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Abstract of the Dissertation 

 

Heart-brain Interaction during NREM Sleep Drives Sleep-dependent Memory Gains 

by 

Pin-Chun Chen 

Doctor of Philosophy in Cognitive Sciences 

University of California, Irvine, 2022 

Professor Sara C Mednick, Chair 

 

The last decade has seen significant progress in identifying sleep mechanisms that 

support cognition. Most of these studies focus on the link between electrophysiological 

events of the central nervous system during sleep and improvements in different cognitive 

domains, while the dynamic shifts of the autonomic nervous system across sleep have been 

largely overlooked. Recent studies, however, have identified significant contributions of 

autonomic inputs during sleep to cognition. Yet, there remain considerable gaps in 

understanding how central and autonomic systems work together during sleep to facilitate 

cognitive improvement. My dissertation work investigates the independent and interactive 

roles of central and autonomic activities during sleep and wake in cognitive processing. I 

specifically focus on the prefrontal-subcortical working memory (WM) processing and 

mechanisms underlying the formation of hippocampal-dependent episodic long-term 

memory (LTM). Here, I first present an introduction to heart-brain interaction and memory 

processing during sleep. Next, I show two experimental studies where I examine the role of 

autonomic activities and autonomic-central couplings during sleep on WM, which has 
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reliably been shown to benefit from sleep. Lastly, I present a pharmacological within-

subjects, double-blind, placebo-controlled study that identifies separate and competing 

underlying mechanisms between autonomic and central activities supporting WM and 

LTM. In light of these three studies’ novel contributions, I propose a theoretical model – the 

Sleep Oscillation Switch (SOS) Model that sleep is a competitive arena in which autonomic 

WM and LTM vie for limited resources. 
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Overview 

One of the primary functions of sleep is to support cognition, however, the precise 

mechanisms are not fully understood. The majority of studies examining this question have focused 

on brain activity of the central nervous system, identifying specific, electrophysiological signatures 

of non-rapid eye movement (NREM) sleep, e.g. sleep spindles (12-15Hz) and slow oscillations (SOs, 

0.5-1Hz), that are linked to sleep-related plasticity. Given that the transition from wake to sleep 

induces dramatic changes to both the central and autonomic nervous systems, a newer approach 

investigates whether autonomic features may also contribute to cognition. This emergent line of 

research examining brain-body communication suggests that autonomic activity may be linked 

with central brain activity during sleep, and that such heart-brain interaction facilitates both long-

term episodic memory consolidation and short-term working memory processing during sleep. 

However, the mechanism by which the sleeping brain performs both of these complex feats and 

which sleep features are associated with these processes remain unclear. In this thesis, Chapter 1 

includes an introduction on heart-brain interaction, namely the interaction between the autonomic 

and central nervous system, and their roles on memory processing during sleep. Chapters 2 and 3 

cover my previous peer-reviewed work that examined the roles of autonomic activity and 

autonomic-central coupling during sleep on working memory (Chen, Whitehurst, et al., 2020a; 

Chen, Whitehurst, et al., 2020b). Finally, in Chapter 4, I present my recently published work 

demonstrating that long-term and working memory are served by distinct offline neural 

mechanisms during sleep, and that these mechanisms are mutually antagonistic. In Chapter 4, I 

further propose a Sleep Oscillation Switch (SOS) model in which the brain toggles between the two 

memory processes via a complex interaction at the synaptic, systems, and mechanistic level, with 

implications for research on cognitive disturbances observed in neurodegenerative disorders such 

as Alzheimer’s and Parkinson's disease, both of which involve the decline of sleep . 
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Chapter One: An introduction to heart-brain interaction and memory 

processing during sleep 

 

The Autonomic Nervous System: Connections and Measurements  

The autonomic nervous system (ANS) is divided into two branches, with the sympathetic 

branch associated with energy mobilization during so-called fight-flight-freeze responses 

(Hagenaars et al., 2014; Miki & Yoshimoto, 2010), and the parasympathetic branch associated with 

vegetative and restorative functions during so-called rest-digest responses (Taylor et al., 2000). 

These branches “work antagonistically, synergistically, and independently to gather information 

from sensory organs and coordinate responses to internal and external demands” (Whitehurst et 

al., 2022). Both the sympathetic and parasympathetic nervous systems communicate with the 

central nervous system (CNS), forming a system named the central autonomic network (CAN). CAN 

is a set of CNS structures, including the locus coeruleus (LC), hypothalamus, amygdala, 

ventromedial prefrontal cortices (PFC), hippocampus, and thalamus, that, directly or indirectly, 

receive inputs from and modulate output to the ANS. The vagus nerve (the 10th cranial nerve) is 

comprised of approximately 80% afferent connections (see Breit et al., 2018 for a review) that 

communicate parasympathetic/vagal information from the periphery to the nucleus of the solitary 

tract (NTS) in the brainstem and higher-order CAN areas (Kalia & Sullivan, 1982; Sumal et al., 

1983). Additionally, descending projections from CAN allow for bi-directional communications 

between the CNS and ANS (Shaffer et al., 2014; Thayer & Lane, 2009a).  

In humans, a noninvasive method to detect ANS activity is heart rate variability (HRV), 

which examines the variability between individual R peaks (R-R intervals; reflecting ventricular 

depolarization) in the QRS complex of electrocardiogram (ECG) (Kleiger et al., 2005; Laborde et al., 
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2017; Malik, 1996; Shaffer et al., 2014). HRV can be calculated in the time domain and the 

frequency domain. Time-domain measures of HRV include (a) the standard deviation of all R–R 

intervals (SDNN), a general measure of variability in heart rate; and (b) the root mean square of 

successive differences (RMSSD), a measure of heart rate fluctuations mediated primarily by the 

vagus nerve. Frequency-domain measures of HRV include (a) the power of high-frequency HRV 

(HF-HRV: 0.15-0.40Hz), an indicator of respiratory sinus arrhythmia and parasympathetic vagal 

activity; (b) the power of low-frequency HRV (LF-HRV: 0.04–0.15 Hz), a mixed-signal from both 

sympathetic and parasympathetic sources. Given the uncertainty in the contribution of signals 

comprising LF-HRV, relative to the known vagal origins of the HF-HRV signal, research on 

autonomic activity tends to focus on HF-HRV. 

 

Autonomic inputs during wake modulate cognition  

Cognitive processes that rely on top-down inhibitory control in prefrontal-subcortical 

networks, such as emotional regulation, cognitive control or executive function, have been 

associated with parasympathetic/vagal activity. Cognitive control or executive function, the 

coordination of mental processes and action in accordance with current goals and future plans, is a 

primary function of the prefrontal cortex (PFC). The coordination of cognitive control is 

implemented by multiple functional circuits anchored in the PFC, including the ventromedial 

prefrontal cortex, anterior cingulate cortex, and a wide range of subcortical regions (Menon & 

D’Esposito, 2021). WM is an aspect of executive function that supports the maintenance and 

manipulation of a small quantity of information, usually lasts seconds to minutes (Baddeley Alan, 

1992), and shares similar neural mechanisms with cognitive control (Braver et al., 2007).  

Parasympathetic/vagal activity is thought to be an indicator of the degree to which the 

prefrontal-subcortical circuit regulates its component systems in response to internal and external 

demands. Specifically, activity in these inhibitory circuits has been positively associated with 
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resting HF-HRV (Lane et al., 2009; Thayer & Lane, 2009a), and optimal functioning of these circuits 

is hypothesized to predict flexible and adaptive responses to environmental changes (Thayer et al., 

2012). One prominent model aimed to explain how the bi-directional communication between CNS 

and ANS is a critical predictor of adaptive cognitive success is the Neurovisceral Integration Model, 

developed by Thayer and colleagues (Thayer & Lane, 2000, 2009; Figure 1.1). This model proposes 

that HRV is an index of prefrontal-subcortical inhibitory influence over a wide range of brain areas 

supporting cognition, emotion, and physiological reactivity, including executive function, WM, 

expectation of future outcomes, emotional regulation, emotional response to stress, as well as 

peripheral functioning (for review see Thayer et al., 2012).  

