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Abstract 

While saliency-based explainable AI (XAI) methods have been 
well developed for image classification models, they fall short 
in comparison with human explanations. Here we examined 
human explanation strategies for image classification and their 
relationship with explanation quality to inform better XAI 
designs. We found that individuals differed in attention 
strategies during explanation: Participants adopting more 
explorative strategies used more visual information in their 
explanations, whereas those adopting more focused strategies 
included more conceptual information. In addition, visual 
explanations were rated higher for effectiveness in teaching 
learners without prior category knowledge, whereas 
conceptual explanations were more diagnostic for observers 
with prior knowledge to infer the class label. Thus, individuals 
differ in the use of visual and conceptual information to explain 
image classification, which facilitate different aspects of 
explanation quality and suit learners with different experiences. 
These findings have important implications for adaptive use of 
visual and conceptual information in XAI development. 

Keywords: explanation; explainable AI; image classification; 
text analysis; eye movements; EMHMM 

Introduction 

Due to the advance of deep learning methods and availability 

of large datasets, artificial intelligence (AI) systems have 

been greatly improved in performance and increasingly 

applied to a wide range of fields. However, their inner 

workings have become more difficult to be understood by 

users or creators due to the black-box nature of deep learning 

(Lillicrap & Kording, 2019). Image classification is one such 

area that has seen both significant progress and growing 

needs for explainability. Various explainable AI (XAI) 

methods have been developed. In particular, saliency-based 

methods, which highlight input pixels that contribute to AI 

systems’ decisions, have emerged as a popular approach to 

explain image classification models (e.g., Petsiuk et al., 2018; 

Selvaraju et al., 2017; Yang et al., 2022; Liu et al., 2023a, 

2023b). 

Nevertheless, it remains unclear whether saliency-based 

XAI methods can indeed promote user understanding. As 

pointed out by Kaufman and Kirsh (2022), AI models are 

sensitive to pixel-level changes that may not correspond to 

features comprehensible to humans. In addition, these 

methods highlight image regions without providing any 

information on what to look at and in what order, which is 

essential for explainees to derive meanings in human-to-

human explanations. Therefore, current XAI explanations 

still fall short when compared with human explanations. 

Our current understanding about how humans provide 

explanations for performing image classification remains 

very limited. Previous studies examining human explanations 

typically focused on complex phenomena such as scientific 

questions or questions related to causality or functions of 

different phenomena (Zemla et al., 2017; Lombrozo & Carey, 

2006). There have been limited studies on explanations for 

tasks that involve automatic and unconscious perceptual 

processes, such as object recognition/image classification, 

since humans are typically able to perform the task with good 

performance without any explanation. However, 

explanations on these tasks are now required to facilitate 

human understanding of AI systems. Here we aimed to fill 

this gap through examining human explanation strategies for 

image classification and their relationships with explanation 

quality in order to inform better XAI designs. 

1644
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



When classifying images, humans use both perceptual 

information and existing object category knowledge to 

inform their judgments (de Lange, et al., 2018; Kersten et al., 

2004). Their existing knowledge involves both visual and 

abstract conceptual features of object categories (Martin et al., 

2018). During category learning, humans first learn 

perceptual regularities within and between categories, which 

then give rise to complex conceptual knowledge (French et 

al., 2004; Samuelson & Smith, 1999). Sloutsky (2010) 

proposed two systems of category learning: a compression-

based system that filters out idiosyncratic features of category 

members while retaining common features, and a selection-

based system that directs attention to dimensions beneficial 

for error reduction. The compression-based system allows for 

unsupervised learning of dense categories that have many 

common features, while the selection-based system works 

better for sparse categories that share few relevant features, 

especially when they are defined by explicit rules. Therefore, 

people form perceptually rich representations through the 

compression-based system when learning novel dense 

categories (Kloos & Sloutsky, 2008). Familiar dense 

categories (e.g., common basic-level categories such as dogs 

and cats) can also be represented abstractly by category 

inclusion rules or lexical entries (Fisher & Sloutsky, 2005), 

thus enabling the use of unobservable properties to define 

categories (e.g., dogs and cats are alive) and in turn allowing 

further generalizations to organize concepts hierarchically 

(e.g., dogs and cats are animals, which are alive; Rakison & 

Poulin-Dubois, 2001). Thus, humans likely use both visual 

and abstract conceptual information to explain image 

classification, in contrast to current XAI explanations that 

mainly rely on visual information. 

