2) definition of weights , w. In this

section we will show that most of the current Boosting algorithms are special case

of MCBoost and illustrate the relationship between MCBoost and SVM.

The concepts of multi-dimensional predictors and codewords have been

used implicitly or explicitly in all previous multiclass Boosting methods. While

methods such as SAMME [102], multiclass LogitBoost [27], AdaBoost.ECC [32]

or “one vs. all” [57] explicitly use those concepts, methods such as AdaBoost-
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(M1,M2) [25], AdaBoost-(MR,MH) [73] and AdaBoost-Cost [56] use these concepts

implicitly. Next we will compare these methods with MCBoost framework in more

details.

IV.I.1 Multiclass LogitBoost

Multiclass LogitBoost [27] is multiclass Boosting method that learns aM

dimensional regression predictor f̄(x) = [f̄1(x), ..., f̄M (x)] ∈ R
M by minimizing the

negative log likelihood,

LLogit[ci, f̄(xi)] = − log
[

P̄C,X(ci|xi)
]

, (IV.136)

where

P̄C,X(ci|xi) =
ef̄ci (xi)

∑M

j=1 e
f̄j(xi)

, (IV.137)

and
M
∑

k=1

f̄j(x) = 0. (IV.138)

Comparing to CD-MCBoost, first note that using (IV.136), (IV.137) and

monotonicity of logarithm function,

LLogit[ci, f̄(xi)] = − log

[

ef̄ci (xi)

∑M

j=1 e
f̄j(xi)

]

= log

[

∑M

j=1 e
f̄j(xi)

ef̄ci (xi)

]

= log

[

1 +
M
∑

j=1,j 6=ci

ef̄j(xi)−f̄ci (xi)

]

= log

[

1 +
∑

j 6=ci

e−[〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉]
]

≡
M
∑

j=1,j 6=ci

e−[〈ȳci ,f̄(xi)〉−〈ȳj ,f̄(xi)〉], (IV.139)

where ȳj = 1j ∈ R
M and (IV.139) is special case of (IV.82) when φ(v) = e−2v.

Therefore multiclass LogitBoost is a special case of CD-MCBoost that 1) uses

regression weak learners and 2) the canonical basis, 1j, are used as codewords.
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Moreover the constraint of (IV.138) is not required since its violation will not have

any impact on the decision rule of (IV.14). Finally note that the same analysis is

true for those algorithms that follow multiclass LogitBoost strategy such as [37]

and [104].

IV.I.2 AdaBoost-Cost

AdaBoost-Cost [56] is a multiclass Boosting algorithm that works with

multiclass weak learners ĝ(x) : X → {1, 2, ...M}, to form an ensemble f̂(x) =
∑

t αtĝt(x). The final classification rule is

F̄ (x) = arg max
j∈{1,2,..M}

f̂(xi, j), (IV.140)

where

f̂(xi, j) =
∑

t

αtI(ĝt(xi) = j), (IV.141)

and I(.) is the indicator function. In each round of AdaBoost-Cost, a cost for

assigning example i to class j,

Ci,j =







ef̂(xi,j)−f̂(xi,ci) if j 6= ci

−∑

j 6=ci
ef̂(xi,j)−f̂(xi,ci) if j = ci

(IV.142)

is computed and the weak learner with lowest prediction cost

g∗ = argmin
ĝ

∑

i

Ci,ĝ(xi), (IV.143)

is added to the ensemble.

Comparing AdaBoost-Cost with GD-MCBoost first note that by defining

ȳj = 1j ∈ R
M (IV.144)

ḡ(xi) = ȳĝ(xi) (IV.145)

f̄(x) =
∑

t

αtḡt(x), (IV.146)
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the decision rule of (IV.140) is equivalent to

F̄ (x) = arg max
j∈{1,2,..M}

〈

ȳj, f̄(x)
〉

, (IV.147)

and weak learner selection rule of (IV.143) is equivalent to

g∗ = argmin
ḡ

∑

i

〈Ci,:, ḡ(xi)〉 , (IV.148)

where Ci,: is i
th row of the cost matrix C defined in (IV.142). Using (IV.142) and

(IV.144)

Ci,: =
∑

j 6=ci

ȳje〈ȳj ,f̄(x)〉−〈ȳci ,f̄(x)〉 − ȳci
∑

j 6=ci

e〈ȳj ,f̄(x)〉−〈ȳci ,f̄(x)〉

=
∑

j 6=ci

(ȳj − ȳci)e−[〈ȳci ,f̄(x)〉−〈ȳj ,f̄(x)〉], (IV.149)

which is equivalent to weight vector for GD-MCBoost in (IV.127) when φ(v) =

e−2v. Therefore AdaBoost-Cost is a special form of GD-MCBoost that implicitly

uses the canonical basis, 1j, as codewords.

IV.I.3 SAMME

SAMME [102] is a multiclass Boosting algorithm that learns aM -dimensional

predictors f̄ = [f̄1, ...f̄M ] ∈ R
M using codewords

ȳj =
M1j − 1

M − 1
=

[ −1

M − 1
,

−1

M − 1
, ..., 1,

−1

M − 1
,

−1

M − 1

]

∈ R
M , (IV.150)

and decision rule

F̄ (x) = arg max
j∈{1,2,..M}

f̄j(x)

≡ arg max
j∈{1,2,..M}

〈

ȳj, f̄(x)
〉

. (IV.151)

The loss function of this method is

LSAMME[ȳ
ci , f(xi)] = e−

1
M 〈ȳci ,f̄(xi)〉. (IV.152)
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However, note that minimization of this LSAMME[., .], is equivalent to maximizing

the term in the exponent

MSAMME(ȳ
ci , f(x)) =

〈

ȳci , f̄(x)
〉

= f̄ci(x)−
1

M − 1

∑

j 6=k

f̄j(x). (IV.153)

which is not equivalent to maximizing the multiclass margin of (IV.9). In fact

MSAMME is not a definition of multiclass margin since MSAMME(y
ci , f̄(x)) > 0

does not imply correct classification by (IV.151), i.e. f̄ci(x) > f̄j(x) ∀j 6= k.

Therefore while SAMME is very similar to GD-MCBoost, minimizing LSAMME(., .)

1) does not minimize the error rate and 2) does not guarantee a large margin

predictor.

IV.I.4 AdaBoost.ECC

AdaBoost.ECC [32] is a multiclass Boosting algorithm that uses ECOC

strategy [16] and the multiclass loss function of (IV.82) when φ(v) = e−2v. Ad-

aBoost.ECC assigns a binary codewords, ȳj to each class and trains a predictor for

each bit of those codes. AdaBoost.ECC starts with an empty binary codeword for

each class and in each iteration t, 1) a new bit is augmented to the codewords and

2) a new predictor dimension f̄t is added to learn the new bit. After T iterations,

the output of the algorithm will be a set of binary codewords ȳj ∈ {0, 1}T and a T

dimensional predictor f̄(x) = [f̄1(x), ...f̄T (x)] ∈ R
T . At the test time the predictor,

f̄(x), is evaluated and the class with lowest Hamming distance

F̄ (x) = arg min
j∈{1,2,..M}

Hamming[f̄(xi), ȳ
j ],

≡ arg max
j∈{1,2,..M}

〈

f̄(x), ȳj
〉

, (IV.154)

is selected.

