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ARTICLE

Evolutionary and functional genomics of DNA
methylation in maize domestication and
improvement
Gen Xu1,2, Jing Lyu1,2, Qing Li3,4, Han Liu5, Dafang Wang6, Mei Zhang5, Nathan M. Springer 3,

Jeffrey Ross-Ibarra 7 & Jinliang Yang 1,2✉

DNA methylation is a ubiquitous chromatin feature, present in 25% of cytosines in the maize

genome, but variation and evolution of the methylation landscape during maize domestica-

tion remain largely unknown. Here, we leverage whole-genome sequencing (WGS) and

whole-genome bisulfite sequencing (WGBS) data on populations of modern maize, landrace,

and teosinte (Zea mays ssp. parviglumis) to estimate epimutation rates and selection coeffi-

cients. We find weak evidence for direct selection on DNA methylation in any context, but

thousands of differentially methylated regions (DMRs) are identified population-wide that are

correlated with recent selection. For two trait-associated DMRs, vgt1-DMR and tb1-DMR,

HiChIP data indicate that the interactive loops between DMRs and respective downstream

genes are present in B73, a modern maize line, but absent in teosinte. Our results enable a

better understanding of the evolutionary forces acting on patterns of DNA methylation and

suggest a role of methylation variation in adaptive evolution.
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Genomic DNA is tightly packed in the nucleus and is
functionally modified by various chromatin marks such as
DNA methylation of cytosine residues. DNA methylation

is a heritable covalent modification prevalent in most species,
from bacteria to humans1,2. In mammals, DNA methylation
commonly occurs in the symmetric CG context with exceptions
of non-CG methylation in specific cell types, such as embryonic
stem cells3, but in plants it occurs in all contexts including CG,
CHG, and CHH (H stands for A, T, or C). Genome-wide levels of
cytosine methylation exhibit substantial variation across angios-
perms, largely due to differences in the genomic composition of
transposable elements (TE)4,5, but broad patterns of methylation
are often conserved within species6,7. Across plant genomes,
levels of DNA methylation vary widely from euchromatin to
heterochromatin, driven by the different molecular mechanisms
for the establishment and maintenance of DNA methylation in
CG, CHG, and CHH contexts8,9.

DNA methylation is considered essential to suppress the
activity of transposons10, to regulate gene expression11, and to
maintain genome stability8. Failure to maintain patterns of DNA
methylation in many cases can lead to developmental abnorm-
alities and even lethality12–14. Nonetheless, variation in DNA
methylation has been detected both in natural plant15 and human
populations16. Levels of DNA methylation can be affected by
genetic variation and environmental cues17. In addition, heritable
de novo epimutation—the stochastic loss or gain of DNA
methylation—can occur spontaneously and has functional
consequences18,19. Population methylome studies suggest that the
spread of DNA methylation from transposons into flanking
regions is one of the major sources of epimutation, such that 20%
and 50% of the cis-meQTL (methylation quantitative trait loci)
are attributable to flanking structural variants in Arabidopsis7 and
maize20.

In Arabidopsis, a multi-generational epimutation accumulation
experiment21 estimated forward (gain of DNA methylation) and
backward (loss of methylation) epimutation rates per CG site at
about 2.56 × 10−4 and 6.30 × 10−4, respectively. Other than this
Arabidopsis experiment, there are no systematic estimates of the
epimutation rates in higher plants (but see recently estimates for
poplar and dandelion22), making it difficult to understand the
extent to which spontaneous epimutations contribute to methy-
lome diversity in a natural population. As the per-base rates of
DNA methylation variation are several orders of magnitude larger
than DNA point mutation, conventional population genetic
models, which assume infinite sites models, seemed inappropriate
for epimutation modeling. As an attempt to overcome the
obstacle, Charlesworth and Jain23 developed an analytical fra-
mework to address evolution questions for epimutations. Lever-
aging this theoretical framework, Vidalis et al.24 constructed the
methylome site frequency spectrum (mSFS) using worldwide
Arabidopsis samples, but they failed to find evidence for selection
on genic CG epimutation under benign environments. The
confounding effect between DNA variation and methylation
variation, as well as the high-scaled epimutation rates become
obstacles to further dissect the evolutionary forces in shaping the
methylation patterns at different timescales under different
environments.

Maize, a major cereal crop species, was domesticated from its
wild ancestor teosinte (Zea mays ssp. parviglumis) near the Balsas
River Valley area in Mexico about 9000 years ago. Genetic studies
reveal that the dramatic morphological differences between maize
and teosinte are largely due to selection of several major effect
loci25. As maize spread across the Americas, many additional loci
have played an important role in local adaptation26. Flowering
time, a trait that directly affects plant fitness, played a major role
in this local adaptation process27–29. Previous research, however,

has focused almost entirely on DNA variation, and the con-
tributions of methylation variation to maize domestication and
adaptation remain largely elusive.

In this work, we collect a set of geographically widespread
Mexican landraces and a natural population of teosinte near
Palmar Chico, Mexico30, from which we generate genome and
methylome sequencing data. In addition, we profile the teosinte
interactome using the highly integrative chromatin immunopre-
cipitation (HiChIP) method. Together with the analysis from
previously published genome31, transcriptome32, methylome6,
and interactome33 datasets, we estimate epimutation rates and
selection pressures across different timescales, investigate the
DNA methylation landscape in maize and teosinte, detect dif-
ferentially methylated regions (DMRs), characterize the genomic
features that are related with DMRs, and functionally validate two
DMRs that are associated with adaptive traits. Our results suggest
that DNA methylation genome-wide is likely only under rela-
tively weak selection, but that methylation differences at a subset
of key loci may modulate the regulation of domestication genes
and affect maize adaptation.

Results
Genomic distribution of methylation in maize and teosinte. To
investigate genome-wide methylation patterns in maize and teo-
sinte, we performed whole-genome bisulfite sequencing (WGBS)
from a panel of wild teosinte, domesticated maize landraces, and
modern maize inbreds (Supplementary Data 1). Using the rese-
quenced genome of each line, we created individual pseudo-
references (see “Methods”) that alleviated potential bias of map-
ping reads to a single reference genome34 and improved overall
read-mapping (Supplementary Fig. 1a). Using pseudo-references,
on average about 25 million (5.6%) more methylated cytosine
sites were identified than using the B73 reference (Supplementary
Fig. 1b). Across populations, average genome-wide cytosine
methylation levels were about 78.6%, 66.1%, and 2.1% in CG,
CHG, and CHH contexts, respectively, which are consistent with
previous estimations in maize13 and are much higher than
observed (30.4% CG, 9.9% CHG, and 3.9% CHH) in Arabi-
dopsis5. We observed slightly higher levels of methylation in
landraces, which may be due to lower sequencing depth35. We
found no significant differences between teosinte and maize as a
group (Supplementary Fig. 2).

