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•sTOCHASTIC REGULARIZATION OF SCALAR ELECTRODYNAMICS"* 

Zvi Bern 

Lawrence Berkeley Laboratory 

Uniflersity of California. 

Berkeley, California 941~0, U.S.A. 

ABSTRACT 

A regularization scheme, first proposed by Breit, Gupta, and Zaks and based upon the 

Langevin equation of Parisi and Wu, is used to regularize scalar electrodynamics. This scheme is 

shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum 

polarization at the one loop level. The scalar wavefunction renormalization, Z2 , is shown to be equal 

to the one photon vertex renormalization, Z1 , to all orders or the stochastically regularized theory. 

*This work was supported by the Director, Ofll.ce or Energy Research, Ofll.ee or High Energy Physics and Nuclear 
Physics, Division or High Energy Physics or the U.S. Department of Energy under Contract DE-AC03·76SF00098. 
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1. Introduction 

Several years ago Parisi and Wu [1] introduced stochastic quantization. While equivalent 

to the more standard methods of quantization, their procedure offers some interesting insights into 

quantum field theory. For example, they showed that gauge theories could be constructed without 

the need for gauge fixing so that the Gribov ambiguity could be circumvented. They also realized 

that the ideas inherent in the Langevin equation are strongly cqnnected to Monte Carlo computer 

simulations. 

Breit, Gupta, and Zaks [2} have proposed the possibility of making use of the ideas inherent 

in stochastic quantization to regularize field theories. However, the conclusion reached by these 

authors was that the applicability of this stochastic regularization to perturbation calculations is 

problematic. The claim was, that although the symmetries of the theory are preserved, the naive 

conservation laws are not preserved, so that stochastic regularization may not be a satisfactory 

scheme. However, the relevance of this fact to regularization and renormalization is not clear. For 

example, the method of higher covariant derivatives (Pauli-Villars) ruins the conservation of the 

naive Noether currents, but is certainly a good regularization scheme for gauge theories [3]. Another 

objection [4] that has been raised to the stochastic regularization scheme is that the identity, 

(1.1) 

where S[¢'] is the action, is modified by the loop corrections in quadratically divergent theories, such 

as >..¢'4 theory. Gauge theories are a different matter because, at least in the "gluon channel", they are 

only superficia.lly quadratically divergent, if the regularization scheme preserves the gauge invariance. 

If in the stochastic regularization scheme such quadratic divergences don't cancel, the scheme would 

fail anyway. If these quadratic divergences do cancel, identity (1.1) in the "gluon channel" is, in fact, 

preserved. This paper will show that at the one loop level the quadratic divergences in the photon 

propagator of scalar electrodynamics do indeed cancel in the stochastic regularization scheme. 

As a simple example of a gauge theory, this paper discusses the stochastic regularization 

of scalar electrodynamics. The infinite part of the photon self energy is calcuh:~ted to one loop order 

using the stochastic regularizer and the infinite part of the photon vacuum polarization tensor is 

shown automatically to come out transverse, as it should. The photon does not acquire a mass at 

the one loop level, because at zero external momentum the photon vacuum polarization is shown to 

vanish. By a diagrammatic calculation it is shown that the Ward identity that equates the scalar 

wavefunction renormalization, Z2 to the one photon vertex renormalization, Z1 , holds to all orders 

of the stochastically regularized theory. 

This paper is divided into five main sections. Section 2 contains a brief overview of the 

ideas inherent in stochastic quantization that are needed in order to understand the regularization 
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scheme. Section 3 gives an example of how the stochastic regularizer works for the case of a scalar 

theory, w bile Section 4 contains the explicit one loop calculation for scalar electrodynamics. Section 

5 contains the proof of the Ward identity to all orders of perturbation theory. In Section 6 the 

conclusions and comments are given. 

2. Overview ot Stochastic Quantization 

Stochastic quantization is based upon some well known ideas in nonequilibrium statistical 

mechanics [5]. For simplicity, at first, the stochastic quantization of a single scalar field, ¢, with 

action, S [¢],will be considered. The usual starting point of stochastic quantization [1] is the Langevin 

equation, 

(2.1) 

in which t 5 is a fictitious fifth-time variable, not to be confused with physical time and x represents 

the four physical space-time dimensions. Here, '7 is a five dimensional random field with Gaussian 

probability distribution, 

(2.2) 

By evaluating the generating functional, {exp(f Jt] d4 xdt5 )),,all the n-point 11 correlation functions 

can easily be calculated. After a simple calculation the_ two point correlation is found to be 

(2.3) 

while all other connected 11 correlations vanish. 