Comparing AdaBoost.ECC with CD-MCBoost the only difference is in

definition of the codewords. While in CD-MCBoost these codewords are real-values

and selected prior to learning by maximizing the margin capacity of (IV.28), in
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AdaBoost.ECC codewords are binary and are generated on-the-fly in each iteration

either by random selection or by solving a “max-cut” problem. However note that

1) AdaBoost.ECC will result in a sub-optimal set of codewords that limits the

margin maximizing ability of the algorithm, 2) increasing the length of codewords

in each iteration increases the dimension of the predictor and thus increases the

chance of over-fitting and complexity at the test time. The same is true for all

other methods that follow ECOC strategy [16] such as [72, 43, 100, 30].

IV.I.5 AdaBoost-MR

AdaBoost-MR [73] uses weak learners of the form

ht : X × {1, . . . ,M} → R, (IV.155)

to create a predictor f̄(x) = [f̄1(x), ...f̄M (x)] where

f̄j(x) =
∑

t

ht(x, j), (IV.156)

and j, t are class and iteration numbers respectively. The decision rule in this

algorithm is

F̂ (x) = arg max
j∈{1,2,..M}

f̄j(x)

≡ arg max
j∈{1,2,..M}

〈

ȳj, f̄(x)
〉

, (IV.157)

where ȳj = 1j. ∈ R
M . AdaBoost.MR learns f̄(x) by minimizing

LMR[ci, f̄(xi)] =
M
∑

j=1,j 6=ci

e−[fj(xi)−fci (xi)], (IV.158)

which is special case of (IV.82) when φ(v) = e−2v.

The main difference between AdaBoost.MR and GD-MCBoost is the type

of used weak learners for Boosting i.e. (IV.155) vs. (IV.124). However note

that in order to use weak learners of the form of (IV.155), training examples

are usually augmented with the class numbers to form a new training examples
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x̄ = [x, j] ∀j and weak learners ht : X̄ → R are used for building the ensemble.

This trick is problematic since 1) it increase the size of training set and 2) it is

hard to discriminate examples that differ only by one coordinate using simple weak

learners such as decision stumps. These effects makes AdaBoost-MR algorithm to

1) become computationally intensive, 2) converge slowly and 3) require strong

weak learners. The same problem arises for AdaBoost-MH [73] which also uses

weak learners in the form of (IV.155).

IV.I.6 MCBoost and Kernelized SVM

Using the framework of MCBoost, it is possible to unify Boosting and sup-

port vector machines as margin maximizer learning algorithms. Given a training

set D = {(xi, ci)}ni=1 kernelized support vector machines, K-SVM, first transforms

training examples xi to a new space using a mappingΦ(x) introduced by the kernel

K(., .), i.e. Φ(x) = K(x, .). A linear classifier is then trained to separate examples

of different classes in the new domain by maximizing the margin [88]. Similar to

Boosting, there are several extensions for multiclass K-SVM such as 1) reducing

multiclass to several binary sub-problems as in ‘one vs all’, ‘all pairs’ and ‘ECOC’

[75, 7, 4] or 2) building a direct formulation for multiclass problem [88, 95, 35, 13].

In the direct formulation, multiclass K-SVM solve a M -ary classification

problem by learningM linear classifierswl, l = 1..M , that maximize the multiclass

margin of

MK−SVM(xi,wci)) =
1

2
[〈Φ(xi),wci〉 −max

l 6=ci
〈Φ(xi),wl〉]. (IV.159)

Maximization of (IV.159) can be formulated in several ways [88, 95, 35, 13]. In

this dissertation we resort to the original formulation of Vapnik [88] which finds

the optimal linear classifiers, w∗ by solving 1







minwl..wM

∑M

k=1 ‖wl‖22
s.t 〈Φ(xi),wci〉 − 〈Φ(xi),wl〉 ≥ 1 ∀(xi, ci) ∈ D, l 6= ci,

(IV.160)

1For simplicity we have omitted the slack variables and the bias terms.
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and predicts

FSVM(x) = arg max
l=1..M

〈Φ(x),w∗
l 〉 . (IV.161)

Comparing (IV.159) with (IV.9) and (IV.161) with (IV.14), shows that

• The transformation Φ(x) in K-SVM is corresponding to the predictor, f(x),

in Boosting.

• The linear classifiers wl in K-SVM are corresponding to class codewords yl

in Boosting.

These correspondences indicate that Boosting and K-SVM optimize similar con-

cepts for maximizing the margin, but their optimization procedures are different.

In K-SVM examples are first transformed into a new domain using a pre-defined

transformation (predictor), then K-SVM finds a set of linear classifiers that max-

imizes the margin of examples in the transformed domain. On the other hand in

Boosting the linear classifiers (codewords) are first defined to be fixed vectors and

then Boosting finds a predictor (transformation) that maximizes the margin with

respect to the codewords (pre-defined linear classifiers).

Comparing K-SVM and Boosting also reveals that unlike K-SVM for

which the optimal kernel, and induced transformation, should be found by trail-

and-error, Boosting builds this optimal transformation using the provided set of

weak learners. In addition, in Boosting it is possible to design codewords with

the maximum margin capacity (IV.28), (see Section IV.E). Therefore while SVM

has only one tool for maximizing margin, i.e. finding the optimal linear classifiers,

Boosting can maximize the margin by two means 1) selection of codewords (linear

classifiers) with maximum margin capacity and 2) learning an optimal transfor-

mation (predictor) to maximize the margin.

IV.J Evaluation

A number of experiments were conducted to evaluate the performance of

MCBoost algorithms. By default MCBoost algorithms were implemented using
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Table IV.1 Characteristics of the used UCI data sets

#Id Data Name #Training #Testing #Attributes # Classes

1 Landsat Satellite 4, 435 2, 000 36 6
2 Letter 16, 000 4, 000 16 26
3 Pen Digit 7, 494 3, 498 16 10
4 Poker 25, 010 1, 000 10 10
5 Optical Digit 3, 823 1, 797 64 10
6 Shuttle 43, 500 14, 500 9 7
7 Isolet 6, 238 1, 559 617 26
8 Vehicle 692 154 18 4
9 Vertebral 239 71 6 3
10 Image Segmentation 210 2, 100 19 7
11 Ecoli 258 78 7 8
12 Breast Tissue 81 25 9 6

d = M − 1, vertices of a regular simplex in R
M−1 as codewords and (IV.82) with

φ(v) = e−v as the loss function. An implementation of CD-MCBoost and GD-

MCBoost is available from [2].

