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Abstract

E Pluribus Unum: Cosmological Analysis of Heterogenous Supernova Ia Datasets

by

David Arnold Rubin

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Saul Perlmutter, Chair

This dissertation chronicles the development of the “Union” SN Ia analyses. These analy-
ses address the challenges of supernova cosmology with uniform treatment of light-curve
fitting, selection cuts, and outlier rejection. They were the first analyses to propagate sys-
tematic uncertainties into a covariance matrix, allowing constraints including systemat-
ics to be computed for any cosmological model. To minimize unintentional biases to-
wards the concordance cosmology, each analysis was developed with the cosmology hid-
den (“blinded”). With each Union compilation version, we combine with BAO and CMB
constraints to compute the then-best constraints on dark energy.

Chapter 2 provides the basic analysis outline that remains in place for subsequent
compilations. Using the resulting compilation of 307 SNe (after cuts), we combine with
BAO and CMB data and find that the equation of state parameter w is constrained to be
−0.969+0.059

−0.063 (statistical uncertainties only) +0.086
−0.091 (with systematics) for a flat universe with

constant w. For non-constant w, no real constraints (σw ∼ 1) are possible above redshift
0.5.

Chapter 3 follows our application of the Union compilation to a range of dynamical
dark energy models. We find that many classes of physical models are indistinguishable
from ΛCDM with the current level of data.

In Chapter 4, we present an update of the Union compilation framework, with im-
proved light-curve fitting and an improved treatment of systematic uncertainties. This new
compilation, now consisting of 557 supernovae, gives constraints of w = −0.997+0.050

−0.054

(statistical) +0.077
−0.082 (with systematics) when combined with BAO and CMB data.

Chapter 5 outlines supernova discoveries from the HST Cluster Supernova Survey, with
14 cosmologically useful high-redshift SNe passing Union selection cuts. We present the
photometry of the undersampled IR images, accomplished by directly modeling the pixels
as observed. The photometry quality approaches photon-limited statistics. We also update
the Union compilation to remove the effect of host-galaxy environment on corrected su-
pernova distances. Using our updated compilation of 580 SNe, with BAO, CMB, and H0

measurements, we find a constraint on the equation of state parameter of w = −1.008+0.050
−0.054

(statistical) or −1.013+0.068
−0.073 (with systematics).
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Chapter 6 presents the analysis of a SN discovered in an SCP search of GOODS that did
not have a firm redshift at the time of discovery. An archival WFC3 IR spectrum enabled us
to get the redshift of the likely host galaxy. With this redshift in hand, we used a novel PCA-
like classification to confirm the supernova as a Ia with 92% confidence. At z = 1.713,
this was until recently the highest-redshift SN Ia with spectroscopic confirmation, and it
remains the highest one with a precision color measurement. Although limited by our
sample size of one, we see no evidence of population evolution.

Finally, Chapter 7 concludes with proposed Bayesian improvements that will yield even
better cosmological constraints.
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CHAPTER 1

Introduction: Type Ia Supernova
Cosmology

1.1 Cosmology with Type Ia Supernovae
Going back to Baade and Zwicky, there have been proposals to measure the expansion

of the universe with supernovae as standard candles. Unfortunately, the magnitude disper-
sion of all classes of SNe was too large to achieve this goal. After Type Ia were recognized
as their own class (Panagia 1985; Uomoto & Kirshner 1985; Wheeler & Levreault 1985)
and studied in more detail, light-curve corrections (discussed below) made them practical
distance indicators.

The rapid progression of CCD detectors, computing, and wide-field cameras (Couch
et al. 1991), as well as the “SNe on-demand” strategy (Perlmutter et al. 1994), allowed
efficient pre-scheduling of followup spectroscopy and imaging. After ten years of work,
these SN measurements enabled the discovery of the accelerating expansion of the universe
(Riess et al. 1998; Perlmutter et al. 1999). In the fifteen years since that discovery, greater
numbers of SNe, spanning up to double the redshift of the original samples, are key to
providing the best constraints yet on the behavior of dark energy. As the SN Ia Hubble
diagram gained statistical power with larger and larger sets of SNe, the systematic uncer-
tainties became dominant. This dissertation is devoted to the detailed treatment of the use
of SNe Ia for cosmological constraints, and the understanding and impact of the systematic
uncertainties present in the data.

1.1.1 Light-Curve Fitting
Currently, SN Ia cosmological constraints are obtained from photometric observations,

with spectroscopy only used for identifying SNe Ia and obtaining redshifts. Although much
information about each supernova is undoubtably lost in integrating the SED over filters,
current spectroscopic observations are not good enough at cosmological redshifts to signif-
icantly improve on photometric-only distances (Walker et al. 2011).
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SNe Ia show a relation between slower decline rates and brighter luminosities (Phillips
1993). The decline rate and the inverse rise time also have a good correlation (Perlmutter
et al. 1997; Goldhaber et al. 2001; Strovink 2007), enabling the useful concept of lightcurve
“stretch,” a linear temporal scale factor. This lightcurve diversity is related to the properties
of the progenitor (Hamuy et al. 1996a; Sullivan et al. 2003), which likely evolves with
redshift. Correcting for this relation is therefore essential, requiring lightcurves spanning
the peak of the lightcurve to at least ∼ 1 magnitude fainter.

There is also a relation between broadband bluer optical colors and brighter luminosi-
ties (Tripp 1998). Some of this must be due to extinction, but this is also confounded by
variation in spectral features. Only with spectrophotometry can the two be distinguished
(Chotard et al. 2011). In addition to removal of some of the evolution in dust with redshift
(as younger galaxies have more dust on average), correcting the color-magnitude relation
also removes most of the Malmquist bias. This correction requires multi-band lightcurves
with S/N of at least ∼ 20.

The distance estimates discussed here rely on fitting a parametrized SED to the ob-
served photometry. In the light curve fitters discussed here1, four parameters must be fit:
the phase of the supernova, a normalization value, the supernova color, and the light-curve
decline rate or shape. The SALT model (Guy et al. 2005) uses a single model of an SED,
which it warps with lightcurve stretch and color. SALT2 (Guy et al. 2007) improves on this
with a linearized model for the change in SED with lightcurve stretch, but still warps this
with color.

1.1.2 Systematic Uncertainties
The dominant systematic uncertainty in supernova cosmology is photometric calibra-

tion (see Section 5.3.5 and Conley et al. (2011)). Although this is an area where there has
been rapid improvement, the large numbers of SNe coming from forthcoming surveys will
likely imply that calibration uncertainties will remain important for the foreseeable future.
Note however that subdivisions within a sample may be much less sensitive to calibra-
tion uncertainties than sample-to-sample comparisons, allowing searches for astrophysical
systematics that are not calibration-limited.

The next-most important systematic uncertainty is likely the proper treatment of su-
pernova diversity. As no light-curve fitter can perfectly match all data, an estimate of the
unexplained variance must be simultaneously determined with the training of the fitter. I
briefly discuss this important point in Chapter 7. Without high-quality spectroscopy, our
controls over population drift are limited and must be searched for using correlations with
host galaxy properties (e.g., Sullivan et al. 2003, 2006; Kelly et al. 2010).

1There is evidence that fitting more than these parameters can significantly improve distance estimation
(Kim et al. 2013).
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1.1.3 The Heterogenous Existing Datasets
There are multiple sources of data heterogeneity. High-redshift datasets tend to lack red

rest-frame observations, as these would require expensive near-IR measurements, forcing
most high-redshift data to rely on a bluer rest-frame wavelength range than low-redshift
SNe. Most high-redshift SNe are discovered and measured in “rolling” searches, in which
lightcurves are built up by periodically imaging the same fields, giving phase coverage
generally starting well before maximum light. In contrast, most nearby SNe are discovered
with a separate search, then followed up to build their lightcurves. These SNe tend to have
data starting closer to maximum, so sensitivity to the pre-max shape of the template can
enter the cosmological fits.

Much of the systematic uncertainties plaguing supernova cosmology are especially
acute at the low-redshift end. Most nearby SNe come from targeted galaxy searches, in
which known galaxies are repeatedly observed to find candidates. These searches neces-
sarily have a higher (by a factor of several) average host mass (and higher host metallicity,
with a lower specific star-formation rate) than untargeted surveys, adding astrophysical
systematics. Nearby lightcurves are typically calibrated to Landolt system (Landolt 1992),
which is an amalgam of stellar observations that have been matched together. There is
therefore more internal tension than in more modern standard star networks which are as-
sembled from one instrument. The Landolt system effective filter throughputs can only
be approximated, and it is therefore difficult to precisely calibrate to spectrophotometric
standards. I note that a new low-redshift spectrophotometric dataset will soon be available
from the Nearby SuperNova factory (SNf). This dataset is calibrated to spectrophotometric
standards, and will remove about half of the current calibration uncertainties, but I do not
discuss this in my dissertation.

1.2 Dissertation Outline
The remainder of this dissertation presents the chronological development of the “Union”

supernova Ia compilations and their extension with data from the Hubble Space Telescope.
Chapter 2 covers the challenges of working with the (then) existing supernova datasets,

discussing selection cuts, outlier rejection, tension between samples, heterogenous quality,
and systematic uncertainties. This effort was developed with the cosmological constraints
hidden until the analysis was finalized, a practice that still sets Supernova Cosmology
Project (SCP) and SuperNova factory (SNf) work apart in the supernova community. It
was also the first analysis to estimate a covariance matrix describing the impact of system-
atic uncertainties on distance moduli. Prior systematics analysis computed the impact of
each systematic on Ωm or w and summed these effects in quadrature, which is not a gener-
alizable approach. This work was previously published as Sections 3 to 7 of Kowalski et al.
(2008). The omitted sections of that paper presented a new low-redshift dataset to which
this author did not contribute.
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Chapter 3 applies this “Union” compilation to a diverse array of dark energy models.
I take advantage of the covariance-matrix-based systematics approach to compute cosmo-
logical constraints including systematic uncertainties for models not envisioned when con-
ducting the systematics analysis. This chapter was previously published as Rubin et al.
(2009).

After the analysis presented in Chapter 2, the Union compilation still had significant
room for improvement. We treated each supernova as equally affected by each system-
atic. The Union2 compilation, described in Chapter 4, changed this. I began computing
the sensitivity of each supernova to each calibration systematic. In addition to accurate
propagation of photometric calibration uncertainties, these sensitivities also allowed me to
exactly propagate the uncertainties in Milky-Way and intergalactic extinction. This mate-
rial was previously published as Sections 6, 7, 8, and the final appendix of Amanullah et al.
(2010). The omitted sections of that paper presented a new high-redshift dataset to which
this author did not contribute.

Chapter 5 extends the Union2 analysis with the data from the Hubble Space Telescope
Cluster Supernova Survey. This survey was conducted by a small team of which this author
was a key member. In Section 5.2, I describe the construction of the generative models
(forward models) that I used for the IR photometry. Section 5.3.1 describes my removal of
the effect of supernova environment on corrected distance modulus, as discovered by Kelly
et al. (2010); Sullivan et al. (2010). This chapter was previously published as Sections 1-3
from Suzuki et al. (2012). The omitted sections contain some background material and the
description of the optical photometry, to which this author did not contribute.

I used recent serendipitous observations to obtain a redshift (and therefore a secure type)
for a supernova from an SCP search of GOODS, described in Chapter 6. This supernova
was, until 2013, the highest-redshift spectroscopically confirmed type Ia and remains the
highest redshift supernova with a precision distance. This chapter was previously published
as Rubin et al. (2013).

Chapter 7 concludes this work and discusses future Bayesian improvements to this
compilation.
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CHAPTER 2

Union

2.1 Introduction
This chapter describes the construction of the first “Union” supernova Ia compilation.

The then existing supernova datasets were heterogeneous in light-curve quality and wave-
length coverage, making a consistent selection of SNe across redshift challenging. We
search for tension between datasets, which could be indicative of calibration systematics,
selection effects, or supernova evolution. No significant tensions are seen. Prior system-
atics analyses have been of the “shift-and-add” variety: the impact of each systematic on
Ωm or w is computed and summed in quadrature. This limited approach cannot be general-
ized after the fact to cosmological models and data not considered in the original analysis.
The Union analysis was the first to estimate a covariance matrix describing the impact of
systematic uncertainties on the distance moduli, 1 allowing the community to use this com-
pilation for new cosmological constraints. Additionally, this compilation was developed
with the cosmological constraints hidden until the analysis was finalized, a practice that
still sets Supernova Cosmology Project (SCP) and SuperNova factory (SNf) work apart in
the supernova community. I use this compilation to compute the then-best constraints on
the dark energy equation of state. 2

2.2 Lightcurves

2.2.1 Literature supernovae
Here we discuss the set of previously published nearby and distant supernovae included

in the analysis. Not all SN lightcurves are of sufficiently good quality to allow their cosmo-
logical use. For all supernovae in the sample, we require that data from at least two bands

1The discussion in this chapter is in terms of nuisance parameters that are fit out with the cosmology, see
Section A.1 for the relationship between these nuisance parameters and the equivalent covariance matrix.

2This work was previously published as Sections 3 to 7 of Kowalski et al. (2008). The omitted sections
of that paper presented a new low-redshift dataset to which this author did not contribute.
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with rest-frame central wavelength between 3470 Å (U-band) and 6600 Å (R-band) exist
and that there are in total at least five data points available.

Further, we require that there is at least one observation existing between 15 days be-
fore and 6 days after the date of maximal B-band brightness, as obtained from an initial
fit to the lightcurves (see section 2.2.2). The 6 day cut is scaled by stretch for consistency.
In addition, we observed that for a smaller number of poorer lightcurves, the uncertainties
resulting from the fits are unphysically small compared to what is expected from the photo-
metric data. In these cases, we randomly perturb each data point by a tenth (or if necessary
by a fifth) of its photometric error and refit the lightcurves. The remaining 16 SNe, where
convergence can not be obtained even after perturbation of the data, are excluded from
further analysis (note that these SNe are generally poorly measured and would have low
weight in any cosmological analysis).

For the nearby SN sample, we use only supernovae with CMB-centric redshifts z >
0.015, in order to reduce the impact of uncertainty due to host galaxy peculiar velocities.
We checked that our results do not depend significantly on the value of the redshift cut-off
(tested for a range z = 0.01− 0.03).

The number of SNe passing these cuts are summarized in Table 2.1. Each individual
supernova is listed in Table 11, and the last column indicates any cuts that the supernova
failed.

The list contains 17 supernovae from Hamuy et al. (1996b), 11 from Riess et al. (1999),
16 from Jha et al. (2006), and 6 from Krisciunas et al. (2004a,b, 2001). Our lightcurve data
for SN 1999aa are merged with that of Jha et al. (2006). To this list of nearby supernovae
from the literature we add the 8 new nearby supernovae presented in Kowalski et al. (2008).
For SN 1999aw, we use only the lightcurve data presented in that paper. Hence the sample
contains 58 nearby supernovae.

The sample of high redshift supernovae is comparably heterogeneous. We use all of
the 11 SNe from Knop et al. (2003) that have lightcurves obtained with HST. Of the 42
supernovae from Perlmutter et al. (1999), 30 satisfy the selection cuts described above. Of
the 16 SNe used by the High-Z Team (HZT) (Riess et al. 1998; Garnavich et al. 1998;
Schmidt et al. 1998), two are already included in the Perlmutter et al. (1999) sample and of
the remaining 14, 12 pass our cuts.

Included also are 22 SNe from Barris et al. (2004), and the 8 SNe from Tonry et al.
(2003) that are typed to be secure or likely SNe Ia. We do not use SN 1999fv and SN 1999fh,
as the number of available data points does not exceed the number of lightcurve fit param-
eters.

We add the 73 SNe Ia from the first year of SNLS (Astier et al. 2006), of which one
does not pass the first phase cut (03D3cc). Note that, in Astier et al. (2006), 2 of the 73
supernovae were excluded from their cosmological parameter fits because they were sig-
nificant outliers (see discussion in section 2.3.3). Riess et al. (2004, 2007) have published
37 supernovae which were discovered and followed using HST. Of these, 29 passed our
lightcurve quality cuts. This sample contains the highest redshift supernovae in our com-
pilation. Finally, we use the 84 SNe from the ESSENCE survey (Miknaitis et al. 2007;
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Wood-Vasey et al. 2007), of which 75 pass our cuts.

Requirement NSN

all 414
z > 0.015 382
Fit successful 366
Color available 351
First phase < 6 d 320
≥ 5 data points 315
Outlier rejection 307

Table 2.1. Number of SNe after consecutive application of cuts. See 2.3.3 for a discussion of the outlier
rejection cut.

2.2.2 Lightcurve fitting
The spectral-template-based fit method of Guy et al. (2005) (also known as SALT) is

used to fit consistently both new and literature lightcurve data. This method is based on a
spectral template (Nugent et al. 2002) which has been adapted in an iterative procedure to
reproduce a training set of nearby SNe UBV R lightcurve data. The training set consists of
mostly z < 0.015 SNe and hence does not overlap with the sample we use for determination
of cosmological parameters. To obtain an expected magnitude for a supernova at a certain
phase, the model spectrum is first redshifted to the corresponding redshift followed by an
integration of the product of spectrum and band pass transmission. The spectral-template
based fit method has the advantage that it consistently allows the simultaneous fit of multi-
band light curves with arbitrary (but known) band pass transmission functions. In view of
the large number of filters and instruments used for the new nearby SN samples as well
as the very diverse lightcurve data found in the literature, this is particularly important
here. In addition, frequent practical problems associated with K-corrections—such as the
propagation of photometric errors—are handled naturally.

The spectral template based fit method of Guy et al. (2005) fits for the time of max-
imum, the flux normalization as well as rest-frame color at maximum defined as c=B −
V |t=Bmax + 0.057 and time-scale stretch s. It is worth noting that by construction, the
stretch in SALT has a related meaning to the conventional time-axis stretch (Perlmutter
et al. 1997; Goldhaber et al. 2001). However, as a parameter of the lightcurve model it also
absorbs other, less pronounced, stretch dependent lightcurve dependencies. The same is
true for the color c.

Recently, direct comparisons between alternative fitters, such as SALT, its update (Guy
et al. 2007) as well as MLCS2k2 (Jha et al. 2007) show good consistency between the fit
results, e.g. the amount of reddening (Conley et al. 2007). Our own tests have shown that
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for well observed supernovae, the method produces very consistent results (peak magni-
tude, stretch) when compared to the more traditional method of using light-curve templates
(Perlmutter et al. 1997). However, we noticed that fits of poorly observed lightcurves in
some cases do not converge properly. Part of the explanation is that in the case of the spec-
tral template based fit method, the data before t < −15 days is not used as an additional
constraint. More typically, the SALT fitter can fall into an apparent false minimum and we
then found it necessary to restart it repeatedly to obtain convergence. Note that the small
differences between the lightcurve fit parameters of Table 11 and the values shown in Ta-
ble 10 of Wood-Vasey et al. (2007) are primarily cases where the Wood-Vasey et al. (2007)
SALT fit did not converge (some of which are noted inWood-Vasey et al. (2007)) and a few
cases where we found it necessary to remove an extreme outlier photometry point from the
lightcurve.

The lightcurves from Barris et al. (2004) and the I-band lightcurves of 4 supernovae
of Perlmutter et al. (1999) (SNe 1997O, 1997Q, 1997R, and 1997am, see also Knop et al
2003) need a different analysis procedure, since in these cases the light of the host galaxy
was not fully subtracted during the image reduction. We hence allow for a constant con-
tribution of light from the host galaxy in the lightcurve fits. These supernovae were fit
with additional parameters: the zero-level of the I-band lightcurve in case of the four SNe
from the Perlmutter et al. (1999) set and the zero-level of all the bands in case of the Barris
et al. (2004) data. The additional uncertainties due to these unknown zero-levels have been
propagated into the resulting lightcurve fit parameters.

The fitted lightcurve parameters of all SNe can be found in Table 11 which is also
available in electronic form3.

2.3 Hubble diagram construction and cosmological param-
eter fitting

The full set of lightcurves as described in section 2.2.1 have been fitted, yielding B-band
maximum magnitudemmax

B , stretch s, and color c=B − V |t=Bmax + 0.057. In this section,
these are input to the determination of the distance modulus. The analysis method is chosen
to minimize bias in the estimated parameters (see section 2.3.2). An outlier rejection based
on truncation is performed which is further described in section 2.3.3, before constraints
on the cosmological parameters are computed.

2.3.1 Blind analysis
Following Conley et al. (2006a), we adopt a blind analysis strategy. The basic aim of

pursuing a blind analysis is to remove potential bias introduced by the analyst. In partic-
ular, there is a documented tendency (see for example Yao et al. (2006)) for an analysis

3http://supernova.lbl.gov/Union
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to be checked for errors in the procedure (even as trivial as bugs in the code) up until the
expected results are found but not much beyond. The idea of a blind analysis is to hide
the experimental outcome until the analysis strategy is finalized and debugged. However,
one does not want to blind oneself entirely to the data, as the analysis strategy will be par-
tially determined by the properties of the data. The following blindness strategy is used,
which is similar to the one invented in Conley et al. (2006a). The data is fit assuming a
ΛCDM cosmology, with the resulting fit for ΩM stored without being reported. The flux
of each supernova data point is then rescaled according to the ratio of luminosity distances
obtained from the fitted parameters and arbitrarily chosen dummy parameters (in this case
ΩM = 0.25,ΩΛ = 0.75). This procedure preserves the stretch and color distribution, and
as long as the fitted parameters are not too different from the target parameters approxi-
mately preserves the residuals from the Hubble diagram. In developing the analysis, one is
only exposed to data blinded by the procedure described above. Only after the analysis is
finalized and the procedure frozen, is the blinding turned off.

Note that this prescription allows — in a consistent way — the inclusion of future data
samples. A new data sample would be first investigated in a blind manner following the
tests outlined in section 2.3.4, and if no anomalies are observed, one would combine it with
the other data sets.

2.3.2 Unbiased parameter estimation
Type Ia supernova obey a redder-dimmer relation and a wider-brighter relation (Phillips

1993). The redder-dimmer relation in principle can be explained by dust extinction; how-
ever, the total to selective extinction ratios generally obtained empirically are smaller than
expected from Milky-Way-like dust (Tripp 1998; Tripp & Branch 1999; Parodi et al. 2000;
Guy et al. 2005; Wang et al. 2006). At the same time, the exact slope of the stretch-
magnitude relation is not (yet) predicted by theory. The absence of a strong theoretical
prediction motivates an empirical treatment of stretch and color corrections. Here we adopt
the corrections of Tripp (1998) (see also Tripp & Branch (1999); Wang et al. (2006); Guy
et al. (2005) and Astier et al. (2006)):

µB = mmax
B −M + α(s− 1)− βc, (2.1)

Since the β-color correction term must account for both dust and any intrinsic color-
magnitude relation, it is clearly an empirical approximation. The validity of β-color cor-
rection relies on only one assumption, that is, nearby supernovae and distant supernovae
have an identical magnitude-color relation. If either the intrinsic SNe properties or the dust
extinction properties of the supernovae are evolving with redshift, these assumptions may
be violated. Observational selection effects may also introduce biases which invalidate
equation 2.1. These potential sources of systematic error will be evaluated in section 2.4.1.
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The χ2 corresponding to Eq. 2.1 is given as:

χ2 =
∑

SNe

(µB − µ(ΩM,ΩΛ, w))2

σ2
mB

+ σ2
tot + σ2

sys + (βσc)2 + (ασs)2 + 2αC(m, s)− 2βC(m, c)− 2αβC(s, c)
.

(2.2)
σmB

, σc and σs represent the statistical uncertainty on the peak magnitude, color and stretch,
as obtained from the light-curve fit, and C(m, s), C(m, c) and C(c, s) represent their re-
spective covariance terms. σtot represents an astrophysical dispersion obtained by adding
in quadrature the dispersion due to lensing, σlens = 0.093z (see Section 2.4.6), the uncer-
tainty in the Milky-Way dust extinction correction (see Section 2.4.8) and a term reflecting
the uncertainty due to host galaxy peculiar velocities of 300 km/s. The dispersion term
σsys contains an observed sample-dependent dispersion due to possible unaccounted-for
systematic and statistical errors. In section 2.3.3 we discuss the contribution σsys further.

Note that Eq. 2.2 can be derived using minimization of a generalized χ2. Defining a
residual vector for a supernova R = (µB − µmodel, s− s′, c− c′) and supposing that the
light-curve fit returns covariance matrix C, we can write

χ2 =
∑

SNe

RTC−1R. (2.3)

Here, s′ and c′ take the role of the true stretch and color, which have to be estimated from
the measured ones. Minimizing this equation over all possible values of s′ and c′ gives the
χ2 in Eq. 2.2. The χ2 is minimized, not marginalized, over α and β; marginalization would
yield a biased result due to the asymmetry of the χ2 about the minimum.4

Frequently, Eq. 2.2 is minimized by updating the denominator iteratively, i.e. only
between minimizations (see for example Astier et al. (2006)). As shown in Fig. 2.1 and
discussed next, this method produces biased fit results, an artifact previously noted byWang
et al. (2006).

We use a Monte Carlo simulation to estimate any biases from the fitting procedure.
Random supernova samples resembling the observed one are generated and then fitted.
The true stretch and color are sampled from a normal distribution of width 0.1 and for the
peak magnitude an intrinsic dispersion of 0.15 magnitudes is assumed. A further dispersion
corresponding to the measurement errors is added. By construction, the SN samples have
the same redshift and stretch, color and peak magnitude uncertainties as the real sample.
The test values for α and β were chosen as 1.5 and 2.5. This bias on α and β, as would be
obtained from the iterative method’s fits to the simulated data sets, is visible in Figure 2.1
as the unshaded histogram. The large potential bias on β (∆β ∼ −0.5), if the χ2 had been
chosen according to Equation 2.2 with the iteratively updated denominator, is a result of
the fact that the measurement error on c for high redshift SNe is similar to and often even
exceeds the width of the color distribution itself.

We have investigated other sources of bias in the fitted parameters. A measurement bias
will be introduced because overall, brighter SNe will have smaller photometric errors, and

4Note that using the angle of the line (i.e., β = tan θ) gives a much more symmetric minimum.
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Figure 2.1. Monte Carlo simulation of the resulting α (left) and β (right) distributions as fitted with the
unbiased and biased method. The true values α = 1.5 and β = 2.5 are represented by the arrows.

hence larger weights, than dimmer ones. If the photometric error bars are small enough
that the intrinsic dispersion dominates the uncertainty, this bias will be small. Hence low-
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Figure 2.2. Residual of restframe, stretch and color corrected, B-band magnitude (left) and pull distribution
(right) from the best fitting cosmology. The filled histogram shows the rejected outliers. The pull distribution
is overlayed with a normal distribution of unit width.
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redshift, well observed SNe are biased less than high-redshift, poorly observed SNe, re-
sulting in biased cosmological parameters. This bias was studied using the Monte Carlo
simulation described above. For the sample under investigation it was found to introduce
a bias δM = 0.01. In principle this bias can be corrected; however, since it is roughly
a factor of three smaller than the statistical or systematic uncertainties, we choose not to
carry out this step.

2.3.3 Robust statistics
Figure 2.2 shows the distribution of rest-frame B-band corrected magnitude residuals

(left) from the best fit as obtained with the full data set. The right plot shows the pull
distribution, where the pull is defined as the corrected B magnitude residual divided by its
uncertainty. The distributions have outliers which, if interpreted as statistical fluctuations,
are highly improbable. Hence these outliers point to non-Gaussian behavior of the under-
lying data, due to either systematic errors in the observations, contamination or intrinsic
variations in Type Ia SNe. The fact that an outlier is present even in the high quality SNLS
supernova set (see Table 2.2) suggests that contamination or unmodeled intrinsic variations
might be present. However, other samples that typically were observed with a more het-
erogeneous set of telescopes and instruments show larger fractions of outliers, indicating
additional potential observation-related problems.

In order to limit the influence of outliers, we use a robust analysis technique. First, the
SN samples are fit forM , the absolute magnitude of the SNe, using median statistics (see
Gott et al. (2001) for a discussion of median statistics in the context of SN cosmology). The
quantity minimized is χ =

∑

SNe
|µB−µmodel|

σ , where the uncertainty σ in the denominator
includes the covariance terms in the denominator of the right hand side of Equation 2.2.
We then proceed to fit each sample by itself using the α, β, and ΩM from the combined fit,
as χ is not a well-behaved quantity for small numbers of SNe.

For each sample, we remove SNe with a pull exceeding a certain value σcut relative
to the median fit of the sample. Currently available algorithms, which correct the peak
magnitude using, e.g., stretch or ∆m15, are capable of standardizing SNe Ia to a level of
∼ 0.10 − 0.15 magnitudes. To reflect this we add in quadrature a systematic dispersion
to the known uncertainties. The list of known uncertainties include observational errors,
distance modulus uncertainties due to peculiar velocities (with ∆v =300 km/s) and gravi-
tational lensing (relevant only for the highest redshift SNe; see section 2.4.6 for a discus-
sion). The additional systematic dispersion has two components: a common irreducible
one, possibly associated with intrinsic variations in the SN explosion mechanism, as well
as an observer-dependent component. To obtain self-consistency the systematic disper-
sion is recalculated during the analysis. One starts by assuming a systematic dispersion of
σsys = 0.15magnitudes, then computes the best fitting cosmology for the particular sample
using median statistics, removes the outlier SNe with residuals larger than a cut value σcut,
iterates σsys such that the total χ2 per degree of freedom is unity, and in a final step redeter-
mines the best fitting cosmology using regular χ2 statistics to obtain an updated σsys. From
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that point in the analysis, after outliers are rejected and σsys determined, only regular χ2

statistics are applied.
When using a robust analysis, it is necessary to check that a) in the absence of contam-

ination the results are not altered from the Gaussian case and b) in presence of a contami-
nating contribution, the impact of it is indeed reduced. In order to investigate this, we begin
with a model for the contamination. We assume the data sample to be composed of two
types of objects, one representing the desired SNe Ia and a second contribution character-
izing the contamination. We then use a maximum-likelihood analysis of the observed pull
distribution shown in Figure 2.2 (right) to determine the normalization, width and mean
of the contaminating distribution. The uncontaminated pull distribution is assumed to be a
Gaussian distribution of unit width and zero mean. The observed pull distribution is best
fitted by an additional contaminating contribution that is 50% wider (σm = 0.23 mag) and
which has a mean shifted by∆m = 0.3σm, normalized to 18% of the area. A mock simula-
tion that is based on this superposition of two normal distributions illustrates the benefits of
using the robust analysis. Figure 2.3 (right) shows the bias of the mean relative to the center
of the main component as a function of the outlier rejection cut value. Outlier rejection can
reduce the bias by a factor of three with a remaining bias of less than 0.01 magnitude. Even
for a wide range of contaminant parameters (σm = 0.15− 2;∆m = 0− 2 magnitudes) the
bias obtained for the robust analysis remains below 0.015 magnitudes. Only in cases where
the contamination is larger than 30% does the outlier rejection algorithm become unstable.
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Figure 2.3. Mock simulation of bias (left panel) and standard deviation (right) of the mean magnitude as a
function of the outlier rejection cut. The simulated SN set consists of one population of 270 SNe with intrinsic
dispersion of 0.15 magnitudes and zero mean and a second population of 50 SNe with intrinsic dispersion of
0.26 mag and mean 0.13 mag. The effect of outlier rejection on a single population without contamination is
shown as a reference curve.

Besides reducing the potential bias due to contamination, robust statistics can also lead
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to tighter parameter constraints through reduction of the intrinsic dispersion. The right
panel of Figure 2.3 shows for the simulated data the average standard deviation as a function
of the outlier rejection cut for the 16 % contamination case described above. As a reference,
the case of a single uncontaminated population of SNe is shown as well. Note that a cut
at 3σ reduces the dispersion noticeably in the case of a contaminated sample, while the
uncontaminated single population is affected negligibly (the standard deviation is reduced
by 1.3 %, e.g. from 0.15 to 0.148 magnitudes).

For the real data, we consider two values σcut = 2, 3 as well as the case in which
all SNe are kept. We chose as our main cut value σcut = 3 since, after application of
the outlier rejection, standard χ2 statistics is still a good approximation while at the same
time a potential bias introduced by contamination is significantly reduced. Note also that
the impact of individual SNe that have residuals close to σcut is small for large statistics:
an additional SN will shift the mean distance modulus of NSNe by at most σcut/

√
NSNe

standard deviations. Hence for NSNe
>∼ 10 and σcut = 3 the algorithm can be considered

stable relative to fluctuations of individual SNe.

2.3.4 Sample characteristics, dispersion and pull
Figure 2.4 illustrates the heterogeneous character of the samples. It shows the Hubble

and residual diagrams for the various samples, as well as the histogram of the SN residuals
and pulls from the best fit. The difference in photometric quality is illustrated in the right-
most column of Fig. 2.4, by showing the error on the color measurement. As can be seen,
some samples show a significant redshift dependent gradient in the errors, while others
have small, nearly constant errors (most notably the sample of Knop et al. (2003)). The
sample of Astier et al. (2006) shows a small color uncertainty up to z ≤ 0.8, and degrades
significantly once the color measurement relies on the poorer z-band data (c.f. SALT2
(Guy et al. 2007), which is capable of incorporating lightcurve data bluer than rest-frame
U).

Our analysis is optimized for large, multi-color samples such as that of Astier et al.
(2006), since these now dominate the total sample. There is often a better analysis ap-
proach for any given specific sample that would emphasise the strengths of that sample’s
measurements and yield a tighter dispersion and more statistical weight. However, for this
combined analysis of many samples it was more important to use a single uniform analysis
for every sample, at the cost of degrading the results for some of the smaller samples. This
particularly affects some of the very earliest samples, such as Riess et al. (1998), Perlmutter
et al. (1999), and Barris et al. (2004), where the color measurements had originally been
used with different priors concerning the dust distribution. Treating these samples with the
current analysis thus gives significantly larger dispersions (and hence less weight) to these
samples than their original analyses. As a check, we have verified that by repeating the
analysis according to Perlmutter et al. (1999) we reproduce the original dispersions using
SALT.
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Table 2.2. Shown is the number of SNe passing the different outlier rejection cuts, as well as the sample dependent systematic dispersion (σsys) and the
RMS around the best fit model. The compilation obtained with the σcut = 3 cut will be referred to as the Union robust set.

No Outlier Cut σcut = 3 σcut = 2
Set SNe σsys(68%) RMS (68%) SNe σsys(68%) RMS (68%) SNe σsys(68%) RMS (68%)

Hamuy et al. (1996) 17 0.14+0.04
−0.03 0.16+0.03

−0.03 17 0.14+0.04
−0.03 0.16+0.03

−0.03 16 0.12+0.05
−0.03 0.15+0.02

−0.03

Krisciunas et al. (2005) 6 0.06+0.11
−0.05 0.10+0.03

−0.04 6 0.05+0.11
−0.05 0.10+0.03

−0.04 6 0.08+0.12
−0.07 0.12+0.03

−0.04

Riess et al. (1996) 11 0.16+0.07
−0.04 0.18+0.03

−0.04 11 0.16+0.07
−0.03 0.17+0.03

−0.04 11 0.18+0.08
−0.04 0.20+0.04

−0.05

Jha et al. (2006) 16 0.30+0.09
−0.05 0.31+0.05

−0.06 15 0.26+0.08
−0.05 0.27+0.05

−0.06 1 1 0.10+0.08
−0.06 0.15+0.03

−0.04

This Work 8 0.01+0.06
−0.01 0.09+0.02

−0.03 8 0.00+0.05
−0.00 0.07+0.02

−0.02 8 0.07+0.06
−0.03 0.12+0.03

−0.04

Riess et al. (1998) + HZT 12 0.29+0.20
−0.11 0.50+0.09

−0.12 12 0.28+0.19
−0.10 0.48+0.09

−0.11 10 0.16+0.19
−0.10 0.49+0.10

−0.13

Perlmutter et al. (1999) 30 0.43+0.13
−0.09 0.65+0.08

−0.09 29 0.33+0.10
−0.07 0.50+0.06

−0.07 24 0.19+0.11
−0.09 0.43+0.06

−0.07

Tonry et al. (2003) 6 0.00+0.33
−0.00 0.24+0.06

−0.09 6 0.06+0.28
−0.06 0.24+0.06

−0.09 6 0.00+0.32
−0.00 0.26+0.07

−0.09

Barris et al. (2003) 22 0.31+0.12
−0.07 0.64+0.09

−0.11 21 0.23+0.12
−0.08 0.62+0.09

−0.10 19 0.11+0.16
−0.11 0.71+0.11

−0.13

Knop et al. (2003) 11 0.10+0.08
−0.04 0.17+0.03

−0.04 11 0.10+0.07
−0.04 0.17+0.03

−0.04 11 0.11+0.08
−0.05 0.18+0.04

−0.04

Riess et al. (2006) 29 0.22+0.05
−0.04 0.31+0.04

−0.04 27 0.16+0.05
−0.04 0.26+0.03

−0.04 24 0.08+0.05
−0.06 0.22+0.03

−0.03

Astier et al. (2006) 72 0.14+0.03
−0.02 0.31+0.03

−0.03 71 0.12+0.03
−0.02 0.29+0.02

−0.03 70 0.12+0.03
−0.02 0.30+0.02

−0.03

Miknaitis et al. (2007) 75 0.21+0.04
−0.03 0.32+0.02

−0.03 73 0.18+0.04
−0.03 0.30+0.02

−0.03 66 0.00+0.05
−0.00 0.23+0.02

−0.02

Union 315 307 282
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Figure 2.5 shows diagnostic variables used to test for consistency between the various
samples. The leftmost plot shows the systematic dispersion and RMS around the best fit
model. One expects that there is an intrinsic dispersion associated with all SNe, which
provides a lower limit to the sample dependent systematic dispersion. To estimate the
intrinsic dispersion one can look at various quantities, as for example the smallest σsys
or, perhaps more appropriate, by the median of σsys. The median of σsys, which is about
0.15 mag (shown as the leftmost dashed vertical line), is a robust measure of the intrinsic
dispersion, as long as the majority of samples are not dominated by observer dependent,
unaccounted-for uncertainties.

As a test for tension between the data sets, we compare for each sample the average
residual from the best fit cosmology. This is shown in the middle panel of Fig. 2.5. As can
be seen, most samples fall within 1σ and none deviate by more then 2σ. The larger samples
show no indication of inconsistency. This changes if one considers, instead of the mean, the
slope, dµresidual/dz, of the residuals as a function of the redshift. The right panel of Fig. 2.5
shows a large fraction of significant outliers in the slope. The largest slope outlier is found
for the Miknaitis et al. (2007) sample (see also the middle panel of Fig. 2.4). The sign of
the slope is consistent with the presence of a Malmquist bias (see Wood-Vasey et al. (2007)
for a discussion). The uncertainties associated with such a Malmquist bias are discussed in
Section 2.4.5. While in general there is no clear trend in the sign of the slope deviations, it
is clear that any results that depend on the detailed slope, such as a changing equation of
state, should be treated with caution.
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2.4 Systematic errors
Detailed studies of the systematic effects have been published as part of the analysis of

individual data sets. The list includes photometric zero points, Vega spectrum, lightcurve
fitting, contamination, evolution, Malmquist bias, K-corrections and gravitational lensing,
which have also been discussed in earlier work (Perlmutter et al. 1997, 1999; Knop et al.
2003; Astier et al. 2006; Ruiz-Lapuente 2007; Wood-Vasey et al. 2007).

Some sources of systematic errors are common to all surveys and will be specifically
addressed for the full sample. Other sources of systematic errors are controlled by the in-
dividual observers. The degree with which this has been done for the various data samples
entering the analysis is very different. The SNLS—which is using a single telescope and
instrument for the search and followup, and which has detailed multi-band photometry for
nearly all its SNe—has a strong handle on a subset of the observation-dependent systemat-
ics uncertainties. With the exception of the ESSENCE SN data sample, other high redshift
samples are smaller and will contribute less to the final results.

We handle the two types of systematic errors separately: systematic errors that can be
associated with a sample (e.g. due to observational effects), and those that are common
to all the samples (e.g. due to astrophysical or fundamental calibration effects). To first
order, the measurement of cosmological parameters depends on the relative brightness of
nearby SNe (z ∼ 0.05) compared to their high redshift counterparts (z ∼ 0.5). If low and
high redshift SNe are different, this can be absorbed in different absolute magnitudes M .
We hence cast the common systematic uncertainties into an uncertainty in the difference
∆M = Mlow−z − Mhigh−z. ‘We have chosen zdiv = 0.2 as the dividing redshift as it
conveniently splits the samples according nearby and distant SN searches. Note, however,
that our resulting systematic errors change by less then 25% of its value for zdiv in the range
0.1− 0.5. In addition we allow for a set of extra parameters, ∆Mi, one for each sample i.

