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Environmental Chemistry

Developmental Exposure to Silver Nanoparticles at
Environmentally Relevant Concentrations Alters Swimming
Behavior in Zebrafish (Danio rerio)

Eduardo A. Gonzélez,® Dennis R. Carty,® Franklin D. Tran,® Austin M. Cole,P and Pamela J. Lein®*

“Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, California, USA
POffice of Research, University of California-Davis Interdisciplinary Center for Plasma Mass Spectrometry, Davis, California, USA

Abstract: Silver nanoparticles (Ag-NPs) are ubiquitous in household and medical products because of their antimicrobial
activity. A consequence of the high volume of Ag-NP production and usage is increased amounts of Ag-NPs released into the
environment. Their small size (1-100 nm) results in unique physiochemical properties that may increase toxicity relative to their
bulk counterpart. Therefore, the goal of the present study was to assess the potential toxicity of environmentally relevant
concentrations of Ag-NPs in zebrafish (Danio rerio). Wild-type tropical 5D zebrafish embryos were exposed to Ag-NPs from 4 to
120h postfertilization at 0.03, 0.1, 0.3, 1, and 3ppm (mg/L). Inductively coupled plasma-mass spectrometry confirmed
concentration-dependent uptake of Ag into zebrafish as well as bioaccumulation over time. A morphological assessment
revealed no significant hatching impairment, morphological abnormalities, or mortality at any concentration or time point
examined. However, assessment of photomotor behavior at 3 d postfertilization (dpf) revealed significant hyperactivity in the
0.3, 1, and 3 ppm Ag-NP treatment groups. At 4 dpf, significant hyperactivity was observed only in the 3 ppm treatment group,
whereas 5 dpf larvae exposed to Ag-NPs displayed no significant abnormalities in photomotor behavior. These findings
suggest that nonteratogenic concentrations of Ag-NPs are capable of causing transient behavioral changes during

development. Environ Toxicol Chem 2018;37:3018-3024. © 2018 SETAC
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INTRODUCTION

Nanoparticles (NPs), defined as any material with at least one
dimension between 1 and 100 nm, have become ubiquitous in
the environment. Their small size results in unique physiochem-
ical properties that allow them to behave differently from their
bulk counterpart, including an increased ability to interact with
macromolecules and cross otherwise impenetrable biological
barriers (Horie et al. 2012). These properties make NPs highly
desirable for medical and industrial applications but may also
increase their potential for toxicity (Zoroddu et al. 2014).

Silver nanoparticles (Ag-NPs) are highly efficacious antimi-
crobials, making them one of the most widely used nano-
materials (Nowack et al. 2011). They are used extensively in both
household and medical items such as clothing, mattresses,
children’s toys, medical ointments, tube linings, and surface
coatings. The high rate of Ag-NP usage and disposal has
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resulted in increased release into aquatic environments (Benn
and Westerhoff 2008; Geranio et al. 2009). Recent reports
demonstrating that Ag-NPs may be significantly more toxic than
their bulk counterpart (Recordati et al. 2016; Abramenko et al.
2018) highlight the need to investigate their potential ecological
impacts.

Although there are limited studies evaluating Ag-NP levels in
aquatic systems, Ag-NPs have been reported in surface waters in
the United Kingdom at concentrations >30 ppb (ng/L; O'Brien
and Cummins 2010) and in wastewater treatment plant effluent
in Germany at concentrations >1 ppb (Li et al. 2013). Because of
the rapidly increasing use and production of Ag-NPs (Ge et al.
2014), environmental Ag-NP levels in both Europe and the
United States are expected to exceed 4 ppm (mg/L), with the
potential for annual exponential increases (Fabrega et al. 2011).
Consistent with this prediction, a recent publication reported
environmental concentrations of Ag-NPs in Malaysia as high as
10 to 20ppm (Syafiuddin et al. 2018). Despite this, the US
Environmental Protection Agency does not monitor the use of
Ag-NPs and regulates them as bulk Ag (Nowack et al. 2011).
Therefore, understanding the potential toxicity associated with
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these compounds, especially at environmentally relevant con-
centrations, is of increasing importance.

The zebrafish is a vertebrate model that has been used
extensively to evaluate NP toxicity (Harper et al. 2015; Wehmas
et al. 2015; Sheng et al. 2016; Ginzburg et al. 2018; Nix et al.
2018). It was recently reported that exposure of embryonic
zebrafish to Ag-NPs at concentrations far greater than those
observed in the environment caused morphological and
physiological abnormalities (Cunningham et al. 2013; Gao
et al. 2015). Zebrafish models have also been used to show
that Ag-NPs accumulate in brain tissue (Asharani et al. 2008) and
alter the expression of genes related to central nervous system
development (Xin et al. 2015). Because of their ability to
penetrate the chorion (Lee et al. 2007, 2013), Ag-NPs pose a
significant threat to early-stage zebrafish embryos when many
neurodevelopmental processes are at their peak (Miller et al.
2018).

