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Abstract

We consider a population living in a patchy environment that varies stochastically in space and 

time. The population is composed of two morphs (that is, individuals of the same species with 

different genotypes). In terms of survival and reproductive success, the associated phenotypes 

differ only in their habitat selection strategies. We compute invasion rates corresponding to the 

rates at which the abundance of an initially rare morph increases in the presence of the other 

morph established at equilibrium. If both morphs have positive invasion rates when rare, then 

there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected 

polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when 

rare, then it is asymptotically displaced by the other morph under all initial conditions where both 

morphs are present. We refine the characterization of an evolutionary stable strategy for habitat 

selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary 

and sufficient condition for the existence of an ESS that uses all patches and determine when 

using a single patch is an ESS. We also provide an explicit formula for the ESS when there are 

two habitat types. We show that adding environmental stochasticity results in an ESS that, when 

compared to the ESS for the corresponding model without stochasticity, spends less time in 

patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing 

a spatial form of bet hedging.
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1. Introduction

Habitat selection by individuals impacts key attributes of a population including its spatial 

distribution, temporal fluctuations in its abundance, and its genetic composition. In 

environmentally heterogeneous landscapes, individuals selecting more favorable habitats are 

more likely to survive or reproduce. As population densities increase in these habitats, 

individuals may benefit by selecting previously unused habitats. Thus, both environmental 

conditions and density-dependent feedbacks generate selective pressures on habitat 

selection. Under equilibrium conditions, spatial heterogeneity can select for populations 

exhibiting an ideal-free distribution–equal per-capita growth rates in all occupied patches 

and lower per-capita growth rates if individuals moved into unoccupied patches (Fretwell 

and Lucas, 1969). Under non-equilibrium conditions, spatial-temporal heterogeneity can 

select for individuals occupying sink habitats in which the per-capita growth rate is always 

negative (Holt, 1997; Jansen and Yoshimura, 1998). Environmental heterogeneity can also 

promote coexistence of genotypes only differing in their habitat choices (Jaenike and Holt, 

1991). Despite significant advances in the mathematical theory for habitat selection under 

equilibrium conditions, a mathematical theory for habitat selection in stochastic 

environments is largely lacking. Here, we take a step to addressing this mathematical 

shortfall while at the same gaining new insights into the evolution of habitat selection for 

populations living in stochastic, patchy environments.

Since the classic paper Fretwell and Lucas (1969), the ideal-free distribution has been 

studied extensively from empirical, theoretical, and mathematical perspectives. Empirical 

support for ideal-free distributions exists for many taxa including fish (Godin and 

Keenleyside, 1984; Oksanen et al., 1995; Haugen et al., 2006), birds (Harper, 1982; 

Doncaster et al., 1997), mammals (Beckmann and Berger, 2003), and insects (Dreisig, 

1995). For example, Oksanen et al. (1995) found that armored catfish in Panamanian stream 

pools were distributed such that the resource availability per catfish was equal in all 

occupied pools, despite significant variation in light availability across these occupied pools. 

Theoreticians have identified several “non-ideal” mechanisms (e.g. sedentarism, adaptive 

movement with finite speed, density-dependent dispersal) that, under equilibrium 

conditions, generate an ideal-free distribution (Hastings, 1983; Cosner, 2005; Gejji et al., 

2012). For example, at equilibrium, sedentary populations achieve an ideal-free distribution 

provided, paradoxically, the populations initially occupied all habitat patches. While many 

early studies asserted that the ideal free distribution is an evolutionarily stable strategy (ESS) 

(Fretwell and Lucas, 1969; van Baalen and Sabelis, 1993; Schreiber et al., 2000), only recent 

advanced nonlinear analyses fully verified this assertion (Cressman et al., 2004; Cressman 

and Křivan, 2006, 2010; Cantrell et al., 2007, 2010, 2012).

In nature, observed habitat occupancies are frequently less extreme than predicted by the 

ideal-free distribution: individuals underuse higher quality habitats and overuse lower 

quality habitats compared to theoretical predictions (Milinski, 1979; Tregenza, 1995). 

Notably, populations occupying sink habitats have been documented in many species 

(Sokurenko et al., 2006; Tittler et al., 2006; Robinson et al., 2008; Anderson and Geber, 

2010). One possible explanation for these observations is that populations experience 

temporal as well as spatial variation in environmental conditions and, consequently, theory 
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based on equilibrium assumptions tells an incomplete story. In support of this explanation, 

several theoretical studies have shown that occupation of sink habitats should evolve when 

temporal variation is sufficiently great in other habitats (Holt, 1997; Jansen and Yoshimura, 

1998; Holt and Barfield, 2001; Schreiber, 2012). These theoretical developments, however, 

rely on linearizations of density-dependent models, and do not analyze the dynamics of 

competing genotypes, the ultimate basis for evolutionary change due to natural selection. 

Hence, these studies leave unanswered the question, “Does the linear analysis correctly 

identify competitive exclusion in pairwise interactions that is the basis for the analysis of 

evolutionarily stable strategies?”

Within populations, individuals can exhibit different habitat selection strategies, and there is 

some evidence these differences can be genetically based (Via, 1990; Jaenike and Holt, 

1991). For instance, some individuals of the fruit fly species Drosophila tripunctata prefer 

tomato host plants (one potential habitat for its larvae) while others prefer mushrooms 

(another potential habitat), and these differences are based on two genetically independent 

traits, settling behavior and ovipositor site preference (Jaenike, 1985). Jaenike and Holt 

(1991) found that genetic variation in habitat selection is common, especially in arthropods 

and mollusks. Furthermore, they demonstrated using mathematical models that this genetic 

variation can stem from density-dependent regulation occurring locally within each habitat. 

Specifically, Jaenike and Holt write “frequency-dependent selection favors alleles that 

confer upon their carriers a preference for underused habitats, even if there is no genetic 

variation in how well individuals are adapted to the different habitat” (Jaenike and Holt, 

1991, p.S78). Their analysis, however, doesn’t account for temporal fluctuations in 

environmental conditions and this raises the question, “Does environmental stochasticity 

facilitate or hinder the maintenance of genetic variation in habitat selection?”