The use of visual or conceptual information in explanations 

may serve different purposes. For instance, natural categories 

are typically based on perceptual similarities, whereas 

artifacts are typically categorized according to rule-based 

connections between features (Stibel, 2006). Thus, visual 

information may be more effective for explaining natural 

categories while conceptual information is better for artificial 

categories. In addition, providing explanations requires 

metacognitive abilities to be aware of one’s own thought 

processes (Jiang et al., 2016), which vary across individuals 

(Rouault et al., 2018). Together these findings suggest that in 

explaining image classification, individuals may differ in 

how well they can use visual or conceptual information, and 

these differences may be reflected in where they attend to 

during explanation. Different attention strategies and 

information use may also be associated with differences in 

explanation quality. 

To investigate these possibilities, here we examined 

individual differences in explanation strategies for image 

classification. We asked participants to provide text 

explanations for why a presented image should be assigned a 

certain class label with eye tracking. We then examined 

whether participants differed in attention strategies during the 

task, and whether these differences were associated with 

variations in reliance on visual and conceptual information in 

the explanation text and the explanation quality. To quantify 

individual differences in attention strategies, we used a data-

driven machine-learning-based approach, Eye Movement 

analysis with Hidden Markov Models (EMHMM; Chuk et al., 

2014), which takes both spatial and temporal information of 

eye movements into account. To quantitatively assess 

explanation text characteristics, we used the visual dimension 

of perceptual strength from Lancaster Sensorimotor Norms 

(Lynott et al., 2020) to measure visual information and 

WordNet path similarity (Bird et al., 2009; Miller, 1995) to 

the label to measure conceptual information. We also 

included the action strength measure from Lancaster 

Sensorimotor Norms, which might be related to some 

functional information. Explanation quality was assessed on 

two different aspects: effectiveness was measured using 

subjective ratings of how effective the explanation could help 

learners without prior category knowledge understand the 

classification, whereas diagnosticity was measured as how 

well naïve observers could infer the class label given the 

explanation. We hypothesized that individual difference in 

attention strategies during explanation would be associated 

with both text characteristics and explanation quality. 

Specifically, individuals who used more visual information 

in explanation may adopt more explorative attention 

strategies for viewing the image to extract more visual 

features. Since visual information is more important for early 

learning and conceptual information is typically derived from 

later abstraction using explicit rules, visual explanations may 

be rated higher for effectiveness, whereas conceptual 

explanations could be more diagnostic. Thus, explanation 

text characteristics may mediate the relationship between 

attention strategy and explanation quality: Individuals using 

different attention strategies included different types of 

information in their explanations, which in turn affected the 

explanation quality. 

Method 

Participants 

Sixty-two participants (52 females) with age ranging from 18 

to 37 years (M = 22.5, SD = 3.8) were recruited from a local 

university. The participants included 7 native speakers of 

English. For the non-native speakers, they started to learn 

English at a mean age of 5.2 (SD = 2.4). On average, the 

participants scored 71.20% (SD = 12.79%) on the Lexical 

Test for Advanced Learners of English (LexTALE; 

Lemhöfer & Broersma, 2012). All participants had normal or 

corrected-to-normal vision. 

Materials 

The participants were shown 160 images obtained from 

ImageNet (Deng et al., 2009) and PASCAL VOC 

(Everingham et al., 2010). The images were in 20 classes, 

with 8 images in each class. Among the 20 image classes, 9 

were natural classes (ant, corn, horse, jellyfish, lemon, lion, 

mushroom, snail, and zebra) and 11 were artificial classes 

(broom, cellphone, fountain, harp, laptop, microphone, pizza, 
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shovel, sofa, tennis ball, and umbrella). The image classes 

were selected such that each class was a basic level category 

for humans (Markman & Wisniewski, 1997) and a common 

output class for image classification AI models (Russakovsky 

et al., 2015). Since the images had different sizes and aspect 

ratios, all images were resized to fit into a 400 × 520 pixel 

frame on a blank canvas. 