In addition, developmental exposure to Ag-NPs has been
associated with functional impairments in zebrafish, including
altered expression of genes related to sensorimotor function
(Osborne et al. 2016), as well as disruptions in normal swimming
behavior (Powers et al. 2011; Asmonaite et al. 2016). However,
because of the limited number of studies, variability in
experimental designs, and differences in NP properties, it is
important that the functional consequences of developmental
exposures to Ag-NPs, particularly at environmentally relevant
levels, be confirmed by independent laboratories. Therefore,
the goal of the present study was to evaluate whether
environmentally relevant Ag-NP concentrations produce func-
tional behavioral abnormalities in developing zebrafish. To
address this, embryonic zebrafish were exposed from 0 to 5 d
postfertilization (dpf) to vehicle or increasing concentrations of
Ag-NPs and monitored for hatching success, morphology, and
mortality. At 3, 4, and 5 dpf, hatched larvae were assessed for
photomotor function using a light—dark photomotor assay. Our
results suggest that embryonic exposure to Ag-NPs at relatively
low concentrations that cause no significant hatching im-
pairment, morphological abnormalities, or mortality can alter
normal swimming behavior.

MATERIALS AND METHODS

Animal husbandry and care

Fish husbandry, spawning, and all experiments with zebrafish
were performed in accordance with University of California-
Davis Institutional Animal Care and Use Committee protocol
19391. Wild-type tropical 5D adult zebrafish (Danio rerio;
obtained from R. Tanguay, Oregon State University) were
maintained in a standalone aquatic flow-through system
(Aquaneering) in deionized water further purified by reverse
osmosis at 28 £0.5°C. The "“system” water was supplemented
with 20 g/L NaHCO3 to maintaina pH of 7.2 £ 0.4 and 40 g/L sea
salt solution (Instant Ocean) to maintain conductivity at 600 uS
+ 100. Adult fish were kept on a 14:10-h light:dark cycle and fed
twice daily with Gemma Micro fish food (Skretting). Embryos
were obtained by natural group spawning, collected within

30min of fertilization, and kept in an incubator at 28.5+0.5°C
until exposed to vehicle or Ag-NPs beginning at 4 h postfertiliza-
tion (hpf).

Nanomaterials and exposure

The Ag-NPs were manufactured by QSI-Nano (Quantum-
Sphere Inc.) and obtained from the University of California
Center for Environmental Implications of Nanotechnology.
Detailed characterization of these particles has demonstrated
a particle size ranging from 20 to 40 nm and an average diameter
of 25nm (Jin et al. 2010). This particle size was determined in a
medium with very similar salt concentration, pH, and conductiv-
ity as the medium used in the present study to expose the fish.
Stock solutions of Ag-NPs at 1 ppt, 50 ppm, and 1ppm were
dissolved in 10 ppm alginate (Millipore Sigma) in deionized
water and sonicated for 45 min. Alginate was used to bind to the
surface of the Ag-NPs and prevent aggregation of the particles
over time. At 4 hpf, embryos were individually plated into
96-well plates filled with standardized Embryo Medium (West-
erfield 2007). All embryos were exposed from 4 to 120 hpf to
either vehicle (alginate at 3 ppm) or Ag-NPs at 0.03,0.1,0.3, 1, or
3ppm (Figure 1A and B). Embryos were maintained on a 14:10-h
light: dark cycle and incubated at 28.5 £ 0.5 °C in 100 p.L of total
treatment solution with one embryo per well.