 

 

 

The Neurovisceral Integration Model gained empirical support from studies showing the 

relationship between HRV during wakefulness and executive function. Compared to individuals 

with low resting HF-HRV (reflecting poor parasympathetic vagal tone during awake rest), high HF-

Figure 1.1 Connections Between 
Autonomic Centers and Higher-
Order Cognition Areas 
 
Bidirectional innervations between 
peripheral organs, including the heart, 
and the central nervous system, 
beginning at the brainstem, link brain 
areas associated with cognitive 
processing to brain areas controlling 
heart rate and HRV. In this figure, lines 
denote bidirectional connections and 
arrows denote mono-directional 
projections. Note that for clarity, not all 
areas are reported in the current figure. 
Reprinted from Whitehurst et al., 2016. 
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HRV individuals show better WM performance (n-back task: Hansen et al., 2003; operation-span 

task: Mosley et al., 2018), and inhibitory control (i.e. Stroop task; Hansen et al., 2004). In addition, 

training-induced changes in cognitive control are associated with improvements in 

parasympathetic activity, and the reversal is also true that training-induced increases in 

parasympathetic activity also promote cognitive enhancement. For example, cognitive training 

(vision-based speed of processing) has been shown to increase HF-HRV and enhance activation in 

the prefrontal-subcortical network (Lin, L Heffner, et al., 2017). In this study, older adults with 

amnestic mild cognitive impairment underwent six weeks of cognitive training. Compared to 

controls, older adults in the active training group demonstrated increased HF-HRV and decreased 

prefrontal-striatal connectivity during the task, suggesting an efficient prefrontal-subcortical 

autonomic regulation. Similar results were reported in healthy participants (Xiu et al., 2016). 

Furthermore, increasing resting HF-HRV via aerobic training has been reported to parallel 

improvements in WM performance (Hansen et al., 2004). In this study, participants were randomly 

assigned to an aerobic training group and a detraining group (reduced exercise condition), with 

resting HF-HRV and WM measured before and after the exercise intervention. Post-intervention, 

the aerobic training group showed greater HF-HRV and WM performance compared to the 

detraining control group, suggesting a link between the strengthening of parasympathetic/vagal 

functioning and WM networks via cardiac exercise.  

How might vagal/ parasympathetic activity benefit WM? One mechanism is through 

increasing NE. Despite the traditional assumptions that the vagus nerve only modulate activity in 

the ANS, and that vagal activity only affects ACh but not NE, the last 20 years of research has 

demonstrated that the vagal afferents modulate NE levels in the brain. The vagus nerve represents 

the main component of the parasympathetic nervous system, and activating ascending fibers of the 

vagus nerve mediate NE’s actions on the brain (McIntyre et al., 2012; Miyashita & Williams, 2006). 

The terminals of the afferent vagus nerve transmission are directly within the nucleus tractus 
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solitarii (NTS). After activation by vagal afferents, NTS neurons convey information to structures 

that regulate higher-order cognition such as the amygdala, hippocampus, and frontal cortex via a 

polysynaptic pathway to the LC. Although ACh is the primary neurotransmitters in the peripheral 

synapses of the vagus nerve, once the information propogate to the LC, NE becomes the primary 

transmitters to mediate synaptic communication in the central nervous system. 

It is crucial to distinguish the effects of phasic and tonic LC-NE neuron firings. Tonic LC-NE 

activation has been linked to stress or arousal, whereas phasic NE has been linked to responses to 

novelty and higher-order cognition (Ross & Van Bockstaele, 2021). Phasic and tonic activations are 

antagonistic, with phasic activity optimized when moderate level of tonic activity (Aston-Jones & 

Cohen, 2005), while elevated tonic discharge can impair phasic discharge (Janitzky, 2020). In 

primates, phasic activation of NE neurons of the locus coeruleus in time with cognitive shifts could 

provoke or facilitate dynamic reorganization of target neural networks, permitting rapid behavioral 

adaptation to changing environmental imperatives (Bouret & Sara, 2005). Furthermore, it has been 

recently shown that phasic-LC optogenetic activation of locus coeruleus protects against 

deleterious human pretangle tau effects and cognitive decline, while stress-inducing tonic-LC 

activation worsens its effects (Mather & Harley, 2016; Omoluabi et al., 2021). Specifically, in the 

study conducted by Omoluabi and colleagues (2021), mice were injected with pretangled tau and 

their LC neurons were activated in either phasic or tonic patterns. They found that phasic 

stimulation rescued mice from behavioral and LC deficits, while tonic stimulation led to worsened 

symptoms (Omoluabi et al., 2021). 

In humans, a causal link between vagal inputs modulating LC-NE activity and cognitive 

domains supported by the PFC has been established by studies actively manipulating vagal tone 

using vagal nerve stimulation (VNS) or non-invasive transcutaneous vagus nerve stimulation 

(tVNS). VNS activates phasic neuron firings in the LC and increases norepinephrine (NE) levels in 
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the prefrontal-subcortical networks, including the neocortex, hippocampus, amygdala, and other 

parts of the brain with afferent projections from LC (Hassert et al., 2004; Hulsey et al., 2017; 

Janitzky, 2020; Raedt et al., 2011). In one study, patients treated with invasive VNS performed 

cognitive tasks with stimulation on or off. Patients demonstrated improved WM performance 

during the stimulation-on periods compared to the stimulation-off periods (Sun et al., 2017). More 

recently, non-invasive transcutaneous vagus nerve stimulation (tVNS) has shown similar effects to 

cognitive control (Pihlaja et al., 2020). In this study, healthy participants performed a Go/NoGo task 

with active tVNS or sham stimulation. In the NoGo condition, tVNS resulted in significantly reduced 

amplitude of frontal N2 event-related potentials, a biomarker for demanding cognitive control, 

suggesting that tVNS may lead to more efficient neural processing with fewer resources needed 

with successful frontal inhibitory control. Similar effects of tVNS have been demonstrated in 

another study (Keute et al., 2020) in which tVNS increased frontal midline theta activity, thought to 

reflect transient activation of the PFC in situations requiring increased executive control of actions.  

Along with electrical stimulation of the vagus nerve, another strong modulator of 

parasympathetic/vagal activity is the sleep/wake cycle. Recent studies have demonstrated a 

potential link between the natural amplification of the parasympathetic system during sleep with 

WM function. The next section will review findings on the relationship between sleep and ANS 

activity.  

 

Sleep modulates heart-brain interactions 

The transition from wake to sleep produces the largest shift in autonomic activity we 

experience every day. Sleep is not one uniform event, and its characterization into organized stages 

shows specific profiles in central and autonomic activity during each stage. Over a night of sleep, 

the human brain cycles through two primary phases: non-rapid eye movement (NREM) and rapid 

eye movement (REM) sleep. NREM sleep is further divided into stage 1, 2, and 3 (or slow-wave 
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sleep) (Iber et al., 2007). Stage 1 sleep is a transitional state from wake to sleep, making up 3% of 

adult nocturnal sleep. About 60% of adult sleep is stage 2 sleep, which is marked by distinct 

electrophysiological events named sleep spindles and K-complexes. Stage 3, or slow-wave sleep 

(SWS), makes up about 20% of sleep, and it is marked by slow, high-amplitude oscillations called 

slow oscillations (SOs, <1Hz) and slow-wave activity (SWA, 0.5-2Hz). In NREM sleep, cholinergic 

systems in the brainstem and forebrain become markedly less active; firing rates of LC-NE and 

serotonergic Raphé neurons are also reduced, compared to waking levels (Saper et al., 2001). 

However, the conventional dogma about the relative quiescence of LC-NE neurons during NREM 

sleep has been challenged by evidence of a transient increase in LC-NE activity during NREM sleep 

(Eschenko & Sara, 2008). A simultaneous EEG-fMRI study in humans further revealed that the 

increased activity of the LC nucleus is temporally related to SO down-to-up transitions (Dang-Vu et 

al., 2008; Eschenko et al., 2012), suggesting a more complex neuromodulator dynamics during 

NREM sleep. Activity of LC-NE neurons during NREM sleep is potentially relevant in understanding 

how autonomic activity during this sleep period may contribute to cognitive enhancement. After a 

bout of SWS, the brain shifts into REM sleep, which makes up about 20% of human sleep and it is 

marked by sudden bursts of eye movements and faster, low-amplitude alpha (8-12Hz) and theta (4-

8Hz) oscillations. During REM sleep, both aminergic populations are strongly inhibited, while 

cholinergic systems become more active compared to waking levels (Marrosu et al., 1995). The 

transition through stage 2, SWS, and REM occurs in 90-100 minutes cycles across the night, with 

the first half of the night dominated by SWS and the second half of the night dominated by REM 

sleep (Plihal & Born, 1997)  

 In peripheral sites, the transition from wake to SWS is associated with a significant drop in 

heart rate and blood pressure, as well as increased dominance of HF HRV (Bušek et al., 2005; 

Tobaldini et al., 2013). The blood pressure plunge during NREM sleep compared to wake is 

beneficial for cardiovascular health, leading some experts to describe sleep as a “cardiovascular 
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holiday” (Trinder et al., 2012). SWS, in particular, is a period of cardiovascular quiescence and may 

represent an opportunity for the cardiovascular system to recuperate from daytime insults, such as 

stress-induced blood pressure surges. Indeed, one study comparing amounts of SWS and subclinical 

markers of cardiovascular disease (CVD) found that participants who experienced greater SWS 

showed lower markers of CVD after cardiovascular stress (Brindle et al., 2018), suggesting that SWS 

may buffer autonomic responses to daytime stress that may modify disease risk.  