Systematic uncertainties are then propagated via these nuisance parameters:

µB = mmax
B −M + α(s− 1)− βc+∆Mi for zdiv < 0.2

µB = mmax
B −M + α(s− 1)− βc+∆Mi +∆M for zdiv > 0.2,

(2.4)

with the term∆M2/σ2
∆M+

∑Nsamples

i=1 ∆M2
i /σ

2
∆Mi

being added to the χ2 as defined through
Eq. 2.2. We have checked that this treatment of systematic errors is consistent (in our
case to better than 5 % of its value) with the more common procedure, applicable to one-
dimensional constraints, in which part of the input data is offset by ±σ∆M to obtain the
systematic variations in the resulting parameter (e.g. w or ΩM).

In the following we discuss the different contributions to σ∆M , and summarize them in
section 2.4.9. The resulting systematic errors on the cosmological parameters are discussed
in section 2.5.
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2.4.1 Stretch & evolution
With the large statistics at hand one can test the errors associated with the empirical

stretch and color corrections. These corrections would become sources of systematic error
if a) different SN populations were to require different corrections and b) if the SN popula-
tions were to show differences between nearby and distant objects (either due to selection
effects or due to evolution of the SN environment).

A potential redshift dependence of the correction parameters can be tested by sepa-
rately fitting low redshift and high redshift objects. For this test, a ΛCDM cosmology was
assumed with ΩM = 0.28 and ΩM = 0.72 (the values we obtain from the fit of the full sam-
ple); however, the results are rather insensitive to the assumed cosmological parameters.
The obtained fit parameters α and β are presented in table 2.3.

The values of β at high and low redshift agree very well, providing strong constraints
on evolution of the color-correction. Such evolution effects could arise, for example, due
to a different mix of dust reddening and intrinsic color at different redshifts. The fact that
β agrees so well supports the choice of the empirical color correction5.

subset NSN α β Ωa
M wb

all 307 1.24(0.10) 2.28(0.11) 0.29(0.03) -0.97(0.06)
z > 0.2 250 1.46(0.16) 2.26(0.14) - -
z ≤ 0.2 57 1.07(0.12) 2.23(0.21) - -
s < 0.96 155 1.56(0.27) 2.18(0.18) 0.27(0.05) -0.98(0.09)
s ≥ 0.96 152 1.51(0.37) 2.34(0.17) 0.30(0.04) -0.93(0.07)

Table 2.3. Fit parameters as obtained for different SN subsamples. (a)A flat Universe was assumed in the
constraints on ΩM. (b)Constraints on w were obtained from combining SNe with CMB and BAO measure-
ments. A flat Universe was also assumed. (see section 2.5 for more details).

The α at low-redshift and high-redshift are only marginally consistent with each other.
We will take the difference at face value and estimate the impact it would have on the
final result. The average stretch is 〈s〉 ≈ 0.96 and hence the difference in the average
stretch correction is 〈1− s〉∆α ≈ 0.015. If α indeed is redshift dependent and this was
not accounted for, one would obtain a bias of ∆M = 0.015 mags.

Effects of potentially different SN populations should be considered as well. It has
recently been argued by Scannapieco & Bildsten (2005) and Mannucci et al. (2006) that
one needs to allow for two types of SN-progenitor timescales to explain the observed rates
in different galaxy types. One class of objects traces the star formation rate directly, while
the second class has a delay time trailing the star formation rate by a few billion years.
If indeed two populations are present, they might evolve differently with redshift. It is

5 Note that if β were not obtained by fitting but instead was fixed, e.g. β = RB = 4.1, a bias can be
expected (and might have already been observed, see Conley et al. (2007)) if the average reddening changes
as a function of redshift.
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therefore important to check that the empirical corrections suit both populations. To test
the effect of different SN populations one can subdivide the sample according to SN sub-
types or host environments (Sullivan et al. 2003; Howell et al. 2007). Sullivan et al. (2006)
have found using well observed SNe and hosts from SNLS that the stretch of a light curve
is correlated with its host environment as well as with the two classes of SN-progenitor
systems postulated by Scannapieco & Bildsten (2005); Mannucci et al. (2006). Therefore,
we divide the SN sample into two approximate equally large samples with s < 0.96 and
s ≥ 0.96. The two independent samples are then fitted, with the results shown in Table
2.3. The resulting parameters ΩM (for a flat Universe) and w (for a flat Universe together
with BAO+CMB) for the two samples are less than 1σ apart and hence there is no evidence
for an underlying systematic effect. Nevertheless, this will be a very important number to
watch, once future high quality SN data sets will be added. (Note that, while the resulting
values of αs for the two samples are consistent with each other, they appear inconsistent
with the value obtained for the complete sample. This apparent inconsistency arises in part
due to a bias introduced by dividing the stretch distribution in the middle. Larger stretch
SNe, misclassified due to measurement errors as belonging to the low stretch SNe sample,
as well as lower stretch SNe, misclassified as belonging to the large stretch SNe sample,
will for both samples result in a α biased to larger values.)

We have also investigated whether the sample can be sub-divided according to the color
of the SNe. We found that the results of such a test can be very misleading. While in prin-
ciple one would expect to find that the best fitted cosmological parameters do not depend
on color selection criteria (e.g. c < ccut and c > ccut), we find by means of Monte Carlo
simulation described in Section 2.3.2 that a significant bias is introduced into the measure-
ments. This bias is also observed in the data. For example, by choosing ccut = 0.02 we
find that for our sample of SNe ΩM changes by ±0.1. The bias arises from truncating an
asymmetric distribution. In the case of color, the asymmetry in the distribution is intro-
duced by the fact that extinction by dust leads only to reddening. Hence the number of
objects which would belong to ctrue < ccut but, due to a large measurement error, are fitted
with cobserved > ccut, are not compensated by objects misclassified in the opposite way. The
number of misclassified objects is a function of the measurement errors, and hence is larger
towards higher redshift. The simulated data sets result in a significant bias both in ΩM as
well as β. The size of the bias, however, depends on assumptions made for the underlying
color distribution. Hence, for the current data sample, splitting the data set in two color
bins introduces a bias so large and difficult to control, that the results of the test become
meaningless. Note that if one had very small error bars on the color measurement over the
full redshift range (as obtained from a dedicated space based survey (Aldering 2005)), the
bias can be kept small. This would allow for additional tests of systematic uncertainties
due to reddening corrections.
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2.4.2 Sample contamination
As discussed in Section 2.3.3, the method of robust statistics was applied to limit the

effect of outliers, which could be present if the data is contaminated by non Type Ia SNe,
or by other events which do not have the standard candle properties of regular SN Ia. It was
shown in Section 2.3.3 that the bias due to contamination can be limited for this analysis to
∆M = 0.015 mag, which we hence use as the uncertainty due to contamination.

In previous compilations, such as that of Riess et al. (2004, 2007), no formal outlier
criteria were applied. Instead, with some exceptions, the original classifications made by
the authors of the data sample were used. Spurious candidates are sometimes removed from
the data samples by hand (see for example Astier et al. (2006)), making it extremely difficult
to estimate the effect of the remaining contamination. Our method of outlier rejection
provides a simple and objective alternative.

2.4.3 Lightcurve model &K-corrections
The lightcurve model (Guy et al. 2005) is a parametric description with two free param-

eters. As such it has limitations in capturing the full diversity of Type Ia SNe. By visual
inspection we find, for example, that the fitted maximum magnitude can differ from the
data by a few hundredths of a magnitude. A particular problem could arise if the observa-
tion strategies for nearby and distant SNe differ. In fact, the high-redshift data sets have
on average earlier observations of the lightcurve, which is a result of the rolling-search
techniques frequently used to find and follow-up SNe. Hence, when comparing low-z to
high-z SNe, the fitted lightcurve parameters are obtained from slightly different parts of
the lightcurve. The mismatch between template and the data lightcurve might thus be more
pronounced in one sample than the other. To quantify the effect, we have performed an
extensive Monte Carlo simulation. A set of BVR lightcurve templates are obtained from a
quartic spline fit to data including the well observed SNe 1990N, 1994D, 1998aq, 2001el,
2002bo, 2003du, 2004eo, and 2005cf (Strovink 2007). The templates are then used to sam-
ple random realizations of the lightcurves with cadence, signal-to-noise and date of the first
detection of the nearby and distant SN sample. These simulated lightcurves are then fitted.
The difference in the stretch and color corrected peak magnitude between the nearby and
distant sample can be used to estimate the systematic uncertainty. For the nine templates we
obtain the average difference between nearby and distant SNe of −0.02 magnitudes with
an RMS scatter of 0.015. We adopt an associated systematic uncertainty of ∆M = 0.02
magnitudes due to this.

There is another source of uncertainty arising from the diversity of SNe Ia lightcurves.
If a certain class of SNe is misrepresented (for example if they are brighter than average
for their typically fitted stretch value) and if the fraction of such SNe changes as a function
of redshift, it will lead to a systematic bias in the cosmological parameters. Section 2.4.1
has addressed this issue by subdividing the sample according to stretch and redshift. If a
significant lightcurve misrepresentation were present, one would expect to see differences
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in the fitted lightcurve-correction parameters. No statistically significant differences have
been observed and we assign no additional contribution to the uncertainties from such an
effect.

The lightcurve model is based on a spectral template series. It thereby eliminates the
need for a separate K-correction (see Section 2.2.2). The model has been trained with
nearby SNe data and hence will be affected by systematic errors associated with that train-
ing data. These are largest for the U-band, which suffers from low training statistics and
difficult flux calibration. However, the validity of the model in the U-band has been verified
with the SNLS data set to better than 0.02 magnitudes (Astier et al. 2006). Here we adopt
their assessment of the resulting systematic error of ∆M = 0.02.

2.4.4 Photometric zero points
With present methods, ground based photometric zero point calibration is generally

limited to an accuracy of >∼ 1% (Stubbs & Tonry 2006). The largest contribution to the
photometric error of the peak magnitude arises from the color correction ∆M ∼ β∆c.
The color measurement is based on the measurement of the relative flux in two (or more
bands), and as a result some of the uncertainties cancel. Nevertheless, since the color of
SNe at different redshifs are obtained from different spectral regions, the uncertainty in
the reference Vega spectrum limits the achievable accuracy to ∆c ≈ 0.01 − 0.015 mag
(Stritzinger et al. 2005; Bohlin & Gilliland 2004).

Here we assume an uncertainty of∆M = 0.03 for the photometric peak magnitude due
to zero point calibration. Part of this uncertainty is common to all samples (as the same set
of calibration stars is being used), while the other part is sample dependent (e.g. tied to the
calibration procedure) and we divide the error equally among the two categories.

2.4.5 Malmquist bias
Malmquist bias arises in flux limited surveys, when SNe are detected because they are

overly bright. What matters for cosmology is whether the bias is different for the low-z
and high-z samples. Perlmutter et al. (1999), Knop et al. (2003) and Astier et al. (2006)
have evaluated the effects of Malmquist bias for the SCP and SNLS SN samples as well as
the nearby SN sample and found that they nearly cancel. Since an individual estimate of
Malmquist bias for all the different samples is beyond the scope of this work, we attribute
a conservative systematic uncertainty of ∆M = 0.02 (Astier et al. 2006) for all samples,
which is consistent with previous estimates.

In addition, we investigated whether the significant redshift dependence of the Hubble
residuals observed for the Miknaitis et al. (2007) sample (see section 2.3.4), if interpreted
as due to Malmquist bias, exceeds our claimed uncertainty. A simulation was performed in
which we introduced a magnitude cut-off such that the resulting slope, dµ/dz, matches the
observed slope of −0.6. The associated Malmquist bias with that sample is then ∼ 0.05
mags. If this is compared to the average Malmquist bias obtained for magnitude limited
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searches, the extra bias is only 0.03 mags larger– not much larger than the systematic un-
certainty we have adopted. While we do not treat the ESSENCE data sample differently
from the others, we note that Wood-Vasey et al. (2007) made their extinction prior redshift-
dependent to account for the fact that at higher redshifts an increasingly larger fraction of
the reddened SNe was not detected. The linear color correction employed in our analy-
sis is independent of a prior and therefore unaffected by a redshift dependent reddening
distribution.

2.4.6 Gravitational lensing
Gravitational lensing decreases the mode of the brightness distribution and causes in-

creased dispersion in the Hubble diagram at high redshift. The effect has been discussed in
detail in the literature (Sasaki 1987; Linder 1988a; Bergström et al. 2000; Holz & Linder
2005). We treat lensing as a statistical phenomenon only, although with the detailed opti-
cal and NIR data available for the GOODS field, the mass-distribution in the line-of-sight
and hence the lensing (de)magnification may be estimated for individual SNe (Jönsson
et al. 2006). Important for this work is that they find no evidence for selection effects (i.e.
Malmquist bias) due to lensing of the high redshift SNe.

Considering both strong and weak lensing, Holz & Linder (2005) found that lensing
will add a dispersion of 0.093 × z mag, which if the statistics of SNe is large enough, can
be approximated as an additional Gaussian error. Here, we added the additional disper-
sion from gravitational lensing in quadrature to the “constant” systematic dispersion and
observational error. This effectively deweights the high redshift SNe. However, only for
the highest redshift SNe is the additional uncertainty comparable to that of the intrinsic
dispersion.

Flux magnification and demagnification effects due to over- or under-densities of matter
near the line of sight cancel. But one obtains a bias if magnitudes instead of fluxes are used.
However, the bias is 0.004×z mag and therefore still much smaller than the statistical error
on the luminosity distance obtained from the ensemble of high redshift SNe. While not yet
relevant for this analysis, future high-statistics samples will have to take this effect into
account.

Another potential bias is introduced by the 3σ outlier rejection, since the lensing PDF
is asymmetric. Using the PDFs of Holz & Linder (2005) we have checked that the bias is
never larger than 0.006× z mag. We take the worst case value of 0.009 magnitude (i.e. for
a SNe at z ≈ 1.5) as a conservative systematic uncertainty for gravitational lensing, since
this is still an almost negligible value.

2.4.7 Gray intergalactic dust
The possibility that SNe are dimmed due to hypothetical gray intergalactic dust, as

suggested by Aguirre (1999), was constrained by Östman & Mörtsell (2005); Mörtsell &
Goobar (2003) by studying the colors of high-redshift quasars. Applying their constraints
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on intergalactic dust, we find that the cosmological parameters are shifted by about one
statistical standard deviation, i.e. for a flat Universe ∆ΩM = −0.03. This should not be
considered a systematic uncertainty, but rather an upper limit on the effect of hypothetical
large grains of cosmic dust in the line of sight.

2.4.8 Galactic Extinction
All lightcurve data were corrected for Galactic extinction using the extinction law of

Cardelli et al. (1989) using an RV of 3.1. The E(B − V ) values were derived from the sky
map of Schlegel et al. (1998) and have a typical statistical error of 10%. For nearby SNe
we hence obtain an additional uncertainty of

∆µB ≈ (RB − β) · σ (E(B − V )) ≈ 0.2 · E(B − V ), (2.5)

where β is the color correction coefficient from Eq. 2.1. We add this statistical error in
quadrature to each nearby SNe. High redshift SNe are measured in redder bands and, since
RR ≈ β, are less affected by Galactic extinction.

There is also a common systematic error of 10% in the overall reddening normalization.
The average GalacticE(B−V ) for the low redshift sample is 0.063 and we add 0.063·0.2 =
0.013 mag systematic uncertainty to ∆M .

2.4.9 Summary of systematic errors
In our treatment of the above systematic errors we distinguish between systematic er-

rors common between datasets, which are largely of astrophysical nature, and the more
observer dependent ones associated with individual samples. Table 2.4 summarizes what
are considered the relevant contributions to the systematic uncertainties in this analysis.
They are propagated into the final result through Eq. 2.4.

Source common (mag) sample-dependent (mag)
α&β correction 0.015 -
Contamination - 0.015
Lightcurve model 0.028 -
Zero point 0.021 0.021
Malmquist bias - 0.020
Gravitational lensing - 0.009∗
Galactic extinction normalization 0.013 -
Total in mag ∆M = 0.040 ∆Mi = 0.033

Table 2.4. Most relevant common and sample dependent systematic errors of this analysis (in magnitudes).
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2.5 Cosmological fit results
Our analysis of cosmological model fits includes both statistical and systematic errors.

The individual contributions to the systematic error identified in Table 2.4 are of very differ-
ent nature and hence are assumed uncorrelated. We hence obtain the combined systematic
error by adding in quadrature the individual contributions. The resulting error was propa-
gated according to the prescription described in Section 2.4. Our constraints on the matter
density ΩM, assuming a flat Universe, are summarized in Table 2.5. Both statistical (68 %
CL) and systematic errors are quoted.

Figure 2.7 plots our results for the joint fit to the matter density and cosmological con-
stant energy density, ΩM and ΩΛ, and the effect of varying the outlier cut, while Fig. 2.8
illustrates the effects of systematics. For comparison with previous work, Figure 2.9 shows
our joint constraints on ΩM and ΩΛ (statistical error only) and the Riess et al. (2007) con-
straints obtained from the Gold compilation of data primarily from the HZT, SCP and
SNLS (Riess et al. 2007) and a recent compilation of Davis et al. (2007), which is based on
lightcurve fits from Riess et al. (2007) and Wood-Vasey et al. (2007). The results obtained
in this work are consistent with those of previous studies; however, compared to the recent
SN fit results of Astier et al. (2006); Riess et al. (2007); Wood-Vasey et al. (2007); Davis
et al. (2007), we obtain a 15-30 % reduction in the statistical error.

About half the improvement can be attributed to the new SCP Nearby 1999 SNe. Their
impact is evident in the rightmost column of Fig. 2.9 (as well as in Fig. 2.10). The impact
of these SNe is somewhat larger because the sample has a best-fit systematic uncertainty
of zero. If instead one would introduce the requirement that σsys ≥ 0.1, there would be an
increase of about 10% in the uncertainties of the cosmological parameters.

Figure 2.9 shows the constraints on the equation of state parameter w (assumed con-
stant) and ΩM. A flat Universe was assumed. Again, the constraints are consistent with,
but stronger than, those from Riess et al. (2007) and Davis et al. (2007). The current SN
data do not provide strong constraints on the equation of state parameter w by itself, since
it is to a large extent degenerate with ΩM. However, the degeneracy can be broken by com-
bining with other measurements involving ΩM. Figure 2.10 shows the constraints obtained
from the detection of baryon acoustic oscillations (BAO) (Eisenstein et al. 2005) and from
the five year data release of the Wilkinson Microwave Anisotropy Probe (CMB) (Dunkley
et al. 2008). The constraints from the CMB data follow from the reduced distance to the
surface of last scattering at z = 1089 (or shift parameter). It is important to realize that for
parameter values far from the concordance model, the shift in the sound horizon must also
be taken into account. The reduced distance R is often written as

Rconc = (ΩMH
2
0 )

1/2

∫ 1089

0

dz/H(z), (2.6)

where the Hubble parameter is H(z) = H0

[

ΩM(1 + z)3 + (1− ΩM)(1 + z)3(1+w)
]1/2.

The WMAP-5 year CMB data alone yields R0 = 1.715 ± 0.021 for a fit assuming a con-
stant w (Dunkley et al. 2008; Lambda-website 2008). Defining the corresponding χ2 as
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Figure 2.7. 68.3 %, 95.4 % and 99.7% confidence level contours on ΩΛ and ΩM plane from the Union SNe
set. The result from the robustified set, obtained with a σcut = 3 outlier cut, is shown as filled contours.
The empty contours are obtained with the full data set (dotted line) and σcut = 2 outlier rejected data set
(dashed line). As can be seen, outlier rejection shifts the contours along the degenerate axis by as much as
0.5σ towards a flat Universe. In the remaining figures, we refer to the σcut = 3 outlier rejected set as the
Union set.
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Figure 2.8. Left plot: 68.3 %, 95.4 % and 99.7% confidence level contours on ΩΛ and ΩM obtained with the
Union set, without (filled contours) and with inclusion of systematic errors (empty contours). The right plot
shows the corresponding confidence level contours on the equation of state parameter w and ΩM, assuming a
constant w.
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Figure 2.9. 68.3 %, 95.4 % and 99.7% confidence level contours on ΩΛ and ΩM (top row) and ΩM and
w (bottom row). The results from the Union set are shown as filled contours. The empty contours in the
left column represent the Gold sample (Riess et al. 2004, 2007) and the middle column the constraints from
Davis et al. (2007). While our results are statistically consistent with the previous work, the improvements in
the constraints on the cosmological parameters are evident. The right column shows the impact of the SCP
Nearby 1999 data.
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χ2 = [(Rconc − R0)/σR0
]2 one can then deduce constraints on ΩM and w. However, this

assumes a standard matter (and radiation) dominated epoch for calculating the sound hori-
zon. The more proper expression for the shift parameter accounts for deviation in the sound
horizon:

R = (ΩmH
2
0 )

1/2

∫ 1089

0

dz/H(z)×
[
∫ ∞

1089

dz/
√

Ωm(1 + z)3
/

∫ ∞

1089

dz/(H(z)/H0)

]

.

(2.7)
Since dark energy is generally negligible at high redshift, the factor in square brackets is
usually unity (for example, it deviates from unity by less than 1% even for w0 = −1,
wa = 0.9, i.e. w(z = 1089) = −0.1). However, for extreme models that upset the mat-
ter dominated behavior at high redshifts, the correction will be important in calculating
whether the geometric shift parameter accords with CMB observations (apart from any is-
sue of fitting other observations). Violation of early matter domination causes the “wall” in
likelihood apparent in Fig. 2.12. Also see, for example, Linder & Miquel (2004); Wright
(2007).

BAO measurements from the SDSS data (Eisenstein et al. 2005) provide a distance
constraint at a redshift z = 0.35. Percival et al. (2007) have derived BAO distances for
z = 0.2, in addition to the z = 035 SDSS-data point, using the combined data from SDSS
and 2dFGRS. However, some points of tension were noted between the data sets (Percival
et al 2007, see also Sánchez & Cole (2008)), especially evident for ΛCDM models. We
confirm this observation and found that the z = 0.2 data point, if combined with SN and
CMB data according to the prescription in Appendix A of Percival (2007) leads to an 2.5
sigma inconsistency. Neither the z = 0.35 BAO data point from Percival et al. (2007) nor
the slightly weaker constraint from Eisenstein et al. (2005) shows such kind of tension.
Given the differences between the two data sets, we use the z = 0.35 SDSS data point of
Eisenstein et al. (2005), but with the caveat that BAO constraints need further clarification.
Eisenstein et al. (2005) provides a constraint on on the distance parameter A:

A(z) = (ΩMH2
0 )

1/2H(z)−1/3z−2/3
[∫ z

0 dz′/H(z′)
]2/3×

[

∫∞
1089 dz/

√

Ωm(1 + z)3
/

∫∞
1089 dz/(H(z)/H0)

]

,
(2.8)

to be A(z = 0.35) = 0.469 ± 0.17. Note that BAO also depend on accurate accounting
of the sound horizon and receive the same correction factor shown in brackets in Eq. 2.7.
This results in a similar wall to the acceptable confidence contour reflecting violation of
early matter domination. To see that such violation has severe implications, note that most
models above the wall have a total linear growth factor a factor ten below the concordance
cosmology.

The joint constraints from SN data, BAO, and CMB are shown in Fig. 2.10 and the
corresponding numbers are given in Table 2.5. As can be seen, the constraints obtained
from combining either BAO or CMB with SNe data give consistent results and comparable
error bars, while the combination of all three measurements improves only the statistical
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Fit ΩM Ωk w
SNe 0.287+0.029+0.039

−0.027−0.036 0 (fixed) -1 (fixed)
SNe + BAO 0.285+0.020+0.011

−0.020−0.009 0 (fixed) −1.011+0.076+0.083
−0.082−0.087

SNe + CMB 0.265+0.022+0.018
−0.021−0.016 0 (fixed) −0.955+0.060+0.059

−0.066−0.060

SNe + BAO + CMB 0.274+0.016+0.013
−0.016−0.012 0 (fixed) −0.969+0.059+0.063

−0.063−0.066

SNe + BAO + CMB 0.285+0.020+0.011
−0.019−0.011 −0.009+0.009+0.002

−0.010−0.003 -1 (fixed)
SNe + BAO + CMB 0.285+0.020+0.010

−0.020−0.010 −0.010+0.010+0.006
−0.011−0.004 −1.001+0.069+0.080

−0.073−0.082

Table 2.5. Fit results on cosmological parametersΩM, Ωk and w. The parameter values are followed by their
statistical and systematic uncertainties. The first fit to the SNe data alone results in a χ2 of 310.8 for 303
degrees of freedom with a∆χ2 of less then one for the other fits.

error. The impact of including systematic errors (only from SNe, from Eq. 2.4) is shown in
the middle panel of Fig. 2.10.
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Figure 2.10. 68.3 %, 95.4 % and 99.7% confidence level contours on w and ΩM, for a flat Universe. The
left plot shows the individual constraints from CMB, BAO and the Union SN set, as well as the combined
constraints (filled contours, statistical errors only). The middle plot shows the effect of including systematic
errors. The right plot illustrates the impact of the SCP Nearby 1999 data.

The results quoted so far were derived assuming a flat Universe. Allowing for spatial
curvature Ωk, our constraints from combining SNe, CMB and BAO are consistent with a
flat ΛCDM Universe (as seen in Table 2.5). Fig. 2.11 shows the corresponding constraints
in the ΩM − ΩΛ plane.

Finally, one can attempt to investigate constraints on a redshift dependent equation of
state (EOS) parameter w(z). Initially we consider this in terms of

w(z) = w0 + wa
z

1 + z
, (2.9)

shown by Linder (2003a) to provide excellent approximation to a wide variety of scalar
field and other dark energy models. Later, we examine other aspects of time variation of the
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Figure 2.11. 68.3 %, 95.4 % and 99.7% confidence level contours on ΩΛ and ΩM obtained from CMB, BAO
and the Union SN set, as well as their combination (assuming w = −1).
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Figure 2.12. 68.3 %, 95.4 % and 99.7% confidence level contours on wa and w0 for a flat Universe. Left:
The Union SN set was combined with CMB or BAO constraints. Right: Combination of SNe, CMB and BAO
data, with and and without systematic uncertainties included. The diagonal line represents w0 + wa = 0;
note how the likelihoods based on observational data remain below it, favoring matter domination at z # 1.

dark energy EOS. Assuming a flat Universe and combining the Union set with constraints
from CMB, we obtain constraints on w0, the present value of the EOS, and wa, giving a
measure of its time variation, as shown in Fig. 2.12. (A cosmological constant has w0 =
−1, wa = 0.) Due to degeneracies within the EOS and between the EOS and the matter
density ΩM, the SN dataset alone does not give appreciable leverage on the dark energy
properties. By adding other measurements, the degeneracies can be broken and currently
modest cosmology constraints obtained.

Fig. 2.12 (left) shows the combination of the SN data with either the CMB constraints
or the BAO constraints. The results are similar; note that including either one results in a
sharp cut-off at w0 + wa = 0, from the physics as mentioned in regards to Eq. 2.7. Since
w(z # 1) = w0 +wa in this parameterization, any model with more positive high-redshift
w will not yield a matter-dominated early Universe, altering the sound horizon in conflict
with observations.

Note that BAO do not provide a purely “low” redshift constraint, because implicit
within the BAO data analysis, and hence the constraint, is that the high redshift Universe
was matter dominated (so the sound horizon at decoupling is properly calculated). Thus,
one cannot avoid the issue of modeling how the dark energy EOS behaves at high redshifts
by using this constraint rather than the CMB. (We differ here from Riess et al. 2007, who
treat BAO as a low-redshift constraint.) SN data are especially useful in constraining w(z)
because there is no dependence at all on the high redshift behavior, unlike CMB and BAO
data.

As one might expect, because of the different orientations of the confidence contours
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and the different physics that enters, combining both the CMB and BAO constraints with
the SN data clears up the degeneracies somewhat, as seen in Fig. 2.12, with and without
systematics. Inclusion of curvature does not substantially increase the contours.

We emphasize that the wall in w0-wa space is not imposed a priori and does not rep-
resent a breakdown of the parameterization, but a real physical effect from violating early
matter domination. Nevertheless, we can ask what limits could be put on the early dark
energy behavior – either its presence or its equation of state – if we do not use the w0-wa

parameterization. A simple, but general model for w(z) creates a series of redshift bins
and assumes w is constant over each bin. The constraints from this are shown in Fig. 2.13.
Note that the data points are correlated.

Riess et al. (2007) made a somewhat similar investigation with the emphasis on the
impact of the highest redshift SNe. A difference to the work of Riess et al. (2007) is that we
do not decorrelate the constraints in the different redshift bins. While this implies that the
bin-wise constraints shown in Fig. 17 are correlated, it ensures that thew-constraints shown
for a given bin are confined to the exact redshift range of the bin. If instead one applies a
decorrelation procedure, some of the tight constraints from lower redshifts feed through to
higher redshifts (i.e. z > 1). See de Putter & Linder (2007) for general discussion of this
issue. Unlike Riess et al. (2007), we additionally place a w bin at higher redshift than the
SN data (z > 2), to account for the expansion history of the early Universe, and do not fix
w in this bin. The Riess “strong” prior has a fourth bin for z > 1.8, but fixes w = −1.
The “strongest” prior does not have a fourth bin. Forcing either of these behaviors on the
z > 2 Universe results in unfairly tight constraints and the danger of bias (Linder 2007;
de Putter & Linder 2007); in failing to separate the SN bins from those of the CMB and
BAO essentially the entire constraint in the redshift z >∼ 1 bin is from the CMB (see also
Wright 2007).

Consider the top row of Fig. 2.13. These results are for bins with z < 0.5, 0.5 < z <
1.0, 1.0 < z < 2.0 and z > 2.0. The only constraint that can be concluded from the highest
redshift bin is that w[2,∞]

<∼ 0, but this constraint comes entirely from CMB and BAO,
which requires that the early Universe is matter-dominated (see the above the discussion
of the wall in the wa − w0 plane). We then look at the z = 1 − 2 bin for constraints on w
which would be due to the z > 1 SNe and we find essentially no constraint.

The lowest redshift bin is constrained to w[0,0.5] ≈ −1±0.1. The next bin is compatible
with -1, but the central value is high. This deviation from -1 seems to be due to the un-
expected brightness (by about 0.1 magnitudes) of the Hubble data at z > 1 (see Fig. 2.6).
(Recall that w at some z influences distances at larger redshifts.) We clearly see that to be
sensitive to appreciable deviations from w = −1 such as 0.1 mags at z ∼ 1, which is key to
constraining theories of dark energy, one requires better statistics for the very high-redshift
supernovae (and comparably good systematics).

Given that the strongest constraints onw are contained in the first bin, one might attempt
to search for a redshift dependence of w at lower redshifts by changing the borders of the
bins. The smallest errors are obtained roughly with the binning z < 0.1, 0.1 < z <
0.4, 0.4 < z < 2.0, and 2.0 < z. These constraints are shown in the bottom row of Fig.
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Figure 2.13. 68 % constraints on w(z), where w(z) is assumed to be constant over each redshift bin. The
left column combines the Union SN set with BAO constraints only, while the right column includes also con-
straints from the CMB. The top row illustrates the fact that only extremely weak constraints on the equation
of state exist at z > 1. The bottom row shows a different binning that minimizes the mean bin error. Note
that for z > 2 (dark gray-”No SN constraint”) only upper limits exist, basically enforcing matter domina-
tion, coming from either CMB data or, in the case without CMB data, from requiring substantial structure
formation (a linear growth factor within a factor of 10 of that observed).

2.13. The results are similar to the results from the other binning, with the lowest two
bins centered around w = −1 and the next bin centered around a more positive value. No
significant redshift dependence is observed. Note the tight limit on the 0.4 < z < 2 bin
is not saying w(z > 1) ≈ −1, even approximately, since the leverage on w(z) is coming
from the 0.4 < z < 1 part of the bin (this illustrates the importance of considering multiple
binnings).

To sum up, even in combination with current BAO and CMB data, current SN data sets
cannot tell us whether an energy density component other than matter existed at z > 1, and
cannot tell us whether such a component if it existed had an equation of state with negative
pressure. In the future, however, SN data that achieves Hubble diagram accuracy of 0.02
mag out to z = 1.7 will be able to address these questions and provide independent checks
of the z > 1 Universe.

Note that while constraints on a possible redshift dependency of w have been shown
in Figures 2.12 and 2.13, we do not present values for the projected, one-dimensional con-
straints for several reasons. First, the bounds are still very weak and as a result the error
bars show highly non-gaussian errors (as visible in Fig. 2.12). In addition, our treatment
of systematic errors has not been optimized for a redshift dependent w and a potential sys-
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tematic redshift dependence of the distance modulus is only partially taken into account.
As a consequence, the resulting (already large) systematic errors on w(z) would be under-
estimated.

In this analysis so far we have not excluded any SNe based on extreme values of stretch
or color, therefore including also the peculiar class of under-luminous 1991bg-like SNe
that are typically associated with small stretch values. After unblinding, in an effort to
study the robustness of our results, we have introduced a stretch cut, s > 0.6, to eliminate
SN1991bg-like SNe from the sample. The most significant consequence of this cut came
with the removal of SN 1995ap, a supernova in the Riess et al. (1998) sample. By itself the
removal of this one supernova can change the cosmological fit parameters in the ΩM − ΩΛ

and ΩM −w planes by nearly 1σ along the more degenerate contour axis (and away from a
flat Universe). However, without SN 1995ap, the test for tension between data sets that we
applied in Section 4.4 would show the Riess et al. (1998) dataset to be a 3.5σ outlier and
one would be forced, unless the tension can be resolved otherwise, to remove the data set
from the compilation. The net result of the s > 0.6 cut would then be a 0.25σ change in
w, ΩM and ΩΛ in the direction of the more degenerate contour axis. The results presented
in this work are based on the sample without the stretch cut; however, since the parameters
along the direction of the degeneracy are well constrained once CMB or BAO data are
added, the combined constraints essentially do not depend on whether or not the stretch cut
is applied.

2.6 Conclusion
The cosmological parameter constraints from the Union SN Ia compilation shown in

Figures 2.8, 2.10, 2.12 and 2.13 reflect the current best knowledge of the world’s Type Ia
supernova datasets. Specifically, in addition to the older data, they include the new datasets
of nearby Hubble-flow SNe Ia we presented in Kowalski et al. (2008), the recent large, ho-
mogeneous, high-signal-to-noise SNLS and ESSENCE datasets published by Astier et al.
(2006) and Miknaitis et al. (2007) as well as the high redshift supernovae in Riess et al.
(2004, 2007). Equally important is that a number of outstanding analysis issues have been
addressed that improve the reliability and reduce the biases of the current Union SN Ia
compilation, and should stand us in good stead for future compilations. We are making the
ingredients and results of the Union compilation available at the associated web site6 and
we intend to provide occasional updates to this as new information becomes available.

Several conclusions can be drawn from the new larger SCP Union SN Ia compilation
that could not be approached with smaller datasets. In particular the large statistics can be
used to address systematic uncertainties in novel ways.

We test for evolution by subdividing the sample into low-stretch and high-stretch SNe.
According to recent evidence (Sullivan et al. 2006) these two samples might be dominated
by different progenitor systems (Scannapieco & Bildsten 2005; Mannucci et al. 2006),

6http://supernova.lbl.gov/Union
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which are likely to show different evolution. Hence performing consistent but independent
cosmology fits for the two sub-samples provides a powerful test for potential evolutionary
effects. The resulting cosmological fit parameters are found to be consistent. This com-
parison is particularly meaningful, as the statistical uncertainties from the subsamples are
comparable to the total (stat + sys) uncertainties obtained from the full sample.

With the larger Union dataset, it is possible to begin to examine the rate of true outliers
from the Hubble-plot fit. It appears that the current selection criteria for SNe Ia can find
very homogeneous sets of supernovae, but not perfectly homogeneous sets. With these
criteria, there are apparently true outliers, at the percent level for the SNLS sample and
up to 10% for other samples. The analysis performed here was made robust to outliers,
reducing the associated error on cosmological parameters to a level comparable to other
sources of systematic error.

Compilations offer the chance to test for observer dependent systematic effects, i.e. ten-
sion between the datasets. The blind analysis performed here is an important element in
rigorous estimation of systematics. While in general we find a high degree of consistency
between samples, we see modest tension when comparing the slope of the Hubble-residuals
as a function of redshift, dµ/dz. For the present compilation, our cosmology results are
expected to hold within the quoted systematic uncertainties. However, once the homoge-
neous datasets get larger—and the systematic errors dominate over the statistical ones for
the different sets—such tests will become even more important, as they allow one to per-
form cross-checks with different datasets calibrated in different ways. Future data samples
can be added to the Union set, by first blinding the data and then performing a diagnostic
analysis similar to the one performed here. Only after any inconsistencies can be resolved,
would the new data be unblinded.

We proposed a scheme to incorporate both sample dependent and common systematic
errors. We showed in Section 2.4 that systematic errors can be approached by treating the
systematics as a normal distribution of a parameterized systematic term. We find that the
combination of SNe constraints with CMB constraints, due to their larger complementarity
with SNe data, results in smaller systematic errors than the combination with BAO con-
straints. Adding BAO, CMB and SNe constraints leads to yet smaller statistical error bars,
while the error bars including systematics do not improve.

The robustness of the detection of the accelerating expansion of the Universe is con-
tinually increasing as improved systematics analysis is reinforced by larger SN data sets.
The current knowledge of the nature of dark energy is still modest, however, with the un-
certainty on the assumed-constant equation of state only under 10% if multiple probes
are combined. The current “world” estimate presented here employing the full set of cur-
rent SN data, plus other measurements, gives a best constraint of w = −0.969+0.059

−0.063(stat)
+0.063
−0.066(sys) on a constant EOS parameter w at 68.3% confidence level. However, allowing
for time variation in the dark energy equation of state further opens the possibilities for
the physics driving the acceleration, consistent with all current observations. In particular,
present SN data sets do not have the sensitivity to answer the questions of whether dark
energy persists to z > 1, or whether it had negative pressure then.
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On the positive side, with the more sophisticated analyses and tests carried out here, we
still have encountered no limits to the potential use of future, high accuracy SN data as cos-
mological probes. New data sets for nearby, moderate, and high redshift well-characterized
SNe Ia are forthcoming and we expect realistic, robust constraints to catch up with our op-
timistic hopes on understanding the accelerating Universe. 7

7 The work described in this chapter is supported, in part by the Director, Office of Science, Office of High
Energy and Nuclear Physics, U.S. Department of Energy, through contract DE-AC02-05CH11231. This re-
search used resources of the National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.K. ac-
knowledges support from the Deutsche Forschungsgemeinschaft (DFG). P.E.N. acknowledges support from
the US Department of Energy Scientific Discovery through Advanced Computing program under contract
DE-FG02-06ER06-04. A.M.M. acknowledges financial support from Fundação para a Ciência e Tecnologia
(FCT), Portugal, through project PESO/P/PRO/15139/99.
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CHAPTER 3

Beyond Λ

This chapter combines the Union compilation, Baryon Acoustic Oscillation (BAO), and
Cosmic Microwave Background (CMB) data to compute constraints on a diverse array of
dark energy models. I take advantage of the covariance-matrix-based systematics approach
of the Union compilation to compute these cosmological constraints including systematic
uncertainties. The constraints we place on these models have significant room for devia-
tions from cosmological-constant-like behavior that will require far more data to resolve.
1

3.1 Introduction
A decade after the discovery of the acceleration of the cosmic expansion (Perlmutter

et al. 1999; Riess et al. 1998) we still understand little about the nature of the dark energy
physics responsible. Improved data continues to show consistency with Einstein’s cosmo-
logical constant Λ, and in terms of a constant equation of state, or pressure to density, ratio
w, the best fit to the data is w = −0.969+0.059

−0.063(stat)
+0.063
−0.066(sys), where Λ has w = −1

(Chapter 2). However, the magnitude of Λ required and the coincidence for it becoming
dominant so close to the present remain unexplained, and an abundance of motivated or un-
motivated alternative models fills the literature. Using the latest, most robust data available
we examine the extent to which data really have settled on the cosmological constant.

The vast array of models proposed for dark energy makes comparison of every model
in the literature to the data a Sisyphean task. Here we select some dozen models with prop-
erties such as well defined physical variables, simplicity, or features of particular physical
interest. These embody a diversity of physics, including scalar fields, phase transitions,
modified gravity, symmetries, and geometric relations. While far from exhaustive, they
provide roadmarks for how well we can say that current data have zoomed in on Λ as the
solution.

For such comparisons it is critical to employ robust data clearly interpretable within
1This chapter was previously published as Rubin et al. (2009).
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these “beyond Λ” cosmologies. Geometric probes from the Type Ia supernovae (SN)
distance-redshift relation, cosmic microwave background (CMB) acoustic peak scale shift
parameter, and baryon acoustic oscillations (BAO) angular scale serve this essential role.
Equally important is confidence in the error estimates, incorporating systematics as well
as statistical uncertainties. This has been studied in detail in the recent unified analysis of
the world’s published heterogeneous SN data sets – the Union compilation (described in
Chapter 2).

