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ABSTRACT OF THE DISSERTATION

Relaxing Independence in the Marchenko-Pastur Law for Random Matrices and the
Application to Approximate Embeddings

By

Jennifer Bryson

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor Roman Vershynin, Chair
Chancellor’s Professor Hongkai Zhao, Chair

This dissertation adds to the collection of works studying the Marchenko-Pastur law in two

ways. First it considers two new models of random column vectors that have weaker indepen-

dence hypotheses than the well-known i.i.d. hypothesis and shows that random matrices,

formed by concatenating random column vectors of a model, still follow the Marchenko-

Pastur law. The two models of random column vectors are block columns and vectorized

tensor columns. The block column vectors will be made up of n blocks each of length d,

with d = o(n). If the entries are mean zero, variance one, have uniformly bounded fourth

moments, entries within a block are uncorrelated, and entries in different blocks are inde-

pendent, then the Marchenko-Pastur theorem holds as n→∞. Furthermore, if additionally

an exchangeability criteria is satisfied, then the theorem holds without requiring d = o(n).

The vectorized tensor columns will be made up of a vectorized t-tensor of an i.i.d. vector

of length n which has entries that are mean zero, variance one, uniformly bounded fourth

moments, and t3 = o(n), and again the Marchenko-Pastur theorem holds as n→∞.

The second contribution of this dissertation is in studying a particular type of an approximate

embedding of vectors. For any collection of vectors, a general lower bound for the least

dimension required for an approximate embedding is given. For vectors which are column

viii



vectors of a matrix that follows the Marchenko-Pastur law, an asymptotic formula for the

exact value of the least dimension required is given. Numerical results show this asymptotic

formula holds quite well, even for relatively small dimensions. Because this works so well

for small dimensions, this gives an easy numerical test that provides evidence for answering

the question, “Does a specific covariance structure have a limiting spectral distribution or

not?” We consider a particular covariance structure which relates to the number of terms

needed in the Karhunen-Loéve expansion to approximate a random field within a specified

tolerance.
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Chapter 1

Introduction

1.1 Dissertation organization

This dissertation has three chapters. This first chapter provides some background material

which will aid in the understanding of this work. The second chapter states and proves an

extension of the Marchenko-Pastur law toward matrices with weaker independence criteria.

Specifically we give a block version of the Marchenko-Pastur law, and a vectorized tensor

version as well. In the third chapter we give a specific notion of an approximate embedding,

and we show how the Marchenko-Pastur law can determine the smallest possible dimension

needed for such an embedding. Lastly, Appendix A gives some Matlab code for the key

components needed for producing the figures included in the dissertation.

1.2 Notation convention

A main focus of this work is studying the limiting spectral distribution of the sample co-

variance matrix (XXT ) for certain random matrices, X, as their dimensions grow to infinity
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with a fixed ratio of number of rows to number of columns. Throughout this dissertation

we will try to stick to the notation of X ∈ Rp×m. We will consider a sequence of matrices

which will be indexed by p, meaning {X}∞p=1 with p
m
→ λ ∈ (0,+∞). Therefore we think of

m = m(p) as a function of p. In Chapter 2, p is going to be a function of another variable

n which will tend towards infinity. In Chapter 3 it is convenient to consider matrices of the

form V TV , so we can think of X = V T ∈ Rp×m in this chapter.

1.3 Background

1.3.1 Random variables and random matrices

This section gives a brief review of the main definitions needed from probability theory.

Definition 1.1. A probability space or probability triple, (Ω,F , P ), consists of

1. a sample space, Ω, which is a set of possible outcomes

2. a σ-algebra, F , which is a set of events, where each event is a set containing zero or

more outcomes, and

3. a probability measure, P , which is a measure P : F → [0, 1] that assigns probabilities

to events with P (Ω) = 1.

Definition 1.2. A σ-algebra, F , on the set Ω is a nonempty collection of subsets of Ω that

satisfy (i) if A ∈ F , then Ac ∈ F , and (ii) if Ai ∈ F is a countable sequence of sets, then⋃
iAi ∈ F .

Definition 1.3. A measure, µ, on a measurable space (Ω,F), is a function µ : F → R

such that (i) µ(A) ≥ µ(∅) = 0, i.e. µ is nonnegative, and (ii) if Ai ∈ F is a countable

sequence of disjoint sets, then µ (
⋃
iAi) =

∑
i µ(Ai), i.e. µ is countably additive.
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Example 1.1. Consider a single roll of a fair 6-sided die. The possible outcomes are Ω =

{1, 2, 3, 4, 5, 6}. One possible σ-algebra is to consider all subsets of Ω as events, so F is

the power set of Ω. Thus F contains ∅,Ω, {1, 3, 5} = the event of rolling an odd number,

{2, 4, 6} = the event of rolling an even number, {1} = the event of rolling a 1, etc. The

probability measure of an event A is P (A) = |A|
6

. For example, P ({1, 3, 5}) = 1
2
, meaning

the probability of rolling an odd number is 1
2

as expected.

Definition 1.4. A function X : Ω→ R is a random variable if for every Borel set B ⊂ R

we have X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Having a probability triple (Ω,F , P ) and a random variable X : Ω→ R, there is an induced

probability measure µ on R, called its distribution, given by µ(A) = P (X−1(A)) = P (X ∈

A) for Borel sets A. The distribution is most commonly described by its distribution function,

defined below.

Definition 1.5. Given a probability triple (Ω,F , P ) and a random variable X : Ω→ R, the

distribution function, F : R→ R, is given by F (x) = P (X ≤ x).

Definition 1.6. When the distribution function F (x) = P (X ≤ x) has the form

F (x) =

∫ x

−∞
f(y)dy

we say that X has density function or probability density function (pdf) f .

Definition 1.7. The expected value or mean of a nonnegative random variable X on

(Ω,F , P ) is defined to be

E[X] =

∫
XdP

. For a general random variable, let x+ = max{x, 0} be the positive part and x− =

max{−x, 0} be the negative part. We say that the expected value of X, E[X], exists and

is equal to E[X] = E[X+]− E[X−] whenever the subtraction makes sense.

3



For a random variable X with density function f(x), E[X] =
∫
R xf(x)dx.

Definition 1.8. The variance of a random variable X is defined as

V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2.

For a random variable X with mean zero and density function f(x), V ar(X) =
∫
R x

2f(x)dx.

We will frequently use three types of random variables in our numerical examples. We define

those random variables now by defining their distributions in the next three examples.

Example 1.2. Let X be a discrete random variable that takes the value 1 with probability

p and the value 0 with probability 1 − p. X is called a Bernoulli random variable. The

Bernoulli distribution is given by

F (x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if x ≥ 1

In our numerical examples, we will use the shifted and scaled Bernoulli distribution where

X takes the value 1 with probability 1
2

and the value -1 with probability 1
2
, because now the

random variable has mean 0 and variance 1.

Example 1.3. Let X be the random variable that takes the values between 0 and 1 with

equal probabilities. X is called a Uniform random variable on (0,1). The Uniform(0,1)
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distribution is given by

F (x) =


0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x > 1

And the density function is f(x) = 1 for x ∈ (0, 1) and 0 otherwise. We write X ∼

Uniform(0, 1).

In our numerical examples, we will use the shifted and scaled Uniform distribution where

X takes the values between −
√

3 and
√

3, i.e. X ∼ Uniform(−
√

3,
√

3), because now the

random variable has mean 0 and variance 1.

Example 1.4. Let X be the random variable that has a density function given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

for fixed µ, σ2 ∈ R. X is said to be a normal random variable or Gaussian random

variable. We write X ∼ N(µ, σ2). When µ = 0 and σ2 = 1, we say X is a standard

normal or standard Gaussian random variable.

Definition 1.9. Random matrices are matrices whose entries are random variables.

Definition 1.10. Two random variables X and Y are independent if for all A,B in the

Borel set on R, P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). Similarly, a collection of random

variables X1, ..., Xn are independent if for all {Ai}ni=1 in the Borel set on R,

P

(
n⋂
i=1

{Xi ∈ Ai}

)
=

n∏
i=1

P (Xi ∈ Bi).

Definition 1.11. When a collection of random variables X1, X2, ... are independent and each

5



have the same distribution, we say they are independent and identically distributed or

i.i.d. for short.

Definition 1.12. A collection of random variables Xi, i ∈ I with E[X2
i ] < ∞ for all i is

uncorrelated if

E[XiXj] = E[Xi]E[Xj] for all i 6= j.

Independence implies uncorrelated, meaning if X and Y are independent random variables,

then X and Y are uncorrelated. Our work in Chapter 2 generalizes a result that required

i.i.d. random variables by weakening the hypothesis to allow some of the random variables

to just be uncorrelated, but not independent.

For an example of random variables that are uncorrelated but not independent, consider

X ∼ N(0, 1) and Y = X2. X and Y are certainly not independent because P (X ∈ (1, 2), Y ∈

(9, 10)) = 0 6= P (X ∈ (1, 2))P (Y ∈ (9, 10)). However, X and Y are uncorrelated because

E[XY ] = E[X3] = 0, since the density function for X is an even function.

1.3.2 Sample covariance matrix

The correlation coefficient between two random variables is a number in [−1, 1] which roughly

tells you how linearly related the two random variables are. For example if we have random

variables X and Y , where Y = αX+β, then the correlation coefficient will be 1 if α > 0 and

-1 if α < 0. When two random variables are uncorrelated, then the correlation coefficient is

0.

Definition 1.13. The correlation coefficient, ρX,Y , between two random variables X and

Y with expected values µX and µY and variances σ2
X and σ2

Y is defined as

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
.

6



The numerator of the correlation coefficient is the covariance between two random variables

X and Y . The covariance measures the joint variability of the two random variables, but

the magnitude of the covariance is less intuitive without the the normalizing factor in the

denominator.

Definition 1.14. The covariance, cov(X, Y ), between two random variables X and Y with

expected values µX and µY is defined as

cov(X, Y ) = E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ].

Note that the covariance between X and itself is the variance of X, i.e. cov(X,X) = V ar(X).

For a random vector x = [x1, x2, ..., xp]
T with expected value µx = [µx1 , µx2 , ..., µxp ]

T , the

covariance matrix, cov[x,x] = E[(x − µx)(x − µx)T ], is a symmetric matrix where the

cov[x,x]i,j = cov(xi, xj). In particular, the diagonal entries are the variances, cov[x,x]i,i =

var(xi).

The covariance matrix is a generalization of variance to multiple dimensions and is important

to understanding data that have more than one predictor or feature. Before we get into that

we need the notion of the sample covariance matrix because in application we generally do

not know the joint probability distribution.

Definition 1.15. Suppose that we have m draws of a random vector x = [x1, x2, ..., xp]
T from

some unknown joint probability distribution. Arrange the observation vectors as the columns

of a matrix X ∈ Rp×m, where Xi,j = xi from the jth draw. Let µx = [µx1 , µx2 , ..., µxp ]
T be the

sample mean vector, i.e. µxi = 1
m

∑m
j=1Xi,j. The sample covariance matrix defined as

S =
1

m− 1

m∑
k=1

(x·,k − µx)(x·,k − µx)∗ =
1

m− 1
(X − µX1Tm)(X − µX1Tm)∗.

7



This formula makes sense since the i, jth entry is m
m−1

times the sample average value of

(xi − µxi)(xj − µxj). The m
m−1

factor is called Bessel’s correction, and it is needed since the

true mean was not used but instead the sample mean was used so the sample covariance

is biased by the factor m−1
m

, meaning E[the sample average value of (xi − µxi)(xj − µxj)] =

m−1
m
cov(xi, xj). The intuitive reasoning for having 1

m−1
instead of 1

m
out front is because we

used the m vectors to estimate the mean vector, so we effectively only have m − 1 degrees

of freedom left to estimate the covariance.

Now because µxµx
∗ is a rank 1 matrix, Theorem A.44 of [7] shows the removal of µx does

not effect the limiting spectral distribution. Thus for the sake of finding the limiting spectral

distribution we can consider the sample covariance matrix to be

S =
1

m

m∑
k=1

x·,kx
∗
·,k =

1

m
XX∗.

To understand the importance of the sample covariance matrix, let’s consider the example

of trying to understand the dollar value of a car based on its milage and age of the car in

days. Let’s say we have 100 cars where we know their milage, age, and dollar value. We can

visualize the data as plotting 100 points in R3. The eigenvector of the sample covariance

matrix corresponding to the largest eigenvalue will give you the best linear representation of

the data points, where by “best” here we mean it minimizes the sum of squared errors. This

will give you the best 1-dimensional representation of the data. Similarly, the eigenvector

of the sample covariance matrix corresponding to the second largest eigenvalue will give

you the next most valuable direction that is perpendicular to the first eigenvector. Thus

the span of these two eigenvectors will give you the best 2-dimensional representation of

the data. The proof of this fact comes from understanding singular values and the singular

value decomposition. A nice constructive proof is given in Chapter 3 of [10]. This concept

is called principal component analysis or PCA for short. Furthermore, the square roots

8



of the eigenvalues are the singular values, i.e.
√
λi = σi. Thinking of the columns of the

matrix, X, as data points, the largest eigenvalue is the sum of the squared lengths of the

projections of the points onto the line determined by the corresponding eigenvector. Thus the

larger the eigenvalue is, the more information is captured in by its eigenvalue. Furthermore

letting Xk be the projections of the columns of X onto the k top singular vectors (i.e. the

eigenvectors of XXT corresponding to the k largest eigenvalues λ1 ≥ λ2 ≥ ...), we have that

‖X − Xk‖2
2 = σ2

k+1 = λk+1. This is one of the reasons we care about the eigenvalues of

the sample covariance matrix. Incredibly, the Marchenko-Pastur law completely determines

the limiting distribution of eigenvalues of the sample covariance matrix for certain random

matrices. We introduce the Marchenko-Pastur law in the next section.

1.3.3 The Marchenko-Pastur law

The Marchenko-Pastur law or Marchenko-Pastur distribution was discovered by Ukrainian

mathematicians Vladimir Marchenko and Leonid Pastur in 1967 [28]. In that cornerstone

paper, they determine the limiting spectral distribution (i.e. limiting distribution of eigen-

values) of the scaled sample covariance matrix, 1
m
XTX∗, where X is a p×m random matrix

with independent entries and T is a m×m diagonal matrix with a limiting spectral distri-

bution. Before giving the general statement of the Marchenko-Pastur law, we first give a

simplified version when T = I.