Additionally, sleep, rather than circadian effects, appears to influence ANS activity, as 

similar HRV profiles have been shown in daytime and nighttime sleep (Whitehurst et al., 2018), 

which may also indicate that daytime naps serve as a mini-cardiovascular holiday. Furthermore, a 

study comparing HRV profiles during a 50-min nap versus waking rest in supine position reported 

parasympathetic dominance during sleep only, and not during quiet rest, indicating that the 

cardiovascular benefits are specific to sleep (Chen et al., 2021). 

Studies have revealed a consistent interdependency between the heart and brain activity, 

with temporally coincident changes in EEG delta (0.5-4Hz) power and ANS activity (Ako et al., 

2003; Brandenberger et al., 2001a; Kuo & Yang, 2004; Rothenberger et al., 2015; Thomas et al., 

2014; Yang et al., 2002). In fact, modulations in HRV are so closely associated with the onset of SWS 

that they can be used as a parameter to automatically detect SWS (Shinar et al., 2006). 

Furthermore, delta band power, a marker of homeostatic sleep drive that dissipates across 

successive NREM periods, shows inverse coupling with LF/(LF+HF) ratio during nighttime sleep. 

Generally, the LF/(LF+HF) ratio increases during REM sleep and decreases during SWS (Figure 

1.2a, Brandenberger et al., 2001), indicating greater sympathetic activity during REM sleep, with 

heart rate and blood pressure levels reaching values similar to wake (Trinder et al., 2001). In fact, 

parasympathetic/vagal activity during NREM sleep and sympathetic activity during REM sleep can 

exceed average levels of quiet wakefulness (Trinder et al., 2001). Figure 1.2b demonstrates the 

power spectrum of RR-intervals during quiet wake, stage 2, SWS and REM sleep (Figure 1.2b, Naji 
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et al., 2019b). More recently, causally increased SWA via acoustic SOs stimulation resulted in 

increased vagal activity (measured by HF-HRV and SDNN) during SWS compared to sham 

stimulation (Diep et al., 2022), suggesting a strong interdependency between vagal activity and 

slow EEG oscillatory events during SWS. 

 

 

 

 

 

 

 Considering more temporally precise levels of analysis, coupling has been shown between 

individual ANS and CNS events, such as heartbeats and EEG SOs in deep sleep (Lechinger et al., 

2015). Using a cross-correlation approach, Thomas et al. (2014) showed a temporal relation 

between SWA and high frequency cardiopulmonary (0.1-0.4Hz) coupling, an ECG-derived 

biomarker of stable sleep, during NREM sleep. Several studies have also reported on coupling 

between autonomic and central events (ACEs) whereby short bursts of heart rate are temporally 

coincident with transient increases in SOs during NREM sleep (Chen, Whitehurst, Naji, et al., 2020b; 

Naji et al., 2019). Rembado and colleagues recorded vagal-evoked potentials (VEPs), manifested as 

Figure 1.2 Vagal activity is boosted during SWS 
(a) Delta wave activity and LF/(LF+HF) ratio with a hypnogram during 

nighttime sleep. Reprinted from Brandenberger et al. 2001. (b) RR power 
spectrum modulated by sleep stages. NREM Stage 2 and SWS demonstrate 

greater parasympathetic activity indexed by HF-HRV, compared to REM 
sleep and Wake. Reprinted from Naji et al., 2019b. (c) Vagal-evoked 

potentials (VEPs) in the macaque monkey brains by sleep stages. NREM 
sleep demonstrated 300-500% greater VEPs , compared to REM sleep and 

Wake. Reprinted from Rembado et al., 2021. 
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the vagal afferents to the cerebral cortex in responses to VNS, in the macaque monkey brains during 

different consciousness states (Rembado et al., 2021). VEPs were reported to be 300-500% larger 

during NREM sleep, compared to REM sleep and wakefulness (Figure 1.2c, Rembado et al., 2021), 

and critically, VEPs during NREM were larger for stimuli delivered at the depolarized phase of 

ongoing delta oscillations, suggesting a close temporal coupling between ANS and CNS events. 

These findings demonstrate that CNS-ANS dynamics support the interdependency between cortical 

and cardiac function during sleep. Moreover, taken together with findings from wake HRV studies, 

natural surges in parasympathetic activity during SWS suggest that HRV profiles during sleep might 

account for some degree of cognitive enhancement.  

 

Sleep-dependent working memory improvements 

Compared to wakefulness, sleep between WM training sessions may be critical for 

enhancing WM performance (Chen, Whitehurst, Naji, et al., 2020a; Kuriyama et al., 2008a; Lau et al., 

2015a; MacDonald et al., 2018; Zinke et al., 2018a), potentially due to the effect of SOs (Ferrarelli et 

al., 2019; Pugin et al., 2015; Sattari et al., 2019; Figure 1.3). Moreover, a recent study using acoustic 

SO stimulation during nighttime sleep reported that stimulation improved WM as a result of 

enhanced SWA, compared to individuals whose SWA was not enhanced (Diep et al., 2020). Not all 

studies, however, find a positive association between EEG features of SWS and WM improvement 

(MacDonald et al. 2018; Chen et al., 2020). One potential reason for the lack of consistent findings 

may in part be related to the fact that few studies measure ANS activity during sleep and therefore 

miss the ANS’s contribution to the performance change. My works in chapter two and three will 

demonstrate that along with EEG events of SWS, naturally elevated vagal activity and autonomic-

central coupling during SWS also supports WM improvement in young adults. 
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We now turn to the question of LTM, for which ample evidence supports a role of SWS 

specifically in consolidation of hippocampal-dependent episodic memories. And yet, evidence for a 

potential role of ANS activity during sleep in this process remains scarce, a gap that may in fact have 

explanatory value.  

 

Sleep-dependent long-term memory consolidation 

Hippocampal-dependent, episodic long-term memory refers to the conscious recollection of 

information specific to the time and place of acquisition (Moscovitch et al., 2016). A growing 

literature supports the role of sleep in the consolidation of episodic memories and has identified a 

critical role for specific electrophysiological events during NREM sleep (see Diekelmann & Born, 

2010 for a review). Although there is much debate as to how recent experiences are represented 

and transformed in cortical and subcortical long-term stores (Nadel & Moscovitch, 1997; Sekeres et 

al., 2018; Yonelinas et al., 2019), there is a general consensus that the hippocampus is a fast-

learning system that binds recent experiences into representations across different cortical 

structures during encoding (Ekstrom & Yonelinas, 2020). During consolidation, repeated 

reactivation stabilizes and strengthens memory traces, with sleep being an optimal offline period 

Figure 1.3 SWA during SWS associated with WM improvement 
Three weeks of WM training increased SWA during sleep, which correlated 
with WM performance post-training. Reprinted from Pugin et al. 2015.  
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for consolidation as it facilitates the dialogue between the hippocampus and the neocortex (Rasch & 

Born, 2013). Specifically, during NREM sleep, the memory trace is reactivated by hippocampal 

sharp-wave ripples (SPW-R) nested within thalamic spindles, which are in turn nested within the 

down-to-up transition of the SO, providing a pathway for neural communication between 

neocortical and hippocampal cell assemblies. Spindles have recently been recognized as playing a 

causal role in hippocampal-dependent memory consolidation via pharmacology studies (Mednick 

et al., 2013; Zhang et al., 2020) and studies using targeted memory reactivation (Antony et al., 2018; 

Cairney et al., 2018). Mednick and colleagues compared zolpidem, a short-acting GABA-A agonist, 

with placebo and a positive control hypnotic (sodium oxybate) across a night of sleep. Compared 

with controls, zolpidem increased sleep spindles and enhanced hippocampal-dependent, episodic 

verbal memory, and the spindle boost mediated the memory improvements. Several other 

pharmacology studies have corroborated these findings (Wamsley et al., 2013; Zhang et al., 2020), 

implicating GABAergic modulations of the thalamocortical network as important for LTM 

formation.  