To answer the aforementioned questions, we provide an in-depth analysis of a model 

introduced in (Schreiber, 2012). The single genotype (i.e. monomorphic) version of this 

model and a characterization of its dynamics are given in Section 2. The competing 

genotype (i.e. dimorphic) version of the model and invasion rates of each genotype when 

rare are introduced in Section 3. In Section 4, we prove that these invasion rates determine 

the long-term fate of each of the genotypes. Specifically, if both genotypes have positive 

invasion rates when rare, then there is a positive stationary distribution under which the 

genotypes coexist. Alternatively, if one genotype has a negative invasion rate when rare, 

then it is asymptotically displaced by the other genotype. These result allows us to use the 

invasion rates when rare to explore conditions supporting a protected polymorphism for 

habitat selection. In Section 5, we refine the characterization of an evolutionary stable 

strategy for habitat selection from (Schreiber, 2012) in a mathematically rigorous manner, 

and provide an explicit formula for this ESS when there are two habitat types. Section 6 

concludes with a discussion of how our results relate to the existing literature and identifies 

future challenges for the theory of habitat selection in stochastic environments.

EVANS et al. Page 3

J Math Biol. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. The Monomorphic Model

To set the stage for two competing populations spread over several patches, we start with a 

single population living in one patch. Let Zt be the population abundance at time t ≥ 0. The 

stochastic process (Zt)t≥0 is governed by the Itô stochastic logistic equation

(2.1)

where μ is the intrinsic rate of growth of the population in the absence of stochasticity, κ is 

the strength of intraspecific competition, σ2 > 0 is the infinitesimal variance parameter of the 

stochastic growth rate, and (Wt)t≥0 is a standard Brownian motion. The process (Zt)t≥0 is a 

strong Markov process with continuous paths. We call an object with such properties a 

diffusion.

As shown in our first proposition, the process (Zt)t≥0 lives in the positive half line 

; that is, if we start it in a strictly positive state, then it never hits zero. 

Furthermore, the long-term behavior of the process is determined by the stochastic rate of 

growth . When the stochastic growth rate is negative the population abundance 

converges asymptotically to zero with probability one. On the other hand, when this 

parameter is positive the distribution of the abundance converges to an equilibrium given by 

a Gamma distribution. These results are well-known, but, as introduction to the methods 

used to prove our main results, we provide a proof in Appendix A.

Proposition 2.1. Consider the diffusion process (Zt)t≥0 given by the stochastic differential 

equation (2.1).

• The stochastic differential equation has a unique strong solution that is defined for 

all t ≥ 0 and is given by

• If Z0 = z > 0, then Zt > 0 for all t ≥ 0 almost surely.

•
If , then limt→∞ Zt = 0 almost surely.

•
If , then lim inft→∞ Zt = 0 almost surely, lim supt→∞Zt = ∞ almost 

surely, and   almost surely.

•
If , then (Zt)t≥0 has a unique stationary distribution ρ on  with 

Gamma density , where
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Moreover, if Z0 = z > 0, then

for any Borel function  with . In particular,

Next, we consider a population living in a spatially heterogeneous environment with n 

different patches. These patches may represent distinct habitats, patches of the same habitat 

type, or combinations thereof. The abundance of the population in the i-th patch at time t ≥ 0 

is . Let  be given by

(2.2)

where μi is the intrinsic rate of growth the population in patch i in the absence of 

stochasticity, κi is the strength of intraspecific competition in patch i, and 

for a standard multivariate Brownian motion (B1, …, Bn)T on  and an n × n matrix Γ := 

(γij). The infinitesimal covariance matrix for the non-standard Brownian motion 

 is Σ = (σij):= ΓTΓ.

The populations in the various patches described by equation (2.2) are coupled only by the 

spatial correlations present in the driving Brownian motion . We further couple 

the population dynamics across patches by assuming the fraction of population in patch i 

equals αi for all time. This spatial distribution can be realized at the scale of the individual 

when, as described in greater detail in Remark 2.2, individuals disperse rapidly and 

independently of one another in such a manner that the fraction of time spent in patch i 

equals αi for each individual. Under this assumption, we call α = (α1,α2, ⋯ αn), with αi ≥ 0 

for all 1 ≤ i ≤ n and  αi = 1, a patch-selection strategy. Continuing to denote the 

abundance of the population in the i-th patch at time t ≥ 0 as , we have , where 

 is the total population abundance at time t ≥ 0. If we impose these constraints 

on , then it is heuristically reasonable that the process  is an autonomous 

Markov process that satisfies the SDE
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(2.3)

Remark 2.2. One way to justify the formulation of (2.3) rigorously is to first modify (2.2) to 

obtain a system of SDEs explicitly accounting for dispersal. Suppose that individuals 

disperse from patch i to patch j at a rate δdij for some fixed rate matrix D = (dij). As usual, 

we adopt the convention dii = −Σj≠i dij. The resulting system of SDEs is

(2.4)

Assume that the rate matrix D has a unique stationary distribution α; that is, αj > 0 for 1 ≤ j 

≤ n,  αi = 1,

(2.5)

for 1 ≤ i ≤ n. In this case, a vector (y1, …, yn) satisfies

(2.6)

for 1 ≤ i ≤ n if and only if

(2.7)

for 1 ≤ j ≤ n for some constant c. Moreover, summing (2.7) we find that

(2.8)

Note that by (2.5) we can write the drift term in (2.4) that contains δ as

(2.9)

where . using (2.7) and (2.8), we see that (x1, …, xn) and  are 

such that

(2.10)

for i = 1, …, n if and only if
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(2.11)

for 1 ≤ j ≤ n.

It follows from (2.9) and the equivalence between (2.10) and (2.11) that as δ increases the 

solution of (2.4) experiences an increasingly strong drift towards the one-dimensional 

subspace

In the limit δ → ∞, it is plausible that the system (2.4) converges to one for which

where , and the total population size  satisfies the autonomous one-

dimensionl SDE (2.3) with  replaced by . This heuristic for obtaining (2.3) as a high 

dispersal rate limit of (2.4) can be made rigorous by applying Theorem 6.1 from 

Katzenberger (1991).

Let  denote the standard Euclidean inner product and define another inner 

product 〈·, ·〉κ by . Since (α · Et)t≥0 is a Brownian motion with 

infinitesimal variance parameter α · Σα, (2.3) can be expressed more simply as

(2.12)

where Wt is a standard Brownian motion.

The total population  defined by (2.12) behaves exactly like the one-patch case 

defined by (2.1) with the parameters μ → μ · κ → 〈α, α〉κ and . In particular, 

 is a diffusion process and we have the following immediate consequence of 

Proposition 2.1

Proposition 2.3. Consider the diffusion process  given by (2.12).

• If , then  for all t ≥ 0 almost surley.

•
If , then  almost surley.
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•
If , then  almost surley, 

almost surley, and    almost surely.

•

If , then the process  has a unique stationary distribution 

 on  with Gamma density , where

Moreover,

for any Borel function  with . In particular,

For the dynamics (2.2) in patch i, Proposition 2.1 implies that if there was no coupling 

between patches by dispersal, then then population abundance in patch i would converge to 

0 if μi−σii/2 < 0 and converge to a non-trivial equilibrium if μi−σii/2 > 0. As noted by 

Schreiber (2012) and illustrated below, the spatially coupled model is such that the 

population can persist and converge to an equilibrium even when μi − σii/2 < 0 for all 

patches.