Definition 1.16. Let Ap be a Hermitian p× p matrix with eigenvalues λj, j = 1, ..., p. We

define the empirical spectral distribution (ESD) of the matrix Ap as

FAp(x) =
1

p
#{j ≤ p : λj ≤ x}.

Definition 1.17. For a given sequence of random matrices, {Ap}, limp→∞ F
Ap sometimes

converges to a (possibly defective) limit distribution F called the limiting spectral distri-
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bution (LSD) of {Ap}.

Definition 1.18. A defective distribution function is one where the total mass is less than

1 due to some eigenvalues tending to ±∞.

Theorem 1.1 (Marchenko-Pastur [28]). Let X be an p×m random matrix whose entries are

i.i.d. random variables with mean 0 and variance σ2 < ∞. Let Sp = 1
m
XXT and let λ1 ≥

... ≥ λp be the eigenvalues of Sp. Finally, consider the random measure µp(B) = 1
p
#{λj ∈ B}

for B ⊂ R, which has distribution F Sp(x) = 1
p
#{λj ≤ x}. Assume that p,m → ∞ so that

the ratio p/m→ λ ∈ (0,∞). Then almost surely F Sp → F vaguely as p→∞, where F has

density function

fλ(x) =


1

2πσ2λx

√
(λ+ − x)(x− λ−), if λ− ≤ x ≤ λ+

0, otherwise

and has a point mass 1- 1
λ

at the origin if λ > 1, where λ± = σ2(1±
√
λ)2.

For example, if we fill in a matrix X ∈ R1500×3000 with numbers drawn independently from a

standard Gaussian and create a histogram of the eigenvalues of 1
3000

XXT , this this histogram

will look very similar to the density function, ν, from the Marchenko-Pastur law where λ = 1
2

and σ2 = 1. This is shown in Figure 1.1. Letting the size of the matrix tend to infinity while

keeping the ratio of number of rows to columns, which in this case is 1
2
, the histogram will

match up perfectly with the red curve which is the Marchenko-Pastur density.
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Figure 1.1: Example of the Marchenko-Pastur law.

Looking at the Marchenko-Pastur density function for various parameters values, λ and σ2,

is interesting. If we think of the columns of the matrix X as being samples of a vector drawn

from a joint distribution, where the entries of the vector are i.i.d. mean zero and variance

one, then as the number of samples goes to infinity (so the ratio λ = #rows
#columns

→ ∞) the

sample covariance matrix will approach the identity matrix, and thus the eigenvalues all

tend to 1. This is depicted in Figure 1.2. On the other hand, fixing the ratio λ and varying

the variance of the entries, σ2, increasing σ2 shifts the distribution to the right, as depicted

in Figure 1.3. This is to be expected because again if we had infinitely many samples and

variance σ2, then the sample covariance matrix will approach σ2I, and thus the eigenvalues

all tend to σ2.
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Figure 1.2: Visualizing the Marchenko-Pastur density for various ratios, λ = #rows
#columns
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Figure 1.3: Visualizing the Marchenko-Pastur density for various entry variances, σ2.

Before stating the general version of the Marchenko-Pastur law, we need to introduce the

Stieltjes transform, which we motivate by discussing the two different methods for proving

the Marchenko-Pastur law. The two methods are the moment method and using the Stieltjes

transform.
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The moment method is a technique that was introduced by Pafnuty Chebyshev for proving

convergence in distribution.

Lemma 1.2 (Unique limit - Lemma B.1 in [7]). . Let {Fp} be a sequence of distribution

functions. Let the kth moment of the distribution Fp be denoted by

βp.k = βk(Fp) :=

∫
xkdFp(x).

The sequence of distribution functions {Fp} converges weakly to a limit if the following con-

ditions are satisfied:

1. Each Fp has finite moments of all orders.

2. For each fixed integer k ≥ 0, βp,k converges to a finite limit βk as p→∞.

3. If two right-continuous nondecreasing functions F and G have the same moment se-

quence {βk}, then F = G+ const.

Works by M. Riesz [Lemma B.2 in [7]] and Carleman [Lemma B.3 in [7]] give ways of showing

condition (3) of the lemma. A proof of the simplified version of the Marchenko-Pastur law

stated above is done via the moment method in Section 3.1 of [7].

An alternative way to proving a sequence of distribution functions converge in distribution

is with the Stieltjes transform.

Definition 1.19. If G(x) is a function of bounded variation on the real line, then its Stielt-

jes transform is defined by

sG(z) =

∫
1

λ− z
dG(λ)

where z ∈ C+ ≡ {z ∈ C : =z > 0}.

When G = FAp where FAp is the empirical spectral distribution of a p×p Hermitian matrix,

13



Ap, with eigenvalues λ1 ≥ ... ≥ λp, then

sFAp (z) =
1

p

p∑
i=1

1

λi − z
=

1

p
tr(Ap − zI)−1.

To understand how Stieltjes transforms help prove convergence in distribution we have the

following definitions and theorem.

Definition 1.20. A measure µ on (R1,B1) with µ(R1) ≤ 1 is called a subprobability

measure.

Definition 1.21 ([36]). Let M(R) denote the collection of all subprobability distribution

functions on R. We say for {Fp} ⊂ M(R), Fp converges vaguely to F ∈ M(R) (written

Fp
v−→ F ) if for all [a, b], a, b continuity points of F , limp→∞ Fp{[a, b]} = F{[a, b]}. Equiva-

lently, Fp
v−→ F if ∫

f(x)dFp(x)→
∫
f(x)dF (x)

for all continuous f vanishing at ±∞. When Fp and F are probability distribution functions,

we say Fp converges in distribution to F , denoted Fp
D−→ F . Equivalently, limp→∞ Fp(a) =

F (a) for all continuity points a of F .

Theorem 1.3 (Theorem B.9 in [7]). Assume that {Gp} is a sequence of functions of bounded

variation and Gp(−∞) = 0 for all p. Then,

lim
p→∞

sGp(z) = s(z) ∀z ∈ D

if and only if there is a function of bounded variation G with G(−∞) = 0 and Stieltjes

transform s(z) and such that Gp → G vaguely.

Here we will use {Gp} = FAp where FAp is the empirical spectral distribution of a p × p

Hermitian matrix, Ap. Thus if we show the limit of the Stieltjes transforms of FAp converge to
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the Stieltjes transform of the distribution, F , from the Marchenko-Pastur law almost surely,

then using Theorem B.9 in [7] we get that FAp → F vaguely with probability one. It has

been shown that the Marchenko-Pastur distribution, F , is indeed a distribution. Thus with

probability one we have convergence in distribution of the empirical spectral distributions

to the Marchenko-Pastur distribution.

Theorem 1.4 (Marchenko-Pastur [28], as stated in [36]). Consider an p × p matrix, Bp.

Assume that

1. Xp is a p × m matrix such that the matrix elements Xij are i.i.d. complex random

variables with mean zero and variance one.

2. m = m(p) with m/p→ λ̂ > 0 as p→∞.

3. Tp = diag(τ p1 , τ
p
2 , ..., τ

p
m) ∈ Rm×m where τ pi ∈ R, and the ESD of {τ p1 , ..., τ pm} converges

almost surely in distribution to a nonrandom probability distribution function H(τ) as

p→∞.

4. Bp = Ap + 1
p
XpTpX

∗
p , where Ap is a random Hermitian p × p matrix for which FAp

converges vaguely to FA almost surely, A being a possibly defective (i.e. with disconti-

nuities) nonrandom distribution function.

5. Xp, Tp and Ap are independent.

Then, almost surely, FBp converges vaguely as p→∞ to a nonrandom distribution function

FB whose Stieltjes transform sFB(z), z ∈ C+ satisfies the canonical equation

sFB(z) = sFA

(
z − λ̂

∫
τdH(τ)

1 + τsFB(z)

)

where sFA is the Stieltjes transform of A. For example, if Am = 0, then sFA(z) = 1
0−z = −1

z
.
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Remark. Setting Ap = 0 and Tp = Im gives the more common version of the Marchenko-

Pastur law that was stated above. It looks a little different because here m/p → λ̂ and

B = 1
p
XX∗, and above p/m → λ and we considered 1

m
XX∗(= p

m
B), but the two are

equivalent. Indeed, Theorem 1.4 gives us that

sFB(z) =
1

−z + λ̂
1+s

FB
(z)

Using the definition of Stieltjes transform, we have s
F
p
mB(z) = m

p
sFB

(
m
p
z
)

, thus the line

above is equivalent to

sFB

(
m

p
z

)
=

1

−m
p
z + λ̂

1+s
FB(mp z)

=⇒ p

m
s
F
p
mB(z) =

1

−m
p
z + λ̂

1+ p
m
s
F
p
mB (z)

=⇒ s
F
p
mB(z) =

1

−z + 1
1+ p

m
s
F
p
mB (z)

using m/p→ λ̂

=⇒ s
F
p
mB(z) =

1

−z + 1
1+λs

F
p
mB (z)

using p/m→ λ

For notational simplicity, let S = s
F
p
mB(z), thus we have S = 1

−z+ 1
1+λS

, which can be rear-

ranged into the equation S = 1
1−λ−z−zλS . The distribution with a Stieltjes transform that

satisfies this equation is the Marchenko-Pastur distribution from Theorem 1.1; this is proved

on pages 51-52 in Chapter 3 Section 2 of [14].

Remark. In [6] Bai and Silverstein dropped the restriction on Tp being diagonal so that Tp

can be any matrix whose ESD F Tp → H.
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Outline of the proof of the Marchenko-Pastur law using Stieltjes transforms

We give an outline for the proof of the Marchenko-Pastur law using Stieltjes transforms. This

outline is based on the proof given in the textbook Random Matrix Methods for Wireless

Communications [14]. As done in the textbook, we break the proof into six key facts:

Fact 1: The (1,1) entry [(XXT − zIp)−1]1,1 = 1
−z−zyT (Y TY−zIm)−1y

.

Proof of Fact 1: This comes from a classical matrix inversion lemma:

Lemma 1.5. Let A ∈ CN×N , d ∈ Cn×n be invertible, and B ∈ CN×n, C ∈ Cn×N . Then

A B

C D


−1

=

 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(A−BD−1C)−1CA−1 (D − CA−1B)−1

 .

Setting

X =

yT
Y

 ,

the result follows by applying this lemma to the matrix

(XXT − zIp)−1 =

yTy − z yTY T

Y y Y Y T − zIp−1


−1

and also using the identity

IN − A(N×n)(B(n×N)A(N×n) − zIn)−1B(n×N) = −z(A(N×n)B(n×N) − zIN)−1.�

Fact 2: yT (Y TY − zIm)−1y → 1
m

tr((Y TY − zIm)−1) almost surely.
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This is the heart of the proof and is essentially the part that we prove in our work for our

specific types of matrices. We do not prove it here, but in [14], it is called the Theorem 3.4.

and is proved on page 45.

Fact 3: 1
m

tr((Y TY − zIm)−1)→ 1
m

tr((XTX − zIm)−1) almost surely.

Proof of Fact 3: This is known as the rank-1 perturbation lemma. We will use the following

theorem.

Theorem 1.6 (Silverstein and Bai [6]). For z ∈ C \R+, we have the following quadratic

form identities.

(i) Let z ∈ C \R, A ∈ CN×N , B ∈ CN×N with B Hermitian, and v ∈ CN . Then

∣∣∣ tr((B − zIN)−1 − (B + vvH − zIN)−1
)
A
∣∣∣ ≤ ||A|||=[z]|

with ||A|| the spectral norm of A.

(ii) Moreover, if B is non-negative definite, for z ∈ R−

∣∣∣ tr((B − zIN)−1 − (B + vvH − zIN)−1
)
A
∣∣∣ ≤ ||A|||z| .

Returning to the proof of Fact 3, we have that

1

m
tr((Y TY − zIm)−1)− 1

m
tr((XTX − zIm)−1)

=
1

m
tr((Y TY − zIm)−1)− 1

m
tr((Y TY + yyT − zIm)−1)

=
1

m
tr
(

(Y TY − zIm)−1 − (Y TY + yyT − zIm)−1
)
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Using Siverstein and Bai’s theorem with A = Im, B = Y TY, and v = y we have for z ∈ R−

1

m

∣∣∣ tr((Y TY − zIm)−1 − (Y TY + yyT − zIm)−1
)∣∣∣ ≤ 1

m|z|
→ 0 as m→∞

and for z ∈ C \R

1

m

∣∣∣ tr((Y TY − zIm)−1 − (Y TY + yyT − zIm)−1
)∣∣∣ ≤ 1

m|=[z]|
→ 0 as m→∞.

Since straight lines have measure zero in R2, we have shown that 1
m

∣∣∣ tr((Y TY − zIm)−1 −

(Y TY + yyT − zIm)−1
)∣∣∣ has limit zero with probability one. �

Fact 4: 1
m

tr((XTX − zIm)−1) = 1
m

tr((XXT − zIp)−1) + p−m
m

1
z

Proof of Fact 4: This follows from the fact that the non-zero eigenvalues of XXT and XTX

are the same. For further details, see Lemma 3.1 in the textbook Random Matrix Methods

for Wireless Communications [14].

Putting together Facts 1 & 2, we have that

∣∣∣∣[(XXT − zIp)−1]1,1 −
1

−z − z 1
m

tr((Y TY − zIm)−1)

∣∣∣∣→ 0 a.s. as m→∞

Adding in Fact 3 gives

∣∣∣∣[(XXT − zIp)−1]1,1 −
1

−z − z 1
m

tr((XTX − zIm)−1)

∣∣∣∣→ 0 a.s. as m→∞

Adding in Fact 4 gives

∣∣∣∣[(XXT − zIp)−1]1,1 −
1

1− p
m
− z − z p

m
1
p

tr((XXT − zIp)−1)

∣∣∣∣→ 0 a.s. as m→∞
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Written in terms of the Stieltjes transform, sXXT (z), of XXT , this is

∣∣∣∣[(XXT − zIp)−1]1,1 −
1

1− p
m
− z − z p

m
sXXT (z)

∣∣∣∣→ 0 a.s. as m→∞

Fact 5: Due to the symmetric structure of XXT , the result is also true for all diagonal

entires (i, i), i = 1, ..., p. Summing them up and averaging, we conclude that

sXXT (z)− 1

1− p
m
− z − z p

m
sXXT (z)

→ 0 a.s. as m→∞.