This SN compilation includes both the large data samples from the SNLS and ESSENCE
survey, the compiled high redshift SNe observed with the Hubble Space Telescope, a new
sample of nearby SNe, as well as several other, small data sets. All SNe have been ana-
lyzed in a uniform manner and have passed a number of quality criteria (such as having
data available in two bands to measure a color, and sufficient lightcurve points to make a
meaningful fit). The samples have been carefully tested for inconsistencies under a blinded
protocol before combining them into a single final data set comprising 307 SNe, the basis
for this analysis. In this work the SNe data will be combined with the constraints obtained
from the baryon acoustic oscillation scale (Eisenstein et al. 2005) and from the five year
data release of WMAP and ground based CMB measurements (Komatsu et al. 2009).

In Section 3.2 we describe the general method for cosmological parameter estimation
and present a summary table of the various models considered and the χ2 statistics of the
fit. Sections 3.3–3.12 then briefly describe the dark energy models, their parameters, and
show the likelihood contours. The concluding discussion occurs in Section 3.13.

3.2 Constraining Models
Achieving informative constraints on the nature of dark energy requires restricting the

degrees of freedom of the theory and the resulting degeneracies in the cosmological model
being tested. One degree of freedom entering the model is the present matter density Ωm.
For the case of the spatially flat cosmological constant Λ model (or some of the other mod-
els considered below), this is the sole cosmological parameter determining the distances
entering the supernova (SN) magnitude-redshift, baryon acoustic oscillation scale (BAO),
and cosmic microwave background (CMB) shift parameter relations.

Generally, further degrees of freedom to describe the nature of the dark energy, i.e.
its equation of state (EOS), or pressure to density, ratio, are needed. In a few cases the
EOS is parameter free, as in the Λ case where w = −1, or is determined by the matter
density, as in some subcases below (such as the flat DGP braneworld gravity model of
§3.4). One way to categorize models is by the number of independent EOS parameters, or
general parameters beyond the matter density (so flat Λ models have zero such parameters,
Λ models with curvature have one). In general, combining SN with CMB or BAO data can
deliver reasonable constraints on one parameter descriptions of dark energy.

In addition to exploring the nature of dark energy through its EOS, one might also in-
clude another parameter for the dark energy density, i.e. allow the possibility of nonzero
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spatial curvature. In this case individual probes then generally do a poor job constraining
the model with current data, although the combined data can sometimes still have leverage.
Since crosschecks and testing consistency between probes is important (as particularly il-
lustrated below in the DGP case), we consider spatial curvature only in the otherwise zero
parameter cases of Λ and DGP, and for the constant EOS dark energy model.

In the following sections we investigate various one parameter EOS models, discussing
their physical motivation or lack thereof, and features of interest, and the observational
constraints that can be placed upon them. In the last sections we also investigate some
two parameter models of interest, with constrained physical behaviors and particular mo-
tivations. As a preview and summary of results, Table 3.1 lists the models, number of
parameters, and goodness of fit for the present data.

The SN, CMB, and BAO data are combined by multiplying the likelihoods. Espe-
cially when testing models deviating from the cosmological constant one must be careful
to account for any shift of the CMB sound horizon arising from violation of high redshift
matter domination on the CMB and BAO scales; details are given in Chapter 2. Note that
some doubt exists on the use of the BAO constraints for cosmologies other than ΛCDM,
or possibly constant w, (Dick et al. 2006; Rydbeck et al. 2007) since ΛCDM is assumed
in several places in the Eisenstein et al. (2005) analysis, e.g. computation of the correla-
tion function from redshift space, nonlinear density corrections, structure formation and
the matter power spectrum, and color and luminosity function evolution. Properly, a sys-
tematic uncertainty should be assigned to BAO to account for these effects; however, this
requires a complex analysis from the original data and we show only the statistical error.
At the current level of precision, simplified estimates show this does not strongly affect the
results, but such systematics will need to be treated for future BAO data. All figures use
the likelihood maximized over all relevant parameters besides those plotted, and contours
are at the 68.3%, 95.4%, and 99.7% confidence level.

It is particularly important to note the treatment of systematic errors, included only for
SN. We employ the prescription in Chapter 2 for propagation of systematic errors. This
introduces a new distance modulus µsys = µ + ∆Mi + ∆M , which is simply the usual
distance modulus µ = 5 log(H0dL(z)), where dL(z) is the luminosity distance and H0 the
Hubble constant, shifted by a sample dependent magnitude offset∆Mi and a single sample
independent magnitude offset ∆M added only for the higher redshift SNe (z > 0.2). The
magnitude offsets ∆Mi reflect possible heterogeneity among the SNe samples while the
∆M step from SNe at z < 0.2 to z > 0.2 allows a possible common systematic error in the
comparison of low vs. high redshift SNe. Treating∆Mi and ∆M as additional fit parame-
ters, one defines χ2

sys = χ2 +
∑

i(∆Mi/σMi
)2 + (∆M/σM)2 to absorb the uncertainty in

the nuisance parameters, σMi
and σM , and obtain constraints on the desired physical fit pa-

rameters that include systematic errors. This procedure of incorporating systematic errors
provides robust quantification of whether or not a model is in conflict with the data and is
essential for accurate physical interpretation. See Chapter 2 for further, detailed discussion
of robust treatment of systematics within the current world heterogeneous SN data.
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Model Motivation Parameters χ2 (stat) χ2 (sys)
ΛCDM (flat) gravity, zeropoint Ωm 313.1 309.9

∆χ2 (stat) ∆χ2 (sys)
ΛCDM gravity, zeropoint Ωm, ΩΛ −1.1 −1.3
Constant w (flat) simple extension Ωm, w −0.3 −1.2
Constant w simple extension Ωm, Ωk, w −1.1 −1.6
Braneworld consistent gravity Ωm, Ωk 15.0 2.7
Doomsday simple extension Ωm, tdoom −0.1 −0.7
Mirage CMB distance Ωm, w0 −0.2 −0.1
Vacuum Metamorphosis induced gravity Ωm, Ω! 0.0 0.0
Geometric DE Rlow kinematics r0, r1 (Ωm, w0) 0.1 −1.1
Geometric DE Rhigh matter era deviation Ωm, w∞, β −1.9 −2.2
PNGB naturalness Ωm, w0, f −0.1 −0.7
Algebraic Thawing generic evolution Ωm, w0, p −1.6 −2.3
Early DE fine tuning problem Ωm, w0, Ωe −0.3 −1.2
Growing ν-mass coincidence problem Ωm, Ωe,m0

ν −0.6 −1.6

Table 3.1. “Beyond Λ” dark energy models considered in this chapter, together with ΛCDMmodels. Models
are listed in the order of discussion, and the cosmological fitting parameters shown. The χ2 of the matter plus
cosmological constant case is given, and all other models list the ∆χ2 from that model. The values refer to
the best fit to the joint data of SN+CMB+BAO; in the last column the SN systematics as analyzed in Chapter
2 are included.

3.3 Constant Equation of State
Models with constant equation of statew within 20%, say, of the cosmological constant

value w = −1, but not equal to −1, do not have much physical motivation. To achieve a
constant equation of state requires fine tuning of the kinetic and potential energies of a
scalar field throughout its evolution. It is not clear that a constant w .= −1 is a good
approximation to any reasonable dynamical scalar field, where w varies, and certainly does
not capture the key physics. However, since current data cannot discern EOS variation on
timescales less than or of order the Hubble time, traditionally one phrases constraints in
terms of a constant w. We reproduce this model from Chapter 2 to serve as a point of
comparison. Also see Chapter 2 for models using the standard time varying EOS w(a) =
w0 + wa(1 − a), where a = 1/(1 + z) is the scale factor, and models with w(z) given in
redshift bins.

In the constant w case the Hubble expansion parameter H = ȧ/a is given by

H2/H2
0 = Ωm(1 + z)3 + Ωw(1 + z)3(1+w) + Ωk(1 + z)2, (3.1)

where Ωm is the present matter density, Ωw the present dark energy density, and Ωk =
1− Ωm − Ωw the effective energy density for spatial curvature.

Figure 3.1 shows the confidence contours in the w-Ωm plane both without and with
(minimized in the likelihood fit) spatial curvature. Note that allowing for spatial curvature
does not strongly degrade the constraints. This is due to the strong complementarity of SN,
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CMB, and BAO data, combined with the restriction to a constant w model. As shown in
Chapter 2, the constraint on curvature in this model is Ωk = −0.010± 0.012. See Chapter
2 for more plots showing the individual probe constraints.
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Figure 3.1. 68.3%, 95.4%, and 99.7% confidence level contours on a constant EOS w and the matter density
Ωm for the individual and combined data sets. The left panel shows individual and combined probes in the flat
universe case; the right panel repeats the combined systematics contour, and also compares to the statistical
only contour, and to the systematics contour when simultaneously fitting for spatial curvature.
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3.4 Braneworld Gravity
Rather than from a new physical energy density, cosmic acceleration could be due to

a modification of the Friedmann expansion equations arising from an extension of grav-
itational theory. In braneworld cosmology (Dvali et al. 2000; Deffayet et al. 2002), the
acceleration is caused by a weakening of gravity over distances near the Hubble scale due
to leaking into an extra dimensional bulk from our four dimensional brane. Thus a phys-
ical dark energy is replaced by an infrared modification of gravity. For DGP braneworld
gravity, the Hubble expansion is given by

H2/H2
0 =

(

√

Ωm(1 + z)3 + Ωbw +
√

Ωbw

)2
+ Ωk(1 + z)2 (3.2)

→ Ωm(1 + z)3 + 2Ωbw + 2
√

Ωbw

√

Ωm(1 + z)3 + Ωbw, (flat) . (3.3)

Here the present effective braneworld energy density is

Ωbw =
(1− Ωm − Ωk)2

4(1− Ωk)
(3.4)

→ (1− Ωm)2

4
, (flat) , (3.5)

and is related to the five dimensional crossover scale rc = M2
Pl/(2M

3
5 ) byΩbw = 1/(4H2

0r
2
c ).

Note that the only cosmological parameters for this model are Ωm and Ωk (or Ωbw), so it
has the same number of parameters as ΛCDM.

The effective dark energy equation of state is given by the simple expression

w(z) = − 1− Ωk(z)

1 + Ωm(z)− Ωk(z)
, (3.6)

where Ωm(z) = Ωm(1 + z)3/(H2/H2
0 ) and Ωk(z) = Ωk(1 + z)2/(H2/H2

0 ). Thus the dark
energy equation of state at present, w0, is determined by Ωm and Ωk; while time varying, it
is not an independent parameter. So rather than plotting w0 vs. Ωm or showing constraints
on the somewhat nonintuitive parameters rc or Ωbw (but see the clear discussion and plots
in Davis et al. (2007); Rydbeck et al. (2007), though without systematics), Figure 3.2 illus-
trates the confidence contours in the Ωk-Ωm plane. This makes it particularly easy to see
how deviations from flatness pull the value of the matter density. In this and following fig-
ures, dotted contours show the BAO constraints, dashed for CMB constraints, dot-dashed
for SN with systematics, and solid contours give the joint constraints.

For a flat universe, in order for w to approach −1 the matter density is forced to small
values. Alternately, pushing the curvature density Ωk negative, i.e. introducing a positive
spatial curvature k, allows w ≈ −1 with higher matter density. For a given w0, the amount
of curvature needed can be derived from Eq. (3.6) to be approximately∆Ωk ≈ −∆Ωm/Ωm,
so to move a flat, Ωm = 0.2 universe to Ωm = 0.3 requires Ωk = −0.5, in agreement with
the SN contour (being most sensitive to w0) of Figure 3.2.
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Figure 3.2. The extradimensional DGP braneworld gravity model does not achieve an acceptable fit to the
combined data, even allowing for a spatial curvature parameter. The joint best fit is in fact a nearly flat model,
but with poor goodness of fit: ∆χ2 = 2.7 relative to the ΛCDM case; also shown is the statistical error only
SN contour, which gives a joint∆χ2 = 15 relative to ΛCDM.

Note that the curvature density cannot exceed 1 − Ωm, corresponding to an infinite
crossover scale rc, so the likelihood contours are cut off at this line and the region beyond
is unphysical. However, this does not affect the joint contours. The BAO data contours do
extend to the limit Ωk = 1 − Ωm; here Ωbw = 0, equivalent to the simple OCDM (open,
cold dark matter) nonaccelerating universe.

Most importantly, the three probes do not reach concordance on a given cosmological
model. The areas of intersection of any pair are distinct from other pairs, indicating that
the full data disfavors the braneworld model, even with curvature. This is further quantified
by the poor goodness of fit to the data, with ∆χ2 = 2.7 relative to the flat ΛCDM model
possessing one fewer parameter, or∆χ2 = 4.0 relative to ΛCDM allowing curvature. This
indicates the crucial importance of crosschecking probes. Moreover, if we had used only
the statistical estimates of uncertainties (see the “SN stat” 68% cl contour of Fig. 3.2), we
would have found that∆χ2 = 15 rather than 2.7, and possibly drawn exaggerated physical
conclusions – considering the DGP model 2000 times less likely than it really is, as an
illustration. Inclusion of systematics is essential for robust interpretation of results.
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3.5 Doomsday Model
Perhaps the simplest generalization of the cosmological constant is the linear potential

model, pioneered by Hawking & Israel (1987) and discussed recently by Weinberg (2008),
motivated from high energy physics. Interestingly, while this gives a current accelerat-
ing epoch, in the future the potential becomes negative and not only deceleration of the
expansion but collapse of the universe ensues. Hence the name of doomsday model.

The potential has two parameters: the amplitude and slope. The amplitude V0 essen-
tially gives the dark energy density, which is fixed by Ωm in a flat universe. (For the
remainder of this chapter we assume a flat universe, for the reasons discussed in §3.2.) The
slope V ′ = dV/dφ can be translated into the present equation of state value w0. Thus this
is a one parameter model in our categorization. See Kallosh et al. (2003) for discussion of
the cosmological properties of the linear potential, Hawking & Israel (1987) for a view of
it as a perturbation about zero cosmological constant, and Dimopoulos & Thomas (2003)
for links to the large kinetic term approach in particle physics. More recently, this has been
considered as a textbook case by Weinberg (2008), so we will examine this model in some
detail. Such dark energy is an example of a thawing scalar field (Caldwell & Linder 2005),
starting with w(z # 1) = −1 and slowly rolling to attain less negative values of w; that is,
it departs from Λ. If it has not evolved too far from −1 then its behavior is well described
by wa ≈ −1.5(1 + w0) where w(a) = w0 + wa(1− a). However we solve the scalar field
equation of motion exactly (numerically) for all results quoted here.

As the scalar field rolls to small values of the potential the expansion stops accelerating,
and when it reaches V = 0 then w = 1. However it crosses through zero to negative
values of the potential, further increasing w, and eventually the dark energy density itself
becomes negative, causing w to go to positive and then negative infinity. Thereafter the
negative dark energy density, acting now with an attractive gravitational force, causes not
only deceleration but forces the universe to start contracting. The rapid collapse of the
universe ends in a Big Crunch, or cosmic doomsday in a finite time.

In the notation used in Weinberg (2008), V (φ) = V0+(φ−φ0) V ′
0 , with V0 the potential

energy during the initial frozen state (during high Hubble drag at high redshift) and V ′
0 is

the constant potential slope. Figure 3.3 shows the constraints in this high energy physics
plane V0-V ′

0 . Note the tight constraints on the initial potential energy V0, given in units of
the present critical density. The cosmological constant corresponds to the limit of V ′

0 = 0,
but the slope must always be less than or of order 10−120 in Planck units, i.e. unity when
shown in terms of the present energy density, to match the data.

We can also translate these high energy physics parameters into the recent universe
quantities of the matter density Ωm and the present equation of state w0. Moreover, this is
directly related to the doomsday time tdoom, or future time until collapse. A useful approx-
imation (though we employ the exact solution) between tdoom, w0, and the approximate
time variation wa = −1.5(1 + w0) is

tdoom ≈ 0.5H−1
0 (1 + w0)

−0.8 ≈ 0.6H−1
0 (−wa)

−0.8. (3.7)
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Figure 3.3. Constraints on the linear potential model in terms of the high energy physics quantities of the
primordial amplitude and slope of the potential. Note there is less complementarity between some of the
probes than for the constant w model. Fig. 3.4 translates these constraints into ones on the cosmological
parameters.

Figure 3.4 shows the likelihood contours in the tdoom-Ωm and w0-Ωm planes. The 95%
confidence limit on tdoom from present observations is 1.24H−1

0 , i.e. we are 95% likely to
have at least 17 billion more years before doomsday!

3.6 Mirage Model
Given their limited sensitivity to the dynamics of dark energy, current data can appear

to see a cosmological constant even in the presence of time variation. This is called the
“mirage of Λ”, and we consider mirage models, with a form motivated by the observations
as discussed below, specifically to test whether the concordance cosmology truly narrows
in on the cosmological constant as the dark energy.

Since cosmological distances involve an integral over the energy density of compo-
nents, which in turn are integrals over the equation of state as a function of redshift, there
exists a chain of dependences between these quantities. Fixing a distance, such as dlss to
the CMB last scattering surface, can generally lead to an “attractor” behavior in the equa-
tion of state to a common averaged value or the value at a particular redshift. Specifically,
Linder (2007) pointed out that if CMB data for dlss is well fit by the ΛCDMmodel then this
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Figure 3.4. The future expansion history in the linear potential model has a collapse, or cosmic doomsday, at
a finite time in the future. The left panel shows the confidence contours for the time remaining until collapse;
the likelihood contours extend to infinity, with tdoom = ∞ corresponding to the Λ model. The contours
can also be viewed in the equivalent w0-Ωm plane (right panel). Current data constraints indicate cosmic
doomsday will occur no sooner than ∼1.24 Hubble times from now at 95% confidence.
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forces w(z ≈ 0.4) ≈ −1 for quite general monotonic EOS. So even dark energy models
with substantial time variation could thus appear to behave like the cosmological constant
at z ≈ 0.4, near the pivot redshift of current data.

Since current experiments insensitive to time variation inherently interpret the data in
terms of a constant w given by the EOS value at the pivot redshift, this in turn thus leads
to the “mirage of Λ”: thinking that w = −1 everywhere, despite models very different
from Λ being good fits. See §5.2 of Linder (2008a) for further discussion. (Also note that
attempting to constrain the EOS by combining the CMB dlss with a precision determination
of the Hubble constantH0 only tightens the uncertainty on the pivot equation of state value
(already taken to be nearly −1) and so similarly does not reveal the true nature of dark
energy.)

We test this with a family of “mirage” models motivated by the reduced distance to
CMB last scattering dlss. These correspond to the one parameter subset of the two parameter
EOS model w(a) = w0 + wa(1 − a) with wa ≈ −3.63(1 + w0) as shown in Linder
(2007). They are not exactly equivalent to imposing a CMB prior since dlss will still change
with Ωm; that is, they essentially test the uniqueness of the current concordance model for
cosmology: ΛCDM with Ωm = 0.28.

For any model well approximated by a relation wa = −A(1 + w0), as this model (and
the previous one) is, the Hubble parameter is given by

H2/H2
0 = Ωm (1 + z)3 + (1− Ωm) (1 + z)3(1+w0+wa) e−3waz/(1+z) (3.8)

= Ωm (1 + z)3 + (1− Ωm) (1 + z)3(1+w0)(1−A) e3A(1+w0)z/(1+z) . (3.9)

Figure 3.5 shows constraints in the w0-Ωm plane. It is important to note that w is not
constant in this model. A significant range of w0 (and hence a larger range of wa too,
roughly+0.55 to−1.1 at 68% cl) is allowed by the data, even though these models all look
in an averaged sense like a cosmological constant. Thus experiments sensitive to the time
variationwa (e.g. σ(wa) < 0.36 to know that w(z) is really, not just apparently, within 10%
of −1) are required to determine whether the mirage is reality or not.

3.7 VacuumMetamorphosis
An interesting model where the cosmic acceleration is due to a change in the behavior

of physical laws, rather than a new physical energy density, is the vacuum metamorpho-
sis model (Parker & Raval 2000; Caldwell et al. 2006). As in Sakharov’s induced gravity
(Sakharov 1968), quantum fluctuations of a massive scalar field give rise to a phase tran-
sition in gravity when the Ricci scalar curvature R becomes of order the mass squared of
the field, and freezes R there. This model is interesting in terms of its physical origin and
nearly first principles derivation, and further because it is an example of a well behaved
phantom field, with w < −1.

The criticality condition
R = 6(Ḣ + 2H2) = m2 (3.10)
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Figure 3.5. The mirage subclass of time varying dark energy looks like Λ in an averaged sense. Note that
CMB contours are almost vertical, indicating both that the mirage holds, preserving the ΛCDM distance to
last scattering, and yet imposes little constraint on w0, and hence wa. Thus the appearance of Λ does not
actually exclude time variation. The mirage is broken when the equation of state at high redshift exceeds the
matter domination value of zero; this causes the wall in the likelihood at w0 = A/(1 − A) ≈ −1.4 (see Eq.
3.9).

after the phase transition at redshift zt leads to a Hubble parameter

H2/H2
0 = (1− m2

12
)(1 + z)4 +

m2

12
, z < zt , (3.11)

H2/H2
0 = Ωm(1 + z)3 +

m2

3

1− Ω!

4− 3Ω!
, z > zt . (3.12)

There is one parameter, Ω! = Ωm(zt), in addition to the present matter density Ωm,
where 1 − Ω! is proportional to the cosmological constant. The variables zt and m are
given in terms of Ωm, Ω! by zt = (m2Ω!/[3Ωm(4 − 3Ω!)])1/3 − 1 and m2 = 3Ωm[(4 −
3Ω!)/Ω!]1/4[(4/m2) − (1/3)]−3/4. The original version of the model had fixed Ω! = 1,
i.e. no cosmological constant, but if the scalar field has nonzero expectation value (which
is not required for the induced gravity phase transition) then there will be a cosmological
constant, and Ω! deviates from unity.

Figure 3.6 shows the confidence contours in the Ω!-Ωm plane. To consider constraints
on the original vacuum metamorphosis model, without an extra cosmological constant,
slice across the likelihood contours at the Ω! = 1 line. We see that the three probes are



3.8 Geometric Dark Energy 52

inconsistent with each other in this case, with disjoint contours (indeed the ∆χ2 = 28.5
relative to flat ΛCDM). Allowing for a cosmological constant, i.e. Ω! .= 1, brings the
probes into concordance, and the best joint fit approaches the lower bound of the region
Ω! ≥ Ωm. The condition Ω! = Ωm corresponds to the standard cosmological constant
case, withΩΛ = 1−Ωm, since the phase transition then only occurs at zt = 0. Thus the data
do not favor any vacuum phase transition. Although this model comprises very different
physics, and allows phantom behavior, the data still are consistent with the cosmological
constant.
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Figure 3.6. The vacuum metamorphosis model involves a phase transition in gravitational laws due to quan-
tum effects. Where the quantum field inducing the gravitational deviation has no additional zeropoint energy,
i.e. cosmological constant, then Ω! = 1, and the data gives discordant results. As the model approaches
the Ω! = Ωm line of pure cosmological constant plus matter without a phase transition in the past, the data
provide an increasingly good fit. (Below the line, the transition takes place further into the future, with no
effect on the data likelihood.)

3.8 Geometric Dark Energy
According to the Equivalence Principle, acceleration is manifest in the curvature of

spacetime, so it is interesting to consider geometric dark energy, the idea that the acceler-
ation arises from some property of the spacetime geometry. One example of this involves
the holographic principle of quantum field theory as applied to cosmology. This limits
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the number of modes available to the vacuum energy and so could have an impact on the
cosmological constant problem (Bousso 2002). The basic idea is that there is a spacelike,
two dimensional surface on which all the field information is holographically encoded, and
the covariant entropy bound relates the area of this surface to the maximum mode energy
allowed (UV cutoff). The vacuum energy density resulting from summing over modes ends
up being proportional to the area, or inverse square of the characteristic length scale. How-
ever, what is perhaps the natural surface to choose (see Bousso (2002)), the causal event
horizon, does not lead to an energy density with accelerating properties.

Many of the attempts in the literature to overcome this have grown increasingly distant
from the original concept of holography, though they often retain the name. It is important
to realize that, dimensionally, any energy density, including the vacuum energy density, has
ρ ∼ L−2, so merely choosing some length L does not imply any connection to quantum
holography. We therefore do not consider these models but turn instead to the spacetime
curvature.

3.8.1 Ricci dark energy Rlow

A different approach involves the spacetime curvature directly, as measured through
the Ricci scalar. This is similar in motivation to the vacuum metamorphosis model of §3.7.
Here we consider it purely geometrically, with the key physical quantity being the reduced
scalar spacetime curvature, in terms of the Ricci scalar and Hubble parameter, as in the
model of Linder (2004),

R ≡ R

12H2
= r0 + r1(1− a). (3.13)

Through the equivalence principle, this quantity directly involves the acceleration. More-
over, we can treat it purely kinematically, as in the last equality above, assuming no field
equations or dynamics. Of course, any functional form contains an implicit dynamics (see,
e.g., Linder (2008a)), but we have chosen effectively a Taylor expansion in the scale factor
a, valid for any dynamics for small deviations 1 − a from the present, i.e. the low redshift
or low scalar curvature regime.

At high redshift, as 1 − a is no longer small, we match it onto an asymptotic matter
dominated behavior for a < at = 1− (1− 4r0)/(4r1). Solving for the Hubble parameter,

H2/H2
0 = a4(r0+r1−1) e4r1(1−a), a > at (3.14)

H2/H2
0 = Ωm a−3, a < at . (3.15)

The matching condition determines

Ωm =

(

4r0 + 4r1 − 1

4r1

)4r0+4r1−1

e1−4r0 , (3.16)

so there is only one parameter independent of the matter density.
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Note also that we can define an effective dark energy as that part of the Hubble pa-
rameter deviating from the usual matter behavior, with equation of state generally given
by

w(a) =
1− 4R

3

[

1− Ωm e−
∫ 1
a
(da/a)(1−4R)

]−1

. (3.17)

For the particular form of Eq. (3.13) we have

w0 →
1− 4r0

3(1− Ωm)
. (3.18)

This model has one EOS parameter in addition to the matter density. We can therefore
explore constraints either in the general kinematic plane r0-r1, or view them in the Ωm-w0

plane. Figure 3.7 shows both.
Good complementarity, as well as concordance, exists among the probes in the r0-

r1 plane. One obtains an excellent fit with (r0, r1) = (0.81,−0.72). The value of R
today, r0, approaches unity, the deSitter value. Recall thatR = 1/4 corresponds to matter
domination, andR = 1/2 to the division between decelerating and accelerating expansion,
so this kinematic approach clearly indicates the current acceleration of the universe.

An interesting point to note is that ΛCDM is not a subset of this ansatz, i.e. the physics
is distinct. No values of r0 and r1 give a ΛCDM cosmology. However, the Hubble diagram
for the best fit agrees with that for ΛCDM to within 0.006 mag out to z = 2 and 0.3% in
the reduced distance to CMB last scattering. This is especially interesting as this geometric
dark energy model is almost purely kinematic. The agreement appears in the Ωm-w0 plane
as contours tightly concentrated around w0 = −1, despite there being no actual scalar
field or cosmological constant. Again we note the excellent complementarity between the
individual probes, even in this very different model.

3.8.2 Ricci dark energy Rhigh

Rather than expanding the spacetime curvature around the present value we can also
consider the deviation from a high redshift matter dominated era. That is, we start with
a standard early universe and ask how the data favors acceleration coming about. In this
second geometric dark energy model (call it Rhigh for high redshift or large values of scalar
curvature), the value of R evolves from 1/4 at high redshift. From the definition of R, it
must behave asymptotically as

R =
1

4

[

1− 3w∞
δH2

H2

]

≈ 1

4
[1 + 4α a−3w∞ ], (3.19)

where δH2 = (H2/H2
0 ) − Ωm (1 + z)3 is the deviation from matter dominated behav-

ior, and w∞ is the associated, effective equation of state at high redshift, approximated as
asymptotically constant.
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Figure 3.7. Geometric dark energy in theRlow model describes the acceleration directly through the reduced
Ricci scalar, or spacetime curvature. This can be viewed in a kinematic sense, in the r0-r1 plane, or in a dark
energy sense in the Ωm-w0 plane. The data favor w0 = −1 but this is not Λ, instead representing distinct
physics. For r0 + r1 > 1/4, above the diagonal line, early matter domination is violated, and the CMB and
BAO likelihoods avoid this region, as seen in the left panel; the matter density also cannot then be uniquely
defined so the equivalent region is excluded from the right panel.
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Next we extend this behavior to a form that takes the reduced scalar curvature to a
constant in the far future (as it must if the EOS of the dominant component goes to an
asymptotic value):

R =
1

4
+

α a−3w∞

1 + β a−3w∞

. (3.20)

So todayR = 1/4+α/(1+β) and in the futureR = 1/4+α/β. By requiring the correct
form for the high redshift Hubble expansion, one can relate the parameters α and β by

α = (3βw∞/4)[lnΩm/ ln(1 + β)] , (3.21)

and finally
H2/H2

0 = Ωm a−3 (1 + βa−3w∞)− lnΩm/ ln(1+β). (3.22)

The Rhigh geometric dark energy model has two parameters β and w∞, in addition to
the matter density Ωm. This is the first such model we consider, and all remaining models
also have two EOS parameters. Although current data cannot in general satisfactorily con-
strain two parameters, and so for all remaining models we do not show individual probe
constraints, if the EOS phase space behavior of the model is sufficiently restrictive then
reasonable joint constraints may result.

Figure 3.8 shows the joint likelihoods in theΩm-w∞ andΩm-β planes, with the third pa-
rameter minimized over (see the caption for discussion of the individual probe likelihoods).
We see that the data are consistent with the cosmological constant behavior w∞ = −1 in
the past (this is only a necessary, not sufficient condition for ΛCDM), and indeed constrain
the asymptotic high redshift behavior reasonably well, in particular to negative values of
w∞. This indicates that the Ricci scalar curvature definitely prefers a nearly-standard early
matter dominated era, i.e. the deviations faded away into the past. This has important im-
plications as well for scalar-tensor theories that would modify the early expansion history;
in particular, the data indicate that deviations inRmust go approximately as a3 (see Linder
& Cahn (2007)) not as a as sometimes assumed.

The parameter β helps determine the rapidity of the Ricci scalar transition away from
matter domination. This varies between β = 0, giving a slow transition but one reaching
a deceleration parameter q = −∞ in the asymptotic future, and β # 1, giving a rapid
deviation but with smaller magnitude. A cosmological constant behavior has β ≈ 3, as
discussed below.
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Figure 3.8. Geometric dark energy in theRhigh model describes the acceleration directly through the reduced
Ricci scalar curvature and deviations from early matter domination. The left panel shows the Ωm-w∞ plane,
indicating the nature of the deviation (w∞ = 0 corresponds to no transition away from matter domination),
and the right panel shows the Ωm-β plane, indicating the rapidity and fate of the deviation. The curve in the
left panel corresponds to the parameter combination for which the fate of the universe is de Sitter; we also
show the individual probe constraints, fixing β to the de Sitter value (not minimizing over β as for the joint
contour), to show that SN closely map the fate of the universe. In the right panel the curve is the cut through
parameter space, fixing w∞ = −1, corresponding to ΛCDM.
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Within the three dimensional parameter space, two subspaces are of special interest.
One is where w∞ = −1, a necessary condition for consistency with Λ, as mentioned. The
other corresponds to a deSitter asymptotic future, defined by the line

βdeS = Ωw∞

m − 1. (3.23)

Note that unlike the previous geometric model Rlow, the Rhigh model does include Λ as the
limit when both these conditions are satisfied, w∞ = −1 and β = Ω−1

m − 1. This relation
for the Λ limit is shown as a curve in the Ωm-β plane. There is an overlap with the joint
data likelihood, though one must be careful since the contours have been minimized over
w∞.

Interestingly, we can actually use the data to test consistency with a de Sitter asymptotic
future. This is shown by the curve in the Ωm-w∞ plane. We see that SN are the probe most
sensitive to testing the fate of the universe, with the SN contour oriented similarly to the
curve given by Eq. (3.23) that passes through the best fit. Thus the data are consistent
with w∞ = −1 and with a de Sitter fate separately, though some tension exists between
satisfying them simultaneously. Thus, this geometric dark energy may be distinct from the
cosmological constant.

3.9 PNGBModel
Returning to high energy physics models for dark energy, one of the key puzzles is how

to prevent quantum corrections from adding a Planck energy scale cosmological constant or
affecting the shape of the potential. This is referred to as the issue of technical naturalness.
Pseudo-Nambu Goldstone boson (PNGB) models are technically natural, due to a shift
symmetry, and so can be considered strongly physically motivated (perhaps even more so
than Λ). See Frieman et al. (1995) for an early cosmological analysis of PNGB as dark
energy and more recent work by Dutta & Sorbo (2007); Abrahamse et al. (2008).

The potential for the PNGB model is

V (φ) = V! [1 + cos(φ/f)], (3.24)

with V! setting the magnitude, f the symmetry energy scale or steepness of the potential,
and φi is the initial value of the field when it thaws from the high redshift, high Hubble drag,
frozen state. These three parameters determine, and can be thought of as roughly analogous
to, the dark energy density, the time variation of the equation of state, and the value of the
equation of state. The dynamics of this class of models is sometimes approximated by the
simple form

w(a) = −1 + (1 + w0)a
F , (3.25)

with F roughly inversely related to the symmetry energy scale f , but we employ the exact
numerical solutions of the field evolution equation.
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PNGB models are an example of thawing dark energy, where the field departs recently
from its high redshift cosmological constant behavior, evolving toward a less negative equa-
tion of state. Since the EOS only deviates recently from w = −1, the precision in measur-
ing w0 is more important than the precision in measuring an averaged or pivot EOS value.
SN data provide the tightest constraint on w0. In the future the field oscillates around its
minimum with zero potential and ceases to accelerate the expansion, acting instead like
nonrelativistic matter.

Figure 3.9 illustrates the constraints in both the particle physics and cosmological pa-
rameters. The symmetry energy scale could provide a key clue for revealing the funda-
mental physics behind dark energy, and it is interesting to note that these astrophysical
observations essentially probe the Planck scale. For values of f below unity (the reduced
Planck scale), the potential is steeper, causing greater evolution away from the cosmologi-
cal constant state. However, the field may be frozen until recently and then quickly proceed
down the steep slope, allowing values of w0 far from −1 but looking in an average or con-
stant w sense like 〈w〉 ≈ −1. Small values of φi/f have the field set initially ever more
finely near the top of the potential; starting from such a flat region the field rolls very little
and w stays near −1 even today. In the limit φi/f = 0 the field stays at the maximum,
looking exactly like a cosmological constant. The two effects of the steepness and initial
position mean that the cosmological parameter likelihood can accommodate both w0 ≈ −1
and w0 approaching 0 as consistent with current data. However, to agree with data and
1 + w0 ∼ 1 requires f & 1 and fine tuning – e.g. for f = 0.1 one must balance the field to
within one part in a thousand of the top. Thus in the left panel there exists an invisibly nar-
row tail extending along the y-axis to f = 0. In the right panel, we show how taking more
natural values f ! 0.5 removes the more extreme values of w0 caused by the unnatural fine
tuning.
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Figure 3.9. Left panel: PNGB model dynamics involves a competition between the steepness of the poten-
tial, given by the symmetry energy scale f , and the initial field position φi/f . If the potential is very steep,
f & 1, the field will roll so rapidly to the potential minimum that the dark energy density never becomes
significant, unless φi/f is fine tuned very near zero. For natural energy scale values near the Planck scale,
f ≈ 1, a wide variety of φi/f are viable. Right panel: The field spends a long period frozen, acting as a
cosmological constant before thawing and evolving to a present EOS w0. For steep potentials with f & 1,
the thawing can be rapid and result in evolution to w0 far from −1, yet still be consistent with data. The
solid confidence level contours in the w0-Ωm plane show PNGB results for energy scales f ≥ 0.1, while the
white outline contours consider only PNGB models with more natural energy scales f ≥ 0.5; the latter favors
models closer to the cosmological constant behavior.
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3.10 Algebraic Thawing Model
While PNGB models involve a pseudoscalar thawing field, we can also consider scalar

fields with thawing behavior. Any such fields that are neither fine tuned nor have overly
steep potentials must initially depart from the cosmological constant behavior along a spe-
cific track in the EOS phase space, characterized by a form of slow roll behavior in the
matter dominated era. (See Caldwell & Linder (2005); Linder (2006); Scherrer & Sen
(2008); Cahn et al. (2008).) Here we adopt the algebraic thawing model of Linder (2008b),
specifically designed to incorporate this physical behavior:

1 + w = (1 + w0) a
p

(

1 + b

1 + ba−3

)1−p/3

(3.26)

H2/H2
0 = Ωm a−3 + (1− Ωm) exp

[

3(1 + w0)

αp

{

1− (1− α + αa3)p/3
}

]

,(3.27)

where α = 1/(1 + b) and b = 0.3 is a fixed constant not a parameter. The two parameters
are w0 and p and this form follows the scalar field dynamics not only to leading but also
next-to-leading order (see Cahn et al. (2008)).

The physical behavior of a minimally coupled scalar field evolving from a matter dom-
inated era would tend to have p ∈ [0, 3]. Since we want to test whether the data points to
such a thawing model, we consider values of p outside this range. Results are shown in
Figure 3.10.

For p < 0, the field has already evolved to its least negative value of w and returned
toward the cosmological constant. The more negative p is, the less negative (closer to
0) the extreme value of w is, so these models can be more tightly constrained as p gets
more strongly negative. As p gets more positive, the field takes longer to thaw, increasing
its similarity to the cosmological constant until recently, when it rapidly evolves to w0.
Such models will be very difficult to distinguish from Λ. If we restrict consideration to
the physically expected range p ∈ [0, 3], this implies w0 < −0.57 at 95% confidence in
these thawing models, so considerable dynamics remains allowed under current data. This
estimation is consistent with the two specific thawing models already treated, the doomsday
and PNGB cases.

The goodness of fit to the data is the best of all models considered here (∆χ2 = −2.3),
even taking into account the addition of two fit parameters. This may indicate that we
should be sure to include a cosmological probe sensitive to w0 (not necessarily the pivot
EOS wp) and to recent time variation wa, such as SN, in our quest to understand the nature
of dark energy.

3.11 Early Dark Energy
The other major class of dark energy behavior is that of freezing models, which start

out dynamical and approach the cosmological constant in their evolution. The tracking



3.11 Early Dark Energy 62

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
-4

-2

0

2

4

w0

p

 

 

 

 

 

 

 

 

 

 

      

      

Figure 3.10. Algebraic thawing model incorporates the expected physical behavior of a thawing scalar field
rolling slowly from a matter dominated era. Such a model is a fairly generic parametrization for this class of
physics when p ∈ [0, 3], and has a strong goodness of fit.

subclass is interesting from the point of view again of fundamental physics motivation:
they can ameliorate the fine tuning problem for the amplitude of the dark energy density by
having an attractor behavior in their dynamics, drawing from a large basin of attraction in
initial conditions (Zlatev et al. 1999). Such models generically can have nontrivial amounts
of dark energy at high redshift; particularly interesting are scaling models, or tracers, where
the dark energy has a fixed fraction of the energy density of the dominant component. These
can be motivated by dilatation symmetry in particle physics and string theory (Wetterich
1988).

As a specific model of such early dark energy we adopt that of Doran & Robbers (2006),
with

ΩDE(a) =
1− Ωm − Ωe (1− a−3w0)

1− Ωm + Ωma3w0
+ Ωe (1− a−3w0) (3.28)

for the dark energy density as a function of scale factor a = 1/(1+z). Here ΩDE = 1−Ωm

is the present dark energy density, Ωe is the asymptotic early dark energy density, and w0

is the present dark energy EOS. In addition to the matter density the two parameters are Ωe

and w0.
The Hubble parameter is given by H2/H2

0 = Ωm a−3/[1 − ΩDE(a)]. The standard
formula for the EOS, w = −1/(3[1 − ΩDE(a)]) d lnΩDE(a)/d ln a, does not particularly
simplify in this model. Note that the dark energy density does not act to accelerate expan-
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sion at early times, and in fact w → 0. However, although the energy density scales like
matter at high redshift, it does not appreciably clump and so slows growth of matter density
perturbations. We will see this effect is crucial in constraining early dark energy.