The first experiment is based on a syntethic data set, for which the op-

timal decision rule is known. This is a three class problem, with two-dimensional

Gaussian classes of means




1

2



 ,





−1

0



 ,





2

−1



 , (IV.162)

and covariances




1 0.5

0.5 2



 ,





1 0.3

0.3 1



 ,





0.4 0.1

0.1 0.8



 , (IV.163)

respectively. Training and test sets were each consist of 1, 000 random examples

and the Bayes rule is computed in closed form [21]. The associated Bayes error rate

was 11.67% in the training and 11.13% in the test set. Other experiments are based

on the twelve UCI data sets of Table IV.1. The training/test set decomposition

for these data sets were either provided by the data set or we randomly selected

20% of examples for testing.
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IV.J.1 Synthetic data

We started with the synthetic example and trained a classifier with CD-

MCBoost and decision stumps. Figure IV.3 and Figure IV.4 show predictions2

of f t(x) and histogram of example margins M(yci , f t(xi)) for the test set after

t = 0, 10, 100 iterations, respectively.

First note that in the begining the predictor maps all examples to the

origin i.e. ∀xi f 0(xi) = [0, 0]T . However, as algorithm proceed, CD-MCBoost

produces predictions that are more aligned with the true class codewords, i.e.

directions that are shown as dashed lines in Figure IV.3. This alignment of f t(xi)

with yci implies that f t(xi) will have more projections on yci than other codewords

and thus predictor f t will correctly classify xi using the decision rule of (IV.14).

Similarly since ∀xi f 0(xi) = [0, 0]T , in begining margin of all examples

are zero, i.e. ∀xi M(yci , f 0(xi)) = 0 and their histogram will be as of Figure IV.4 -

a. However according to (IV.84) minimizing the loss function will increase margin

of the examples, therefore as algorithm proceed, it learns a predictor under which

examples have larger margins. This margin maximization is achieved by 1) making

negative margins positive, which according to Corollary 1 results in more accurate

classification, and 2) increases margins that are already positive, which improves

the confidence of the classification. Figure IV.4- b and Figure IV.4-c illustrate

these effects. Finally, error rate on the test set after 100 iterations was 11.30%,

and very close to the Bayes error rate of 11.13%.

IV.J.2 Effect of codeword dimension, d

According to Section IV.E, the optimal number of dimensions for M -

array classification problem is d = M − 1. In this section we illustrate effect of

this parameter on the performance of the MCBoost algorithms and build classifier

with 1) less than optimal dimensions, i.e. d = 1 . . .M − 2, 2) optimal dimension,

d =M−1 and 3) more than optimal dimension, e.g. d =M . For each value of d we

2We emphasize that these are plots of f t(x) ∈ R
2, not x ∈ R

2.
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Figure IV.3: Classifier predictions of CD-MCBoost, on the test set, after t =
0, 10, 100 Boosting iterations.
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Figure IV.4: Histogram of example margins, M(yci , f t(xi)) using CD-MCBoost
prediction, on the test set, after t = 0, 10, 100 Boosting iterations.

used codeword set of maximum distance note that in the case of d ≥M − 1 these

codewords are the same as the optimal maximum margin codewords. Classifiers in

this experiment were trained with 200 iterations. Moreover, decision stumps and

trees of height 2 were used as weak learners for CD-MCBoost and GD-MCBoost

respectively. Figure IV.5 shows accuracy of final classifiers as a function of number

of dimensions d for the five data sets listed in the legends.

First, according to Figure IV.5 increasing d will increase the accuracy of

the classifiers both in CD-MCBoost and GD-MCBoost. This is not surprising since

larger d results in larger space for selecting codewords, i.e. Rd, and make it possible

to increase the minimum mutual distance between codewords dmin. According to

Lemma 2, larger dmin yields larger margin capacity and thus MCBoost algorithms

can produce predictors with larger margin that are more accurate. Second, note
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Figure IV.5: Effect of the dimension of codewords on the accuracy of the trained
classifiers.

that increasing d will increase complexity of classifier since a d-dimensional pre-

dictor has to be evaluated at classification time. Therefore curves of Figure IV.5

also show the trade-off between accuracy and complexity of MCBoost classifier.

Finally note that comparing case of d =M and d =M −1 in Figure IV.5, increas-

ing d beyond M − 1 only increases complexity and has no significant effect on the

accuracy. This is again not surprising since increasing d beyond M − 1 will not

increase margin capacity.

IV.J.3 Comparison with other multiclass Boosting method

In Section IV.I we compared MCBoost algorithms with existing multiclass

Boosting algorithms theoretically. In this section we compare their performance

with CD-MCBoost and GD-MCBoost empirically.

CD-MCBoost

Among the methods identified as comparable in the previous section, we

implemented “one vs all” (AdaBoost-OVA), AdaBoost-ECC [32] and multiclass

LogitBoost [27].

Table IV.2 shows the performance of AdaBoost-OVS, AdaBoost-ECC

and CD-MCBoost when decision stumps on example attributes were used as week

learners. Comparing with AdaBoost-OVA, CD-MCBoost classifiers had better

accuracy in six, same accuracy in four cases out of twelve. Comparison with
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AdaBoost.ECC, CD-MCBoost has better performance in six and same performance

in three cases out of twelve. Comparing all methods, CD-MCBoost produced

the most accurate classifier in six out of twelve cases, the next best method was

AdaBoost-ECC and AdaBoost-OVA resulted in the worst performance.

Table IV.3 compares the CD-MCBoost with multiclass LogitBoost. In

order to have a fair comparison we implemented CD-MCBoost with regression

weak learners and the loss function of (IV.139). Comparing with Multi.Logit, CD-

MCBoost had better performance in four case, Multi.Logit was better in three

cases and in five cases both algorithms resulted in the same accuracy. This close

performance is not surprising since as discussed in Section IV.I.1 the only ma-

jor difference between Multi.Logit and this implementation of CD-MCBoost is in

codewords i.e. canonical basis in R
M for Multi.Logit vs. vertices of a simplex in

R
M−1 for the CD-MCBoost. This results again confirm results of Figure IV.5 that

increasing d beyond M − 1 will not improve the performance.

GD-MCBoost

Finally, the performance of GD-MCBoost was compared to AdaBoost-

M1 [25], AdaBoost-Cost [56] and AdaBoost-SAMME [102]. The experiments were

based on the UCI data sets of the previous section, but the weak learners were trees

of depth 2 to show that unlike AdaBoost.M1 that requires strong weak learners

for Boosting, GD-MCBoost is able to Boost very simple weak learners. These

tree weak learners were built with a greedy procedure so as to 1) minimize the

weighted error rate of AdaBoost-M1 [25] and AdaBoost-SAMME[102], 2) minimize

the classification cost of AdaBoost-Cost [56], or 3) maximize (IV.128) for GD-

MCBoost. Table IV.4 presents the classification accuracy of each method.