Fact 6: sXXT (z) given by the equation in Fact 5 converges to the Stieltjes transform of the

probability measure in the Marchenko-Pastur law.

These facts together give the proof of the Marchenko-Pastur law. �

Historical advances of the Marchenko-Pastur law

Since Marchenko and Pastur’s influencial paper [28], many generalizations have been made

such as by Grenander and Silverstein [23], Wachter [38], Jonnson [25], Yin and Krishnaiah

[43], Yin [44], Silverstein [35], and Silverstein and Bai [6]. A summary of the achievements

of these is given in the introduction section of [6]. Some other papers have weakened the

independence condition on the matrix X. Yin and Krishnaiah [43] require the column vectors

of X, Xk, to come from a spherically symmetric distribution; specifically, they require the

distribution of Xk to be the same as that of PXk where P is an orthogonal matrix. Aubrun

[5] proved the result with X having independent columns distributed uniformly on the lmp

ball. That result was generalized by Pajor and Pastur [31] who showed the independent

columns can be distributed according to any isotropic log-concave measure. Adamczak [2]

gives three conditions and shows they suffice to giving the limiting eigenvalue distribution.
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Those conditions are (1) the entries of X have finite moments of all orders, (2) for every

m, i, j, E[X
(m)
ij |Fij] = 0, where Fij is the σ-field generated by {X(m)

kl : (k, l) 6= (i, j)}, and

(3) the Euclidean norm of a random row, normalized by
√
m, and the Euclidean norm of a

random column, normalized by
√
p, both converge in probability to 1. O’Rourke [30] studies

a class of matrices with weakly dependent entries that satisfy seven conditions. Additionally,

he gives a rate of convergence of the expected empirical spectral distribution. Bai and Zhou

[8] prove the limiting distribution for a class of matrices, and their work was extended by

Yao [42] to give a time series dependence structure as well. We state Bai and Zhou’s result

as we will use it in our work to prove our results.

Theorem (Bai, Zhou) [8] Let {X(p)
jk , j = 1, ..., p, k = 1, ...,m} be an array of complex

random variables for each p. Write X = X(p) = (Xjk)1≤j≤p,1≤k≤m. Let X1, ..., Xm be the

columns of X, which are assumed to be independent. As p→∞, assume the following.

1. For all k, EXjkXlk = tlj, and for any non-random p× p matrix A = A(p) = (ajk) with

bounded spectral norm, E|X∗kAXk − tr(AT )|2 = o(p2), where T = T (p) = (tjl).

2. λ(p) := p/m→ λ ∈ (0,∞).

3. The norm of the matrix T = T (p) is uniformly bounded and the empirical spectral

distribution of T tends to a non-random probability distribution H.

Then, with probability 1, the empirical spectral distribution of 1
m
XX∗ tends to a probability

distribution, whose Stieltjes transform s = s(z) (z ∈ C+) satisfies

s =

∫
1

t(1− λ− λzs)− z
dH(t).

When T = σ2I, this implies the the empirical spectral distribution of 1
m
XX∗ converges weakly

in distribution to the simple Marchenko-Pastur distribution with ratio λ and variance σ2.
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Applications of the Marchenko-Pastur law in finance and biology

The Marchenko-Pastur law has been applied to both the fields of finance and biology. In

this section we provide some references for reading about these applications.

The authors Laloux, Cizeau, Bouchaud, and Potters in [27] and [26] study financial price

fluctuations. They find that the empirical correlation matrices from stocks of the S&P 500

(or other major markets) agree remarkably with correlation matrices from random matrices.

These authors have many other papers relating finance to the Marchenko-Pastur law which

the interested reader can look up. Authors Plerou, Gopikrishnan, Rosenow, Amaral, Guhr,

and Stanley in [33] also study correlation matrices of stock returns. They find that the

eigenvalues that lie outside of the range for random matrices tend to fall into groups that

relate to different business sectors.

In biology, the Marchenko-Pastur law arises without being explicitly called “the Marchenko-

Pastur law” in two papers that study HIV. The paper [15], published by PNAS, analyzed

HIV sequences and found groups of amino acids whose mutations are collectively coordinated.

Another paper [12] considers the question, “what are optimal vaccine targets for the HIV

virus?”

Chapter 3 of this dissertation gives an application to dimensionality reduction for random

vectors. Lastly, we point the interested reader to the paper Random Matrix Theory and its

Innovative Applications [18] for some additional applications.

1.3.4 Related works

In this section, we present Wigner’s semicircular law which is analogous to the Marchenko-

Pastur law in that the Marchenko-Pastur law gave the limiting empirical spectral distribution

(ESD) for covariance matrices 1
m
XXT , and the semicircular law gives the limiting normalized
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ESD for Hermitian matrices. Wigner’s work from the 1950s was motivated by problems in

physic, and random matrices still have applications in physics today.

Definition 1.22. [37] For any p × p Hermitian matrix Mp, the normalized empirical

spectral distribution of Mp is

µ 1√
p
Mp

:=
1

p

p∑
i=1

δλi(Mp)/
√
p,

where λ1(Mp) ≥ ... ≥ λp(Mp) are the (necessarily real) eigenvalues of Mp, counting multi-

plicity.

We see that µ 1√
p
Mp

is a probability measure.

Definition 1.23. [37] A sequence of random ESDs µ 1√
p
Mp

converge almost surely to a

deterministic limit µ, which is a probability measure on R, if for every test function ϕ ∈

CC(R), the quantities
∫
R ϕdµ 1√

p
Mp

converge almost surely to
∫
R ϕdµ.

Definition 1.24. [37] A Wigner matrix is a random Hermitian matrix where the strictly

upper triangular entries are i.i.d. real or complex valued random variables with mean zero and

variance one, and the diagonal entries are i.i.d. real valued random variables, independent

of the strictly upper triangular entries, with bounded mean and variance.

Theorem 1.7. (Wigner’s semicircular law [39], as stated in [37]) Let Mp be the top left

p× p minors of an infinite Wigner matrix (ζi,j)i,j≥1. Then the ESDs µ 1√
p
Mp converge almost

surely to the Wigner semicircular distribution

µsc :=
1

2π
(4− |x|2)

1/2
+ dx

as p→∞, where (x)+ = x if x > 0 and 0 otherwise.

There have been many extensions to the semicircle law for the non-i.i.d. case such as by

Pastur in [32], Götze and Tikhomirov in [22], Erdős, Yau, Yin, et al., which is summarized in
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[19], and Götze, Naumov, and Tikhomirov in [21]. Additionally, there have been a number

of extensions towards block random matrices using free probability theory. In chapter 9.1 of

Mingo and Speicher’s textbook [29], they consider block matrices where the random matrix

is made up of blocks of Gaussian random matrices, where it is allowed for the blocks to

repeat. Other works involving block matrices include the work of Shlyakhtenko [34] and

Arizmendi, Nechita, and Vargas [4]. In Chapter 2, we consider block structured matrices for

the Marchenko-Pastur law.

1.3.5 Vector and matrix norms

Our proofs rely heavily on understanding matrix norms, so we collect some definitions and

basic facts here for the reader. Note: the definitions of vector and matrix norms can be

extended to C and other fields, but we just consider real values here.

Definition 1.25. A function ‖ · ‖ : Rn → R is a vector norm if for x, y ∈ Rn and α ∈ R

we have

1. ‖x‖ ≥ 0, with ‖x‖ = 0 ⇐⇒ x = 0

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. ‖αx‖ = |α|‖x‖.

To distinguish between different norms, we adorn the function notation ‖·‖ with a subscript.

The most common vector norms are the p− norms defined by

‖x‖p = (|x1|p + ...+ |xn|p)
1
p , for p ≥ 1.
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Theorem 1.8 (Holder’s inequality). For x, y ∈ Rn and p, q ∈ [1,∞] with 1
p

+ 1
q

= 1,

|xTy| ≤ ‖x‖p‖y‖q.

The case where p = q = 2 in Holder’s inequality is known as the Cauchy-Schwarz inequality,

which is important enough to state on its own. We state it in its more well-known form for

vectors in C.

Theorem 1.9 (Cauchy-Schwarz inequality). For x, y ∈ Cn,

|〈x, y〉| = |x∗y| ≤ ‖x‖2‖y‖2

or ∣∣∣∣∣
n∑
i=1

xiv̄i

∣∣∣∣∣
2

≤
n∑
j=1

|xj|2
n∑
k=1

|yk|2.

Definition 1.26. A function ‖ · ‖ : Rm×n → R is a matrix norm if for A,B ∈ Rm×n and

α ∈ R we have

1. ‖A‖ ≥ 0, with ‖A‖ = 0 ⇐⇒ A = 0

2. ‖A+B‖ ≤ ‖A‖+ ‖B‖

3. ‖αA‖ = |α|‖A‖.

Similarly, the most common matrix norms are the p− norms which are defined in terms of

the vector p− norms, via

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.

Of particular interest are the 1− norm, ∞− norm, and 2− norm (which is also called the
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operator norm or spectral norm), which are given by

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| = the max absolute column sum of the matrix;

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| = the max absolute row sum of the matrix;

‖A‖2 = σmax(A) = the largest singular value of the matrix.

Another common matrix norm is the Frobenius norm,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2.

Theorem 1.10. If S is a real or complex vector space of finite dimension, then any two

norms, ‖ · ‖α and ‖ · ‖β , on S are equivalent, meaning there exists positive real constants c1

and c2 such that c1‖A‖α ≤ ‖A‖β ≤ c2‖A‖α for all A ∈ S. In particular for S = Rm×n and

A ∈ Rm×n with rank r, we have

1. 1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞

2. 1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1

3. ‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2.

1.3.6 Asymptotic notation

Definition 1.27. Let f be a real or complex valued function and g a real valued function,

both defined on an unbounded subset of the real positive numbers, and g(x) is strictly positive

for large enough values of x. We say f is “big O” of g, written f(x) = O
(
g(x)

)
as x→∞,
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if there exists a positive real number M and a real number x0 such that

|f(x)| ≤Mg(x) for all x ≥ x0.

In words, f is “big O” of g if for large values of x, f grows no faster than a constant times

g. In other words, the order of f is at most the order of g.

Definition 1.28. Let f be a real or complex valued function and g a real valued function,

both defined on an unbounded subset of the real positive numbers, and g(x) is strictly positive

for large enough values of x. We say f is “little-o” of g, written f(x) = o
(
g(x)

)
as x→∞,

if for every ε > 0 there exists a constant, N , such that

|f(x)| ≤ εg(x) for all x ≥ N.

Meaning, f is “little-o” of g if for large values of x, f grows much slower than g. In other

words, the order of f is strictly less than the order of g.

For example the function f(x) = 3x2 + 2x+ 20 is big O of x2, and little-o of x2+ε for ε > 0.

1.3.7 Binomial coefficients

One of our proofs requires bounding equations full of binomial coefficients, so here we collect

the facts about binomial coefficients that we will need.

Fact 1: [Definition] (
n

t

)
=

n!

t!(n− t)!
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Fact 2: (n
t

)t
≤
(
n

t

)
≤
(en
t

)t

Fact 3: (
2n

n

)
≤ 4n

Proof. (
2n

n

)
=

n∑
k=0

(
n

k

)2

≤

(
n∑
k=0

(
n

k

))2

= (2n)2 = 4n,

where the inequality comes from the fact that the terms of the sum are positive.

Fact 4: [Chu-Vandermonde identity]

t∑
v=1

(
t

v

)(
n− t
t− v

)
=

((
n

t

)
−
(
n− t
t

))

Fact 5: [Pascal’s identity] (
n

t

)
=

(
n− 1

t− 1

)
+

(
n− 1

t

)

Fact 6:

argmax
b

(
a

b

)(
a

c− b

)
=
c

2

Proof.

argmax
b

(
a

b

)(
a

c− b

)
= argmax

b

a!

b!(a− b!)
a!

(c− b)!(a− c+ b)!)

argmin
b

b!(a− b!)(c− b)!(a− c+ b)! = argmin
b

c!(
c
b

) (2a− c)!(
2a−c
a−b

) = argmax
b

(
c

b

)(
2a− c
a− b

)
and noticing that

(
c
b

)
is maximized when b = c

2
, as is

(
2a−c
a−b

)
.
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Fact 7: (
a

b− 1

)
=

b

a+ 1− b

(
a

b

)
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Chapter 2

Weakening Independence in the

Marchenko-Pastur Law

2.1 Block version and vectorized tensor version for the

Marchenko-Pastur law

In this chapter, we add to the collection of works that generalize the Marchenko-Pastur

theorem with some dependence, by showing that the hypotheses from Bai and Zhou’s work

in [8] is satisfied for our specific random matrices. Specifically we consider two models of

random matrices and show that they exhibit the Marchenko-Pastur law. We will first give

the models and theorem statement, then discuss the motivation for these types of models.

Here are our two models of the columns of random matrices:

Model 1: Consider a random vector x ∈ Rnd whose entries all have mean zero, variance

one, and finite fourth moment. Assume further that the entries of x can be partitioned into
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n blocks each of length d in such a way that the entries within a block are uncorrelated, and

the entries in different blocks are independent.

Model 2: Consider a random vector x ∈ Rn whose entries are independent and all have

mean zero, variance one, and finite fourth moment. Consider the random vector x ∈ R(nt)

obtained by vectorizing the symmetric tensor x⊗d. Thus, the entries of x are indexed by

t-element subsets i ⊂ [n] and are defined as products of the entries of x over i:

x i =
∏
i∈i

xi = xi1xi2 ...xit , i = {i1, . . . , it}.