Persistence of coupled sink populations in symmetric landscapes

Consider a highly symmetric landscape where μi = r, σii = σ2 > 0 for all i, κi = a for all i, and 

σij = 0 for all i ≠ j. If individuals are equally distributed across the landscape (αi = 1/n for all 

i), then

The increase in the stochastic growth rate from r − σ2/2 for an isolated population to r − 

σ2/(2n) for the spatially coupled population stems from individuals spending equal time in 

patches with uncorrelated environmental fluctuations. Specifically, the environmental 

variance experienced by individuals distributing their time equally amongst n uncorrelated 

patches is n times smaller than the environmental variance experienced by an individual 

spending their time entirely in one patch. Whenever σ2 > 2r > σ2/n, this reduction in 
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variance allows the entire population to persist despite patches, in and of themselves, not 

supporting population growth.

3. Dimorphic model and invasion rates

To understand the evolution of patch-selection strategies, we now consider competition 

between populations that only differ in their patch-selection strategy. Let Xt and Yt be the 

total population sizes at time t ≥ 0 of two populations playing the respective patch selection 

strategies α = (α1,α2,…,αn) and β = (β1,β2,…,βn), so that the densities of the populations in 

patch i are αiXt and βiYt at time t ≥ 0. The dynamics of these two strategies are described by 

the pair of stochastic differential equations

(3.1)

Since

the diffusion process ((Xt, Yt))t≥0 for the spatially coupled, competing strategies can be 

represented more compactly as

(3.2)

where (U, V) is a (non-standard) Brownian motion with covariance structure d[U, U]t = dt, 

d[V, V]t = dt, and . Using a construction similar from Remark 

2.2, system (3.2) can be seen as a high dispersal limit. This system exhibits a degeneracy 

when U = V i.e. . If Σ is nonsingular, then, by the Cauchy-Schwarz 

inequality, this degeneracy only occurs if α = β. We do not consider this possibility in what 

follows.

To determine whether the two populations coexist or one displaces the other, we introduce 

the invasion rate  of a population playing strategy β when introduced at small 

densities into a resident population playing strategy α. As shown in the next proposition, this 

invasion rate is defined by linearizing the dynamics of Y and computing the long-term 

population growth rate  associated with this linearization. When , the 

population playing strategy β tends to increase when rare. When , the population 

playing strategy β tends to decrease when rare.

Proposition 3.1. Consider the partially linearized system
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(3.3)

Assume  and .

If α · (μ − Σα/2) > 0, so the Markov process  has a stationary distribution concentrated on 

, then the limit  exists almost surely and is given by

(3.4)

On the other hand, if α·(μ − Σα/2) ≤ 0, so that    almost surely, then the 

limit  exists almost surely and is given by

(3.5)

Proof. By Itô’s lemma,

Assume that . By Proposition 2.3,

Therefore,

as claimed.

On the other hand, assume that . By Proposition 2.3,

Therefore,
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again as claimed.

In the next proposition, we show that if a population playing strategy β cannot invade a 

population playing strategy α (i.e. , ), then the population strategy α can invade 

the population playing strategy β (i.e. ). This suggests, as we will show in the 

next section, that such a strategy α should exclude strategy β.

Proposition 3.2. Suppose that α·(μ − Σα2) > 0 and . Then, .

Proof. Set A:= α·(μ − Σα2) and B:= β·(μ − Σβ2). Assume that A > 0 and . To 

show that , we consider two cases, B ≤ 0 and B > 0. Suppose B ≤ 0. Then, 

 by Proposition 3.1 and by assumption.

Alternatively, suppose that B > 0. Then

by Proposition 3.1. Assume, contrary to our claim, that  and . From 

the Cauchy-Schwarz inequality  we get

The above inequalities yield the contradiction  and 

.

An immediate consequence of Proposition 3.1 is the following corollary. This corollary 

implies that if a population playing strategy β can invade a population playing strategy α and 

a population playing strategy α can invade a population playing strategy β, then a single 

population playing strategy β converges to a non-trivial equilibrium and the same is true of a 

single population playing strategy β. This suggests, as we show in the next section, that 

under these conditions these two strategies should coexist.

Corollary 3.3. The invasion rate satisfies . In particular, if 

 and , then α · (μ − Σα/2) > 0 and β · (μ − Σβ/2) > 0.

4. Exclusion and protected polymorphisms

Our main results about the dimorphic process (X, Y) is that the invasion rates determine the 

long-term fate of competing strategies. If the invasion rates predict that strategy β cannot 
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invade a population playing strategy α, then the population playing strategy α drives the 

population playing strategy β asymptotically to extinction as shown in the following 

theorem. We give a proof in Appendix B.

Theorem 4.1. If α · (μ − Σα/2) > 0 and , then, for , the probability 

measures

converge weakly as t → ∞ to , where  is the unique stationary distribution of 

concentrated on , and δ0 is the point mass at 0.

On the other hand, if the invasion rates predict that each strategy can invade when rare, then 

the following theorem proves that the competing strategies coexist: for any initial conditions 

the joint distribution of (Xt, Yt) converges as t → ∞ to a probability distribution on 

with density ψ and, moreover, for any Borel set  the long term proportion of times t 

for which (Xt, Yt) spends in B converges to

A proof is given in Appendix C. In order to appreciate the assumptions of the theorem, it 

helps to recall Corollary 3.3 which says that if  and  then α · (μ − 

Σα/2) > 0 and β · (μ − Σβ/2) > 0 so that a single population playing strategy α or β will 

persist.

Theorem 4.2. Suppose that  and . Then, there exists a unique 

stationary distribution π of (X; Y ) on  that is absolutely continuous with respect to 

Lebesgue measure. Moreover, for any bounded, measurable function 

(4.1)

Furthermore, the process (X, Y) is strongly ergodic, so that for any initial distribution q one 

has

(4.2)

where dTV is the total variation distance.

From the perspective of population genetics, the coexistence of these two strategies 

corresponds to a protected polymorphism: each strategy (a morph) increases when rare 

and, therefore, is protected from extinction. This protection from extinction, however, is 

only ensured over ecological time scales as mutations may result in new morphs that can 

displace one or both coexisting morphs (Ravigné et al., 2004). The concept of protected 
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polymorphisms was introduced by Prout (1968) when studying deterministic models of 

competing haploid populations in a spatially heterogenous with overlapping generations. 