We found methylated cytosines in CG and CHG contexts were
significantly higher in pericentromeric regions (0.54 ± 0.01 in a
1 Mb window) than in chromosome arms (0.44 ± 0.04) (Student’s
t-test P-value < 2.2 × 10−16) (Supplementary Fig. 3). We calcu-
lated the average methylated CG (mCG) level across gene bodies
(from transcription start site to transcription termination site,
including exons and introns) in each population and observed a
bimodal distribution of mCG in gene bodies (Supplementary
Fig. 4a), with ~25% of genes (N= 6, 874) showing evidence of
gene body methylation (gbm). Although the overall distribution
of gbm did not differ across populations, genes with clear
syntenic orthologs in Sorghum36 exhibited little gbm (Supple-
mentary Fig. 4b, c), consistent with previous reports5,37.

Genome-wide methylation is only under weak selection. As the
frequency of methylation may be affected by both selection and
epimutation rates, we implemented a Markov Chain Monte Carlo
(MCMC) approach to estimate these parameters using a popu-
lation genetic model developed for highly variable loci23. We
defined 100 bp tiles across the genome as a DNA methylation
locus and categorized individual tiles as unmethylated, methy-
lated, or heterozygous alleles for outcrossed populations (i.e.,
teosinte and landrace populations) and as unmethylated and
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methylated alleles for modern maize inbred lines (see “Methods”).
To determine the thresholds for methylation calls, we employed
an iterative expectation maximization algorithm to fit the data38.
We then constructed methylome site frequency spectra (mSFS)
for CG and CHG sites (Supplementary Fig. 5). Sensitivity test
results suggested that the mSFS was insensitive to the cutoffs used
for the methylation calls (Supplementary Fig. 6). As the vast
majority (>98%) of CHH sites were unmethylated (Supplemen-
tary Fig. 7), we excluded CHH sites from population genetic
analysis.

After testing a set of prior values, we found the initial prior
rates had little impact on the posteriors, except for extremely
large values (Supplementary Fig. 8), for which convergence was
difficult. As we found little difference among populations in
genome-wide patterns, we estimated parameters using the
combined data; estimates from individual populations were
nonetheless broadly similar (Supplementary Fig. 9). Effective
population size (Ne) in maize is difficult to estimate because of
rapid demographic change during and post domestication.
Previous estimates of Ne in maize range from ∼50 k39 to ∼370
k – 1M40. To account for this uncertainty, we ran the models
with a set of different Ne values (50 k, 100 k, 500 k, and 1M).
Model estimates of the epimutation rate µ for both CG (3.6 ×
10−6 – 1.8 × 10−7) and CHG (7.6 × 10−6 – 3.8 × 10−7) sites were
more than an order of magnitude higher than the backward
epimutation rates (ν= 1.8 × 10−7 – 9.0 × 10−9 and 3.0 × 10−7 –
1.5 × 10−8) using different Ne values (Fig. 1a), consistent with the
observed prevalence of both types of methylation. Estimates of
the genome-wide selection coefficient s associated with methyla-
tion of a 100 bp tile for both CG and CHG tiles depended on the
assumption of Ne. However, the population-scaled selection
coefficient (or Ne × s) stayed largely constant with values of 2.0
and 2.2 for CG and CHG tiles, respectively, indicating relatively
weak selection for methylation in each context according to
classical population genetic theory41.

We then sought to test whether the population-scaled selection
coefficient differs across genomic features. After fitting mSFS
models separately for different genomic features, results showed
that population-scaled selection coefficients in genic regions
(exon, intron, upstream 5 k, and downstream 5 k) were below or
close to 1, and the values were above 1 for nongenic regions (i.e.,
2.4 for intergenic regions and 3.5 for TE regions) (Fig. 1b),
suggesting stronger selection on methylation variation outside of
genes. If we consider the most common variant in teosinte as the
ancestral epiallele, selection was higher in ancestrally hyper-
methylated regions in CG contexts, especially in TE and
intergenic regions, whereas it was close to neutrality for
ancestrally hypomethylated regions, especially for the exonic
regions (Fig. 1c). In CHG contexts, selection was weak in most
regions, including TE and intergenic regions, for both ancestral
hyper- and hypomethylated sites.

Regions with variable methylation contribute to phenotypic
variation. Our observed CG mSFS revealed that 2% and 7% of
100 bp tiles were completely unmethylated and methylated,
whereas 91% of tiles were variable (Supplementary Fig. 5a). These
variable methylation regions were further divided into rarely
unmethylated (frequency of methylated tiles >90%), rarely
methylated (frequency of methylated tiles <10%), and high-
frequency variable regions (frequency of methylated tiles ≥10%
and ≤90%), composing 69%, 2%, and 20% of the maize genome,
respectively. To investigate whether regions of the genome
exhibiting variable methylation, especially the high-frequency
variable regions, are functionally relevant, we used published data
from a large maize mapping population42. We estimated kinship

matrices for single-nucleotide polymorphisms (SNPs) in different
genomic regions and then partitioned the genetic variance for
plant phenotypes using LDAK43. Consistent with an important
functional role for genic regions and a lack of functional
importance in permanently methylated regions, our results find
that sites that are hypomethylated (uniformly unmethylated and
rarely methylated), mainly from the genic areas, explained dis-
proportionally larger genetic variances (Supplementary Fig. 10a),
whereas hypermethylated regions (uniformly methylated and
rarely unmethylated), although accounting for 76% of the gen-
ome, contributed only a fraction of the genetic variance for 7/23
traits. The proportion of variance explained by high-frequency
sites polymorphic for methylation ranged from 0 to 57%, with a
mean value of 29%. Variance component analysis results for CHG
sites were largely consistent with the results for CG sites (see
Supplementary Fig. 10b).

Population level DMRs are enriched in selective sweeps.
Although genome-wide selection on epimutation appears rela-
tively weak, the observation that sites exhibiting methylation
polymorphism contribute meaningfully to quantitative trait var-
iation suggested that stronger selection could be acting at specific
DMRs. We employed the metilene software44 to identify a total of
5278 DMRs (see Table 1 for numbers broken down by context
and type), or about 0.08% (1.8 Mb) of the genome, including 3900
DMRs between teosinte and modern maize, 1019 between teo-
sinte and landrace, and 359 DMRs between landrace and modern
maize (Supplementary Data 2). To check the tissue specificity of
the detected DMRs, we examined the methylation levels of these
DMRs in B73 across different tissue types using published WGBS
data45. Results suggested that methylation levels of the DMRs
were largely conserved in B73 across three tissue types (Supple-
mentary Fig. 11), consistent with the previous studies20,46,47.