Figure 3.11 shows the constraints in the Ωm-Ωe and Ωe-w0 planes. Considerable early
dark energy density appears to be allowed, but this is only because we used purely geo-
metric information, i.e. distances and the acoustic peak scale. The high redshift Hubble
parameter for a scaling solution is multiplied by a factor 1/

√
1− Ωe relative to the case

without early dark energy (see Doran et al. (2007b)). This means that the sound horizon is
shifted according to s ∼

√
1− Ωe, but a geometric degeneracy exists whereby the acoustic

peak angular scale can be preserved by changing the value of the matter density Ωm (see
Linder & Robbers (2008) for a detailed treatment). This degeneracy is clear in the left
panel.

However, as mentioned, the growth of perturbations is strongly affected by the unclus-
tered early dark energy. This suppresses growth at early times, leading to a lower mass
amplitude σ8 today. To explore the influence of growth constraints, we investigate adding a
growth prior of 10% to the data, i.e. we require the total linear growth (or σ8) to lie within
10% of the concordance model. The innermost, white contour of the left panel of Fig. 3.11
shows the constraint with the growth prior. In the right panel we zoom in, and show Ωe vs.
w0, seeing that the degeneracy is effectively broken. The amount of early dark energy is
limited to Ωe < 0.038 at 95% cl. Similar conclusions were found in a detailed treatment
by Doran et al. (2007a).

We find a convenient theoretical fitting formula is that for an early dark energy model
the total linear growth to the present, g0, is suppressed by

∆g0
g0

≈
(

Ωe

0.01

)

× 5.1%, (3.29)

relative to a model with Ωe = 0 but all other parameters fixed. Thus appreciable amounts
of early dark energy have significant effects on matter perturbations, and we might expect
nonlinear growth to be even more sensitive (e.g. see Bartelmann et al. (2006)).
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Figure 3.11. Early dark energy represents an example of a freezing model with interesting particle physics
motivations. The left panel shows the constraints onΩe andΩm from purely geometric data, as used through-
out this article. The degeneracy evident in the contours leaves the acoustic scales unchanged, but hides the
shift in the sound horizon caused by early dark energy, leading to possible misinterpretation of the correct
cosmological model. The degeneracy can be broken by adding growth information, here an assumed 10%
prior on total linear growth (or σ8), as shown by the white outline contours. This tightly restricts the early
dark energy density to contribute no more than a few percent. The right panel shows the Ωe-w0 constraints
including the growth prior.
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3.12 Growing Neutrino Model
While freezing or scaling models such as the early dark energy model just consid-

ered are interesting from the physics perspective, they generically have difficulty in evolv-
ing naturally to sufficiently negative EOS by the present. The growing neutrino model of
Amendola et al. (2008); Wetterich (2007) solves this by coupling the scalar field to massive
neutrinos, forcing the scalar field to a near cosmological constant behavior when the neu-
trinos go nonrelativistic. This is an intriguing model that solves the coincidence problem
through cosmological selection (the time when neutrinos become nonrelativistic) rather
than tuning the Lagrangian.

The combined dark sector (cosmon scalar field plus mass-running neutrinos) energy
density is

Ωds(a) =
Ωdsa3 + 2Ων(a3/2 − a3)

1− Ωds(1− a3) + 2Ων(a3/2 − a3)
, a > at (3.30)

Ωds(a) = Ωe, a < at , (3.31)

where Ωds = 1 − Ωm is the present dark sector energy density. The Hubble parameter can
be found byH2/H2

0 = Ωma−3/[1−Ωds(a)] as usual. The two free dark parameters are the
neutrino mass or density Ων = mν(z = 0)/(30.8h2 eV) and the early dark energy density
Ωe. The transition scale factor at is determined by intersection of the two behaviors given
for Ωds(a).

The equation of state is

w = −1 +
Ωνa−3/2

Ωds + 2Ων(a−3/2 − 1)
, a > at (3.32)

with w = 0 before the transition, i.e. a return to the standard early dark energy model. One
can therefore translate Ων ormν(z = 0) into w0 = −1 + Ων/Ωds = −1 + Ων/(1− Ωm).

Figure 3.12 shows the constraints in the mν(z = 0)-Ωe plane. As in the previous early
dark energy model, the geometric degeneracy is clear. Again, when we add growth infor-
mation in the form of a 10% prior on the total linear growth (or the mass variance σ8),
the constraints tighten considerably, as shown in the right panel. Note that the neutrinos
themselves cluster and large scale observations may be able to provide future constraints
on model parameters (Mota et al. 2008). The 95% confidence level limit on the neutrino
mass from the current cosmological data (plus growth) is 2.1 (h/0.7)2 eV (1.2 if only sta-
tistical uncertainties are taken into account). These limits are comparable to astrophysical
constraints from similar types of data applied to standard, constant mass neutrinos (Goobar
et al. 2006; Tegmark et al. 2006). Note that because the neutrino mass grows due to the
coupling, the value today can actually be larger than that at, say, z ≈ 3 where Lyman alpha
forest constraints apply (Seljak et al. 2006).
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Figure 3.12. Growing neutrino model, coupling a dark energy scalar field to massive neutrinos, can solve the
coincidence problem. The left panel shows the constraints from purely geometric data, while the right panel
(note the different vertical scale) adds a 10% prior on total linear growth (also see Fig. 3.11). The neutrino
mass today becomes tightly constrained to an interesting range, and comparison with laboratory limits could
lead to evidence of varying neutrino mass.
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3.13 Conclusion
We have considered a wide variety of dark energy physics quite different from the cos-

mological constant. These include a diversity of physical origins for the acceleration of the
expansion: from dynamical scalar fields to dark energy that will eventually cause decel-
eration and collapse, to gravitational modifications arising from extra dimensions or from
quantum phase transitions, to geometric or kinematic parametrization of the acceleration,
to dark energy that may have influenced the early universe and that may have its magnitude
set by the neutrino mass. The comparison to ΛCDM and constant w cases covers 5 one-
parameter and 5 two-parameter dark energy equation of state models. (Linder & Huterer
(2005) detail how even next generation data will not generically be able to tightly constrain
more than two such parameters.)

Two key results to emphasize are that current data 1) are consistent with Λ, and 2)
are also consistent with a diversity of other models and theories, even when we restrict
consideration to those with at least modest physical motivation or justification. As explic-
itly shown by the mirage model, any inclination toward declaring Λ the answer based on
consideration of a constant w has an overly restricted view. The need for next generation
observations with far greater accuracy, and the development of precision growth probes,
such as weak gravitational lensing, is clear. All major classes of physics to explain the
nature of dark energy are still in play.

However there are already quite hopeful signs of imminent progress in understanding
the nature of dark energy. For example, for the braneworld model tight control of systemat-
ics would decrease the goodness of fit to ∆χ2 = +15, even allowing for spatial curvature,
diminishing its likelihood by a factor 2000 naı̈vely, effectively ruling out the model. For
the doomsday model, improving errors by 30% extends our “safety margin” against cosmic
collapse by 10 billion years – a nonnegligible amount! Every improvement in uncertainties
pushes the limits on the neutrino mass within the growing neutrino model closer toward
other astrophysical constraints – plus this model essentially guarantees a deviation from
w = −1 of 0.1 (mν0/eV), excitingly tractable. Terrestrial neutrino oscillation bounds al-
ready provide within this model that 1 + w > 0.005.

As points of interest, we note that the model with noticeably positive ∆χ2 relative to
Λ, and hence disfavored, is completely distinct from the cosmological constant, i.e. the
braneworld model has no limit within its parameter spaces equivalent to Λ. This does not
say that no such model could fit the data – the Rlow model is also distinct from Λ but fits
as well as many models. Certainly many successful models under current data do look in
some averaged sense like a vacuum energy but this does not necessarily point to static dark
energy. Two serious motivations to continue looking for deviations are that physicists have
failed for 90 years to explain the magnitude required for a cosmological constant, and that
the previous known occurrence of cosmic acceleration – inflation – evidently involved a
dynamical field not a cosmological constant.

To guide further exploration of the possible physics, we highlight those models which
do better than Λ: the geometric dark energy and algebraic thawing approaches. One of the
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sole models where adding a degree of freedom is justified (albeit modestly) by the resulting
reduction in χ2 is the Rhigh model directly studying deviations of the spacetime curvature
from the matter dominated behavior. This has one more parameter than the constant w
EOS approach, but improves in χ2 by 1. In addition, it has a built-in test for the asymptotic
de Sitter fate of the future expansion. We recommend that this model be considered a
model of interest for future fits. The other model improving by at least one unit of χ2

is the algebraic thawing model, performing better than the other thawing models, with a
general parametrization explicitly incorporating the physical conditions imposed by matter
domination on the scalar field dynamics.

The diversity of models also illustrates some properties of the cosmological probes
beyond the familiar territory of vanilla ΛCDM. For example, for the algebraic thawing
and other such evolutionary models, the premium is on precision of w0 and wa much more
than the averaged or pivot EOS value wp. Not all models possess the wonderful three-fold
complementarity of the probes seen in the constant w case; for many of the examples BAO
and CMB carry much the same information as each other. However, we clearly see that for
every model SN play a valuable role, complementary to CMB/BAO, and often carries the
most important physical information: such as on the doomsday time or the de Sitter fate of
the universe or the Planck scale nature of the PNGB symmetry breaking.

The diversity of physical motivations and interpretations of acceptable models high-
lights the issue of assumptions, or priors, on how the dark energy should behave. For
example, in the Rlow model should priors be flat in r0, r1 or in Ωm, w0; in the PNGB model
should they be flat in f , φi/f or in Ωm, w0, etc.? Lacking clear physical understanding of
the appropriate priors restricts the physical meaning of any Bayesian evidence one might
calculate to employ model selection; the χ2 goodness of fit used here does not run into
these complications that can obscure physical interpretation.

We can use our diversity of models for an important consistency test of our understand-
ing of the data. If there would be systematic trends in the data which do not directly project
into the ΛCDM parameter space (i.e. look like a shift in those parameters), then one might
expect that one of the dozen models considered might exhibit a significantly better fit. The
fact that we do not observe this can be viewed as evidence that the data considered here is
not flawed by significant hidden systematic uncertainties. The data utilize the Union compi-
lation of uniformly analyzed and crosscalibrated Type Ia supernovae data, constituting the
world’s published set, with systematics treated and characterized through blinded controls.
The data are publicly available at http://supernova.lbl.gov/Union, and will be supplemented
as further SN data sets become published; the site contains high resolution figures for this
work as well.

However, to distinguish deeply among the possible physics behind dark energy requires
major advances in several cosmological probes, enabling strong sensitivity to the time vari-
ation of the equation of state. This is especially true for those models that are now or were
in the past close to the cosmological constant behavior. We are getting our first glimpses
looking beyondΛ, but await keen improvements in vision before we can say we understand
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the new physics governing our universe. 2

2We thank Andy Albrecht, Robert Caldwell, Roland de Putter, Steven Weinberg, and Christof Wetterich
for helpful discussions. The work described in this chapter has been supported in part by the Director, Office
of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. M.K. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG).
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CHAPTER 4

Union2

4.1 Introduction
In the original Union analysis described in Chapter 2, each supernova is assumed

equally affected by each systematic. This is especially problematic towards the high-
redshift end of the Hubble diagram, where the data quality is quite heterogeneous. Al-
though we computed constraints on two-parameter descriptions of dark energy including
systematics (w0-wa in Chapter 2 and numerous models in Chapter 3), we hesitated to com-
pute constraints on binned-w models. These types of many-parameter models require a
fidelity to the systematics analysis that was somewhat lacking in the original treatment.

This chapter presents a number of improvements to the Union analysis. I now compute
the sensitivity of each supernova to each calibration systematic. Supernovae measured
with only two photometric bands, for example, are generally far less robust to calibration
uncertainties than supernovae measured with three or four bands. In addition to accurate
propagation of photometric calibration uncertainties, these sensitivities also allow for the
propagation of uncertainties in Milky-Way and intergalactic extinction. In addition, we
replace the SALT light-curve fitter (which is based around warping a single supernova
spectral time series) with the SALT2 fitter (which has a time-series that varies with light-
curve shape). Our tests, and those of Guy et al. (2007); Conley et al. (2008), show that
SALT2 outperforms SALT. This new compilation, consisting of 557 supernovae, is called
the Union2 compilation and we use it to derive many-parameter dark-energy constraints
including systematic uncertainties for the first time.1

4.2 Light curve fitting
SN Ia that have bluer colors or broader light curves tend to be intrinsically brighter

(Phillips 1993; Tripp 1998). Several methods of combining this information into an accu-
1This material was previously published as Sections 6, 7, 8, and the final appendix of Amanullah et al.

(2010).
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rate measure of the relative distance have been used (Riess et al. 1996; Goldhaber et al.
2001; Wang et al. 2003; Guy et al. 2005, 2007; Jha et al. 2007; Conley et al. 2008).

In Chapter 2, we consistently fitted all light curves using the SALT (Guy et al. 2005)
fitter, which is built on the SN Ia SED from Nugent et al. (2002). In this chapter, we use
SALT2 (Guy et al. 2007), which is based on more data.

Conley et al. (2008) compared the performances of different light curve fitters while
also introducing their own empirical fitter, SiFTO, and concluded that SALT2 along with
SiFTO perform better than both SALT (which is conceptually different from its successor
SALT2) and MLCS2k2 (Jha et al. 2007) when judged by the scatter around the best-fit
luminosity distance relationship. Furthermore, SALT2 and SiFTO produce consistent cos-
mological results when both are trained on the same data. Recently KS09 made a thorough
comparison between SALT2 and their modified version of MLCS2k2 (Jha et al. 2007) for a
compilation of public data sets, including the one from the SDSS SN survey. The two light
curve fitters result in an estimate ofw (for a flat wCDM cosmology) that differs by 0.2. The
difference exceeds their statistical and systematic (from other sources) error budgets. They
determine that this deviation originates almost exclusively from the difference between the
two fitters in the rest-frame U-band region, and the color prior used in MLCS2k2. They
also noted that MLCS2k2 is less accurate at predicting the rest-frame U-band using data
from filters at longer wavelengths.

This difference in U-band performance is not surprising: observations carried out in the
observer-frame U-band are in general associated with a high level of uncertainty due to at-
mospheric variations. While the training of MLCS2k2 is exclusively based on observations
of nearby SNe, the SiFTO and SALT2 training address this difficulty by also including high
redshift data where the rest-frameU-band is observed at redder wavelengths. This approach
also allows these fitters to extend blueward of the rest-frame U-band.

In addition, for this work, we have conducted our own test validating the performance of
SALT2 by carrying out the Monte-Carlo simulation described in 4.3.3, where we compare
the fitted SALT2 parameters to the corresponding real values for mock samples with poor
cadence and low signal-to-noise drawn from individual well-measured nearby SNe.

Given these tests that have been carried out on SALT2, and its high redshift source for
rest-frame U-band, we have chosen to use SALT2 for this work.

4.2.1 SALT2
The SALT2 SED model has been derived through a pseudo-Principal component anal-

ysis based on both photometric and spectroscopic data. Most of these data come from
nearby SN Ia data, but SNLS supernovae are also included. To summarize, the SALT2
SED, F (SN, p,λ), is a function of both wavelength, λ, and time since B-band maximum,
p. It consists of three components; a model of the time dependent average SN Ia SED,
M0(p,λ), a model of the variation from the average, M1(p,λ), and a wavelength depen-
dent function that warps the model, CL(λ). The three components have been determined
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from the training process (Guy et al. 2007) and are combined as

F (SN, p,λ) = x0 × [M0(p,λ) + x1 ×M1(p,λ)]× exp [c× CL(λ)] ,

where x0, x1 and c are free parameters that are fit for each individual SN.
Here, x0, describes the overall SED normalization, x1, the deviation from the average

decline rate (x1 = 0) of a SN Ia, and c, the deviation from the mean SN Ia B − V color at
the time of B-band maximum. These parameters are determined for each observed SN by
fitting the model to the available data. The fit is carried out in the observer frame by red-
shifting the model, correcting for Milky Way extinction (using the CCM-law from Cardelli
et al. (1989) with RV = 3.1), and multiplying by the effective filter transmission functions
provided by the different observatories. All synthetic photometry is carried out in the Vega
system using the spectrum from Bohlin (2007a). FollowingAstier et al. (2006) we adopt the
magnitudes (U,B, V, RC , IC) = (0.020, 0.030, 0.030, 0.030, 0.024) mag (Fukugita et al.
1996) for Vega. For the near-infrared we adopt the values J = 0 andH = 0.

The three parametersmmax
B = −2.5 log10

[∫

B F (SN, 0,λ) λ dλ
]

, x1 and c, can for each
SN be combined to form the distance modulus (Guy et al. 2007),

µB = mcorr
B −MB = mmax

B + α · x1 − β · c−MB , (4.1)

where MB is the absolute B-band magnitude. The parameters α, β and MB are nuisance
parameters which are fitted simultaneously with the cosmological parameters.

4.3 The Union2 Compilation
Chapter 2 presented an analysis framework for combining different SN Ia data sets

in a consistent manner. Since then two other groups (H09 and KS09) have made similar
compilations, using different fitters. In this work we carry out an improved analysis, using
and refining the Chapter 2 approach. We extend the sample with the six SNe presented here,
the SNe from Amanullah et al. (2008), the low-z and intermediate-z data from Hicken et al.
(2009) and Holtzman et al. (2008) respectively2.

First, all light curves are fitted using a single light curve fitter (the SALT2 method) in
order to eliminate differences that arise from using different fitters. For all SNe going into
the analysis we require:

1. data from at least two bands with rest-frame central wavelengths between 2900Å and
7000Å, the default wavelength range of SALT2

2. that there is at least one point between −15 days and 6 rest frame days relative to the
B-band maximum.

2The SALT2 fit results for these samples are presented along with the entire Union2 compilation fits at
http://supernova.lbl.gov/Union/.

http://supernova.lbl.gov/Union/
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3. that there are in total at least five valid data points available.

4. that the fitted x1 values, including the fitted uncertainties, lie between −5 < x1 < 5.
This is a more conservative cut than that used in Chapter 2 and results in several
poorly measured SNe being excluded. Part of the discrepancy observed by KS09
when using different light curve models could be traced to poorly measured SNe.

5. that the CMB-centric redshift is greater than z > 0.015.

We also exclude one SN from the Union compilation that is 1991bg-like, which neither the
SALT nor the SALT2 models are trained to handle. Note that another 1991bg-like SN from
the Union compilation was removed by the outlier rejection.

All SNe Ia considered in this compilation are listed in Table 13 of Amanullah et al.
(2010). For each SN, the redshift and fitted light curve parameters are presented as well as
the failed cuts, if any.

It should be pointed out that the choice of light curve model also has an impact on the
sample size. Using SALT2 will allow more SNe to pass the cuts above, since the SALT2
model covers a broader wavelength range than SALT. This is particularly important for
high-z data that heavily rely on rest-frame UV data. For example, two net SNe would have
been cut from the Riess et al. (2007) sample with the SALT model.

4.3.1 Revised HST zero-points and filter curves
Since Riess et al. (2007), the reported zero-points of both NICMOS and ACS were

revised. For the F110W and F160W filters of NICMOS, the revision is substantial. Using
the latest calibration (Thatte et al. 2009, and references within), the revised zero-points are,
for both filters, approximately 5% fainter than those reported in Riess et al. (2007) and
subsequently used in Chapter 2.

For SNe Ia at z > 1.1, observations with NICMOS cover the rest frame optical, so the
fitted peak B-band magnitudes and colors and the corrected B-band magnitudes of these
SNe Ia depend directly on the accuracy of the NICMOS photometry. With the new zero-
points, SNe Ia at z > 1.1 are measured to be fainter and bluer. Our current analysis also
corrects an error in the NICMOS filter curves that were used in Chapter 2, which also acts
in the same direction.

In the introduction, we had noted that almost all SNe at z > 1.1 were redder than the
average SN color over the redshift interval 0.3 to 1.1. This is surprising as redder SNe
are also fainter and should therefore be the harder to detect in magnitude limited surveys.
Chapter 2 noted that these SNe, after light curve shape and color corrections, are also on
average ∼ 0.1 mag brighter than the line tracing the best fit ΛCDM cosmology. They also
noted that this was the reason for the relatively high value for the binned value of w in the
[0.5, 1] redshift bin.

After taking the NICMOS zero-point and filter updates just discussed into account, we
repeated the Chapter 2 analysis. This made the NICMOS observed SNe up to ∼ 0.1 mag
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fainter, and there no longer is a significant offset from the best-fit cosmology. Nor are these
SNe unusually red when compared to SNe over the redshift interval 0.3 to 1.1. For SALT2
the SNe at z > 1.1 have an average color of c = 0.06± 0.03, compared to c = 0.02± 0.01
for 0.3 < z < 1.1, and no significant offset in the Hubble diagram.

There could however still be unresolved NICMOS issues. For example the NICMOS
SN photometry depends on extrapolating the non-linearity correction to low flux levels. We
have a program (HST GO-11799) to obtain a calibration of NICMOS at low flux levels.
The photometry of the SNe observed with NICMOS will be revised once this program is
completed.

4.3.2 Fitting Cosmology
Following Conley et al. (2006a) and Chapter 2, we adopt a blind analysis approach for

cosmology fitting where the true fitted values are not revealed until the complete analysis
framework has been settled. The blind technique is implemented by adjusting the mag-
nitudes of the SNe until they match a fiducial cosmology (ΩM = 0.25, w = −1). This
procedure leaves the residuals only slightly changed, so that the performance of the analy-
sis framework can be studied. The best fitted cosmology with statistical errors is obtained
through an iterative χ2-minimization of

χ2
stat =

∑

SNe

[µB(α, β,M)− µ(z;ΩM ,Ωw, w)]
2

σ2
ext + σ2

sys + σ2
lc

, (4.2)

where,
σ2
lc = VmB

+ α2Vx1
+ β2Vc + 2αVmB ,x1

− 2βVmB,c − 2αβVx1,c (4.3)

is the propagated error from the covariance matrix, V , of the light curve fits, with α and
β being the x1 and color correction coefficients of equation 4.1. Uncertainties due to host
galaxy peculiar velocities of 300 km/s and uncertainties from Galactic extinction correc-
tions and gravitational lensing as described in 4.3.3 are included in σext. A floating disper-
sion term, σsys, which contains potential sample-dependent systematic errors that have not
been accounted for and the observed intrinsic SN Ia dispersion, is also added. The value of
σsys is obtained by setting the reduced χ2 to unity for each sample. Computing a separate
σsys for each sample prevents samples with poorer-quality data from increasing the errors
of the whole sample. This approach does however still assume that all SNe within a sam-
ple are measured with roughly the same accuracy. If this is not the case there is a risk in
degrading the constraints from the sample by down weighting the best measured SNe. It
should also be pointed out that the fitted values of σsys will be less certain for small samples
and can therefore deviate significantly from the average established by the larger samples
(in particular, the six high-z SNe presented in this work are consistent with σsys = 0), as
are three other samples.

A number of systematic errors are also being considered for the full cosmology analysis.
These are taken into account by constructing a covariance matrix for the entire sample
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which will be described below in 4.3.3. The terms in the denominator of equation 4.2 are
then added along the diagonal of this covariance matrix.

As in Chapter 2, we carry out an iterative χ2 minimization with 3σ outlier rejection.
Each sample is fit for its own absolute magnitude by minimizing the sum of the absolute
residuals from its Hubble line (rather than the sum of the squared residuals). The line
is then used for outlier rejection. This approach was investigated in detail in Chapter 2,
and it was shown with simulations that the technique is robust and that the results are
unaltered from the Gaussian case in the absence of contamination and that in the presence
of a contaminating contribution, its impact is reduced. Table 4.1 summarizes the effect of
the outlier cut on each sample. We also note that the residuals have a similar distribution to
a Gaussian in that ∼ 5% of the sample is outside of 2σ.

Table 4.1. Statistics of each sample with no outlier rejection or 3σ outlier rejection (used in this chapter).
Here, σsys has the same meaning as in equation 4.2. Both σsys and the RMS are also plotted for each sample
in Figure 4.3. Although each sample is independently fit for its σsys and RMS, a global α and β are always
used. This explains the minor shifts in parameters for samples where no supernovae are cut. A 2σ cut removes
34 more supernovae, so going from 3 to 2σ is consistent with Gaussian residuals.

No Outlier Cut σcut = 3
Set SNe σsys(68%) RMS (68%) SNe σsys(68%) RMS (68%)
Hamuy et al. (1996) 18 0.15+0.05

−0.03 0.17+0.03
−0.03 18 0.15+0.05

−0.03 0.17+0.03
−0.03

Krisciunas et al. (2005) 6 0.01+0.14
−0.01 0.11+0.02

−0.03 6 0.04+0.13
−0.04 0.11+0.03

−0.03

Riess et al. (1999) 11 0.16+0.07
−0.03 0.17+0.03

−0.04 11 0.15+0.07
−0.03 0.17+0.03

−0.04

Jha et al. (2006) 15 0.20+0.07
−0.04 0.22+0.04

−0.04 15 0.21+0.07
−0.04 0.22+0.04

−0.04

Kowalski et al. (2008) 8 0.04+0.08
−0.04 0.14+0.03

−0.04 8 0.07+0.09
−0.06 0.15+0.03

−0.04

Hicken et al. (2009) 104 0.18+0.02
−0.02 0.21+0.01

−0.01 102 0.15+0.02
−0.01 0.19+0.01

−0.01

Holtzman et al. (2009) 133 0.19+0.02
−0.01 0.23+0.01

−0.01 129 0.10+0.01
−0.01 0.15+0.01

−0.01

Riess et al. (1998) + HZT 11 0.31+0.19
−0.09 0.53+0.10

−0.12 11 0.31+0.19
−0.09 0.52+0.10

−0.12

Perlmutter et al. (1999) 33 0.41+0.12
−0.09 0.64+0.07

−0.08 33 0.41+0.12
−0.09 0.64+0.07

−0.08

Barris et al. (2004) 19 0.19+0.13
−0.10 0.39+0.06

−0.07 19 0.18+0.13
−0.10 0.38+0.06

−0.07

Amanullah et al. (2008) 5 0.18+0.21
−0.06 0.20+0.05

−0.07 5 0.19+0.21
−0.06 0.21+0.05

−0.07

Knop et al. (2003) 11 0.04+0.10
−0.04 0.15+0.03

−0.03 11 0.05+0.10
−0.05 0.15+0.03

−0.03

Astier et al. (2006) 73 0.18+0.03
−0.03 0.25+0.02

−0.02 72 0.13+0.03
−0.02 0.21+0.02

−0.02

Miknaitis et al. (2007) 77 0.25+0.04
−0.03 0.34+0.03

−0.03 74 0.19+0.04
−0.03 0.29+0.02

−0.02

Tonry et al. (2003) 6 0.17+0.21
−0.10 0.24+0.06

−0.07 6 0.15+0.21
−0.12 0.23+0.05

−0.07

Riess et al. (2007) 33 0.27+0.07
−0.04 0.49+0.06

−0.06 31 0.16+0.06
−0.05 0.45+0.05

−0.06

This Work 6 0.00+0.00
0.00 0.12+0.03

−0.04 6 0.00+0.00
0.00 0.12+0.03

−0.04

Total 569 557

Figure 4.2 shows the individual residuals and pulls from the best fit cosmology to-
gether with the fitted SALT2 colors for the different samples. The photometric quality is
illustrated by the last column in the figure showing the color uncertainty. It is notable how
the photometric quality on the high redshift end has improved from the analysis presented
in Chapter 2. This is due to the extended rest-frame range of the SALT2 model compared
to SALT.

Figure 4.3 shows the diagnostics used for studying the consistency between the different
samples. The left panel shows the fitted σsys values for each sample together with the RMS
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Figure 4.1. Upper panel: Hubble diagram for the Union2 compilation. The solid line represents the best fitted
cosmology for a flat Universe including the CMB and BAO constraints discussed in the text. The different
colors have the same interpretation as in Figures 4.2 and 4.3. Lower panel: Hubble diagram residuals where
the best fitted cosmology has been subtracted from the light curve shape and color corrected peakmagnitudes.
The gray points show the residuals for individual SNe, while the black points show the binned values in
redshifts bins of 0.05 for z < 1.0 and 0.2 for z > 1.0. The orange points show the previously unpublished
SNe introduced in this work. The dashed lines show the expected Hubble diagram residuals for cosmological
models with w ± 0.1 from the best fitted value.

around the best fitted cosmology. The intrinsic dispersion associated with all SNe can be
determined as the median of σsys as long as the majority of the samples are not dominated
by observer-dependent uncertainties that have not been accounted for. The median σsys for
this analysis is 0.15 mag, indicated by the leftmost dashed vertical line in the figure. The
two mid-panels show the tensions for the individual samples, by comparing the average
residuals from the best-fit cosmology. The two panels show the tensions without and with
systematic errors (described in 4.3.3) being considered. Most samples fall within 1σ and
no sample exceeds 2σ. The right panel shows the tension of the slopes of the residuals as a
function of redshift. This test may not be very meaningful for sparsely sampled data sets,
but could reveal possible Malmquist bias for large data sets.
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Figure 4.2. Individual diagrams and distributions for the different data sets. From left to right: a) Hubble diagrams for the various samples; b) binned
magnitude residuals from the best fit cosmology (bin-width: ∆z = 0.01); c) unbinned magnitude residuals from the best fit; d) histogram of the residuals
from the best fit; e) pull of individual SNe as a function of redshift; f) histogram of pulls; g) SN color as a function of redshift; h) uncertainty of the color
measurement as an illustration of the photometric quality of the data.



4.3 The Union2 Compilation 78

σsys and RMS

0.0 0.2 0.4 0.6 0.8
Magnitudes

 

 

Hamuy et al. (1996)

Krisciunas et al. (2005)

Riess et al. (1999)

Jha et al. (2006)

Kowalski et al. (2008)

Hicken et al. (2009)

Holtzman et al. (2009)

Riess et al. (1998) + HZT

Perlmutter et al. (1999)

Barris et al. (2004)

Amanullah et al. (2008)

Knop et al. (2003)

Astier et al. (2006)

Miknaitis et al. (2007)

Tonry et al. (2003)

Riess et al. (2007)

This Paper
Residual Slope

-2 -1 0 1 2
dµ/dz

 

 
Sample Residual

-0.2 -0.1 0.0 0.1 0.2
Magnitudes

 

 
Sample Residual with Systematics

-0.2 -0.1 0.0 0.1 0.2
Magnitudes

 

 

Figure 4.3. Diagnostics plot for the individual data sets. From left to right: Systematic dispersion (filled
circles) and RMS around the best fit model (open circles); The mean, sample averaged, deviation from the
best fit model; The slope of the Hubble-residual (in magnitudes) versus redshift, dµresidual/dz. Note that the
errors on the systematic dispersion are the statistical errorbars and do not include possible systematic effects
such as misestimating photometry errors.

The SNe introduced in this work show no significant tension in any of the panels. The
Hubble residuals for these are also presented in Figure 4.1. Here, the individual SNe are
consistent with the best fit cosmology.

All tables and figures, including the complete covariance matrix for the sample, are
available in electronic format on the Union webpage3. We also provide a CosmoMC mod-
ule for including this supernova compilation with other datasets.

4.3.3 Systematic errors
The analysis in Chapter 2 split systematic errors into two categories: the first type

affects each SN sample independently, the second type affects SNe at similar redshifts.
Malmquist bias and uncertainty in the colors of Vega are examples of the first and second
type, respectively. Typical numbers were derived for both of these types of systematics,
and they were included as covariances4 between SNe. Each sample received a common
covariance, and all of the high-redshift (z > 0.2) SNe shared an additional common co-
variance.

Other analyses (Astier et al. (2006), Wood-Vasey et al. (2007), KS09) have estimated
the effect on w for each systematic error and summed these in quadrature. However, Kim
&Miquel (2006) show that parameterizing systematic errors (such as uncertain zeropoints)
with nuisance parameters is a more appropriate approach and gives better cosmological
constraints. For this analysis, all contributing factors, described below, were translated

3http://supernova.lbl.gov/Union/
4Note that adding a covariance is equivalent to minimizing over a nuisance parameter that has a Gaussian

prior around zero; the discussion in Chapter 2 is in terms of these nuisance parameters. This is further
discussed in Appendix A.1.

http://supernova.lbl.gov/Union/
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to nuisance parameters, which were then incorporated into a covariance matrix for the
distances of the individual SNe. Appendix A.1 contains the details of converting nuisance
parameters to a covariance matrix.

Zero-point Uncertainties

In order to correctly propagate calibration uncertainties, we computed numerically the
effect of each photometric passband on the distance modulus. For each SN, the photom-
etry from each band was shifted in turn by 0.01 magnitudes and then refit for µ. We then
computed the change in distance modulus, giving dµ(α,β)

d(ZP) for each band. A list of zero-
point uncertainties is given in Table 5.3. For two SNe, i and j, with calibrated photometry
obtained in the same photometric system, the zero-point uncertainty, σZP of that system
was propagated into the covariance matrix element Uij as dµi

d(ZP)
dµj

d(ZP)σ
2
ZP according to Ap-

pendix A.1.2.
This procedure is a more efficient way of including zero-point uncertainties than in-

cluding a common magnitude covariance (multiplicative in flux space) when performing
all of the light curve fits. In testing, both of these methods gave results that agreed at the
couple of a percent level. Our method has the advantage that the zero-point errors can be
adjusted without rerunning the light curve fits.

Zero-point uncertainties are one of the largest systematic errors (see Table 5.4). How-
ever, we should note that this number is based on a heterogeneous assessment of errors
from different datasets (Table 5.3); the accuracy will vary.

Table 4.2. Assumed zero-point uncertainties for SNe in the Union2 compilation.
Source Band ZP Uncertainty Reference
HST WFPC2 0.02 Heyer et al. (2004)

ACS 0.03 Bohlin (2007b)
NICMOS 0.03 Thatte et al. (2009)

SNLS g, r, i 0.01 Astier et al. (2006)
z 0.03

ESSENCE R, I 0.014 Wood-Vasey et al. (2007)
SDSS u 0.014 Kessler et al. (2009)

g, r, i 0.009
z 0.010

Amanullah et al. (2010) R, I 0.03
J 0.02

Other U-band 0.04 Hicken et al. (2009)
Other Band 0.02 Hicken et al. (2009)

Vega
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Astier et al. (2006) estimated the broadband Vega magnitude system uncertainty to be
within 1% by comparing spectroscopy from D. S. Hayes, L. E. Pasinetti, & A. G. D. Philip
(1985) and Bohlin & Gilliland (2004). In their analysis, only the uncertainties of Vega
colors had implications for cosmological measurements, which they chose to include by
adopting a flux uncertainty linear in wavelength that would offset the Vega B − R color
by 0.01. The uncertainty of Vega is the single largest source of systematic error when
estimating w, as shown in Table 5.4, suggesting that a better-understood reference would
allow for a significant reduction in systematic errors.

KS09, and recently SNLS (Regnault et al. 2009), chose BD+17◦4708 as their primary
reference star. This star has the advantage of having a well-known SED, measured Landolt
magnitudes (in contrast to Vega) and colors that are close to the average colors of the
Landolt standards (in contrast to Vega which is much bluer). KS09 studied the implications
of switching between BD+17◦4708 and Vega and found zeropoints consistent to ∼ 1%.

Given this small difference between using BD+17◦4708 and Vega, we have chosen,
for this work, to continue using Vega as our primary reference star. To account for the
uncertainty of the magnitude of Vega on the Landolt system, we have assumed a corre-
lated uncertainty of 0.01 mag for all photometry with a rest-frame wavelength in each of
six wavelength intervals defined by the following wavelength boundaries: 2900Å, 4000Å,
5000Å, 6000Å, 7000Å, 10000Å, 16000Å.

Rest-frame U-Band

SNe Ia are known to show increasing spectroscopic and photometric diversity for wave-
lengths shorter than the rest-frame B-band. Part of this could perhaps be explained by
differences in progenitor metallicity (Hoeflich et al. 1998; Lentz et al. 2000), but the spec-
tral variations in the rest-frame UV (Ellis et al. 2008) are larger than predicted by existing
models.

As discussed in Section 4.2, KS09 studied how well the SALT2 model describes the
rest-frame U-band by first running SALT2 with the rest frame U-band excluded. Using
these fits, they then generated a model for the rest frame U-band and binned the magnitude
residuals from the actual rest-frame U-band data as a function of phase. For the SDSS and
SNLS datasets, the residuals around the time of maximum are∼ 3%. For SNLS, this is not
surprising, as the SNLS data was used to train the SALT2 model. In this analysis, we use
the SDSS sample as a validation set, and include a correlated 0.03 magnitude uncertainty
for all photometric bands bluer than rest-frame 3500Å.

We note that the HST and low-redshift datasets are less useful for assessing the size of
rest-frame U-band uncertainty. For the HST data, the light curves are poorly constrained
without the rest-frame U-band. In the case of the nearby sample, the rest-frame U-band
overlaps with the observed U-band for which accurate photometry is generally difficult to
obtain (any potential problems with the nearby U-band will not impact the light curve fits
much, as the low-z fits are typically very well constrained with the remaining bands).
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Malmquist bias

In Chapter 2, we added a 0.02 magnitude covariance for each sample representing
Malmquist bias uncertainty. More recently, KS09 completed a thorough simulation of
selection effects for each of the samples in their analyses. They find a 0.024 change in w
when making a correction for selection effects. As the 0.02 magnitude covariance yields a
quite similar 0.026 error on w, and conducting a full simulation is beyond the scope of this
work, we reuse the covariance from Chapter 2.

Gravitational lensing

The effects from gravitational lensing on the Hubble diagram have been discussed in
detail in the literature (Sasaki 1987; Linder 1988b; Bergström et al. 2000; Amanullah et al.
2003; Holz & Linder 2005). Gravitational lensing only affects the high redshift end of the
data that is currently available, and potential bias on the cosmological parameters from the
analysis carried out here due to the asymmetry of the lensing probability density function
is expected to be negligible. We adopt the approach in Chapter 2 of only treating gravita-
tional lensing as a statistical uncertainty by adding a value of 0.093z (Holz & Linder 2005)
in quadrature to σext in equation 4.2. This is a conservative approach with respect to the
values presented by Jönsson et al. (2006), where they attempt to measure the lensing of in-
dividual SNe by determining the mass distribution along the line of sight. A very important
conclusion of their work is that there is no evidence for selection effects due to lensing of
the high-redshift SNe.

Light curve model

We have studied any potential bias that could arise from poor light curve sampling, by
carrying out a similar analysis to that in Chapter 2, updated for SALT2. We use nine BVR
AQUAA templates (Strovink 2007) constructed from observations of very well-observed
nearby supernovae. Each set of BVR templates is combined with a SALT2 U-band tem-
plate generated for that supernova, as there were insufficient observations in the U-band to
construct an AQUAA template.

Mock data sets are then sampled from these templates with the same rest frame dates
and signal-to-noise ratios of the real SNe in our sample. The mock sets are then fitted with
SALT2 and the offset between AQUAA corrected magnitude and the corresponding SALT2
fitted value is investigated as a function of the fitted phase of each supernova’s first data
point (the phase is with respect to B-band maximum). In Chapter 2, we looked at other
possible biases, but first phase was the only significant one found. The test is carried out
for each of the nine template SNe.

For SNe with a first phase at B-band maximum, the average bias is close to zero, with
an RMS of about 0.03. For SNe with a first phase at six days past B-band maximum, the
average bias is still close to zero, but the RMS has increased to about 0.08. Of course, our
nine SN templates might not be a representative sample, but these results are encouraging,
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since they both suggest that there is no significant bias and indirectly validate the SALT2
performance with respect to the AQUAA templates.

We use a first phase cut of six days, but we conservatively give each SN that has first
phase greater than zero a 0.03 magnitude covariance. Note that SALT2 does not stretch its
definition of phase with light curve width.

Contamination

As already mentioned, we perform an iterative χ2 minimization with a 3σ outlier rejec-
tion before fitting cosmology. In Chapter 2 we showed that this technique greatly reduces
the impact of potential contamination, while maintaining roughly Gaussian statistics. Con-
tamination could either come from non-SN Ia or SNe that are typed as normal SN Ia but
show peculiarities (see e.g. Foley et al. (2010)).

We carried out a Monte-Carlo study showing that the effect of contamination on any in-
dividual sample is limited to less than 0.015 magnitudes. This is under the assumption that
the dispersion of the contaminating distribution is of the same order, or greater than, the
dispersion of SNe Ia and that the contamination is less than 30%. We include a 0.015mag-
nitude uncertainty, correlated for each sample, to account for possible contamination.

Minimum redshift

In order to test for possible effects from using a given minimum redshift cut, we started
by constructing a new sample with no minimum redshift. Using this sample, we performed
fits which allowed the absolute magnitude to vary independently below and above a divid-
ing redshift in the range 0.01 to 0.03. This procedure should test for a Hubble bubble or
significantly correlated peculiar velocities. The extra degree of freedom allowed by this
step inMB improved the χ2 by " 1 regardless of the dividing redshift and the inclusion of
systematic errors. This confirms the results of Conley et al. (2007) for SALT2. We con-
clude that there is no statistically significant difference between minimum redshifts and use
the value of 0.015, as was used in the analysis in Chapter 2.