Turelli et al. (2001) extended this concept to stochastic difference equations for competing 

haploid populations with a constant population size. Theorem 4.2 provides a mathematically 

rigorous characterization of protected polymorphisms for our stochastic models with 

fluctuating population sizes.

Theorem 4.2 implies that coexistence depends on the intrinsic stochastic growth rate of the 

populations and the competitive effect of each population on the other. The intrinsic 

stochastic growth rates are given by

While the competitive effect of the population with strategy α on the population with 

strategy β is given by the ratio of the magnitude of α projected in the β direction (i.e. 〈β/||β||κ, 

α〉κ, where ) divided by the magnitude of β (i.e. ||βκ). Mathematically, the 

competitive effect of α on β and the competitive effect of β on α are given by

Provided rα and rβ are positive, Theorem 4.2 implies that there is a protected polymorphism 

if

(4.3)

In words, the relative intrinsic stochastic growth rate of each population must exceed the 

competitive effect on itself due to the other population. Conversely, if one of the inequalities 

in (4.3) is reversed, then Theorem 4.1 implies that one population excludes the other. Unlike 

the standard Lotka-Volterra competition equations, Proposition 3.2 implies that both 

inequalities in (4.3) cannot be simultaneously reversed and, consequently, bistable dynamics 

are impossible.

Environmental stochasticity impedes protected polymorphisms in symmetric landscapes.

Consider a landscape where all patches have the same carrying capacities (e.g. κi = 1 for all 

i), the same intrinsic rates of growth (i.e. μi = a for all i), and the same amount of 

uncorrelated environmental stochasticity (e.g. σii = σ2 for all i and σij = 0 for i ≠ j). Then the 

protected polymorphism inequalities (4.3) become

(4.4)
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where the only σ2 dependency is on the left hand sides of both inequalities. As 

 is a decreasing function of σ2 whenever  and an increasing function of 

σ2 whenever , it follows that the set of set of strategies supporting a protected 

polymorphism

is a decreasing function of σ2 i.e  is a proper subset of  whenever σ2 > σ1 ≥ 0. 

Figure 1A illustrates this conclusion for a two-patch landscape. Intuitively, increasing 

environmental stochasticity in these symmetric landscapes reduces the stochastic growth 

rate for all strategies and, thereby, makes it less likely for populations to persist let alone 

coexist. For asymmetric landscapes, how the set A(σ2) of protected polymorphisms varies 

with σ2 is more subtle, as illustrated in Figure 1B. In this case, some protected 

polymorphisms are facilitated by environmental stochasticity, while other protected 

polymorphisms are disrupted by environmental stochasticity.

For the symmetric landscapes, we can identify a strategy that displaces all others. Namely, 

the strategy  of visiting all patches with equal frequency. This strategy 

maximizes the function function . Hence, if we consider a competing 

strategy β ≠ α, then  and

e.g. the invasion rates are negative along the vertical transect α1 = 1/2 in Figure. 1A. This 

strategy α is an example of an evolutionarily stable strategy that we discuss further in the 

next section.

5. Evolutionarily stable strategies

The concept of an evolutionary stable strategy was introduced by Maynard Smith and Price 

(1973). Loosely stated, an evolutionary strategy is a strategy that cannot be invaded by any 

other strategy and, consequently, can be viewed as an evolutionary endpoint. For our 

models, we say patch selection strategy α is an evolutionarily stable strategy (ESS) if 

 for all strategies β ≠ α. In light of Theorem 4.1, an ESS not only resists 

invasion attempts by all other strategies, but can displace all other strategies. An ESS α is 

called a pure ESS if αi = 1 for some patch i, otherwise it is a mixed ESS. Our next result 

provides an algebraic characterization of mixed and pure ESSs. However, it remains to be 
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understood whether these ESSs can be reached by small mutational steps in the strategy 

space (i.e. are convergently stable (Geritz et al., 1997)).

Theorem 5.1. Assume that the covariance matrix Σ is positive definite and that there is at 

least one patch selection strategy which persists in the absence of competition with another 

strategy; that is, that maxα α · (μ − Σα/2) > 0.

Mixed strategy

An ESS α with αi > 0 for i ∈ I with I ⊆ {1, 2, …, n} and |I| ≥ 2 satisfies

(5.1)

for all i ∈ I. Conversely, if |I| = n, then a strategy α satisfying (5.1) is an ESS.

Pure strategy

The strategy αi = 1 and αj = 0 for j ≠ i is an ESS if and only if

(5.2)

for all j ≠ i.

Furthermore, in the case of n = 2, there exists a mixed ESS whenever the reversed 

inequalities

(5.3)

hold for i = 1, 2 and j ≠ i.

The first statement of Theorem 5.1 provides a sufficient and necessary condition for a mixed 

ESS utilizing all patches. For example, in a symmetric landscape (as described in the 

previous section), this ESS condition is only satisfied for α = (1/n, 1/n, …, 1/n).

The second statement of Theorem 5.1 provides a characterization of when using only a 

single patch is an ESS. Since the right hand side of equation (5.2) is negative, using patch i 

can only be an ESS if all other patches have a negative stochastic rate of growth, 

 for all j ≠ i. However, even if only patch i has a positive stochastic growth rate, 

an ESS may use the other patches, as we illustrate next for two-patch landscapes.

ESSs in two-patch, uncorrelated landscapes

For an uncorrelated two patches landscape (i.e. n = 2 and σ12 = 0), Theorem 5.1 implies that 

there is a mixed ESS whenever

(5.4)
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and this ESS satisfies

(5.5)

Equation (5.4) implies that even if deterministic growth in patch 2 is strictly negative (i.e. μ2 

< 0), then there is selection for movement into this patch provided the variance of the 

fluctuations in patch 1 are sufficiently large relative to the intrinsic rate of decline in patch 2 

(Fig. 2).

In the limit of no noise (i.e. σii ↓ 0 for i = 1, 2), equation (5.5) becomes

While our results do not apply to the deterministic case, this limiting expression for the ESS 

suggests, correctly, that the ESS for the deterministic model satisfies

In other words, the fraction of individuals selecting patch i is proportional to the equilibrium 

density μi/κi supported by patch i. Equation (5.5) implies that adding stochasticity in equal 

amounts to all patches (i.e. σii = σ2 for all i) results in an ESS where, relative to the 

deterministic ESS, fewer individuals select patches supporting the highest mean population 

abundance and more individuals selecting patches supporting lower mean population 

abundances (Fig. 3).