DNA methylation can have a number of functional
consequences15,48,49 and thus we tested whether differences in
methylation among populations were associated with selection
at individual locus. To test this hypothesis, we used SNP data
from each population to scan for genomic regions showing
evidence of selection (see “Methods”). We detected a total of
1330 selective sweeps between modern maize and teosinte
(Fig. 2 and Supplementary Data 3, see Supplementary Fig. 12
for results of teosinte vs. landrace and landrace vs. modern
maize). Several classical domestication genes, e.g., tb150,
ZAG251, ZmSWEET4c52, RA153, and BT254 were among these
selective signals.

We found that DMRs at CG and CHG sites were highly
enriched in regions showing evidence of recent selection
(Supplementary Fig. 13, P-value < 0.001), particularly in inter-
genic and TE regions (Supplementary Fig. 14a). DMRs over-
lapping with sweeps, both hypo- and hypermethylated in maize,
exhibited significantly higher allele frequency differentiation
between maize and teosinte (Supplementary Fig. 14b and see
Table 1 for other comparisons). We then asked whether DMRs in
sweep regions were in linkage disequilibrium (LD) with nearby
SNPs (see “Methods”), as might be expected if most DMRs were
the result of an underlying genetic change such as a TE insertion.
Indeed, the rate of sweep DMRs in LD with local SNPs was
significantly higher than expected by chance (Supplementary
Data 4).

In addition, we detected 72 genes located in sweep DMRs
(maize vs. teosinte under CG context) that were hypomethylated
in maize, 24 (42/72 with expression data) of which showed
significantly (Student’s paired t-test, P-value= 0.04) increased
expression levels in maize compared to teosinte using published
data32. For the 56 genes located in sweep DMRs that were
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hypermethylated in maize, however, we failed to detect the
significant expression differences between maize and teosinte.

Hypomethylated regions in maize are associated with inter-
acting loops. Further investigation indicated that teosinte-maize
CG DMRs were significantly enriched in mappable genic and
intergenic (i.e., nongenic excluding 5 kb upstream and down-
stream of genes and transposons) regions for both hyper- and
hypomethylated regions in maize, but depleted from transposon
regions (Fig. 3a). We detected maize hyper- and hypomethylated
DMRs in 0.01% and 0.02% of mappable regions across the
genome. In particular, 0.07% and 0.05% of maize hyper-DMR
(DMR hypermethylated in maize) and hypo-DMR (DMR
hypomethylated in maize) were located within mappable exonic

regions, which were much higher than expected by chance
(permutation P-values= 0.001; Supplementary Fig. 15a). These
CG DMRs could be mapped to N= 229 unique genes (Supple-
mentary Data 5). After examining the mapping locations based
on collapsed gene models, we found that DMRs were most
abundant in 5′-untranslated regions (Fig. 3b), consistent with a
pattern that was previously observed55. Using these DMR genes
for a Gene Ontology (GO) analysis, we detected 15 molecular
function terms that were significantly enriched (Supplementary
Fig. 15b). The vast majority (14/15) of these significant terms
were associated with “binding” activities, including protein,
nucleoside, and ribonucleoside binding. Furthermore, we found
that exonic DMRs were enriched at transcription factor-binding
sites identified via DAP-seq56 (permutation P-value= 0.001).
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ZmRAP2.7, which encodes a transcription factor in the flowering
time pathway64. We did not detect vgt1 as a selective sweep
because it is not considered a domestication or improvement
candidate and our maize lines include both tropical and tempe-
rate lines65. We further examined LD in this regions and detected
strong signals between the vgt1-DMR and local SNPs, suggesting
that the vgt1-DMR is not a pure epiallele. Reanalysis of published

ChIP data33 revealed that the DMR colocalized with a H3K27ac
peak and there is a physical interaction between the DMR and the
vgt1 locus in maize33 (Fig. 4b). In addition, we reanalyzed the
maize and sorghum sequence data at the vgt1 locus and found
two conserved non-coding sequences located 1 kb downstream of
the vgt1-DMR (Supplementary Fig. 19). To examine the inter-
action status in teosinte, we then generated HiChIP data for a
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teosinte sample using the same tissue and antibodies (see
“Methods”). Although our teosinte HiChIP data identified similar
peaks of H3K27ac and H3K4me3 near the region, we failed to
detect a physical interaction between the vgt1-DMR and vgt1
itself in teosinte (Fig. 4b), suggesting that methylation at this
locus might play a functional role in affecting physical
interaction.

To further validate the potential enhancer activity of the 209 bp
vgt1-DMR, we incorporated the vgt1-DMR sequence amplified
from B73 into a vector constructed as shown in (Fig. 4c) and
performed a dual-luciferase (LUC) transient expression assay in
maize protoplasts (see “Methods”). The results of the transient
expression assay revealed that the maize cells harboring the DMR
exhibited a significantly higher LUC and REN ratio than control
(fold change= 2.2, P-value= 2.4 × 10−8, Fig. 4d), revealing that
the DMR might act as an enhancer to activate LUC expression.

A segregating tb1-DMR acts like a cis-acting element. One of
the most significant teosinte-maize CG DMRs was located 40 kb
upstream of the tb1 gene, which encodes a transcription factor
acting as a repressor of axillary branching (aka tillering) pheno-
type50. This 534 bp tb1-DMR was hypomethylated in modern
maize, hypermethylated in teosinte, and segregating in landraces
(Fig. 5a). Chop-PCR (DNA methylation-sensitive restriction
endonuclease digestion followed by PCR) analysis using a mod-
ern maize (inbred line W22) and a teosinte accession (PI 8759)
suggested that DNA methylation presents in both leaf and
immature ear tissues in teosinte, but is absent in W22 (Supple-
mentary Fig. 20). The physical location of the tb1-DMR was
overlapped with the MNase hypersensitive site66 and a H3K9ac

peak67. Phenotypic analysis of our 17 landraces indicated that the
DMR was associated with the tillering (Fisher’s exact test P-value
= 0.04), consistent with previous observations that the hyper-
methylated (teosinte-like) genotypes were likely to grow tillers50.

The causal variation for this locus was previously mapped to a
Hopscotch TE insertion 60 kb upstream (Fig. 5b) of the tb1 gene.
The TE was considered as an enhancer, as shown in a transient
in vivo assay50. Interactome data support this claim, finding
physical contact between Hopscotch and the tb1 gene (Fig. 5b)33.
Direct physical contact between the tb1-DMR and the tb1 gene
itself in maize line B73 was also detected using ChIA-PET data33,
but this interaction was missing in teosinte based on our HiChIP
data (Fig. 5b). By employing the circular chromosome conforma-
tion capture followed by sequencing (4C-seq) method68, we
further confirmed the absence of interaction between the tb1-
DMR and the tb1 gene using landrace samples showed
hypermethylation at the tb1-DMR locus (Supplementary Fig. 21).
The colocalization of tb1-DMR with chromatin activation marks
in the region also suggested the tb1-DMR might act as a cis-acting
regulatory element (Fig. 5b). In addition, we conducted a dual-
LUC transient assay by constructing a vector similar to the vgt1-
DMR (Fig. 4e). The results indicated that the tb1-DMR
significantly increased the LUC/REN ratio as compared to
control (Fig. 5c), suggesting that the tb1-DMR was potentially
act as a cis-acting element to enhance downstream gene
expression.