The connection to the standard formulation of quantum field theory is arrived at by 

evaluating the equal fifth-time expectation values. That is, it is possible to prove that 

where S[¢] is the four dimensional action. Note that on the right hand side of the equation the 

field, ¢, is a function of the four physical space-time dimensions, while on the lett hand side of the 

equation, ¢ is a function of the five dimensional extended space. By starting the Langevin system 

at t0 = - oo, the system is equilibrated for any finite fifth-time, so there is no need to take the limit 

of infinite firth time to make the correspondence to the standard formulation of field theory. 

There are quite a few proofs in the literature of the equivalence of stochastic quantization 

to the standard procedures of quantization. One way to make the connection is by defining the 

Fokker-Planck probability [6], which describes the probability density of finding the field ¢ at a 

given value under the Langevin dynamics. By deriving an evolution equation for the Fokker-Planck 
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probability, it is possible to show that for essentially arbitrary initial conditions, at equilibrium, the 

Fokker-Planck probability reduces to the probability density of the ordinary formulation. There 

are also proofs based on the various perturbative expansions of stochastic quantization (7J. Another 

rather elegant proof makes use of a hidden supersymmetry (8J. 

The Langevin equation can be used to perturbatively solve quantum field theories. In 

general, the lagrangian will consist of a kinetic term plus an interaction.potential. Thus, the Langevin 

equation is 

(2.5) 

where V'(¢) is the derivative of the potential with respect to the field ¢. One way to handle this 

equation is with the method of Green functions. 

The causal Green function in coordinate space is 

The Green function can be. used to rewrite the differential equation as an integral equation, 

that contains the initial condition that the field vanishes at tg = - oo, as well as the causality 

requirement. To simplify matters, a compact notation is introduced. 

(2.9) 

By iteration the integral equation (2.8) can be solved as a perturbative series. 

(2.10) 

An explicit example of how the the Langevin equation can be used to generate a pertur­

bation series is the massive scalar ¢ 4 theory. To the first order in the coupling constant the field is 

given from equation (2.10) to be 

(2.11) 

The tree diagrams corresponding to the perturbation series are given in Figure 1. Each line 

corresponds to a Green function, while the crosses at the ends of the diagrams represent the noise 
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term, 'I· . The vertex factors are the same as for ordinary Feynman diagrams, up to a possible 

combinatoric' factor. 

The loop diagrams come about by piecing together the tree diagrams (Fig. 2). For example, 

the two 'point correlation function is 

(if>(x;t")IP(x;;t"')), = (il G:&IG:&'2'7I1J2), 

- ~~(!, /, (G;1G •. 2 +a •. , G.,]~,[/. G,.~,n' + O(A2
). 

(2.12) 

From equation (2.2), the n-point 'I correlation functions are sums of products of delta functions . . · . .· . 

The delta functions ean be thought of as glue that holds the tree diagrams together to, form the 

n-point tP correlations. As will be discussed in the next section, stochastic regularization consists of 

smearing ihe delta ·funttion glue in fifth-time. . 

The zeroth order contribution is given by 

(2.13) 

(2.14) 

Therefore, hi momentum space, the zeroth order free propagator is given by 

e-(p2+m2)1t~-t~l 

Dl2(p) = 2 + 2 • p m 
(2. 15) 

where the subscript on D 12(p) refers only to the fltth-time coordinate. After replacing the '7 

correlations with the appropriate delta. functions and combining terms that differ only by dummy 

indices, the first order contribution is given by 

(2.16) 

By explicit evaluation, it is easy to check that for t" = t"', the same result is obtained as by using 

ordinary Feynman diagrams. 

3. Stochastic Regularization 

Since there is an extra dimension present in the Langevin approach, the infinities can be 

smeared without destroying any symmetries that are present in the corresponding four dimensional 

theory. The preservation of the symmetries that are present in the infinite theory is crucial to finding 

a satisfactory regularization scheme. A time smeared system is known as a non-Markovian system 
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[5). In general, such a system can be expected to be less divergent than its Markovian counterpart. 