6. Discussion

Habitat selection by organisms is a complex process determined by a mixture of genetic, 

developmental, ecological, and environmental factors. For ecologists, habitat selection plays 

a fundamental role in determining the spatial and temporal distribution of a population 

(Rosenzweig, 1981; Orians and Wittenberger, 1991). For evolutionary biologists, habitat 

selection determines the suite of environmental factors driving local adaptation (Edelaar and 

Bolnick, 2012). Indeed, in the words of the eminent evolutionary biologist Ernst Mayr, 

“With habitat and food selection – behavioral phenomena – playing a major role in the shift 

into new adaptive zones, the importance of behavior in initiating new evolutionary events is 

self-evident” (Mayr, 1963, p. 604). Here, we examined how spatial and temporal 

heterogeneity in demographic rates across multiple habitat patches influence the dynamics 

of competing populations who only differ in their habitat patch selection preferences. We 

assume that habitat selection has a genetic basis (e.g. genes that influence the physiological 

or neurological capacity of individuals to detect and respond to habitat cues) and that genetic 

differences in habitat choice have no pleiotropic effects on habitat specific fitness. Our 

analysis reveals that, generically, only two outcomes are possible, coexistence or 

EVANS et al. Page 16

J Math Biol. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



displacement of one population by the other for all initial conditions, and that these 

outcomes are determined by the invasion rates of populations when rare. In addition to 

providing a mathematically rigorous justification of prior work, our analysis provides new 

insights into protected polymorphisms for habitat selection and raises several questions 

about evolutionary stable strategies for habitat selection.

Protected polymorphisms correspond to populations of competing genotypes exhibiting 

negative frequency-dependence: each population tends to increase when rare (Prout, 1968). 

In the case of patch selection, these competing populations differ in the frequencies in which 

they select habitat patches. In a survey of the empirical literature, Jaenike and Holt (1991) 

found “that genetic variation for habitat selection is common, especially in arthropods and 

mollusks, the groups that have been studied most frequently.” Moreover, they argued that 

some of this variation may be maintained through protected polymorphism. Specifically, “in 

a haploid model without intrinsic fitness differences among genotypes [i.e. soft selection], 

genetic variation in fixed habitat preferences may be maintained stably” (Jaenike and Holt, 

1991, pg. S83). We provide a general analytic criterion (see, inequality (4.3)) characterizing 

these protected polymorphisms for spatially and temporally variable environments. This 

criterion depends on the intrinsic fitnesses (rα and rβ) of each population and their 

competitive coefficients (Cα,β and Cβ,α) that characterize the effect of each population on the 

other. Competitive effects are greatest when there is an overlap in patch use and one 

population tends to select the patches with the higher carrying capacities more than the other 

population. Intuitively, by occupying patches with a larger carrying capacities, populations 

achieve higher regional densities. Coupled with overlap in patch use, these higher densities 

result in a greater competitive impact of one population on another. A protected 

polymorphism occurs when the relative fitness of each population (e.g. rα/rβ for strategy α) 

is greater than the competitive effect of the other population on it (e.g. rα/rβ > Cβ,α for the 

population playing strategy α). Hence, as in the case of species coexistence (Chesson, 2000), 

protected polymorphism are most likely when fitness differences are small (i.e. rα/rβ ≈ 1) 

and competitive effects are small (i.e. both Cα,β and Cβ,α < 1). Environmental stochasticity 

solely effects the intrinsic fitness terms and can facilitate or inhibit protected 

polymorphisms. For landscapes in which all patches experience the same degree of 

uncorrelated, temporal variation, environmental stochasticity has an inhibitory effect as it 

magnifies fitness differences between competing strategies (e.g. rα/rβ increases with 

environmental stochasticity). For asymmetric landscapes, however, temporal variability can 

facilitate polymorphisms by reducing fitness differences of competing strategies.

In contrast to protected polymorphisms, our analysis reveals that populations playing an 

evolutionarily stable strategy (ESS) for patch selection not only thwart invasion attempts by 

all other strategies but also can invade and displace a population playing any other strategy. 

Furthermore, our analysis provides a mathematically rigorous justification of an earlier 

characterization of ESSs (Schreiber, 2012). This characterization implies that populations 

playing the ESS always occupy source habitats (i.e. patches where ). Indeed, 

consider a population playing strategy α that does not occupy some source patch, say patch 

i. Then a different behavioral genotype β that only selects patch i can invade as 

. In the limiting case of a deterministic environment, our 
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characterization of the ESS recovers the classic result of McPeek and Holt (1992): the 

fraction of time spent in a patch is proportional to the carrying capacity of the patch. Adding 

environmental stochasticity generally results in populations playing the ESS decreasing the 

time spent in the patches with larger carrying capacities and possibly making use of sink 

patches (i.e. patches where . This shift in patch choice can be viewed as a 

spatial form of bet hedging: individuals increase fitness by decreasing the variance in their 

stochastic growth rate at the expense of their mean growth rate (Childs et al., 2010).

We are able to show that for two patch landscapes there always exists an ESS for patch 

selection. However, several questions remain unanswered. First, what happens for 

landscapes with more than two patches? Is there always an ESS? Second, while we know 

that a population playing an ESS can displace a monomoprhic population playing a different 

strategy, can it displace polymorphic populations? Finally, are ESSs always convergently 

stable (Geritz et al., 1997)? If there are positive answers to this final suite of questions, then 

ESSs can be generally viewed as the ultimate evolutionary end state for patch selection 

strategies.

Going beyond the models considered here, studying the evolution habitat use faces many 

challenges. Our models assume that populations spend a fixed fraction of time in each patch 

and do so instantaneously. What happens if we relax these assumptions? For example, if 

populations are more ideal and able to track changes in population density instantaneously, 

then we have something closer to the classical notion of ideal free movement (Fretwell and 

Lucas, 1969). For these populations, what is the optimal (in an evolutionary sense) density-

dependent strategy? Moreover, can such a strategy displace the static strategies considered 

here? Alternatively, if populations are less ideal and diffusing randomly on the landscape, 

what happens then? The linear version of this question was tackled in part by Evans et al. 

(2013). However, the mathematical analysis for analogous stochastic models with density-

dependent feedbacks is largely unexplored. Going beyond single species, the coevolution of 

patch selection among interacting species has a rich history for spatially heterogeneous, but 

temporally homogeneous environments (van Baalen and Sabelis, 1993; Křivan, 1997; 

Schreiber et al., 2000; van Baalen et al., 2001; Schreiber et al., 2002; Cressman et al., 2004; 

Schreiber and Vejdani, 2006; Cantrell et al., 2007). For example, spatial heterogeneity can 

select for the evolution of contrary choices in which the prey prefers low quality patches to 

escape the predator and the predator prefers high quality patches to capture higher quality 

food items (Fox and Eisenbach, 1992; Schreiber et al., 2000). Understanding how 

environmental stochastic influences this coevolution of patch choice and the community 

level consequences of these coevolutionary outcomes provides a plethora of important, yet 

largely untouched challenges for future work.
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Appendix A: Proof of Proposition 2.1

The stochastic differential equation for Z is of the form

(6.1)

where b(z) := μz − κz2 and σ(z) := σz. It follows from Itô’s existence and uniqueness 

theorem for strong solutions of stochastic differential equations that this equation has a 

unique strong solution up to possibly a finite but strictly positive explosion time.