Galactic extinction

All light curve photometry is corrected for Galactic extinction using the extinction law
from Cardelli et al. (1989), assumingRV = 3.1, together with the dust maps from Schlegel
et al. (1998).

In the same procedure as with calibration uncertainties, we increased the Galactic
E(B−V ) by 0.01 for each supernova and repeated the fit, giving dµ(α,β)

d(E(B−V )) . A 16% statis-
tical and 10% systematic error was assumed for the Galactic extinction of each supernova
(Schlegel et al. 1998).
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Intergalactic extinction

Dimming of SNe Ia by hypothetical intergalactic gray dust has been suggested by
Aguirre (1999) as an alternative to dark energy to explain the SN results (Goobar et al.
2002). This potential dimming was however constrained by studying the colors of high-z
quasars (Mörtsell & Goobar 2003; Östman & Mörtsell 2005) and by observations SNe Ia
in the rest frame I-band (Nobili et al. 2005, 2009).

Another possible extinction systematic comes from the dust in galaxy halos that are
along the line of sight. Ménard et al. (2009) used distant quasars to detect and measure
extinction in galactic halos at z ∼ 0.3. They find an average RV for their galaxies of
3.9± 2.6. Using their observed AV (r), we find an average rest frame V -band extinction of
0.004 magnitudes per intersected halo, assuming RV = 3.1. At redshift 0.5, an average of
three halos have been intercepted. At redshift 1.0, the average is seven.

There are three mitigating factors. One is that expansion redshifts photons between
the supernova and the intervening galaxy. The CCM law decreases with wavelength (in
the relevant wavelength range), so less light is absorbed. Ménard et al. (2008) finds that
ρdust ∝ (1 + z)−1.1, which we use to scale the extinction. Finally, most of the extinction is
corrected by color correction. The exact amount corrected depends on the redshift and the
filters used in the observations, but is around two thirds.

We find an error on w of 0.008 due to this extinction, significantly lower than the value
of 0.024 derived by Ménard et al. (2010). However, they used RV = 3.9, rather than 3.1;
the fraction of extinction that is corrected by the color correction will decrease withRV . We
also numerically sum the CCM laws, rather than using an analytic approximation. Since
we know the exact redshift and filters used in each observation, we can exactly calculate
the amount of extinction already handled by the color correction (using our dµ

dzp values),
without approximation.

Shape and Color Correction

The most uncertain contribution to the dimming of SNe Ia is host galaxy extinction.
Several studies of SN Ia colors (Guy et al. 2005, 2007; Wang et al. 2008; Nobili & Goobar
2008, and references therein) indicate that the observed SN Ia reddening does not match the
Galactic CCM extinction law with RV = 3.1. A stronger wavelength dependence has been
found in the optical in most cases, and it remains unclear if CCM models with any value of
RV can be used to describe the data accurately. It is possible that the observed steep red-
dening originates from a mixture of local effects and host galaxy extinction. Local effects
could be intrinsic SN variations, but also multiple scattering on dust in the circumstellar
environment has been suggested (Wang 2005; Goobar 2008). This model is potentially
supported by detection (Patat et al. 2007; Simon et al. 2009; Blondin et al. 2009) of cir-
cumstellar material but also by color excess measurements for two of the best observed
reddened SN Ia (Folatelli et al. 2010) being consistent with the expected extinction from
circumstellar material.
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The SALT2 method approaches the lack of a consistent understanding of SN Ia red-
dening by adopting a purely empirical approach. For SALT2, the SN Ia luminosity is
standardized by assuming that the standardization is linear in both x1 and c as described
in equation 4.1, where β is the empirically determined correction coeffecient that accounts
for all linear relations between color and observed peak magnitude. For example if the
only source for such SN Ia reddening originated from CCM extinction then β is identically
equal to RV + 1. We test this approach and propagate relevant systematic uncertainties by
dividing the full sample into smaller sets and carrying out independent fits for the x1 and c
correction coefficients, α and β, as shown in Table 4.5.

When subdividing into redshift bins, we find that the values of α and β for the full
sample are consistent with values for the three first redshift bins. It is encouraging to
see consistency between the global values fit for the full dataset and the values in the best-
understood redshift range. Beyond this important test, we also note that the value of β in the
redshift range 0.5 to 1 is significantly lower than the other values, while the value for z > 1
is higher than the global value, but is poorly measured. The trend is similar to what was
seen in KS09, but we use different binning. This behavior is inconsistent with a monotonic
drift in redshift, so we consider other explanations for these results. That conclusion is also
supported by the observation that samples at similar redshifts (e.g. Miknaitis et al. (2007)
and Astier et al. (2006)) can have very different values of β when fitted independently. The
value of α is consistent across redshift ranges, except at z > 1, where many light curves
are so poorly sampled that it may not be possible to assign reasonable x1 errors.

When subdividing into the four largest data sources (the lower half of Table 4.5), we
find values of α and β generally consistent with the global values, with the exception of a
lower value of β for the SNLS SNe (Astier et al. 2006). In general, ignoring or underesti-
mating the errors in c or x1 will decrease the associated correction coefficients, β and α, as
investigated in Chapter 2 and KS09 and this may be relevant here. Specifically, two poten-
tial sources of problems are an incomplete understanding of calibration and underestimated
SN model variations, either of which could affect these fits. If the SNLS SNe are physically
different, and they are allowed their own β, then w shifts by 0.02. Alternatively, as one β
is used for the global sample, the possibility that that β is biased from the true global value
must be considered. Selecting the global value of β from any of the other large samples
shifts w by less than 0.02. We have accounted for this systematic by assigning each sample
a 0.02 magnitude covariance (giving a 0.03 error on w), which avoids the problem of han-
dling an error on elements of the covariance matrix. To study these details further, we look
forward to more data for z > 0.5, with improved calibration and light curve models.

We also perform one additional sanity check by subdividing the data by x1 and c. There
is evidence for two populations of normal SN Ia, divided by light curve width (see Chapter
2, and references therein). Star-forming galaxies tend to host the population with broader
light curves, while SN hosted by passive galaxies tend to have narrower light curves. As
described below, we derive consistent cosmology for these subdivisions as well.
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We subdivide5 the full sample into two roughly equal subsamples, split first by color
and then by x1. In total, this makes four subsamples. We find that the cosmology is close
for all subsamples (as can be seen in Table 4.5) so the difference from these subdivisions
does not contribute significantly to the systematic error on w.

It is interesting to note that α is substantially different for the two samples split by light
curve width. Likewise, β is substantially different for the two samples split by color. This
might suggest that the relationships between color and brightness and light curve width and
brightness are more complex than a simple linear relationship, or it could be that the errors
on x1 and c are not perfectly understood. We also find that β is higher for the redder SNe Ia
which is similar to the results from Conley et al. (2008) based on comparisons of U − B
colors to B − V , after correcting for the effect of stretch on the U-band. At the same time
it should be pointed out that evidence of low RV values have also been found for a few
well-studied, and significantly reddened, nearby SNe Ia Folatelli et al. (2010).

Summary of systematic errors

The effect of these systematic errors on w is given in Table 5.4. The improvement in
cosmology constraints over the simple quadrature sum is also shown. Zeropoint and Vega
calibration dominate the systematics budget, but understanding the color variations of SNe
is also important. The benefit from making a Malmquist bias correction can be seen; by
doing so, KS09 reduce this systematic error by a factor of two.

4.4 Results and Discussion
In the cosmology analysis presented here, the statistical errors on ΩM have decreased

by a significant 24% over the Union analysis, while the estimated systematic errors have
only improved by 13%. When combining the SN results with BAO and CMB constraints,
statistical errors on w have improved by 16% over Union, though the quoted systematic
errors have increased 7%. Figure 4.6 shows a comparison between the constraints from
Union and this new compilation in the (ΩM − w) plane. Even with some improvement on
the understanding of systematic errors, it is clear that the dataset is dominated by systematic
error (at least at low to mid-z).

5Subdividing by x1 or c must be done carefully. When there are errors in both the dependent and inde-
pendent variables (in this case, magnitude and x1 or c), the true values of the independent variables must be
explicitly solved for as part of the fit. Otherwise, the subdividing will be biased. For example, suppose that
a supernova has a color that is poorly measured, and an uncorrected magnitude that is well-measured. If this
supernova is faint and blue, then a fit for the true color will give a redder color. A color cut will place this
supernova in the blue category, when the supernova is actually more likely to be red. As mentioned in Chapter
2, whenever one fits for α and β, the true values of x1 and c are only implicitly solved for; equation 4.3 is
derived by analytically minimizing over the true x1 and c. Equation 2.3 shows the result with the true values
made explicit, we also include a discussion in Appendix A.1.
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Table 4.3. Effect on w errorbar (including BAO and CMB constraints) for each of the systematic errors
included. The proper way to sum systematic errors is to include each error in a covariance matrix.
Source Error on w
Zero point 0.037
Vega 0.042
Galactic Extinction Normalization 0.012
Rest-Frame U-Band 0.010
Contamination 0.021
Malmquist Bias 0.026
Intergalactic Extinction 0.012
Light curve Shape 0.009
Color Correction 0.026
Quadrature Sum (not used) 0.073
Summed in Covariance Matrix 0.063

The best fit cosmological parameters for the compilation are presented in Table 4.4 with
constraints from CMB and BAO. The confidence regions in the (ΩM ,ΩΛ) and (ΩM , w)
planes for the last fit in the table are shown in Figures 5.5 and 5.6 respectively.
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Table 4.4. Fit results on cosmological parametersΩM , w and Ωk. The parameter values are followed by their statistical (first column) and statistical and
systematic (second column) uncertainties.

Fit ΩM ΩM w/ Sys Ωk Ωk w/ Sys w w w/ Sys
SNe 0.270+0.021

−0.021 0.274+0.040
−0.037 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed)

SNe+BAO+H0 0.309+0.032
−0.032 0.316+0.036

−0.035 0 (fixed) 0 (fixed) −1.114+0.098
−0.112 −1.154+0.131

−0.150

SNe+CMB 0.268+0.019
−0.017 0.269+0.023

−0.022 0 (fixed) 0 (fixed) −0.997+0.050
−0.055 −0.999+0.074

−0.079

SNe+BAO+CMB 0.277+0.014
−0.014 0.279+0.017

−0.016 0 (fixed) 0 (fixed) −1.009+0.050
−0.054 −0.997+0.077

−0.082

SNe+BAO+CMB 0.279+0.014
−0.014 0.282+0.018

−0.016 −0.003+0.006
−0.006 −0.004+0.006

−0.007 −1 (fixed) −1 (fixed)
SNe+BAO+CMB 0.282+0.016

−0.015 0.282+0.018
−0.016 −0.004+0.007

−0.007 −0.005+0.008
−0.007 −1.029+0.056

−0.059 −1.038+0.093
−0.097

SNe+BAO+CMB+H0 0.275+0.015
−0.014 0.274+0.016

−0.015 −0.001+0.006
−0.006 −0.002+0.007

−0.007 −1.024+0.055
−0.058 −1.052+0.092

−0.096
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For the CMB data we implement the constraints from the 7 year data release of the
Wilkinson Microwave Anisotropy Probe (WMAP) as outlined in Komatsu et al. (2011).
We take their results on z! (the redshift of last scattering), lA(z!), and R(z!), updating the
central values for the cosmological model being considered. Here, lA(z!) is given by

lA(z!) ≡ (1 + z!)
πDA(z!)

rs(z!)
,

where DA is the angular distance to z!, while

R(z!) ≡
√

ΩMH2
0

c
(1 + z!)DA(z!) .

Percival et al. (2010) measures the position of the BAO peak from the SDSS DR7 and
2dFGRS data, constraining dz ≡ rs(zd)/DV (0.275) to 0.1390 ± 0.0037, where rz(zd) is
the comoving sound horizon and DV (z) ≡ [(1 + z)2D2

Acz/H(z)]1/3.
For the SNe + BAO fit in Table 4.4, we add anH0 measurement of 74.2±3.6 km/s/Mpc

from Riess et al. (2009), creating a constraint without the CMB that is therefore largely
independent of the high-redshift behavior of dark energy (as long as the dark energy density
contribution is negligible in the early universe). Note that the H0 constraint relies on most
of the nearby supernovae used in this compilation. However, the effect on w through H0

from these supernovae is several times smaller than the effect through the Hubble diagram.
Alternatively, adding a CMB constraint on Ωmh2 of 0.1338 ± 0.0058 from the WMAP7
webpage6 allows us to create a constraint that is independent of H0. This final result for
SNe +BAO+CMB does not improve significantly if the current H0 constraint is added.

4.4.1 Time variation of the dark energy equation of state
The constraints shown in Figure 5.6 were obtained assuming that the dark energy equa-

tion of state (EOS) is redshift independent. SNe Ia are useful for constraining a redshift
dependent w(z) since, unlike e.g. CMB, their measured distances at a given redshift are
independent of the behavior of dark energy at higher redshifts. A common method to pa-
rameterize w(z) is

w(z) = w0 + wa
z

1 + z

where a cosmological constant is described by (w0, wa) = (−1, 0). It can be shown (Linder
2003b) that this parameterization provides an excellent approximation to a wide variety of
dark energy models. The constraints from the current SN data together with the CMB and
BAO data are presented in Figure 4.7. In terms of the figure of merit7, introduced by the
dark energy task force (Albrecht et al. 2006), these constraints correspond to 1.2 and 1.8
with and without systematics respectively. The flattening of the contours in this diagram at

6http://lambda.gsfc.nasa.gov/product/map/current/params/wcdm sz lens wmap7.cfm
7Defined as the inverse area of the joint 2σ region in the Gaussian limit (∆χ2 = 6.17).

http://lambda.gsfc.nasa.gov/product/map/current/params/wcdm_sz_lens_wmap7.cfm
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w0+wa = 0 comes from the implicit constraint of matter domination in the early Universe
imposed by the CMB and BAO data. Only modest constraints can currently be placed on
wa.

It can be illuminating to study w(z) in redshift bins, where w is assumed constant in
each bin. This method has the advantage that w(z) can be studied without assuming a spe-
cific form for the relation (Huterer & Starkman 2003). We carry out the analysis following
Chapter 2 and fit a constant w in each bin, while the remaining cosmological parameters
are fit globally for the entire redshift range. Figure 4.8 shows three such models for the
combined constraints from SNe, BAO, CMB, and H0 measurements where we assume a
flat Universe. In these scenarios, theH0 measurement does not contribute much, but due to
its small improvement on the CMB constraints it gives a small (∼ 10%) improvement on
the errorbar of the highest redshift bin.

The left panel shows constraints on w for three bins. The first bin (0 < z < 0.5) shows
a well-constrained w. The middle bin (0.5 < z < 1) shows a poorly-constrained w, though
one that is distinct from−∞ (which would drive ρ to 0 above z = 0.5, resulting in a matter-
only universe) at high confidence, indicating the detection of some kind of dark energy in
this redshift range. For z > 1, there is little constraint on w, and only a weak constraint on
the existence of dark energy.

The middle panel shows the effect of dividing the highest redshift bin. The constraints
on w for z > 1 get much weaker, showing that most of the (weak) constraint on the highest
bin in the left panel comes from a combination of the CMB with the well-constrained low-
redshift supernova data. Current supernovae at z > 1 offer no real constraint on w(z > 1).
Providing a significant constraint at these redshifts requires significantly better supernova
measurements. As in the left panel, w in the highest redshift bin is constrained to be less
than zero by the requirement from BAO and CMB constraints that the early universe have
a matter-dominated epoch.

The right panel shows the effect of dividing the lowest redshift bin. While no significant
change in w with redshift is detected, there is still considerable room for evolution in w,
even at low redshift.

Figure 4.9 shows dark energy density constraints, assuming the same redshift binning
as in Figure 4.8. Note that this is not equivalent to the left and center panels of Figure 4.8;
only in the limit of an infinite number of bins do binned ρ and binned w give the same
model. Dark energy can be detected at high significance in the middle bin (redshift 0.5 to
1), but there is only weak evidence for dark energy above redshift 1 (left panel). When the
bin above redshift 1 is split at a redshift greater than the supernova sample (right panel), it
can be seen that the current small sample of supernovae cannot constrain the existence of
dark energy above redshift 1.

4.4.2 SNe with ground-based near-IR data
Obtaining near-IR data of z ! 1 SNe Ia, whether from space or from the ground,

is critical for constraining the SALT2 color parameter, c. Without the near-IR data, the
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Figure 4.4. 68.3%, 95.4%, and 99.7% confidence regions in the (ΩM ,ΩΛ) plane from SNe combined with
the constraints from BAO and CMB both without (left panel) and with (right panel) systematic errors. Cos-
mological constant dark energy (w = −1) has been assumed.

uncertainty in this parameter for 2001hb and 2001gn, both beyond z = 1, increases by a
factor of two. Precise measurements of c are important, since uncertainties in c are inflated
by β ≈ 2.5 and tend to dominate the error budget when the corrected peak B-brightness of
SNe Ia are calculated.

Both 2001hb and 2001gn were observed with ground-based near-IR instruments. The
operational challenges associated in obtaining these data are significant. Long exposure
times (ten hours or more taken within a few days) in excellent observing conditions are
necessary. Even with queue mode scheduling, these observations are just feasible. Despite
the challenges, the uncertainty in the SALT2 color of these two SNe Ia is comparable to
the uncertainty in the color of the best space-based measured SNe Ia at z ! 1.

The ground based near-IR data also allow us to search for systematic offsets with near-
IR data taken from space. For z > 1.1 SNe Ia observed with NICMOS, the average SALT2
c value is c = 0.06 ± 0.03 mag. By comparison, the weighted average color of the three
SNe Ia at z ∼ 1.1 with ground-based near-IR data (2001hb and 2001gn from this work,
together with 1999fk from Tonry et al. (2003)) that pass the light curve cuts is, 0.01±0.07.
Neither the ground-based or space-based measurements show any Hubble diagram offset,
(∆µ = 0.03 ± 0.10 and −0.01 ± 0.06, respectively), from the best fit cosmology. These
results include a 0.1 magnitude dispersion in color, and the fitted systematic dispersions in
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Figure 4.5. 68.3%, 95.4%, and 99.7% confidence regions of the (ΩM , w) plane from SNe combined with
the constraints from BAO and CMB both without (left panel) and with (right panel) systematic errors. Zero
curvature and constant w have been assumed.

magnitude. Additional SNe Ia at z ∼ 1.1 with ground based near-IR photometry are given
in Chpater 5, where we also incorporate the results from the NICMOS calibration program
referenced in section 4.3.1.

4.4.3 Comparison of KeplerCam and SDSS Photometry
H09 and KS09 share three normal supernovae in common: 2005hc, 2005hj, and 2005ir.

In comparing the data for these SNe, we noticed that the H09 KeplerCam r-band photom-
etry is generally 0.05 ± 0.02 magnitudes fainter than the KS09 SDSS r-band photometry
based on SALT2 fits including both data sets. The quoted uncertainty is completely dom-
inated by the zero-point uncertainties, as both sets of data have high S/N. The offset is
consistent for each supernova. This offset is the correct size and direction to explain the
tension in Hubble residuals seen between these datasets in second panel of Figure 4.3.

SN 2005hc and SN 2005ir were also observed by CSP using the Swope telescope. In
these cases, the Swope photometry agrees with the SDSS r-band photometry.
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Figure 4.6. 68.3%, 95.4%, and 99.7% confidence regions of the (ΩM , w) plane from SNe alone fromChapter
2 (dashed contours) and this compilation (shaded contours). Systematic errors are included in the right panel.
Zero curvature has been assumed.

Figure 4.7. 68.3%, 95.4%, and 99.7% confidence regions of the (w0, wa) plane from SNe combined with the
constraints from BAO and CMB both with (solid contours) and without (shaded contours) systematic errors.
Zero curvature has been assumed. Points above the dotted line (w0+wa = 0) violate early matter domination
and are implicitly disfavored in this analysis by the CMB and BAO data.
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Figure 4.8. Constraints on w(z), where w(z) is assumed to be constant in each redshift bin, are plotted
at the 68% probability level. The results were obtained assuming a flat Universe for the joint data set of
supernovae, BAO, CMB, and H0, with (dark/orange) and without (light/yellow) SN systematics. The left
panel shows three redshift bins, with the highest redshift bin keeping w constant for all z > 1. Dark energy
is seen to exist at z > 1 (at least at 68% cl) since w does not reach an infinitely negative value, indicating its
density does not go to zero. The middle panel splits this last bin into two, showing that the seemingly tight
constraints on dark energy at z > 1 with current data depend on the combination of CMB with low-redshift
data. No current probe alone can constrain the existence of dark energy at z > 1. The right panel shows the
effects of w binning at low redshift. The best fit values of w go from less than −1 at z = 0.14 to greater than
−1 at z = 0.04. While such a steep, late time transition in w (corresponding to dw/d ln a ≈ 7) is unusual in
physical models, it can easily appear due to offsets between heterogeneous data sets. We emphasize that the
results are still consistent with the cosmological constant (dot-dashed line) at the 68% confidence level.

Figure 4.9. Here the dark energy density in units of the critical density today, ρ/ρc0, is assumed constant in
each bin. The same binning as the left/center panels in Figure 4.8 is chosen. As can be seen in the left panel,
dark energy is detected between redshift 0.5 and 1 at high significance, but only hints of dark energy are seen
above redshift 1. When the CMB and SNe are separated, neither one alone can provide any evidence for dark
energy at z¿1.
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Table 4.5. Subdivisions of the Union2 compilation. Values of absolute B-band magnitude,MB (assuming H0 = 70 km/s/Mpc), as well as stretch and
color correction coefficients, α and β, for several redshift ranges. ΩM and w are shown for properly conducted x1 and c cuts, chosen to give similar
uncertainty of the fitted w. The outlier rejection is redone for each bin, so the totals may not add up to the whole sample. The constraints are computed
including BAO and CMB data.

Cut Number MB α β ΩM w
0.015 ≤ z ≤ 0.10 166 −19.323+0.016

−0.016 0.112+0.011
−0.011 2.77+0.09

−0.09 0.270 (fixed) −1.000 (fixed)
0.100 ≤ z ≤ 0.25 74 −19.326+0.020

−0.020 0.154+0.019
−0.018 2.49+0.15

−0.14 0.270 (fixed) −1.000 (fixed)
0.250 ≤ z ≤ 0.50 154 −19.305+0.014

−0.014 0.110+0.013
−0.013 2.50+0.12

−0.11 0.270 (fixed) −1.000 (fixed)
0.500 ≤ z ≤ 1.00 133 −19.309+0.016

−0.017 0.129+0.018
−0.018 1.45+0.19

−0.19 0.270 (fixed) −1.000 (fixed)
z ≥ 1.000 16 −19.450+0.083

−0.106 −0.124+0.085
−0.118 3.84+1.20

−0.85 0.270 (fixed) −1.000 (fixed)
c ≥ 0.05 245 −19.373+0.026

−0.026 0.112+0.011
−0.011 2.96+0.10

−0.10 0.283+0.017
−0.016 −0.969+0.070

−0.074

c ≤ 0.05 308 −19.305+0.019
−0.020 0.122+0.010

−0.010 1.13+0.30
−0.28 0.284+0.015

−0.015 −0.959+0.058
−0.062

x1 ≥ −0.25 302 −19.358+0.023
−0.023 0.026+0.021

−0.021 2.60+0.10
−0.09 0.278+0.015

−0.014 −0.996+0.061
−0.065

x1 ≤ −0.25 254 −19.335+0.031
−0.032 0.147+0.020

−0.019 2.42+0.10
−0.10 0.276+0.016

−0.015 −1.016+0.069
−0.073

Holtzman et al. (2009) 129 −19.315+0.013
−0.013 0.147+0.014

−0.013 2.38+0.15
−0.14 0.270 (fixed) −1.000 (fixed)

Hicken et al. (2009) 102 −19.299+0.021
−0.022 0.113+0.013

−0.013 2.73+0.10
−0.10 0.270 (fixed) −1.000 (fixed)

Miknaitis et al. (2007) 74 −19.325+0.032
−0.033 0.112+0.037

−0.035 2.50+0.17
−0.16 0.270 (fixed) −1.000 (fixed)

Astier et al. (2006) 71 −19.287+0.016
−0.017 0.140+0.017

−0.017 1.72+0.18
−0.17 0.270 (fixed) −1.000 (fixed)

z ≥ 0.015 557 −19.310+0.014
−0.014 0.121+0.007

−0.007 2.51+0.07
−0.07 0.277+0.014

−0.014 −1.009+0.050
−0.054
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4.5 Summary and Conclusions
Following Chapter 2, we add six high-redshift SNe from Amanullah et al. (2010) and

other SN Ia data sets to the Union compilation. We have also improved the Union analysis
in a number of respects, creating the new Union2 compilation. The most important im-
provements are: (1) Systematic errors are directly computed using the effect they have on
the distance modulus (2) All SN light curves are fitted with the SALT2 light curve fitter.

We determine the best fit cosmology for the Union2 compilation, and the concordance
ΛCDM model remains an excellent fit. The new analysis results in a significant improve-
ment over the Union compilation in constraining w over the redshift interval 0 < z < 1.
Above z ! 1, evidence for dark energy is weak. This will remain the case until there is
much more high redshift data, with better signal-to-noise and wavelength coverage. 8

8The work presented in this chapter is supported in part by a JSPS core-to-core program “International
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Research Fellowship.
C.L. acknowledges the support provided by the Oskar Klein Centre at Stockholm University.
Support for programs HST-GO-08585.14-A and HST-GO-09075.01-A was provided by NASA through a

grant from the Space Telescope Science Institute, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-26555.
The authors would like to thank the anonymous referee for its helpful comments and suggestions.
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CHAPTER 5

Union2.1

In order to efficiently build the high-redshift end of the Hubble diagram, the SCP pro-
posed a survey of the 25 most massive 0.9 < z < 1.5 galaxy clusters with theHubble Space
Telescope. We were awarded 219 orbits in cycle 14 to carry out this program (referred to
as the Hubble Space Telescope Cluster Supernova Survey), discovering 16 z > 0.9 secure
or probable SNe Ia. In this chapter, I describe the construction of the generative models
(forward models) that I used for the IR photometry. These models allowed an optimal use
of a scarce resource that proved crucial to getting precise color measurements (and thus
precise distances). In addition, we make use of the SCP calibration of the IR count-rate
nonlinearity, which differs from the STScI calibration by ∼ 0.06 magnitudes, an amount
equal to more than one statistical error bar for the high-redshift SNe.

I made other improvements as well. Kelly et al. (2010); Sullivan et al. (2010) presented
strong evidence that host galaxy environment affects the magnitude of SNe Ia, even after
the standard color and light-curve shape corrections are applied. Section 5.3.1 describes
my addition of this effect to the cosmology fitting, shifting constant w by about half its
error bar. These corrections are especially important for the cluster-hosted SNe, as they
come from a biased sample of galaxies (more massive, more metal-rich, lower specific star-
formation-rate). With these improvements in hand, I computed the then best constraints on
time-varying dark energy. 1

5.1 SN Discoveries and Data

5.1.1 SN Sample
As described in Dawson et al. (2009), the survey produced a total of 39 likely SNe

during the active phase of the search. In Barbary et al. (2012a), types are determined for
29 of these candidates. (The remaining 10 do not have enough light curve information to
determine type, since they lie outside of our fiducial search time window or our signal-to-
noise cuts.) Twenty SNe are classified as SNe Ia, with confidence levels of secure, probable

1This chapter was previously published as sections 3, 4, 5, and 6 from Suzuki et al. (2012).
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or plausible. A secure SN Ia is one that either has a spectrum that directly confirms it to be
a SN Ia or one that satisfies two conditions: (1) it occurred in a host whose spectroscopic,
photometric and morphological properties are consistent with those of an early-type galaxy
with no detectable signs of recent star formation, and (2) it has a lightcurve shape consistent
with that of a SN Ia and inconsistent with all other known SN types. A probable SN Ia is
one that does not have a secure spectrum but satisfies one of the two non-spectroscopic
conditions that are required for a secure classification. A plausible SN Ia is one that has
an indicative lightcurve but we do not have enough data to rule out other types. Details of
the classification scheme can be found in Barbary et al. (2012a), and details of the galaxy
typing can be found in Meyers et al. (2011).
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Table 5.1. Supernovae fromHST Cluster Supernova Survey. a Spectroscopically confirmed as a SNe Ia b Redshift from SNe Ia or host galaxy (Morokuma
et al. 2010, Barbary et al. 2010, Meyers et al. 2011) c Redshift from cluster (Meyers et al. 2011, references therein) d Galactic Extinction from Schlegel
et al. (1998)
SN name Nickname z zcluster RA (J2000) DEC (J2000) E(B-V) Confidence
SNe Hosted by Cluster Early-Type Galaxies
SCP05D0a Frida 1.014 1.017 02:21:42.066 −03:21:53.12 0.025 secure
SCP06H5 Emma 1.231 1.241 14:34:30.140 +34:26:57.30 0.019 secure
SCP06K0 Tomo 1.415 1.414 14:38:08.366 +34:14:18.08 0.015 secure
SCP06K18 Alexander 1.411 1.414 14:38:10.665 +34:12:47.19 0.014 probable
SCP06R12 Jennie 1.212 1.215 02:23:00.083 −04:36:03.05 0.026 secure
SCP06U4a Julia 1.050 1.037 23:45:29.430 −36:32:45.75 0.014 secure
SNe Hosted in the Cluster
SCP06C1a Midge 0.98 0.974 12:29:33.013 +01:51:36.67 0.019 secure
SCP06F12 Caleb 1.110 1.110 14:32:28.749 +33:32:10.05 0.010 probable
SNe Hosted by Early-Type Non-Cluster Members
SCP05D6 Maggie 1.315 1.017 02:21:46.484 −03:22:56.18 0.025 secure
SCP06G4a Shaya 1.350 1.259 14:29:18.744 +34:38:37.39 0.015 secure
SCP06A4 Aki 1.192 1.457 22:16:01.078 −17:37:22.10 0.026 probable
SCP06C0 Noa 1.092 0.974 12:29:25.655 +01:50:56.59 0.020 secure
SNe Hosted by Late Type Galaxies
SCP06G3 Brian 0.962 1.259 14:29:28.430 +34:37:23.15 0.015 plausible
SCP06H3a Elizabeth 0.850 1.241 14:34:28.879 +34:27:26.62 0.019 secure
SCP06N33 Naima 1.188 1.026 02:20:57.699 −03:33:23.98 0.023 probable
SCP05P1 Gabe 0.926 1.1 03:37:50.352 −28:43:02.67 0.011 plausible
SCP05P9a Lauren 0.821 1.1 03:37:44.513 −28:43:54.58 0.011 secure
SCP06X26 Joe 1.440 1.101 09:10:37.888 +54:22:29.06 0.019 plausible
SCP06Z5a Adrian 0.623 1.390 22:35:24.967 −25:57:09.61 0.021 secure
SNe with No Definitive Redshift Measurement
SCP06E12 Ashley . . . 1.026 (cluster redshift) 14:15:08.141 +36:12:42.93 0.009 plausible
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Figure 5.1. Composite color (i775 and z850) images of 20 SNe Ia from the HST Cluster Supernova Survey.
Each SN Ia is shown in a box of 3.2′′ × 3.3′′ (North up and East left). Note the redshift of SCP06E12 is
uncertain, and we use the cluster redshift as a guide.
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Sixteen SNe are classified as either secure or probable. We use these SNe in the cosmo-
logical analysis. We include the photometry and lightcurves of an additional four plausible
SNe Ia to illustrate the quality of the data and the potential for a similar sample with com-
plete classification (and because additional host galaxy data may later bring one of these
into the larger sample). Secure, probable and plausible SN Ia are listed in Table 5.1, to-
gether with their position, redshift and typing. Postage stamp images of the SNe and host
galaxies are shown in Figure 5.1.

We labeled each of our 25 clusters with a letter from ‘A’ to ‘Z’ (excluding ‘O’ to avoid
confusion with zero) and assigned supernova names as ‘SCP’+[discovery year]+ [discov-
ered cluster]+[SN ID]. The cluster IDs, coordinates, and redshifts are found in tables in
Dawson et al. (2009); Barbary et al. (2012a); Meyers et al. (2011). The cluster membership
is discussed in Meyers et al. (2011) in detail and summarized in Table 5.1 along with host
type information.

5.2 Photometry
For the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) data, we pro-

cessed the data to compensate for amplifier offsets, bright Earth persistence, contamination
from the passage of the telescope through the South Atlantic Anomaly (SAA), residual am-
plifier glow and fringing, and applied a wavelength-dependent non-linearity correction. A
more detailed description of the individual steps now follows.

5.2.1 NICMOS Processing and Photometry
All NICMOS science frames were processed with the latest CALNICA pipeline (ver-

sion 4.4.1 Dahlen et al. 2008). This pipeline includes accurate weighting of each readout
and optimal removal of cosmic-rays, as recommended in Fadeyev et al. (2006). CALNICA
does not account for the affect of cosmic ray hits on neighboring pixels (Fadeyev et al.
2006), but these were found to have no appreciable impact for the data reported here. Sub-
sequently the science frames were corrected for three well-known anomalies: the offset
between amplifiers, which affects all NICMOS exposures and is removed using the STS-
DAS PyRAF task PEDSKY; persistence after passage of the telescope through the South
Atlantic Anomaly (SAA); and persistence after exposing the detectors to the limb of the
Earth. Nine exposures are affected by the SAA, which leaves persistent signals from SAA
cosmic rays. We applied the STSDAS PyRAF task SAACLEAN (Barker et al. 2007) to
remove SAA persistence effects from the images. When a NICMOS observation is imme-
diately preceded by an ACS data dump, the process could delay the NICMOS placement
of the filter blank, subjecting the detectors to the bright limb of the Earth, which imprints a
persistent pattern on subsequent exposures (Riess & Bergeron 2008). Four exposures were
affected in this way and were corrected using the STSDAS software NIC REM PERSIST.
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At this point, the mode of the flux distribution in each image is measured and recorded.
These values are used as the sky levels for the count-rate non-linearity correction.

Even after correcting NICMOS data for these well-studied anomalies, significant large-
scale background non-uniformities remain. We developed methods to extract and remove
the background structures; these are detailed in Hsiao et al. (2011). Briefly, the models for
the background structures are studied and characterized using approximately 600 NICMOS
exposures observed through the F110W filter and processed with the procedures described
above. Principal component analysis applied on these images revealed that the intensity
of the residual corner amplifier glow depends on the exposure sequence. The amount of
residual glow decays exponentially and resets every orbit. With exposure times on the order
of 1000 seconds, the exposures can be separated into two glow groups, each with approxi-
mately constant intensity. This makes it possible to extract the residual glow algebraically.
The structured background is modeled as a combination of a constant component and a
component that scales with the sky level and exposure time. The models are derived from
the algebraic manipulation of stacked images for each glow group. The resulting constant
component of the model is dominated by residual amplifier glow at the corners and resid-
ual persistence structure at the center. The model component which scales with sky level
and exposure time displays a curious fringe pattern whose origin is unknown. The model
components are fit to individual exposures via scale parameters to create the customized
background models to be subtracted from the individual exposures. In a final step, the bias
offsets apparent in the middle column and middle row are removed. Additional details can
be found in Hsiao et al. (2011).

NICMOS Count-rate non-linearity

The NICMOS data are critically important for measuring the color of z > 1 SNe Ia.
Any uncertainty in the NICMOS calibration severely limits the usefulness of SNe Ia ob-
served with NICMOS. In particular, the NIC2 detector exhibits a count-rate dependent
non-linearity (Bohlin et al. 2005), the severity of which is a function of wavelength.

This non-linearity previously has only been studied at count rates three orders of mag-
nitude higher (de Jong et al. 2006) than the count rate of a typical SN Ia at z = 1, meaning
that correcting the flux of SN Ia at z = 1 requires significant extrapolation and has a level
of uncertainty that is difficult to quantify. For example, comparisons between ground-based
near-IR data and a different NICMOS camera (NIC3) showed that little or no correction is
required for that camera (Mobasher & Riess 2005). It is difficult to reconcile this finding
with the findings of Bohlin et al. (2006) and de Jong et al. (2006). A simple test at the flux
levels relevant for the supernovae in this work shows a difference of 12% between NIC2
and NIC3 when the non-linearity corrections are made, revealing significant problems with
these extrapolations.

For the NIC2/F110W filter, the degree of count-rate non-linearity is ∼ 0.06 mag per
factor of 10 change in count rate (Bohlin et al. 2006; de Jong et al. 2006). The count rates
from stars that are used to determine the NICMOS zero points are five orders of magnitude
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higher than the count rate of a typical SN Ia at z = 1. This corresponds to a ∼ 0.3 mag
correction for the NIC2/F110W filter!

Since this is so important to the cosmological results, we have developed a method
to address this count-rate non-linearity calibration directly (Ripoche et al. 2013). We
analyze ACS, NICMOS, and ground-based near-IR observations of early-type galaxies
from clusters RCS J0221.6−0347 (z = 1.02), RDCS J1252.9−2927 (z = 1.24), and
XMMU J2235.3−2557 (z = 1.39). The space and ground-based data are used to con-
strain the spectral energy distributions (SED) of these galaxies, which are then numerically
integrated through the F110W filter transmission curve and compared to the counts mea-
sured with NICMOS. The principle advantage of the technique is that the count rate from
early type galaxies at this redshift is similar to that measured for SNe Ia, i.e. about 0.03
counts/second/pixel (the contribution from amplifier glow is comparable). We applied this
technique using three galaxy clusters that have deep ground based near-IR imaging data
from the VLT and deep images with the ACS and NICMOS camera. All three clusters are
at different redshifts and produced consistent results. At the low count rates that are appli-
cable to high-redshift SNe Ia, we find that the prescription of Bohlin (2007b) and de Jong
et al. (2006) over-predicts the zeropoint correction for the NIC2 camera with the F110W
filter by 0.065 mag. We therefore use our zeropoint of 23.029 (Vega magnitude ) or 23.757
(AB magnitudes). Additional details can be found in Ripoche et al. (2013).

At high count rates, the count-rate non-linearity size has a strong dependence with
wavelength across filters (de Jong et al. 2006), being considerably stronger in bluer filters.
The SED of an early-type galaxy at z ∼ 1.2, is a good match to a SN Ia about 20 rest-frame
days after maximum, but is redder than a supernova SED at maximum (though this is
compensated somewhat by the fact that the background level is about 1/3 of the source flux
and is blue in the F110W bandpass). The size of the count-rate non-linearity correction
will thus also depend weakly on the phase and redshift, varying from 0.02 magnitudes
at maximum to no additional correction 20 rest-frame days after maximum. Since the
wavelength-dependence of the non-linearity may not be even this strong at low count rates,
we apply half the correction applicable at each phase, and add (in quadrature) an additional
0.01 magnitudes to the F110W zeropoint error to account for this uncertainty. When added
to the 0.006 mag statistical error, and 0.021 mag systematic error (Ripoche et al. 2013), this
gives a total uncertainty on the zeropoint of 0.024 magnitudes. For the GOODS supernovae
with NICMOS observations, we start with the original flux given by Riess et al. (2007)
(after converting the magnitude measurements to fluxes using the given zeropoint of 22.92),
but increase the flux by 0.01 magnitudes, representing half the correction for the (possible)
wavelength-dependence of the count-rate non-linearity.

Galaxy Models

After the postprocessing described above (Hsiao et al. 2011), we measure fluxes from
the eight SNe Ia with NICMOS observations by performing PSF photometry on the images.
In all cases, the SNe Ia are not separated enough from their hosts to allow us to fit for the
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supernova flux alone; rather we fit a model of the host galaxy as well. By performing
PSF photometry using analytic galaxy models, we avoid resampling the images (the better
PSF sampling for the ACS data negates this advantage of PSF photometry), and extract the
maximum possible signal-to-noise from our observations. We fit an analytic model of the
host galaxy even when we have reference images, as this gives higher signal-to-noise, and
nearly uncorrelated photometry between epochs2.

Model PSFs for the supernovae are obtained with the TinyTim software using supernova
SED templates from Hsiao et al. (2007) redshifted to the supernova redshift and warped as
a function of wavelength to match the photometry. After the lightcurve fitting is com-
plete, new PSFs are generated from the SEDs based on this photometry and the process
is repeated. Model PSFs for the galaxies are obtained with TinyTim by appropriately red-
shifting a galaxy spectrum from Bruzual & Charlot (2003) with an age of 2.5 Gyr and a
solar metallicity; the exact shape of the galaxy spectrum does not greatly affect the results.
The PSFs used are 3′′ in diameter, comparable to the patch fit in each NICMOS image.