First, note that AdaBoost.M1 was not able to Boost the weak learn-

ers used in this experiment in half of the cases. Comparing GD-MCBoost with

SAMME, in eleven cases of twelve cases GDMCBoost has better performance. The

improvements were significant in some cases e.g. from 53% to 85% in #2 or from
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85% to 95% in #7. The inferior performance of SAMME is likely due to its loss

function definition which is not margin maximizer, see Section IV.I.3. Comparing

to Ada.Cost, GD-MCBoost has better performance in eleven cases and same perfor-

mance in one case. Again improvements over Ada.Cost can be significant e.g. from

64% to 85% in #2. This superior performance is not surprising since we showed

in Section IV.I.2 that Ada.Cost is a sub-optimal special case of GD-MCBoost. Fi-

nally, when compared to all methods, GD-MCBoost achieved the best accuracy on

ten out of twelve data sets. Among the remaining methods, AdaBoost-Cost has

better performance followed by AdaBoost-SAMME. AdaBoost-M1 had the worst

results. It should be noted that the results of Table IV.2, Table IV.3 and Table

IV.4 are not directly comparable, since the classifiers are based on different types

of weak learners and have different complexities.
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IV.L Appendix

IV.L.1 Derivation of CD-MCBoost

From (IV.80) and (IV.117)

−δR[f t; j, g] = − ∂

∂ǫ

n
∑

i=1

Lφ
M [yci , f t(xi) + ǫg(xi)1j]

∣

∣

∣

∣

∣

ǫ=0

= −
n

∑

i=1

∂Lφ
M [yci , f t(xi) + ǫg(xi)1j]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

= −
n

∑

i=1

∂

∂ǫ

M
∑

k=1,k 6=ci

φ

[

1

2

〈

f t(xi) + ǫg(xi)1j, y
ci − yk

〉

]

∣

∣

∣

∣

∣
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n

∑
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∑

k 6=ci

∂

∂ǫ
φ

[

1

2

〈

f t(xi), y
ci − yk

〉

+
1

2
ǫg(xi)

〈

1j, y
ci − yk

〉

]

∣

∣

∣

∣

∣

ǫ=0

= −1

2

n
∑

i=1

∑

k 6=ci

g(xi)
〈

1j, y
ci − yk

〉

φ′

[

1

2

〈

f t(xi), y
ci − yk

〉

]

= −1

2

n
∑

i=1

g(xi)
∑

k 6=ci

〈

1j, y
ci − yk

〉

φ′

[

1

2

〈

f t(xi), y
ci − yk

〉

]

=
n

∑

i=1

g(xi)w
j
i , (IV.164)

where

wj
i = −1

2

M
∑

k=1,k 6=ci

〈

1j, y
ci − yk

〉

φ′

[

1

2

〈

f t(xi), y
ci − yk

〉

]

. (IV.165)
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IV.L.2 Derivation of GD-MCBoost

Using (IV.80) and (IV.125)

−δR[f t; g] = − ∂
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∣
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〉
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∑
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〈

g(xi),
1
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〉
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〈
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〉
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=
n

∑

i=1

〈g(xi), wi〉 , (IV.166)

where

wi = −1

2

M
∑

k=1,k 6=ci

(yci − yk)φ′

[

1

2

〈

f t(xi), y
ci − yk

〉

]

. (IV.167)
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V.A Introduction

In Chapter III we proposed Boosting algorithms for designing binary

detector cascades, and in Chapter IV we proposed a framework for designing mul-

ticlass Boosting algorithm. In this chapter, we combine those two algorithms

and design a multiclass detector cascade for detecting multiple objects. As dis-

cussed in Chapter III the design of cascades for real-time detector cascade, Fig-

ure V.1-a, for a single object class has been the subject of extensive research

[92, 103, 60, 81, 8, 64, 69]. However, the simultaneous detection of multiple ob-

jects has received much less attention. In fact, most existing solutions simply

decompose this problem into several binary (single class) detection sub-problems.

They can be grouped as follows.

Parallel cascades [96]: These methods learn a cascaded detector per

object class (e.g. view), as shown in Figure V.1-b, and rely on some post-processing

to combine their decisions. This has two limitations. The first is the well known

sub-optimality of one-vs.-all multiclass classification, since scores of independently

trained detectors are not necessarily comparable [54]. Second, because there is

no sharing of features across detectors, the overall classifier performs redundant

computations and tends to be very slow. This has motivated some work in the

feature sharing problem. Examples include JointBoost [86], which implements

an exhaustive search for features to be shared between classes, and [61], which

implicitly partitions examples of the positive class and performs a joint search

for the best partition and features. However, these methods have large training

complexity and questionable scalability.

Parallel cascades with pre-estimator [90]: The complexity of the

parallel architecture can be reduced by first making a rough guess of the target

class and running only one of the binary detectors, as illustrated in Figure V.1-c.

While, for some applications (e.g. where classes are object poses), it is possible

to obtain a reasonable pre-estimate of the target class, pre-estimation errors are
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Figure V.1: a) detector cascade [91], b) parallel cascade [96], c) parallel cascade
with pre-estimator [90] and d) all-class cascade with post-estimator.

difficult to undo. Hence, this classifier must be fairly accurate. Since it must also

be fast, this approach boils down to real-time multiclass classification, i.e. the

original problem. [36] proposed a variant of this method, where multiple detectors

are run after the pre-estimate. This improves accuracy but increases complexity.

In this dissertation, we pursue an alternative strategy, inspired by Fig-

ure V.1-d. Under this architecture target classes are first grouped into an abstract

class of positive patches. A detector cascade is then trained to distinguish these

patches from everything else. A patch identified as positive is finally fed to a mul-

ticlass classifier, for assignment to one of the target classes. In comparison to par-

allel cascades, this method has the advantage of sharing features across all classes,

eliminating redundant computation. When compared to the parallel cascade with

pre-estimator, it has the advantage that the complexity of its class estimator has

little weight in the overall computation, since it only processes a small percentage

of the examples. This allows the use of very accurate/complex estimators. The

main limitation is that the design of a cascade to detects all positive patches can be

quite difficult, due to the large intra-class variability, e.g. Viola and Jones declared

this strategy hopelessly inaccurate [90].

We argue, however, that this is due to the abrupt transition between the

all-class and multiclass regimes. While it is difficult to build an all-class detector
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with high detection and low false-positive rate, this is not true if the false-positive

constraint is relaxed. This is, in fact, the essence of cascade design where it is

always the case that 1) all stages must have high detection rate (rejected examples

cannot be recovered), but 2) low false-positive rates are only required for the

latest cascade stages. The second property is a necessary condition for the early

stages to be simple, so that there can be computational savings. Hence, a defining

property of any cascade, including binary cascades, is that false positive rates

should be gradually decreasing for deeper cascade stages. This suggests that,

rather than the abrupt all-class to multiclass transition of Figure V.1-d, a multiclass

cascade should gradually progress from all-class to multiclass. Early stages would

be all-class detectors of high simplicity and false-positive rate, late stages would

be multiclass classifiers of high accuracy/complexity. In between, there would

be stages of classifiers with intermediate numbers of classes, determined by the

structure of the data itself, so as to guarantee decreasing false positive rates with

cascade depth. Since cascades with this behavior represent the set of classes with

different resolutions, we refer to them as multi-resolution (MRes) cascades.

The open question is then how to learn MRes cascades. We show that

this is possible with resort to cost-sensitive learning. We consider a M -class clas-

sification problem and define a negative class M +1, which contains all non-target

examples. We then rely on a cost-sensitiveM+1 class Boosting algorithm to learn

the cascade stages. By manipulating the costs of the associated risk function, it

is possible to emphasize either 1) discrimination between the target classes and

the negative class, or 2) discrimination among the target classes. This favors the

learning of either 1) all-class or 2) multiclass cascade stages. By tying the costs of

the risk function to the false positive rates of the cascade stages it is then possible

to guarantee the MRes behavior. We use this strategy to design a Boosting algo-

rithm for learning MRes cascades and show, through experiments in multi-view car

detection and simultaneous detection of multiple traffic signs, that the resulting

classifiers are faster and more accurate than those previously available.
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V.B Multi-resolution cascades

In this section, we start by introducing the main ideas of the proposed

solution. The detailed derivation of learning algorithms is left for the subsequent

sections.