Set Rt := log Zt for t ≥ 0. By Itô’s lemma,

(6.2)

It follows from the comparison principle of Ikeda and Watanabe (see Chapter VI Theorem 

1.1 of Ikeda and Watanabe (1989)), Theorem 1.4 of Le Gall (1983), or Theorem V.43.1 of 

Rogers and Williams (2000)) that

(6.3)

and so Z does not explode to +∞ in finite time. Moreover, since r ↦ μ − κer is a bounded, 

uniformly Lipschitz function on (∞, 0] it follows from Itô’s existence and uniqueness 

theorem that R does not explode −∞ to in finite time, so that Z does not hit 0 in finite time. 

We could have also established this result by using the scale function and speed measure 

calculated below to check Feller’s necessary and sufficient for the boundary point of a one-

dimensional diffusion to be inaccessible – see Theorem 23.12 of Kallenberg (2002).

It is not hard to check using Itô’s lemma that an explicit solution of the SDE is

We see from the inequality (6.3) that if μ − σ2/2 < 0, then limt→∞ Zt = 0 almost surely.

We use the theory based on the scale function and speed measure of a one-dimensional 

diffusion (see, for example, Chapter 23 of Kallenberg (2002) or Sections V.6-7 of Rogers 

and Williams (2000)) below to establish that Z is positive recurrent with a unique stationary 

distribution when μ−σ2/2 > 0. Similar calculations show that Z is null recurrent when μ − 

σ2/2 = 0, and hence lim inft→∞ Zt = 0 almost surely and lim supt→∞ Zt = ∞. It follows from 

(6.2) and the comparison principle that if Z′ and Z″ are two solutions of (6.1) with respective 

parameters μ′, κ′, σ′ and μ″, κ″, σ″ satisfying μ′ ≤ μ″, κ′ = κ″, σ′ = σ″ and the same initial 

conditions, then . We will show below that
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almost surely when μ − σ2/2 > 0, and hence

almost surely when μ − σ2/2 > 0.

We now identify the scale function and speed measure of the one-dimensional diffusion Z. A 

choice for the scale function is

(6.4)

for arbitrary  (recall that the scale function is only defined up to affine 

transformations). If we set , then

and the diffusion process s(Z) is in natural scale on the state space  with speed 

measure m that has density .

The total mass of the speed measure is

(6.5)

By Theorem 23.15 of Kallenberg (2002), the diffusion process Z has a stationary distribution 

concentrated on  if and only if the process s(Z) has (−∞, +∞) as its state space and the 

speed measure has finite total mass or s(Z) has a finite interval as its state space and the 

boundaries are reflecting. The introduction of an extra negative drift to geometric Brownian 

motion cannot make zero a reflecting boundary, so we are interested in conditions under 

which  and the speed measure has finite total mass. We see from (6.4) 

and (6.5) that this happens if and only if μ − σ2/2 > 0, a condition we assume holds for the 

remainder of the proof.

EVANS et al. Page 20

J Math Biol. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The diffusion s(Z) has a stationary distribution with density  on 

, and so the stationary distribution of Z is the distribution on  that 

has density

This has the form of a Gamma(k,θ) density with parameters  and . 

Therefore,

Theorem 20.21 from Kallenberg (2002) implies that the shift-invariant σ-field is trivial for 

all starting points. The ergodic theorem for stationary stochastic processes then tells us that, 

if we start Z with its stationary distribution,

for any Borel function  with . Since Z has positive 

continuous transition densities we can conclude that

-almost surely for any .

In particular,

Appendix B: Proof of Theorem 4.1

To simplify our presentation, we re-write the joint dynamics of X and Y as

(6.6)
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where , , ,  and .

To prove Theorem 4.1, we need several preliminary results. First, we prove existence and 

uniqueness of solutions to the system (6.6) as well as a useful comparison result in Theorem 

6.1. Second, in Proposition 6.3, we establish that (Xt, Yt) remains in  for all t ≥ 

0 whenever . Third, in Proposition 6.4, we show that weak limit points of the 

empirical measures  ds are stationary distributions for the process (X, 

Y) thought of as a process on  (rather than ). Finally, we show that limt→∞ Yt = 0 

with probability one in Proposition 6.5 and conclude by showing that 

ds converges weakly to  concentrated on .

Theorem 6.1. The stochastic differential equation in (6.6) has a unique strong solution and 

 for all t, p > 0 for all . This solution satisfies Xt > 0 and Yt 

> 0 for all t ≥ 0, -almost surely for all . Let  be the 

stochastic process defined by the pair of stochastic differential equations

(6.7)

If , then

and

for all t ≥ 0.

Proof. The uniqueness and existence of strong solutions is fairly standard, see, for example, 

Theorem 2.1 in Li and Mao (2009). One notes that the drift coefficients are locally Lipschitz 

so strong solutions exist and are unique up to the explosion time. It is easy to show this 

explosion time is almost surely infinite (see Theorem 2.1 in Li and Mao (2009)). Next, 

suppose that . We adapt the comparison principle of Ikeda and Watanabe (Chapter 

VI Theorem 1.1 from Ikeda and Watanabe (1989)) proved by the local time techniques of Le 

Gall (see Theorem 1.4 from Le Gall (1983) and Theorem V.43.1 in Rogers and Williams 

(2000)) to show that  for all t ≥ 0.
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Define  by ρ(x) = |x|2. Note that

Since , by Proposition V.39.3 from Rogers and Williams (2000) the local 

time at 0 of  is zero for all t ≥ 0. Put x+ := x∨0. By Tanaka’s formula (see equation 

IV.43.6 in Rogers and Williams (2000)),

For K > 0 define the stopping time

and the stopped processes  and . Then, stopping the processes at TK 

and taking expectations yields

By Gronwall’s Lemma (see, for example, Appendix 5 of Ethier and Kurtz (2005)) 

 for all t ≥ 0, so  for all t ≥ 0. Now let K → ∞ and that 
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does not explode to get that  for all t ≥ 0. Since we have shown before that  is 

dominated by a geometric Brownian motion, a process that has finite moments of all orders, 

we get that  for all t, p > 0 and for all .

Remark 6.2. Note that the SDEs for all the processes considered here have unique strong 

solutions in Lp for all t ≥ 0, p > 0 and for all strictly positive starting points. This follows by 

arguments similar to those that are in Theorem 2.1 from Li and Mao (2009) and in Theorem 

6.1 by noting that our SDEs for (X, Y), ( , ) etc. are all of the form

for  and .