Despite the growing list of studies demonstrating a role for ANS activity in executive 

function and WM, links to LTM are sparsely reported, and no studies have endorsed a role for ANS 

during sleep in hippocampal-dependent episodic LTM specifically. One study showed that overnight 

improvement in non-hippocampal-dependent procedural memory was correlated with LF-HRV and 

SDNN during sleep (van Schalkwijk et al., 2019). In addition, parasympathetic activity (HF-HRV) 

during REM sleep strongly predicted improvement in implicit priming in a creativity task 

(Whitehurst et al., 2016). Studies examining the impact of HRV during wakefulness on episodic LTM 

also show mixed results. One study demonstrated that people with poor vagal autonomic 

functioning (low resting HRV) show greater false memory errors (Feeling et al., 2021). In addition, 

cardiac vagal tone has been shown to positively correlate with better memory for emotionally-

charged stimuli (Mattarozzi et al., 2019; Wendt et al., 2019), albeit no relation with memory for 
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neutral stimuli. In contrast, several studies showed that HRV during wakefulness does not predict 

episodic memory performance (Aguillard et al., 2020; Paige et al., 2020; Zeki Al Hazzouri et al., 

2018). Taken together, the emerging picture of the role of CNS and ANS inputs for cognitive 

enhancement is that SWS is an optimal brain state for the stabilization of episodic, long-term, non-

emotional memories, as well as for the improvement of executive function, but not necessarily via 

the same mechanisms. 

 

Working and long-term memory interaction during sleep 

While studies have shown that both SWS (including SWA and SOs) and vagal activity during 

SWS contributes to WM, and that SO-spindle-ripple complexes contribute to episodic LTM, the 

relation between WM and episodic LTM remains unclear. On one hand, studies have shown positive 

associations between WM and LTM, such that WM increases LTM recognition and WM capacity 

constrains LTM encoding (Cotton & Ricker, 2021; Forsberg et al., 2021). On the other hand, Hoskin 

and colleagues (2019) demonstrated that episodic memory reactivation during wake intrudes on 

WM maintenance (Hoskin et al., 2019), suggesting coordinated activity patterns across a broad 

swath of cortical regions, including the PFC, triggered by memory reactivation may steal resources 

from WM maintenance. Thus, WM and episodic memory may be supported by separate and 

potentially competitive, neural mechanisms, namely, the LC-NE prefrontal-subcortical network and 

the GABAergic thalamocortical hippocampal network, respectively. 

At the neuromodulatory level, along with LC-NE enhancement of WM (VNS studies), animal 

studies have implicated this system during and immediately following encoding novel experiences 

(Kobayashi & Yasoshima, 2001; McGaugh, 2013), and in wake-dependent gene expression 

regulating synaptic potentiation that supports learning (Tully & Bolshakov, 2010). However, while 

reversible inactivation of LC during the Morris water maze task demonstrated significant 

https://www.sciencedirect.com/topics/neuroscience/water-maze
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impairments in spatial memory encoding and WM, consolidation and retention of spatial memory 

were not affected (Khakpour-Taleghani et al., 2009). Together, these findings suggest that the LC-

NE system may play an important role in early acquisition of new experiences and in cognitive 

control efficiency, but not in consolidation and retrieval of LTM.  

In humans, recent findings in the tVNS literature have corroborated a selective functional 

role of the LC-NE system in cognitive control, but not in LTM. A meta-analyses on 19 tVNS 

studies (Ridgewell et al., 2021) showed significant effects of acute tVNS on cognitive inhibitory 

control, particularly as task difficulty increases, but no evidence supporting the effectiveness of 

tVNS on LTM performance, attention, or other cognitive domains. Specifically, Mertens and 

colleagues (2020) found that tVNS had no effect on either immediate or delayed word recognition 

memory in young and middle-aged adults (Mertens et al., 2020). Furthermore, Lozano-Soldevilla 

and colleagues (2014) administered a GABAergic benzodiazepine (lorazepam) to healthy adults and 

reported dose-dependent decreases in WM (Lozano-Soldevilla et al., 2014), suggesting an 

antagonistic relation between GABA and LC-NE prefrontal-subcortical networks.  

Competition between these networks may be especially prevalent during offline sleep 

(Gervasoni et al., 1998; Logothetis et al., 2012; Novitskaya et al., 2016). Gervasoni and colleagues 

applied a GABA-A antagonist during SWS in rats and reported restoration of tonic firing in the LC-

NE neurons, which are typically suppressed during SWS compared to wakefulness (Gervasoni et al., 

1998). Furthermore, during hippocampal ripples, signatures of LTM replay and consolidation, 

Logothetis and colleagues demonstrated deactivations in brainstem regions regulating the ANS. 

These fascinating results may mean that during sleep-dependent memory consolidation, 

ripple/spindle complexes may orchestrate a privileged interaction state between hippocampus and 

cortex by silencing the output from diencephalic, midbrain, and brainstem regions (Logothetis et al., 

2012). Interestingly, the deactivation of the basal ganglia, the pontine region and the cerebellar 

cortex, is consistent with prior evidence of competition between episodic and procedural memory 
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systems (Poldrack & Rodriguez, 2004). In the reverse direction, Novitskaya and colleagues (2016) 

experimentally increased NE by LC stimulation and blocked the generation of ripple-associated 

cortical spindles, thus interfering with spatial LTM consolidation (Novitskaya et al., 2016). 

Moreover, Marzo and colleagues (2014) have shown that electrical stimulation of LC transiently 

suppressed SOs and spindles in the anesthetized rodent (Marzo et al., 2014). It is also well 

documented that NE input shifts the thalamo-cortical network from a synchronized state associated 

with SOs and spindles to a desynchronized state characterized by increased neuronal 

responsiveness to synaptic inputs, which is more optimal for encoding and sensory processing 

(McCormick, 1989).  
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Chapter Two: The role of autonomic activities during sleep on working 

memory improvement 

 

Abstract 

Recent investigations have implicated the parasympathetic branch of the autonomic nervous 

system in higher-order executive functions. These actions are purported to occur through 

autonomic nervous system's modulation of the PFC, with parasympathetic activity during wake 

associated with working memory (WM) ability. Compared with wake, sleep is a period with 

substantially greater parasympathetic tone. Recent work has reported that sleep may also 

contribute to improvement in WM. Here, we examined the role of cardiac parasympathetic activity 

during sleep on WM improvement in healthy young adults. Participants were tested in an operation 

span task in the morning and evening, and during the intertest period, participants experienced 

either a nap or wake. We measured high-frequency heart rate variability as an index of cardiac, 

parasympathetic activity during both wake and sleep. Participants showed the expected boost in 

parasympathetic activity during nap, compared with wake. Furthermore, parasympathetic activity 

during sleep, but not wake, was significantly correlated with WM improvement. Together, these 

results indicate that the natural boost in parasympathetic activity during sleep may benefit gains in 

prefrontal executive function in young adults. We present a conceptual model illustrating the 

interaction between sleep, autonomic activity, and prefrontal brain function and highlight open 

research questions that will facilitate understanding of the factors that contribute to executive 

abilities in young adults as well as in cognitive aging. 

 

Introduction 

Working memory (WM), the ability to retain, manipulate, and update information over 
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short periods of time for use in top-down control of complex cognitive tasks, is essential to higher 

order cognition and to performance of daily activities. According to the WM model by Baddeley & 

Hitch (Baddeley & Hitch, 1974), it comprises a verbal and visuospatial system, which are both 

controlled by an executive system. With these subsystems, WM has been shown to support a wide 

range of complex cognitive functions, including logical reasoning and problem solving, and related 

to measures of fluid intelligence (Conway et al., 2002; Engle et al., 1999). These abilities are 

mediated primarily by the prefrontal cortex interacting with striatal and hippocampal areas (Miller 

& Cohen, 2001). Decades of work have shown strong neural activity in PFC when performing WM 

tasks (Funahashi et al., 1993; Fuster & Alexander, 1971; Levy & Goldman-Rakic, 2000). From an 

aging perspective, WM functions are prone to age-related cognitive decline. This decline is already 

evident in the normal aging process but is particularly pronounced in old-old (age > 75) adults 

(Hale et al., 2011). Considering the importance of WM for cognitive functions, the question of 

possibly modifying WM decline has been raised. Illuminating the mechanisms of WM improvement 

is important as this domain has been the focus of cognitive training in older adult populations with 

the expectation that enhanced WM will generalize to a wide range of cognitive functions and 

potentially slow the speed of cognitive aging. 

WM training typically requires practice over a span of days, weeks or months, suggesting 

that offline, sleep-dependent mechanisms may be involve in the long-term improvement of WM. 

Sleep plays an important role in the maintenance and improvement of a wide range of cognitive 

processes, including the consolidation of declarative memory and procedural memory, as well as 

maintaining executive function, including sustained attention and WM (Könen, Dirk, & Schmiedek, 

2015; Vriend et al., 2013). Indeed, it’s known that sleep deprivation/restriction detrimentally 

affects WM. For example, sleep deprivation/restriction lead to impairment in sustained attention 

(Goel et al., 2009; Lo et al., 2012) and a variety of cognitive tasks involving WM, such as digit span. 

