
Lawrence Berkeley National Laboratory
LBL Publications

Title
Multi-objective optimization with an integrated electromagnetics and beam dynamics
workflow

Permalink
https://escholarship.org/uc/item/4km5k8qj

Authors
Bizzozero, David A
Qiang, Ji
Ge, Lixin
et al.

Publication Date
2021-12-01

DOI
10.1016/j.nima.2021.165844

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4km5k8qj
https://escholarship.org/uc/item/4km5k8qj#author
https://escholarship.org
http://www.cdlib.org/

Multi-Objective Optimization With an Integrated Electromagnetics
and Beam Dynamics Workflow

David A. Bizzozeroa, Ji Qianga, Lixin Geb, Zenghai Lib, Cho-Kuen Ngb, Liling Xiaob

aLawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
bSLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA

Abstract

In particle accelerators, RF cavities are used to accelerate charged particle beams to designed high energy for physical applications.
In a typical accelerator design, the optimization of RF cavities and the optimization of beam dynamics are carried out in separate
studies. For a more general and unrestricted accelerator design, a coupled optimization of the RF cavities and the beam parameters
is required. For this coupled optimization problem, we have developed an integrated electromagnetics and beam dynamics work-
flow management system. Within this system, the geometries for a set of cavity components are first adjusted; the field modes are
then computed with an electromagnetics program, and imported into a beam dynamics program for beam dynamics simulation.
This workflow is encapsulated into a parallel multi-objective optimizer to achieve the integrated accelerator design optimization.
A multi fidelity s trategy i s d eveloped t o i mprove t he s peed o f t he o ptimizer. T his i ntegrated g lobal o ptimization c apability is
illustrated using a photoinjector design example and yields an improved design.

1. Introduction1

In previous studies, optimization of accelerator components and lattices have been done separately in a set of2

isolated optimizations. For example, in current injector optimization, accelerator components (e.g. RF cavities)3

are individually shape-optimized for performance subject to general requirements such as peak surface field, shunt4

impedance, and resonant frequency. Once these components’ shapes are determined, beam dynamics simulations5

optimize around other output parameters such as bunch length and transverse emittance by adjusting the injector6

lattice parameters such as the amplitude and phase of the driving fields. However, this form of beam dynamics7

optimization is restricted by the fixed geometrical shape and field profile of the components.8

While this form of sequential optimization may yield reasonable results, it will optimize locally only on a subset9

of the input parameter space at a time. By contrast, in end-to-end global optimization, all input parameters ranging10

from the photocathode geometric shape parameters (e.g. cathode tip radius of curvature), to the lattice phases and11

amplitudes can be adjusted simultaneously. The global optimization of input parameters will always yield a solution12

set of inputs at least as good as those obtained by sequential optimization provided enough iterations.13

In this paper, we have developed a systematic integrated workflow management system, titled A3PI (ACE3P with14

IMPACT), written in Python which interfaces various programs with genetic algorithms and built-in parallelism to15

perform integrated global multi-objective optimization on high performance computing (HPC) systems.16

In the following sections, after the Introduction, we present the integrated electromagnetics and beam dynamics17

workflow in Section II; we discuss the multi-objective global optimization with an integrated workflow in Section III;18

1

we illustrate the multi-objective global optimization in a photoinjector application example in Section IV; and lastly19

we draw conclusions in Section V.20

2. Integrated Electromagnetics and Beam Dynamics Workflow21

2.1. ACE3P Overview22

The parallel finite element electromagnetics modeling suite: ACE3P, was developed for accelerator cavity and23

structure design including integrated multi-physics effects in electromagnetic, thermal, and mechanical characteristics.24

The electromagnetic modules are discretized in the frequency domain and time domain for the computational volume25

inside an accelerator cavity. The thermal and mechanical solvers are formulated in the frequency domain for the26

computational volume of the cavity walls and their surroundings. Six simulation modules have been developed in27

ACE3P to address different physics aspects of accelerator applications [1, 2, 3]. The modeling capabilities of each28

ACE3P module [4] are summarized as follows:29

1. Omega3P is an electromagnetic eigensolver in the frequency domain for calculating the resonant modes and30

their damping in accelerator cavities.31

2. S3P is an electromagnetic solver in the frequency domain for determining the transmission of electromagnetic32

fields in open accelerator structures.33

3. Track3P is a particle tracking code in the time domain for tracing electrons in accelerator structures under the34

influence of external static or dynamic electromagnetic fields for studying multipacting and dark current.35

4. T3P is a time domain solver for the computation of wakefield excited by a charged particle beam and for36

studying transient effects from external electromagnetic excitations.37

5. Pic3P is a full-wave particle-in-cell solver in the time domain for simulations of space-charge dominated de-38

vices.39

6. TEM3P is a multi-physics module consisting of thermal and mechanical solvers for the analysis of integrated40

electromagnetic, thermal, and mechanical effects in accelerator cavities and structures.41

In addition to these application modules, preprocessing tools for handling mesh formats and evaluating mesh entity42

statistics, postprocessing tools for visualization and analysis of simulation results, as well as a cavity shape optimiza-43

tion tool [5] have also been implemented.44

2.2. IMPACT Overview45

The IMPACT code is a parallel particle-in-cell code suite for modeling high intensity, high brightness beams in46

RF proton linacs, electron linacs, and photoinjectors [6, 7, 8, 9, 10, 11, 12]. It consists of two parallel particle-in-cell47

tracking codes: IMPACT-Z and IMPACT-T. The former uses longitudinal position as the independent variable and48

allows for efficient particle advance over large distances as in an RF linac, and the latter uses time as the independent49

variable and is needed to accurately model systems with strong space-charge as in photoinjectors. Additionally, the50