The next proposition tells us that none of our processes hit zero in finite time.

Proposition 6.3. Let (X, Y) be the process given by (6.6). If , then 

 for all t ≥ 0 almost surely. A similar conclusion holds for all of the other 

processes we work with.

Proof. As an example of the method of proof, we look at the process (X, Y) given by (6.6). 

Taking logarithms and using Itô’s lemma,

Therefore,

can’t go to −∞ in finite time because Xt and Yt do not blow up.

Proposition 6.4. Let (X, Y) be the process given by (6.6) and fix . Any sequence 

 such that tn → ∞ has a subsequence  such that the sequence of probability 

measures
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converges in the topology of weak convergence of probability measures on . Any such 

limit is a stationary distribution for the process (X, Y) thought of as a process with state 

space .

Proof. Set φ(x, y) := x + y so that φ ≥ 0 for x,y > 0. Put ψ (x, y) = μ · αx + μ · βy − x(ax + cy) 

− y(cx + by). Note that ψ is bounded above on the quadrant x, y ≥ 0 and lim||(x,y)||→∞ψ(x, y) 

= −∞ where ||·|| is the Euclidean distance on . Using Itô’s lemma we get

Therefore,  is a martingale. Applying Theorem 9.9 of Ethier 

and Kurtz (2005) completes the proof.

The following result is essentially Theorem 10 in Liu et al. (2011). We include the proof for 

completeness.

Proposition 6.5. Suppose that α·μ−α·Σα/2 > 0, β·μ−β·Σβ/2 > 0, and . If (X, Y) is 

the process given by (6.6), then limt→∞ . for all .

Proof. Using Ito’s lemma and the definition of ,

By the Cauchy-Schwarz inequality, (ab − c2) = 〈α, α〉κ〈β, β〉κ − (〈α, β〉κ)2 ≥ 0, and so

Let  be the process defined by (6.7) with . Proposition 2.3 implies

(6.8)

It follows from Theorem 6.1 that  for all t ≥ 0. Thus, with probability one,
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Since U and V are Brownian motions, , and 

 almost surely, so

In particular, limtt→∞ Yt = 0 almost surely.

We can now finish the proof of Theorem 4.1. Fix ε > 0 and η > 0 sufficiently small. Define 

the stopping time

and the stopped process . By Proposition 6.5, there exists T > 0 such that

Define the process  via

and the stopped process . Start the process  at time T with the condition 

. We want to show that the process  is dominated by the process Xε, that is 

 for all t ≥ T. By the strong Markov property, we can assume T = 0.

The proof is very similar to the one from Theorem 6.1. With the notation from the proof of 

Theorem 6.1, we have

so the local time of the process  at zero is identically zero. Then, using Tanaka’s 

formula
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Taking expectations,

By Gronwall’s Lemma, . As a result, remembering we assumed T = 0, 

we have  for all t ≥ T. For ε small enough we know that  has a stationary 

distribution concentrated on . For any sequence an → ∞, if the Cesaro averages 

 converge weakly, then the limit is a distribution of the form φ ⊗ δ0, 

where φ is a mixture of the unique stationary distribution  described in Proposition 2.3 

and the point mass at 0. By the above, the limit of  cannot have 

any mass at (0, 0) because  on the event {Yt ≤ ε for all t ≥ T} that has probability 

. Since η > 0 was arbitrary, we conclude that 

 required.

Appendix C: Proof of Theorem 4.2

Our proof is along the same lines as the proofs of Theorems 4 and 5 in Schreiber et al. 

(2011).

We will once again simplify our notation by re-writing the SDE for the pair (X, Y) as in 

(6.6). We assume throughout this appendix that the hypotheses of Theorem 4.2 hold; that is, 

 and .

Let  be the stochastic process defined by the pair of stochastic differential 

equations in (6.7) with initial conditions . We know from Theorem 6.1 

that  and  for all t ≥ 0.
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Note from Corollary 3.3 that α · (μ − Σα/2) > 0 and β · (μ − Σβ/2) > 0 and hence, by 

Proposition 2.3, the process  has a unique stationary distribution on  and is 

strongly ergodic.

Let

be the normalized occupation measures of (X, Y). We know that the random probability 

measures

converge almost surely and so, in particular, they are tight on ; that is, for any ε 

> 0 we can find a box [0,K] × [0,K] such that

Therefore,

and hence the normalized occupation measures of (X, Y) are also tight on . By Prohorov’s 

theorem (Kallenberg, 2002, Theorem 16.3), there exists a random probability measure ν on 

 and a (possibly random) sequence  such that tn → ∞ for which

(6.9)

as n → ∞ almost surely, where ⇒ denotes weak convergence of probability measures on 

. That is, with probability one for all bounded and continuous function  we 

have

as n → ∞.

Proposition 6.6. The probability measure ν is almost surely a stationary distribution for (X, 

Y) thought of as a process with state space .
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Proof. Let (Pt)t≥0 be the semigroup of the process (X, Y) thought of as a process on . For 

simplicity let us write Zt := (Xt, Yt) for all t ≥ 0 and νn := Πtn.

By the Strong Law of Large Numbers for martingales, we have that for all  and all 

bounded measurable functions f

As a result,

This implies that

Thus,

(6.10)

The last result is equivalent to saying that ν is almost surely a stationary distribution for (X, 

Y).

Proposition 6.7. There exists a stationary distribution π of (X, Y) that assigns all of its mass 

to .

Proof. We argue by contradiction. Because the process stays in one of the four sets , 

, , {(0,0)} when it is started in the set, any stationary distribution (X, 

Y) thought of as a process on  can be written as a convex combination of stationary 

distributions that respectively assign all of their masses to one of the four sets, should such a 

stationary distribution exist for the given set. Suppose there is no stationary distribution that 

is concentrated on . Then, any stationary distribution is the convex combination of 

stationary distributions that respectively assign all of their mass to the three sets , 

, and {(0,0)}, and hence any stationary distribution of the form
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where the random variables pX, pY, p0 are nonnegative and pX + pY + p0 = 1 almost surely, 

and  and  for  and  the unique stationary distributions of 

and . Next, we proceed as in Proposition 6.5 to find the limit of . Let us first 

argue that

(6.11)

Note that the infinitesimal generator of (log X, log Y) thought of as a process on  is 

uniformly elliptic with smooth coefficients and so it has smooth transition densities (see, for 

example, Section 3.3.4 of Stroock (2008)). Moreover, an application of a suitable minimum 

principle for the Kolmogorov forward equation (see, for example, Theorem 5 in Section 2 of 

Chapter 2 of Friedman (1964)) shows that the transition densities are everywhere strictly 

positive. It follows that (X, Y) thought of as a process on  has smooth transition densities 

that are everywhere positive.