V.B.1 Multiclass detector cascade

The proposed multiclass detector cascade has the structure of Figure V.1-

a. The fundamental difference is that, instead of a binary detector, each stage

implements a multiclass classifier. The set of M target classes {1, . . .M}, is first
augmented with a classM+1, containing non-target examples. This is denoted the

negative class. A multiclass detector cascade H is then defined as in Figure V.1-a.

It assigns input x to class z ∈ {1, . . . ,M + 1} according to

H(x) =







hr(x) if hk(x) 6=M + 1 ∀k
M + 1 if ∃k| hk(x) =M + 1,

(V.1)

where r is the number of detector stages and h1, . . . hr : X → {1, . . . ,M + 1} the

stage classifiers.

V.B.2 Cost-sensitive learning

A cost-sensitive M + 1-class learning algorithm searches for the classifier

h(x) that minimizes a classification risk or its empirical estimate

R[h] = EX,Z

{

M+1
∑

k=1

Cz,kI(h(x) = k),

}

(V.2)

R[h] ≈ 1

n

n
∑

i=1

{

M+1
∑

k=1

Czi,kI(h(xi) = k),

}

, (V.3)

where I(.) is the indicator function, C a cost matrix, and D = {(xi, zi)}n1 a set

of examples xi and associated class labels zi. The matrix C encodes the cost of

different classification errors, assigning cost Cj,k to the classification of an example

from class j into class k. We also assume Ck,k = 0 ∀k although we sometimes omit

for simplicity.
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V.B.3 Class transitions

The main question that we explore in this work is how to achieve class

transitions. More precisely, how to design a sequence of cost matrices Cs so as to

guarantee that, as examples progress through the cascade stages, s, the classifica-

tion evolves from binary to M -ary.

We start by noting that, for the cascade to work at all, the cost matrix

must satisfy the constraint

Ck,M+1 ≫ CM+1,k ∀k = 1, . . . ,M. (V.4)

This encodes the fact that the cost of assigning an example from class k to the neg-

ative classM+1 is much larger than the converse. It guarantees that the classifier

h(x) emphasizes the detection of target examples. This is a critical requirement

to ensure a high detection rate and should be satisfied by all cascade stages .

Beyond this constraint, the cost-matrix can also control the relative costs

of assigning targets to their classes. In the early stages , where the cascade should

focus more on the rejection of negatives than on the correct classification of targets,

the costs should satisfy the constraint

Ck,l ≪ Ck,M+1 ∀k, l = 1, . . . ,M. (V.5)

This makes the cost of assigning an example from class k to another target class l 6=
M+1 much smaller than that of assigning it to the negative classM+1. In result,

the learning algorithm has small incentive to disambiguate between examples from

classes k, l and the classifier h(x) is an all-class detector, as in Figure V.1-d.

In the late stages, the cascade should focus on the precise assignment of

targets to their individual classes. This can be encoded as

Ck,l = 1 ∀k, l = 1, . . . ,M + 1. (V.6)

In this case, the accuracy of fine grained target classification becomes important

and the cascade behaves as a multiclass classifier. This is similar to the class

post-estimator of Figure V.1-d.
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V.B.4 The cost schedule

To enforce the multi-resolution behavior, we need a cost schedule, i.e.

a sequence of cost matrices C(s) that satisfies the constraints of (V.4) and (V.5)

when s is small (early stages) and the constraints of (V.4) and (V.6) when s is large

(late stages). To design such a schedule, we exploit a necessary property of any

cascade, which follows from the following universal cascade requirements. First,

since an example rejected by a stage cannot be recovered latter on, all stages of

a cascade must have a high detection rate. Second, since the goal is to minimize

the average computation, early stages (which are evaluated for all examples) must

have low complexity, while late stages (evaluated only for “difficult” examples)

can be complex. Third, since the goal is to produce a good classifier, late stages

must have low false positive rate. These requirements are not independent, since

to guarantee a cascade of constant detection rate, low early complexity, and low

late false positive rate, it is necessary that the false positive rate (complexity) be

gradually decreasing (increasing) for deeper cascade stages.

It is thus natural to tie the constraint of (V.5), which must hold for early

stages, to high false positive rates and the constraint of (V.6) to low false-positive

rates. To accomplish this goal we propose the following cost schedule

C
(s)
k,l =































0 if l = k

fp(S)

fp(s)
∀k, l ∈ {1, . . . ,M}

β for k ∈ {1, . . . ,M} and l =M + 1

1− β for k =M + 1and l ∈ {1, . . . ,M}.

, (V.7)

where C(s) is the sth cost matrix, fp(s) the associated false positive rate, S the

number of schedule steps, and β ∈ [0, 1]. We will assume, for now, that the

schedule steps are identical to the the stage numbers. In this case, stage hs(x)

is learned using, in the risk of (V.3), the cost matrix C(s−1) , determined by the

false-positive rate fp(s−1) of stage s − 1. We note, however, that this assumption

is not strictly necessary and will discuss alternatives later on.
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For now, consider the value of C
(s)
k,l under the cost schedule of (V.7), for

k, l ∈ {1, . . . ,M}. It follows from the decreasing dependence of the false positive

rate on s that Cs
k,l is an increasing sequence that converges to 1 for the late cascade

stages. Hence, it satisfies the constraint of (V.6). Similarly, since the ratio of false

positive rates tends to be small in the early stages, the constraint of (V.5) will

hold as long as β is close to one. Finally, this also suffices to guarantee that the

constraint of (V.4) holds. In summary, the cost schedule of (V.7) has all the desired

properties as long as β ≈ 1. We will later see that β remains a free parameter

that can be used to tune the detection rate of the cascade. For now, it suffices to

note that, since the ratio of false positives changes gradually, the learned cascade

is a soft version of the detector of Figure V.1-d. Rather than an abrupt transition

from binary to multiclass, the cascade makes a gradual transition.

V.C Boosting multi-resolution cascades

In this section, we introduce a Boosting algorithm to minimize the risk

of (V.3) for a particular cost matrix C.