Design 

To examine individual differences in attention strategies, we 

first used EMHMM with co-clustering (Hsiao, Lan et al., 

2021) to discover representative participant groups where 

group members shared similar eye movement patterns to one 

another (Pattern Groups A and B). ANOVA was used to 

examine the effect of this individual difference on text 

characteristics and explanation quality. The design consisted 

of a between-participant variable eye movement pattern 

group (Group A vs. B), and a within-participant variable 

image type (natural vs. artificial). The dependent measures 

were text characteristics including visual strength, WordNet 

similarity, and action strength, and explanation quality 

included effectiveness and diagnosticity. Correlation and 

mediation analyses were used to examine the relationships 

among eye movement pattern, text characteristics, and 

explanation quality. 

 
Figure 1: Trial procedure. 

Procedures 

In each trial, the participants were shown an image with a 

label and typed an explanation in a textbox about why the 

label should be assigned to the image (Figure 1). They were 

asked to imagine explaining to someone without any previous 

knowledge about perceptual categories, such as a very young 

child, and to provide sufficient information to help the person 

learn to assign correct labels to the images. 

The participants’ eye movements were recorded with an 

EyeLink Portable Duo eye tracker (SR Research) at a 

sampling rate of 1000 Hz, and E-Prime 3.0 with the 

extensions for EyeLink (Psychology Software Tools) was 

used to program the experiment. The stimuli were displayed 

on a 255 mm × 195 mm laptop with a resolution of 1024 × 

768 pixels, and each image spanned 9.68° × 12.32° of visual 

angle at a viewing distance of 60 cm. A nine-point calibration 

and validation procedure was performed at the start of the 

experiment, and recalibration took place whenever drift 

correction error was over 1° of visual angle. Each trial began 

with a drift check at the center of the screen. A fixation cross 

was then displayed at the upper left corner of the screen, 

where the label would appear. The image, label, and textbox 

appeared on the screen once the participant fixated on the 

cross for more than 250 ms, so that the participant always saw 

the label first. 

Data Analysis 

Eye-Movement Patterns Participants’ eye-movement data 

were analyzed using EMHMM (Chuk et al., 2014) with co-

clustering (Hsiao, Lan, et al., 2021). Only fixations on the 

image area were included, and fixations that were more than 

three standard deviations from the mean fixation location for 

each image were removed as outliers. 

Each participant’s eye movements when viewing each 

image were summarized using one hidden Markov model 

(HMM) with personalized regions of interest (ROIs) and 

transition probabilities among the ROIs. The optimal number 

of ROIs for each HMM was determined from a preset range 

of 1 to 10 using a variational Bayesian approach. Each HMM 

was trained for 200 times and the model with the greatest log-

likelihood was selected. The participants were clustered into 

two groups, Pattern Group A and Pattern Group B, using the 

co-clustering algorithm, such that participants in the same 

group had similar eye-movement patterns to one another 

across the stimuli. A representative HMM was generated for 

each group and each stimulus, where the number of ROIs was 

set to be the median number of the individual HMMs. The 

co-clustering procedure was repeated for 200 times, and the 

result with the highest log-likelihood was selected. 

Following previous studies (Chan et al., 2018; Hsiao, An, 

et al., 2021; Hsiao, Chan et al., 2021; Hsiao et al., 2022; 

Zheng et al., 2022), participants’ attention strategies were 

quantified using A-B scale, which was calculated as (LA − 

LB)/(|LA| + |LB| ), where LA and LB represent the log-

likelihoods of the participant’s eye-movement patterns being 

classified as Pattern Group A and Pattern Group B 

respectively. A more positive A-B scale indicated greater 

similarity to Pattern Group A in contrast to Pattern Group B. 

Explanation Text Characteristics Explanation texts were 

quantified using three measures: visual strength, WordNet 

similarity to the label, and action strength. Explanations were 

preprocessed by correcting typos, misused words, and major 

grammatical errors. The processed explanations were 

tokenized and lemmatized using spaCy (Honnibal et al., 2020) 

to obtain the three measures for each word, and the mean 

scores were calculated for each explanation. 