Theorem 2.1 (Marchenko-Pastur law for new models). Let X = X(p), p = 1, 2, ..., where

p is a function of another variable n (p = nd for Model 1 and p =
(
n
t

)
for Model 2),

be a sequence of p ×m random matrices whose columns are independent and follow either

Model 1 or Model 2 1. Let n, p → ∞ and m = m(p) be so that p/m → λ ∈ (0,∞). For

Model 1, assume that maxα E[x4
α] = o(n

d
), and for Model 2, assume that maxα E[x4

α] = o(n
2/3

t2
).

Then the empirical spectral distribution of 1
m
XXT converges weakly in distribution to the

Marchenko-Pastur distribution with ratio λ.

Remark. For Model 1, by variance one and maxα E[x4
α] = o(n

d
) we necessarily have that

d = o(n). However, the next remark shows how we we remove this restriction on d. For

Model 2, by variance one and maxα E[x4
α] = o(n

2/3

t2
) we necessarily have that t = o(n

1
3 ).

Remark. If in addition to Model 1 we have exchangeability in the random variables in a

block, meaning that E[xixjxkxl] = E[xqxrxsxt] when xi, xj, xk, xl, xq, xr, xs, xt are all in the

same block of uncorrelated random variables, then we can relax the condition on the 4th

moment to just require that the largest 4th moment of the entries is o(n). We still require

the number of blocks, n, to go to infinity, but now d can be as large as we want. For example,

we could have d = n2.

1We allow the size of the block d in Model 1 and the degree t in Model 2 depend on p, i.e. they can be
different for different matrices X(p) in the sequence.
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The motivation for the block model is that we believe this model gives a more realistic inter-

pretation which explains why the Marchenko-Pastur law has worked well in the applications

where it’s been used. For example, when used in finance, the analysts currently are assuming

each day’s stock values are independent and each stock price is independent, but it’s more

realistic to think the sectors of the stock market form groups and the stocks within a sector

are not necessarily independent. The block model would also work well towards studying

people in situations such as Netflix recommendations because it’s fine to assume that each

person’s ratings are independent of each other, but for a specific person their ratings for two

movies in the same genre are probably not independent. While our assumption of uncor-

related entries within a block can’t handle correlated data yet, we believe our work can be

extended in the future to allow for correlation within a block, provided the correlation has

a limiting spectral distribution.

As for the vectorized tensor model, vectorized tensors come up in a variety of places and not

too much theory has been developed yet for them. In statistics, suppose we wish to model

lung capacity of a person as a linear function of their age, height, and gender. Often times,

including interaction terms, such as age∗gender may give better results. If we make a vector

containing age, height, gender, and the number one, then when we tensor that with itself

we end up with those features plus all pairwise products. Including all pairwise products of

the features is essentially considering degree two polynomials, but still framing it as a linear

problem. In a recent paper by Baldi and Vershynin [9], they linearized polynomial threshold

functions by lifting them into the tensor product space. This reduced polynomial thresh-

old functions to linear threshold functions and the corresponding hyperplane arrangements.

Using theory on random tensors, much of which they had to create, they were able to solve

their problem. Vectorized random tensors also arise in coding theory because they can save

memory storage over storing a completely random vector of the same length, for example

see [1].

32



2.1.1 Idea of the Proof

Theorem 2.1 will be proved by showing that the hypotheses from Bai and Zhou’s work in [8]

is satisfied for our specific random matrices. We state Bai and Zhou’s theorem now:

Theorem (Bai, Zhou) [8] Let {X(p)
jk , j = 1, ..., p, k = 1, ...,m} be an array of complex random

variables for each p. Write X = X(p) = (Xjk)1≤j≤p,1≤k≤m. Let X1, ..., Xm be the columns of

X, which are assumed to be independent. As p→∞, assume the following.

1. For all k, EXjkXlk = tlj, and for any non-random p× p matrix A = A(p) = (ajk) with

bounded spectral norm, E|X∗kAXk − tr(AT )|2 = o(p2), where T = T (p) = (tjl).

2. p/m→ λ ∈ (0,∞).

3. The norm of the matrix T = T (p) is uniformly bounded and the empirical spectral

distribution of T tends to a non-random probability distribution H.

Then, with probability 1, the empirical spectral distribution of 1
m
XX∗ tends to a probability

distribution, whose Stieltjes transform s = s(z) (z ∈ C+) satisfies

s =

∫
1

t(1− λ− λzs)− z
dH(t).

When T = I, this implies the the empirical spectral distribution of 1
m
XX∗ converges weakly

in distribution to the Marchenko-Pastur distribution with ratio λ.

For our models, we have isotropic vectors, meaning T = I. Since each column vector, Xk, is

independent and of the same structure, we will drop the subscript k and use a lowercase x

to represent an arbitrary column vector. We will use subscripts on x to represent the entries
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within the vector, i.e. xi is the ith entry in the arbitrary column vector. We also consider

real entries in X. Thus the property we need to show is

E[|xTAx− tr(A)|2] = o(p2)

where x ∈ Rp is an arbitrary column vector of X, A ∈ Rp×p is any matrix with bounded

spectral norm, and p
m
→ λ. Here are the statements of our results, which when combined

with Theorem (Bai, Zhou) give Theorem 2.1.

Theorem 2.2 (Concentration of quadratic forms in Model 1). Let x ∈ Rnd be a random

vector that follows Model 1. Then, for any fixed matrix A ∈ Rnd×nd, we have

E
[
|xTAx− tr(A)|2

]
≤ CK‖A‖2nd3.

Here C is an absolute constant and K is the largest fourth moment of the entries of x.

Moreover, if the entries of x within the same block are exchangeable,2 then the bound improves

to CK‖A‖2nd2.

Theorem 2.3 (Concentration of quadratic forms in Model 2). Let x ∈ R(nd) be a random

vector that follows Model 2. Then, for any fixed matrix A ∈ R(nt)×(nt), we have

E[|xTAx− tr(A)|2] ≤ C‖A‖2

(
n

t

)2

f

(
K

3
2 t3

n

)
.

Here C is an absolute constant, K is the largest fourth moment of the entries of x, and

f
(
K

3
2 t3

n

)
is a function of K

3
2 t3

n
which is o(1) provided K

3
2 t3

n
= o(1) .

Remark. It is allowed for t = t(n) → ∞ provided maxα∈{1,...,n}
β=3,4

|E[xβα]| = o(n
1/2

t3/2
), which

necessarily implies t = o(n1/3) since the entries of x have variance one.

2Exchangeability means that E[xixjxkxl] = E[xqxrxsxt] when i, j, k, l, q, r, s, t are all in the same block.
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Combining Theorem 2.2 and Theorem 2.3 with Theorem (Bai, Zhou) [8] proves Theorem

2.1. The remainder of the chapter is organized as follows. We prove Theorem 2.2 in Section

2.2, and Theorem 2.3 in Section 2.3. Lastly, in Section 2.4 we give numerical experiments

which show how well the results hold for a single realization and relatively small values of n.

2.2 Proof of Theorem 2.2

Without loss of generality, we may assume that ‖A‖ = 1 by rescaling. Expanding xTAx as

a double sum of terms Aijxixj and distinguishing the cases when i = j or i 6= j, we have:

E
[
|xTAx− trA|2

]
≤ 2E

[( nd∑
i=1

Aii(x
2
i − 1)

)2
]

+ 2E
[(∑

i 6=j

Aijxixj

)2
]

(2.1)

where we used the inequality (a+ b)2 ≤ 2a2 + 2b2.

2.2.1 Diagonal contribution

Let us start by considering the first expectation on the right-hand side of (2.1). Expanding

the square, we can express it as

2
nd∑

i,k=1

AiiAkk E(x2
i − 1)(x2

k − 1). (2.2)

Now if i and k are in different blocks, then by independence and unit variance, all such terms

have expectation zero and do not contribute anything in (2.2). So, the only contribution

comes from the terms where i and k are in the same block. In such a case, we have the
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bound

|E(x2
i − 1)(x2

k − 1)| = |Cov(x2
i , x

2
j)| ≤ max

α
E[x4

α] = K.

Thus, the contribution of the terms for which j and k are in the first block is

2
d∑

i,k=1

AiiAkk E(x2
i − 1)(x2

k − 1) ≤ K
d∑

i,k=1

AiiAkk ≤ K‖A‖2

d∑
i,k=1

1 = Kd2‖A‖2 = Kd2,

where we have used in the second inequality that every entry of A is bounded by its spectral

norm.

Clearly, the same bound holds not only for the first block but for each of the n blocks.

Summing up these bounds, we conclude that the expression in (2.2) is . Knd. Thus, we

have shown that the first expectation on the right-hand side of (2.1) is . Knd.

2.2.2 Off-diagonal contribution: setting up partitions

We now consider the second term in the right-hand side of (2.1). Ignoring the 2 out front

and expanding the square into

E
∑
i 6=j

∑
k 6=l

AijAklxixjxkxl, (2.3)

we can break this into cases considering partitions of 4, representing the powers on the entries

of x. For example, the partition (2, 1, 1) represents the indices (i, j, k, l) for which i 6= j,

k 6= l and such that exactly two among the four indices are the same. This comprises the

terms of the form AijAilx
2
ixjxl, AijAkix

2
ixjxk, AijAjlxix

2
jxl, and AijAkjxix

2
jxk.

Notice that in all partitions of 4 we have to consider, i.e. those for which i 6= j and k 6= l,

none of the powers can be greater than 2. (Indeed, in the partition (3, 1) three indices among

i, j, k, l are the same, which violates either the constraint i 6= j or the constraint k 6= l.) This
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leaves us with partitions (2, 2), (2, 1, 1) and (1, 1, 1, 1), which we shall consider one by one.

2.2.3 Partition (2, 2)

The terms corresponding to this partition have the form A2
ijx

2
ix

2
j and AijAjix

2
ix

2
j . Notice

that

|E[x2
ix

2
j ]| ≤

(
E[x4

i ]
)1/2(E[x4

j ]
)1/2 ≤ K (2.4)

Thus, we can bound the net contribution of the terms of the form A2
ijx

2
ix

2
j as follows:

E
nd∑
i,j=1
i 6=j

A2
ijx

2
ix

2
j ≤ K

nd∑
i,j=1

A2
ij ≤ Knd

where in the last step we used the bound

nd∑
i,j=1

A2
ij = ‖A‖2

F ≤ nd‖A‖2 = nd. (2.5)

Similarly, we can bound the the net contribution of the terms of the form AijAjix
2
ix

2
j :

E
nd∑
i,j=1
i 6=j

AijAjix
2
ix

2
j ≤ K

nd∑
i,j=1

|Aij||Aji| ≤ K

( nd∑
i,j=1

A2
ij

)1/2( nd∑
i,j=1

A2
ji

)1/2

≤ Knd

where we used the moment bound (2.4), Cauchy-Schwarz inequality, and (2.5).

Concluding, the net contribution to (2.3) of the terms comprising the partition (2, 2) is

. Knd.
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2.2.4 Partition (1, 1, 1, 1)

The terms corresponding to this partition have the form AijAklxixjxkxl where all indices

i, j, k, l are distinct.

We claim that the expectation of such a term is zero unless all four indices i, j, k, l come from

the same block. Indeed, suppose one of these indices – let’s say i – comes from its own block,

and none of the other three indices i, j, k are in the same block as i. Then Exixjxkxl = 0

since in this case xi is independent of xj, xk and xl and has zero mean. The remaining

situation is where a pair of the indices – let’s say i, j – are in one block, and the other

pair k, l is in a different block. Then again Exixjxkxl = E[xixj]E[xkxl] = 0 since xixj is

independent of xkxl, and moreover xi and xj are uncorrelated. This proves the claim.

So, let us assume that all indices i, j, k, l are in the same block. In such a case, we have the

bound

|E[xixjxkxl]| ≤ max
α

E[x4
α] ≤ K. (2.6)

Thus, the contribution of the terms for which i, j, k, l are in the first block can be bounded

by

E
d∑

i,j,k,l=1
i,j,k,l distinct

AijAklxixjxkxl ≤ K
d∑

i,j,k,l=1

|AijAkl| = K

( d∑
i,j=1

|Aij|
)2

≤ Kd2

d∑
i,j=1

A2
ij ≤ Kd3.

(2.7)

In the last step, we used that top-left d× d minor of A, which we denote by Ad×d, satisfies

d∑
i,j=1

A2
ij = ‖Ad×d‖2

F ≤ d‖Ad×d‖2 ≤ d‖A‖2 = d.
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Clearly, a bound similar to (2.7) holds not only for the first block but for each of the n

blocks. Summing up these bounds, we conclude that the net contribution to (2.3) of the

terms corresponding to the partition (1, 1, 1, 1) is . Knd3.

2.2.5 Partition (2, 1, 1)

This partition comprises the terms of the form AijAilx
2
ixjxl, AijAkix

2
ixjxk, AijAjlxix

2
jxl, and

AijAkjxix
2
jxk. Just like in the previous case where we studied the partition (1, 1, 1, 1), we

can argue that the only nonzero contribution comes from the terms where all three indices

are in the same block.

Let us consider the terms of the form AijAilx
2
ixjxl first. In such a case, we have the bound

|E[x2
ixjxl]| ≤ max

α
E[x4

α] ≤ K.

Thus, the contribution of the terms for which i, j, l are in the first block can be bounded by

E
d∑

i,j,l=1
i,j,l distinct

AijAilx
2
ixjxl ≤ K

d∑
i,j,l=1

|AijAil| = K
d∑
i=1

( d∑
j=1

|Aij|
)2

≤ Kd2.

In the last step, we used that top-left d× d minor of A, which we denote by Ad×d, satisfies

d∑
j=1

|Aij| ≤
√
d

( d∑
j=1

A2
ij

)1/2

≤
√
d‖Ad×d‖ =

√
d for every i.

A similar result holds not only for the first block but for each of the n blocks. Summing

up these bounds, we conclude that the net contribution to (2.3) of the terms of the form

AijAilx
2
ixjxl is . Knd2. Finally, we can repeat the above argument for the terms of the

other three types, AijAkix
2
ixjxk, AijAjlxix

2
jxl, and AijAkjxix

2
jxk, and thus conclude that the
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net contribution to (2.3) of the terms corresponding to the partition (2, 1, 1) is . Knd2.

Ultimately, adding the contributions of all partitions – (2, 2), (1, 1, 1, 1), and (2, 1, 1), we see

that the total off-diagonal contribution (2.3) is bounded by

O(Knd) +O(Knd3) +O(Knd2) = O(Knd3).