V.C.1 Optimization problem

The proposed Boosting algorithm is inspired by the MCBoost frame-

work, proposed by [68] for learning cost-insensitive multiclass classifiers. Un-

der this framework, the class labels {1, . . . ,M + 1} are first translated into a

set of codewords {y1, y2, . . . , yM+1} ∈ R
M that form a simplex in R

M , such that
∑M+1

i=1 yi = 0. These codewords are then used to learn a M -dimensional predictor

F (x) = [f1(x), f2(x) . . . fM(x)] ∈ R
M , by solving the optimization problem



















minF R[F ]

s.t F (x) = [f1(x), f2(x), . . . , fM(x)]

fj ∈ span(G) ∀j ∈ {1, . . . ,M}
, (V.8)
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using coordinate descent in function space [28, 53], where R[F ] is a multiclass risk

function and G = {gi} a set of weak learners. Given predictor F (x), the classifier

implements the decision rule

h(x) = arg max
k=1...M+1

〈yk, F (xi)〉. (V.9)

V.C.2 Surrogate loss

This procedure cannot be applied directly to the risk of (V.3) because

the discontinuity of the indicator function I(.) prevents the computation of the

function gradient. As is common in Boosting algorithms [26], this problem can be

avoided with recourse to a surrogate loss function, where the indicator function is

replaced by a smooth upper bound. For this, we start by noting that, from the

bound e−
1
2
x ≥ 1 ∀x ≤ 0 and (V.9), it follows that if (xi, zi) ∈ D

I(h(xi) = j) = I(j = arg max
k=1,...,M+1

〈yk, F (xi)〉)

≤ e−
1
2
[〈yzi ,F (xi)〉−〈yj ,F (xi)〉]. (V.10)

Using this bound in (V.2) results in the surrogate risk

Rc
[F ] =

1

n

n
∑

i=1

M+1
∑

j=1

Czi,je
− 1

2
[〈yzi ,F (xi)〉−〈yj ,F (xi)〉], (V.11)

which upper bounds (V.2) for any choice of C. Note that this surrogate risk reduces

to the objective function of [92] for binary cost-sensitive learning.

V.C.3 Boosting algorithm

The proposed cost-sensitive multiclass Boosting algorithm solves the opti-

mization problem of (V.8), using the surrogate risk Rc
[F ] of (V.11), by coordinate

descent in the function space spanned by the set of weak learners G. Each Boost-

ing iteration identifies the best weak learner to add to each predictor component

fk(x), using

g∗k = argmin
g∈G

δRc
[F ; k, g]. (V.12)
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Figure V.2: Impact of the cost matrix C on the decision boundaries (left), and
confusion matrix (right) of the proposed Boosting algorithm. Confusion matrices
are shown for cost-sensitive (up right) and insensitive (down right) learning.

where is δRc
[F ; k, g] the directional derivative of Rc

[F ] for updating fk(x) along

direction g(x). Defining vi,j = yi − yj,

δRc
[F ; k, g] =

∂Rc
[F + ǫg1k]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

= − 1

2n

n
∑

i=1

M+1
∑

j=1

g(xi)〈vzi,j,1k〉Czi,je
− 1

2
〈vzi,j ,F (xi)〉, (V.13)

where 1j ∈ R
M a vector whose jth element is one and the remaining zero. The

optimal step size along the update direction

α∗
j = argmin

α∈R
Rc

[F + αg∗j1j], (V.14)

then leads to the update

F = F + α∗
k∗g

∗
k∗1k∗ , (V.15)

where k∗ is the coordinate whose update results in the lowest Rc
.
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V.C.4 Penalizing complexity

So far, we have considered the problem of Boosting one multiclass pre-

dictor. In this section, we consider the problem of learning a cascade H of stage

predictors F1, . . . Fr and associated classifiers h1, . . . , hr, defined according to (V.9).

Note that each hk is a multiclass classifier and

Fk(x) = [f1,k(x), . . . fM,k(x)] ∈ R
M . (V.16)

To ensure consistency with both (V.1) and (V.9), we define a predictor for the

whole cascaded detector as

F [F1, . . . , Fr](x) =







Fr(x) if hk(x) 6=M + 1 ∀k,
Fk(x) if hk(x) =M + 1 and hj(x) 6=M + 1 ∀j < k.

(V.17)

This definition guarantees that (V.9) holds for classifier H and predictor F .

When learning a classifier cascade, it is usually beneficial to introduce a

mechanism that encourages solutions of low computational complexity [8, 69, 64].

In this work, this goal is achieved by learning the cascade predictor F [F1, . . . Fr]

that minimizes a Lagrangian

L[F ] = Rc
[F ] + ηT [F ], (V.18)

which trades the surrogate classification risk Rc
[F ] of (V.11) with a complexity

measure T [F ] (see section V.D) that penalizes cascades of high computational

complexity. The Lagrange multiplier η controls the trade-off between accuracy

and complexity. When η = 0 the learning algorithm encourages solutions that

minimize the classification risk, for larger values of η this risk is weighed against

the computational complexity of the associated cascade.

The cascade Boosting algorithm then solves






























minF1,...,Fr ,r L(F [F1, . . . , Fr])

s.t Fk(x) = [fk,1(x), fk,2(x) . . . fk,M(x)],

fk,j ∈ span(G) ∀j = 1 . . .M, k = 1 . . . r

, (V.19)
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Figure V.3: ROCs of multi-view car detection(left) and traffic sign
detection(right).

Table V.1 Multi-view car detection performance at 100 false positives.

car detection traffic sign detection
Method cmp. accu. det. rate cmp. accu. det. rate

parallel cas. [96] 59.94 0.35 0.72 10.08 0.78 0.78
p.c. + pre-est. [90] 15.15 + 6 0.35 0.70 2.32 + 4 0.78 0.78

MRes cas. 16.40 0.58 0.88 5.56 0.84 0.84

using coordinate descent in the function space spanned by the weak learner set G
[28, 53]. This is a simple extension of the Boosting algorithm of Section V.C.3.

The main difference is that, in addition to Boosting the predictor stages Fk, there

is a need to determine the cascade configuration, i.e. how many stages it contains

and how many weak learners compose the classifier of each stage. This structure

is determined with a greedy strategy that follows naturally from the Boosting

procedure. The cascade is initialized as an empty classifier. At each Boosting

iteration, two possibilities are considered: 1) updating the last cascade stage, or

2) introducing a new stage at the end of the cascade. This is done in two steps.

First, the best update is determined for each coordinate of both the last cascade

stage and the new additional stage, using (V.12) and (V.14). Second, among the

2M possible updates, the one that further decreases the Lagrangian of (V.18) is

chosen, and the cascade updated accordingly, using (V.15).
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V.C.5 Multi-resolution cascades

So far, we have assumed a single cost matrix C. This produces anM -class

classifiers. In Section V.B.4, we have discussed how to extend this procedure to

the design of MRes cascades, by introducing a sequence of cost matrices C(s). In

that section, we have assumed a different cost matrix per cascade stage. This could

easily be implemented in the cascade Boosting algorithm above, by changing the

cost matrix every time a new stage is added to the cascade. In practice, however,

the multi-resolution behavior is not the only goal that remains to be achieved and

there are two additional problems that need to be addressed.

The first is to guarantee that the cascade maintains a target detection rate

D throughout the learning process. The second is that the set of training examples

is frequently not large enough to learn a cascade of low false positive rate. While

it is possible to represent the target classes 1, . . . ,M with a few hundred training

instances, the complexity of the negative class makes this impossible for class

M + 1. Although after a small number of Boosting iterations the cascade rejects

all negative training examples, there is no guarantee that it has a low false-positive

rate outside the training set. The standard solution, in the cascade literature, is to

rely on the bootstrapping procedure [84, 91]. This is an efficient strategy to sample

examples from a large negative class. It consists of gradually replacing negative

examples rejected by the current cascade with new false-positives, extracted from

a validation set. Since the design of any cascade of practical interest requires

bootstrapping, we tie the cost schedule to bootstrapping iterations, rather than

cascade stages. That is, rather than using the stage number as the variable s of

section V.B.4, we set this variable to the bootstrapping iteration. This provides

some robustness against the greedy nature of the cascade growing process discussed

above.