From the perturbative point of view, stochastic regularization can be thought of as preventing the 

loops of the correlation functions from completely closing on themselves in the fifth-time. 

There are at least two choices for fifth-time smearing the Langevin system. Either the 

Langevin equation or the probability distribution of the random noise, f'J, can be smeared. By 

studying the first order correction in the >..¢4 theory, it is possible to show that the non-Markovian 

Langevin equation, 

(3.1) 

where O.tt is a smearing function, can at best only remove two degrees of divergence in the pertur­

bation theory. Quadratically divergent integrals become logarithmically divergent, and there does 

not exist a regularization function that does better. 

The other possibility is to smear the TJ probability functional [2). In this scheme, the 

Langevin equation is left alone, while equation (2.2) is replaced by 

J D'f] F[¢('fJ )) exp(- t J 'fJ(X t 11)a-1(t5
- t111 )'fJ(X t 51 )d4 xdt5dt 51

) 
(F[¢(TJ))} = ' A ' (3.2) " J DTJ exp(- t J 'fJ(X, t 5 )a;t 1(t5

- t 111 )TJ(X, t 51 )d"xdt5dt51
) 

This changes the 'fJ correlation to 

('fJ(X, t 11 )'fJ(x1
, t51

)), = 2o 4(x- x')a.ttUS- t111
). (3.3) 

The smearing functions O.tt and a; 1 are functional inverses of each other, in the sense that 

J dtll" a.ttW- t 511 )a;1W"- til')= oW- til'). (3.4) 

The hope is that, because 

lim O.ttUS- t 51
) = oW- t 111

), 
A-oo 

(3.5) 

as A becomes infinite, the original theory is recovered. 

Since the Langevin equation is unaffected by the stochastic regularization, the physical 

field is the same as in the unregularized case, so that 

(3.6) 

In this case, however, the two point 'fJ correlation is given by equation (3.3). Working in physical 

momentum space the zeroth order propagator is 

(3.7) 

(3.8) 

(3.9) 
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where the Fourier transform of the smearing function, oA(E), has been introduced. Since there 

is an: extra power of p2 in the denominator over the ordinary Feynman propagator, a reduction 

of two 'degrees of divergence can be obtained, 'if aA(E) cuts oft' for large values of E. Since all 

loops in the perturbative expansion of an arbitrary theory contain at least one factor of aA(E), the 

logarithmically divergent loops can be expected to be rendered finite." 

, _ Jt is a little more difficult to regularize a theory whose diagrams are quadratically divergent. 

For example, the first order correction to the scalar propagator in rp4 theory, is 

(3.10) 

It is possible to find a necessary condition on the set of functions that can be used as regularizers 

by studying the loop of the first order· correction [2]. In this case, the loop is decoupled from the 

rest of the diagram, so the loop can be studied by itself. The loop is given by 

(3.11) 

(3.12) 

(3.13) 

In order for the integral to be finite, a necessary condition on the regularization function is that [2] 

OA(O) = 0. (3.14) 

Using the Fourier transform of the smearing function, aA(E), condition (3.14) can be 

rewritten as 

(3.15) 

Therefore, to remove quadratic divergences, the support of aA(E) is not-positive. The generating 

functional in Euclidean space, in general, won't be well defined as can be seen by looking at the 

generating functional written in terms of the Fourier transformed fields. 

(3.16) 

- 7-



This action is unbounded from below, which seems to rule out the nonperturbative usefulness of the 

stochastic regularizer for quadratically divergent theories [9]. For logarithmically divergent theories, 

such as supersymmetric theories, the nonperturbative usefulness of the stochastic regularizer is not 

ruled out. 

4. Stochastic Regularisation of Perturbative Scalar Electrodynamics 

The manifestly covariant gauge fixed four dimensional action of euclidean scalar electro­

dynamics is 

Using the standard Feynman diagrammatical techniques, the quantum corrections to the vacuum 

polarization in scalar electrodynamics can easily be calculated. In doing the calculation, care must be 

taken, because the diagrams are infinite [10]. For example, the first order correction to the vacuum 

polarization in euclidean space is given by (Fig. 3): 

II (k) _ 2 I d4 p 6,.w 2 I d4 p (2p + k),(2p + k)v ,v - - 2e (211")4 p2 + m2, + e (211")4 [(k + p)2 + m2)(p2 + m2) · 

Using a naive momentum cutoff, A, on the integrals, to leading order in the cutoff, one obtains 

e2A2 
II,v(k) "-' -

16
11"2 6,v . 