Although there is virtually no information at scales smaller than about half a pixel, all
PSFs are seven times oversampled. This oversampling is necessary because the PSF is
made slightly wider by the convolution with the subsampled pixels, increasing the flux of
the derived photometry. In order for this effect to be negligible, seven times oversampling
must be used. Finally, a correction is made to match the photometry from the 3′′ TinyTim
PSFs to the 30′′ TinyTim PSFs used in Ripoche et al. (2013). These differently-sized PSFs
show different structure far in the wings, but the flux in the core changes by 3.5%, with
negligible variation.

We generally model the host galaxies as ellipsoids, with radial profiles given by second
degree polynomial splines. These splines have ten nodes, with spacing that asymptotically
approaches an exponential away from the core. The higher node density near the core
provides more freedom to model the host where the flux changes quickly with position.
In the few pixels closest to the core, where the spline changes rapidly, we numerically
integrate over each subpixel before convolving with the PSF. On the basis of our tests
(see §5.2.1), the hosts of some supernovae were modeled with modifications to this basic
scheme, as discussed in the following section.

Photometry Testing

Three ingredients all have to be correct in order to achieve photometry with low bias
and variance: the PSF model, the galaxy model, and the supernova centroid. Deriving a
PSF from a field star (details in the SN SCP06C0 discussion below) and comparing against
TinyTim gives photometry consistent to a few mmags, so we do not believe this is a major
contribution to our errors.

2Had we subtracted the flux in the reference images at the location of the supernova, the errors from this
flux would have to be propagated as a covariance for all the other epochs. The errors on the galaxy model at
the position of the supernova are typically much smaller.
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Testing the host galaxy model and supernova centroiding is more involved. For each
observation, we subtract the best-fit supernova light, and place simulated supernovae (at the
same flux level) in the images. The only place one cannot do this test is at the location of the
actual supernova, as putting a simulated PSF in this location yields a measurement that will
be highly correlated with the measurement of the supernova. We therefore do not place any
simulated supernovae closer than two pixels to the best-fit location of the supernova. By
examining the bias and variance of the extracted fluxes from a large number of simulations
(∼ 100), we can choose the galaxy model which gives the most precise and accurate3 fluxes
for each particular supernova. We emphasize that the results of these simulations were the
only metric used in choosing the detailed model. In particular, there was no feedback
from the shape of the lightcurve or the Hubble diagram since these would have undercut
the principles of “blind” analysis we tried to maintain (see §5.3). The same basic galaxy
model (discussed above) was used for the NICMOS photometry of each supernova, with
the following exceptions.

• SN SCP06C0: As mentioned in §5.1.1, there is a small galaxy about 0.6′′ from the
likely host of SN SCP06C0, and just 0.2′′ from SN SCP06C0 itself. We note that the
surface brightness of the small galaxy is one fourth of that host at the location of the
supernova. The host also has some azimuthal asymmetry visible, indicating a pos-
sible merger. The cluster XMM1229+01 was also observed as part of a program to
cross-calibrate NICMOS (Ripoche et al. 2013) and deep, well-dithered images were
obtained in the WFC3 F110W filter, allowing a more-flexible background model to
subtract both galaxies. We modeled the galaxies with a 2D second-order spline, with
nodes placed in a grid every 0.076′′ (the natural pixel scale of NICMOS). The WFC3
F110W PSF was modeled as a combination of the elliptical galaxy model and a 2D
spline (with a spacing of 0.1′′) using dithered images of a field star. (This is the same
empirical PSF model used for testing TinyTim for NICMOS, although there the 2D
spline nodes are spaced at the natural pixel scale of NICMOS.) Our testing indicates
that this method achieves the same signal-to-noise ratio as the other supernovae that
have simpler galaxy subtractions.

• SN SCP06A4: We found a small amount of azimuthal asymmetry in the host. Adding
a second-order 2D spline to the galaxy model, with a node spacing of 0.38′′ (five
times the natural pixel scale of NICMOS 2) successfully modeled this asymmetry,
without adding additional measurement uncertainty to the supernova flux.

• SN SCP05D6: The host galaxy requires two elliptical components to be fitted well.
These components are forced to have the same centroid, but are allowed different
orientations, ellipticities, and radial profiles. One component forms a bulge, while the
other one forms a disk. In one epoch contaminated by the SAA, aperture photometry
with a one-pixel radius aperture on the galaxy-model-subtracted images gave better
signal-to-noise than PSF photometry, so we used this instead.

3We found that precision and accuracy correlated in our simulations.
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• SN SCP06U4: This supernova was on the core of a galaxy that appears to be merging
with another galaxy. Similarly to SN SCP05D6, a second elliptical component was
needed to model the host, (in this case, a third, detached component was used to
model the fainter companion). Our simulated supernovae revealed that, rather than
using one host galaxy model to extract photometry, even more precise results were
obtained averaging photometry results derived using the elliptical model and the 2D
spline model (discussed above for SN SCP06C0). Using this procedure results in a
change in flux well inside the error bar.

• SN SCP06H5: The one NICMOS observation of this supernova was our most chal-
lenging extraction. The observation of the supernova was 11 rest-frame days after
maximum, and it is only ∼ 0.1′′ from the core. As with SN SCP05D6, the host
galaxy requires two elliptical components to be fitted well.(Comparing to the 2D
spline model discussed above, we obtain photometry that is the same to within a
small fraction of the error bar.)
The signal-to-noise ratio of this measurement is low, likely implying some amount
of bias due to centroiding error. However, this is the only measurement with a signal-
to-noise this low, so no correlation is introduced with any other measurement.

5.3 Augmenting the Union2 Supernova Compilation:
Union2.1

SNe Ia are an excellent probe of dark energy, as they measure the magnitude-redshift
relation with very good precision over a wide range of redshifts, from z = 0 up to z ∼ 1.5
and possibly beyond. While some individual sets of SNe Ia are now, by themselves, large
enough to provide constraints on some cosmological parameters (Guy et al. 2010; Kessler
et al. 2009), they do not yet constrain the properties of dark energy as well as analyses that
combine individual data-sets to create a compilation of SNe Ia that covers a broader range
of redshifts. In Chapter 2, we developed a systematic methodology for combining the many
available datasets into one compilation, called the “Union” compilation.

There are many positive features behind the philosophy adopted by the Union analy-
sis. It includes all SN Ia data-sets on an equal footing, with the same lightcurve fitting,
cuts, and outlier rejection. Estimates of the systematic error are entered into a covariance
matrix, which can be used for fitting any cosmological model. Choices about how to do
the analysis and what cuts to apply are done with the cosmological results hidden. This
type of “blind” analysis mitigates biases that arise from inadvertently scrutinizing some
data more than others. In Chapter 4 (Amanullah et al. 2010), we adopted this strategy to
create the Union2 compilation. This work also revised and improved the Union analysis
in several significant ways. Firstly, it augmented the Union sample with new SN Ia data-
sets from the literature, including 102 low-redshft SNe Ia from the CfA3 survey (Hicken
et al. 2009), 129 intermediate-redshift SNe Ia from the SDSS SN survey (Holtzman et al.
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2008), five intermediate-redshift SNe Ia discovered from La Palma (Amanullah et al. 2008),
and six new high-redshift SNe Ia. This work revised the analysis by replacing the SALT
lightcurve fitter with SALT2 (Guy et al. 2005, 2007), and handled many systematic errors
on a supernova-by-supernova basis in a covariance matrix.

In the current chapter, we use the analysis procedure that was used for the Union2 com-
pilation with only one significant change: a correction for the host-mass SN Ia-luminosity
relation, described below. The HST calibration and the associated errors have also been
updated, as described in Section 5.3.4. We refer to this new compilation as “Union2.1.”

5.3.1 Host Mass Correction to SN Ia Luminosities
There is evidence that SN Ia luminosity correlates with the mass of the host galaxy, even

after the corrections for color and light curve width have been applied (Kelly et al. 2010;
Sullivan et al. 2010; Lampeitl et al. 2010). Since low-redshift SNe Ia are predominantly
from surveys that target catalogued galaxies, the host galaxies of SNe Ia in these surveys
are, on average, more massive than the host galaxies of distant SNe Ia from untargeted
surveys. SNe Ia from low-redshift samples therefore have brighter absolute magnitudes.
Left uncorrected, the correlation biases cosmological results (Sullivan et al. 2010).

Sullivan et al. (2010) find that the correlation can be corrected by fitting a step in ab-
solute magnitude at mthreshold

! = 1010m&. There are two complications with making this
correction: most of the SNe in the Union2 compilation do not have host mass data avail-
able in the literature, and SN Ia hosts with masses close to the cutoff may scatter across,
decreasing the fitted size of the step. To address these problems, we adopt a probabilis-
tic approach to determining the proper host mass correction to apply to each supernova,
correcting each supernova by the probability that it belongs in the low-host-mass category.
(The low-host-mass category was chosen because most of the low-redshift supernovae are
from high-mass galaxies, so correcting the low-host-mass supernovae minimizes the corre-
lation betweenMB and the correction coefficient.)

Suppose we have a mass measurement mobs
! and we would like to estimate the proba-

bility that the true massmtrue
! is less than the mass threshold. We begin by noting that

P (mobs
! , mtrue

! ) = (5.1)
P (mobs

! |mtrue
! )P (mtrue

! ) .

We can then integrate this probability over all true host masses less than the threshold:

P (mtrue
! < mthreshold

! |mobs
! ) = (5.2)

∫ mthreshold
!

mtrue
! =0

P (mobs
! |mtrue

! )P (mtrue
! )

up to a normalization constant found by requiring the integral to be unity when integrat-
ing over all possible true masses. P (mtrue

! ) is estimated from the observed distribution for
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each type of survey. The SNLS (Sullivan et al. 2010) and SDSS (Lampeitl et al. 2010)
host masses were assumed to be representative of untargeted surveys, while the mass dis-
tribution in Kelly et al. (2010) was assumed typical of nearby targeted surveys. As these
distributions are approximately log-normal, we use this model for P (mtrue

! ) using the mean
and RMS from the log of the host masses from these surveys (with the average measure-
ment errors subtracted in quadrature), giving log10 P (mtrue

! ) = N (µ = 9.88, σ2 = 0.922)
for untargeted surveys and log10 P (mtrue

! ) = N (10.75, 0.662) for targeted surveys. When
host mass measurements are available, P (mobs

! |mtrue
! ) is also modeled as a log-normal;

when no measurement is available, a flat distribution is used.
For a supernova from an untargeted survey with no host mass measurement (including

supernovae presented in this work which are not in a cluster), P (mtrue
! < mthreshold

! ) is
the integral of P (mtrue

! ) up to the threshold mass: 0.55. Similarly, nearby supernovae from
targeted surveys without host galaxy mass measurements are given a P (mtrue

! < mthreshold
! )

of 0.13. (Very similar numbers of 0.50 and 0.09 are derived from the observed distribution,
without using the log-normal approximation.) We must make the correction for supernovae
in clusters, as these are from a targeted survey. We take advantage of the simpler SEDs of
early-type galaxies to precisely measure these masses4.

The best-fit mass-correction coefficient, δ, is much smaller in magnitude (−0.03) than
that found in other studies (≈ −0.08). This may be due to the small value for δ from
the first-year SNLS data, as shown in Table 5.5. We include the difference in δs as a
systematic, as discussed in §5.3.5. For this analysis, we assumed the host-mass correction
does not evolve with redshift.

5.3.2 Light-Curve Fitting
Amanullah et al. (2010), we use SALT2 (Guy et al. 2007) to fit supernova lightcurves.

The SALT2 model fits three parameters to each SNe: an overall normalization, x0, to the
time dependent spectral energy distribution (SED) of a SN Ia, the deviation, x1, from the
average lightcurve shape, and the deviation, c, from the mean SN Ia B−V color. The three
parameters, x1, c, and integrated B-band flux of the model SALT2 SED at maximum light,
mmax

B , are then combined with the host mass to form the distance modulus

µB = mmax
B + α · x1 − β · c+ δ · P (mtrue

! < mthreshold
! )−MB , (5.3)

whereMB is the absoluteB-band magnitude of a SN Ia with x1 = 0, c = 0 and P (mtrue
! <

mthreshold
! ) = 0. The parameters α, β, δ and MB are nuisance parameters that are fitted

simultaneously with the cosmological parameters. The SN Ia photometry data and SALT2
light curve fits are shown in Figure 5.2. The fitted SALT2 parameters are listed in Table 5.2
as well as the host galaxy host stellar mass and lensing magnification factor.

4C-001 and F-012 are in clusters, but are not hosted by early-type hosts. We use the untargeted value for
their host-mass–luminosity relation correction.
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Figure 5.2. 15 SNe Ia light curve fits by SALT2. Flux is normalized to the z850-band zeropoint magnitude.
ACS i775, ACS z850 and NICMOS F110W data is color coded in blue, green and red respectively. Note that
SCP 05D06 (z=1.314) hasH-band data from Keck AO system (orange) (Melbourne et al. 2007) and that this
data is consistent with the HST/ACS and HST/NICMOS light curve data.
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Table 5.2. SALT2 Lightcurve Fit Results . The details of host galaxy identifications, coordinates and its stellar mass measurements can be found in
Meyers et al. (2011). Gravitational lensing magnification factor (see §5.1.1 for details). For cosmological analysis we must divide the corrected SNe
fluxes by this factor to make use of these supernovae. SCP06U4 is not included in our current cosmological results, but will likely be included in future
compilations (see §5.3 for details).
SN name z MJDBmax mB x1 c Galaxy Mass (1011M$) Magnification
SCP06A4 1.192 53912.7± 1.5 25.497± 0.048 −1.45± 0.68 0.065± 0.084 0.44 . . .
SCP06C0 1.092 53735.4± 1.0 25.636± 0.066 −2.66± 0.65 0.257± 0.083 1.97 1.030+0.007

−0.005

SCP06C1 0.980 53759.0± 0.7 24.613± 0.028 −0.35± 0.33 0.014± 0.053 . . . . . .
SCP06F12 1.110 53718.4± 2.3 25.253± 0.068 −2.09± 1.29 −0.133± 0.142 . . . . . .
SCP06G4 1.350 53860.9± 1.4 25.424± 0.052 0.15± 0.64 −0.029± 0.052 1.72 1.015+0.005

−0.004

SCP06H3 0.850 53848.2± 0.6 24.345± 0.038 0.58± 0.31 0.089± 0.067 . . . . . .
SCP06H5 1.231 53860.2± 1.5 25.389± 0.111 −3.12± 1.10 −0.103± 0.187 3.66 . . .
SCP06K0 1.415 53751.3± 2.8 25.811± 0.087 0.30± 0.97 0.147± 0.081 2.30 . . .
SCP06N33 1.188 53962.6± 4.3 25.407± 0.132 −2.15± 1.32 −0.038± 0.175 . . . 1.066+0.017

−0.014

SCP05D0 1.014 53606.9± 0.9 25.201± 0.066 −0.61± 0.65 0.061± 0.085 0.40 . . .
SCP05D6 1.315 53658.5± 1.3 25.660± 0.046 −1.26± 0.56 −0.058± 0.061 2.61 1.021+0.012

−0.008

SCP05P9 0.821 53675.6± 0.6 24.367± 0.049 0.25± 0.50 0.022± 0.075 . . . . . .
SCP06R12 1.212 53966.6± 3.5 25.789± 0.114 −2.06± 1.50 −0.158± 0.198 0.23 . . .
SCP06U4 1.050 53944.4± 1.1 25.056± 0.063 −4.62± 1.09 −0.102± 0.096 1.11 . . .
SCP06Z5 0.623 53840.5± 3.0 23.482± 0.144 −0.76± 0.88 0.070± 0.120 . . . . . .
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5.3.3 Union2.1
To the Union2 SN Ia compilation (Amanullah et al. 2010), we add 16 SNe Ia from this

work that were classified as either secure or probable, including six SNe Ia hosted by high-
z cluster elliptical galaxies. The four SNe Ia that were classified as possible are not used.
We also add 18 SNe Ia from the low-redshift sample of Contreras et al. (2010), 9 of which
were not in Union2 (the others had published data from CfA). As in Union2, for all SNe
we require

1. that the CMB-centric redshift is greater than 0.015;

2. that there is at least one point between −15 and 6 rest-frame days from B-band
maximum light;

3. that there are at least five valid data points;

4. that the entire 68% confidence interval for x1 lies between −5 and +5;

5. data from at least two bands with rest-frame central wavelength coverage between
2900 Å and 7000 Å; and

6. at least one band redder than rest-frame U-band (4000 Å). This cut is new to this
analysis, but only affects SN 2002fx, a GOODS supernova which is very poorly
measured.

In addition to these quality cuts, we removed any supernova spectroscopically classified
as SN 1991bg-like. These SNe Ia are a distinct subclass which is not modeled well by
SALT2. In cases when spectroscopic sub-typing is not possible or not available, we screen
for these supernovae photometrically by searching for any supernovae with red (c > 0.2)
and narrow-width (x1 < −3) lightcurves. In the current dataset, none are cut by this
screening. When fit with SALT2, and color-corrected and shape-corrected (as though they
were normal SNe Ia), spectroscopically identified members of this class have an average
absolute magnitude only 0.2 magnitudes fainter than normal SNe Ia; any contamination
from the handful of supernovae near this cut will have only a small impact (and one well-
accounted for by our contamination systematic, see Amanullah et al. (2010)).

From the 16 SNe Ia that were classified as either secure or probable (see Table 5.1),
SN SCP06U4 and SN SCP06K18 fail to pass these cuts. SN SCP06K18 lacks good enough
light-curve coverage and SN SCP06U4 fails the x1 cut5. This leaves 14 SNe Ia that are used
to constrain the cosmology.

5Using an updated version (2-18-17) of SALT2 (or using SALT1), SN SCP06U4 would pass this cut, so
this supernova may be included in future analyses.
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5.3.4 Fitting the Cosmology
Following Amanullah et al. (2010), the best-fit cosmology is determined by minimizing

χ2
stat =

∑

SNe

[µB(α, β, δ,MB)− µ(z;Ωm,Ωw, w)]
2

σ2
lc + σ2

ext + σ2
sample

. (5.4)

A detailed discussion of the terms in this equation can be found in Amanullah et al. (2010).
We only comment on the final term in the denominator, σ2

sample, which is computed by
setting the reduced χ2 of each sample to unity. This term was referred to as “σ2

systematic”
in Chapters 2 and 4. We note that σ2

sample includes intrinsic dispersion as well as sample-
dependent effects. This term effectively further deweights samples with poorer-quality data
that has sources of error which have not been accounted for. As noted in Amanullah et al.
(2010), this may occasionally deweight an otherwise well-measured supernova.

Following Conley et al. (2006b), Chapter 2 and Chapter 4, we hide our cosmology
results until the full analysis approach is settled. As in previous Union analysis, we carry
out an iterative χ2 minimization with outlier rejection. Each sample is fit for a flat ΛCDM
cosmology independently of the other samples (but with α, β, and δ set to their global
values). AnMB is chosen for each sample by minimizing the absolute variance-weighted
sum of deviations, minimizing the effects of outliers. We then reject any supernova more
than 3σ from this fit. All of the SNe Ia in our new sample pass the outlier rejection. As
each sample is fit independently with its own Hubble line, systematic errors and the choice
of cosmological model are not relevant in this selection.

Diagnostics

A diagnostic plot, which is used to study possible inconsistencies between SN Ia sam-
ples, is shown in Figure 5.3. The median of σsample can be used as a measure of the intrinsic
dispersion associated with all SNe Ia. The intrinsic dispersion is a reflection of how well
our empirical models correct for the observed dispersion in supernova luminosities. The
median σsample for this work is 0.15mag and is indicated with the leftmost dashed vertical
line in the left panel.

The variance weighted RMS about the best-fit cosmology gives an indication of the
quality of the photometry. A sample with more accurate photometry will have a smaller
RMS. For SNe Ia from our survey, the RMS is 0.19 ± 0.04, which is only slightly larger
than that measured for the 1st year SN Ia sample from SNLS, and equal to the median of
all samples (shown as the rightmost dashed line in Figure 5.3, left panel).

The two middle panels show the tension between data-sets, the first with statistical
errors only, and the second with statistical and systematic errors (see §5.3.5). Most samples
land within 1 σ of the mean defined by all samples and about one third lie outside 1 σ, as
expected for a normal distribution. No sample exceeds 2 σ. The right hand panel shows
the slope of the residuals, which, for larger data sets, can be used to reveal Malmquist-like
biases or calibration errors.
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Figure 5.3. Diagnostics plot for the individual data sets. From left to right: irreducible sample dispersion
(filled circles) and variance-weighted RMS about the best-fit model (open circles); the average sample resid-
ual from the best-fit model (µmeasured − µmodel) excluding and including systematic errors; and the best-fit
slope of the Hubble residual (in magnitudes) versus redshift — ∂µresidual/∂z. Note that the errors on the
sample dispersion include only statistical errors and do not include possible systematic errors. The confi-
dence intervals on the weighed RMS are obtained with Monte-Carlo simulations. The triangles in the sample
residual plot show the effect of including the filter shifts discussed in Section 5.3.4.

The supernovae from our sample are 1.5-σ brighter than the average sample. While
the source of the difference may certainly be a simple statistical fluctuation, part of the
difference might be attributable to errors in the filter responses of the ACS filters. (The
difference is largely driven by the SNe Ia that have only ACS i775 and z850 data to constrain
their light curves.) Based on photometric observations of spectrophotometric standards,
Bohlin (2007b) report possible blueward shifts of 94 Å for the z850 filter and 57 Å for the
i775 filter (with smaller shifts in bluer filters). The red triangle in the sample residual panel
shows the effect of applying these shifts. The shifts also affect the GOODS supernovae.
The green triangle shows the affect of applying the filter shifts to those data. Bohlin (2007b)
notes that more data to confirm the filter shifts are needed, so we do not apply them in our
primary analysis. Instead, we include the uncertainty in the filter curves as a systematic
error, as described in §5.3.5.

Part of the difference could also be due to the correction that we apply for the recently
discovered correlation between host galaxy mass and the luminosity of SNe Ia after the
lightcurve width and color corrections have been applied. Many of the hosts in our sample
are massive early type galaxies. In this analysis, the correction we use is smaller than the
correction that has been noted by others. We add this difference as a systematic error, as
described in §5.3.5.

Figure 5.4 shows the Hubble Diagram with SNe from the updated Union2 sample and
the best-fit ΛCDM model. We add 14 SNe Ia from this work. (As discussed above,
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Figure 5.4. Hubble diagram for the Union2.1 compilation. The solid line represents the best-fit cosmology
for a flat ΛCDM Universe for supernovae alone. SN SCP06U4 falls outside the allowed x1 range and is
excluded from the current analysis. When fit with a newer version of SALT2, this supernova passes the cut
and would be included, so we plot it on the Hubble diagram, but with a red triangle symbol.
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SN SCP06U4 is likely to be included in future analyses so it is included on the plot with a
different symbol.) Ten (eleven with SN SCP06U4) are above a redshift of one, significantly
increasing the number of well-measured supernovae above this redshift.

5.3.5 Systematic errors
In this chapter, we follow the systematics analysis we presented in Amanullah et al.

(2010). Systematic errors that directly affect supernova distance measurements (calibra-
tion, and galactic extinction, for example) are treated as nuisance parameters to be fit simul-
taneously with the cosmology. Minimizing over these nuisance parameters gives additional
terms to add to the distance modulus covariance matrix

Uij =
∑

ε

dµi(α, β)

dε

dµj(α, β)

dε
σ2
ε , (5.5)

where the sum is over each of these distance systematic errors in the analysis. (Although
the distance modulus depends on δ as well as α and β, the derivatives with respect to
the zeropoints do not.) In this analysis, α and β have little interaction with cosmological
parameters. When computing cosmological constraints, we therefore freeze the covariance
matrix in order to avoid multiple matrix inversions6. Only when the α and β may vary
significantly from the global best-fit (Table 5.5), do we update α and β.

Systematic errors that affect sample composition or the color and shape correction co-
efficients cannot be parameterized supernova-by-supernova in this way. These are incorpo-
rated by assigning each dataset its own constant covariance. This is an adequate treatment,
as these systematic errors are subdominant.

There are two systematic errors that were not included in Amanullah et al. (2010), but
are included in this analysis for the first time: a systematic error on the host-mass correction
coefficient, δ (which might affect δ at the ∼ 0.05 level), and uncertainties in the effective
wavelengths of the ACS i775 and z850 filters.

In addition to updating the NICMOS F110W zeropoint and uncertainty, as described in
§5.2.1, we revise the uncertainty assigned to the zeropoint for NICMOS F160W to account
for the uncertainty in the count-rate non-linearity at this wavelength (de Jong et al. 2006).
Table 5.3 gives the assumed zeropoint error for each filter.

We note that the nearby supernovae from targeted searches are sensitive to δ (relative
to the untargeted searches) at the level of (0.55 − 0.13)∆δ ≈ 0.02 magnitudes, while
the covariance weighted mean of the cluster supernovae varies with δ as 0.24∆δ ≈ 0.01
magnitudes. We cannot propagate this systematic on a supernova-by-supernova basis, as
this would be equivalent to fitting for δ, which we already do. Therefore, we include
this error by adding a covariance of 0.022 to the nearby, targeted supernova surveys, a
covariance of 0.012 to our new data-set, and 0.02 · 0.01 between these data-sets.

6As demonstrated in the Union2 appendix, these matrix inversions can be simplified at the expense of
more matrix multiplication; the run-time does not change much.
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Table 5.3. Assumed instrumental uncertainties for SNe in this work.
Source Band Uncertainty Reference
HST WFPC2 0.02 Heyer et al. (2004)

ACS F850LP 0.01 Bohlin (2007b)
ACS F775W 0.01
ACS F606W 0.01
ACS F850LP 94 Å Bohlin (2007b)
ACS F775W 57 Å
ACS F606W 27 Å
NICMOS J 0.024 Ripoche et al. (2013), Section 5.2.1
NICMOS H 0.06 de Jong et al. (2006)

SNLS g, r, i 0.01 Astier et al. (2006)
z 0.03

ESSENCE R, I 0.014 Wood-Vasey et al. (2007)
SDSS u 0.014 Kessler et al. (2009)

g, r, i 0.009
z 0.010

SCP: Amanullah et al. (2010) R, I 0.03 Amanullah et al. (2010)
J 0.02

Other U -band 0.04 Hicken et al. (2009)
Other Band 0.02 Hicken et al. (2009)

Including uncertainties in filter effective wavelength is not as straightforward as in-
cluding zeropoint uncertainties. Effective wavelength is only the first-order method of
describing a filter. For a simple filter shift, as implemented here, dµ(α, β)/dλwill undergo
significant variations as supernova spectral features shift in and out of the filter. These are
likely to be worse than the actual effect of simply reweighting filter throughput. Although
in general these variations will get averaged out with different phases, redshifts, and ad-
ditional filters, we have modeled a worst-case in accounting for this systematic (and even
then it only affects the supernovae most dependent on z850).

Table 5.4 shows the impact of each type of systematic error on our cosmological con-
straints, in combination with BAO, CMB, and H0 data (see §5.4). For the purpose of con-
structing Table 5.4, we add, for each systematic error in the table, the contribution from just
that systematic to the statistical-only covariance matrix. The confidence interval for con-
stant w where the χ2 is within 1 of the minimum χ2 (the edges of this confidence interval
are hereafter referred to with the notation∆χ2 = 1) is found iteratively; the plus and minus
errors for constant w are averaged. The statistical-only constant w error bar is subtracted in
quadrature, leaving the effect of each systematic on constant w. We also quote the effect of
each systematic error of the ∆χ2 = 5.99 confidence contour in the (w0, wa) plane; as this
is two-dimensional, we subtract the area (not in quadrature) of the statistical-only contour.

Since the derived cosmology errors vary with the best-fit cosmology, after a given sys-
tematic error has been added, the supernova magnitudes are shifted so that the best-fit
cosmology including that systematic matches the best-fit with statistical errors only. This
magnitude adjustment (which is the same adjustment we use for blinding ourselves to the
best-fit cosmology) consists of repeatedly computing the difference in distance modulus
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Table 5.4. Effect on constant w error bars and area of the 95% w0 − wa confidence contour (inverse DETF
FoM) for each type of systematic error, when SN Ia constraints are combined with constraints from CMB,
H0, and BAO.
Source Error on Constant w Inverse DETF FoM
Vega 0.033 0.19
All Instrument Calibration 0.030 0.18
(ACS Zeropoints) 0.003 0.01
(ACS Filter Shift) 0.007 0.04
(NICMOS Zeropoints) 0.007 < 0.01
Malmquist Bias 0.020 0.07
Color Correction 0.020 0.07
Mass Correction 0.016 0.08
Contamination 0.016 0.05
Intergalactic Extinction 0.013 0.03
Galactic Extinction Normalization 0.010 0.01
Rest-Frame U -Band Calibration 0.009 < 0.01
Lightcurve Shape 0.006 < 0.01
Quadrature Sum of Errors/ Sum of Area (not used) 0.061 0.68
Summed in Covariance Matrix 0.048 0.42

between the best-fit cosmology and fiducial value and adding it to the supernovae.
As with the Union2 compilation, calibration systematics represent the largest contribu-

tion to the error on constant w. Here, we see that they are also the dominant systematics for
(w0, wa). As noted by Amanullah et al. (2010), significantly smaller systematic errors are
derived by adding each covariance in the covariance matrix, rather than adding the cosmo-
logical impacts together. This is due to the different redshift dependence of each systematic
error, as well as some self-calibration that occurs as described in Amanullah et al. (2010).

Some potential systematic errors can be investigated by dividing the whole dataset into
subsets. Table 5.5 shows many of these divisions. All of the numbers are computed includ-
ing supernova systematics; the cosmological constraints are computed including BAO and
CMB data. In short, we do not see any evidence of unknown systematic errors, requiring
the cosmological impact to be smaller than the current errors.

The first subsets are subsets in redshift. These can be used to study possible evolution
of correction coefficients for shape, color, and host mass. The redshift range 0.5 to 1
seems to show β and δ smaller in magnitude, but the revised SNLS sample (Guy et al.
2010) which uses a newer version of the calibration and lightcurve fitting (as well as many
more supernovae), shows no signs of this. As we have already budgeted these systematic
uncertainties, these updates will be within our error bars.

The next rows show the effect of changing δ from 0 to−0.08 (the size of the correction
in Sullivan et al. (2010)). Because a large error on δ is already included in the systematic
error covariance matrix, this has less than a 0.01 effect on w, about ten times smaller than
it would have if we did not include this systematic.

Next, we consider systematics caused by potentially different populations of super-
novae. We perform a cut on the best-fit true x1 or c of each supernova (see Amanullah et al.
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(2010) for details). The cosmology in each case is compatible with the cosmology derived
from the whole sample.

We now look at each of the four largest datasets for evidence of tension. The only
tension found is in the first-year SNLS sample (Astier et al. 2006). Here, β and δ are both
at odds with the whole sample, but as noted above, we do not believe this is a cause for
concern.

The final two rows show the high-redshift sample split by host type; this is discussed in
§5.5.2.

5.4 Constraints on Dark Energy
Following Amanullah et al. (2010), we constrain the properties of dark energy first

using SNe Ia alone (with and without systematics), and then by combining the constraints
derived from SNe Ia with those derived from the 7-year WMAP data of the CMB (Komatsu
et al. 2011), the position of the BAO peak from the combined analysis of the SDSS DR7
and 2dFGRS data (Percival et al. 2010), and the measurement of the Hubble constant (H0)
from Cepheids (Riess et al. 2011).

The rate of expansion at redshift z, H(z), is described by the Friedman equation:

H2(z)

H2
0

= Ωm(1 + z)3 + Ωk(1 + z)2 (5.6)

+ ΩDE exp

[
∫

3(1 + w(z))dln(1 + z)

]

,

where H0 is the rate of expansion today, Ωm and ΩDE are the matter and dark energy
density with respect to the critical density today, w(z), is the dark energy equation-of-
state parameter, and Ωk = 1 − Ωm − ΩDE is the spatial curvature density of the universe.
Distances, such as the luminosity distance, depend on the integral of 1/H(z) over redshift.

In this section, we consider the following models for dark energy:

- ΛCDM: A cosmological constant in a flat universe.

- wCDM: A constant equation-of-state parameter in a flat universe.

- owCDM: A constant equation-of-state parameter in a curved universe.

- wzCDM models: A time-varying equation-of-state parameter in universes with and
without curvature.

The results for each of the models are listed in Table 5.6 and discussed in turn in the
following sub-sections. Unless stated otherwise, the uncertainties represent the 68% confi-
dence limits (∆χ2 = 1) and include both statistical uncertainties and systematic errors.
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Figure 5.5. ΛCDMmodel: 68.3%, 95.4%, and 99.7% confidence regions of the (Ωm,ΩΛ) plane from SNe Ia
combined with the constraints from BAO and CMB. The left panel shows the SN Ia confidence region only
including statistical errors while the right panel shows the SN Ia confidence region with both statistical and
systematic errors.

5.4.1 ΛCDM
In the ΛCDM model, the equation-of-state parameter is exactly −1 and does not vary

with time. In a flat Universe, SNe Ia alone constrain the dark-energy density, ΩΛ, to be
ΩΛ = 0.705+0.040

−0.043. In Figure 5.5, we show the confidence intervals on Ωm and ΩΛ from
SNe, CMB and BAO. Both the individual constraints and the combined constraint are
shown (the BAO constraints are computed with an Ωmh2 prior from the CMB). The SN
constraint is almost orthogonal to that of the CMB. Adding the constraints from CMB,
BAO and H0 reduces the uncertainty. Under the assumption of a flat Universe, the four
probes yield

ΩΛ = 0.729+0.014
−0.014 (ΛCDM : SN + CMB + BAO+H0).

In this ΛCDM model, the expansion of the universe switched from deceleration to ac-
celeration at z = 0.752±0.041, which corresponds to a look back time of 6.62±0.22 Gyr,
about the half of the age of the universe. Equality between the energy density of dark en-
ergy and matter occurred later, at z = 0.391±0.033 or a look back time of 4.21±0.27 Gyr.

If we remove the flatness prior (labeled as oΛCDM in Table 5.6), the best-fit Ωm and
ΩΛ change by a fraction of their errors with Ωk = 0.002+0.005

−0.005.
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5.4.2 wCDM : Constant Equation of State Parameter
In wCDM models, w is constant but is allowed to be different from −1. While few

dark energy theories give w .= −1 and yet constant (Copeland et al. 2006), constraints on
the constant w model are still useful. The wCDM model contains fewer parameters than
the dynamical dark energy models considered in the following section, yet a value different
from w = −1 would still provide insights for alternative theories for dark energy.

In a flat universe (Ωk= 0), SNe Ia alone givew = −1.001+0.348
−0.398. Adding the constraints

from the other three probes tightens the constraint on w considerably, as the constraints
from SNe Ia in the Ωm–w parameter plane are almost orthogonal to those provided by
BAO and the CMB (Figure 5.6).

Figure 5.6. wCDM model: 68.3%, 95.4%, and 99.7% confidence regions in the (Ωm, w) plane from SNe Ia
BAO and CMB are shown in both panels. The left panel shows the SN Ia confidence region for statistical
uncertainties only, while the right panel shows the confidence region including both statistical and system-
atic uncertainties. We note that CMB and SN Ia constraints are orthogonal, making this combination of
cosmological probes very powerful for investigating the nature of dark energy.

In principle, a constraint on H0 helps to break the degeneracy between Ωm and h for
CMB, which measures Ωmh2 (Spergel et al. 2003). However, in this case adding supernova
data helps more, as narrowing the degeneracy between Ωm and w allows the CMB itself
to constrain H0. By combining all four probes, we find w = −1.013+0.068

−0.073. As seen in
Table 5.6, neither BAO nor H0 currently make much of a difference in the error bars for
this model.

5.4.3 owCDM : Constant Equation of State in a Curved Universe
Inflation models generally predict that the curvature of the Universe, Ωk, is ∼ 10−5

(Guth 1981; Liddle & Lyth 2000). In curved universes, SNe Ia play the critical role in
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constraining w, while CMB+BAO constrain Ωk and Ωm. By combining all four probes, we
find Ωk = 0.002+0.007

−0.007 and w = −1.003+0.091
−0.095. Even with the additional freedom for non-

zero curvature, a flat universe is supported from observations. Among many cosmological
parameters, the curvature of the universe is the most well-determined parameter.

We note CMB alone does not place a tight constraint on curvature7, Ωk = −0.102+0.085
−0.097

(Komatsu et al. 2011). In order to break the degeneracy between Ωm Ωk andH0 that exists
in the CMB constraints, we need to add constraints either from BAO orH0; this reduces the
curvature uncertainty by a factor of ten. However, the combination of these three probes
does not place a tight constraint on the equation-of-state parameter w. SNe improve the
constraint on w from CMB+BAO+H0 by more than a factor of three.

5.4.4 Time Dependent Equation of State
We next examine models in which dark energy changes with time. For a wide range of

dark energy models, it can be shown (Linder 2003b) that, to good approximation, the dark
energy equation-of-state can be parametrized by

w(a) = w0 + wa(1− a) (5.7)

where a = 1/(1 + z) is a scale factor. The ΛCDM model is recovered when w0 = −1 and
wa = 0. The constraints on w0 and wa are shown in Figure 5.7 and Table 5.6.

The Dark Energy Task Force (Albrecht et al. 2006) proposed a figure of merit (FoM) for
cosmological measurements equal to the inverse of the area of the 95% confidence contour
in the w0 − wa plane. When we make this measurement, using the ∆χ2 = 5.99 contour,
we find a FoM of 1.84 (statistical-only) and 1.04 (including systematics). Frequently, the
FoM is also defined in terms of the 1σ errors (∆χ2 = 1); this FoM is 39.3 (statistical-
only) and 22.6 (including systematics). Surprisingly, even with wa floating, we still find an
interesting constraint on Ωk of ∼ 0.02.

We next consider a model in which the dark-energy equation-of-state parameter is con-
stant inside fixed redshift bins. This model has more parameters (and thus more freedom)
than w0 − wa. The results are shown in Figure 5.8 and Table 5.6. We adopt the redshift
bins used in Amanullah et al. (2010), so that a direct comparison can be made.

In the left panel with broad bins, we show a reasonably good measurement of the
equation-of-state parameter from redshift 0 to 0.5. From redshift 0.5 to 1, there is no real
constraint. For example, any scalar field model (|w| < 1) is reasonably compatible with
the data. Above redshift 1, the constraints are weaker. w ! 0 is ruled out, as this violates
early matter domination.

We separate the supernova and early universe constraints by defining a bin at redshift
1.6, as shown in the middle panel. This shifts the confidence interval for w(1.0 < z < 1.6)
towards higher w. Eliminating this division, and instead adding more bins up to redshift
0.5 (right panel), gives three constraints of moderate quality with a possible crossing of

7http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm

http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm
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Figure 5.7. 68.3%, 95.4%, and 99.7% confidence regions of the (w0, wa) plane from SNe combined with the
constraints from BAO, CMB, and H0, both with (solid contours) and without (shaded contours) systematic
errors. Zero curvature has been assumed. Points above the dotted line (w0 + wa > 0) violate early matter
domination and are disfavored by the data.

w = −1. No matter the binning, we will need more data extending above redshift 1 to
investigate the dark energy equation-of-state parameter where the uncertainty is still very
large.

To examine constraints on the existence of dark energy at different epochs, we study
ρ(z), which is the density of the dark energy and allowed to have different values in fixed
redshift bins. Within each bin, ρ is constant. (Note that the discontinuities in ρ(z) at the
bin boundaries introduce discontinuities in H(z).) We choose the same binning as above,
but note that binned ρ and binned w models give different expansion histories. Our results
are shown in Figure 5.9 and Table 5.7.

Although there is no real constraint on the equation-of-state parameter at redshift 0.5
to 1, dark energy is seen at high significance in both panels. There is weak evidence for
the existence of dark energy above redshift 1, as can be seen in the left panel. However,
if we again separate the supernova data and early universe constraints (right panel) we see
neither probe has any constraint on the existence of dark energy above redshift 1.

5.5 Discussion

5.5.1 Improving the Constraints on Time-Varying w
by Efficiently Adding z > 1 Supernovae

Beyond z = 1, we add 10 new well-measured SNe Ia to the Hubble diagram. The
variance-weighted RMS scatter of the new sample is 0.20 ± 0.05 mag. As a comparison,
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Figure 5.8. Constraints on w(z), where w(z) is assumed to be constant in each redshift bin, are plotted at
the 68% probability level (∆χ2 = 1). Each panel shows different redshift binning. The results were obtained
assuming a flat universe for the joint data set of SNe, BAO, CMB, and H0, with (dark/orange) and without
(light/yellow) SN systematics. The middle panel takes a closer look at the z > 1 constraints, while the right
panel shows the effects of w binning at low redshift. In this panel the best fit values of w cross w = −1 twice
at low redshift, an unusual feature in dark energy models. We note that the ΛCDM model is consistent with
our w(z) constraints for each of these binnings.