(Quigley, Green, Morgan, Idzikowski, & King, 2000) and N-back tasks (Choo, Lee, Venkatraman, 
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Sheu, & Chee, 2005), effects likely driven, in part, by altered functioning of frontal and parietal 

networks (Chee & Choo, 2004). Although studies have repeatedly demonstrated that a sleep-

deprived brain, compared with a well-rested one, performs worse on WM tasks (Lo et al., 2012; 

2016), much less is known about the direct contribution of sleep-specific mechanisms supporting 

WM improvement. Recently, studies that directly tested the effect of post-training sleep on WM 

performance suggested that a period of sleep, compared to wake, facilitates WM. (Zinke et al., 

2018b; Kuriyama et al., 2008b; Lau et al., 2015b). In these studies, training adult participants on an 

N-back task over several sessions improved accuracy of performance, but only if the interval 

between training sessions included nocturnal sleep (Zinke et al., 2018b; Kuriyama et al., 2008b) or 

a nap (Lau et al., 2015b), in comparison with daytime periods of wakefulness. One plausible 

neurophysiological mechanism for such training improvement is slow wave sleep (SWS). SWS has 

received increasing attention due to its roles in offline memory consolidation and memory 

reactivation (Berkers et al., 2018; Marshall & Born, 2007). In addition, SWS has been linked to 

synaptic plasticity and cortical reorganization (Tononi and Cirelli, 2003; Takashima et al., 2006; 

Dang-Vu et al., 2010). Intriguingly, several studies have shown a specific association between 

electrophysiological (EEG) activity during SWS in the enhancement of WM. Pugin and colleagues 

(2015) demonstrated a correlation between SWA during SWS in frontal areas and WM performance 

after three weeks of WM training (Pugin et al., 2015). Furthermore, SWA during SWS has been 

shown to predicted WM gains across a period of sleep in both young (Ferrarelli et al., 2019) and 

older adults (Sattari et al., 2019). Taken together, these studies suggest that SWS might provide an 

optimal brain state for the improvement of WM.  

A different line of research has demonstrated a significant contribution of the autonomic 

nervous system (ANS) for WM. Cardiac vagal tone, which represents the contribution of the 

parasympathetic nervous system to cardiac regulation is known for its role in regulating 

involuntary bodily functions, such as breathing, heart rate and digestion, and is less recognized for 
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its role in influencing cognitive processing. Yet, over recent decades, vagal activity is acknowledged 

to be linked with self-regulation at the cognitive, emotional, social, and health levels. Thayer and 

others have published a body of research implicating cardiac vagal influence on a range of cognitive 

abilities supported by the prefrontal cortex (PFC) (Lane et al., 2001; Smith et al., 2017; Thayer & 

Lane, 2009b). Descending projections from the PFC to the brainstem and hypothalamic structures 

allow for bi-directional communication between the central nervous system and the ANS through 

the vagus nerve (Packard et al., 1995; Thayer et al., 2009), and thus prominent models of ANS and 

cognition, including the Neurovisceral Integration Model (Smith et al., 2017; Thayer & Lane, 

2009b), have focused on the impact of vagal cardiac activity on executive function cognition. In 

humans, a well-established method to non-invasively examine autonomic activity is heart rate 

variability (HRV), which measures systematic variation in the beat-to-beat interval (Shaffer et al., 

2014). The most commonly used HRV analytical approaches are time domain analysis and 

frequency domain analysis. The primary time domain measure is the root mean square of 

successive differences (RMSSD), which reflects the beat-to-beat variance in heart rate and is used to 

estimate vagally-mediated changes in the RR time series (Laborde et al., 2017; Shaffer et al., 2014). 

For frequency domain analysis, spectral analysis of the cardiac signal in the high frequency range 

(HF HRV: 0.15-0.40 Hz) is indicative of vagally-mediated respiration and parasympathetic cardiac 

activity. Vagally-mediated HRV (e.g. RMSSD, HF HRV) during wake has been shown to predict 

performance on a wide range of cognitive tasks that rely on PFC activity (Thayer et al., 2009). For 

example, compared to individuals with low resting vagally-mediated HRV, high HRV individuals 

perform better on both WM (n-back task: Hansen et al., 2003; operation-span task: Mosley et al., 

2018) and cognitive inhibition (i.e. Stroop task; Hansen et al. 2004). Additionally, reducing HRV, via 

aerobic de-training, comes at significant cost to executive functioning (Hansen et al., 2004). More 

recently, studies have demonstrated that directly stimulating the vagus nerve can increase vagally-

mediated HRV (Clancy et al., 2014), improve verbal memory (Clark et al., 1999; Jacobs et al., 2015), 
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and accelerate extinction learning (Burger et al., 2016). These studies suggest that strong 

modulation of ANS activity may benefit prefrontal functioning.  

Sleep strongly modulates ANS activity (Baharav et al., 1995). As the brain shifts from wake 

into sleep, the body also undergoes marked changes with heart rate deceleration and relative 

increases in parasympathetic HF HRV across the three stages of non-rapid eye movement (NREM) 

sleep (i.e., Stage 1, Stage 2, and Slow Wave Sleep (SWS)) (Trinder et al., 2001). Additionally, similar 

HRV profiles have been shown between daytime (naps) and nighttime sleep (Cellini et al., 2016; 

Whitehurst et al., 2018). It is not known whether naturally elevated vagal activity during NREM sleep 

might support WM. 

 We investigated the impact of parasympathetic activity during sleep versus wake on both 

general WM performance (baseline at Test 1) and WM improvement across a day (difference score 

between Test 2-Test 1). We examined WM using the Operation Span Task (OSpan), which is a dual-

task consisting of a processing subtask and a short-term memory subtask that has been commonly 

used to test central constructs of WM, but has not been examined in the context of sleep. Thus, the 

current study aimed: (1) to assess the cardiac activity across sleep stages during a daytime nap in 

healthy young adults; (2) to compare the effect of a daytime nap versus wake on WM 

improvement; and (3) to explore the impact of parasympathetic activity during sleep and wake on 

WM. We hypothesized that participants would show increases in parasympathetic activity during 

NREM sleep compared to waking and REM sleep. Furthermore, we predicted that sleep, especially 

SWS, would benefit WM to a greater extent than wake, and that parasympathetic activity during 

SWS would be positively associated with WM improvement to a greater extent than waking activity.  

 

Methods 

Participants 
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104 young adults (Age:17-23 [Mean=20.7, SD= 2.95], 60 males) with no personal history of 

neurological, psychological, or other chronic illness provided informed consent, which was 

approved by the University of California, Riverside Human Research Review Board. For participants 

under the age of 18 years, informed consent was obtained from a parent and/or legal guardian. All 

methods were performed in accordance with the relevant guidelines and regulations. Participants 

were randomized to either have a 2-hour nap opportunity monitored with polysomnography (PSG) 

(Nap, n=53), or stay awake (Wake, n=51), where subjects engaged normal daily activities with 

activity watch monitoring, but were not allowed to have caffeine or take a nap. Participants 

included in the study had a regular sleep-wake schedule (reporting a habitual time in bed of about 

7–9 h per night), and no presence or history of sleep, psychiatric, cardiovascular, or neurological 

disorder determined during an in-person, online, or telephone interview. Participants received 

monetary compensation for participating in the study.  

 

Working Memory Task 

The current study used the Operation Span Task (OSpan)66 as a measure of WM capacity, 

which requires participants to solve a series of math operations while memorizing a set of 

unrelated letters. The task was programmed in Matlab (The MathWorks Inc., 2015) using 

Psychtoolbox, which allows random generation of stimuli every trial. The task included 3 practice 

and 40 test trials. Participants were tested in letter strings four and seven. For each letter string, 

participants were shown a series of math problems that they had to confirm were correct within 3 

seconds, using pre-determined responses on the keyboard. After each equation, a letter would 

appear on the screen and the subject was instructed to remember each letter. At the end of each 

string, the participant was instructed to recall the letters in the order presented by typing 

responses on a computer keyboard. Immediately after each trial, the next letter string would be 

presented. An example of a four-item trial might be: 12 - 2 = 8 (correct/ incorrect?) >> J; 6 + 7 = 14 
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(correct/incorrect?) >> G; 3 - 2 = 1 (correct/incorrect?) >> S; 5 + 7 = 13 (correct/incorrect?) >> K. 