IMPACT suite contains an RF linac lattice design code, an envelope matching and analysis code, and a number of pre-51

and post-processing codes.52

Both parallel particle tracking codes assume a quasi-electrostatic model of the beam (i.e. electrostatic self-fields53

in the beam frame, possibly with energy binning for a beam with large energy spread) and compute space-charge54

effects self-consistently at each time step together with the external acceleration and focusing fields. The 3D Poisson55

equation is solved in the beam frame at each step of the calculation. The resulting electrostatic fields are Lorentz-56

transformed back to the laboratory frame to obtain the electric and magnetic self-forces acting on the beam. There57

are six Poisson solvers in the IMPACT suite, corresponding to transverse open or closed boundary conditions with58

a round or rectangular pipe shape, and longitudinal open or periodic boundary conditions. These solvers use either59

a spectral method for closed transverse boundary conditions, or a convolution-based Green’s function method for60

open transverse boundary conditions. The convolution for the most widely used open boundary condition Poisson61

solver is calculated using an FFT with a doubled computational domain. The computing time of this solver scales62

as N log(N), where N is the number of grid points. The parallel implementation includes both a 2D domain de-63

composition approach for the 3D computational domain and a particle-field decomposition approach to provide the64

optimal parallel performance for different applications on modern supercomputers such as the Knights Landing (KNL)65

2

compute nodes on Cori@NERSC [13]. In addition to the fully 3D space-charge capability, the IMPACT suite also66

includes detailed modeling of beam dynamics in RF cavities (via field maps or z-dependent transfer maps including67

RF focusing/defocusing), various magnetic focusing elements (solenoid, dipole, quadrupole, etc), allowance of arbi-68

trary overlap of external fields (3D and 2D), structure and coherent synchrotron radiation (CSR) wakefields, tracking69

of multiple charge states, tracking multiple bin/bunches, an analytical model for laser-electron interactions inside an70

undulator, and capabilities for machine error studies and correction.71

2.3. A3PI Workflow Overview72

The integrated electromagnetics and beam dynamics workflow, A3PI, management system manages a workflow73

for optimization and interfaces several component codes including: Cubit [14], ACE3P [4, 15], and IMPACT [16, 17,74

18].75

A schematic of the integrated workflow is shown in Figure 1. Here, the A3PI is used to automate a chain of tasks76

such as: (1) run Cubit to generate the geometry of an accelerator cavity, (2) run Acdtool (a subprogram of ACE3P) to77

convert the output mesh from Cubit to a format suitable for ACE3P, (3) run Omega3P to compute eigenmodes of the78

meshed geometry, (4) run Acdtool again to extract the modal fields on a Cartesian grid for use in IMPACT, and (5)79

run IMPACT with the external fields provided.80

Cubit

Acdtool Meshconvert

Omega3P

Acdtool Postprocess RF

IMPACT

Workflow Setup File

Global parameters

• Geometry parameters

• Mesh parameters

• Eigenmode parameters

• Initial bunch parameters

• Lattice parameters

Optional postprocessing

A3PI Single-Run Workflow

Figure 1. Example layout of a setup of A3PI to run a chain of tasks given a set of run parameters. The A3PI code will automatically generate input
files for the component codes and run them sequentially.

Thus, A3PI can encapsulate the workflow as a single function evaluation where various parameters are the inputs81

and the IMPACT particle data are the outputs. Depending on the complexity of the desired workflow, the setup file82

of A3PI can be quite long as it contains all necessary information to run each code individually. However, A3PI is83

modular in that if a given component code (e.g. Cubit) isn’t necessary, its section can be omitted in the setup file. The84

advantage to this approach is that A3PI can use the ConfigParser utility in Python to replace necessary values for each85

input file automatically. For example, if the length of a cavity is set up as a variable, then A3PI can automatically86

replace the appropriate values across various codes, such in the Cubit input file as well as in the lattice section for87

IMPACT.88

2.4. Cubit and Mesh Conversion in A3PI89

To run Cubit, a journal file must be provided which contains the instructions on how to generate a specific geometry90

(e.g. photocathode cavity).This journal file can be edited automatically by A3PI to update specific parameters before91

creating a mesh. For example, a user can create a generic geometry in Cubit and save it to a journal file. Then a92

3

93 keyword-value pair can be set up in the A3PI configuration file to replace a variable definition in the Cubit journal file
so that updated values can be seamlessly inserted into the journal file prior to running Cubit.94

After Cubit finishes meshing the geometry with the desired parameters, the ACE3P helper code: Acdtool, can95

be used to convert this mesh format into a NetCDF file for use in Omega3P. This NetCDF file can also be read-into96

MATLAB [23] for postprocessing visualization with some additional A3PI tools.97

2.5. Omega3P and RF Postprocessing in A3PI98

Next, Omega3P can be used to find eigenmodes with various settings from the formatted tetrahedral mesh from99

Acdtool. Typically, only the fundamental mode is used in accelerator design but other high-order-modes (HOMs)100

can be computed as well to study other effects. The A3PI workflow interfaces with Omega3P by creating an input101

file based on the geometry provided and other user specifications such as the finite element method (FEM) order and102

boundary conditions for particular surfaces.103

Once a given set of eigenmodes are computed for the input geometry, the modal fields are interpolated along a 3D104

Cartesian grid centered along the beam axis. This is done since the beam dynamics simulation only requires fields in105

the neighborhood of the particle bunches’ trajectory and greatly reduces the input field file size required for IMPACT.106

This Cartesian field interpolation procedure is done with Acdtool and uses the openPMD [19] standard with the HDF5107

file format. The result is a set of 4 field files per eigenmode containing the real and imaginary parts of the electric and108

magnetic fields.109

2.6. IMPACT in A3PI110

For the final section of the workflow, IMPACT is used for a beam dynamics simulation using the fields computed111

from the earlier steps. The input settings for Impact are divided into two parts: the initial beam parameters, and the112

accelerator lattice. The A3PI workflow can interface with these sections and automatically generate Impact-formatted113

input files. Also, A3PI can perform phase scanning for a given IMPACT simulation by optimizing phases for each114

lattice element; this is based on existing IMPACT code but has been fully integrated into A3PI.115