To understand the correlation among these genomic compo-
nents, i.e., the tb1-DMR, the TE insertion, and the tb1 gene, we
conducted LD analysis using landrace genomic and methylation
data segregating at this tb1-DMR locus (see “Methods”). As a
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result, we failed to detect strong LD (i.e., R2 > 0.1) between the
tb1-DMR and SNPs located at the Hopscotch locus (Supplemen-
tary Fig. 22), indicating the tb1-DMR might be independent from
the Hopscotch locus. Reanalysis of published tb1 mapping data50

confirmed a significant QTL signal around the Hopscotch TE
(Supplementary Fig. 23a) and a two-dimensional QTL scan
detected epistasis between Hopscotch and the tb1-DMR (Supple-
mentary Fig. 23b). Further, we found that highly methylated
landraces were geographically closer to the Balsas River Valley in
Mexico, where maize was originally domesticated from (Supple-
mentary Fig. 24a). As the landraces spread out from the
domestication center, their CG methylation levels were gradually
reduced (Supplementary Fig. 24b).

Discussion
In this study, we employed population genetics and statistical
genomics approaches to infer the rates of epimutation and
selection pressure on DNA methylation, and the extent to which
SNPs located within DMRs contributed to phenotypic variation.
Our results revealed that the forward epimutation rate was about
ten times larger than the backward epimutation rate. These
estimates from 100 bp tiles are lower than epimutation rates
estimated at nucleotides in Arabidopsis from epimutation accu-
mulation experiments69. Even so, our estimated epimutation rates
are more than an order of magnitude higher than the per-
nucleotide mutation rate in maize70.

Although population methylome modeling suggested that
genome-wide DNA methylation was not under strong selection,
we nonetheless show that regions harboring polymorphic
methylation contribute to functionally relevant phenotypic
variation. To prioritize loci likely exhibiting evolutionarily
relevant methylation variation, we identified individual DMRs.
These DMRs were enriched in likely functional sequence,
including regulatory regions near genes, putative enhancers,
and intergenic regions showing evidence of chromatin inter-
actions. We further identified several dozen genes that are
differentially expressed between maize and teosinte, for which
exonic regions directly interact with maize hypo-DMRs. We
also found a strong enrichment of DMRs in regions targeted by
recent positive selection. Patterns of LD between DMRs and
nearby SNPs make it difficult to assign causality, i.e., the DMRs
associated with the flowering time traits may not be the causal
variants, but are consistent with the idea that many DMRs are
the result of genetic changes, consistent with previous
studies7,20. Taken together, these results suggest that methyla-
tion might modulate physical interactions and hence likely
affect gene expression. This idea fits well with previous results
from a genome-wide association study that 80% of the
explained variation could be attributable to trait-associated
variants located in regulatory regions71. In total, our DMR
results provide a list of candidate genes to be further tested,
especially those found in selective sweeps and interacting
regions. To tease apart real DMR–phenotype associations from
false, future efforts should focus on genotyping the methylation
status of such loci across mapping populations while modeling
SNP and DMR associations with phenotypes jointly.

In addition to our genome-wide approaches that identify a
large number of population-wide DMRs, we also conducted
functional validation at two well-studied candidate loci vgt1 and
tb1. In both cases, our evidence showed that methylation affects
physical interactions between the gene and intergenic regulatory
regions. In particular, the maize alleles having low methylation
levels exhibit interactive loops and increased expression of the
downstream gene compared to highly methylated alleles in
teosinte.

Collectively, our results suggest a meaningful functional role
for methylation variation in maize. Genome-wide variation in
methylation shows signs of weak natural selection and regions
exhibiting variation explain considerable phenotypic variation.
We also identify a large number of DMRs, many of which overlap
with signals of selection during maize domestication and
improvement, as well as regions of the genome important for
chromatin interaction. These results suggest that further investi-
gation of the role of methylation in affecting genome-wide pat-
terns of chromatin interaction and gene regulation is warranted,
and that naturally occurring DMRs may provide a useful source
of regulatory variation for crop improvement.

Methods
Plant materials and DNA sequencing. We obtained a set of geographically
widespread open pollinated landraces across Mexico (N= 17) from Germplasm
Resources Information Network (Supplementary Data 1). The teosinte (Z. mays
ssp. parviglumis; N= 20) were collected near Palmar Chico, Mexico30. We har-
vested the third leaf of the teosintes and Mexican landraces at the third leaf stage
for DNA extraction using a modified CTAB procedure72. The extracted DNA was
then sent out for whole-genome sequencing (WGS) and WGBS using Illumina
HiSeq platform. In addition, we obtained WGBS data for 14 modern maize inbred
lines6 and WGS data for the same 14 lines from the maize HapMap3 project31.

Sequencing data analysis. The average coverage for the WGS of the 20 teosintes
and 17 landraces lines was about 20×. For these WGS data, we first mapped the
cleaned reads to the B73 reference genome (AGPv4)73 using BWA-mem74 with
default parameters, and kept only uniquely mapped reads. Then we removed the
duplicated reads using Picard tools75. We conducted SNP calling using Genome
Analysis Toolkit’s (GATK, version 4.1) HaplotypeCaller76, in which the following
parameters were applied QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum <−12.5,
and ReadPosRankSum <−8.0.

To improve the WGBS mapping rate and decrease the mapping bias, we
replaced the B73 reference genome with filtered SNP variants using an in-house
developed software—pseudoRef (https://github.com/yangjl/pseudoRef).
Subsequently, we mapped reads to each corrected pseudo-reference genome using
Bowtie277 and kept only unique mapped reads. After filtering the duplicated reads,
we extracted methylated cytosines using the Bismark methylation extractor and
only retained sites with more than three mapped reads. The methylation level of
each base pair was determined by using the number of reads supporting cytosine
methylation divided by the total number of reads at each cytosine site78.

Population epigenetics modeling. Spontaneous epimutation changes (i.e., gain or
loss of cytosine methylation) exhibit higher rate than genomic mutation21,69. The
standard population genetic methods designed for SNPs are thus inappropriate for
population epigenetic studies. Here, we applied the analytical framework for
hypermutable polymorphisms developed by Charlesworth and Jain23. Under this
framework, the probability density of the methylated alleles was modeled as

ϕ qð Þ ¼ Ceγq 1� qð Þα�1qβ�1 ð1Þ

where α= 4Neμ, β= 4Nev, and γ= 4Nes. Ne is the effective population size, q the
frequency of the hypermethylation alleles, µ the forward epimutation rate
(methylation gain), ν the backward epimutation rate (methylation loss), and s the
selection coefficient. The constant C is required so that

R 1
0ϕ qð Þdq ¼ 1.