Figure 5.9. Redshift evolution of dark energy density: Constraints on ρ(z) are shown as a function of redshift,
where ρ(z) is the density of the dark energy at a given redshift bin and assumed to be constant within the
redshift bin. ρ(z) is normalized by the critical density today (ρc0) and is plotted at the 68% probability level
(∆χ2 = 1). The results were obtained assuming a flat Universe for the joint data set of SNe Ia, BAO, CMB,
andH0, with (dark/orange) and without (light/yellow) SN systematics. The two panels demonstrate different
redshifts binning and have different scales.

the 15 z > 1 SNe Ia from the GOODS survey that pass our Union2 selection cuts have a
variance-weighted RMS scatter of 0.25 ± 0.05 mag. The new sample almost doubles the
weight of HST-discovered SNe Ia beyond z = 1. The increase provides improvements on
the most difficult-to-measure parameters, those that describe the time-varying properties
of dark energy: ρ(z) and w(z) at the higher redshifts. In particular, the supernovae from
this search improve the constraint on ρ(z) at redshifts 1.0z < 1.6 by 28% (statistical errors
only) and 18% (including supernova systematics) after adding the constraints from the
CMB, BAO and H0 (using the binning illustrated in the right panel of Figure 5.9). (It is
more difficult to compare binned w results, as the constraints are much less gaussian and
more sensitive to the location of the best fit.)

The new sample is also obtained with greater observing efficiency with HST. Consid-
ering the number of z > 1 SNe Ia that make the Union2 selection cuts, the yield of SNe Ia
increases from a rate of one SN Ia per 43 HST orbits in the GOODS survey to one SN Ia
per 22 HST orbits in this survey.
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5.5.2 Splitting the sample according to host galaxy type
SNe Ia are well-standardized with a small dispersion in magnitudes across the whole

class. Any clues to heterogeneous characteristics therefore offer exciting possibilities to
further improve standardization, enhancing the use of SNe as a cosmological probe. There
is now evidence from studies of large samples of SNe Ia at both low and intermediate
redshifts (0 < z " 0.8) that SN Ia properties are related to the properties of the host. The
clearest of these is the relation between light curve width and the specific star formation
rate. SNe Ia in passive galaxies tend to have narrower light curves than SNe Ia that are in
galaxies that are actively forming stars.

More than two-thirds of our new SNe Ia beyond z = 0.9 are hosted by early-type
galaxies (Meyers et al. (2011)). In field surveys, such as the GOODS survey, this ratio is
inverted. By combining SNe Ia from our HST Cluster SN Survey and GOODS, together
with our z > 0.9 SNe Ia in Amanullah et al. (2010), which have HST images of the host,
we can create a sample of SNe Ia that has roughly equal numbers when split according
to host type. When split this way, we find that z > 1 SNe Ia in early galaxies rise and
fall more quickly than SNe Ia in later host types, thus extending the redshift interval over
which the effect is now detected. Finding that low and high redshift SNe Ia follow similar
trends gives us confidence that we can use very distant events to constrain cosmological
parameters. This finding is reported in more detail in Meyers et al. (2011).

There is also evidence from SNe Ia at low and intermediate redshifts for other correla-
tions with host type. Sullivan et al. (2010) find that both β and the RMS scatter about the
Hubble diagram are smallest for SNe Ia in passive galaxies. These trends suggest that dust
plays a greater role in reddening and dimming SNe Ia in late-type galaxies. We examined
our z > 0.9 sample for evidence of similar correlations using our host classification from
Tables 3 and 4 of Meyers et al (2011).

After correcting SN Ia luminosities for lightcurve shape, SN Ia color and host galaxy
mass (with the global values of these correction coefficients), we measure a sample dis-
persion of 0.14+0.11

−0.08 mag for SNe Ia in early-type galaxies and 0.14+0.06
−0.05 mag for SNe Ia in

late-type galaxies. In terms of the RMS, we find 0.23 ± 0.05 mag and 0.26 ± 0.05 mag
for early and late-type samples, respectively. The uncertainties are currently too large to
distinguish between the two samples. Similarly for β, the errors are larger than the dif-
ference between the two samples, as seen in Table 5.5. Clearly, higher quality data of a
larger number of z > 0.9 SNe Ia in both early and late-type galaxies are required before
the trends that are seen at low redshift can be detected in high redshift samples.

We also examined the error-weighted difference in the brightness of SNe Ia in the two
samples after correcting for lightcurve shape and color, but without correcting for the host-
mass luminosity relation (setting δ = 0) and find that SNe Ia in early-type galaxies are
0.18 ± 0.09 mag brighter. Since early-type galaxies are typically more massive than late-
type galaxies, this 2σ difference, if confirmed with larger statistics, may be related to host
galaxy mass.
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5.5.3 Future directions with current instrumentation.
Due to the much improved sensitivity of the WFC3 IR detector, it will be feasible to

measure z > 1 SNe with much better precision. The color measurement errors (∼ 0.03 in
B − V ) can be made comparable to the color measurement errors in the SDSS supernova
survey (Smith et al. 2002; Holtzman et al. 2008). Assuming that the intrinsic dispersion of
SN Ia luminosities does not change with redshift, the variance weighted RMS of the WFC3
sample should be similar to that measured for the SDSS, i.e. ∼ 0.14mag. A well-observed
SN Ia with WFC3 should have a statistical weight of two to three SNe Ia from the Cluster
and GOODS surveys.

With a sufficient number of well-measured z > 1 SNe Ia with WFC3, it should be
possible to search for the correlations between the properties of SNe Ia and their hosts that
are seen at lower redshifts. As discussed above, current samples at z > 1 are too small to
detect most of these differences. With the improved WFC3 photometry, only 40 SNe Ia,
split evenly between early and late-type hosts, would be needed to constrain a difference
in β to an uncertainty of 0.4, which is about half the difference found for lower redshift
SNe Ia (Sullivan et al. 2010). These samples would be just enough to see evidence of the
lower RMS for passive hosts seen by Sullivan et al. (2010).

Current WFC3 SN Ia surveys target empty fields, which means that there will be few
SNe Ia in passive host galaxies. A WFC3 SN Ia survey that spends part of its time targeting
z ! 1 clusters would ensure a better balance between host types while increasing the overall
yield.

In order to investigate the figure of merit constraints possible with WFC3, we simulate
a sample of 40 supernovae at redshift 1.2 and add this sample into the current compilation.
As there is a hard wall at w0 + wa = 0 when including BAO and CMB data, we simply
fix Ωm, rather than including BAO and CMB data (the alternative would be to adjust the
supernova magnitudes to a cosmology model far away from the wall). When adding these
supernovae, the statistical figure of merit improves by 39%. By the same metric, the current
cluster sample improves the figure of merit by 10%.

5.5.4 Reducing the Systematic Errors for Future Surveys
As has been stressed by several authors, systematic errors are now larger than statis-

tical errors. To fully utilize the potential of current and future SN Ia surveys to constrain
cosmology, it will be necessary to reduce these errors significantly.

The largest current source of systematic uncertainty is calibration. Calibration uncer-
tainties can be split into uncertainties related to the primary standard, and uncertainties in
instrumental zeropoints and band passes. In principle, all of these uncertainties can be re-
duced by establishing a network of well-calibrated standard stars and monitoring telescope
system throughputs (Regnault et al. 2009). The Sloan Digital Sky Survey demonstrated
that a 1% relative photometric calibration is possible with the current standard star network
and system throughput monitoring (Doi et al. 2010).
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The ongoing Nearby Supernova Factory (SNf) project (Aldering et al. 2002) is aiming
to provide the network of standard stars. SNf will also address the systematic uncertainty
due to host-mass correction since the range of host masses would become comparable to
that of high redshift for the first time. Additionally, the comprehensive SN Ia spectral time
series from the SNf will allow one to tackle systematic uncertainties related to modeling of
the lightcurves.

In the future, recently approved experiments such as ACCESS (Absolute Color Cali-
bration Experiment for Standard Stars Kaiser et al. 2010) and the proposed NIST STARS
project (National Institute for Standards and TechnologyMcGraw et al. 2010; Zimmer et al.
2010) are aiming to achieve sub-percent absolute flux calibration for the network of stars
in the wavelength range of visible to NIR. With this network of stars and with new tech-
niques for monitoring throughput of the telescopes (Stubbs et al. 2007), we will be able to
cross-calibrate systems and reduce the systematic errors below the statistical errors.

5.6 Summary and Conclusions
This chapter presents the NICMOS photometry of the HST Cluster Supernova Search

SNe, a survey run by the Supernova Cosmology Project to search for SNe Ia in fields
centered on 25 distant galaxy clusters (Dawson et al. 2009). We implement new techniques
to improve the accuracy of this photometry photometry. In particular, for data taken with
NICMOS, which samples the rest-frame B and V -bands of z > 1 SNe Ia, we use a more
direct, more accurate measure of the NICMOS zeropoint Ripoche et al. (2013), and we
remove the residual background that persists after standard processing of NICMOS data
with the CALNICA pipeline (Hsiao et al. 2010).

Following the procedures outlined in Chapters 2 and 4, we add our SNe Ia to the Union2
compilation. Fourteen of the 20 SNe Ia of our supernovae pass the Union2 selection cuts.
Ten of them are at z > 1. The strategy of targeting high-redshift galaxy clusters results
in factor of two improvement in the yield per HST orbit of well-measured SNe Ia beyond
z = 1 and a factor of three to five improvement for SNe hosted by early-type galaxies. For
WFC3, with its smaller field of view, the advantage of a cluster search is even greater.

We use the new Union2.1 sample to constrain the properties of dark energy. SNe Ia
alone constrains the existence of dark energy to very high significance. After adding con-
straints from the CMB, BAO, and H0 measurements, we provide the tightest limits yet
on the evolution of dark energy with time: wa = 0.14+0.60

−0.76. Our sample improves the con-
straints on binned ρ by 18% (including systematics) in the difficult-to-measure high redshift
bin, 1.0 < z < 1.6. Even with a time-varying w0-wa model, the universe is constrained to
be flat with an accuracy of 2% in Ωk.

The results from this new cluster-hosted supernova sample point the way to the next
steps that are now possible with the WFC3 on HST, an instrument that can obtain high
signal-to-noise, multifilter SN Ia lightcurves at z > 1. The cluster approach, used in this
work, would make it feasible to build a significantly larger sample at these highest redshifts,
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evenly balanced between early and late-type hosts. With such a sample, we can mitigate
the effects of dust and evolution that may ultimately limit constraints on time-varying w. 8
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Table 5.5. Constraints on standardization and cosmological parameters for subsets. MB is the B-band corrected absolute magnitude; α, β, and δ are the
lightcurve shape, color, and host mass correction coefficients, respectively. The outlier rejection is redone each time, so the totals may not add up to the
whole sample. The constraints are computed including BAO, CMB, andH0 constraints and supernova systematic errors.
Subset Number MB(h = 0.7) α β δ Ωm w
Whole Sample
z ≥ 0.015 580 −19.321+0.030

−0.030 0.121+0.007
−0.007 2.47+0.06

−0.06 −0.032+0.031
−0.031 0.271+0.015

−0.014 −1.013+0.068
−0.074

Correction Coefficients, Split by Redshift
0.015 ≤ z ≤ 0.10 175 −19.328+0.037

−0.038 0.118+0.011
−0.011 2.57+0.08

−0.08 −0.027+0.054
−0.054 0.270 (fixed) −1.000 (fixed)

0.100 ≤ z ≤ 0.25 75 −19.371+0.054
−0.054 0.146+0.019

−0.019 2.56+0.18
−0.17 −0.087+0.060

−0.060 0.270 (fixed) −1.000 (fixed)
0.250 ≤ z ≤ 0.50 152 −19.317+0.046

−0.046 0.116+0.014
−0.013 2.46+0.12

−0.12 −0.042+0.066
−0.066 0.270 (fixed) −1.000 (fixed)

0.500 ≤ z ≤ 1.00 137 −19.307+0.048
−0.049 0.124+0.019

−0.019 1.46+0.19
−0.19 0.023+0.060

−0.060 0.270 (fixed) −1.000 (fixed)
z ≥ 1.000 25 −19.289+0.217

−0.254 −0.019+0.072
−0.076 3.48+1.13

−0.89 −0.151+0.384
−0.446 0.270 (fixed) −1.000 (fixed)

Effect of δ on w
z ≥ 0.015 580 −19.340+0.026

−0.026 0.123+0.007
−0.007 2.47+0.06

−0.06 −0.080 (fixed) 0.272+0.015
−0.014 −1.004+0.067

−0.072

z ≥ 0.015 580 −19.303+0.031
−0.031 0.120+0.007

−0.007 2.47+0.06
−0.06 0.000 (fixed) 0.271+0.015

−0.014 −1.013+0.069
−0.075

Cosmological Results, Split by Lightcurve Color and Shape
c ≥ 0.05 256 −19.387+0.037

−0.038 0.118+0.011
−0.011 2.77+0.09

−0.09 −0.057+0.052
−0.052 0.269+0.015

−0.014 −1.028+0.077
−0.084

c ≤ 0.05 321 −19.323+0.030
−0.030 0.125+0.011

−0.010 1.29+0.32
−0.33 −0.057+0.038

−0.038 0.275+0.015
−0.014 −0.982+0.069

−0.075

x1 ≥ −0.25 311 −19.366+0.041
−0.041 0.020+0.026

−0.025 2.58+0.10
−0.10 −0.004+0.047

−0.047 0.269+0.015
−0.014 −1.037+0.077

−0.085

x1 ≤ −0.25 269 −19.386+0.044
−0.045 0.152+0.021

−0.020 2.43+0.08
−0.08 −0.087+0.050

−0.050 0.267+0.015
−0.014 −1.045+0.077

−0.084

Correction Coefficients andMB for the Large Datasets
Hicken et al. (2009) 94 −19.314+0.055

−0.055 0.115+0.015
−0.015 2.74+0.11

−0.11 −0.053+0.098
−0.099 0.270 (fixed) −1.000 (fixed)

Holtzman et al. (2009) 129 −19.336+0.051
−0.051 0.149+0.014

−0.013 2.40+0.15
−0.14 −0.061+0.050

−0.050 0.270 (fixed) −1.000 (fixed)
Miknaitis et al. (2007) 74 −19.325+0.078

−0.080 0.113+0.037
−0.035 2.49+0.17

−0.16 0.000 (fixed) 0.270 (fixed) −1.000 (fixed)
Astier et al. (2006) 71 −19.292+0.047

−0.048 0.145+0.019
−0.018 1.70+0.18

−0.18 −0.023+0.040
−0.040 0.270 (fixed) −1.000 (fixed)

z > 0.9, Split by Galaxy Host
Early Type z > 0.9 13 −19.388+0.139

−0.186 0.112+0.139
−0.151 3.16+1.84

−1.26 0.000 (fixed) 0.270 (fixed) −1.000 (fixed)
Late Type z > 0.9 15 −19.141+0.067

−0.067 0.094+0.049
−0.041 0.49+0.85

−0.69 0.000 (fixed) 0.270 (fixed) −1.000 (fixed)
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Table 5.6. Fit results on cosmological parametersΩM , w0, wa andΩk. The parameter values are followed by their statistical (first column) and statistical
and systematic (second column) 1σ (∆χ2 = 1) uncertainties. For the fits including curvature and time-varying w, the confidence intervals can be quite
non-gaussian and we also show∆χ2 = 4 confidence intervals (with and without systematics) for comparison. a∆χ2 = 4.0

Fit Ωm Ωm w/ Sys Ωk Ωk w/ Sys w0 w0 w/ Sys wa wa w/ Sys
BAO+CMB+H0 0.267+0.015

−0.014 0 (fixed) −1 (fixed) 0 (fixed)
SNe 0.277+0.022

−0.021 0.295+0.043
−0.040 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)

SNe+BAO+H0 0.288+0.020
−0.019 0.314+0.034

−0.031 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)
SNe+CMB 0.272+0.017

−0.017 0.274+0.024
−0.022 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)

SNe+CMB+H0 0.262+0.015
−0.014 0.258+0.018

−0.017 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)
SNe+BAO+CMB 0.278+0.014

−0.013 0.282+0.017
−0.016 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)

SNe+BAO+CMB+H0 0.271+0.012
−0.012 0.271+0.014

−0.014 0 (fixed) 0 (fixed) −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)
BAO+CMB+H0 0.269+0.015

−0.014 0.002+0.005
−0.005 −1 (fixed) 0 (fixed)

SNe+CMB 0.278+0.024
−0.023 0.298+0.047

−0.044 −0.002+0.009
−0.009 −0.007+0.013

−0.014 −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)
SNe+CMB+H0 0.260+0.015

−0.015 0.255+0.019
−0.017 0.005+0.006

−0.006 0.005+0.005
−0.006 −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)

SNe+BAO+CMB 0.282+0.015
−0.014 0.286+0.018

−0.017 −0.004+0.006
−0.006 −0.004+0.006

−0.007 −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)
SNe+BAO+CMB+H0 0.271+0.013

−0.012 0.272+0.014
−0.014 0.002+0.005

−0.005 0.002+0.005
−0.005 −1 (fixed) −1 (fixed) 0 (fixed) 0 (fixed)

BAO+CMB+H0 0.263+0.016
−0.015 0 (fixed) −1.082+0.099

−0.112 0 (fixed)
SNe 0.281+0.067

−0.092 0.296+0.102
−0.180 0 (fixed) 0 (fixed) −1.011+0.208

−0.231 −1.001+0.348
−0.398 0 (fixed) 0 (fixed)

SNe+BAO+H0 0.309+0.029
−0.028 0.320+0.035

−0.033 0 (fixed) 0 (fixed) −1.097+0.091
−0.106 −1.076+0.117

−0.133 0 (fixed) 0 (fixed)
SNe+CMB 0.271+0.018

−0.017 0.279+0.025
−0.023 0 (fixed) 0 (fixed) −0.983+0.051

−0.056 −0.955+0.075
−0.079 0 (fixed) 0 (fixed)

SNe+CMB+H0 0.262+0.016
−0.015 0.259+0.018

−0.017 0 (fixed) 0 (fixed) −0.990+0.049
−0.054 −1.003+0.064

−0.069 0 (fixed) 0 (fixed)
SNe+BAO+CMB 0.278+0.014

−0.014 0.285+0.018
−0.017 0 (fixed) 0 (fixed) −0.993+0.052

−0.055 −0.951+0.075
−0.081 0 (fixed) 0 (fixed)

SNe+BAO+CMB+H0 0.272+0.013
−0.013 0.271+0.014

−0.014 0 (fixed) 0 (fixed) −1.008+0.050
−0.054 −1.013+0.068

−0.073 0 (fixed) 0 (fixed)
BAO+CMB+H0 0.247+0.020

−0.018 −0.013+0.009
−0.007 −1.391+0.252

−0.252 0 (fixed)
SNe+CMB 0.281+0.069

−0.087 0.295+0.109
−0.161 −0.003+0.034

−0.027 −0.005+0.067
−0.041 −1.007+0.179

−0.194 −0.993+0.299
−0.331 0 (fixed) 0 (fixed)

SNe+CMB+H0 0.249+0.020
−0.018 0.248+0.020

−0.018 0.010+0.008
−0.008 0.013+0.011

−0.010 −0.937+0.063
−0.070 −0.893+0.100

−0.109 0 (fixed) 0 (fixed)
SNe+BAO+CMB 0.283+0.016

−0.015 0.287+0.018
−0.017 −0.004+0.007

−0.007 −0.002+0.008
−0.008 −1.012+0.058

−0.062 −0.975+0.094
−0.098 0 (fixed) 0 (fixed)

SNe+BAO+CMB+H0 0.272+0.013
−0.013 0.272+0.015

−0.014 0.002+0.006
−0.006 0.002+0.007

−0.007 −1.006+0.056
−0.060 −1.003+0.091

−0.095 0 (fixed) 0 (fixed)
SNe+CMB 0.273+0.022

−0.020 0.281+0.043
−0.028 0 (fixed) 0 (fixed) −1.006+0.165

−0.182 −0.993+0.263
−0.307 0.11+0.75

−0.77 0.17+1.08
−1.19

SNe+CMB+H0 0.259+0.017
−0.016 0.256+0.019

−0.017 0 (fixed) 0 (fixed) −0.928+0.142
−0.143 −0.880+0.222

−0.222 −0.29+0.60
−0.66 −0.52+0.86

−0.98

SNe+BAO+CMB 0.278+0.014
−0.014 0.284+0.018

−0.017 0 (fixed) 0 (fixed) −1.052+0.126
−0.120 −1.013+0.183

−0.173 0.30+0.48
−0.62 0.26+0.57

−0.74

SNe+BAO+CMB+H0 0.271+0.013
−0.013 0.270+0.015

−0.014 0 (fixed) 0 (fixed) −1.021+0.123
−0.117 −1.046+0.179

−0.170 0.07+0.49
−0.60 0.14+0.60

−0.76

SNe+CMB 0.177+0.086
−0.093 0.190+0.208

−0.154 0.075+0.065
−0.128 0.073+0.115

−0.141 −0.988+0.176
−0.202 −0.969+0.284

−0.345 0.90+0.26
−3.88 0.89+0.43

−5.25

SNe+CMB+H0 0.247+0.020
−0.018 0.255+0.026

−0.024 0.014+0.026
−0.012 0.036+0.016

−0.032 −0.998+0.158
−0.224 −1.106+0.355

−0.149 0.36+0.85
−0.86 1.05+0.20

−1.75

SNe+BAO+CMB 0.283+0.019
−0.017 0.286+0.022

−0.023 −0.004+0.017
−0.010 −0.001+0.037

−0.013 −1.010+0.169
−0.178 −0.997+0.266

−0.293 −0.01+1.04
−1.05 0.13+1.16

−1.57

SNe+BAO+CMB+H0 0.270+0.014
−0.013 0.274+0.016

−0.015 0.025+0.008
−0.008 0.027+0.012

−0.011 −1.218+0.069
−0.072 −1.198+0.100

−0.112 1.21+0.10
−1.14 1.19+0.13

−0.13

SNe+BAO+CMB+H0
a 0.270+0.029

−0.026 0.274+0.032
−0.029 0.025+0.016

−0.035 0.027+0.026
−0.036 −1.218+0.425

−0.147 −1.198+0.293
−0.227 1.21+0.19

−2.49 1.19+0.27
−2.40
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z < 0.5 0.5 < z < 1.0 1.0 < z < 1.6 z > 1.6 a

w(z) Stat Only: −1.013+0.067
−0.069 −0.78+0.58

−0.68 −3.7+2.2
−4.4 < 0.18

w/ Sys: −1.006+0.110
−0.113 −0.69+0.80

−0.98 −3.9+3.2
−8.2 < 0.24

ρDE(z)/ρc0 Stat Only: 0.732+0.013
−0.014 0.85+0.18

−0.17 0.23+1.29
−0.79 0.9+1.9

−1.5

w/ Sys: 0.731+0.014
−0.015 0.88+0.24

−0.21 0.33+1.90
−1.00 0.7+2.4

−1.8

Table 5.7. Constraints on redshift binned equation of state w and density ρ (normalized by the current
critical density). The constraints are computed including SNe, BAO, H0, and CMB data. This redshift
binning corresponds to the middle panel of Figure 5.8 and the right panel of Figure 5.9 . aWe note that
the weak constraints in these bins come mostly from the CMB (which tells us that the early universe was
matter-dominated) and are only indirectly constrained by supernovae.
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CHAPTER 6

Mingus: A z = 1.71 SN Ia

There was one probable high-redshift SN Ia in GOODS unpublished after an SCP
search of GOODS. Its photometric redshift placed it at z ∼ 1.6, but the spectrum and
exact redshift were considered inconclusive. A recent serendipitous archival HST Wide
Field Camera 3 (WFC3) grism spectrum contributed a key element of its confirmation
by giving a host-galaxy redshift of 1.713± 0.007. With the redshift of the probable host
galaxy known, the other observations could be interpreted. The HST Advanced Camera for
Surveys (ACS) spectrum has almost negligible contamination from the host or neighboring
galaxies. Although the rest frame sampled range is too blue to include any Si II line, a
principal component analysis allowed confirmation as a Type Ia supernova with 92% con-
fidence. Until 2013, this was the most distant SN Ia with spectroscopic confirmation. It
remains the most distant Ia with a precision color measurement, allowing for tests of pop-
ulation drift (although limited by the sample size of one). We present the ACS WFC and
NICMOS 2 photometry and ACS andWFC3 spectroscopy. Our derived supernova distance
agrees with the prediction of ΛCDM, and the precision of this distance is a testament to the
capabilities of HST.1

6.1 Introduction
Over the past 15 years, HST has played an integral role in measuring cosmological pa-

rameters through the Type Ia supernova Hubble diagram (Perlmutter et al. 1997; Garnavich
et al. 1998; Riess et al. 1998; Perlmutter et al. 1999; Knop et al. 2003; Riess et al. 2004,
2007; Amanullah et al. 2010; Suzuki et al. 2012). With its low background and diffraction-
limited imaging, HST is capable of measuring supernovae at redshifts that are very difficult
from the ground. Measuring very distant supernovae breaks degeneracies in the lower-
redshift Hubble diagram, enabling us to probe the nature of dark energy at redshifts above
z ∼ 0.5 independently of its low-redshift behavior. In this chapter, I present the most dis-
tant cosmologically useful supernova to date and show that even at this distance, HST can

1This chapter was previously published as Rubin et al. (2013).
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still make measurements with precision.

6.2 Search and Followup
SN SCP-0401 was found in the GOODS North Field (Dickinson et al. 2003) as part

of a supernova survey with sets of supernova followup that were alternated between the
Supernova Cosmology Project (SCP)2 and the Higher-Z SN Search Team3. Four epochs
of ACS F850LP and F775W (these are z and i-band filters) observations were obtained,
with a cadence of ∼ 7 weeks. In the first cadenced epoch (2004 April 3), this candidate
was discovered in the reference-subtracted4 F850LP image with a signal-to-noise ratio of 9
(Vega magnitude 25.2, see details of photometry in Section 6.4). In the concurrent F775W
image, it had a signal-to-noise ratio of 2 (Vega 26.5). Because the red observed color
implied a possible very-high-redshift SN Ia, we followed it with ACS F850LP and Near
Infrared Camera and Multi-Object Spectrometer (NICMOS 2) F110W and F160W (very
broad J and H-band filters) photometry, and ACS G800L grism spectroscopy5.

The sky in the vicinity of the SN is shown in Figure 6.16. The likely host is the late-
type galaxy at redshift 1.713 (see Section 6.3.2) centered 0.8′′ away. This corresponds to
only 7 kpc if the SN and galaxy are at the same distance. Light from this galaxy is visible
at the location of the supernova and no other galaxies down to a magnitude limit of AB
∼ 26.5 F775W are within 3.5′′. In the F775W and redder data, this galaxy has two cores,
indicating a possible merger. The consistency of the colors of these cores (always < 0.3
mag, typically < 0.1) over the wide range of 4350Å to 16000Å makes it extremely likely
that these cores are at the same redshift.

6.3 Spectroscopy

6.3.1 ACS Grism Observations of SN and Host
We obtained eleven orbits of spectroscopy with the ACS G800L grism nine days after

the discovery epoch. The light curve fit (Section 6.5.1) indicates that the spectrum was
taken 2 ± 3 rest-frame days after rest-frame B-maximum. We extracted spectra for the
likely host and SN with aXe (Kümmel et al. 2009). No conclusive features or lines were
apparent in the spectrum of the galaxy, nor did the two cores give significantly different
spectra.

2HST GO Program 9727
3HST GO Program 9728
4The reference images for this field come from Program ID 9583.
5This supernova is referred to in the HST archive as SN150G and elsewhere by its nickname “Mingus”

(Gibbons et al. 2004).
6In addition to the other datasets, data from HST GO Program 10339 was used for this figure and the

subsequent host-galaxy analysis.
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Figure 6.1. ACS images of the supernova location. The lower right panel shows a three-component color
image composed from: an F606W stack (blue), F775W stack (green), and the F850LP SN detection epoch
(red), which are shown in the remaining panels. The lines indicate the dispersion direction in ACS (dashed)
and WFC3 (dotted) spectroscopy. The supernova coordinates are 12:37:09.5 +62:22:15.5 (J2000.0).

6.3.2 Wide Field Camera 3 Grism Observations of the Host
As a fortunate coincidence, two orbits of WFC3 IR G141 grism spectroscopy were

taken in this region of GOODS North on 2010-09-267. Although the F140W direct image
missed the host galaxy, the grism dispersed the host into the field of view. Matching objects
between ACS F850LP imaging and the direct image allowed us to compute the position of
the host galaxy for use by aXe.

The host galaxy spectrum is shown in Figure 6.2, along with the best-fit template de-
rived by scaling principal components of SDSS spectra (Aihara et al. 2011). Only one
feature is detected at very high statistical significance: an emission feature at 13600Å. The
only reasonable match to the spectrum between redshift 1.0 and 2.0 is one centered on red-
shift 1.713. The emission feature is then made up of a blend of the [OIII]λλ 4959, 5007Å
doublet. No other emission lines are required to appear in the wavelength range of either
grism spectrum for this to be a credible template match. We also see possible absorption
from Hγ and Hβ (4340Å, and 4861Å rest-frame wavelengths, respectively), but at lower
statistical significance. As we are not sure which core (or both) emit the [OIII], we take
a conservative 0.1′′ separation = 36Å systematic uncertainty in the observer-frame wave-
length of the lines. This translates to a 0.007 uncertainty on the redshift, which dominates

7Data from HST GO Program 11600
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Figure 6.2. Upper panel: Extracted WFC3 IR spectrum of the likely host galaxy with template fit using
SDSS galaxy principal components (solid line). The best-fit (and only reasonable) redshift is 1.713. We note
that including the ACS grism data for the host (5500Å to 10000Å) has no effect on the fit. Lower panel: 2D
WFC3 spectrum, spanning 103 pixels. Some of the flux visible at longer wavelengths than the features is
contamination.

the other sources of uncertainty.

6.3.3 Typing
aXe resamples the grism data, correlating neighboring flux measurements. This can be

seen by eye in the spectrum (points with errorbars in Figure 6.3), that is, the difference
between neighboring flux measurements is generally smaller than one would expect from
the indicated error bars. These positive correlations reduce the statistical significance of
spectral features, so a quantitative understanding of these correlations is crucial. By exam-
ining blank sky, we find that the correlation between neighboring errors is 0.4 (and confirm
the accuracy of the on-diagonal errors reported by aXe). The weight of the spectrum scales
with the correlation between neighbors (ρ) as 1/(1+2ρ) (see Appendix A.2 for the deriva-
tion). The weight of the spectrum is thus reduced by 44% compared to a naive reading
of the aXe error bars. All χ2 values in this work are computed using a covariance matrix
containing nearest-neighbor correlations.

As our supernova spectrum misses the Si II λ6355 (Wheeler & Levreault 1985; Uomoto
& Kirshner 1985; Panagia 1985) and Si II λ4130 (Clocchiatti et al. 2000) lines normally
used for confirming SNe Ia, we use statistical methods for classifying SN SCP-0401.

We first begin by collecting the comparison rest-frame UV spectra available to us. A
useful list of SNe observed with the HST and the International Ultraviolet Explorer (IUE)
is Panagia (2003), with an updated list, including Swift-observed, in Brown (2009). We
obtained IUE spectra and HST spectra from the Mikulski Archive for Space Telescopes
(MAST)8, and Swift spectra from the SUSPECT archive9. More recent spectra were found

8http://archive.stsci.edu/
9http://suspect.nhn.ou.edu

http://archive.stsci.edu/
http://suspect.nhn.ou.edu


6.3 Spectroscopy 134

by searching MAST, others came from the literature. A summary of all data is given in
Table 6.1; we collect 94 spectra in total from 33 SNe, all within ∼ 2 weeks of B or V -
maximum (whichever is quoted in the literature).

Our goal is to compare these spectra to the spectrum of SN SCP-0401, extracting a
probability of matching for each. Unfortunately, most of the data are from the IUE, and
only extend to ∼ 3300Å observer-frame, rather than 3600Å as we have with SN SCP-
0401 (a related issue is the presence of noise in the comparison spectra). This limitation
complicates the comparison of these spectra to SN SCP-0401.

Another, more subtle, issue is also relevant. We note that simply converting a χ2 per
degree of freedom to a probability (e.g., Rodney et al. 2012) is never appropriate when
comparing different models to the same data. ∆χ2 values (the difference in χ2 between
models) can be converted into probabilities, but this requires knowing the dimensionality
of the parameter space10.

We can address both issues (limited coverage and estimating dimensionality) by per-
forming a principal component analysis of all spectra in the UV. The details are discussed
in Appendix A.3. After computing the mean and first two principal components, we can
compute a ∆χ2 between SN SCP-0401 and every other spectrum in turn. We fit SN SCP-
0401 and another spectrum with the projections onto the components constrained to be the
same (we allow them to have different normalizations); this gives us a joint χ2. We then
subtract the χ2 values for SN SCP-0401 and the other spectrum when they are allowed to
have different projections. This ∆χ2 value gives us the probability that the SNe have dif-
ferent true projections given the observed data. We then subtract this value from 1 to get a
“matching probability.”

These results are summarized in Table 6.2. Thirteen SNe have matching probabilities
above 0.05; twelve of these (and all of the top six) are SNe Ia. The average matching
probability of a SN Ia is 41.8%; the average probability for a core-collapse SN is 3.4%.
The probability of SN SCP-0401 being a Ia from the spectrum alone (assuming an equal
fraction of SNe Ia and CC SNe; see below) is therefore 41.8/(3.4+41.8) = 92%. In Figure
6.3, we plot the best-matching spectrum of the five best-matching SNe of each type. Of
the CC SNe, only SN1983N is a credible match spectroscopically, although this supernova
was two magnitudes fainter at maximum than a typical SN Ia (Prabhu 1985).

We now must evaluate the relative ratio of CC SNe to SNe Ia at redshift 1.713 for SNe
with comparable brightness to SNe Ia. Bazin et al. (2009) present both photometrically
and spectroscopically classified SNe from the Supernova Legacy Survey and the associated
absolute magnitudes (their definition is similar to a V -band AB absolute magnitude). For
SNe with brightness comparable to most SNe Ia (∼ −19), they find a SN Ia to CC rate of
∼5-to-1 at redshift 0.3. However, at redshift 1.713, the star-formation rate is ∼ 5 times
higher than at redshift 0.3 (Hopkins & Beacom 2006), raising the core-collapse rate by
approximately the same value. The SN Ia rate is equal to within the error bars (tens of

10A well-known example is the 68.3% confidence interval, which is given (in the assumption of Gaussian
errors and an approximately linear model) by∆χ2 < 1 in one dimension and∆χ2 < 2.30 in two.
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Figure 6.3. Each panel shows a comparison between SN SCP-0401 (points with error bars) and another SN.
The five best-matching comparison SNe Ia are shown in the left panels; the five best-matching comparison
CC SNe are shown in the right panels. For each comparison SN, only the best-matching epoch is shown.
The best visual match is SN1992A (left, third from top); we have overlaid additional data from a phase of +8
days that covers the full rest-frame wavelength range (light grey), showing that the match continues for the
full spectrum. Of the 17 CC SNe (the best five of which are shown here), only SN1983N is a possible match,
although as noted in the text, this SN is two magnitudes fainter at max than a typical SN Ia. Bottom panels:
2D SN SCP-0401 spectrum, spanning 112 pixels. Some of the flux visible in the very reddest wavelengths is
contamination from a nearby galaxy.

percent) at redshift 0.3 and redshift 1.713 (Barbary et al. 2012b), so both classes of SNe
are comparably common at this redshift. We therefore retain the 92% confidence that was
derived ignoring the rates.

It is also encouraging that the spectrum of SN SCP-0401 matches the theoretical SN Ia
spectra of Lentz et al. (2000) derived from the W7 model (Nomoto et al. 1984) (see Table



6.4 SN Photometry 136

6.2). The best match is for the unscaled heavy element abundance (that is, no change from
W7).

As a less-likely possibility, we investigate the possibility that the nearby galaxy is not
the host. We use the spectra with broad wavelength coverage (almost all of those in Table
6.1 except the IUE spectra) and match them against SN SCP-0401 with the redshift floating.
It is reassuring that the best match is a Ia (SN1992A) at redshift 1.72, at least for this limited
set of SNe.

This analysis may turn out to be conservative. In the Lick Observatory Supernova
Search volume-limited sample (Li et al. 2011), the ratio of SNe II to SNe Ibc is about 3-to-
1, similar to what we have in our sample of spectra. However, the SNe Ibc are fainter on
average than SNe II; in Bazin et al. (2009), the ratio appears to be higher (in the luminosity
range of SNe Ia). If SNe Ibc are the only plausible non-Ia match to SN SCP-0401, then our
confidence that SN SCP-0401 is a SN Ia may get stronger simply from revised rates. It is
also possible that no SNe Ibc are credible matches to SN SCP-0401, and more wavelength
coverage of SN1983N would have shown us that it does not match. In the future, additional
core-collapse comparison spectra will resolve this question.

6.4 SN Photometry
We used similar techniques for the SN photometry as were used in Chapter 5; these are

summarized below. In the spirit of “blinded” analysis, we finalize the photometry before
looking at the light curve or distance modulus. We give our photometry in Table 6.3.

6.4.1 ACS Photometry
We begin by iteratively combining each epoch with MultiDrizzle (Fruchter & Hook

2002; Koekemoer et al. 2002) and aligning all epochs. Aperture photometry with a three-
pixel radius (0.15′′) is computed for all epochs, with the zero level set by the many epochs
without the SN. As the pixel values in the resampled images are correlated, the background
error is derived empirically (by placing many three-pixel radius apertures in object-free
parts of the image), and the Poisson error of the aperture flux is added in quadrature. We
use a zeropoint of 23.909 (Vega = 0) for the F850LP data, derived in Suzuki et al. (2012)
along with the effective throughput, and 25.291 (Vega = 0) for the F775W data, from Bohlin
(2007b).

6.4.2 NICMOS Photometry
The optimal radius for aperture photometry with NICMOS is approximately 1 pixel

(0.076′′), precluding any resampling of the NICMOS images. Following Chapter 5, we
therefore performed the NICMOS photometry using analytic galaxy models (one for each
filter) which were convolved with their PSFs and resampled to match the images. The
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Figure 6.4. SALT2-2 fit to the photometry. To illustrate the quality of the F775W data, the F775W photom-
etry is shown in this plot; as it is too blue for SALT2-2 to fit reliably, these data are not used in any analysis.
The error snakes represent the model errors of SALT2-2.

supernova position and fluxes were modeled simultaneously using PSFs generated for each
spectral energy distribution (SED) and band. As there are two cores for this galaxy, we use
two azimuthally symmetric elliptical models (with radial variation described by splines)
to model the cores (as the SN is reasonably far off-core, this is mainly needed to get the
centroid of the model correct for each image). The remaining azimuthal asymmetry of the
galaxy was modeled with a two-dimensional second-order spline, with nodes spaced every
five pixels (0.38′′).

While optimizing the host-galaxy model (e.g., the spline-node spacing), we use simu-
lated SNe at dozens of positions at comparable separation from the galaxy to check for any
bias or unexplained variance in the photometry. No bias is seen at the 0.01 magnitude level
in either band. However, the final epoch in F110W shows a small amount of unexplained
variance (χ2/degree of freedom 1.35) for the recovered fluxes around the true flux, possibly
due to slight South Atlantic Anomaly persistence. We rescale the photometry error bar for
this epoch to make the χ2 per degree of freedom 1.

We used a NICMOS F110W zeropoint of 23.757 AB (23.029 Vega = 0) (Ripoche et al.
2013) and a NICMOS F160W zeropoint of 22.16 (Vega = 0) (see discussion in Section
4.3.1).

6.5 Analysis

6.5.1 Light-Curve Fit
We fit the light curve of the SN with SALT2-2 (Guy et al. 2010), a principal component

expansion of type Ia supernova SEDs. The fit parameters are the date of rest-frame B-band
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maximum, the magnitude at maximum (mB), the broadband color (c, similar to a rest-
frame B − V color), and light-curve width (x1, the next supernova principal component
after color). We find mB, x1, c = (26.14, 0.2,−0.10). The best-fit template is shown in
Figure 6.4. The corrected-distance-modulus statistical error is only 0.15 mag. (This value
does not include Hubble diagram dispersion that cannot be removed with the magnitude
corrections detailed in Section 6.6.) As we lack a measurement on the rise of SN SCP-
0401, the date-of-maximum constraints are asymmetric. We derive the distance modulus
uncertainty by sampling from the true corrected distance modulus distribution (by running
a Metropolis-Hastings Monte Carlo using the SALT2-2 model). There is a fortuitous can-
cellation between the date of maximum and the light curve parameters: moving the date
of maximum earlier brightens the peak magnitude while increasing the light-curve width
and making the color slightly bluer. After applying the corrections in Section 6.6, the
corrected-magnitude likelihood is well-constrained (and is Gaussian).