Thus, this naive regularizer explicitly breaks gauge invariance by giving the photon a mass. 

(4.2) 

(4.3) 

An example of a well known gauge invariant regularization scheme is dimensional regulariza­

tion [3]. In this scheme the dimension of space-time is "analytically continued" to 4:.... E dimensions, 

where the integral is finite. In this case, the photon mass correction contributions of the two diagrams 

just cancel to give a gauge invariant vacuum polarization. 

1 e2 A2 

II1.w(k) = 3(
4

1T)2 (k,kv- k2 6,.v)ln m2 +regular terms, (4.4) 

where the usual connection, ~ - In A2 , has been made and where A is a cutoff parameter with units 

of momentum. 

A!. first discussed by Parisi and Wu [1], it is possible to formulate gauge theories without 

the need for gauge fixing, by using stochastic quantization. The gauge invariance manifests itself 

by a nonequilibrating random walk in the gauge parameter space. Since the physically interesting 

quantities are gauge invariant, the wandering in the gauge parameter space is essentially irrelevant. 

In fact, as Parisi and Wu pointed out, it is possible to rewrite the Langevin equations in terms 

of gauge invariant fields. Another simple way to avoid the nonequilibration of the abelian gauge 

field is by introducing a gauge fixing term, since the property that gauge fixing is unnecessary is 

unimportant for this study of regularization. 
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The Langevin equations of the gauge fixed sealar electrodynamics are 

(4.5) 

~~: = ( 82
- m2 )¢t + ieAp8p¢t + ie8p(Ap¢t)- e2 ApAp¢t + '1t (4.6) 

'-

8Ap 2 1 2 . t - - 2 t {)t~ = (TpvO + ~Lpv8 )Av- ae¢ (8p- 8p)¢- 2e Ap¢ ¢ + f]p, (4.7) 

with unsmeared expectation values defined by 

The causal Green function for the photon Langevin equation is 

w bile in the unregularized theory the zeroth order propagator is 

(4.10) 

where TIJv(k) and LIJv(k) are respectively the transverse and longitudinal projection operators. The 

two point functions for the scalars are given in equations {2.7) and (2.14). As with ordinary Feynman 

diagrammatic calculations the simplest gauge to use is Feynman gauge, where >. = 1. Henceforth, 

the Feynman gauge will be used exclusively. 

An example of a function that. satisfies the condition of equation (3.14), and renders the 

loops finite, is [2] 

(4.11) 

The superscript refers to the fact that the Fourier transform of the above regularization function 

has a double pole structure. For calculational purposes it is easier to use a function whose Fourier 

transform has a single pole structure. Namely, 

o~)(t~- t~') = A: e-A21t~-t&'l ' ( 4.12} 

which does not satisfy the requirements of a quadratic divergence regularization function. The two. 

functions are related by 

( 4.13) 
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Therefore, a(s) can be used until a divergent integral is to be evaluated, where equation (4.13) will 

be used to replace a~> with a~d), within the calculation. 

Since this section is only concerned with the perturbative one loop expansion of the photon 

propagator, the photon random noise field need not be fifth-time smeared, since only scalars appear 

within the loops. Using equations (3.8) and (4.12), the zeroth order regularized scalar two point 

function is 

(4.14) 

Note that the apparent singularity at p2 + m2 = ±A2 is fictitious. 

The seven Langevin diagrams of the one loop correction to the photon propagator in scalar 

electrodynamics are given in Figure 4. Since only physical expectation values are of interest, the 

external fifth-times are taken to be equal. Introducing the simplifying notation 

( 4.15) 

the diagrams with no external momenta in the loop (Fig. 4a) are given by 

(4.16) 

(4.17) 

• 

The other diagrams are significantly more complicated because of the intertwining of the external 

legs with the loop. In order to simplify the expressions, the vertex factors will be written as 

(4.18) 

The diagram in Figure 4b is given by 
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P~~ 2(k) =I dt~ I dt~ G~T(k)a~nk) I (::~4 Vpv D~~(p + k)D~~(p) (4.19) 

= OppDav(-A14_8_)(-A24_8_)1 d4p V. 1 1 [ A12A22 
k2 8Al2 8A22 (21T)4 pv b2- A14 a2- A2 4 ab(a + b + k2) 