We defined a 100 bp tile as a DNA methylation locus. To define the methylation
status, we assumed that the methylation levels in a heterozygote individual falling
into three mixture distributions (unmethylated, methylated, and heterozygote
distributions). We employed an R add-on package “mixtools” and fitted the
“normalmixEM” procedure to estimate model parameters38. Based on the
converged results of the iterative expectation maximization algorithm (using the
“normalmixEM” function), we decided to use 0.7 and 0.3 thresholds for
heterozygote individuals (i.e., average methylation value >0.7 for a 100 bp tile was
determined as a methylated call and coded as 2; <0.3 was determined as an
unmethylated call and coded as 0; otherwise coded as 1). We also tested different
cutoffs and found that the final methylation site frequency spectrum (mSFS) was
insensitive to the cutoffs used. Similarly, we assumed two mixture distributions for
inbred lines and used cutoff= 0.5 to determine methylated (coded as 1) and
unmethylated (coded as 0) calls. With these cutoffs, we then constructed mSFS on
genome-wide methylation loci. We also constructed interspecific (i.e., across maize,
landrace, and teosinte populations) and intraspecific (i.e., within maize, landrace,
and teosinte populations) mSFS.

To estimate three critical population epigenetic parameters (µ, ν, and s) from
observed mSFS, we implemented a MCMC method (http://rpubs.com/rossibarra/
mcmcbc). In the analyses, we selected a set of Ne= 50,000, 100,000, 500,000, and
1,000,00039,40,79,80. To test the prior values on the posterior distributions, we
sampled µ, ν, and s from exponential proposal distributions with different prior
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values of 102, 104, 105, 108, and 1010 (Supplementary Fig. 8a) and lambda values of
the scaled proposal distribution of 0.01, 0.05, and 0.1 (Supplementary Fig. 8b). We
ran the model using a chain length of N= 1,000,000 iterations with the first 20% as
burnin.

Genome scanning to detect selective signals. We called SNPs using our WGS
data and performed genome scanning for selective signals using XP-CLR method81.
In the XP-CLR analysis, we used a 50 kb sliding window and a 5 kb step size. To
ensure comparability of the composite likelihood score in each window, we fixed
the number assayed in each window to 200 SNPs. We evaluated evidence for
selections across the genome in three contrasts teosinte vs landrace, landrace vs.
modern maize, and teosinte vs. modern maize. We merged nearby windows falling
into the 10% tails into the same window. After window merging, we considered the
0.5% outliers as the targets of selection.

We calculated FST using WGS data using VCFtools82. In the analysis, we used a
50 kb sliding window and a 5 kb step size.

DMRs detection and GO term analysis. We used a software package’metilene’ for
DMR detection between two populations44. To call a DMR, we required it con-
tained at least eight cytosine sites with <300 bp in distance between two adjacent
cytosine sites, and the average of methylation differences between two populations
should be >0.4 for CG and CHG sites. Finally, we required a corrected P-value <
0.01 as the cutoff.

We conducted GO term analysis on selected gene lists using AgriGO2.0 with
default parameters83. We used the significance cutoff at P-value < 0.01.

LD analysis between DMR and local SNPs. To test the relationship between
DMRs and selective sweeps, we conducted LD analysis using SNPs located 1 kb
upstream and downstream of each DMR. A DMR was determined as in LD if there
are at least three SNPs displayed significant correlations with this DMR (one-sided
permutation P-value < 0.01).

HiChIP sequencing library construction. We constructed the teosinte HiChIP
library according to the protocol developed by Mumbach et al.84 with some
modifications. The samples we used were two weeks aerial tissues collected from a
teosinte accession (Ames 21809) that were planted in the growth chamber under
the long-day condition (15 h day time and 9 h night time) at the temperature
(25 °C at day time and 20 °C at night time). After tissue collection, we immediately
cross-linked it in a 1.5 mM EGS solution (Thermo, 21565) for 20 min in a vacuum,
followed by 10 min vacuum infiltration using 1% formaldehyde (Merck, F8775-
500ML). To quench the EGS and formaldehyde, we added a final concentration of
150 mM glycine (Merck, V900144) and infiltrated by vacuum for 5 min. Then,
cross-linked samples were washed five times in double-distilled water and flash-
frozen in liquid nitrogen.

To isolate the nuclear from cross-linked tissues, we first removed chloroplast
and other cell debris, resuspended it in 0.5% SDS, used 10% Triton X-100 to
quench it, and then performed digestion, incorporation, and proximity ligation
reactions33. We used two antibodies H3K4me3 (Abcam, ab8580) and H3K27ac
(Abcam, ab4729) to pull down the DNA. Then, we purified DNA with the
MinElute PCR Purification Kit (QIAGEN, catalog number 28006) and measured
the DNA concentration using Qubit. To fragment and capture interactive loops, we
used the Tn5 transposase kit (Vazyme, TD501) to construct the library. We then
sent the qualified DNA libraries for sequencing using the Illumina platform.

Chromatin immunoprecipitation sequencing and HiChIP data analysis. We
obtained chromatin immunoprecipitation sequencing data from the B73 shoot
tissue33 and then aligned the raw reads to B73 reference genome (AGPv4) using
Bowtie285. After alignment, we removed the duplicated reads and kept only the
uniquely mapped reads. By using the uniquely mapped reads, we calculated read
coverages using deepTools86.

For the teosinte HiChIP sequencing data, we first aligned the raw reads to the
B73 reference genome (AGPv4) using HiC-Pro87, and then processed the valid read
pairs to call interactive loops using hichipper pipeline88 with a 5 kb bin size. After
the analysis, we filtered out the non-valid loops with genomic distance <5 kb or >2
Mb. By using the mango pipeline89, we determined the remaining loops with three
read pairs supports and the false discovery rate <0.01 as the significant
interactive loops.

4C-seq library construction and data analysis. To validate the physical inter-
action between tb1-DMR and tb1 gene, we performed 4C-seq experiments using
landrace samples. We constructed the 4C-seq libraries using restriction enzymes of
NlaIII and DpnII. The primer sequences for the tb1 bait region were 5′-CGAA
GTCTCTGAGTATGATC-3′ (forward) and 5′-GGGTTCAAAGCACCAACAG
T-3′ (reverse). After sequencing, we aligned the reads to the B73 reference genome
and then processed the uniquely mapped reads using 4C-ker program90.