After verifying the four equations in this example, participants were asked to type the presented 

letters in the order that they were presented (in this case JGSK). If the participants forgot one of the 

letters in a trial, they were instructed to provide their best guess. In addition, to decrease trade-off 

between solving the operations and remembering the letters, a 70% accuracy criterion on the math 

operations was required for all the participants. We excluded 1 participant in the Nap group based 

on this criterion. We calculated performance as: number of correct letters recalled/ total number of 

letters in the string per trial, and then we averaged over the total 40 trials. For assessing change in 

performance from session 1 and session 2, we calculated the difference in performance between 

the two sessions (session 2 – session 1). 

 

Study Procedure  

Participants were asked to refrain from consuming caffeine, alcohol, and all stimulants for 

24 h prior to and including the study day. Participants filled out sleep diaries for one week prior to 

the experiment and wore wrist-based activity monitors the night before the study (Actiwatch 

Spectrum, Philips Respironics, Bend, OR, USA) to ensure participants were well-rested (at least 7 

hours per night for the youngers and 6 hours for the elders during the week including the eve of the 

experimental day). On the experimental day, participants arrived at the Sleep and Cognition lab at 

10:00AM and had EEG electrodes applied, followed by an Operation Span (OSpan) WM task. 

Nap/wake interventions occurred between 1:30-3:30 PM. At 1:30PM, Nap subjects took a 

polysomnographically-recorded nap and were given 2-hours time-in-bed to obtain up to 90-min 

total sleep time. Sleep was monitored online by a trained sleep technician. In the wake group, 

subjects were asked not to nap, exercise, or consume caffeine or alcohol, and were monitored with 

actigraphy during the break. In addition, the EEG/ECG was not recorded during wake break. 

Between 4 and 4:30PM, all subjects were retested on the memory task. Subjects completed the 
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Karolinska Sleepiness Scale (KSS; T Åkerstedt, 1990) questionnaire two times throughout the 

experimental day; at the start of each WM task (Session 1 and Session 2) to report their sleepiness. 

KSS is a 9-point Likert scale often used when conducting studies involving self-reported, subjective 

assessment of an individual’s level of drowsiness at the time, in which a higher score yields a 

sleepier state at that time. 

 

Sleep Recording and Scoring 

EEG data were acquired using a 32-channel cap (EASYCAP GmbH) with Ag/AgCI electrodes 

placed according to the international 10-20 System31. 22 out of 32 electrodes were active scalp 

recordings. The remaining electrodes were used for electrocardiogram (ECG), electromyogram 

(EMG), electrooculogram (EOG), ground, an online common reference channel (at FCz location, 

retained after re-referencing), and mastoid (A1 & A2) recordings. The EEG was recorded with a 

1000 Hz sampling rate, amplified (ActiCHamp), and was re-referenced to the contralateral mastoid 

(A1 & A2) post-recording. Only eight scalp electrodes (F3, F4, C3, C4, P3, P4, O1, O2), the EMG and 

EOG were used in the scoring of the nighttime sleep data. High pass filters were set at .3 Hz and low 

pass filters at 35 Hz for EEG, EOG and EMG. Raw data were visually scored in 30-sec epochs into 

Wake, Stage 1, Stage 2, Slow Wave Sleep (SWS; Stages 3 and 4) and rapid eye movement sleep 

(REM) according to the Rechtschaffen & Kales’ manual using HUME, a custom MATLAB toolbox. 

Prior to sleep scoring, data were pre-processed using BrainVision Analyzer 2.0 (BrainProducts, 

Munich Germany).  

 

Heart Rate Variability 

Electrocardiogram (ECG) data were acquired at a 1000-Hz sampling rate using a modified 

Lead II Einthoven configuration. We analyzed HRV of the R-waves series across the whole 

sleep/wake period using Kubios HRV Analysis Software 2.2 (Biosignal Analysis and Medical 
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Imaging Group, University of Kuopio, Finland), according to the Task Force guidelines (Malik et al., 

1996). RR peaks were automatically detected by the Kubios software and visually examined by 

trained technicians. Incorrectly detected R-peaks were manually edited. Missing beats were 

corrected via cubic spline interpolation. Artifacts were removed using the automatic medium filter 

provided by the Kubios software. The HRV analysis of the RR series was performed by using an 

independent lab tool. An autoregressive model (Model order set at 16) (Boardman et al., 2002) was 

employed to quantify the absolute spectral power (ms2) in the LF HRV (0.04–0.15 Hz; ms2 ) and the 

HF HRV (0.15–0.40 Hz; ms2) frequency bands. The LF HRV and HF HRV measures had skewed 

distributions and as such were transformed by taking the natural logarithm, as suggested by 

Laborde et al. (2017). From these variables we derived the HF normalized units (HFnu= (HF 

HRV[ms2]/ HF HRV[ms2] + LF HRV[ms2])*100). Since the LF normalized units are mathematically 

reciprocal to HFnu (i.e. LFnu =1- HFnu), to avoid redundancy, we computed only the HFnu index, an 

index often thought to reflect vagal modulation8. Besides frequency domain, we also calculated a 

time domain measure typically used to assess parasympathetic activity, RMSSD. This value is 

obtained by first calculating each successive time difference between RR intervals in milliseconds. 

Then, each of the values is squared and the result is averaged before the square root of the total is 

obtained. Similar to the frequency adjustments, to adjust for the unequal variance in the RMSSD, we 

report the natural logarithm of RMSSD. Additionally, we included the RR interval as an index of 

cardiac autonomic control in our analyses. 

For the analysis of RR, HR and frequency-domain HRV measures during different sleep 

stages, consecutive, artifact-free windows of undisturbed sleep were selected across the nap. Each 

window was 3-min in duration and the 1.5-min preceding and the entire 3-min epoch were free 

from stage transitions and movement times. Windows were identified and averaged within Stage 2, 

SWS and REM sleep. We also analyzed 3 min of pre-nap wakefulness (Wake). Epochs of stage 1 and 

wake after sleep onset were not analyzed, because these periods have not been previously reported 
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to contribute to memory and are hard to isolate in the recording. This methodology emphasizes 

consolidated sleep stages and because naps have more fragmented sleep due to increased stage 

transitions, this method of HRV analysis decreased the number of subjects that could be analyzed.  

 

Data Reduction 

104 (Males = 60) young adults were recruited and randomized into three nap conditions 

(Wake=51, Nap=53). 1 participant were excluded based on Math accuracy (70%). Therefore, for the 

WM task, we have 103 (Wake=51, Nap=52) participants in our dataset. For ANS measures, 5 

participants nap recordings were not collected due to recording computer failures. For Stage 2 

sleep, we excluded 6 participants due to no 3-minute window of undisturbed consecutive Stage 2 

sleep. For SWS sleep, we excluded 14 participants due to no 3-minute window of undisturbed 

consecutive SWS. For REM sleep, we excluded 30 participants due to no 3-minute window of 

undisturbed consecutive REM sleep. In summary, 47 participants were included in Wake; 41 

participants were included in Stage 2; 33 participants were included in SWS; 16 participants were 

included in REM sleep.  

 

Statistical Analyses 

In order to investigate within-subject profile of cardiac activity across sleep stages, we used 

a linear-mixed effect models (LME), which do not depend on limited assumptions about either 

variance-covariance matrix assumptions (sphericity) or complete data. As the numbers of subjects 

are different among different sleep stages, LME corrects degrees of freedom with Satterthwaite 

approximation. Our LME model used a within-subjects factor of stage (Wake, Stage 2, SWS, REM).  

All comparisons were adjusted by Bonferroni correction. To confirm that there was no difference in 

WM baseline performance between the two Nap conditions, we used a one-way analysis of variance 

(ANOVA) with Nap Condition (Wake, Nap) as the between-subject factor, Test 1 as the dependent 
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variable. To test the difference in WM change across the day, we used a one-way ANOVA with Nap 

Condition (Wake, Nap) as the between-subject factor, Test 2 – Test 1 as the dependent variable. To 

examine whether sleepiness level changed with different nap conditions, we used a repeated-

measure ANOVA with Nap Condition (Wake, Nap) as the between-subject factor, Session (1 and 2), 

as the within-subject factor, and KSS as the dependent variable. Pearson correlation coefficients 

were used to examine the bivariate relationship between HRV variables of interests and WM 

performance measures, relationship between sleep parameters and WM performance, as well as 

relationship between KSS and WM performance. To assess the relative importance of HRV variables 

for WM improvement, we utilized a hierarchical, linear regression approach. In Model 1, baseline 

WM performance was the independent variable and Test 2 was the dependent variable. In Model 2, 

we added the HRV factors as independent variables. By comparing Model 1 and 2, we measure the 

explanatory gain of HRV factors over and above individual differences in WM baseline performance. 