- A2 2 - AI 2 + 1 ll ( 4.20) 
a( a+ k 2 + A1

2
) b(b + k2 + A2

2
) (k2 + A1

2 + A2 2) A1=A~r=A 
= OppOav (-Al4_8_)(-A24_8_)1 d4p Vpvk2 

k4 8Al2 8A22 (21T)4 

X ((A1
2 +a+ b+ k2 )-'h 4 + (A2

2 +a+ b+ k2 )A1
4 

+ (3k2 + 2b + 2a)A1
2 A22 + k 2(2k 2 + 3b + 3a)(A1

2 + A2 2) 

+(a+ b)2(A1 2 +A22
) + k4(k2 + 2b + 2a) 

+k2(a2 + 3ab + b2
) + ab2 + a2b] 

/ [ab(a + b + k2)(A1
2 + b)(A2

2 + a)(A1
2 +a+ k2) 

X (A2
2 + b + k2)(At 2 + A2

2 + k2)]1Al=A2=A ' (4.21) 

where the two regularization parameters are distinguished, in order to be able to differentiate 

individually each of the two regularization functions contained within the diagram. Later At will 

be set equal to A2 • The diagrams in Figure 4c contribute a value of 

p~~ 8 (k) = 2 I dt~ I dt2 D~~(k) ag~(k) f (::~4 Vpv D~~(p + k) G2t(P) (4.22) 

= 
5'~~av I (::~4 Vpv( -A

4 {)~2 ){ b2 ~ A4 [k2 +! + A2 - b(k2 :

2

a +b)]} (4.23) 

- OppOav I d
4

p v. (- 4~) (k
2 
+a+ b+ A

2) 
- k4 (21T)4 pv A 8A2 b(b + A2)(a + b + k2)(a + k2 + A2) . 

(4.24) 

Similarly the last two diagrams can be evaluated. The values are identical to the diagrams just 

calculated, as can be shown either by symmetry or by shifting the variables of integration. Therefore, 

the diagrams in Figure 4d contribute a value of 

p(d)4(k) = p(d)s(k) pa pa · (4.25) 

In order to make the theory finite the results obtained by using a~) are taken and differen­

tiated iii order to obtain the results by using a~d). For calculational purposes it is better to use 

the form of the vacuum polarization that contains no apparent singularities. After truncating the 

external photon lines the vacuum polarization of the photon is 

(4.26) 

where 

(4.27) 
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(d)2 2( 4 {) )( 4 {) )! d
4
p ll (k) = k -At -- -A2 -- -- V11v 

po 8At 2 8A2 2 (211")4 

X ((At 2 +a+ b + k2)A2 4 + (A22 +a+ b + k2)A1 
4 

+ {3k2 + 2b + 2a)A1
2A2

2 + k2(2k2 + 3b + 3a)(A1
2 + A2

2) 

+(a+ b)2(At 2 + A2
2

) + k4(k2 + 2b + 2a) 

+k2(a2 + 3ab + b2
) + ab2 + a2 b] 

/[ab(a + b + k2)(A1
2 + b)(A2

2 + a)(A1
2 +a+ k2

) 

X (A2
2 + b + k2 )(At

2 + A2
2 + k2))1A

1
=A

2
=A' (4.28) 

(4.29) 

(4.30) 

Although these integrals may seem quite formidable, only a few of the terms will contribute to the 

infinite part of the vacuum polarization. 

A fundamental consequence of the gauge invariance of scalar electrodynamics is that the 

photon does not acquire a mass by the higher order corrections to the vacuum polarization. Setting 

the external momentum to zero, the exact mass correction to the photon can be found. Explicitly, 

( 4.31) 

where, 

(4.32) 

and 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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Thus, the desired result is 

(4.37) 

and the mass correction vanishes. 

A direct evaluation of the finite parts of the vacuum polarization with the stochastic 

regul~izer is fairly involved and will not be discussed here. We have computed only the infinite 

part of the vacuum polarization for nonzero external momentum. The contribution to the vacuum 

polarization of the simplest diagrams is from equation ( 4.27). 