6.5.2 Host Stellar Mass
As SALT2 Hubble residuals are correlated with host-galaxy stellar mass (Kelly et al.

2010; Sullivan et al. 2010), we must estimate the host mass for SN SCP-0401. We used a Z-
PEG (Le Borgne & Rocca-Volmerange 2002) fit to broad-band galaxy photometry, similar
to the methods used in those papers. Using aperture photometry with a 1′′ radius, and zero-
points from Bohlin (2007b), we derived the following AB magnitudes for the host galaxy:
25.7 (F435W), 25.2 (F606W), 24.2 (F775W), 23.4 (F850LP), and 20.0 (F160W, Vega =
0). To accurately fit all photometry, Z-PEG requires a template with age 5 Gyr, which is
older than the universe at this redshift (4 Gyr). The stellar mass confidence interval when
enforcing an age-of-the-universe constraint is essentially contained inside the confidence
interval when allowing age to be unconstrained. To be conservative, we do not enforce this
constraint, obtaining a log10 stellar mass of 11.2+0.1

−0.4, easily putting this galaxy inside the
high-mass (> 1010M&) category.

6.5.3 Systematic Errors
Calibration

Fitting an accurate corrected magnitude requires fitting an accurate color (c). The far-
ther apart the filters used are in wavelength, the less (uncorrelated) calibration uncertainties
affect the derived c, and therefore the derived corrected magnitude. For a given range of
wavelength coverage, measuring a supernova in more filters will also decrease the sensi-
tivity of the fit to any given miscalibration (again assuming independent calibration uncer-
tainties for the data in each filter). With three passbands within the SALT2-2 range and
a long wavelength baseline, the SN distance modulus we derive from the light curve fit is
more resilient against calibration uncertainties than most high-redshift SNe distances. Our
distance modulus is most sensitive to the F160W zeropoint, with ∂µ/∂(F160W zeropoint)
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=1.5 (that is, a change in the F160W zeropoint of 0.01 magnitudes changes the corrected
magnitude by 0.015), a factor of two better than is typically achieved with only one color.
The other calibration uncertainties combine to a systematic error of only ∼ 0.01 mag on
the distance modulus.

The NICMOS 2 F160W data are affected by a count-rate nonlinearity of 0.026± 0.015
mag/dex (de Jong et al. 2006), which adds an effective zeropoint uncertainty of 0.06 mag-
nitudes at the flux level of high-redshift SNe, assuming a power-law dependence of the
non-linearity over the full range of flux between the standard stars and the SNe (4-5 dex).
Based on the F110W results of Ripoche et al. (2013), we add an uncertainty of 0.03 magni-
tudes to account for possible deviation from a power law. We will improve this uncertainty
with a future recalibration of the F160W non-linearity using the techniques in Ripoche et
al. in a future paper.

Malmquist Bias

Most SNe Ia at redshift 1.71 would be too faint to be found by the search, even at
maximum brightness. Malmquist bias is therefore present. Most of this bias is taken out
by making the corrections we describe in Section 6.6, but some bias remains. (If it were
possible to perfectly correct SNe, such that all SNe were equally bright after correction,
no Malmquist bias would remain.) A simple simulation (detailed further in Rubin et al., in
prep) that selects SNe from the parent distribution and determines if they could be found at
redshift 1.71 allows us to estimate that this remaining Malmquist bias is about 0.08 mag.

If there are SNe at high enough significance to find, but not to get a spectrum of, there
may be additional Malmquist bias. We investigate this possibility here using the observed
spectrum of SN SCP-0401. The faintest supernova we could have found would be S/N
∼ 5, rather than S/N ∼ 9. Increasing the noise in the spectrum by a factor 1.8 allows more
supernovae of both types to match the spectrum. The net effect is to lower the confidence
of being a Ia to 86%, in which case we would still use the supernova for cosmological
analysis. (In Section 2.3.3, we showed that the analysis is robust to this level of non Ia
contamination.)

The largest contributors to the Malmquist bias uncertainty are the magnitude cut for the
search (which we take to be uncertain at the 0.2 mag level) and the uncorrected residual
dispersion of SNe at redshift 1.71 (which we take to be 0.20±0.05 (see discussions below in
Sections 6.5.3 and 6.6). Each of these contributes about 0.03 magnitudes to the Malmquist
bias uncertainty. Therefore, the total uncertainty, which would correlate from supernova-
to-supernova were there others like it, is about 0.04 mag.

Lensing

The bright spiral galaxy 3.5′′ away from the supernova (visible to its upper left in Figure
6.1) is at redshift 0.64 (Cowie et al. 2004), and is thus a potential source of gravitational
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magnification for the supernova. Here, we provide a rough estimate of the size of this
effect.

As with the host galaxy, we used Z-PEG to derive the stellar mass. For this larger
(apparent size) galaxy, we used a 1.5′′ radius, and obtained the following AB magnitudes:
23.5 (F435W), 22.7 (F606W), 21.8 (F775W), and 21.5 (F850LP). We use the Z-PEG stellar
mass of 4 × 1010M& with the relation between stellar mass and halo mass from Guo et al.
(2010) to derive the total mass of the halo, 1.4× 1012M&. Assuming a singular isothermal
sphere model, withM200 ∼ Mhalo, we find a magnification of 1.08 (using the Navarro et al.
(1996) NFW profile provides virtually the same answer). This number is not the magnifi-
cation of the supernova; had the lensing galaxy not been there, the supernova would likely
be slightly de-magnified (compared to a filled-beam distance modulus). Holz & Linder
(2005) find that the scatter due to lensing is approximately 0.093z = 0.16 magnitudes at
this redshift. We include this uncertainty in our distance modulus error (as noted below)
and see no evidence that SN SCP-0401 is magnified or de-magnified by more than this.

The mean magnification of supernova fluxes is zero at a given redshift. (Selection
effects can bias the observed SNe to higher magnification, but Jönsson et al. (2006) see
no evidence of this in the Riess et al. (2004) sample.) However, we fit our cosmological
constraints in log(flux) (magnitudes), where the mean magnification is not zero (as super-
nova fluxes are roughly log-normally distributed, and we use least-squares fitting, fitting in
magnitudes is appropriate). We evaluate the lensing bias from working with magnitudes
using the distributions of Wang et al. (2002) and find it to be 0.01 mag (biased faint). In
principle, most of this bias is well-understood (from knowledge of the corrected supernova
luminosity distribution and the lensing distribution) and could be removed.

6.6 Conclusions
We apply the corrections detailed in Chapter 5 to obtain a SALT2-2 distance modulus

corrected for x1, c, and host mass, reproduced here.

µB = mB + α · x1 − β · c+ δ · P (mtrue
! < mthreshold

! )−MB , (6.1)

where α is the light-curve-width-correction coefficient, β is the color-correction coefficient,
δ is the host-mass-correction coefficient, andMB is the (h = 0.70) absolute B-magnitude.
In addition to the propagated lightcurve fit uncertainties, we add in quadrature the distance
modulus scatter due to lensing (above) and σsample, the error needed to get a χ2 per degree
of freedom of 1 around the Hubble line for the GOODS SNe. We take MB = −19.09,
α = 0.14, β = 3.1, δ = −0.07, σsample = 0.11 (Rubin et al., in prep) and find a distance
modulus (no magnification or Malmquist bias correction) of 45.57 ± 0.24 statistical, ± ∼
0.1 systematic. This is fully consistent with the value of 45.60 predicted from a flat Ωm =
0.27 ΛCDM universe. Figure 6.5 shows the Hubble diagram from Chapter 5 with SN SCP-
0401 and Primo (Rodney et al. 2012) added. As SALT was updated from version 2-1 to 2-2
after this plot was made, we refit SN SCP-0401 with the older SALT2-1 for the purposes
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of making this figure. The change in distance modulus is 0.01 magnitudes between the two
versions.

The quality of these results at this extremely high redshift sets a new standard. Most
SNe at z > 1.5 have incomplete or not cosmologically useful lightcurves (SN 1997ff from
Riess et al. (2001), 2003ak from Riess et al. (2004), Subaru-Discovered SNe from Graur
et al. (2011)). Primo (Rodney et al. 2012) has a lower-precision color measurement than
SN SCP-0401, although its better x1 measurement (by virtue of pre-maximum data) gives
it a comparable distance modulus error. All of these previous SNe had no spectroscopic
confirmation, or in the case of Primo, a host-contaminated spectrum providing inconclusive
confirmation.

It has appeared likely that SNe at this redshift could be measured with sufficient color
precision to allow a direct comparison to lower-redshift SNe. With this one SN, we now
see a first example of this in Figure 6.6, a plot with a baseline of almost ten billion years
(the approximate look back time of this SN). The Hubble residual of SN SCP-0401 is
compatible with the x1 and c corrections derived at lower redshift (or a deviation from
ΛCDM of the Hubble diagram cancels the change in the relations). This figure also shows
that the fitted x1 and c of SN SCP-0401 are well within the distribution of lower-redshift
supernovae that could be found in this F850LP search at redshift 1.71 (black points).

While the spectrum, light-curve corrections, and distance modulus of SN SCP-0401 so
far indicate compatibility with ΛCDM and little evolution, this single SN by itself can only
provide weak constraints. It does, however, begin to illustrate what can be accomplished if
one adds a whole population of such well-measured SNe at the very-high-redshift end of
the Hubble diagram. Building this sample can now be done much more efficiently since
the HST WFC3 greatly improved throughput makes these high S/N measurements easier,
so this goal is now within reach. 11

11We would like to thank Henry Ferguson of the Space Telescope Science Institute for ensuring fast
turnaround for these time-critical observations. We would also like to thank Bahram Mobasher for pro-
viding photometric redshifts for the host galaxies of our candidates. The archival WFC3 data used to obtain
the host redshift were taken under HST GO Program 11600, PI Benjamin Weiner. We would like to thank
the SUSPECT archive for their part in assembling our collection of spectra. Finally we thank the anonymous
referee, whose feedback greatly improved this manuscript.
Financial support for the work presented in this chapter was provided by NASA through programGO-9727

from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS
5-26555. This work was also partially supported by the Director, Office of Science, Department of Energy,
under grant DE-AC02-05CH11231.
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Table 6.1. Sources of data for the principal component analysis, indicating the SN type, source, and phase (phase range for many collected spectra from
the same SN). IUE is the International Ultraviolet Explorer, HST FOS/ STIS are the Hubble Space Telescope Faint Object Spectrograph and Space
Telescope Imaging Spectrograph, and Swift UVOT is the Swift Ultraviolet/Optical Telescope. The IUE spectra extend blueward of ∼ 3300Å rest frame,
the HST, Swift, and Lentz spectra cover the whole wavelength range, the spectrum of 1997ap covers redward of ∼ 2700Å rest frame, and the Ellis
composite covers redward of ∼ 2800Å rest frame.
SN Type Type Reference Phase Date of Maximum Reference Source and Program ID
1978G II Ward et al. (1978) Discovery +5, +16 Ward et al. (1978) IUE OD7AB
1979C II Mattei et al. (1979) +6 to +16 de Vaucouleurs et al. (1981) IUE CVBCW, ESATO, UKTOO, CVBCW
1980K II Kirshner & Bryan (1980) ∼ 0 Buta (1982) IUE VILSP, CVBCW, UKTOO
1980N Ia Blanco et al. (1980) -1 to +12 Hamuy et al. (1991a) IUE CVBCW, VILSP
1981B Ia Vettolani et al. (1981) +2, +3 Branch et al. (1983) IUE VILSP, NP314
1982B Ia Szeidl et al. (1982) +2 Ciatti et al. (1988) IUE NP586
1983G Ia Wamsteker et al. (1983) +3, +6, +9 Buta et al. (1985) IUE SNFRK, FE022
1983N 1b Prabhu (1985) -13 to +13 N. Panagia, in Branch et al. (2002) IUE FE022, FETOO, SNFRK, OD15K
1985L II Filippenko et al. (1985) +12 Kimeridze & Tsvetkov (1989) IUE HQTOO
1987A II Herald et al. (1987) -16, 0, +14 Gouiffes et al. (1988) IUE OD17Y
1989B Ia Korth (1989) -9, -10 Prabhu & Krishnamurthi (1990) IUE STKRK
1989M Ia Kharadze et al. (1989) 0 to +13 Kimeridze & Tsvetkov (1991) IUE LETOO, SNLRK, LE059
1990M Ia Sonneborn et al. (1990) -6, -3 Polcaro & Viotti (1991) IUE SNMRK
1990N Ia Maury et al. (1990) -10 to +4 Leibundgut et al. (1991) IUE SNMRK
1990W Ic della Valle et al. (1990) +4 della Valle et al. (1990) IUE SNMRK
1991T Ia Hamuy et al. (1991b) +8, +10 Phillips et al. (1992) IUE METOO, SNMRK
1992A Ia Liller et al. (1992) -2 to +11 Suntzeff et al. (1992) IUE SNNRK and HST FOS 4016
1993J IIb Prabhu (1995) -11, -3 Prabhu (1995) IUE SNORK and HST FOS 4528
1994I Ic Filippenko et al. (1994) +10 Richmond, in Sasaki et al. (1994) HST FOS 5623
1997ap Ia Perlmutter et al. (1998) -2 Perlmutter et al. (1998) Keck II, Perlmutter et al. (1998)
1998S II Li et al. (1998) +4 Liu et al. (2000) HST STIS 7434
1999em II Jha et al. (1999) +5 Hamuy et al. (2001) HST STIS 8243
2001eh Ia Ganeshalingam et al. (2001) +7 SALT2-2 fit to Hicken et al. (2009) HST STIS 9114
2001ep Ia Matheson et al. (2001) +9, +15 SALT2-2 fit to Hicken et al. (2009) HST STIS 9114
2001ig IIb Phillips et al. (2001) Discovery +4, +12 Evans et al. (2001) HST STIS 9114
2002ap Ic Kawabata et al. (2002) -5 Foley et al. (2003) HST STIS 9114
2005cf Ia Modjaz et al. (2005a) -9 to +4 SALT2-2 fit to Hicken et al. (2009) Swift UVOT, Bufano et al. (2009)
2005cs II Modjaz et al. (2005b) +9, +11 Pastorello et al. (2009) Swift UVOT, Bufano et al. (2009)
2006jc Ib Immler (2005) 0 Foley et al. (2007) Swift UVOT, Bufano et al. (2009)
2010al II Kirshner et al. (2010) < 0 Kirshner et al. (2010) HST STIS 11654
2011dh IIb Stringfellow et al. (2011) +6 Tsvetkov et al. (2012) HST STIS 12540
2011iv Ia Drescher et al. (2011) +1 Foley et al. (2012) HST STIS 12592, Foley et al. (2012)
SNLS Ia Ellis et al. (2008) 0 Ellis et al. (2008) Ellis et al. (2008)
Ia Model Ia Lentz et al. (2000) 0 (Explosion +20) Lentz et al. (2000) Lentz et al. (2000)
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Table 6.2. Probabilities of each supernova matching SN SCP-0401. The values are taken from the principal-
component-like analysis described in Section 6.3.3 and Appendix A.3. Only probabilities greater than 0.05
are shown.
Supernova Type Probability of Match
SN1980N Ia 0.969
SN2001ep Ia 0.968
SN1981B Ia 0.963
SN1992A Ia 0.924
SN2011iv Ia 0.886
SN1990N Ia 0.610
Lentz et al. (2000) Ia Model 0.514
SN1983N Ib 0.489
SN2001eh Ia 0.420
SN1989M Ia 0.316
SN1982B Ia 0.244
SN1990M Ia 0.157
SN1989B Ia 0.139
SN1991T Ia 0.059
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Table 6.3. Photometry of SN SCP-0401. Due to the uncertainty on the galaxy models, the NICMOS F110W
statistical errors share an off-diagonal covariance of 3.46e-5 DN/s2, while the F160W errors share a separate
off-diagonal covariance of 1.97e-5 DN/s2. The ACS statistical errors are diagonal.

MJD PID Camera Filter Exposure (s) Flux (DN/s) Flux Error (DN/s) Vega=0 Zeropoint
52600.72 9583 ACS WFC F775W 1120.0 −0.0426 0.0599 25.291
52600.75 9583 ACS WFC F850LP 2400.0 −0.0206 0.0274 23.909
52643.38 9583 ACS WFC F775W 1000.0 −0.0271 0.0669 25.291
52643.43 9583 ACS WFC F850LP 2120.0 0.0180 0.0293 23.909
52691.46 9583 ACS WFC F775W 960.0 −0.0422 0.0655 25.291
52691.52 9583 ACS WFC F850LP 2060.0 0.0014 0.0288 23.909
52734.16 9583 ACS WFC F775W 960.0 0.1358 0.0599 25.291
52734.22 9583 ACS WFC F850LP 2000.0 −0.0128 0.0255 23.909
52782.70 9583 ACS WFC F775W 960.0 0.0864 0.0573 25.291
52782.78 9583 ACS WFC F850LP 2080.0 −0.0048 0.0259 23.909
53098.41 9727 ACS WFC F850LP 1600.0 0.3249 0.0371 23.909
53098.43 9727 ACS WFC F775W 400.0 0.3328 0.1369 25.291
53107.15 9727 ACS WFC F850LP 4564.0 0.2213 0.0237 23.909
53111.21 9727 NICMOS 2 F110W 2687.9 0.2427 0.0144 23.029
53111.31 9727 NICMOS 2 F160W 5375.7 0.2011 0.0125 22.160
53121.57 9727 ACS WFC F850LP 4384.0 0.1311 0.0210 23.909
53130.83 9727 NICMOS 2 F160W 5375.7 0.1387 0.0120 22.160
53136.86 9727 NICMOS 2 F110W 2687.9 0.1205 0.0154 23.029
53142.59 9727 NICMOS 2 F160W 8063.6 0.1158 0.0103 22.160
53145.98 9728 ACS WFC F775W 400.0 −0.0623 0.1536 25.291
53146.01 9728 ACS WFC F850LP 1600.0 −0.0287 0.0361 23.909
53148.41 9727 NICMOS 2 F110W 8063.6 0.0811 0.0113 23.029
53196.34 9727 ACS WFC F850LP 1600.0 0.0536 0.0392 23.909
53196.37 9727 ACS WFC F775W 400.0 0.1695 0.1701 25.291
53244.51 9728 ACS WFC F775W 400.0 −0.1195 0.1573 25.291
53244.54 9728 ACS WFC F850LP 1600.0 0.0003 0.0345 23.909
53284.82 10339 ACS WFC F775W 375.0 −0.1097 0.1749 25.291
53284.84 10339 ACS WFC F850LP 1400.0 −0.0009 0.0580 23.909
53333.94 10339 ACS WFC F775W 400.0 −0.1821 0.1886 25.291
53333.98 10339 ACS WFC F850LP 1540.0 −0.0756 0.0471 23.909
53377.72 10339 ACS WFC F775W 355.0 −0.2258 0.2653 25.291
53377.74 10339 ACS WFC F850LP 1520.0 −0.0214 0.0488 23.909
53427.73 10339 ACS WFC F775W 375.0 0.0921 0.2744 25.291
53427.76 10339 ACS WFC F850LP 1540.0 0.0346 0.0429 23.909
53473.53 10339 ACS WFC F775W 425.0 −0.0096 0.1364 25.291
53473.55 10339 ACS WFC F850LP 1700.0 0.0359 0.0331 23.909
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Figure 6.5. Top Panel: Union2.1 Hubble diagram (with the best-fit flat ΛCDM model) with Primo (Rodney
et al. 2012) and SN SCP-0401 added. Bottom Panel: Hubble diagram residuals. The inner (blue) error bars
on SN SCP-0401 show the uncertainty of the light-curve fit. The middle (capped, cyan) error bars include
the sample dispersion; the outer error bars include the lensing dispersion. Future analyses including spectral
information or gravitational lensing correction might improve these outer error bars.
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Figure 6.6. Plot of Hubble residuals (from the best-fit flat ΛCDM model) against c (left panel) and x1

(right panel). In the left panel, the distance moduli have been corrected for x1 and host mass, revealing the
c-brightness relation. Similarly, the distance moduli in the right panel are corrected for c and host mass.
Each ellipse represents the (∆χ2 = 1) SALT2-2 Gaussian approximation to the likelihood for SN SCP-0401;
projecting the uncertainty to each axis gives the 1-σ error bars on each parameter. The points are comparison
supernovae taken from Rubin et al. (in prep); for clarity, only SNe measured to better than 0.05 mag in c are
shown. The black points represent SNe that would be bright enough in F850LP (at peak) to have been found
at redshift 1.71 in our search.
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CHAPTER 7

Conclusions

7.1 Summary
Over the last five years, the Union compilations have become significant resources for

the community, supplying hundreds of analyses with ready-to-use SN distances. We have
developed a framework for light-curve fits, quality cuts, outlier rejection, and computing
the uncertainty covariance matrix. All of this, and all subsequent revisions, were developed
“blinded” to the cosmological constraints.

We regard our blinding procedure as good practice, but it is possible it will be regarded
in hindsight to be more important than that. The Supernova Legacy Survey (SNLS) team
has completed their own compilation and analysis of systematic uncertainties (Conley et al.
2011), releasing a set of distances with a covariance matrix. These results were unfortu-
nately not developed blinded. Their best-fit cosmology results (Ωm = 0.23± 0.04 for a flat
universe) were very compatible with, e.g., WMAP. However, the recent Planck cosmology
analysis (Planck Collaboration et al. 2013) shows that the Union2.1 constraints are signifi-
cantly more compatible with the Planck results than the SNLS constraints. About half the
difference between our results and the SNLS SALT2 results seems to be attributable to the
rest-frame U-band systematic error treatment.1 This is potentially an interesting philosoph-
ical difference, as we include the U-band systematics as inferred from real data, rather than
estimating them from propagation of uncertainties (which gives a smaller error bar). Given
the anxieties surrounding publishing discrepant results, is unclear whether the SNLS team
would have published their results as they currently stand if the Planck collaboration had
released their results first (or if they would have, for example, assigned larger error bars).

1The SNLS results also rely on another light-curve fitter, SiFTO, which is more discrepant. However,
we do not have experience validating this fitter and cannot comment on the level of biases (if any) in its
fit results. More work is clearly needed to understand these issues, especially as SALT2 and SiFTO gave
extremely similar results to each other in Conley et al. (2008).
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7.2 Bayesian Improvements
The analyses presented in this dissertation gave the best cosmological constraints at

the time of their original publication, but I believe we can do better. In particular, the
frequentist, least-squares framework prevents the ideal use of the data. In the remainder
of this chapter, I outline a research agenda that improves upon current weaknesses of this
framework. In short, the end goal would be to have a full generative model for every
supernova observation in the compilation, extracting the maximal amount of information.
I list the potential improvements in order of increasing importance.

7.2.1 Fitting the “Sample Dispersions” (σsample)
We fit each supernova sample independently for the Hubble diagram dispersion neces-

sary to reach χ2/DoF = 1, as described in Section 2.3.3. As shown in Figure 5.3, these
values can vary significantly, illustrating the range of dataset quality. A Bayesian treatment
of this fit would allow the σsample values to be marginalized over as part of the cosmol-
ogy analysis as discussed by (Kim 2011; March et al. 2012). This simultaneous fit would
have the property that samples in tension will have larger sample dispersions. As we do
not observe any tension between samples that cannot be explained by known systematic
uncertainties (also shown in Figure 5.3), I do not believe this is a serious concern.

7.2.2 Non-Ia and Peculiar Ia SN Rejection
Currently, we only apply mild cuts in SALT light-curve parameters (Section 5.3.3).

However, there is far more information in the light curves that we are not using. We could
fit each light curve with a range of SN templates, and assign it a probability of being a
normal Ia (extensions of this analysis might distinguish between subclasses of SNe Ia).
This probability could be used in computing cosmological constraints by constructing a
model of both the Ia magnitude distribution and contaminating magnitude distribution(s).
Such a “mixture model” was suggested by Kunz et al. (2007).

As discussed in Section 2.3.3, the current Union outlier rejection is based on sigma
clipping about the median of a supernova sample. It can only exclude or include a super-
nova, rather than handle a probabilistic classification. This technique has the benefit that
any tensions between samples are left intact by the outlier rejection. However, as noted
above, we have not found any tensions that are significant enough to worry about in this
regard.

7.2.3 Calibration Uncertainties
A significant amount of value could be had by marginalizing over parameters describing

calibration uncertainties (Kim & Miquel 2006). We incorporate a variant of this currently,
where the calibration uncertainties are effectively fit at the same time as the Hubble diagram
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(Section A.1.2). However, this throws out the information contained in the light curves, as
the Hubble diagram only directly relies on the light curve fit parameters, and not the pho-
tometry. As an illustration of why this is a problem, consider the situation of photometry
from one band showing tension with photometry from the other bands. A global fit includ-
ing the light curves and the calibration uncertainties would reveal the tension and help to
relieve it, while the current analysis can only deweight the supernovae observed including
this band (and only then if the tension is known and accounted for in the uncertainty on the
zeropoint).

7.2.4 Supernova Diversity
The most value of a global analysis is the training of the templates (and associated pa-

rameters) simultaneously with the cosmology. As no SN fitting procedure (either a param-
eterized model or template matching) can reproduce all observed SNe, we must include
a (wavelength and phase-dependent) model of the unexplained dispersion. The SALT2
model currently in use is crude (ignoring such effects as correlation between wavelengths).
Furthermore, uncertainties in this model must be propagated into the cosmological fits in
an approximate manner, as a least-squares fit cannot properly include uncertainty on uncer-
tainties.
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Davis, T. M., Mörtsell, E., Sollerman, J., et al. 2007, ApJ, 666, 716

Dawson, K. S., Aldering, G., Amanullah, R., et al. 2009, AJ, 138, 1271

de Jong, R. S., Bergeron, E., Riess, A., & Bohlin, R. 2006, NICMOS count-rate dependent
nonlinearity tests using flatfield lamps, Tech. rep.

de Putter, R., & Linder, E. V. 2007, arXiv:astro-ph/0710.0373

de Vaucouleurs, G., de Vaucouleurs, A., Buta, R., Ables, H. D., & Hewitt, A. V. 1981,
PASP, 93, 36

Deffayet, C., Dvali, G., & Gabadadze, G. 2002, Phys. Rev. D, 65, 044023

della Valle, M., Pasquini, L., Phillips, M., & McCarthy, P. 1990, IAU Circ., 5079, 1

Dick, J., Knox, L., & Chu, M. 2006, J. Cosmology Astropart. Phys., 7, 1

Dickinson, M., Giavalisco, M., & GOODS Team. 2003, in The Mass of Galaxies at Low
and High Redshift, ed. R. Bender & A. Renzini, 324

Dimopoulos, S., & Thomas, S. 2003, Physics Letters B, 573, 13



BIBLIOGRAPHY 153

Doi, M., Tanaka, M., Fukugita, M., et al. 2010, AJ, 139, 1628

Doran, M., & Robbers, G. 2006, J. Cosmology Astropart. Phys., 6, 26

Doran, M., Robbers, G., & Wetterich, C. 2007a, Phys. Rev. D, 75, 023003

Doran, M., Stern, S., & Thommes, E. 2007b, J. Cosmology Astropart. Phys., 4, 15

Drescher, C., Parker, S., Brimacombe, J., Noguchi, T., & Nakano, S. 2011, Central Bureau
Electronic Telegrams, 2940, 1

Dunkley, J., et al. 2008, arXiv:0803.0586 [astro-ph]

Dutta, K., & Sorbo, L. 2007, Phys. Rev. D, 75, 063514

Dvali, G., Gabadadze, G., & Porrati, M. 2000, Physics Letters B, 485, 208

Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560

Ellis, R. S., Sullivan, M., Nugent, P. E., et al. 2008, ApJ, 674, 51

Evans, R. O., White, B., & Bembrick, C. 2001, IAU Circ., 7772, 1

Fadeyev, V., Aldering, G., & Perlmutter, S. 2006, PASP, 118, 907

Filippenko, A. V., Sargent, W. L. W., Kriss, G., et al. 1985, IAU Circ., 4080, 1

Filippenko, A. V., Matheson, T., Barth, A. J., et al. 1994, IAU Circ., 5964, 1

Folatelli, G., Phillips, M. M., Burns, C. R., et al. 2010, AJ, 139, 120

Foley, R. J., Narayan, G., Challis, P. J., et al. 2010, ApJ, 708, 1748

Foley, R. J., Smith, N., Ganeshalingam, M., et al. 2007, ApJ, 657, L105

Foley, R. J., Papenkova, M. S., Swift, B. J., et al. 2003, PASP, 115, 1220

Foley, R. J., Kromer, M., Howie Marion, G., et al. 2012, ApJ, 753, L5

Frieman, J. A., Hill, C. T., Stebbins, A., & Waga, I. 1995, Physical Review Letters, 75,
2077

Fruchter, A. S., & Hook, R. N. 2002, PASP, 114, 144

Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748

Ganeshalingam, M., Li, W. D., Chornock, R., & Filippenko, A. V. 2001, IAU Circ., 7714,
4



BIBLIOGRAPHY 154

Garnavich, P. M., Kirshner, R. P., Challis, P., et al. 1998, ApJ, 493, L53

Gibbons, R. A., Knop, R. A., Kuznetsova, N., & Supernova Cosmology Project Collab-
oration. 2004, in Bulletin of the American Astronomical Society, Vol. 36, American
Astronomical Society Meeting Abstracts, 1460

Goldhaber, G., Groom, D. E., Kim, A., et al. 2001, ApJ, 558, 359

Goobar, A. 2008, ApJ, 686, L103

Goobar, A., Bergström, L., & Mörtsell, E. 2002, A&A, 384, 1
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Kümmel, M., Walsh, J. R., Pirzkal, N., Kuntschner, H., & Pasquali, A. 2009, PASP, 121,
59

Kunz, M., Bassett, B. A., & Hlozek, R. A. 2007, Phys. Rev. D, 75, 103508

Lambda-website. 2008, http://lambda.gsfc.nasa.gov/product/map/dr3/parameters.cfm

Lampeitl, H., Smith, M., Nichol, R. C., et al. 2010, ApJ, 722, 566

Landolt, A. U. 1992, AJ, 104, 340

Le Borgne, D., & Rocca-Volmerange, B. 2002, A&A, 386, 446

Leibundgut, B., Kirshner, R. P., Filippenko, A. V., et al. 1991, ApJ, 371, L23

Lentz, E. J., Baron, E., Branch, D., Hauschildt, P. H., & Nugent, P. E. 2000, ApJ, 530, 966

http://lambda.gsfc.nasa.gov/product/map/dr3/parameters.cfm


BIBLIOGRAPHY 157

Li, W., Leaman, J., Chornock, R., et al. 2011, MNRAS, 412, 1441

Li, W.-D., Li, C., Filippenko, A. V., & Moran, E. C. 1998, IAU Circ., 6829, 1

Liddle, A. R., & Lyth, D. H. 2000, Cosmological Inflation and Large-Scale Structure, ed.
Liddle, A. R. & Lyth, D. H.

Liller, W., Brown, N., McNaught, R. H., et al. 1992, IAU Circ., 5428, 1

Linder, E. V. 1988a, A&A, 206, 190

—. 1988b, A&A, 206, 190

—. 2003a, Physical Review Letters, 90, 091301

—. 2003b, Physical Review Letters, 90, 091301

—. 2004, Phys. Rev. D, 70, 023511

—. 2006, Phys. Rev. D, 73, 063010

—. 2007, arXiv:astro-ph/0708.0024

—. 2008a, Reports on Progress in Physics, 71, 056901

—. 2008b, General Relativity and Gravitation, 40, 329

Linder, E. V., & Cahn, R. N. 2007, Astroparticle Physics, 28, 481

Linder, E. V., & Huterer, D. 2005, Phys. Rev. D, 72, 043509

Linder, E. V., & Miquel, R. 2004, Phys. Rev. D, 70, 123516

Linder, E. V., & Robbers, G. 2008, J. Cosmology Astropart. Phys., 6, 4

Liu, Q.-Z., Hu, J.-Y., Hang, H.-R., et al. 2000, A&AS, 144, 219

Mannucci, F., Della Valle, M., & Panagia, N. 2006, MNRAS, 370, 773

March, M. C., Karpenka, N. V., Feroz, F., & Hobson, M. P. 2012, ArXiv e-prints,
arXiv:1207.3705

Matheson, T., Jha, S., Challis, P., Kirshner, R., & Huchra, J. 2001, IAU Circ., 7731, 3

Mattei, J., Johnson, G. E., Rosino, L., Rafanelli, P., & Kirshner, R. 1979, IAU Circ., 3348,
1

Maury, A., Thouvenot, E., Buil, C., et al. 1990, IAU Circ., 5039, 1



BIBLIOGRAPHY 158

McGraw, J. T., Zimmer, P. C., Ackermann, M. R., et al. 2010, in Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7739, Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series

Melbourne, J., Dawson, K. S., Koo, D. C., et al. 2007, AJ, 133, 2709

Ménard, B., Kilbinger, M., & Scranton, R. 2010, MNRAS, 406, 1815

Ménard, B., Nestor, D., Turnshek, D., et al. 2008, MNRAS, 385, 1053

Ménard, B., Scranton, R., Fukugita, M., & Richards, G. 2009, ArXiv e-prints,
arXiv:0902.4240

Meyers, J., Aldering, G., Amanullah, R., et al. 2011, ApJ submitted

Miknaitis, G., Pignata, G., Rest, A., et al. 2007, ApJ, 666, 674

Mobasher, B., & Riess, A. 2005, A Test of Possible NICMOS Non-linearity, Tech. rep.

Modjaz, M., Kirshner, R., Challis, P., & Berlind, P. 2005a, Central Bureau Electronic Tele-
grams, 160, 1

Modjaz, M., Kirshner, R., Challis, P., & Hutchins, R. 2005b, Central Bureau Electronic
Telegrams, 174, 1

Morokuma, T., Tokita, K., Lidman, C., et al. 2010, PASJ, 62, 19
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APPENDIX A

Statistical Notes

A.1 Nuisance Parameters as Covariances
Suppose that observations y are modeled by F (θ), where some of the parameters enter

into the model linearly (θL) while some enter non-linearly (θN ). The χ2 can be written as

χ2(θ) = (y − (FN(θ
N ) +HθL))TV −1(y − (FN(θ

N ) +HθL)) (A.1)

where V is the covariance matrix of the observations, and H is the Jacobian matrix of the
model with respect to the θL. Taking the derivative of the χ2 and setting it to zero gives the
analytic formula for the best-fit θL

θ̂L = (HTV −1H)−1HTV −1(y − FN(θ
N )) ≡ D(y − FN(θ

N)) . (A.2)

The likelihoods for the θN can be found from this restricted parameter space where θL =

θ̂L. Thus, the restricted χ2 is given by:

χ2 = ((I −HD)(y − FN(θ
N)))TV −1(I −HD)(y − FN (θ

N)) (A.3)

≡ (y − FN(θ
N))TU−1(y − FN (θ

N)) (A.4)

with U−1 given by

U−1 = (I −HD)TV −1(I −HD) (A.5)

= V −1 − V −1H(HTV −1H)−1HTV −1 . (A.6)

In this way, all of the θL do not have to be explicitly included in the χ2, as long as the
weight matrix, U−1, is updated appropriately. Note that U−1 may depend on θN .

A.1.1 Minimization over xtrue
1 and ctrue

When errors in the independent variable are present, the true values must be solved for
as part of the fit (see discussion in Chapter 2). For one supernova, y = (mB, x1, c), while
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the model is given by

(MB + µ(z, cosmology)− (αxtrue
1 − βctrue), xtrue

1 , ctrue) . (A.7)

Using θL = (xtrue
1 , ctrue) (MB,α and β are global parameters and cannot be handled one

supernova at a time), we have

H =





−α β
1 0
0 1



 . (A.8)

The new χ2 for this specific example (equation A.4) is given by equations 4.2 and 4.3.

A.1.2 Minimization over Systematic Errors
Suppose that we have two kinds of measurements: supernova distance measurements

(N supernovae), and zeropoint measurements (M zeropoints). The true value of each zero-
point is given by ZPtrue = ZPobserved +∆ZP. Because the uncertainties on the supernova
distances are unrelated to the uncertainties on the zeropoints,

V =

(

Vµ

V∆ZP

)

,

where Vµ is an N × N block and V∆ZP is anM ×M block. Similarly, y can be split into
distances and zeropoints y = (yµ,y∆ZP = 0). The model for each supernova distance is
given by

MB + µ(z, cosmology)−
∑

λ

∂(mB + αx1 − βc)

∂ZPλ
∆ZPλ . (A.9)

It is derived in the same way as in the previous section, with the substitutions x1 → x1 +
∑

λ
∂x1

∂ZPλ
∆ZPλ and c → c+

∑

λ
∂c

∂ZPλ
∆ZPλ. The model for the true offset of each zeropoint

is simply∆ZP. Thus,

H =

(

Hµ

I

)

.

The upper block of U−1 is given by

U−1
upper block = V −1

µ − V −1
µ Hµ(V

−1
∆ZP +HT

µ V
−1
µ Hµ)

−1HT
µ V

−1
µ ; (A.10)

none of the other blocks enter into the χ2. Inverting this block (see Hager (1989)) gives:

U = Vµ +HµV∆ZPH
T
µ (A.11)

Equation A.11 gives us the terms we must add to the supernova distance modulus errors to
correctly take the zeropoints into account.
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A.2 Weight of a Spectrum with Nearest-Neighbor Corre-
lations

Suppose we have a spectrum with nearest-neighbor correlation ρ between wavelength
elements. We can write the spectrum covariance matrix as

C = σ · (I + A) · σ (A.12)

where σij = σiδij , I is the identity matrix, and Aij = ρ[δ(|i− j|− 1)]. We would like the
total weight of the spectrum, the sum of C−1. Writing

C−1 = σ−1 · (I + A)−1 · σ−1 , (A.13)

we can focus on the (I + A)−1 term. We begin by expanding this inverse as

(I + A)−1 = I +
∞
∑

k=1

(−1)kAk (A.14)

We can now exchange the order of the matrix sum and series expansion and consider the
sum of each term. The sum of I is N , while for very large matrices (so that we can ignore
edge effects), the sum of Ak is N(2ρ)k, which goes to zero if |ρ| < 1/2. The desired sum
is then

∑

ij

(I + A)−1 = N
∞
∑

k=0

(−2ρ)k = N/(1 + 2ρ) (A.15)

for |ρ| < 1/2 as referenced in Section 6.3.1.

A.3 Spectral Principal Component Analysis
As discussed in Section 6.3.3, we use a principal component analysis to allow compar-

isons between spectra with limited wavelength coverage and non-negligible noise, as well
as to help establish the dimensionality of the parameter space, so that ∆χ2 values can be
converted into probabilities. We have opted to perform this principal component analysis
in log(flux) so that color variations can be more accurately modeled. As the signal-to-noise
of most spectra is inadequate to simply take the log of the fluxes, we construct the principal
components using an iterative fit.

We model each spectrum as

a0 ∗ c0(λ) exp[a1 ∗ c1(λ) + a2 ∗ c2(λ)] (A.16)

where a0 is the normalization, c0(λ) represents the mean, a1 and a2 are the projections onto
the first and second components, and c1(λ) and c2(λ) are the first and second components.
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We fit the mean and first component (0 and 1, above) and their projections first (with
the second component fixed to zero). After convergence, we fit the mean and second com-
ponent with the first component held fixed. This sequential procedure ensures that at every
stage, the component we are fitting is the one that contributes the most variance remaining.
We start versions of the fit with many randomly chosen initial values for the projections to
ensure that we have a converged solution (the components are always initialized at zero).
We exclude the models of Lentz et al. (2000) from training the components, but we do
compute the projections to enable a quantitative comparison to SN SCP-0401.

We use an error floor to prevent extremely well-measured wavelength regions or spectra
from dominating the analysis. The error floor required is that needed to obtain a χ2 per
degree of freedom of 1 for the residuals from the model. For our two-component analysis,
this is S/N 5 per∆λ/λ of 0.01 (a spectrum with∆λ/λ of 0.001 would therefore be limited
to S/N 1.6 per resolution element).

There is some ambiguity about how many principal components to use. Increasing the
number allows for a smaller error floor (as more and more of the variance is described by
the principal components). It also allows for better discrimination between spectra (e.g.,
spectra that are similar in the first two principal components may be dissimilar in the third).
However, increasing the number also increases the∆χ2 values required for a given level of
statistical significance. Two principal components are all that is necessary to fit almost all
spectra to within the accuracy that the spectrum SN SCP-0401 has been measured; two are
therefore used for the results of this work.

As a test, we also compute the probability of SN SCP-0401 being a Ia (see Section
6.3.3) using one component and three components. Our results are robust; we find 93%
confidence using one component, 92% confidence using two, and 91% confidence using
three components. It is important to note that we chose to use two components before
seeing any of these probabilities.
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