Adding to this the the diagonal contribution O(Knd), which we handled in Section 2.2.1,

we conclude that (2.1) is bounded by O(Knd3). Theorem 2.2 is proved.

2.2.6 Exchangeable distributions

Here we prove the “moreover” part of the Theorem 2.2. Namely, we assume that the entries

of x within the same block are exchangeable, and we seek to improve our previous bound

on (2.1) from O(Knd3) to O(Knd2). A quick look at the previous paragraph reveals that

the only part that needs to be strengthened is the partition (1, 1, 1, 1), where our bound was

O(Knd3); it suffices to improve it to O(Knd2).

So let us focus on the partition (1, 1, 1, 1). Thus, we will have to bound the sum of the terms

AijAklxixjxkxl over quadruples i, j, k, l of all distinct indices. As we argued in the beginning

of Section 2.2.4, we can assume without generality that for each term, the indices i, j, k, l

are in the same block (otherwise the expectation of such a term would be zero). Focusing on

the first block for now, we are seeking to bound the quantity

∣∣∣∣E d∑
i,j,k,l=1

i,j,k,l distinct

AijAklxixjxkxl

∣∣∣∣ =

∣∣∣∣E[x1x2x3x4]
d∑

i,j,k,l=1
i,j,k,l distinct

AijAkl

∣∣∣∣ ≤ K

∣∣∣∣ d∑
i,j,k,l=1

i,j,k,l distinct

AijAkl

∣∣∣∣,
(2.8)

where the equality follows from the exchangeability assumption, and the inequality follows
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from (2.6). We reduced the problem to bounding the sum of AijAkl over quadruples i, j, k, l

of all distinct indices in {1, . . . , d}. The following lemma provides an adequate bound.

Lemma 2.4. Any real d× d matrix B satisfies

∣∣∣∣ d∑
i,j,k,l=1

i,j,k,l distinct

BijBkl

∣∣∣∣ ≤ 10d2‖B‖2.

Proof. Without loss of generality, we can assume that ‖B‖ = 1. Denote by 1 ∈ Rd the

vector with all 1 coordinates and note that

∣∣∣∣ d∑
i,j=1

Bij

∣∣∣∣ = |1TB1| ≤ ‖1‖2
2‖B‖ = d and

∣∣∣∣ d∑
i=1

Bii

∣∣∣∣ = | trB| ≤ d‖B‖ = d.

Subtracting one sum from the other and using triangle inequality, we get

∣∣∣∣ d∑
i,j=1
i 6=j

Bij

∣∣∣∣ ≤ 2d.

This yields

∣∣∣∣ d∑
i,j,k,l=1
i 6=j, k 6=l

BijBkl

∣∣∣∣ =

( d∑
i,j=1
i 6=j

Bij

)2

≤ 4d2. (2.9)

Thus, instead of the requirement that all four indices i, j, k, l be distinct, we were able to

handle the weaker but simpler requirement that i 6= j and k 6= l. This weaker requirement

produces the sum over more terms. It remains to control the sum over the difference set E,

i.e. over the set of quadruples of indices i, j, k, l not all of which are distinct but for which

i 6= j and k 6= l.
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This set E can be expressed as the union of the following four sets:

E1 :=
{

(i, j, k, l) : j 6= i = k 6= l
}
, E2 :=

{
(i, j, k, l) : j 6= i = l 6= k

}
,

E3 :=
{

(i, j, k, l) : i 6= j = k 6= l
}
, E4 :=

{
(i, j, k, l) : i 6= j = l 6= k

}
.

By the inclusion-exclusion principle, the sum of any terms wijkl over E can be expressed as

∑
E

wijkl =
∑
E1

wijkl +
∑
E2

wijkl +
∑
E3

wijkl +
∑
E4

wijkl −
∑
E1∩E4

wijkl −
∑
E2∩E3

wijkl, (2.10)

since only two of all pairwise intersections are nonempty, namely E1 ∩E4 and E2 ∩ E3, and

all three-wise and four-wise intersections are empty.

The sum over Eα can be bounded by the same argument as in Section 2.2.5, which we repeat

here for the reader’s convenience. For example, let us bound the sum over E1:

∣∣∣∣ d∑
i,j,l=1
i 6=j

BijBil

∣∣∣∣ ≤ d∑
i,j,l=1

|Bij||Bil| =
d∑
i=1

( d∑
j=1

|Bij|
)2

≤ d2.

In the last step, we used that

d∑
j=1

|Bij| ≤
√
d

( d∑
j=1

B2
ij

)1/2

≤
√
d‖B‖ =

√
d for every i.

Similarly one can bound the sums over E2, E3, and E4.

The sum over the pairwise intersections is simpler to bound. For example, let us bound the

sum over E2 ∩ E3: ∣∣∣∣ d∑
i,j=1
i 6=j

BijBji

∣∣∣∣ ≤ d∑
i,j=1

|Bij||Bji| ≤ d2.

In the last step, we used that the magnitude of each entry of B is bounded by the spectral

norm of B, which we assumed to be 1. The sum over E1 ∩ E4 can be handled similarly.
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Thus, each of the six sums on the right in the inclusion-exclusion formula (2.10) is bounded

by d2. Hence the sum over E is bounded by 6d2. Thus, the difference of the sum over

all-distinct i, j, k, l and over the larger set where i 6= j, k 6= l can be at most 6d2. Using

(2.9), this implies that sum over all-distinct i, j, k, l is at most 4d2 + 6d2 ≤ 10d2. The lemma

is proved.

Apply Lemma 2.4 for the top-left d× d minor of A, and substitute into (2.8). We obtain

∣∣∣∣E d∑
i,j,k,l=1

i,j,k,l distinct

AijAklxixjxkxl

∣∣∣∣ ≤ 10Kd2.

A similar bound clearly holds not only when the indices i, j, k, l are in the first block, but also

for each of the n blocks. Summing up these bounds, we conclude that the net contribution

of the terms corresponding to the partition (1, 1, 1, 1) is . Knd2. As we explained in the

beginning of this section, is completes the proof of the “moreover” part of Theorem 2.2.

2.3 Proof of Theorem 2.3

The first step of the proof is the same as for Theorem 2.2. Without loss of generality, we

may assume that ‖A‖ = 1 by rescaling. Expanding xTAx as a double sum of terms Aijx ix j

and distinguishing the cases when i = j or i 6= j, we have:

E
[
|xTAx − trA|2

]
≤ 2E

[(∑
i

Aii(x
2
i − 1)

)2
]

+ 2E
[(∑

i6=j

Aijx ix j

)2
]

(2.11)
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2.3.1 Diagonal contribution

Let us start by considering the first expectation on the right-hand side of (2.11). Expanding

the square, we can express it as

2
∑
i,k

AiiAkk E(x 2
i − 1)(x 2

k − 1). (2.12)

Both meta-indices i and k range in all
(
n
t

)
subsets of [n] of cardinality t. Let v denote the

overlap between these two subsets, i.e.

v := |i ∩ k|.

If v = 0, the subsets are disjoint, the random variables x 2
i − 1 and x 2

k − 1 are independent

and have mean zero, and thus

E(x 2
i − 1)(x 2

k − 1) = 0.

If v ≥ 1, the monomial x 2
i x

2
k consists of v terms raised to the fourth power (coming from

indices that are both in i and k) and 2(t−v) terms raised to the second power (coming from

the symmetric difference of i and k). Thus,

∣∣E(x 2
i − 1)(x 2

k − 1)
∣∣ ≤ Ex 2

i x
2
k ≤ max

α

(
Ex4

α

)v ·max
β

(
Ex2

β

)2(t−v) ≤ Kv,

where we used the unit variance assumption.

There are
(
n
t

)
ways to choose i. Once we fix i and v ∈ {1, . . . , t}, there are

(
t
v

)(
n−t
t−v

)
ways to

choose k, since v indices must come from i and the remaining t− v indices must come from
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[n] \ i. Therefore,

(2.12) ≤ 2

(
n

t

) t∑
v=1

(
t

v

)(
n− t
t− v

)
Kv. (2.13)

To bound this sum, since K is a positive integer, then the following elementary inequality

holds: (
t

v

)
Kv ≤

(
Kt

v

)
,

and it can be quickly checked by writing the binomial coefficients in terms of factorials. Now,

if we sum v from zero as opposed from 1 in (2.13), we can use Vandermonde’s identity and

get
t∑

v=0

(
t

v

)(
n− t
t− v

)
Kv ≤

t∑
v=0

(
Kt

v

)(
n− t
t− v

)
=

(
n− t+Kt

t

)
.

Subtracting the zeroth term, we obtain

t∑
v=1

(
t

v

)(
n− t
t− v

)
Kv ≤

(
n− t+Kt

t

)
−
(
n− t
t

)
.

Now use a stability property of binomial coefficients (Lemma 2.5), which tells us that

(
n− t+Kt

t

)
−
(
n− t
t

)
≤ δ

(
n− t
t

)
where δ :=

2Kt2

n− 2t+ 1
,

as long as δ ≤ 1/2. According to our assumptions on the degree t, we do have δ ≤ 1/2.

Summarizing, we have shown that

(2.12) ≤ 2

(
n

t

)
· δ
(
n− t
t

)
.

(
n

t

)2

· Kt
2

n
.

Lemma 2.5 (Stability of binomial coefficients). For any positive integers m, p and t ≤ m,
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we have (
m+ p

t

)
≤ (1 + δ)

(
m

t

)
where δ :=

2tp

m+ 1− t
,

as long as δ ≤ 1/2.

Proof. Definition of binomial coefficients gives

(
m+p
t

)(
m
t

) =

p∏
k=1

(
1 +

t

m− t+ k

)
≤
(

1 +
t

m− t+ 1

)p
.

From Bernoulli’s inequality and linearizing the exponential function, we will use the bound

(1 + ε)p ≤ eεp ≤ 1 + 2εp, which holds as long as εp ∈ [0, 1].

2.3.2 Off-diagonal contribution

It remains to consider the second expectation on the right-hand side of (2.11). Ignoring the

2 and expanding the square, we have

E
(nt)∑
i=1

(nt)∑
j=1
j6=i

(nt)∑
k=1

(nt)∑
l=1
l 6=k

Ai,jAk,lx ix jxkx l. (2.14)

Rewriting the x ’s in terms of x’s via

x ix jxkx l = xi1 ...xitxj1 ...xjtxk1 ...xktxl1 ...xlt (2.15)

where i1, ..., it, j1, ..., jt, k1, ..., kt, l1, ..., lt ∈ [n], where |{i1, ..., it}∩{j1, ..., jt}| 6= t and |{k1, ..., kt}∩

{l1, ..., lt}| 6= t. Because of independence and mean zero, the expectation of these terms will

be zero unless each x· is of power at least two. There are 4t x’s on the right-hand side of
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(2.15), so if each x· has power two exactly we would have 2t variables. For simplicity, let’s

consider the case when each x· has power two exactly. The general case will be handled

afterwards and it will also handle this simplified case, but the simplified case shows us that

our bound cannot be improved.

For now, fix an i = {i1, ..., it} ∈
(
n
t

)
. Now j = {j1, ..., jt} may have some overlap with

i = {i1, ..., it} or not. When |i ∩ j| = v for 0 ≤ v ≤ t − 1, then the number of options for

j that we have is
(
t
v

)(
n−t
t−v

)
because we select v of j’s indices from the t indices of i and the

remaining t− v indices are selected from the numbers not in i. Now the number of options

for k will be
(

2(t−v)
t−v

)(
n−(2t−v)

v

)
because we need to make sure the 2(t−v) single indices from i

and j get a pair, so half of them must be part of k and the other half must be part of l, and

the remaining v indices of k will be numbers not used yet. Once i, j, and k are determined,

then l is determined. Thus (2.14) with a fixed i and considering overlap of v between i and

j becomes

E
∑

j
(
(tv)(

n−t
t−v)
) ∑
k
(
(2(t−v)
t−v )(n−(2t−v)

v )
)∑
l
(

1
)Ai,jAk,lx ix jxkx l (2.16)

where the notation j(·) means j is a sum over · many terms. Now because each x· has power

exactly two, mean zero and variance one, then E[x ix jxkx l] = 1, so we have that

(2.16) ≤
∑

j
(
(tv)(

n−t
t−v)
) ∑
k
(
(2(t−v)
t−v )(n−(2t−v)

v )
)∑
l
(

1
) |Ai,j||Ak,l|

≤ ‖A‖
∑

j
(
(tv)(

n−t
t−v)
) |Ai,j|

∑
k
(
(2(t−v)
t−v )(n−(2t−v)

v )
) 1

≤ ‖A‖2

((
t

v

)(
n− t
t− v

))1/2(
2(t− v)

t− v

)(
n− (2t− v)

v

)
, (2.17)
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where for the last inequality sign we have used that the max row sum for any submatrix,

Â ∈ R(nt)×(tv)(
n−t
t−v), of matrix A has the bound ‖Â‖∞ ≤

√(
t
v

)(
n−t
t−v

)
‖A‖.

Notice that

(
n− t
t− v

)(
n− (2t− v)

v

)
=

(n− t)!
(t− v)!(n− 2t+ v)!

(n− 2t+ v)!

v!(n− 2t)!

=
(n− t)!

(t− v)!v!(n− 2t)!
=

(
t

v

)
(n− t)!
t!(n− 2t)!

=

(
t

v

)(
n− t
t

)
.

Therefore,

(2.17) = ‖A‖2

(
n− t
t

)((t
v

))3/2(
2(t−v)
t−v

)
((

n−t
t−v

))1/2
. (2.18)

Using the inequalities,
(
n
t

)t ≤ (n
t

)
≤
(
en
t

)t
and

(
2n
n

)
≤ 22n = 4n, we have that

((
t
v

))3/2(
2(t−v)
t−v

)
((

n−t
t−v

))1/2
=

((
t
t−v

))3/2(
2(t−v)
t−v

)
((

n−t
t−v

))1/2
≤
(

(et)

t− v

) 3(t−v)
2

4(t−v)

(
(t− v)

n− t

) (t−v)
2

=
4t−ve

3(t−v)
2 t

3(t−v)
2

(t− v)t−v(n− t)
(t−v)

2

=

(
4e

3
2 t

3
2

(t− v)(n− t) 1
2

)t−v

≤

(
4e

3
2 t

3
2

(n− t) 1
2

)t−v

. (2.19)
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Combining (2.19) with (2.17) and (2.18) we have that,

(2.16) ≤ ‖A‖2

(
n− t
t

)(
4e

3
2 t

3
2

(n− t) 1
2

)t−v

. (2.20)

It remains to sum (2.20) over the options for i and v, which will give us a bound on (2.14).