To compare between two nested models, we conducted a likelihood ratio test. Under the null 

hypothesis, the full/ restricted model (Model 2) is just as good as the reduced/ unrestricted model 

(Model 1). Therefore, a significant result on this test indicated that overall model fit is improved 

after adding the predictors in Model 2. 

 

Results 

HRV during Wake and Sleep 

Prior studies have reported increasing parasympathetic activity from waking to deeper 

stages of NREM sleep. In order to test this autonomic profile in each age group, we used an LME 

model examining HRV variables across sleep stages (Wake, Stage 2, SWS, REM; Table 2.1). We 

found a stage effect for RR intervals (Figure 2.1a) [F(3,33) = 15.598, p < 0.001], with a significant 

lengthening of RR intervals during Stage 2 [p < 0.001] and SWS [p= 0.001] relative to Wake. 
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Similarly, RMSSD showed changes across sleep stages (Figure 2.1b p.29) [F(3,33) = 6.092, p = 

0.002], with a significant higher heart rate variability during Stage 2 [p < 0.001], and a non-

significant difference in SWS [p = 0.88] relative to Wake. The HF HRV showed a stage effect (Figure 

2.1c) [F(3,33) = 10.912, p < 0.001], with a higher but not significant vagal tone during Stage 2 [p = 

0.014] and SWS [p = 0.74], relative to Wake. HFnu (Figure 2.1d) showed a stage effect [F(3,33) = 

28.404, p < 0.001], with a marked increase of vagal tone in SWS (p < 0.001), compared with Wake. 

During REM sleep, participants showed significantly shorter RR intervals compared to Stage 2 [p = 

0.001] and SWS [p = 0.002], as well as significantly lower HFnu compared to Stage 2 [p < 0.001] and 

SWS [p < 0.001]. 

 

Working Memory Performance: Comparing Nap vs Wake Group 

Our analysis revealed no significant difference in WM between the two nap conditions at 

baseline [F(1,101) = 0.79, p = 0.376]. We compared differences in WM improvement after either a nap 

or wake period using a one-way ANOVA with Nap condition (Nap vs. Wake) as the independent 

variables, Test 2-Tset 1 WM performance as the dependent variable. The analysis revealed a main 

effect of nap condition [F(1,101) = 3.992, p = 0.048; Figure 2.2], in which participants showed a 

greater differential benefit from the nap compared to the wake condition.  

Repeated-measure revealed no main effect of session or nap condition on sleepiness (KSS), 

but a significant interaction between session and nap condition [F(1,99) = 5.445, p = 0.021], where 

the sleepiness level significantly decreased after the nap. Neither the morning nor the afternoon 

KSS measures were correlated with WM performances [all ps > 0.23]. Descriptive statistics for KSS 

were shown in Table 2.2. 
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Figure 2.1 HRV profiles during a daytime nap 
Heart rate variability (HRV) components across sleep stages. (a) Mean of RR intervals (ms) (b) RMSSD (ln) (c) 

HF HRV (ln) (d) HRV High-Frequency Power (HFnu). Asterisks above bars indicate significant differences 
between Sleep stages (*p < 0.05; **p < 0.01; ***p < 0.001). Error bars represent standard error of the mean. 

The between-stage effects were based on the LME model examining HRV variables across sleep stages (Wake, 
Stage 2, SWS, REM). 
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Figure 2.2 WM improves across a daytime nap compared to wake 
Working Memory Performance by Nap Condition: (a) Session 1 and 2 performances by Nap Condition: No 

significant difference in WM between the two nap conditions at baseline (b) WM improvement by Nap 
Condition: Significant difference in WM improvement after a nap or a period of wake was observed. Asterisks 
between error bars indicate significant differences between nap conditions (*p < 0.05). Error bars represent 

standard error of the mean. 

 
 

 

Associations between Parasympathetic Activity during Wake and Sleep on Working Memory 

Next, we examined the impact of parasympathetic activity during wake and sleep on WM 

performance and improvement. We used Pearson correlation coefficients to examine the 

relationship between parasympathetic activity as measured by HFnu, HF HRV (ln), and RMSSD (ln) 

and WM performance (baseline and improvement). WM baseline performance was not correlated 

with HRV measures during stage 2 sleep (all ps > 0.150), SWS (all ps > 0.184), REM sleep (all ps > 

0.092), or Wake (all ps > 0.439). In alignment with our expectation, WM improvement was 

positively correlated with SWS HFnu (r = 0.449, p = 0.015, Figure 2.3a p.30). Similar positive, 

marginally significant associations were also found between WM improvement and HF HRV (ln) as 

well as RMSSD (ln) during SWS (HF HRV: r = 0.367, p = 0.05, Figure 2.3b; RMSSD: r = 0.347, p = 

0.065, Figure 2.3c p.30). However, there was no significant associations between WM improvement 

and autonomic activities during stage 2 sleep (all ps > 0.434), REM sleep (all ps > 0.180), or Wake 

Wake     Nap       

* 

1       2               1       2 
Session 

(a)                                                                         (b)                           
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(all ps > 0.584). Furthermore, sleep alone (total time in bed, total sleep time and time in each stage 

(minutes)) was not significantly correlated with WM baseline or improvement (all ps > 0.41). 

 

Figure 2.3 WM improvement correlated with HRV during SWS 
Working Memory improvement and Autonomic Activity. Association between WM improvement and (a) 

HFnu (r = 0.449, p = 0.0145) (b) HF HRV (ln) during SWS (r = 0.367, p = 0.05); (c) RMSSD (ln) during SWS (r = 
0.347, p = 0.065). 

           

 

Next, we assessed the importance for memory performance of ANS activity using 

hierarchical, linear regressions. Two linear regression models were built to predict WM session 2 

performance. In Model 1, baseline WM performance was the independent variable. In Model 2, we 

added HFnu during SWS. Model 1 was significant (F(1,27)= 70.26, p< .001; adj R2 = .712), suggesting 

that individual difference at baseline has a strong impact on session 2 performance. Model 2 also 

significantly predicted performance (F(2,26)= 42.71, p< .001; adj R2 = .749) with HFnu as a significant 

predictor (p= .035). Comparing Model 1 and 2 using a likelihood ratio test, we found that Model 2 

was a better fit compared to Model 1 (p= .025). In summary, while baseline WM performance 

provides large amount of shared variance with session 2 WM performance, HFnu during SWS added 

significantly more explained variation on WM performance.  

 

(a)                                               (b)                                           (c)                                         
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Discussion 

Our health is maintained through variability that allows our biological system to adjust its 

resources to match specific situational demands. Heart rate variability (HRV) reflects an 

individual’s ability to adapt the autonomic nervous system to moment-to-moment changes in her 

environment (Thayer & Lane, 2009b). HRV has been associated with both cognitive and health 

outcomes, as well as linked to age-related decreases in physiological functioning. Although sleep 

has been shown to modulate HRV (Baharav et al., 1995; Cellini et al., 2016; Trinder et al., 2001; 

Whitehurst et al., 2018), the impact of this modulation has not been examined in the context of 

sleep related WM gains. In the current study, we investigated the functional consequence for WM of 

fluctuations in autonomic activity during a daytime nap in healthy young adults. We replicated the 

previously reported increase in parasympathetic activity in NREM sleep during daytime naps 

(Cellini et al., 2016). Additionally, participants showed a sleep-dependent boost in WM after sleep, 

and HRV during sleep was associated with WM improvement. In summary, our results provide 

evidence of an important role of parasympathetic activity during sleep in WM improvement in 

healthy young adults.  

 

Nap HRV 

Similar to previous nap (Cellini et al., 2016) and nighttime sleep studies (Whitehurst et al., 

2018), we found vagally-mediated parasympathetic activity increased from waking to NREM sleep. 

These changes suggest a shift of the ANS from sympathetic to parasympathetic regulation in the 

transition from wakefulness to sleep. Given the parasympathetic dominance during sleep compared 

with wake, nighttime sleep has been described as a “cardiovascular holiday” (Trinder et al., 2012). 

Overall autonomic balance between parasympathetic and sympathetic branches is beneficial for 

health and cognition, whereas autonomic imbalance, indexed by low HRV and elevated sympathetic 

activity is associated with increased morbidity and various pathological conditions, such as 
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cardiovascular disease, diabetes, and Alzheimer’s disease. Moreover, increased parasympathetic 

activity has been shown to reduce proinflammatory cytokines, and sympathetic hyperactivity is 

associated with increased proinflammatory cytokine production (Jarczok et al., 2015). With older 

adults, parasympathetic activity is less modulated during sleep compared with young adults, and no 

significant sleep-stage dependent variations are reported (Brandenberger et al., 2003). This profile 

reveals a tendency for increased sympathetic arousal and a predominant loss of parasympathetic 

activity in aging, which may be related to the increased number of awakenings during sleep and 

lower duration of SWS in this age group. The current findings in young adults of parasympathetic 

enhancement during sleep, and its role in WM improvement have implications for potential 

translational treatment strategies that target parasympathetic activity during sleep, and also 

suggest future studies examining the impact of age-related changes in ANS profiles on cognition. 