It remains to guarantee that the cascade maintains the target detection

rate D throughout the training process. For this, we return to the cost matrix

of (V.7). In section V.B.4, we saw that the constraints of (V.4)-(V.6) hold as long
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as β ≈ 1. To guarantee this, the cascade learning algorithm is initialized with

a high value of β, typically β = 0.9. The resulting cost matrix is then used to

determine the best cascade update. If the detection rate of the updated cascade is

less than the target D this update is discarded, β is updated to β = 1+β

2
and the

procedure repeated. Since the update can only increase β, the constraints of (V.4)-

(V.6) continue to hold. Since increasing β increases the cost Ck,M+1, k = 1, . . . ,M

of target misses, the new update produces a cascade of higher detection rate.

Hence, tuning β enables the cascade to eventually achieve the target detection

rate. In summary, the procedure is guaranteed to produce a MRes cascade that

holds the target detection rate throughout training.

The overall procedure for learning MRes cascades is summarized in algo-

rithm 9. Note that SL is the set of training examples that reach the last cascade

stage. Similarly, SA is the set of training examples not rejected by the current

cascade stages, i.e. which will reach a new stage appended to the end of the

cascade. Finally, the algorithm terminates when the cascade achieves a specified

false-positive rate FP on the training set. Note that this is the value used for fp(S)

in the cost schedule of (V.7).

V.D Experiments

The proposed learning algorithm was tested on a synthetic data set, and

the tasks of multi-view car detection, and multiple traffic sign detection. The

resulting detector, denoted MRes cascade, was compared to the detectors of Fig-

ure V.1. Since it has been established in the literature that the all-class detector

with post-estimation has poor performance [90], the comparison was limited to par-

allel cascades [96] and parallel cascades with pre-estimation [90]. All binary cascade

detectors were learned with a combination of the ECBoost algorithm of [69] and

the cost-sensitive Boosting method of [92]. Following [60], all cascaded detectors

used integral channel features and trees of depth two as weak learners. The train-
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Figure V.4: Evolution of detection rate (top-left), false positive rate fp(s) (top-
right), and accuracy (bottom-left) of the MRes cascade during learning for car
detection problem. The (bottom-right) is evolution of the accuracy of the cascade
during training a traffic sign detector for 17 traffic signs.

ing parameters were set to η = 0.02, D = 0.95, FP = 10−6 and the training set was

bootstrapped whenever the false positive rate dropped below 90%. Bootstrapping

also produced an estimate of the false positive rate fp(s), which was used to define

the cost matrix C(s+1). As in [90], detector cascade with pre-class estimation used

tree classifiers for the pre-estimation. In the remainder of this section, detection

rate is defined as the percentage of target examples, from all views or target classes,

that were detected. Detector accuracy is the percentage of the target examples

that were detected and assigned to the correct class. Finally, detector complexity

is the average number of tree node classifiers evaluated per example.

Synthetic data: We start by illustrating the behavior of the algorithm

of Section V.C.3 in the synthetic data set of Figure V.2-left. This contains

3 × 10, 000 samples, randomly drawn from three Gaussian distributions of means

[0.8, 0]T , [−0.4, 0.7]T , [−0.4,−0.7]T and variance [1, 0; 0, 1]. Multiclass classifiers
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Figure V.5: Evolution of MRes cascade decisions for 20 randomly selected
examples of various traffic signs. Each row illustrates the evolution of the label
assigned to one example. The color of kth pixel signals the label after the evaluation
of k weak learners. The traffic signs and their label colors are shown on the left.

were learned with both a cost-insensitive version of the Boosting algorithm (all

non-diagonal entries of the cost matrix set to 1) and the cost sensitive version with

costs C = [0, 1, 10; 1, 0, 10; 1, 1, 0]. The decision boundary of the classifiers, along

with their confusion matrices, are shown in Figure V.2. As expected, the cost-

sensitive classifier is more averse to assigning examples from the first two classes

to the third. This can be seen by the shifted decision boundary and the confusion

matrices. This experiment shows that the proposed Boosting method is able to

enforce the cost structure encoded in the cost matrix C.

Multi-view Car Detection: To train a multi-view car detector, we

collected images of 128 Frontal, 100 Rear, 103 Left, and 103 Right car views.

These were resized to 41 × 70 pixels. The multi-view car detector was evaluated

on the USC car data set [38], which consists of 197 color images of size 480× 640,

containing 410 instances of cars in different views.

The performance of the various cascades was compared through ROCs,

which are shown in Figure V.3-a, as well as detection rate, accuracy and com-

plexity, which are reported in Table V.1. The complexity of parallel cascades with

pre-processing is broken up into the complexity of the cascade plus the complexity

of the pre-estimator. Figure V.3-a, shows that the MRes cascade has significantly
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Figure V.6: Examples of detections of cars from different views and several traffic
signs.

better ROC performance than any of the other detectors. This is partially due to

the fact that the detector is learned jointly across classes and thus has access to

more training examples. In result, there is less overfitting and better generaliza-

tion. Furthermore, as shown in Table V.1, the MRes cascade is much faster. The

3.5-fold reduction of complexity over the parallel cascade suggests that MRes cas-

cades share features very efficiently across classes. The MRes cascade also detects

16% more cars and assigns 23% more cars to the true class. The parallel cascade

with pre-processing was slightly less accurate than the parallel cascade but three

times as fast. However, the complexity of the pre-estimator still makes it 20%

slower than the MRes cascade.

Figure V.4 shows the detection rate, false positive rate, and accuracy

of the MRes cascade during training. Note that the detection rate is above the

specified D = 95% throughout the learning process. This is due to the updating

of the β parameter of (V.7). It can also be seen that, while the false positive rate

decreases gradually, accuracy remains low for many iterations. This shows that

the early stages of the MRes cascade place more emphasis on rejecting negative

examples (lowering the false positive rate) than making precise view assignments
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for the car examples. This reflects the cost schedule C(s) of (V.7). Early on, (V.5)

holds and confusion between classes has little cost. However, as the cascade grows

and its false positive rate fp(s) decreases, the entries C
(s)
k,l k, l 6= M + 1 become

comparable to the remaining entries of the cost matrix and the detector starts to

distinguish different car views. This happens soon after iteration 100, where the

false-positive rate flattens but the accuracy starts to increase drastically. In this

way, the MRes cascade behaves as a soft version of the all-class detector cascade

with post-estimation, shown in Figure V.1-d.

Traffic Sign Detection: For the detection of traffic signs, we extracted

1, 159 training examples from the first set of the Summer traffic sign data set [41].