Kinship matrices and variance components analysis. We estimated the variance
components explained by SNP sets residing in DMRs using the maize nested

association mapping (NAM) population91,92. We downloaded the phenotypic data
(/iplant/home/glaubitz/RareAlleles/genomeAnnos/VCAP/phenotypes/NAM/famil-
yCorrected), consisting of Best Linear Unbiased Predictors for different traits42,
and imputed genotypic data (/iplant/home/glaubitz/RareAlleles/genomeAnnos/
VCAP/genotypes/NAM/namrils_projected_hmp31_MAF02mnCnt2500.hmp.txt.
gz)31 from CyVerse database as described in Panzea (www.panzea.org).

In the analysis, we mapped SNPs to the invariable hypermethylated, invariable
hypomethylated, rarely methylated, rarely unmethylated, and high-frequency
variable methylated regions. For each SNP set, we calculated an additive kinship
matrix using the variance component annotation pipeline implemented in
TASSEL593. We then fed these kinship matrices along with the NAM phenotypic
data to estimate the variance components explained by SNP sets using a residual
maximum likelihood method implemented in LDAK43.

Dual-LUC transient expression assay in maize protoplasts. To investigate the
effect of DMRs on gene expression, we performed a dual-LUC transient expression
assay in maize protoplasts. We used the pGreen II 0800-LUC vector94 for the
transient expression assay with minor modification, where a minimal promoter
from cauliflower mosaic virus (mpCaMV) was inserted into the upstream of LUC
to drive LUC gene transcription. In the construct, we employed the Renillia luci-
ferase (REN) gene under the control of 35S promoter from cauliflower mosaic virus
(CaMV) as an internal control to evaluate the efficiency of maize protoplasts
transformation. We amplified the selected DMR sequences after B73 and then
inserted them into the control vector at the restriction sites KpnI/XhoI upstream of
the mpCaMV, generating the reporter constructs.

We planted B73 in the growth chamber and kept the plants in the darkness
at the temperature of about 20 °C (night) and 25 °C (day) to generate etiolated
plants. Protoplasts were isolated from the 14-day-old leaves of B73 etiolated
seedlings following the protocol95. Subsequently, we transformed 15 μg plasmids
into the 100 ul isolated protoplasts using polyethylene glycol (PEG)
mediated transformation method95. After 16 h infiltration, we measured the
LUC and REN activities using dual-LUC reporter assay reagents (Promega,
USA) and a GloMax 20/20 luminometer (Promega, USA). Finally, we calculated
the ratios of LUC to REN. For each experiment, we included five biological
replications.

Experimental validation of the tb1-DMR. We performed Chop-PCR to validate
DNA methylation at tb1-DMR locus in different tissues of modern maize inbred
line W22 and teosinte 8759. We collected the leaf tissue at the third leaf stage and
immature ears of ≈5 cm in length. To evaluate the methylation level of tb1-DMR
locus, we treated 1 µg purified genomic DNA using the EpiJETTM DNA Methy-
lation Analysis Kit (MspI/HpaII) (Thermo Scientific, K1441) following manu-
facturer’s instructions. The primer sequences for PCR were 5′-ACACGCACGA
AGGGTTACAG-3′ (forward) and 5′-CAGTGCTCCCTGGGTCAAA-3′ (reverse).

Statistical analyses. We performed all the statistical analyses using R software
(V3.6.2, https://www.r-project.org/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and
its Supplementary Information files. A reporting summary for this article is available as
a Supplementary Information file. The datasets and plant materials generated and
analyzed during the current study are available from the corresponding author upon
request. All datasets generated in this study have been uploaded to the Gene Expression
Omnibus database and can be retrieved through accession number GSE145586. Source
data are provided with this paper.

Code availability
The code used for the analyses are available at GitHub [https://github.com/jyanglab/
msfs_teo].

Received: 25 March 2020; Accepted: 8 October 2020;

References
1. Sánchez-Romero, M. A., Cota, I. & Casadesús, J. DNA methylation in bacteria:

from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16
(2015).

2. Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6,
597–610 (2005).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19333-4

10 NATURE COMMUNICATIONS |         (2020) 11:5539 | https://doi.org/10.1038/s41467-020-19333-4 | www.nature.com/naturecommunications

http://www.panzea.org
https://www.r-project.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145586
https://github.com/jyanglab/msfs_teo
https://github.com/jyanglab/msfs_teo
www.nature.com/naturecommunications


3. Arand, J. et al. In vivo control of CpG and non-CpG DNA methylation by
DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).

4. Alonso, C., Perez, R., Bazaga, P. & Herrera, C. M. Global DNA cytosine
methylation as an evolving trait: phylogenetic signal and correlated evolution
with genome size in angiosperms. Front Genet. 6, 4 (2015).

5. Niederhuth, C. E. et al. Widespread natural variation of DNA methylation
within angiosperms. Genome Biol. 17, 194 (2016).

6. Li, Q. et al. Examining the causes and consequences of context-specific
differential DNA methylation in maize. Plant Physiol. 168, 1262–1274 (2015).

7. Schmitz, R. et al. Patterns of population epigenomic diversity. Nature 495,
193–198 (2013).

8. Zhang, H. M., Lang, Z. B. & Zhu, J. K. Dynamics and function of DNA
methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

9. Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic
variation for crop improvement. Nat. Rev. Genet. 18, 563–575 (2017).

10. Deniz, Ö., Frost, J. M. & Branco, M. R. Regulation of transposable elements by
DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).

11. Seymour, D. K. & Becker, C. The causes and consequences of DNA
methylome variation in plants. Curr. Opin. Plant Biol. 36, 56–63 (2017).

12. Dorweiler, J. E. et al. mediator of paramutation1 is required for establishment
and maintenance of paramutation at multiple maize loci. Plant Cell 12,
2101–2118 (2000).

13. Li, Q. et al. Genetic perturbation of the maize methylome. Plant Cell 26,
4602–4616 (2014).

14. Fu, F. F., Dawe, R. K. & Gent, J. I. Loss of RNA-directed DNA methylation in
maize chromomethylase and DDM1-type nucleosome remodeler mutants.
Plant Cell 30, 1617–1627 (2018).

15. Shen, Y. T. et al. DNA methylation footprints during soybean domestication
and improvement. Genome Biol. 19, 1–14 (2018).

16. Hernando-Herraez, I., Garcia-Perez, R., Sharp, A. J. & Marques-Bonet, T.
DNA methylation: insights into human evolution. PLoS Genet. 11, e1005661
(2015).

17. Kader, F. & Ghai, M. DNA methylation-based variation between human
populations. Mol. Genet. Genomics 292, 5–35 (2017).

18. Manning, K. et al. A naturally occurring epigenetic mutation in a gene
encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat.
Genet. 38, 948–952 (2006).