Because the process  also has smooth, every positive transition densities for similar 

reasons, the almost sure behavior of the  started from a fixed point is the same as it is 

starting from its stationary distribution . As a result, we get by Birkhoff’s pointwise 

ergodic theorem (Kallenberg, 2002, Theorem 10.6) that, for all K > 0,

 almost surely for any . Therefore, by dominated convergence

The following inequalities are immediate due to the positivity of the terms

(6.12)

Recall that  for all t ≥ 0 and hence
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This implies

and therefore

(6.13)

By (6.9) and Theorem 4.27 of Kallenberg (2002),

for any K such that

While this last condition need not hold a priori for all K, we can only have

for countably many K, so there exists a sequence  such that Km → ∞ as m → ∞ 

with

By dominated convergence,

(6.14)

Combining (6.12), (6.13) and (6.14) gives (6.11).

It follows from Itô’s formula, the observation , (6.11), and the fact that 

 that
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By assumption,  and we have already observed that . Because 

converges in distribution as t → ∞ to a distribution that assigns all of its mass to , it 

follows that log  converges in probability to 0. However, since  for all t ≥ 

0 it follows that  and hence

(6.15)

The same argument applied to (Yt)t≥0 establishes

(6.16)

Therefore, pX = pY = p0 = 0, and this contradicts the assumption that pX + pY + p0 = 1.

We can now finish the proof of Theorem 4.2.

Proof. Proposition 6.7 implies that (X, Y) has a stationary distribution π on . By 

Theorem 20.17 from Kallenberg (2002), our process (X, Y) is either Harris recurrent or 

uniformly transient. We say that (Xt, Yt) → ∞ almost surely as t → ∞ if  as 

t → ∞ for any compact set . Theorem 20.21 from Kallenberg (2002) gives that if 

(X,Y) is transient, then (Xt, Yt) → ∞ and so (X, Y) cannot have a stationary distribution. 

Hence, since we know our process has a stationary distribution π, it must be Harris 

recurrent. Theorem 20.21 from Kallenberg (2002) then gives us equation (4.1).

Theorem 20.18 from Kallenberg (2002), 20.18 gives that any Harris recurrent Feller process 

on  with strictly positive transition densities has a locally finite invariant measure that is 

equivalent to Lebesgue measure and is unique up to a normalization. We already know that 

we have a stationary distribution, so this distribution is unique and has an almost everywhere 

strictly positive density with respect to Lebesgue measure. Theorem 20.12 from Kallenberg 

(2002) says that any Harris recurrent Feller process is strongly ergodic, and so equation (4.2) 

holds.

Remark 6.8. In Theorem 3.1 of Zhang and Chen (2013), the authors claim to show that the 

system of SDE describing (X, Y) always has a unique stationary distribution. We note that 

their use of moments just checks tightness in  and not in . It 
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does not stop mass going off to , which is exactly what 

can happen in our case. Thus, their proof only shows the existence of a stationary 

distribution on  − it does not show the existence of a stationary distribution on . 

Furthermore, their proof for the uniqueness of a stationary distribution on  breaks down 

because their assumption of irreducibility is false. The process (X, Y) is irreducible on , 

but it is not irreducible on  since  for any open 

subset U that lies in the interior of . If we work on , it is not true that the diffusion (X, 

Y) has a unique stationary distribution. We can obtain infinitely many stationary 

distributions on  of the form  where  is the unique stationary 

distribution of  on  and  satisfy u + v = 1.

Appendix D: Proof of Theorem 5.1

Assume that the matrix Σ is positive definite and that the dispersion proportion vector α is 

such that μ · α − α · Σα/2 > 0 so that a population playing the strategy α persists. Under 

these assumptions the function  is strictly concave. Hence, by the method of 

Lagrange multipliers,  for all β ≠ α and αi > 0 for all i if and only if there exists 

a constant, which we denote by λ, such that

(6.17)

for all i. Multiplying (6.17) by αi and summing with respect to i, we get

This expression for the Lagrange multiplier and (6.17) provide the characterization of a 

mixed ESS in equation (5.1) when αi > 0 for all i. The characterization of the more general 

case of αi > 0 for at least two patches follows similarly by restricting the method of 

Lagrange multiples to the appropriate face of the probability simplex.

Suppose that μi − σii/2 > 0 so that a population remaining in patch i and not dispersing to 

other patches persists. The strategy αi = 1 and αj = 0 for all j ≠ i is an ESS only if

for all j ≠ i. Evaluating these partial derivatives gives the criterion (5.2) for the pure ESS.

We conclude by considering the case n = 2. Define the function  by
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The inequalities (5.2) for the pure strategies (1, 0) and (0, 1), respectively, correspond to 

g(0) < 0 and g(1) > 0, respectively. Hence, when these inequalities are reversed, the 

intermediate value theorem implies there exists a ∈ (0, 1) such that g(a) = 0. Such an a 

satisfies the mixed ESS criterion (5.1) and, therefore, is an ESS.
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Figure 1. 

Protected polymorphisms and exclusion in two-patch landscapes. Contour plots of 

where lighter shades correspond to higher values of . The regions where 

 are delineated by the solid curves and correspond to parameter 

combinations supporting a protected polymorphism. Regions where 

correspond to strategies that cannot coexist. The dashed-dotted and dotted curves indicate 

how regions of coexistence and exclusion change for higher and lower levels of 

environmental stochasticity σ2, respectively. In panel A, the landscape is spatially 

homogeneous with μ = (1, 1), κ = (1, 1) and Σ = σ2I where I is the 2 × 2 identity matrix. In 

B, the landscape is spatial heterogeneous with respect to the deterministic carrying 

capacities κ = (3, 1) and the remaining parameters as A.
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Figure 2. 
ESS for patch selection (left) and mean population abundance (right) in a source-sink 

landscape. Parameter values: n = 2, σ11 = σ2, σ22 = σ12 = 0, μ = (1, μ2), and κ = (1, 1).
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Figure 3. 
The effect of the deterministic carrying capacities and environmental stochasticity on the 

ESS for patch selection (left) and mean population abundance (right) in a two-patch 

landscape. The ratio κ1/(κ2 + κ2) corresponds to the ratio of the deterministic carrying 

capacity (μ2/κ2) in patch 2 to the sum of the deterministic carrying capacities (μ1/κ2 + μ2/κ2) 

when μ1 = μ2 = 1. Parameter values: n = 2, σ11 = σ22 = σ2, σ12 = 0, μ = (1, 1), and κ = (1, 

κ2).
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