This produced 660 examples of “priority road”, 145 of “pedestrian crossing”, 232

of “give way” and 122 of “no stopping no standing” signs. For training, these

images were resized to 40 × 40. For testing, we used 357 images from the second

set of the Summer data set which contained at least one visible instance of the

traffic signs, with more than 35 pixels of height. The performance of different

traffic sign detectors is reported in Figure V.3-Right and Table V.1. Again, the

MRes cascade was faster and more accurate than the others. In particular, it was

faster than other methods, while detecting/recognizing 6% more traffic signs.

We next trained a MRes cascade for detection of the 17 traffic signs

shown in the left end of Figure V.5-left. Figure V.5-right shows the evolution of

the accuracy of this detector and Figure V.5-left the evolution of MRes cascade

decisions for examples of different classes. In this figure, each row of color pixels

illustrates the evolution of one example. The the color of kth pixel in a row signals

the decision made by the cascade after k weak learners. The traffic signs and

corresponding colors are shown in the left of the figure. For each class we randomly

selected 20 examples and show the corresponding decision sequence next to the

class picture.

Note that the early cascade stages assign most examples to the first class.

Only a few examples were rejected by these stages. This corresponds to a high de-
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tection rate but very low accuracy. However, as more weak learners are evaluated,

the detector starts to create some intermediate categories. For example, after 20

weak learners, all traffic signs containing red and yellow colors are assigned to the

“give way” class. Evaluating more weak learners further separates these classes

and almost all examples are assigned correctly on the right side of the picture.

This shows that besides being a soft version of the all-class detector cascade, the

MRes cascade automatically groups the classes into an internal taxonomy based

on visual similarity.

Finally, although we have not produced detection ground truth for this

experiment, we have empirically observed that the final 17-traffic sign MRes cas-

cade is accurate and has low complexity (5.15). This make it possible to use the

detector in real-time on low complexity devices, such as smart-phones. A video

illustrating the detection results is available in the supplementary material.

V.E Conclusion

We proposed that a multiclass detector cascade should have multi-resolution

behavior where early stages should classify target vs. non-target patches with high

detection rate and late stages are multiclass classifiers of high accuracy and com-

plexity to distinguish between target classes. We showed that learning such cascade

detector is possible by using a cost-sensitive multiclass Boosting algorithm and ad-

justing the cost factors dynamically. For these adjustments, we used false positive

rate of the cascade detector during the training process and showed that it will

result in cascade detectors with multi-resolution behavior. Using this strategy we

derived a Boosting algorithm for learning multiclass detector cascades. Experi-

ments on the problems of multi-view car detection and simultaneous detection of

multiple traffic signs showed that the proposed detector is faster and more accurate

than previous methods.
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Algorithm 9 MRes Cascade Learning

Input: M + 1-ary training set St containing target and negative examples, a

validation set for bootstrapping, target detection and false positive rates (D,FP )

for the cascade, Lagrange multiplier η.

Initialization:

Produce codewords y1 . . . yM and translate example labels into codewords, using

the procedure of [68].

Define the sets SL = SA = St, and set s = 1, and fp(s) = 1.

while fp(s) > FP do

for j = 1 to M do

Find the best weak learner for updating the jth coordinate of the predictor

of the last stage of the cascade and compute its Lagrangian, using (V.12),

(V.14), (V.18), (V.7), an appropriate β and example set SL.

Find the best weak learner for updating the jth coordinate of a new stage,

appended at the end of the cascade, and compute is Lagrangian, using

example set SA in (V.12), (V.14), (V.18), (V.7) and an appropriate β.

end for

Update the cascade, by updating the weak learner of smaller Lagrangian.

if adding a new stage then

Set SL = SA.

end if

Remove examples that are rejected, by current last stage of the cascade, from

SA.

if more than 10% of negative examples in the current trainingf set are rejected

then

bootstrap, update the training set St, increase s, and estimate fp(s) using

the validation set.

Set SL = SA = St.

end if

end while



Chapter VI

Conclusions

152



153

In this dissertation we considered the problem of designing real-time mul-

ticlass object detectors. Designing a fast and accurate multiclass object detector

requires addressing several challenges. We started by proposing TaylorBoost. Tay-

lorBoost explains Boosting algorithms as iterative descent algorithms for minimiz-

ing Taylor series expansion of the risk of classification in the function space. Using

this framework, it is possible to derive first-order, equivalent to gradient descent,

and second order, equivalent to Newton method, Boosting algorithms. We then

used TaylorBoost in the rest of the dissertation to derive appropriate Boosting

algorithms based on the requirements of the problems. We next considered the

problem of learning optimal detector cascades and proposed FCBoost. This al-

gorithm optimizes a Lagrangian risk that accounts for both detector speed and

accuracy with respect to a predictor that complies with the sequential decision

making structure of the cascade architecture. By exploiting recursive properties

of the latter, it was shown that many cascade predictors can be derived from gen-

erator functions, which are cascade predictors of two stages. Variants of FCBoost

were derived for two members of this family, last-stage and multiplicative cascades,

which were shown to generalize the popular independent and embedded stage cas-

cade architectures. The concept of neutral predictors was exploited to integrate the

search for cascade configuration into the Boosting algorithm. In result, FCBoost

can automatically determine 1) the number of cascade stages and 2) the number

of weak learners per stage, by minimizing the Lagrangian risk. It was also shown

that FCBoost generalizes AdaBoost, and is compatible with existing cost-sensitive

extensions of Boosting. Hence, it can be used to learn cascades of high detection

rate. Experimental evaluation has shown that the resulting cascades outperform

current state-of-the-art methods in both detection accuracy and speed.

We started transition for multiclass object detectors by considering the

problem of multiclass Boosting. We proposed a new multiclass Boosting frame-

work, based on multi-dimensional codewords and predictors. The optimal set of

codewords is derived and a margin enforcing loss is proposed. The resulting loss is
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then minimized by first order TaylorBoost on a multi-dimensional function space

resulting in two algorithms: 1) CD-MCBoost, based on coordinate descent, which

updates one predictor component at a time, 2) GD-MCBoost, based on gradient

descent, which updates all components jointly. The algorithms differ in the weak

learners that they support but are both shown to be 1) Bayes consistent, 2) mar-

gin enforcing, and 3) convergent to the global minimum of the risk. They also

reduce to AdaBoost when there are only two classes. Experiments showed that

both methods outperform previous multiclass Boosting approaches on a number

of datasets.

Combining the proposed cascade learning algorithm, FCBoost, and mul-

ticlass Boosting method, MCBoost, made it possible to learn detector cascade

for detecting multiple objects. The remaining challenge was to account for the

cost-sensitive nature of sub-classifiers in the cascade sequence. We proposed that

a multiclass detector cascade should have multi-resolution behavior where early

stages should classify target vs. non-target patches with high detection rate and

late stages are multiclass classifiers of high accuracy and complexity to distin-

guish between target classes. We showed that learning such cascade detector is

possible by using a cost-sensitive multiclass Boosting algorithm and adjusting the

cost factors dynamically. For these adjustments, we used false positive rate of

the cascade detector during the training process and showed that it will result in

cascade detectors with multi-resolution behavior. Using this strategy we derived a

Boosting algorithm for learning multiclass detector cascades. Experiments on the

problems of multi-view car detection and simultaneous detection of multiple traffic

signs showed that the proposed detector is faster and more accurate than previous

methods.
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