Once a given IMPACT simulation is complete, the resulting output files are then parsed by A3PI to determine final116

quantities of interest including: beam energy, bunch size, bunch emittance, and so forth. This parsed data is used as117

the output when a A3PI workflow is used as a function evaluation while the various input parameters used throughout118

the workflow are the function inputs.119

3. Multi-Objective Optimization120

3.1. Overview121

In the previous section, we discussed how to set up A3PI to run a single chain of tasks for a given set of parameters.122

The next step is to use this workflow as a black-box function to optimize a set of input parameters with respect to123

desired output quantities of interest. The problem of optimization can be stated in the general mathematical form as:124

min

f1(x⃗)
· · ·

fk(x⃗)
subject to gi(x⃗) ≤ 0, hi(x⃗) = 0,

where f1, · · · , fk are k objective functions to be optimized, x⃗ ∈ X ⊆ Rn is a vector of n control parameters, and gi125

and hi are constraints to the optimization. The goal of multi-objective optimization is to find the Pareto-optimal front126

in the objective function solution space. The Pareto-optimal front is a collection of non-dominated solutions in the127

whole feasible solution space. Any other solution in the feasible solution space will be dominated by those solutions128

on the Pareto-optimal front. In the multi-objective optimization, a solution A is said to dominate a solution B if all129

components of A are at least as good as those of B (with at least one component strictly better). Here, a component of130

A corresponds to one objective function value, i.e. Ai = fi(x⃗). The solution A is non-dominated if it is not dominated131

by any solution within the group.132

For the multi-objective optimization in A3PI, we use the DEAP [20] Python library to set up a genetic algorithm;133

we opt to use NSGA-II but there are other algorithms to choose from for various types of problems. Our aim was to134

set up A3PI as an integrated workflow manager and additional algorithms can be added with minor efforts.135

4

While we could simply wrap a multi-objective optimizer around the A3PI workflow, if the individual workflow136

evaluations are costly, convergence to a Pareto front may take a very long time. To further parallelize A3PI, we use137

the libEnsemble [21] Python library to assist with the task distribution to multiple nodes in an HPC environment. One138

particular challenge is that the tasks within the A3PI workflow may use varying amounts of resources: Omega3P in139

particular has a large memory footprint to accurately solve for eigenmode fields. Thus, by using libEnsemble, A3PI140

can efficiently distribute tasks to computing resources for the optimization cycle.141

To set up A3PI for use with DEAP and libEnsemble, an additional section is added to the A3PI setup file which142

contains optimization parameters such as population size, mutation parameters, etc. in addition to the libEnsemble-143

specific options desired. When A3PI is called with these additional settings, a manager process distributes a single-run144

workflow, as in Figure 1, to different “worker” folders for parallel evaluation. The choice of input parameters from145

the manager process is passed to each worker and the workflow is evaluated; the output quantities of interest from the146

workers are then returned to the manager process for mutation in choosing the next population generation. When the147

desired convergence is achieved or a maximum number of evaluations is performed, the manager process returns the148

results of the optimization. An overview diagram of the optimization hierarchy is shown in Figure 2.149

A3PI Optimization Workflow

Single-Run
Evaluations

Optimization
Manager

A3PI Top Level
Manager

A3PI
Manager
Process

LibEnsemble
Manager

A3PI Single-
Run

Workflow

A3PI Single-
Run

Workflow

A3PI Single-
Run

Workflow

DEAP NSGA-
II OptimizerPopulation output

Population input

User-
specified
Input File

Single Batch Run

…

Figure 2. Example layout of a setup of A3PI to run a chain of tasks given a set of run parameters. A user supplies an input file (top right), then A3PI
manager (top left) will automatically allocate resources for the component codes. The optimization cycle (middle row) uses the DEAP optimizer
to select input parameters and the libEnsemble manager to create and execute single-run workflows. Each single-run evaluation (bottom row) is
performed in parallel while the tasks within each run are sequential.

3.2. Optional Field Interpolation150

Since Omega3P typically uses substantially more resources, roughly 10 times as many compute nodes, as the other151

components in the A3PI workflow task chain, we designed an interpolation method to approximate the Omega3P152

output. If the number of input parameters for the tasks involving Omega3P or its preceding steps is small. While this153

introduces an additional approximation error, our tests have found that if the parameter space is sufficiently, the field154

error is small. The drawback is that the electromagnetic fields need to be computed for a set of various parameters in155

advance but can be quickly interpolated once saved to external files.156

For example, if only a few geometrical shape parameters are to be optimized over, then the Cubit→ Acdtool mesh157

convert → Omega3P → Acdtool postprocess RF task chain can be run a few times with varying combinations of158

those parameters. Then, with the modal Cartesian fields for a small set of values, an interpolant can be constructed to159

approximate the fields at any intermediate value of that parameter.160

The goal is to predict the field for a set of n control parameter inputs without running Omega3P more than m times,161

with m taken to be small but must satisfy m > n. Specifically, to interpolate the modal fields using m pre-computed162

5

fields for n parameters, we can represent the parameter combinations by the vector x⃗i ∈ Rn with i ∈ {1, 2, ...,m}. Then163

to find the fields at a new value y⃗ ∈ Rn (which must lie in the convex hull of x⃗i) we can use the n-dimensional Delaunay164

algorithm from SciPy [22] to locate a simplex consisting of n + 1 values of x⃗i containing y⃗. Then we interpolate the165

value of the fields at the value of y⃗ using the barycentric coordinates of y⃗ inside that simplex as weights.166

For a quick example, if we have two control parameters that we want to interpolate in the unit square: (α, β) ∈167

[0, 1] × [0, 1], we can compute the fields using a full workflow, which includes Omega3P, on the corners: x⃗1 = (0, 0),168

x⃗2 = (1, 0), x⃗3 = (0, 1), and x⃗4 = (1, 1). Then if we need the value of the fields for y⃗ = (0.2, 0.5), we note that this169

point lies in the simplex (i.e. triangle) formed by x⃗1, x⃗2, and x⃗3. The barycentric coordinates of y⃗ in that simplex is170