Notice

t−1∑
v=0

(
4e

3
2 t

3
2

(n− t) 1
2

)t−v

=
t∑

q=1

(
4e

3
2 t

3
2

(n− t) 1
2

)q

=

(
4e

3
2 t

3
2

(n− t) 1
2

) 1−
(

4e
3
2 t

3
2

(n−t)
1
2

)t
1−

(
4e

3
2 t

3
2

(n−t)
1
2

) . (2.21)

Using (2.20), (2.21), and accounting for the
(
n
t

)
possibilities of i, we have that overall

(2.14) ≤ ‖A‖2

(
n

t

)(
n− t
t

)(
4e

3
2 t

3
2

(n− t) 1
2

) 1−
(

4e
3
2 t

3
2

(n−t)
1
2

)t
1−

(
4e

3
2 t

3
2

(n−t)
1
2

)

This completes the simplified case where each x· has power two exactly. The simplified case

is nice because there are not many inequalities and we see t = o(n
1
3 ) is needed for this proof

method.

We now consider the general case where x· does not have to have power two exactly. If

each x· in (2.15) does not have power two exactly we will have at most 2t − 1 variables

and at least t + 1 variables, since i 6= j. Let w be such that the number of variables is

2t − w for 0 ≤ w ≤ t − 1 (the case w = 0 is what we called the simplified case which

we can include here). Again we will let v represent the number of overlapping indices in

i = {i1, ..., it} and j = {j1, ..., jt} for w ≤ v ≤ t − 1. Note v ≥ w otherwise overlap of v

would not be possible while having only 2t − w variables. Furthermore we will denote r as
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the number of indices of k = {k1, ..., kt} that overlap with the v overlapping indices of i and

j for 0 ≤ r ≤ min{v, t− v+w, 2w} (r ≤ t− v+w since we first must put v−w of k’s indices

towards getting the correct number of variables and then remaining indices could go towards

r; and r ≤ 2w otherwise l would have to have more than t indices in order to provide pairs

to every index which didn’t yet have a pair, and this isn’t possible - this is seen when we

count the number of option for l below). For a pictorial view of the variables w, v, and r,

see Figure 2.1. Now we have
(
n
t

)
options for i. For a fixed i, we then have

(
t
v

)(
n−t
t−v

)
choices

for j, since we need to pick the v overlapping indices from i’s indices and the remaining

t − v indices from new indices. Now for a fixed i and j, we have
(
v
r

)(
n−(2t−v)
v−w

)(
2(t−v)

t−r−(v−w)

)
options for k because v−w indices must be new to get the correct total number of variables,

r of the indices come from the v overlapping indices of i and j, and the remaining indices

must come from the set ({i1, ..., it} ∩ {j1, ..., jt})C . Lastly, the number of options for l will

be
(
t+w−r
2w−r

)
because the v − w new indices of k will require a pair and the t − v − w + r

indices of ({i1, ..., it} ∩ {j1, ..., jt})C that didn’t get a pair via k will require a pair, this

means t+ r − 2w indices of l are determined, and the remaining 2w− r indices are selected

from 2t−w − (t+ r − 2w) many items. Note that actually this is potentially over counting

of options on l since we haven’t restricted l 6= k, but over counting is not a problem for the

proof below. Thus (2.14) with a fixed w, v, r, i becomes bounded by

∑
j
(
(tv)(

n−t
t−v)
) ∑
k
(
(vr)(

n−(2t−v)
v−w )( 2(t−v)

t−r−(v−w))
) ∑
l
(
(t+w−r2w−r )

) |Ai,jAk,l||E[x ix jxkx l]|.

Furthermore in this setting with 2t− w variables, the product

x ix jxkx l = xi1 ...xitxj1 ...xjtxk1 ...xktxl1 ...xlt

can have at most 2w x’s that are a power higher than two. Indeed, each of the distinct

2t− w variables must have power at least two to avoid having expectation zero, which uses
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Figure 2.1: Pictorial view of the variables used for counting the off-diagonal terms.

2(2t− w) indices up, and there are only 4t indices, so this leaves 2w extra indices that can

go toward making some powers larger than two and not more than four. Suppose that we

make f powers to be four, and thus 2w− 2f powers to be three (and the rest are power two

which we don’t bother writing since they have variance one). Therefore using independence

we have

|E[x ix jxkx l]| ≤ E[|xi1|4]...E[|xif |4]E[|xj1|3]...E[|xj2w−2f
|3]

≤
(

max
α

E[|xα|4]
)f (

max
α

E[|xα|3]
)2w−2f

For absolute moments we have by Hölder’s inequality that E[|xα|3])1/3 ≤ E[|xα|4])1/4, so we

have

|E[x ix jxkx l]| ≤
(

max
α

E[|xα|4]
)f (

max
α

E[|xα|4]
) 3(2w−2f)

4
=
(

max
α

E[|xα|4]
) 3w−f

2
,

which is maximized when f = 0. This finally gives that

|E[x ix jxkx l]| ≤
(

max
α

E[|xα|4]
) 3w

2
= K

3w
2
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Thus (2.14) with a fixed w, v, r, i is bounded by

≤ C2K
3w
2

((
t

v

)(
n− t
t− v

))1/2(
v

r

)(
n− (2t− v)

v − w

)(
2(t− v)

t− r − (v − w)

)((
t+ w − r
2w − r

))1/2

(2.22)

Notice that

(
n− (2t− v)

v − w

)
≤
(
n− (2t− v)

v

)(
v

n− 2t+ 1

)w

≤
(
n− (2t− v)

v

)(
t

n− 2t+ 1

)w

,

using the fact that
(
a
b−1

)
= b

a+1−b

(
a
b

)
.

Additionally, since r ≤ t− v + w, we have that v ≤ t+ w − r, therefore

(
v

r

)((
t+ w − r
2w − r

))1/2

≤
(
v

r

)(
t+ w − r
2w − r

)
≤
(
t+ w − r

r

)(
t+ w − r
2w − r

)

≤
(
t+ w − r

w

)(
t+ w − r

w

)
≤
((

t+ w

w

))2

≤
((

2t

w

))2

≤ (2et)2w

where the third inequality can be seen with the following argument:

argmax
b

(
a

b

)(
a

c− b

)
= argmax

b

a!

b!(a− b!)
a!

(c− b)!(a− c+ b)!)

= argmin
b

b!(a− b!)(c− b)!(a− c+ b)! = argmin
b

c!(
c
b

) (2a− c)!(
2a−c
a−b

) = argmax
b

(
c

b

)(
2a− c
a− b

)
=
c

2

since
(
c
b

)
is maximized when b = c/2 and similarly

(
2a−c
a−b

)
is maximized when b = c/2.

Therefore

(2.22) ≤ ‖A‖2K
3w
2

((
t

v

)(
n− t
t− v

))1/2(
n− (2t− v)

v

)(
2(t− v)

t− v

)
(2et)2w

(
t

n− 2t+ 1

)w
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= ‖A‖2

((
t

v

)(
n− t
t− v

))1/2(
n− (2t− v)

v

)(
2(t− v)

t− v

)(
4K

3
2 e2t3

n− 2t+ 1

)w

≤ ‖A‖2

(
n− t
t

)(
4e

3
2 t

3
2

(n− t) 1
2

)t−v(
4K

3
2 e2t3

n− 2t+ 1

)w

,

where the last inequality used (2.18) and (2.19) from our work on the simplified case with

exactly 2t distinct indices.

Now summing over all of the options of r, using that 0 ≤ r ≤ min{v, t − v + w, 2w}, in

particular 0 ≤ r ≤ 2w, we are bounded by

‖A‖2

(
n− t
t

)(
4e

3
2 t

3
2

(n− t) 1
2

)t−v

(2w + 1)

(
4K

3
2 e2t3

n− 2t+ 1

)w

.

Summing over the possibilities for v, w ≤ v ≤ t− 1, we are bounded by

‖A‖2

(
n− t
t

)
(2w + 1)

(
4K

3
2 e2t3

n− 2t+ 1

)w t−1∑
v=w

(
4e

3
2 t

3
2

(n− t) 1
2

)t−v

≤ ‖A‖2

(
n− t
t

)
(2w + 1)

(
4K

3
2 e2t3

n− 2t+ 1

)w t−1∑
v=0

(
4e

3
2 t

3
2

(n− t) 1
2

)t−v

= ‖A‖2

(
n− t
t

)
(2w + 1)

(
4K

3
2 e2t3

n− 2t+ 1

)w(
4e

3
2 t

3
2

(n− t) 1
2

)
1−

(
4e

3
2 t

3
2

(n−t)
1
2

)t
1−

(
4e

3
2 t

3
2

(n−t)
1
2

)
 ,

since
∑t−1

v=0 r
t−v =

∑t
q=1 r

q = r
∑t−1

q=0 r
q = r 1−rt

1−r for r 6= 1.

Now we will sum over the possibilities for w, 0 ≤ w ≤ t− 1, and for notation simplicity we

will set

R :=
4K

3
2 e2t3

n− 2t+ 1
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and since K > 1 (using Hölder’s inequality and the variance one assumption), this gives that

4e
3
2 t

3
2

(n− t) 1
2

≤ 4K3/4e
3
2 t

3
2

(n− t) 1
2

≤ 4K3/4e
3
2 t

3
2

(n− 2t+ 1)
1
2

≤ 2e
1
2

2K3/4et
3
2

(n− 2t+ 1)
1
2

= 2e
1
2R

1
2 < 4R

1
2

we have

‖A‖2

(
n− t
t

)(
4e

3
2 t

3
2

(n− t) 1
2

)
1−

(
4e

3
2 t

3
2

(n−t)
1
2

)t
1−

(
4e

3
2 t

3
2

(n−t)
1
2

)


t−1∑
w=0

(2w + 1)

(
4K

3
2 e2t3

n− 2t+ 1

)w

≤ ‖A‖2

(
n− t
t

)(
4R

1
2

)1−
(

4R
1
2

)t
1−

(
4R

1
2

)
 t−1∑

w=0

(2w + 1)Rw

= ‖A‖2

(
n− t
t

)(
4R

1
2

)1−
(

4R
1
2

)t
1−

(
4R

1
2

)
(2

t−1∑
w=0

wRw +
t−1∑
w=0

Rw

)

≤ ‖A‖2

(
n− t
t

)(
4R

1
2

)1−
(

4R
1
2

)t
1−

(
4R

1
2

)
( 2R

(1−R)2
+

1

1−R

)
, provided |R| < 1

Finally, accounting for the
(
n
t

)
options for i we have the final bound of

4‖A‖2

(
n

t

)(
n− t
t

)
R

1
2

1−
(

4R
1
2

)t
1−

(
4R

1
2

)
( 2R

(1−R)2
+

1

1−R

)
, provided |R| < 1. (2.23)

Looking at R = 4K
3
2 e2t3

n−2t+1
. 4e2K

3
2 t3

n
, which indeed will be less than one in absolute value
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when K
3
2 t3

n
= o(1), we finally have

(2.23) ≤ C‖A‖2

(
n

t

)(
n− t
t

)
g

(
K

3
2 t3

n

)

where g(K
3
2 t3

n
) is a function of K

3
2 t3

n
that is o(1) when K

3
2 t3

n
= o(1).

This completes the off-diagonal contribution thus bounding the right-hand side of (2.11).

Putting together the diagonal bound and the off-diagonal bound we obtain the total bound

of

C‖A‖2

((
n

t

))2
Kt2

n
+ C‖A‖2

(
n

t

)(
n− t
t

)
g

(
K

3
2 t3

n

)

≤ C‖A‖2

((
n

t

))2
K

3
2 t3

n
+ C‖A‖2

((
n

t

))2

g

(
K

3
2 t3

n

)

≤ C‖A‖2

((
n

t

))2

f

(
K

3
2 t3

n

)

where f(K
3
2 t3

n
) is a function of K

3
2 t3

n
that is o(1) when K

3
2 t3

n
= o(1).

This completes the proof of Theorem 2.3. �

2.4 Numerical experiments

We present a few numerical experiments to verify our empirical spectral density function

tends to that from the Marchenko-Pastur law. In all our tests, the numerical results are

computed from random vectors generated by one realization, i.e. we did not average over

multiple trials.

Uncorrelated Blocks Experiments: In Figure 2.2 we show the empirical eigenvalue

density for four experiments of matrices of the form of Model 1; in each case, they match up
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very well with the corresponding Marchenko-Pastur density. In Figure 2.2a, the columns of

matrix X ∈ R7000×21000 have n = 10 blocks, each block is length d = 700 and is of the form

±
√
dei for some i ∈ {1, ..., d}, where {ei}di=1 ∈ Rd are the standard basis vectors in Rd. This

example shows that with the exchangeable criteria, it is possible for n � d. Additionally,

our theorem holds as n → ∞, but here we see the two densities agree extremely well and

we only have n = 10. Similarly, in Figure 2.2b the columns of matrix X ∈ R6400×12800 have

n = 80 blocks, each block is length d = 80 and is of the form ±
√
dei for some i ∈ {1, ..., d}.

In Figure 2.2c, the columns of X ∈ R4000×16000 are n = 2000 blocks, each of length d = 2

where the first entry of the block is z ∼ N(0, 1) and the second entry is 1√
2
(z2 − 1). Thus

the second entry is completely determined via a formula of the first entry. While this matrix

has half the amount of randomness as an i.i.d. matrix of the same size, it still follows the

same limiting distribution as the i.i.d. matrix. Furthermore, we see the densities match

up very well even for these relatively small sized matrices. In Figure 2.2d, the columns of

X ∈ R1800×12600 have n = 600 blocks each of length d = 3 where the first and second entry

of the block are ±1
2

each with probability 1
2

and the third entry is a shifted XOR of the

first and second (i.e. the third entry is 1
2

if the first and second entries have opposite signs

and it is −1
2

if the first and second entries have the same sign). In this case the variance of

the entries is 1
4
, so it matches up with Marchenko-Pastur density with λ = 1

7
and σ2 = 1

4
.