19. Cortijo, S. et al. Mapping the epigenetic basis of complex traits. Science 343,
1145–1148 (2014).

20. Eichten, S. R. et al. Epigenetic and genetic influences on DNA methylation
variation in maize populations. Plant Cell 25, 2783–2797 (2013).

21. Van der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of
spontaneous epimutations. Proc. Natl Acad. Sci. USA 112, 6676–6681 (2015).

22. Shahryary, Y. et al. AlphaBeta: computational inference of epimutation rates
and spectra from high-throughput DNA methylation data in plants. Genome
Biol. 21, 260 (2020).

23. Charlesworth, B. & Jain, K. Purifying selection, drift, and reversible mutation
with arbitrarily high mutation rates. Genetics 198, 1587–1602 (2014).

24. Vidalis, A. et al. Methylome evolution in plants. Genome Biol. 17, 264 (2016).
25. Stitzer, M. C. & Ross-Ibarra, J. Maize domestication and gene interaction. New

Phytol. 220, 395–408 (2018).
26. Gates, D. J. et al. Single-gene resolution of locally adaptive genetic variation in

Mexican maize. Preprint at https://doi.org/10.1101/706739 (2019).
27. Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize

adaptation to temperate North America. Science 357, 512–515 (2017).
28. Navarro, J. A. R. et al. A study of allelic diversity underlying flowering-time

adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).
29. Teixeira, J. et al. Hallauer’s Tuson: a decade of selection for tropical-to-

temperate phenological adaptation in maize. Heredity 114, 229–240 (2015).
30. Yang, C. J. et al. The genetic architecture of teosinte catalyzed and constrained

maize domestication. Proc. Natl Acad. Sci. USA 116, 5643–5652 (2019).
31. Bukowski, R. et al. Construction of the third-generation Zea mays haplotype

map. Gigascience 7, gix134 (2017).
32. Lemmon, Z. H., Bukowski, R., Sun, Q. & Doebley, J. F. The role of cis

regulatory evolution in maize domestication. PLoS Genet. 10, e1004745
(2014).

33. Li, E. et al. Long-range interactions between proximal and distal regulatory
regions in maize. Nat. Commun. 10, 2633 (2019).

34. Wulfridge, P., Langmead, B., Feinberg, A. P. & Hansen, K. D. Choice of
reference genome can introduce massive bias in bisulfite sequencing data.
Nucleic Acid Res. 47, e117 (2019).

35. Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis
ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438–446
(2016).

36. Zhang, Y. et al. Differentially regulated orthologs in sorghum and the
subgenomes of maize. Plant Cell 29, 1938–1951 (2017).

37. West, P. T. et al. Genomic distribution of H3K9me2 and DNA methylation in
a maize genome. PLoS ONE 9, e105267 (2014).

38. Benaglia, T., Chauveau, D. S., Hunter, D. R. & Young, D. S. mixtools: An R
package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).

39. Ross-Ibarra, J., Tenaillon, M. & Gaut, B. S. Historical divergence and gene flow
in the genus Zea. Genetics 181, 1397–1409 (2009).

40. Beissinger, T. M. et al. Recent demography drives changes in linked selection
across the maize genome. Nat. Plants 2, 1–7 (2016).

41. Hahn, M. W.Molecular Population Genetics (Sinauer Associates/Oxford Univ.
Press, 2018).

42. Wallace, J. G. et al. Association mapping across numerous traits reveals
patterns of functional variation in maize. PLoS Genet. 10, e1004845 (2014).

43. Speed, D., Hemani, G., Johnson, M. R. & Balding, D. J. Improved heritability
estimation from genome-wide SNPs. Am. J. Hum. Genet. 91, 1011–1021
(2012).

44. Jühling, F. et al. metilene: fast and sensitive calling of differentially methylated
regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).

45. Sun, Y. et al. 3D genome architecture coordinates trans and cis regulation of
differentially expressed ear and tassel genes in maize. Genome Biol. 21, 1–25
(2020).

46. Zhang, M. et al. Extensive, clustered parental imprinting of protein-coding
and noncoding RNAs in developing maize endosperm. Proc. Natl Acad. Sci.
USA 108, 20042–20047 (2011).

47. Zemach, A. et al. Local DNA hypomethylation activates genes in rice
endosperm. Proc. Natl Acad. Sci. USA 107, 18729–18734 (2010).

48. Gardiner, L. J. et al. A genome-wide survey of DNA methylation in hexaploid
wheat. Genome Biol. 16, 273 (2015).

49. Song, Q., Zhang, T., Stelly, D. M. & Chen, Z. J. Epigenomic and functional
analyses reveal roles of epialleles in the loss of photoperiod sensitivity during
domestication of allotetraploid cottons. Genome Biol. 18, 99 (2017).

50. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional
transposon insertion in the maize domestication gene tb1. Nat. Genet. 43,
1160–1163 (2011).

51. Zhao, D. P., Huang, Z. C., Umino, N., Hasegawa, A. & Kanamori, H.
Structural heterogeneity in the megathrust zone and mechanism of the 2011
Tohoku-oki earthquake (Mw 9.0). Geophys. Res. Lett. 38 (2011).

52. Sosso, D. et al. Seed filling in domesticated maize and rice depends on
SWEET-mediated hexose transport. Nat. Genet 47, 1489 (2015).

53. Sigmon, B. & Vollbrecht, E. Evidence of selection at the ramosa1 locus during
maize domestication. Mol. Ecol. 19, 1296–1311 (2010).

54. Whitt, S. R., Wilson, L. M., Tenaillon, M. I., Gaut, B. S. & Buckler, E. S.
Genetic diversity and selection in the maize starch pathway. Proc. Natl Acad.
Sci. USA 99, 12959–12962 (2002).

55. Candaele, J. et al. Differential methylation during maize leaf growth targets
developmentally regulated genes. Plant Physiol. 164, 1350–1364 (2014).

56. Galli, M. et al. The DNA binding landscape of the maize AUXIN RESPONSE
FACTOR family. Nat. Commun. 9, 1–14 (2018).

57. Xue, S., Bradbury, P. J., Casstevens, T. & Holland, J. B. Genetic architecture of
domestication-related traits in maize. Genetics 204, 99–113 (2016).

58. Li, Y. X. et al. Identification of genetic variants associated with maize flowering
time using an extremely large multi-genetic background population. Plant J.
86, 391–402 (2016).

59. Xu, C. et al. Genome-wide association study dissects yield components
associated with low-phosphorus stress tolerance in maize. Theor. Appl. Genet.
131, 1699–1714 (2018).

60. Li, C. H. et al. Numerous genetic loci identified for drought tolerance in the
maize nested association mapping populations. BMC Genomics 17, 894
(2016).

61. Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize
genome. Nat. Plants 5, 1237–1249 (2019).

62. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps
identified by STARR-seq. Science 339, 1074–1077 (2013).

63. Dong, Z. S. et al. A gene regulatory network model for floral transition of the
shoot apex in maize and its dynamic modeling. PLoS ONE 7, e43450 (2012).

64. Salvi, S. et al. Conserved noncoding genomic sequences associated with a
flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA 104,
11376–11381 (2007).

65. Hufford, M. B. et al. Comparative population genomics of maize
domestication and improvement. Nat. Genet. 44, 808–811 (2012).

66. Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin
reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113,
E3177–E3184 (2016).

67. Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates
using DNA and chromatin features in maize. Genome Biol. 18, 137 (2017).

68. Splinter, E., de Wit, E., van de Werken, H. J. G., Klous, P. & De Laat, W.
Determining long-range chromatin interactions for selected genomic sites
using 4C-seq technology: From fixation to computation. Methods 58, 221–230
(2012).

69. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana
methylome. Nature 480, 245–249 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19333-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5539 | https://doi.org/10.1038/s41467-020-19333-4 | www.nature.com/naturecommunications 11

https://doi.org/10.1101/706739
www.nature.com/naturecommunications
www.nature.com/naturecommunications


70. Jiao, Y. P. et al. Genome-wide genetic changes during modern breeding of
maize. Nat. Genet. 44, 812–815 (2012).

71. Li, X. R. et al. Genic and nongenic contributions to natural variation of
quantitative traits in maize. Genome Res. 22, 2436–2444 (2012).

72. Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular-weight
plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

73. Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and
dynamics. Science 326, 1112–1115 (2009).

74. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. Preprint at arXiv:13033997 (2013).

75. Picard toolkit. http://broadinstitute.github.io/picard/ (2019).
76. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303
(2010).

77. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biol. 10, R25 (2009).

78. Schultz, M. D., Schmitz, R. J. & Ecker, J. R. ‘Leveling’ the playing field for
analyses of single-base resolution DNA methylomes. Trends Genet. 28,
583–585 (2012).

79. Wang, H. et al. The origin of the naked grains of maize. Nature 436, 714–719
(2005).

80. Tian, F., Stevens, N. M. & Buckler, E. S. Tracking footprints of maize
domestication and evidence for a massive selective sweep on chromosome 10.
Proc. Natl Acad. Sci. USA 106, 9979–9986 (2009).

81. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for
selective sweeps. Genome Res. 20, 393–402 (2010).

82. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27,
2156–2158 (2011).

83. Tian, T. et al. agriGO v2.0: a GO analysis toolkit for the agricultural
community, 2017 update. Nucleic Acids Res. 45, W122–W129 (2017).

84. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-
directed genome architecture. Nat. Methods 13, 919–922 (2016).

85. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357 (2012).

86. Ramírez, F., Dündarm, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a
flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42,
W187–W191 (2014).

87. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data
processing. Genome Biol. 16, 259 (2015).

88. Lareau, C. A. & Aryee, M. J. hichipper: a preprocessing pipeline for calling
DNA loops from HiChIP data. Nat. Methods 15, 155–156 (2018).

89. Phanstiel, D. H., Boyle, A. P., Heidari, N. & Snyder, M. P. Mango: a
bias-correcting ChIA-PET analysis pipeline. Bioinformatics 31, 3092–3098
(2015).

90. Raviram, R. et al. 4C-ker: a method to reproducibly identify genome-wide
interactions captured by 4C-Seq experiments. PLoS Comput. Biol. 12,
e1004780 (2016).

91. Yu, J. M., Holland, J. B., McMullen, M. D. & Buckler, E. S. Genetic design and
statistical power of nested association mapping in maize. Genetics 178,
539–551 (2008).

92. Buckler, E. S. et al. The genetic architecture of maize flowering time. Science
325, 714–718 (2009).

93. Bradbury, P. J. et al. TASSEL: software for association mapping of complex
traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

94. Hellens, R. P. et al. Transient expression vectors for functional genomics,
quantification of promoter activity and RNA silencing in plants. Plant
Methods 1, 13 (2005).

95. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a
versatile cell system for transient gene expression analysis. Nat. Protoc. 2,
1565–1572 (2007).

Acknowledgements
J.Y. is supported by the Agriculture and Food Research Initiative Grant number 2019-
67013-29167 from the USDA National Institute of Food and Agriculture, the National
Science Foundation under award number OIA-1557417 for Center for Root and Rhi-
zobiome Innovation (CRRI), Institutional Development Award (IDeA) from the
National Institute of General Medical Sciences of the National Institutes of Health under
Grant number P20GM103476, and the University of Nebraska-Lincoln Start-up fund
and the Layman seed award. J.R.-I. is supported by NSF grant 1546719 and USDA Hatch
project CA-D-PLS-2066-H. This work was conducted using the Holland Computing
Center of the University of Nebraska-Lincoln Start-up, which receives supports from the
Nebraska Research Initiative. We thank Mike May for help in developing the MCMC
approach used here, the helpful discussion in J.R.-I.’s REHAB, and constructive sug-
gestions from anonymous reviewers.

Author contributions
J.Y. and J.R.-I. designed this work. J.L., Q.L., N.M.S., and D.W. generated the data. H.L.
and M.Z. produced the teosinte HiChIP libraries. G.X., J.R.-I., and J.Y. analyzed the data.
N.M.S. provided conceptual advice. J.Y., G.X., and J.R.-I. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19333-4.

Correspondence and requests for materials should be addressed to J.Y.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19333-4

12 NATURE COMMUNICATIONS |         (2020) 11:5539 | https://doi.org/10.1038/s41467-020-19333-4 | www.nature.com/naturecommunications

http://broadinstitute.github.io/picard/
https://doi.org/10.1038/s41467-020-19333-4
https://doi.org/10.1038/s41467-020-19333-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Evolutionary and functional genomics of DNA methylation in maize domestication and improvement
	Results
	Genomic distribution of methylation in maize and teosinte
	Genome-wide methylation is only under weak selection
	Regions with variable methylation contribute to phenotypic variation
	Population level DMRs are enriched in selective sweeps
	Hypomethylated regions in maize are associated with interacting loops
	DMRs associated with flowering time variation
	A segregating tb1-DMR acts like a cis-acting element

	Discussion
	Methods
	Plant materials and DNA sequencing
	Sequencing data analysis
	Population epigenetics modeling
	Genome scanning to detect selective signals
	DMRs detection and GO term analysis
	LD analysis between DMR and local SNPs
	HiChIP sequencing library construction
	Chromatin immunoprecipitation sequencing and HiChIP data analysis
	4C-seq library construction and data analysis
	Kinship matrices and variance components analysis
	Dual-LUC transient expression assay in maize protoplasts
	Experimental validation of the tb1-DMR
	Statistical analyses

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