(0.3, 0.2, 0.5), and thus we interpolate the fields with the control parameters y⃗ by combining the field solutions for x⃗1,171

x⃗2, and x⃗3 with the weights 0.3, 0.2, and 0.5 respectively.172

One difficulty arises if the field data is inhomogeneous for different sets of control parameters. For example, if the173

length of a cavity is chosen as a control parameter, then by changing its value, the physical domain may change. Since174

the field data is always on a 3D Cartesian grid after the Acdtool postprocess step, we can map this data conformally to175

a unit cube. Then the field interpolation can be done with the barycentric coordinates as before and the 3D Cartesian176

domain can be resized afterwards to the appropriate dimensions. This procedure is not robust, but will work reasonably177

well if the domain’s size does not vary significantly with respect to the corners of the simplex containing the query178

point y⃗.179

For a final validation of any optimization, we can revert back to the full workflow for the field calculation. The180

advantage of the interpolation routine is to speed up the optimization cycle, by a factor of ∼100 in our tests (after the181

pre-computed fields are given), until the population is closer to the Pareto-optimal solutions.182

4. Injector Optimization Example183

To showcase the capability of A3PI, we use a test model of an injector lattice consisting of 200 MHz SRF photo-184

cathode gun with a movable cathode stalk (Figure 4 (top)), a focusing solenoid, and four 1.3 GHz TESLA 9-cell SRF185

accelerating cavities [24] (Figure 4 (bottom)). The input parameter space we optimize over is given in Table 1. Other186

necessary simulation parameters such as bunch charge or cavity RF power are either held fixed or determined from187

the input parameters; some of these additional fixed parameters are given in Table 2. The ranges for phase parameters188

were chosen after using A3PI in single-run mode to determine a suitable range.189

For the multi-objective optimization test, we set A3PI to minimize the final transverse RMS emittance and bunch
length while maintaining the constraint that the beam energy must be greater than 60 MeV. Such constraints are
enforced via a penalty scaling term to objectives. Specifically, for this test we define the penalty factor F as:

F = 1 +max{Ebeam/(1 MeV) − 60, 0},

and the penalty is applied to the final transverse emittance and bunch length by multiplying those quantities by F. A190

coefficient to the max function can be used to adjust the strictness of the penalty factor as needed. However, due to191

the restricted phases in our test following the initial phase scan, the beam energy was naturally constrained to above192

60 MeV without need of the penalty factor.193

Next, since all parameters except for dcathode are only used by IMPACT, we can simplify the A3PI workflow by194

using field interpolation as defined in the previous section. For this procedure, the Cubit → Acdtool mesh convert195

→ Omega3P → Acdtool postprocess RF task chain is initially performed only 6 times to obtain field data using196

dcathode = {0, 2, 4, 6, 8, 10 mm}. These field maps are then used to construct approximate fields at other values of197

dcathode within the defined range. Thus a shortened A3PI workflow can be set up for this model by replacing the198

aforementioned task chain with a very fast field lookup and interpolation routine.199

While this interpolation shortcut introduces a small error in the optimization cycle, the Pareto-optimal parameters200

from the shortened workflow can be validated and re-optimized by using the complete workflow for a few additional201

population generations. Figure 3 (top) shows the on-axis longitudinal electric field profile for the photocathode for202

varying values of the cathode stalk position dcathode. As a comparison, Figure 3 (middle) shows a zoomed-in view203

of Ez near the cathode for dcathode = 4 mm along with interpolated approximations using the data from neighboring204

solutions dcathode = {0, 10 mm} or dcathode = {2, 6 mm}. The relative errors for these interpolated solutions are shown in205

Figure 3 (bottom).206

6

Figure 3. (Top) On-axis Ez field profile for varying values of dcathode. (Middle) Zoomed-in comparison view of on-axis Ez field profile for
dcathode = 4 mm with the actual field data, compared to using the interpolation method with only the two points: dcathode = {0, 10 mm}, and the
interpolation method with only the two points: dcathode = {2, 6 mm}. (Bottom) Relative error between the actual field data for dcathode = 4 mm and
the interpolated fields. This plot indicates that our field interpolation routine using the 6 pre-computed solutions of dcathode = {0, 2, 4, 6, 8, 10 mm},
to construct a field solution at an arbitrary value of dcathode ∈ [0, 10 mm], results in less than ≈ 0.1% field error.

7

To test the optimization model, we set the population size to 128 individuals, using 128 workers with 1 KNL node207

allocated to each, and ran an A3PI workflow for a total of 50 generations with the NSGA-II optimizer. Each individual208

evaluation using the shorter interpolation-based workflow takes approximately 1 minute on a KNL node with most of209

that time used for the IMPACT evaluation. Thus using 128 KNL nodes, this full optimization can be completed in210

less than an hour. However, when using the full task chain workflow, since Omega3P requires more CPU and memory211

resources such that a single-run evaluation uses approximately 10 minutes with 10 KNL nodes, each generation with212

the full workflow takes approximately 100 times more CPU-node-hours. Therefore, it is not recommended to use the213

full workflow until the population is close to the Pareto-front; in our example, after 40∼50 generations.214

A final validation was done using the full workflow for 2 generations using the same population but with 80 KNL215

nodes, using 8 workers with 10 nodes allocated to each, for approximately 5 hours but did not show significant im-216

provement over using the interpolated workflow. We conjecture that since only a single geometry parameter was used,217

and that the field was sampled sufficiently with the 6 values of dcathode, the interpolation error had a very small effect218

on the workflow optimization. However, if a large number of geometrical parameters are required, and therefore the219

number of input dimensions is higher, the use of an interpolation workflow may suffer from a greater pre-computing220

overhead since many more samples are required.221

As shown in Figure 5, the individuals approach an approximate Pareto-optimal boundary after a few dozen gener-222

ations. Each individual reflects a choice of the 9 parameters given in Table 1 which are then evaluated with the A3PI223

single-run workflow; the output final transverse emittance and bunch length are plotted.224

Figure 4. (Top) Slice-view of model RF photocathode with movable stalk. As the cathode depth dcathode increases, the cathode can move inwards
which changes the Ez on-axis field. Note: this geometry is for testing purposes and does not have an optimized design with regards to the peak
surface field on the cathode plug outer diameter and the gun cavity nose. (Bottom) Mesh geometry of one of the 9-cell 1.3 GHz accelerating
cavities.