(4.38) 

(4.39) 

The next contribution is given by equation ( 4.28). By power counting, the integral in equation ( 4.28) 

is finite even before differentiating with respect to A2 • Note that the only possi~le singularity as 

A-+ oo is logarithmic. In fact, since an ultraviolet divergence in A2 can only occur when there is an 

infrared divergence in m 2 , the terms with no such divergence in m 2 can immediately be eliminated 

as being finite. As a further simplification, k2 can be set to zero within the integral, without affecting 

the leading order in A2 • Also m2 can be be neglected except where it is needed to prevent an infrared 

divergence within the integral. After performing all these simplifications, equation (4.28) is reduced 

to 

If(d)2(k) = A14A24e2k2o "_a ___ a_ J d4p 1 A12 Al I 
IJ" iJ 8A12 8A22 (2rr)4 2p2(p2 + m2) (p2 + A12)2(p2 + A22)2 Al=A~=A 

+ regular terms . 

(4.40) 

This integral can be enluated with the usual Feynman parameterization to arrive at the result, 

( 4.41) 

where all terms that are finite as A-+oo have not been calculated. In the remaining contributions 

from equations (4.29) and (4.30), k2 can be neglected compared to A2 . As usual, this type of integral 

is done by first Feynman parameterization and then evaluating the momentum integrals. Alter 

neglecting all the terms that are finite as A-+ oo, the result is 

( 4.42) 
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By adding everything together, the momentum independent pieces cancel and the infinite part of 

the one loop vacuum polarization is found to be 

1 e2 A2 

ll~dJ = 3 (
4

1r)2 (kpkv- k2 5pv) In m2 +regular terms. (4.43) 

This is precisely the correct value, as was obtained by using dimensional regularization. 

As discussed by Ishikawa [4], a modification in the identity 

(4.44) 

can occur in stochastically regularized quadratically divergent scalar field theories. The leading 

behavior of quadratically divergent loops is proportional to A2 , w bile the external legs of the Langevin 

diagrams may possess a A-2 dependence. The combination of these two factors can yield an extra 

finite nonzero contribution, in the limit that the cutoff becomes infinite. 

Although it is not clear what the relevance of this fact is to regularization and renormaliza­

tion, it is straight forward to show that no problem occurs at the one loop level in the gluon channel 

of stochastically regularized scalar electrodynamics. In order for there to be a possibility of modifying 

(4.45) 

where S[Ac, ¢t, ¢}is the action of scalar electrodynamics (4.1), the photon random noise field should 

also be fifth-time smeared. Keeping only the leading behavior of the quadratically divergent loops, 

explicit calculation shows that there is no modification of identity ( 4.45). The coefficients of the 

various factors of A2 that occur in the one loop evaluation of the left hand side of equation (4.45) 

can be obtained by comparison to the results for the various contributions to the photon vacuum 

polarization. Just as the quadratic divergences proportional to A2 have cancelled in the vacuum 

polarization, the quadratic divergences cancel in the explicit evaluation of the left hand side of ( 4.45), 

and no modification of the identity occurs in the stochastic regularization of .scalar electrodynamics. 

Of course, in the charged scalar channel, the identity analogous to ( 4.44) would again be quadratically 

divergent. In the case of pure Yang-Mills or QCD with fermions, one would expect the whole 

phenomenon to disappear, because all quadratic divergences are spurious. 

5. Diagrammatic Proof of the Ward Identity to All Orders 

By working with the standard Feynman diagrams, it is possible to prove the Ward identity 

[10], (in Feynman gauge) 

limq2V
11
(p,p-q)=-e{):(p), 

q-+0 vPu 
(5.1) 

where V11(p, p- q) is the complete three point function (Fig. 5) and S(p) is the complete scalar 

propagator (Fig. 6). A regularization scheme that preserves this identity implies that Zt = Z2. The 
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proof using the Langevin formulation is analogous to the proof using ordinary Feynman diagrams. 