The visual strength and action strength measures were 

retrieved from Lancaster Sensorimotor Norms (Lynott et al., 

2020), which contain ratings for the extent to which words 

are experienced by using different perceptual senses and by 

performing actions with different parts of the body. Visual 

strength reflected the visual dimension of perceptual strength, 

while action strength was a composite measure of the 

dimensions for different parts of the body (e.g., “black white 

stripes” has high visual strength and “move slowly” has high 

action strength). WordNet similarity was computed using the 

NLTK interface (Bird et al., 2009) for WordNet (Miller, 

1995). WordNet organizes words into sets of synonyms and 

connects the sets with semantic relations. Path similarity, 
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based on the inverse of shortest path length in the 

hypernym/hyponym taxonomy, was used to measure 

similarity (e.g., “chair” has high similarity to “sofa”). Since 

WordNet only links words with the same part of speech, we 

calculated the similarity to the label for nouns. For words 

with multiple senses or meanings, we always chose the first 

one, which tended to be most commonly used. 

Explanation Quality Assessment Explanation quality was 

evaluated by: (1) Effectiveness as measured by ratings from 

two computer vision experts on a scale from 1 to 7 while 

looking at the images. It indicated the effectiveness for 

teaching how to classify the image to someone without any 

prior knowledge of image classes. The two raters had good 

inter-rater reliability, Cronbach’s alpha = .858, and average 

rating was used for the analyses. (2) Diagnosticity as 

measured by how well naïve observers can infer the image 

class from the explanation text. It was obtained by presenting 

the explanations to 124 naïve observers (88 females) without 

the image or the label and asking them to infer the label. Their 

age ranged from 18 to 32 (M = 20.1, SD = 2.0) and their mean 

LexTALE score was 74.29% (SD = 14.29%). Each of them 

guessed the labels of a different set of 160 explanations with 

at most one explanation from each participant-class 

combination. Each explanation was evaluated by two 

observers. Diagnosticity for each participant was measured 

using percent accuracy of the observers across the 

explanations. Answers using the synonyms, hyponyms, or 

close hyponyms were counted as correct. 

 
 

Figure 2: Example representative HMMs of the explorative 

and focused patterns, where ellipses show ROIs as 2-D 

Gaussian emissions and dots represent the raw fixations, 

and heatmaps with a Gaussian distribution (SD = 0.5° of 

visual angle) applied to each fixation. Priors indicate the 

probabilities of a fixation sequence starting from each ROI, 

and the transition matrices indicate the transition 

probabilities among the ROIs. 

Results 

Eye-Movement Patterns during Explanation 

EMHMM with co-clustering discovered two representative 

eye-movement Pattern Groups: Explorative (Group A) and 

Focused (Group B; Figure 2). Thus, the A-B scale was 

referred to as the Explorative-Focused (EF) scale. KL 

divergence estimation showed that the two groups differed 

significantly, F(1, 60) = 122.77, p < .001, η2
p = .67. 

Participants in the Explorative Group had significantly more 

fixations per trial, t(57.78) = 6.57, p < .001, d = 1.53, longer 

average fixation duration, t(60) = 2.34, p = .022, d = 0.70, 

more fixations on the image region, t(60) = 4.02, p < .001, d 

= 1.19, and fewer fixations on the textbox region, t(60) = 3.38, 

p = .001, d = 1.00, than those in the Focused Group. 

Participants’ eye-movement patterns were more explorative 

for natural images than for artificial images, t(61) = 9.02, p 

< .001, d = 1.15. 

 
 

Figure 3: Difference in (a) explanation text characteristics 

and (b) explanation quality between the two pattern groups 

for natural and artificial images (error bars: 95% CI; *p 

< .05, **p < .01, ***p < .001). 

Pattern Group Differences in Explanation Text 

Characteristics and Quality 

In explanation text characteristics, for visual strength, there 

were main effects of eye-movement pattern group, F(1, 60) = 

9.33, p = .003, η2
p = .13, where explorative participants used 

words with higher visual strength; and image type, F(1, 60) = 

158.44, p < .001, η2
p = .73, where participants used words 

with higher visual strength when explaining natural images. 

A significant interaction was also observed, F(1, 60) = 5.74, 

η2
p = .09, with a greater difference between the two pattern 

groups for artificial images. For WordNet similarity to the 

label, we found main effects of eye-movement pattern group, 

F(1, 60) = 5.21, p = .026, η2
p = .08, where focused 

participants used words more similar to the label; and image 
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type, F(1, 60) = 69.20, p < .001, η2
p = .54, where participants 

used words more similar to the label when explaining 

artificial images. There was also an interaction effect, F(1, 60) 

= 6.72, p = .012, η2
p = .10, with the group difference only 

observed for natural images. For action strength, only a 

marginal effect of eye-movement pattern group was observed, 

F(1, 60) = 3.33, p = .073, where focused participants used 

words with higher action strength (Figure 3a). Consistent 

with these findings, EF scale was positively correlated with 

visual strength but negatively correlated with WordNet 

similarity and action strength (Table 1). 