8

Table 1. Model Injector Input Parameters

Parameter Range Description

dcathode 0−10 mm Cathode stalk position
θcathode 150−170 deg Cathode driving phase
σx,y 400−800 µm Laser transverse spot size
σz 25−40 µm Laser pulse length
Bsolenoid 100−200 mT Focusing solenoid strength
θaccel1 280−310 deg Accelerating cavity 1 phase
θaccel2 280−310 deg Accelerating cavity 2 phase
θaccel3 280−310 deg Accelerating cavity 3 phase
θaccel4 280−310 deg Accelerating cavity 4 phase

Table 2. Model Injector Additional Parameters

Parameter Value Description

qbunch 200 pC Electron bunch charge
ωcathode 200 MHz SRF gun cavity frequency
Wtotal 8.85 µJ Cathode cavity total energy∗

ωaccel 1.3 GHz Accelerating cavity frequency
Ez,accel 30 MV/m Accelerating cavity gradient

∗: Cathode Ez field varies from 25∼45 MV/m with stalk position.

Figure 5. The best 128 individuals at varying generations from the NSGA-II multi-objective optimization of the A3PI injector model.

5. Additional A3PI Capabilities225

We also would like to introduce a set of MATLAB tools we developed for the purposes of visualizing various226

outputs. We have included several visualization scripts with the A3PI workflow library: plotting routines for fields227

and meshes using the Acdtool and Omega3P NetCDF outputs, for particles using the IMPACT outputs, and for228

optimization populations using the libEnsemble history array outputs.229

These visualization scripts have various options but in particular can be used to create exportable video animations230

for time-series data such as particle evolution, or generation-series data from the multi-objective optimization cycles.231

Additionally, the data can be viewed in an interactive mode to quickly view particle bunch shapes or a set of input232

parameters for a particular optimization population individual. A demo of particle and history plots are shown in233

9

Figure 6. Additionally, more details on the A3PI workflow management system are given in Appendix A and the234

A3PI user guide [25].235

Figure 6. (Top) Example particle plot from IMPACT data extracting during the time-stepping routine. A subset of the total number of particles
are shown and the plot can be adjusted to display momentum coordinates as well. (Bottom) Example A3PI history plotting routine in interactive
mode. The code includes a generational slider (example shown) can be used to select a generation and the custom data tip displays the set of input
parameters and output objectives of that particular simulation.

6. Conclusion236

Multi-objective optimization of an end-to-end accelerator structure is an important aspect in the design of next-237

generation particle accelerators. For this task, we created A3PI, our novel integrated workflow manager written in238

Python and visualization tools written in MATLAB, to interface existing electromagnetics and beam dynamics codes.239

The visualization tools are built on existing internal MATLAB commands for simplicity, but similar tools could be240

developed in the future using only Python with third-party modules. We have demonstrated the integrated optimization241

capability with a test model injector but aim to use A3PI for a fully realistic photoinjector design in a future study.242

Our future goals include adding compatibility of other codes to A3PI and further improvements to the A3PI243

utilities in more versatile computing environments. Since A3PI is modular, more codes can be added to a task chain244

by following a common procedure of writing a template to create an input file for a given code, and interfacing that245

template with A3PI by adding new sections to a configuration file.246

10

7. Acknowledgments247

This work is supported by the Director of the Office of Science of the US Department of Energy under contracts248

DE-AC02-05-CH11231 and DE-AC02-76-SF00515 and used computer resources at the National Energy Research249

Scientific Computing Center.250

Appendix A. A3PI Technical Details251

The A3PI Workflow is designed with the Python ConfigParser class and its extended interpolation option. The252

ConfigParser class lets Python manage changes to a given workflow input file before sending it to workers (e.g. CPU253

nodes) for evaluation. The extended interpolation option allows the ConfigParser to copy values which are changed254

(e.g. physical length of a component) to all appropriate places (e.g. cubit geometry, Acdtool postprocess routine,255

Impact-T input file, etc.).256

The workflow configuration file is generally long, but it combines all necessary inputs for each code in a single257

place. In this appendix, we will overview an example workflow input file and explain each keyword section. Each258

keyword section must be surrounded by square brackets []. Within a given section, keyword entry pairs must be259

separated by an equals = sign. If more than one value is to be assigned, then the arguments for the keywords should260

be separated by a comma , (spaces work for some sections too). Comments may be made using the # symbol.261

Folder structure with A3PI is handled as follows: the workflow configuration file is located in the base folder.262

When this file is parsed by A3PI, it will accordingly generate workflow worker folders in which a copy of the work-263

flow configuration file is placed, with corresponding adjustments to desired variables. To clarify, the workflow con-264

figuration file is unique for each use of A3PI, but when evaluating multiple workflows (e.g. for optimization), each265

workflow worker folder will have its own copy of the worker configuration file but with differences in the variable266

section [VARS] and a few other settings.267

Appendix A.1. Common Workflow Sections268

The [VARS] section is used to store all variables which are expected to change for multiple workflow runs. For269

the example below, the variable d cath is set initially to 0.005. However, during optimization, this value can be270

changed and the numerical value of d cath will be automatically inserted elsewhere in the workflow accordingly.271

Note: variable names in this example are not built-in and can be added, changed, or removed as desired; the only272

requirement is that the variable names are consistent throughout the file.273

[VARS]