Analysis of tissue concentrations of Ag

Zebrafish samples from vehicle-exposed and 0.03, 0.3, and
3ppm Ag-NP exposure groups were analyzed at 3 and 5 dpf to
quantify tissue concentrations of Ag. Samples were analyzed in
triplicate with 22 to 26 larval zebrafish/sample obtained from 3
separate spawnings. Zebrafish samples, triplicate method
blanks (200 pL 18.2 MQ/cm water), and triplicate NIST1640a
digestion quality control standards (200 wL NIST1640a Trace
Elements in Natural Water; National Institute of Standards and
Technology) were digested by adding 30 pL concentrated trace
metal-grade HNOj (Fisher Scientific) and 100 pL concentrated
trace metal-grade HCI (Fisher Scientific), then heating in a hot
block that was ramped up to 95°C over 30 min, followed by
digestion at 95°C for 1h. 550 uL 30% ULTREX Il H,O, (J.T.
Baker) was added incrementally to room temperature samples
with heating ramped up to 95°C between additions. The
following increments were used: 50 L at 40°C for 15min,
100 pL at 67 °C for 10min, 100 pL at 85 °C for 45 min, 150 pL at
95°C for 25min, and 150 L at 95°C for 1 h. The samples were
allowed to cool, then brought to a final volume of 1 mL with 18.2
MQ-cm water prior to analysis by the Interdisciplinary Center for
Plasma Mass Spectrometry at the University of California-Davis
using an Agilent 8900 inductively coupled plasma mass
spectrometry (ICP-MS; Agilent Technologies).

Mortality and malformation assessment

Hatching success was monitored from O to 5 dpf to evaluate
whether Ag-NP exposure resulted in hatching delays orimpaired
hatching. Impaired hatching was defined as the failure of an
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FIGURE 1: Experimental design. (A) Schematic illustrating the exposure paradigm used to evaluate the morphological and behavioral effects of silver
nanoparticles in developing zebrafish. (B) Silver nanoparticle concentrations tested in larval zebrafish. (C) Representative trace of typical zebrafish
behavior in the photomotor behavioral assay. Ag-NP =silver nanoparticle; D1/D2 = dark phases 1/2; dpf = days postfertilization; L1/L2 =light phases

1/2.

embryo to completely hatch from its chorion by 3 dpf. Embryos
and hatched larvae were evaluated daily under a dissection
microscope for mortality and malformations, primarily spinal
curvature and yolk-sac edema (n=48/group from 3 separate
spawning events). There were no statistically significant differ-
ences between control fish from different spawning events (data
not shown). All assessments were conducted by researchers
blinded to experimental group.

Photomotor assessment

Individual larval zebrafish were assessed for locomotor
response to changing light conditions at 3, 4, or 5 dpf. Larvae
in 96-well plates were placed in a DanioVision behavior system
(Noldus) and subjected to a 35-min light/dark locomotor test
(n=48/group from 3 separate spawning events). Temperature
of the system and plates was maintained at 28.5 + 0.5 °C using
a Noldus Temperature Control Unit. The behavioral test
consisted of a 10-min light period (light 1; ~1900 lux) to allow
for acclimation and to record baseline swimming behavior,
followed sequentially by a 5-min dark period (dark 1; ~0 lux) to
stimulate increased swimming behavior, a 5-min light period
(light 2; ~1900 lux) to stimulate freezing behavior, and a 15-
min dark period (dark 2; ~0 lux) to observe increased
swimming behavior following acclimation to the dark condition
(Figure 1C). Larval behavior was recorded by the DanioVision
camera with an infrared filter to allow visibility in both light and
dark conditions. Total distance moved was automatically
tracked using EthoVisionXT software (Ver 10.1; Noldus), and
all data were exported to GraphPad Prism (Ver 7.03) for
analysis. Dead and/or malformed larvae were excluded from
the behavior analysis. There were no statistically significant
differences between control fish from different spawning
events (data not shown).

Statistical analysis

Total distance moved for individual experimental groups was
calculated for each test period (light 1, dark 1, light 2, and dark
2). Photomotor behavior and morphology/mortality data were
analyzed using a one-way analysis of variance (ANOVA) to
compare data across all treatments (vehicle control, 0.03, 0.1,
0.3, 1, and 3ppm Ag-NP), and when applicable, a post hoc
Bonferroni-Holm multiple comparisons test was used to identify
statistically significant differences between groups. Significance
was determined at p<0.05. All statistical analyses were
conducted using GraphPad Prism (Ver 7.03).

RESULTS
Ag uptake

We used ICP-MS to measure total Ag in the tissue of
embryonic zebrafish exposed to Ag-NPs for up to 5 dpf
(Figure 1). Concentrations of Ag were measured in vehicle
control fish at the time of dosing (time 0) to obtain background
levels and in 3- and 5-dpf zebrafish exposed to vehicle or Ag-NPs
at 0.03, 0.3, or 3 ppm. Quantifiable Ag uptake was observed in
the 0.3- and 3-ppm groups at 3 and 5 dpf (Figure 2A and B). At
both time points, the 3-ppm group showed higher Ag levels than
the 0.3-ppm group, demonstrating concentration-dependent
uptake. Higher levels of Ag were detected at 5 than at 3 dpf
within experimental groups, demonstrating accumulation of Ag
in fish tissue over time.