 

Table 1: Correlations between eye-movement patterns, 

explanation text characteristics, and explanation quality 

(Pearson’s r with p-values in parentheses, *p < .05, **p < .01, 
***p < .001). 

 

 
In explanation quality, for effectiveness rating, we 

observed main effects of eye-movement pattern group, F(1, 

60) = 9.28, p = .003, η2
p = .14, with explorative participants 

being rated higher; and image type, F(1, 60) = 49.19, p < .001, 

η2
p = .45, with explanations for natural images being rated 

higher. A significant interaction was also found, F(1, 60) = 

23.06, p < .001, η2
p = .28, where the difference between 

natural and artificial images was smaller for explorative 

participants. For diagnosticity, only a main effect of eye-

movement pattern group was observed, F(1, 60) = 17.99, p 

< .001, η2
p = .23, where explanations provided by focused 

participants had better diagnosticity (Figure 3b). Consistent 

with these findings, EF scale was positively correlated with 

effectiveness rating and negatively correlated with 

diagnosticity (Table 1). 

The above results showed that a more explorative attention 

strategy during explanation was associated with explanation 

texts characterized by more visual information and less 

conceptual and action-related information, as well as higher 

effectiveness and lower diagnosticity. This result suggested 

that higher effectiveness in explanation quality may be 

associated with higher visual strength and lower WordNet 

similarity and action strength, whereas higher diagnosticity 

may be associated with the opposite characteristics. 

Correlation analyses confirmed these speculations (Table 1), 

suggesting that explanations relying more on visual 

information received better effectiveness ratings, whereas 

those with more conceptual and action-related information 

allowed naïve observers to infer the image class more easily. 

No significant correlation was found between the two quality 

measures, or among the three text characteristic measures. 

 

 
 

Figure 4: Indirect effect of EF scale on (a) effectiveness and 

(b) diagnosticity through the text characteristic measures. 

Path values represent the unstandardized coefficients with 

standard errors in parentheses (ab: indirect effect of EF scale 

on e planation quality through te t characteristics, c’: direct 

effect of EF scale on explanation quality, controlling for 

indirect effect; *p < .05, **p < .01, ***p < .001). 

Did Attention Strategy Predict Explanation Quality 

through the Mediation of Its Association with Text 

Characteristics? 

We e amined whether participants’ attention strategies 

predicted explanation text characteristics, which in turn led 

to differences in explanation quality. For explanation 

effectiveness, we found significant indirect effects of EF 

scale on effectiveness rating through visual strength, p = .002, 

and WordNet similarity, p = .014, and a marginal indirect 

effect through action strength, p = .061 (Figure 4a). These 

findings suggested that a more explorative attention strategy 

was associated with explanations that had higher visual 

strength, lower WordNet similarity, and lower action strength, 

which increased explanation effectiveness. The direct effect 

was not significant, p = .838. The total effect was significant, 

b = 17.24, SE = 3.28, p < .001. For diagnosticity, we observed 

a significant indirect effect of EF scale through visual 

strength, p = .030, but not through WordNet similarity, p 

= .208, or action strength, p = .146 (Figure 4b). These results 

indicated that a more explorative strategy predicted higher 

visual strength, which decreased diagnosticity. No significant 

direct effect was observed, p = .205, while the total effect was 
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significant, b = −1.86,  E = 0.52, p < .001. 

Discussion 

Here we examined individual differences in attention 

strategies during explanation and whether such differences 

were associated with variations in reliance on visual or 

conceptual information in the explanation text and 

explanation quality. Through EMHMM, we discovered the 

explorative (exploring a wider image region) and focused 

(focusing on the foreground object) attention strategies. 

Explorative participants used more visual information, 

whereas focused participants included more conceptual 

information. In addition, visual explanations were rated as 

more effective for teaching image classification to people 

without prior knowledge, whereas conceptual explanations 

allowed people (with prior knowledge) to infer the label more 

easily. Finally, mediation analyses showed that participants 

using different attention strategies provided explanations 

with different characteristics, which were in turn associated 

with differences in explanation quality. 