#Define the various paramters that are updated each workflow

d_cath = 0.005

cath_phase = 160.0

sig_xy = 4.00e-4

sig_z = 2.50e-5

sol_str = 0.150

b1_phase = 300.0

b2_phase = 300.0

b3_phase = 300.0

b4_phase = 300.0

Next, the [PATHS] section defines all the code paths needed for the workflow to run. Each code can have a274

different path but should all be accessible from the workflow input file’s directory (absolute path names are preferred).275

The workflow path is special in that it defines the folder to create for a given workflow.276

The idea is that A3PI is run from a base directory with this workflow configuration file. Next, this configuration277

file is interpolated with the appropriate numeric replacements, such as d cath in the previous example section, and278

a new folder named workflow folder is created. The interpolated workflow input file (which is now static) is279

placed into the new folder for evaluation by a worker (e.g. CPU node). When using LibEnsemble to run multiple280

11

concurrent workflow evaluations, each folder will have an automatically appended number unique for each worker281

(e.g. workflow folder 0, workflow folder 1, etc.).282

[PATHS]

#Define paths to where the executables are found

cubit_path = mypath/cubit

acdtool_path = mypath/acdtool

omega3p_path = mypath/omega3p

impactt_path = mypath/ImpactTexe_knl_gnu

workflow_path = mypath/workflow_folder

The next section includes special platform-specific run options such as how many cores to use for Acdtool post-283

process, Impact-T, and various input data files. The static files list includes all necessary data files needed to run284

the workflow. For example, this list can include the base geometry files for Cubit, static field maps for Impact-T, or285

any other files that need to be copied into the workflow folder. These static files must be in the base directory with286

the workflow configuration file. Lastly, the A3PI mode option can be set to single to run an A3PI workflow once, or287

optimize to use A3PI for multi-objective optimization.288

[RUN_PARAMETERS]

#Define run command, HPC options, and list of static files needed for workflow

A3PI_mode = optimize

acdtool_cores = 32

omega3p_cores = 640

impactt_cores = 64

static_files = rfdata1, rfdata2, cubit_geometry.jou, cubit_acis_file.sat

Appendix A.2. LibEnsemble and DEAP Workflow Sections289

This section defines all the necessary parameters and settings for multi-objective optimization using libEnsemble290

with DEAP. A typical usage would be to optimize some parameters (e.g. d cath, sig xy, etc.) in the [VARS]291

section with respect to multiple objectives such as xy rms emittance and z rms size while remaining within some292

constraints on other parameters such as beam energy. To accomplish this, we can set up the [LIBENSEMBLE] section293

as follows.294

We start by defining the num workers value which should be at most 1 less than the number of nodes pro-295

vided. This is because libEnsemble reserves one node for the managing thread. We can also set the number of296

nodes per worker here, but the default is 1. The current version of A3PI does not support dynamic node balancing297

yet which would allow workers to share nodes as needed if certain steps in a workflow require more resources than298

other steps.299

For the genetic algorithm, the population size and maximum number of generations is specified. During the300

evolutionary process, the NSGA-II algorithm used by A3PI enforces a constant population to ensure nodes are used301

more efficiently.302

Next, the input variables are listed as strings and must match the names of variables listed in the [VARS] section.303

This is to ensure the variables are properly linked and updated when the workflow is run. Each variable needs its own304

lower and upper bound in the parameter range; this is provided as a list which follows the order the variables were305

listed in the vars entry within the [LIBENSEMBLE] section. The number of input variables listed in the vars line must306

match the number of bounds provided. In this example, the number of input variables is 9.307

The objectives, are listed next in a similar form but should also include signed weights for the relative behavior308

desired for each parameter. In the example, both objectives are to be minimized so the weights are set to -1. The309

number of output quantities listed in the objectives line must match the number of weights provided. In this310

example, the number of objectives is 2. The complete list of available objectives are given in the Table A.3. The311

descriptions include the IMPACT output filename and and column number where the parameter is located.312

12

Table A.3. Supported Objective and Constraint List

Parameter Description

beam energy Beam energy [MeV] (column 4 in fort.18)
x rms size Transverse x-size [m] (column 4 in fort.24)
x rms emittance RMS x-emittance [m] (column 8 in fort.24)
y rms size Transverse y-size [m] (column 4 in fort.25)
y rms emittance RMS y-emittance [m] (column 8 in fort.25)
xy rms size Transverse xy-size∗ [m]
xy rms emittance RMS xy-emittance∗ [m]
z rms size Longitudinal z-size [m] (column 3 in fort.26)
z rms emittance RMS z-emittance [m] (column 7 in fort.26)
∗: Transverse xy options use the || · ||2 norm to represent the average radial component.

Optionally, constraints can be provided and A3PI uses a simple linear penalty factor for objective functions which
a constraint parameter does not satisfy the bounds provided. In this example, if the beam energy, which is determined
automatically by reading a corresponding Impact-T output file, does not lie in the prescribed range, a penalty factor
is applied. This penalty factor F is defined for constraints Ci with corresponding bounds [Cmin,Cmin] and constraint
penalty scaling terms Pi as:

F = 1 +
∑

i

[max{Cmin −Ci, 0} +max{Ci −Cmax, 0}] · Pi

Thus, for the example, if the beam energy value is 66 MeV (default units from Impact-T), then the penalty factor
F = 1 (no penalty). However, if the beam energy drops to 55 MeV, then the penalty factor F = 6. This is then applied
to the objective function evaluations y (e.g. y1 = xy rms emittance and y2 = z rms size) by the formula:

ypenalized
j = yoriginal

j · F−sign(y j)w j

For minimization objectives, the weight factor w j is negative and thus can be penalized by increasing y j (or decreasing313

y j if it is negative). Likewise, for maximization objectives, with w j > 0, y j can be penalized by decreasing it (or314

increasing y j if it is negative). The number of constraint penalty quantities listed in the const penalty line must315

match the number of constraints provided. In this example, the number of objectives is 2.316