These figures and other experiments together suggest that having n ≥ 10 and dimensions in

the low thousands is enough for the empirical eigenvalue density of matrices of the form of

Model 1 to match quite well with the corresponding Marchenko-Pastur density.

Vectorized Tensor Experiments: In Figures 2.3 and 2.4, we look at vectorized 2-tensors

and 3-tensors. We see that the fourth moment of the entries is really important for the speed

of convergence as n → ∞. For both the 2-tensors and 3-tensors we consider three types of

entries in the vector that we will tensor with itself: (1) the entries are Bernoulli ±1 each

with probability half - these entries have third moment zero and fourth moment of 1; (2) the

entries are Uniform on [−
√

3,
√

3] - these entries have third moment zero and fourth moment
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of 9
5
; (3) the entries are standard normal - these entries have third moment zero and fourth

moment of 3. For the 2-tensors (t = 2), our criteria of maxα |E[x4
α]| = o(n

2/3

t2
) becomes: (1)

n � 8; (2) n � 20; (3) n � 42. In Figure 2.3 we compare the the empirical eigenvalue

density for 2-tensors with the corresponding Marchenko-Pastur density using n = 145. We

see that the two densities match up quite well, and match up better when the entries had

smaller fourth moments. For the 3-tensors (t = 3), that same criteria becomes: (1) n� 27;

(2) n � 66; (3) n � 141. However, the computational cost is too high to make matrices

with, say
(

141
3

)
≈ 0.5 million rows, so we had to consider much fewer rows. In Figure

2.4 we compare the the empirical eigenvalue density for 3-tensors with the corresponding

Marchenko-Pastur density using n = 45. We see that the two densities match up quite

well for the Bernoulli entry case, not very well for the uniform entry case, and very poorly

for the standard normal case. This is not a surprise since the value of n we used was too

small for the latter two cases. Using a super computer to test n = 100 does show that the

empirical densities are getting closer to the Marchenko-Pastur density though, see Figure

2.5. These experiments show that while the limiting density does appear to go to the the

Marchenko-Pastur density, they do not look that close for small values of n and indeed we

wouldn’t expect it to look close when our criteria, maxα |E[x4
α]| = o(n

2/3

t2
), is violated.
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Empirical eigenvalue density vs Marchenko-Pastur density for block random matrices

(a) (b)

(c) (d)

Figure 2.2: In (A), the columns of matrix X ∈ R7000×21000 have n = 10 blocks, each block
is length d = 700 and is of the form ±

√
dei for some i ∈ {1, ..., d}, where {ei}di=1 ∈ Rd are

the standard basis vectors in Rd. Furthermore X has three times as many columns as rows,
which is why it matches up with the Marchenko-Pastur density with λ = 1

3
and σ2 = 1.

Similarly, in (B) the columns of matrix X ∈ R6400×12800 have n = 80 blocks, each block is
length d = 80 and is of the form ±

√
dei for some i ∈ {1, ..., d}. In (C), the columns of

X ∈ R4000×16000 are n = 2000 blocks, each of length d = 2 where the first entry of the block
is z ∼ N(0, 1) and the second entry is 1√

2
(z2 − 1). In (D), the columns of X ∈ R1800×12600

have n = 600 blocks each of length d = 3 where the first and second entry of the block
are ±1

2
each with probability 1

2
, and the third entry is 1

2
if the first and second entries have

opposite signs and −1
2

if they have the same sign.
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Empirical eigenvalue density vs Marchenko-Pastur density for matrices of vectorized 2-tensors

(a)

(b)

(c)

Figure 2.3: We consider vectorized 2-tensors, comparing three types of entries in the vector
in R145 that we will tensor with itself: (A) the entries are Bernoulli ±1 each with probability
half; (B) the entries are Uniform on [−

√
3,
√

3]; (C) the entries are standard normal. In

all three cases, our criteria of maxα |E[x4
α]| = o(n

2/3

t2
) is satisfied and the empirical densities

match up quite well with the Marchenko-Pastur density.
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Empirical eigenvalue density vs Marchenko-Pastur density for matrices of vectorized 3-tensors

(a)

(b)

(c)

Figure 2.4: We consider vectorized 3-tensors, comparing three types of entries in the vector
in R45 that we will tensor with itself: (A) the entries are Bernoulli ±1 each with probability
half; (B) the entries are Uniform on [−

√
3,
√

3]; (C) the entries are standard normal. Our

criteria of maxα |E[x4
α]| = o(n

2/3

t2
) is only satisfied in the first case, and is violated the most

in the third case, which explains why the empirical densities in the second and third cases do
not match up well with the Marchenko-Pastur density, with the third case being the worst.
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Figure 2.5: Let V ∈ R(n3)×
1
7(n3) have columns from vectorized three tensors of a vector in

Rn whose entries are Uniform on [−
√

3,
√

3]. We plot the ESD of 1

(n3)
V TV for n = 45 and

n = 100 and compare them to the Marchenko-Pastur density.
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Chapter 3

Approximate Embeddings and the

Marchenko-Pastur Law

In this chapter, we aim to find the least dimension required for approximately embedding

vectors, which can be used for dimensionality reduction. Our notion of an approximate

embedding will be made rigorous with the definition for vectors to be relatively root mean

square (r.m.s) ε-embedded into a subspace. In the first section, we give a general lower

bound for the least dimension for any collection of vectors. In the second section, we consider

random vectors whose entries are i.i.d., mean 0, and variance 1. Here we give an asymptotic

formula for the exact value of the least dimension. Some corollaries and the dual question,

“Given a fixed dimension, k, what is the least amount of error one has to make when

embedding these vectors in the best k-dimensional subspace?” will also be considered. In

the third section, we show how the asymptotic formula can be determined in more general

cases, where the vectors have a known covariance matrix which has a known limiting spectral

distribution. In particular, we consider a matrix with a specific covariance structure of

Ci,j = exp(− |i−j|
σ

) for some positive constant σ, since it was shown in [11] that the least

dimension required for these vectors to be relatively r.m.s. ε-embedded in a subspace is
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the discrete analog to the question of the number of terms needed in the Karhunen-Loéve

expansion to approximate a random field within an ε tolerance. Lastly, we show numerical

experiments which show the asymptotic formulas work very well even for a single instance

and quite small dimensions. Because this works so well for small dimensions, this gives

an easy numerical test that can help provide evidence for answering the question: “Does a

specific covariance structure have a limiting spectral distribution or not?”

3.1 General lower bound on the least dimension re-

quired for relatively r.m.s. ε-embedding vectors

If we have p orthogonal vectors in Rm where m > p, then surely we need a p-dimensional

space in order to embed them in. If we consider nearly orthogonal vectors, we can ask

the same question of how many dimensions we need to embed them in. A lower bound

and asymptotic lower bound on the number of dimensions was given in a paper by Alon

[3]. Asymptotic upper bounds can be found using the Johnson-Lindenstrauss Lemma [24].

Suppose now that we weaken our requirement of embedding, so that the vectors don’t have

to be perfectly embedded, but rather we allow some specified error tolerance. We introduce

the definition of relative root mean square (r.m.s.) ε-embedding of a set of vectors.

Definition 3.1. [11] A set of vectors {vi}pi=1 are relatively root mean square (r.m.s)

ε-embedded in a linear subspace, S, if

∑p
i=1 ||vi − PSvi||22∑p

i=1 ||vi||22
≤ ε2

where PSvi denotes the projection of vi in S.

Definition 3.2. [11] For a set of vectors, define Nε to be the least dimension of all subspaces

S such that the vectors are relatively r.m.s. ε-embedded in S.
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The value N ε is closely related to eigenvalues of a covariance matrix. Define the matrix

V = [v1,v2, ...vp] ∈ Rm×p, and the matrix A = V TV ∈ Rp×p. Let λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 be

the eigenvalues of A. Then

p∑
i=1

||vi||22 = tr(A) =

p∑
i=1

λi. (3.1)

This gives us a new representation of the denominator in the definition of relatively r.m.s.

ε-embedding. For the numerator, we know the best linear subspace, denoted by S̄l, of all

linear subspaces of dimension l that approximates the set of vectors {vi}pi=1 in the least

squares sense is the space spanned by the first l left singular vectors of V and satisfies

p∑
i=1

||vi − PS̄lvi||
2
2 = min

Sl,dim(Sl)=l

p∑
i=1

||vi − PSlvi||22 =

p∑
i=l+1

λi. (3.2)

Combining Equations (3.1), (3.2), and the definitions of relatively r.m.s ε-embedding and

N ε, we have

N ε = min
N∈Z+

such that

∑p
i=N+1 λi∑p
i=1 λi

≤ ε2 (3.3)

Equation (3.3) turns the problem of finding N ε into an eigenvalue problem.

We now give a general lower bound for N ε for any collection of vectors.

Theorem 3.1 (Bryson, Zhao, Zhong [11]). Let {vi}pi=1 be a collection of vectors in Rm. Let

N ε be the least dimension of a linear subspace such that the vectors {vi}pi=1 can be relatively

r.m.s ε-embedded in that subspace. Then

N ε ≥ (
∑p

i=1 ||vi||22)2(1− ε2)2∑p
i,j=1(vi · vj)2

=
tr(A)2(1− ε2)2

||A||2F
,

where V = [v1,v2, ...vp] ∈ Rm×p and A = V TV.
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Proof. Notice

||A||2F = tr(ATA) =

p∑
i=1

λ2
i =

Nε∑
i=1

λ2
i +

p∑
i=Nε+1

λ2
i ≥

Nε∑
i=1

λ2
i ≥

1

N ε

( Nε∑
i=1

λi
)2
, (3.4)

where the last inequality is from Cauchy-Schwartz.

Furthermore,

Nε∑
i=1

λi =

p∑
i=1

λi −
p∑

i=Nε+1

λi ≥
p∑
i=1

λi − tr(A)ε2 = tr(A)(1− ε2).

Substituting this into (3.4) and solving for N ε completes the proof.

3.2 Asymptotic formulas for the least dimension re-

quired for relatively r.m.s. ε-embedding i.i.d. ran-

dom vectors

In the special case where the vectors {vi}pi=1 ∈ Rm have i.i.d. entries, we have a precise

asymptotic formula for N ε using the Marchenko-Pastur law (see Theorem 1.1 in Section

1.3.3). The Marchenko-Pastur law will give us the value of N ε for a sequence of matrices

that grow in size while keeping a fixed ratio of number of rows to number of columns. To be

more precise, let Vp ∈ Rm×p and consider a collection of matrices {Vp}p→∞ which grow in size

with a fixed ratio p/m → λ ∈ (0,∞), then we can determine N ε for limp→∞ Vp. However,

numerical results show that the formula is very accurate even for a single realization and

quite small p (and m).

Theorem 3.2 (Bryson, Zhao, Zhong [11]). For a set of random vectors {vi}pi=1 ∈ Rm whose

entries are i.i.d. with mean zero and variance = σ2 <∞. Le V = [v1,v2, ...,vp] ∈ Rm×p and
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let µ be the limit distribution of the eigenvalues of Â = 1
m
V TV . Then the least dimension of

a linear subspace, N ε, such that the vectors {vi}pi=1 can be relatively r.m.s. ε-embedded in,

has the the following asymptotic formula:

N ε

p
→
∫ λ+

y

dµ(x), as p→∞, where y is such that

∫ y

λ−

xdµ(x) = σ2ε2. (3.5)

Proof. Let A = V TV and let λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 be the eigenvalues of A. Since∑p
i=1 λi = tr(A) =

∑p
i=1 vi · vi =

∑m
i=1

∑p
j=1 V

2
i,j → mpσ2 as p,m → ∞, equation (3.3)

becomes
∑p

i=Nε+1 λi ≤ mpσ2ε2. Let Â = 1
m
A with eigenvalues λ̂i = 1

m
λi. Rewriting the

previous equation in terms of λ̂i gives
∑p

i=Nε+1 λ̂i ≤ pσ2ε2. Thus we would like to find the

smallest integer, N ε, such that this equation holds.

Let µ be the limit measure for Â as in the Marchenko-Pastur law (where X = V T ). We have

that 1
p

∑p
i=Nε+1 λ̂i →

∫ y
λ−
xdµ(x) where y is the value of the (p−N ε)th-smallest eigenvalue.

Therefore we would like to find the largest y such that
∫ y
λ−
xdµ(x) ≤ σ2ε2. Once we know y,

we can find N ε since N ε → p
∫ λ+
y

dµ(x).

Remark. Let Rε be the largest integer such that
√
λRε ≥ ε (the standard ε rank approxima-

tion of V ). Under the same conditions in Theorem 3.2, using the Marchenko-Pastur law we

have

p−Rε + 1

p
→
∫ ε2

m

λ−

dµ(x) as p→∞.

Remark. The asymptotic formula in Theorem 3.2 says that, for any fixed tolerance ε > 0 in

relative r.m.s. sense, the dimension, N ε, of the best linear subspace that can approximately

embed a set of p random vectors in Rm (m = O(p)) with i.i.d. entries is proportional to p

for p� 1. Let’s denote the ratio, ρ(ε) = Nε

p
as a function of ε, one can compute the rate of

change of ρ(ε) with respect to ε. From (3.5) we have

dρ(ε)

dε
= −

√
(λ+ − y)(y − λ−)

2πσ2λy

dy

dε
= −2σ2ε

y
, ε ∈ (0, 1),
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where the relation
∫ y
λ−
xdµ(x) = σ2ε2 is used for the last equality. Let ε→ 0+, which implies

y → λ−, then

dρ(ε)

dε
=


O(ε) if limp→∞

p
m

= λ 6= 1

O(ε−
1
3 ) if limp→∞

p
m

= λ = 1

as ε→ 0+.

For λ = 1, we use the fact that

dy

dε
=

4πσ4ε√
y(λ+ − y)

.