Mortality and malformations

At 3 dpf, incidence rates for unhatched, malformed, or dead
embryos remained <3, 0, and 5%, respectively, across all
concentrations (Figure 3). At 4 dpf, new cases remained <3, 3,
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FIGURE 2: Uptake of silver nanoparticles (Ag-NPs) is concentration-
dependent. (A) Total silver ion concentrations in 3- and 5-d
postfertilization (dpf) zebrafish exposed to vehicle or Ag-NPs at 0.03,
0.3, or 3 ppm beginning at 0 dpf. Data are presented as mean =+ standard
error. (B) Total silver ion concentrations in vehicle controls at baseline
(time 0) and in exposure groups at 3 and 5 dpf. Data are presented as
mean =+ standard deviation. n =3 replicate samples/group with 22 to 26
fish/sample. **p < 0.01, ***p < 0.001, *below limit of quantitation (~0.5
ppb in solution).

and 0% for unhatched, malformed, and dead embryos,
respectively. At 5 dpf, no new cases of unhatched, malformed,
or dead embryos were observed. These rates were not
statistically different from vehicle at any time point or
concentration of Ag-NP examined (Figure 3).

Behavioral assessment

The total distance zebrafish moved was calculated for each
light and dark period (Figure 1C). Data from the light 1 period
were not statistically analyzed because they represent acclima-
tion of the zebrafish to the test chamber. Statistics were
performed using data generated during the dark 1 period,
representing the first activity period and acclimation to the dark

3 dpf

1004 100+

4 dpf

104 104

% of total
% of total

condition, and the light 2 period, representing freezing
behavior. The primary period of interest was the dark 2 period,
when total movement was assessed following acclimation to
both dark and light periods.

No significant differences between experimental groups
were observed in the dark 1 (Figure 4A and B) or light 2
(Figure 5A and B) period. This suggests that there were no
differences in baseline activity or freezing behavior between
vehicle and Ag-NP-treated larvae. However, effects of Ag-NPs
were observed in the dark 2 period (Figure 5C). At 3 dpf,
significant hyperactivity was observed in larvae exposed to 0.3,
1, and 3ppm Ag-NP relative to vehicle controls. At 4 dpf,
significant hyperactivity was observed only in larvae exposed to
3ppm Ag-NP. At 5 dpf, the total distance moved by Ag-NP-
exposed larvae was no longer significantly different from vehicle
controls.

DISCUSSION

In the present study, relatively low concentrations of Ag-NPs
were used to assess the toxicity of environmentally relevant
concentrations. The concentrations used in the present study are
more than 6 times lower than those reported in the environment
of Malaysia and below predicted levels in the United States and
Europe. Of note, Ag-NPs were observed to disrupt photomotor
behavior at concentrations that caused no mortality, morpho-
logical abnormalities, or hatching impairment, highlighting
the potential for Ag-NPs to induce behavioral changes in the
absence of overt toxicity. This observation is consistent with the
finding that behavior is among the most sensitive endpoints in
zebrafish toxicity screening (Gerhardt 2007).

The present study found significant concentration-depen-
dent hyperexcitability in zebrafish following developmental
exposures to Ag-NPs. This phenotype is consistent with recent
literature describing hyperactivity in zebrafish following rela-
tively low-concentration (~3 ppm) Ag™ exposure (Powers et al.
2011). In addition, several other studies have reported

hyperexcitability in zebrafish following low-concentration

5 dpf
100+
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El % Unhatched
E B % Malformed
o
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o
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1 A
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Veh00301 03 1 3
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FIGURE 3: Silver nanoparticle (Ag-NP) exposure does not induce significant hatching impairments, malformations, or mortality. Incidence rates of
unhatched, malformed, and dead zebrafish embryos following exposure to increasing concentrations of Ag-NPs or alginate vehicle. Embryos were
scored at 3, 4, and 5 d postfertilization. No significant differences between groups were identified using one-way analysis of variance. n=48/group
from 3 separate spawning events. dpf=days postfertilization; veh = vehicle.
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FIGURE 4: Silver nanoparticle (Ag-NP) exposure does not alter locomotion in the light 1 (L1) or dark 1 (D1) phase. (A) Behavioral traces showing mean
movement of zebrafish larvae at each 1-min time bin during the L1 acclimation phase (0-10min) and the D1 phase (10-15min). (B) Quantitative
summary of photomotor activity showing total distance moved during the D1 phase. No significant differences between groups were observed at any
D1 period as determined by one-way analysis of variance. Data are presented as mean = standard error. n=48/group from 3 separate spawning
events. dpf = days postfertilization.