Next, for the NSGA-II algorithm in DEAP, we provide the mutation crossover probability cxpb, mutation param-317

eter eta, and independent mutation paramter indpb. These parameters are covered more in detail on the DEAP doc-318

umentation [20]. Lastly, we can optionally define termination criteria for the optimization. Currently, only sim max319

is supported by A3PI, but more options can be added in a future version.320

[LIBENSEMBLE]

#Define the parameters needed for libEnsemble multi-worker evaluation (with MPI)

#This section also defines parameters for DEAP multi-objective optimization

#If workers set to auto, number of workers is MPI.COMM_WORLD size -1

num_workers = auto

nodes_per_worker = 1

#Define population size, max number of generations, input dimensions, objectives

pop_size = 128

num_gen = 50

#Define the inputs and their respective bounds (uniformly random initially)

#Variable names must be string names of variables defined in the [VARS] section

vars = d_cath, cath_phase, sig_xy, sig_z, sol_str, b1_phase, b2_phase, b3_phase, b4_phase

13

lower_bounds = 0.0, 150.0, 4.0e-4, 2.5e-5, 0.100, 280.0, 280.0, 280.0, 280.0

upper_bounds = 10.0, 170.0, 8.0e-4, 4.0e-5, 0.200, 310.0, 310.0, 310.0, 310.0

#Define outputs to optimize and their weights (-1 to minimize, +1 to maximize)

objectives = xy_rms_emittance, z_rms_size

weights = -1, -1

#Define constraints as penalty, if a constraint parameter is outside bounds, the

#objective functions are multiplied by a factor of dist(const,bound)*penalty

constraints = beam_energy

const_lower_bounds = 60

const_upper_bounds = 100

const_penalty = 1.0

#Define crossover probability, mutation parameter, and independent mutation prob.

cxpb = 0.8

eta = 20.0

indpb = 0.09

#Define optional exit criteria [default is sim_max = pop_size*(num_gen+1)]

sim_max = 6528

Appendix A.3. A3PI Code-Specific Sections321

The remaining sections needed to run A3PI depend on which tasks are necessary in the task chain for a single-run322

workflow as in Figure 1. For example, if using an interpolated workflow without Cubit, Acdtool, or Omega3P, then323

the input sections pertaining to those codes are not required. The implementation of IMPACT-T is described in the324

following paragraphs.325

The input parameters for IMPACT are based on the ‘ImpactT.in’ text file structure found in [26]. The parameters326

are separated into two sections: a beam parameters section, and a lattice section. In the beam parameters section327

[IMPACTT PARAMETERS], the 9 entries correspond to the first 9 rows in the IMPACT input file. The A3PI workflow328

will parse these entries and generate an automatic IMPACT input file to be run. The benefit of this automated file329

generation is to allow for the use of the variables stored in the [VARS] section to coordinate an entire workflow when330

changing various parameters with the $ symbol in the configuration file.331

Familiarity with IMPACT, and its guide [26], is recommended when using [VARS] variables to be interpolated332

with the ConfigParser. Another restriction is that the size of the processor array procs (in this example 8 × 8) must333

be compatible with the impactt cores value defined in the [RUN PARAMETERS] section (in this example 64).334

[IMPACTT_PARAMETERS]

#Define the ImpactT input parameters (line numbers 1-9 here)

#See ImpactT user guide for more information

#processors = col row

procs = 8 8

#steps = dt Nstep Nbunch

steps = 4.0e-12 2000000 1

#parts = PSdim Npart integF errF diagF imchgF imgCutOff

parts = 6 5000 1 0 2 0 0.02

#mesh = Nx Ny Nz bcF Rx Ry Lz

mesh = 32 32 32 1 0.15 0.15 1.0e5

#dist = distType restartF substepF Nemission Temission

14

dist = 112 0 0 1300 6.5e-11

#*dist = sig* sigp* mu*p* *scale p*scale xmu* xmu*

xdist = ${VARS:sig_xy} 0.001 0.0 1.0 1.0 0.0 0.0

ydist = ${VARS:sig_xy} 0.001 0.0 1.0 1.0 0.0 0.0

zdist = ${VARS:sig_z} 0.0014 0.0 1.186189e-6 1.0 0.0 0.002

#beam = I/A Ek/eV Mc2/eV Q/e freq/Hz phs/rad

beam = 0.26 1.0 0.511005e6 -1.0 1.3e9 0.0

In the IMPACT lattice section [IMPACTT LATTICE], each line will correspond to a lattice line in the IMPACT335

input file. The keys with prefix elem are not name-specific in the automated IMPACT input file generator, but each336

element must listed in the workflow configuration file in order. The elem lines are helpful for the user when setting337

up the lattice, but a given element can be commented out with the # symbol without requiring a renumbering of the338

other elements. Lattice elements with a lot of text input, such as elem 03 in the example, can be either a single long339

line, or separated into multiple indented lines.340

[IMPACTT_LATTICE]

#Define the ImpactT lattice (line numbers 10+ here)

#See ImpactT user guide for more information

#Start 3D SC

elem_00 = 0.0 1 20 -5 -2.0 -2.0 -2.0

#SRF gun element

elem_01 = 0.3 105 20 111 0.0 2.0e6 2.00e8 ${VARS:cath_phase} 300 0.1 0.0 0.0 0.0 0.0

#Focusing solenoids

elem_02 = 0.48 105 20 105 0.250e0 0.0 0.0 0.0 5 0.1 0.0 0.0 0.0 0.0 0.0 ${VARS:sol_str}

#Boosting cavities

elem_03 = 1.346 10 20 105 2.6702 3.00000e+07 1.3e9 ${VARS:b1_phase}

400 0.1 0.0 0.0 0.0 0.0 0.0 0.0

elem_04 = 1.346 10 20 105 4.0538 3.00000e+07 1.3e9 ${VARS:b2_phase}

400 0.1 0.0 0.0 0.0 0.0 0.0 0.0

elem_05 = 1.346 10 20 105 5.4374 3.00000e+07 1.3e9 ${VARS:b3_phase}

400 0.1 0.0 0.0 0.0 0.0 0.0 0.0

elem_06 = 1.346 10 20 105 6.8210 3.00000e+07 1.3e9 ${VARS:b4_phase}

400 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Other sections, such as for Cubit, Omega3P, or Acdtool, are organized in a similar manner and variables can be341

cross-linked using the same ConfigParser interpolation method using the $ symbol. Once every section that is required342

has been defined with the appropriate keyword value pairs, the A3PI workflow requires a short final section which343

contains the task chain information. See the complete A3PI guide [25] for more details.344