Figure 3.1d shows numerical plots of ρ(ε) for different λ = p
m

, and we see the behavior of

the slope of ρ(ε) for λ = 1.

We can also ask the dual question: given k dimensions, what is the smallest possible value

of ε? Meaning if we want to project our vectors onto the best k-dimensional subspace, then

how much error in the relative r.m.s. sense does one have to make?

Corollary 3.3 (Bryson, Zhao, Zhong [11]). Given vectors {vi}pi=1 ∈ Rm whose entries are

i.i.d. with mean zero and variance = σ2 < ∞, and a fixed k, k < m. The relative r.m.s.

error for the best k-dimensional subspace is asymptotically given by ε =
√

1
σ2

∫ y
λ−
xdµ(x),

where y satisfies
∫ y
λ−
dµ(x) = p−k

p
.

Proof. Let y = λ̂k+1 be the value of the (k + 1)st largest eigenvalue of Â = 1
m
V TV , where

V = [v1,v2, ...,vp] ∈ Rm×p. By the Marchenko-Pastur law, p
∫ y
λ−
dµ(x) → p − k, which

can be numerically solved for y. The Marchenko-Pastur law also gives that 1
p

∑p
i=k+1 λ̂i →
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∫ y
λ−
xdµ(x). Since 1

p

∑p
i=1 λ̂i → σ2, we have

∑n
i=k+1 λi∑p
i=1 λi

=

∑n
i=k+1 λ̂i∑p
i=1 λ̂i

→ 1

σ2

∫ y

λ−

xdµ(x).

Setting this equal to ε2 and solving for ε completes the proof.

Remark. In practice, even if one does not have the knowledge of the probability distribution

for a set of vectors, as long as the entries are approximately i.i.d., one can compute the

empirical mean and variance from the data and use them to estimate N ε from the above

formulas.

3.3 ε-embedding random vectors with a known covari-

ance

In this section, we study the scaling law of N ε for a collection of random vectors vi ∈ Rm, i =

1, 2, ..., p, with [v1,v2, ...,vp] = V = XLT , where X ∈ Rm×p is a random matrix whose entries

are i.i.d. with mean 0 and variance 1, and L ∈ Rp×p is the Cholesky decomposition of a

covariance matrix C = LLT . If the eigenvalues of the covariance matrix C have a limiting

distribution as p→∞ and we know what it is, then we can use the general Marchenko-Pastur

law (see Theorem 1.4 in Section 1.3.3) to find the empirical distribution of the eigenvalues

of the sample covariance matrix V TV . We can use this just as was done in Theorem 3.2 to

obtain the explicit asymptotic scaling law for Nε

p
.

Remark. While V TV = LXTXLT which does not look like the form for the general Marchenko-

Pastur law, it is not a problem because the nonzero eigenvalues of V TV are exactly equal

to the nonzero eigenvalues of V V T = XLTLXT = XLLTX = XCXT , which does look

like the form for the general Marchenko-Pastur law. For more details see the work done by
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Silverstein in [35].

In practice, the limiting eigenvalue distribution of C is difficult to find. This greatly re-

stricts the number of matrices we can apply this to. Furthermore, the limiting eigenvalue

distribution of C can make it impossible to find an analytical solution to the fixed point

equation. In general, if the limiting eigenvalue distribution of C is diagonal with l many

different values on the diagonal, then solving the fixed point equation will come down to

finding the roots of an l + 1 degree polynomial. Thus for matrices whose desired covariance

matrix is diagonal with, for example, 25% of the diagonal elements are value α and 75% are

value β, then we can use the general Marchenko-Pastur law as we did in Theorem 3.2. For

an efficient computational algorithm to do this, see [16].

What about other matrices? Of particular interest is a random matrix with expected covari-

ance given by C, where Ci,j = exp(−|i−j|
σ

) for any positive value of σ. Numerically calculating

N ε as a function of the dimension, p, for relatively small values of p, we saw that N ε grows

linearly with p. This led us to believe that the matrix C ∈ Rp×p given by Ci,j = exp(−|i−j|
σ

)

has a limiting eigenvalue distribution function as p → ∞. Indeed, it does, as was shown in

[11], which led to the asymptotic scaling law

N ε

p
→ 2

π
arctan

(
tanh

(
1

2σ

)
tan
(π

2
(1− ε2)

))
as p→∞.

This covariance matrix is of particular interest, since it was shown in [11] that N ε is the dis-

crete analog to the number of terms needed in the Karhunen-Loéve expansion to approximate

a random field within tolerance ε.
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3.4 Numerical experiments

This section presents a few numerical experiments to verify the asymptotic formula for N ε

derived in this chapter for different scenarios. In all the tests, numerical results are computed

from random vectors generated by one realization; no ensemble average is performed.

Example: random vectors with i.i.d. entries.. Figure 3.1(a), (b) plots the asymptotic

formula of N ε in terms of the total number of random vectors p (solid line) vs the numerically

computed N ε for random vectors with i.i.d. Gaussian entries and i.i.d. Bernoulli entries

respectively, all with mean 0 and variance 1. In these tests, we set p = m
4

and show results for

different ε. We see remarkable agreements between our asymptotic estimate in Theorem 3.2

and the numerical result even for a quite small number of random vectors in one realization.

Figure 3.1(c) plots the asymptotic formula of Rε (solid line) vs. the numerically computed

results for different ε for random vectors with i.i.d. standard Gaussian entries. Figure 3.1(d)

plots the ratio ρ(ε) = Nε

p
as a function of ε for random vectors with i.i.d. standard Gaussian

entries. We can see the singularity of dρ(ε)
dε

∣∣∣∣
ε=0

when p
m

= 1.

Example: random vectors with given covariance.. In this test, we first generate

random vectors with covariance matrix Ci,j = exp(− |i−j|
σ

) by V = XLT where X is a

Gaussian matrix and C = LLT . Figure 3.2(a) plots N ε computed from the asymptotic

formula given in section 3.3 vs. the numerically computed N ε from C. Figure 3.2(b) plots

N ε vs. 1
σ

for C. As we can see from the plot, there is a linear scaling regime for N ε vs. 1
σ

when σ is large compared to 1. However, when σ gets close to 1 and smaller, the entries of

random matrix V become almost i.i.d. Hence Nε

p
should converge to the asymptotic estimate

in Theorem 3.2 as σ → 0. This is shown in Figure 3.3. Figure 3.2(c), (d) shows similar

numerical tests for random vectors with covariance matrix Ci,j = exp(− |i−j|
2

σ2 ), although we

do not have an analytical solution to compare. However, the numerical evidence suggest

that ρ(ε) = limp→∞
Nε

p
does exist. From the relation stated in Theorem 3.2, one may deduce
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the limit distribution of the eigenvalues.
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(a) random vectors with Gaussian i.i.d. entries
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(b) random vectors with Bernoulli i.i.d. entries
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Figure 3.1: Comparing the asymptotic formulas for N ε and Rε to their numerically computed
values for random vectors with i.i.d. entries
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for covariance matrix Ci,j = exp(−|i−j|
σ

)
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(b)

for covariance matrix Ci,j = exp(−(i−j)2
2σ2 )
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Figure 3.2: N ε for random vectors with a given covariance
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Figure 3.3: The asymptotic formula for N ε for random vectors with covariance Ci,j =

exp(− |i−j|
σ

) tends to the i.i.d. asymptotic estimate as σ → 0
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Appendix A

Matlab Code for Numerical

Simulations

This appendix gives the key components of the Matlab code that was used to generate the

figures of this dissertation.

A.1 Function for plotting the the Marchenko-Pastur

density function

This code creates the function “MP density” which takes in two inputs: the matrix aspect

ratio λ = #rows
#columns

∈ (0, 1], and the variance of the entries σ2. The output is a plot with the

corresponding Marchenko-Pastur density function.

79



function [mp_den] = MP_density(lam,var)

% Recreating the Marcenko-Pastur law:

%Input the matrix ratio (#rows/#columns) in (0,1] and the entry variance,

%then this function plots the MP density function

lam_plus = var*(1+sqrt(lam))^2;

lam_minus = var*(1-sqrt(lam))^2;

MP_den =@(x) 1/(2*pi*var)*sqrt((lam_plus-x)*(x-lam_minus))/(x*lam);

xx=linspace(lam_minus,lam_plus,300);

yy=zeros(1,length(xx));

for i = 1:length(xx)

yy(1,i)=MP_den(xx(i));

end

plot(xx,yy, ’LineWidth’, 3)

end
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A.2 Plotting the empirical spectral density with the

Marchenko-Pastur density

A.2.1 i.i.d. entries

This code plots the empirical spectral density of 1
#columns

XXT on the same graph as the

Marchenko-Pastur density with λ = 1
2

and σ2 = 1 where X ∈ R1500×3000 has standard

Gaussian entries.

N=3000; %N = the number of columns

M=N/2; %M = the number of rows

X = randn(M,N);

EE=eig(1/N.*X*X’);

figure();

numOfBins = 200;

histogram(EE,numOfBins, ’Normalization’, ’pdf’)

hold on

lam=M/N; % #rows/#cols of X

MP_density(lam,1)

A.2.2 Block uncorrelated entries

This code plots Figure 2.2a, which shows the remarkable accuracy the block version of the

the Marchenko-Pastur law for such a small n.
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n=10; % n = number of blocks in a column

d=700; % d= size of block

num_rows = n*d;

num_cols = num_rows * 3;

X = zeros(num_rows,num_cols);

for i=1:d:num_rows

for j=1:num_cols

basis_vec = randi(d); %gives 1,2,3,...,d with equal prob

plus_or_minus = randi(2);

if plus_or_minus == 1

X(i-1+basis_vec,j) = sqrt(d);

else

X(i-1+basis_vec,j) = -sqrt(d);

end

end

end

EE=eig(1/num_cols.*X*X’);

histogram(EE,200, ’Normalization’, ’pdf’) %200=number of bins

hold on

MP_density(num_rows/num_cols,1)
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A.2.3 Vectorized tensor entries

This code plots the three subfigures in Figure 2.4, by changing x among the three options

that appear as the first line inside the main for loop.

n=45;

t=3;

rows= nchoosek(n,t);

col=rows*2;

A = zeros(rows,col);

for l = 1:col

%x=randn(n,1); % for standard normal random variables

x=(rand(n,1)-1/2)*sqrt(12); % uniform mean 0 and variance 1 r.v.’s

%x = (randi(2,n,1)-1)*2 -1; % -1 and +1 each with prob 1/2 r.v.’s

Y=zeros(rows,1);

count=1;

for i =1:n

for j =i+1:n

for k = j+1:n

Y(count) = x(i)*x(j)*x(k);

count=count+1;

end

end

end

A(:,l)=Y;

end
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sample_cov = (1/col)*(A*A’);

EE=eig(sample_cov);

histogram(EE,200, ’Normalization’, ’pdf’) %200=number of bins

hold on

lam=rows/col;

MP_density(lam,1)

A.3 Plotting the theoretically calculated N ε vs. the

actual N ε, as done in Figure 3.1a

Here we give a Matlab function called “binary to find y” which essentially does a binary

search to find y, where y is the same y stated in Theorem 3.2. Then we give the code used

to produce Figure 3.1a, which compares our calculated version of N ε with true values of N ε

for a variety of values of ε.

function [y ] = binary_to_find_y( TenTarget,lam )

k = 1/lam;

funNox = @(x) sqrt(((1+sqrt(lam))^2-x).*(x-(1-sqrt(lam))^2))./(2*pi*lam);

y=(1-sqrt(1/k))^2;

target = 0.05*TenTarget;

for i = 1:6

while sqrt(integral(funNox, (1-sqrt(1/k))^2, y)) < target && ...

sqrt(integral(funNox, (1-sqrt(1/k))^2, y+1/10^i)) <= target

y=y+1/10^i;

end

end
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lam=1/1; %p/m=lam

k=20; %the number of times we change p and m

t=48; %step size for m

mvalues=zeros(1,k);

pvalues = zeros(1,k);

for j = 1:k

mvalues(j)=48+t*j;

pvalues(j)=lam*mvalues(j);

end

num_diff_epsilons = 9;

actualNeps = zeros(num_diff_epsilons, k);

calslope = zeros(num_diff_epsilons,1);

xcalc = zeros(num_diff_epsilons, 2);

ycalc = zeros(num_diff_epsilons, 2);

for h = 1:num_diff_epsilons

epstol = 0.1*h; %set the epsilon-embedding tolerance

%For variance 1-this gives the 2 endpoints points (xcalc(h,1),ycalc(h,1)

%and (xcalc(h,2),ycalc(h,2) for drawing the calculated slope

fun = @(x) sqrt(((1+sqrt(lam))^2-x).*(x-(1-sqrt(lam))^2))./(2*lam*pi.*x);

y=binary_to_find_y(epstol*20,lam);

calslope(h)=integral(fun, y, (1+sqrt(lam))^2);

xcalc(h,:) = [pvalues(1), pvalues(k)];

ycalc(h,:) = [pvalues(1)*calslope(h,1) , pvalues(k)*calslope(h,1)];

sumofsquares = zeros(1,k);
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for j = 1:k

m = mvalues(j);

p = pvalues(j);

l=min(m,p);

v = randn(m,p); % Gaussian random iid entries

A=1/m.*v’*v;

frob = norm(A,’fro’);

sumofsquares(j)=frob^2;

[U,S,V] = svds(v,l);

singvaluessqu=zeros(1,l);

svsqusum=0;

for i = 1:l

singvaluessqu(i)=(S(i,i))^2;

svsqusum=svsqusum+singvaluessqu(i);

end

svsqusum2=svsqusum; %copy the sum of the squares

count=0;

for i = 1:l

if svsqusum2/svsqusum > epstol^2

svsqusum2=svsqusum2-singvaluessqu(i);

else

count=count+1;

end

end

actualNeps(h,j) = l-count;

end

end
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%Plotting:

colors = get(gca,’colororder’);

hold on;

ax = gca;

%plot the lines

for h = 1:num_diff_epsilons

ax.ColorOrderIndex = h;

plot(xcalc(h,:),ycalc(h,:));

end

%plot the true values of N^{\epsilon}

for h=1:num_diff_epsilons

ax.ColorOrderIndex = h;

scatter(pvalues,actualNeps(h,:));

end
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