exposure to diverse chemicals, including lead (Chen et al. 2012), evaluating behavioral deficits following Ag-NP exposure
bifenthrin (Frank et al. 2018), ethanol (Irons et al. 2010; Blaser reported hypoactivity in exposed zebrafish (Asmonaite et al.
and Penalosa 2011), d-methamphetamine (Irons et al. 2010), and 2016). Although the concentrations used were similar to those in
bisphenol A (Saili et al. 2012). Interestingly, a recent study the present study (2.15 ppb-2.15ppm), a critical difference is
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FIGURE 5: Silver nanoparticle (Ag-NP) exposure induces significant hyperactivity in the dark 2 (D2) testing phase. (A) Behavioral traces showing mean
movement of zebrafish larvae at each 1-min time bin during the light 2 (L2) phase and the D2 phase (20-35 min). Quantitative summary of the total
distance moved during the (B) L2 phase and (C) D2 phase for each experimental group. Significant hyperactivity was observed in the D2 phase in
zebrafish exposed to Ag-NPs at 3 and 4 d postfertilization as determined by one-way analysis of variance and post hoc Bonnferroni-Holm multiple
comparisons test. Data are presented as mean =+ standard error. n=48/group from 3 separate spawning events. *p <0.05, ***p < 0.001. dpf=days
postfertilization.
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that the authors reported hypoactivity only at concentrations
that also caused teratogenicity. Overtly toxic concentrations of
Ag-NPs have been reported to degrade the motor neurons of
exposed zebrafish (Muth-Kohne et al. 2013), which potentially
explains Ag-NP-induced hypoactivity. The authors did not
measure zebrafish tissue concentrations of Ag, so it is possible
that the teratogenicity and hypoactivity they observed reflect
greater Ag uptake than was observed in the present model.
Additional differences between the present study and Asmo-
naite et al. 2016 include the zebrafish strain used and the age at
which the behavioral tests were performed. It is well docu-
mented that temporal, age-related, and genetic factors can
influence zebrafish behavior in response to chemical exposure
(MacPhail et al. 2009; Padilla et al. 2011).

The behavioral abnormalities in our model were most robust
at 3 dpf and diminished over time, suggesting that the effects
are transient. This does not rule out the possibility that other
behavioral abnormalities manifest at later times in development.
For example, in other zebrafish models of chemical-induced
hyperactivity, exposed animals also showed impaired learning
and memory (Chen et al. 2012; Saili et al. 2012; Knecht et al.
2017). Hyperactivity has also been observed in various zebrafish
models of intellectual disability (Kim et al. 2014; Chen et al. 2018;
Lange et al. 2018). Therefore, it may be that the hyperactivity
observed in zebrafish exposed to Ag-NPs is in fact an impaired
acclimation to the dark 2 period. This interpretation is consistent
with the absence of behavioral differences during the dark 1
period as well as the diminishment of the phenotype over time,
potentially suggesting a delayed learning process in Ag-NP-
exposed larvae compared to vehicle controls. However, further
experiments are needed to evaluate whether Ag-NP exposure
impairs learning and memory processes.

Alternatively, Ag-NPs may be inducing hyperactivity via
effects on the sensorimotor system. It has been reported that
Ag-NPs alter transcription of genes associated with photore-
ception and central nervous system development at concen-
trations of 0.01 to 2 ppm (Xin et al. 2015; Cambier et al. 2018)
and induce apoptosis in developing zebrafish at 50 to 60 ppm
(Chakraborty et al. 2016; Verma et al. 2018). Exposure to Ag-NPs
has also been shown to disrupt development of the lateral line
system, a critical component of sensorimotor function in
the zebrafish central nervous system. More specifically, they
have been shown to alter gene transcription in the neuromasts
(Osborne et al. 2016) and impair rheotaxis at 0.2 to 1ppm,
demonstrating a functional consequence of lateral line system
disruption (McNeil et al. 2014). These adverse effects induced by
Ag-NPs represent potential mechanisms contributing to the
hyperexcitability observed in the present model.

CONCLUSIONS

Developmental exposure to Ag-NPs can cause hyperexcit-
ability in developing zebrafish at concentrations that do not
cause mortality, malformations, or hatching impairments. Of
note, this behavioral phenotype was observed at concentrations
below those found in some parts of the aquatic environment.
Because of the rapidly increasing use of Ag-NPs, the present

study highlights the importance of continued mechanistic
research into the behavioral effects of Ag-NP exposure.
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