The main difference js that there are ~wo types of two point functions to consider. In the Langevin 

perturba.tive expansion, the external photon line can either be D1~(q) or G1~((q). In this section all 

orders of perturbation theory a.re being considered, so the probability density of the photon noise 

field must also be filth-time smeared. In Feynman gauge, the stochastically regularized two point 

functions, using Cl~d), are 

(5.2) 

and 

(5.3) 

Since G~~(q) does not have a. pole at q2 = 0, vertex diagrams whose external photon line 

is G1~(q), do not contribute to the Ward identity (5.1). Vertex diagrams whose external photon line 

,is D~~(q) do contribute, but in a simple way, because 
• - .. • j. ~ 

(5.4) 

The proof of the Ward identity will proceed by showing that inserting a photon at zero 

momentum, q, at a given point in a typical Langevin ~iagram and then multiplying by·q2 , is the same 

as differentiating that part of the Langevin diagram with. respect to the momentum flowing through 

that point. Summing over all the possible ways to insert the photon into a diagram is therefore 

equal to summing over all the possible ways of differentiating with respect to the momentum flowing 

through the scalar lines. The suin over a closed scalar loop vanishes, because the loop momentum 

is integrated over. Thus, only the 'derivatives with respect to the momentum flowing through the 

scalar line that begins and ends externally are left. This is just the Ward identity (5.1). 

All that remains to be done is to explicitly check that inserting a photon at zero momentum 

at a given point in a Langevin diagram is indeed equivalent to differentiating that part of the diagram 

with respect to the momentum ftowing through the scalar. There are two types of scalar two point 

functions that appear within a typical Langevin diagram and one type of vertex factor that explicitly 

contain momentum dependence. Since 

(5.5) 

(5.6) 
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where k = p- E Pi, p is the scalar line momentum, and the Pi are the momenta of internal photons 

that are attached to the scalar. On the other band, 

J~q'[ lT ] = 2ek. J dt~ G18(k)G32(k) 

= 2ek~r(t~- t2)Gt2(k). 

Therefore, diagrammatically, 

Similarly, 

yields 

(5.7) 

(5.8) 

(5.9) 

. -e 
8
:. [ 1--3-t~t-4--2 ] = 2ek• f d~dt: 0:d(t; - t~)+ (I~ - t:)J G,.(k) G24(k). (5.10) 

Attaching the photon in the two possible ways results in 

~ q'[ l~ + 1--r] = 2ek. f dt; f dt', f d~ ag, G 13(k) G25(k) G54(k) 

Thus, diagrammatically, 

+ 2ek~r I dt~ I dt: I dt~ o~4 Gts(k)Gsa(k)G24(k) (5.11) 

= 2eku I dt~ I dt: o~4G1a(k)G2a(k) 
X [(t2- t:) + (t~ - t~)) . (5.12) 

(5.13) 

The reader may have noted that the fact that adding an external truncated photon to D 12(k) is equiv­

alent to ditl'erentiating with respect to the momentum 1lowing through the scalar is already contained 

in the fact that attaching an external truncated photon to G12(k) is equivalent to ditl'erentiating 

G 12(k). However, the point was to explicitly show that the regularizer does not afl'eet the results. 
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Differentiating the one photon vertex factor yields the two photon vertex factor. 

(5.14) 

or diagrammatically, 

-e~[ k 
8pu 

(5.15) 

where only the vertex factor is to be differentiated on the left hand side. Thus, it follows that the 

Ward identity (5.1) holds to all orders of perturbation theory. 

6. Conclusions and Comments 

This paper showed that the the stochastic regularizer does, in fact, yield the correct gauge 

invariant infinite part of the one loop photon vacuum polarization. The Ward identity that equates 

the scalar wavefunction renormalization to the one photon vertex renormalization was shown to 

hold to all orders of perturbation theory. Of course, it is possible that above the one loop level, 

stochastic regularization breaks down, but the Ward identity would still hold. These results seem to 

indicate that the stochastic regularizer may be useful as a regularizer that ~preserves the symmetries 

and relevant identities tha~ are present in the corresponding infinite theory. As noted previously,. 

for logarithmically divergent theories there may be nonperturbative applications, but this requires 

a more detailed examination. Althpugh this paper dealt only with scalar electrodynamics, it should 

be possible to extend the results presented in this paper to fermiolis [11] as well as to nonabelian 

gauge theories [12]. 
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FIGURE CAPTIONS 

Fig. 1. Perturbative Langevin expansion of¢ in ~theory. 
,,,, 4 

Fig. 2. Expansion of two point function in ~ theory. 
' . . . 

Fig. 3. One Loop correction to the photon propagator in SED using ordinary Feynman diagrams. 

Fig. 4. One Loop correction to the photon propagator in SED using Langevin diagrams. 

Fig. 5. Complete three point function in scalar electrodynamics. 

Fig. 6. Complete scalar propagator in scalar electrodynamics. 
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