Participants adopting explorative and focused strategies 

had preferences for using more visual and conceptual 

information respectively. Since the explorative participants 

had more fixations on the image area, it is likely that they 

extracted more visual features from the images, while the 

focused participants relied more on their previous conceptual 

knowledge. In addition, explanations for natural categories 

were more visual and less conceptual than those for artificial 

categories. This result was consistent with previous findings 

that perceptual similarities are more important for 

categorizing natural objects, while artifact categorization 

relies more on rule-based connections between the features 

(Stibel, 2006). Interestingly, a smaller group difference in 

visual information use was observed for natural categories, 

and in conceptual information use for artificial categories, 

suggesting that participants had flexibility to include 

information more useful for explaining a specific image class 

regardless of their information use preference. Finally, action 

strength did not differ across natural and artificial categories. 

Previous research suggested that people use more functional 

information to explain artificial objects (Lombrozo & Carey, 

2006). Although action strength may reflect some functional 

information, it also reflects movement or taste, which may 

apply to natural categories as well. Visual explanations had 

higher effectiveness, whereas conceptual explanations had 

better diagnosticity. Effectiveness was rated according to 

how effective it could teach someone with no prior 

knowledge to classify the image, whereas diagnosticity 

measured how easy observers with prior category knowledge 

could infer the label from the explanation text. Thus, our 

results were consistent with previous findings that in category 

learning, novel categories are represented based more on 

perceptual regularities, whereas familiar categories are 

represented more abstractly, often with non-perceptual 

features more diagnostic to the category (Fisher & Sloutsky, 

2005; Kloos & Sloutsky, 2008). These findings further 

indicated that different explanation styles could suit different 

purposes. In addition, explorative strategies were associated 

with greater effectiveness in explanation quality while 

focused strategies were associated with higher diagnosticity. 

We found that these effects were mediated by the use of 

information in the explanation text. More specifically, the 

effect of attention strategy on effectiveness was mediated by 

the use of visual, conceptual, and action-related information, 

where participants using explorative strategies provided 

explanations with more visual information and less 

conceptual or action-related information, and thus were rated 

as more effective for teaching beginners. In contrast, the 

effect of attention strategy on diagnosticity was only 

mediated by the inclusion of visual information. This result 

suggested that it may be the prior conceptual knowledge 

about the image classes, instead of attention strategies when 

viewing the images, that affected diagnosticity through the 

use of conceptual and action-related information. The use of 

conceptual and action related information that are associated 

with high diagnosticity may not be well captured in eye 

movements during image viewing. 

Thus, humans use both visual and conceptual information 

to explain image classification, in contrast to current 

saliency-based XAI methods (Qi et al., 2023). In addition, 

different information types facilitate different aspects of 

explanation quality, which may suit learners with different 

learning experience. Although image classification may seem 

to be a purely visual task, conceptual information plays an 

important role in human explanations, especially for artificial 

or familiar categories. Also, individuals have preferences 

over the use of visual or conceptual information for 

explanations. Together these findings suggest that when 

humans are learning from explanations, their performance is 

likely to be affected by how well the provided information 

matches their experiences and preferences. Therefore, it 

would be beneficial for AI and XAI researchers to consider 

using both visual and conceptual information adaptively to 

enhance classification and explanation performance. In 

addition, since humans also first learn categories through 

perceptual regularities and later develop abstract conceptual 

knowledge and rules, future work may examine whether 

existing deep learning models are able to learn abstract rules 

after being trained on large datasets of images using 

approaches from Artificial Cognition (e.g., Ritter et al., 2017; 

Taylor & Taylor, 2021; Yang et al., 2023). 

In conclusion, we showed that individuals used different 

attention strategies when explaining image classification, 

which were associated with explanations that used different 

information and served different purposes. Specifically, 

participants using explorative strategies tended to provide 

visual explanations, which were considered more effective 

for beginning learners, while participants using focused 

strategies tended to give conceptual explanations, which were 

more diagnostic. These findings shed light on the 

inadequacies of current XAI methods for image classification 

and raised the possibility of adaptive use of visual and 

conceptual information in XAI. 
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