References345

[1] L. Ge, K. Ko, O. Kononenko, Z. Li, C.-K. Ng, L. Xiao, and J. Qiang, “Advances in Parallel Finite Element Code Suite ACE3P,” Proc. of 6th346

International Particle Accelerator Conference, Richmond, VA, USA May 3-8, 2015.347

[2] K. Ko, A. Candel, L. Ge, A. Kabel, L-Q. Lee, Z. Li, C. Ng, V. Rawat, G. Schussman, and L. Xiao, “Advances in Parallel Electromagnetic348

Codes for Accelerator Science and Development,” LINAC2010, Tsukuba, Japan, 2010.349

[3] O. Kononenko, C. Adolphsen, Z. Li, C.-K. Ng, and C. Rivetta, “3D Multiphysics Modeling of Superconducting Cavities with a Massively350

Parallel Simulation Suite,” Phys. Rev. Accel. Beams 20, 102001 (2017).351

[4] https://portal.slac.stanford.edu/sites/conf public/cw16/Pages/default.aspx, Code Workshop for ACE3P at SLAC: CW16 .352

15

[5] V. Akcelik, L.-Q. Lee, Z. Li, C. Ng, L. Xiao, and K. Ko, “Large scale shape optimization for accelerator cavities,” J. of Phys.: Conference353

Series, 180, 012001 (2009).354

[6] J. Qiang, C. Mitchell, M. Venturini, “Suppression of microbunching instability using bending magnets in FEL linacs,” Phys. Rev. Lett., vol.355

111, 054801 (2013).356

[7] J. Qiang, J. Corlett, C. E. Mitchell, C. F. Papadopulos, G. Penn, M. Placidi, M. Reinsch, R. D. Ryne, F. Sannibale, C. Sun, M. Venturini, P.357

Emma, S. Reiche, “Start-to-end simulation of x-ray radiation of a next generation light source using the real number of electrons,” Phys. Rev.358

ST Accel. Beams, vol. 17, 030701 (2014).359

[8] J. Bahng, E. Kim, and J. Qiang, “Design study of low-energy beam transport for multi-charge beams at RAON,” Nuclear Instruments &360

Methods in Physics Research A 804, p. 99, 2015.361

[9] J. Qiang, Y. Ding, P. Emma, Z. Huang, D. Ratner, T. O. Raubenheimer, F. Zhou, and M. Venturini, “Start-to-end simulation of the shot-noise362

driven microbunching instability experiment at the Linac Coherent Light Source,” Phys. Rev. Accel. Beams 20, 054402 (2017).363

[10] J. Qiang, “Mitigation of envelope instability through fast acceleration in linear accelerators,” Phys. Rev. Accel. Beams 21, 114201 (2018).364

[11] J. Qiang, “Long-term simulation of space-charge effects,” Nuclear Instruments & Methods in Physics Research A 918, p. 1 (2019).365

[12] J. Qiang, L. Brouwer, and R. Teyber, “Fixed field phase shifters for a multi-pass recirculating superconducting proton linac,” Phys. Rev.366

Accel. Beams 24, 030101 (2021).367

[13] National Energy Research Scientific Computing Center. Website: http://www.nersc.gov/368

[14] Roshan W. Quadros et al, “The CUBIT Geometry & Meshing Toolkit”, Sandia National Laboratories, https://cubit.sandia.gov369

[15] L.-Q. Lee “A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities”, SLAC Technical Report, SLAC-PUB-13529,370

(2009).371

[16] J. Qiang, R. Ryne, S. Habib, and V. Decyk “An Object-Oriented Particle-In-Cell Code for Beam Dynamics Simulation in Linear Accelerators”,372

J. Comp. Phys. vol. 163, 434 (2000).373

[17] J. Qiang, S. Lidia, R. Ryne, and C. Limborg-Deprey “Three-dimensional quasistatic model for high brightness bream dynamics simulation”,374

Phys. Rev. ST Accel. Beams 9, 044204 (2006).375

[18] J. Qiang et al, “High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers”, Phys. Rev. ST Accel. Beams376

12, 100702 (2009).377

[19] A. Huebl et al. “openPMD: A meta data standard for particle and mesh based data, technical specification (CC-BY 4.0)”, November 2015,378

10.5281/zenodo.591699379

[20] Félix-Antoine Fortin et al, “DEAP: Evolutionary Algorithms Made Easy”, J Mach Learn Res, vol 13, pp 2171–2175, July 2012.380

[21] Stephen Hudson et al, “libEnsemble User Manual”, Argonne National Laboratory, Rev 0.7.1, 2020.381

[22] Pauli Virtanen et al. (2020) “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python” Nature Methods, 17(3), 261-272. Pack-382

age scipy.spatial.Delaunay v0.9 retrieved May 2021 from https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html383

[23] MATLAB version 8.5.0.197613 (R2018a). The MathWorks Inc., Natick, Massachusetts, United States.384

[24] B. Aune et al, “Superconducting TESLA cavities”, Phys. Rev. ST Accel. Beams, vol. 3, 092001 (2010).385

[25] D. Bizzozero, “A3PI User Guide v0.5”, May 2021. Retrieved on September 3, 2021, from: ?386

[26] J. Qiang, “IMPACT-T User Document Beta Version 1.8”, LBNL-62326, 2007. Written April 2015. Retrieved on September 3, 2021, from:387

https://portal.nersc.gov/project/m669/IMPACT-T/documents/388

16