 

Nap and Working Memory: The Functional Roles of Cardiac Activities 

While a large body of studies has demonstrated the negative impact of sleep loss preceding 

WM performance (Choo et al., 2005; Goel et al., 2009; Pasula et al., 2018), studies into the effect of 

post-training sleep on WM improvement are few, and none have examined this question in the 

context of ANS activity. We show that, compared with wake, WM improves after a daytime nap, 

similar to prior studies using a nap (Lau et al., 2015b) and nocturnal sleep (Kuriyama et al., 2008b; 

Zinke et al., 2018b), suggesting that sleep might provide an optimal brain state that facilitate WM 

training. We did not, however, find a significant correlation between waking HRV (as assessed with 

RMSSD, HF HRV, and HFnu) and WM in our sample. Although prior reports of HRV and WM have 

reported that people with higher vagally-mediated HRV perform better on WM tasks, these results 

were based upon median splits of the data on HRV or WM performance (Giuliano et al., 2017; 

Hansen et al., 2003; Laborde et al., 2015; Spangler & Friedman, 2017). Direct correlations between 

waking HF HRV and WM yielded mixed results, with one study reporting a moderate correlation 
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(Laborde et al., 2015), another yielding a borderline correlation (Hansen et al., 2003), and one 

showing no significant relation (Giuliano et al., 2017). In the current study, we did not find 

significant correlations between waking HRV and WM baseline performance or WM improvement, 

but instead showed a consistent pattern of an association between HRV during SWS and WM, 

where greater parasympathetic activity was associated with better WM improvement. Given these 

results, SWS, a period of naturally high levels of parasympathetic tone, should also be considered as 

a viable outcome measure of cardiac autonomic activity. Furthermore, parasympathetic activity 

during SWS, a potential biomarker of successful WM training, needs to be further studied to 

understand the neurophysiological mechanisms of sleep-related WM gains. 

 

Working Memory Model: Slow Wave Sleep, Parasympathetic Activity and Prefrontal Functioning 

We propose a conceptual model (Figure 2.4), that illustrates the interaction between sleep, 

autonomic activity, and prefrontal brain function that together and independently contribute to 

WM processing. We build this model on the following corpus of findings. First, studies in healthy 

young adults have established that people with higher waking HRV show better executive function 

(including WM), which is a set of cognitive abilities strongly supported by the prefrontal cortex 

(Thayer et al., 2009). This brain region is implicated in top-down control of the vagus nerve (Shaffer 

et al., 2014), and prefrontal cortical thickness is positively associated with vagally-mediated HRV 

during wake in both young and older adults (Yoo et al., 2018). Additionally, SWS and vagal activity 

are highly associated in both young and older adults (Brandenberger et al., 2003). Furthermore, the 

current study demonstrated the importance of sleep HRV for WM in healthy young adults. Taken 

together, prefrontal brain functioning, SWS, and parasympathetic activity, might together support 

sleep-related WM improvement. Aging is characterized by a decline in executive functions (Kirova 

et al., 2015), prefrontal brain atrophy (Mander et al., 2013; Salat et al., 2004), impaired sleep 

(Mander et al., 2017), as well as decreased vagal tone (O’Brien et al., 1986). Though studies have 
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established that aging is accompanied by a decline in vagally-mediated HRV during wake (De 

Meersman & Stein, 2007), little is known about age-related changes in HRV during sleep. Thus, it is 

unclear how the impact of aging on: 1) prefrontal function, 2) sleep, and 3) parasympathetic activity 

may be potential mediators of WM training. It remains to be seen whether the loss of 

parasympathetic activity during NREM sleep in older adults may mediate decreases in executive 

function, and/or recruitment of different brain areas to compensate for prefrontal loss. Future 

studies comparing younger and older populations with simultaneous brain imaging, EEG and ECG 

during WM training and sleep will be the next steps to further elucidate this complex interaction.   

            
 

 

Limitations 

The current study has several limitations that need to be addressed. First, one limitation of 

this study is the reduction in subject numbers due to HRV methodological constraints. Specifically, 

standard practice for HRV analyses (Malik et al., 1996) requires assessment of HRV over a five-

minute period of a consistent sleep stage. Due to the large amount of sleep transitions present in a 

daytime nap, this method decreased the number of available subjects and may have biased the 

sample towards less fragmented sleepers. In order to retain more statistical power, future studies 

should confirm these results in HRV assessments during nocturnal sleep. On the same topic, this 

Figure 2.4 Conceptual Model 
We illustrate the interaction between three 
biological markers, Prefrontal Brain Activity, 
Slow Wave Sleep, and Parasympathetic Tone, 
which together and/or independently lead to 
working memory improvement in young adults. 
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limitation in data may underpower certain statistical comparisons, in particular for nap designs 

that have limited sleep compared with full night designs. For example, the current results found a 

significant association between performance and HFnu only, whereas the other markers of 

parasympathetic activity, though in a similar positive direction, did not reach statistical 

significance. This discrepancy may have been due to low power within certain sleep stages, and 

should be further investigated in a nighttime sleep study, which provides longer bouts of deep 

sleep.   

 

Conclusion 

The present study investigated the role of sleep HRV during a daytime nap in WM 

performance across a day. Our results confirmed that sleep benefited WM. Moreover, we showed 

the first evidence that the autonomic activity during sleep, but not wake, played a crucial role in 

WM. Thus, for heathy young adults, a daytime nap can serve as a “mini cardiovascular break” that 

benefits executive functions. 
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Chapter Three: The role of autonomic-central couplings during sleep on 

working memory improvement 

 

Abstract 

Working memory (WM) is an executive function that can improve with training. However, 

the precise mechanism for this improvement is not known. Studies have shown greater WM gains 

after a period of sleep than a similar period of wake, and correlations between WM improvement 

and slow wave activity (SWA; 0.5–1 Hz) during slow wave sleep (SWS). A different body of 

literature has suggested an important role for autonomic activity during wake for WM. A recent 

study from our group reported that the temporal coupling of Autonomic/Central Events 

(ACEs)during sleep was associated with memory consolidation. We found that heart rate bursts 

(HR bursts) during non-rapid eye movement (NREM) sleep are accompanied by increases in SWA 

and sigma (12–15 Hz) power, as well as increases in the high-frequency (HF) component of the RR 

interval, reflecting vagal rebound. In addition, ACEs predict long-term, episodic memory 

improvement. Building on these previous results, we examined whether ACEs also contribute to 

gains in WM. We tested 104 young adults in an operation span task (OSPAN) in the morning and 

evening, with either a nap (n = 53; with electroencephalography (EEG) and electrocardiography 

(ECG)) or wake (n = 51) between testing sessions. We identified HR bursts in the ECG and 

replicated the increases in SWA and sigma prior to peak of the HR burst, as well as vagal rebound 

after the peak. Furthermore, we showed sleep-dependent WM improvement, which was predicted 

by ACE activity. Using regression analyses, we discovered that significantly more variance in WM 

improvement could be explained with ACE variables than with overall sleep activity not time-

locked with ECG. These results provide the first evidence that coordinated autonomic and central 
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events play a significant role in sleep-related WM improvement and implicate the potential of 

autonomic interventions during sleep for cognitive enhancement. 

 

Introduction 

Working memory (WM), the ability to retain, manipulate, and update information over 

short periods of time, is essential to higher order cognition (e.g. language comprehension, 

reasoning, and general intelligence; Engle and Kane 2004) and for performing many daily activities 

(Cantarella et al., 2017; Kane et al., 2007). WM is prone to age-related cognitive decline, which is 

evident in midlife, and becomes particularly pronounced in older age (age > 75) (Hale et al., 2011). 

Considering the importance of WM for cognitive functions and the detrimental effects of age-related 

WM declines, the possibility of improving WM performance to facilitate cognitive health has been 

advanced (Soveri et al., 2017; Zinke et al., 2013). Importantly, recent studies suggest that WM 

capacity is subject to experience-dependent change (Au et al., 2015; Jaeggi et al., 2008; Karbach & 

Verhaeghen, 2014), but the mechanism underlying this change is not understood. Recent studies 

suggest a role for sleep (Ferrarelli et al., 2019; Pugin et al., 2015; Sattari et al., 2019). The purpose 

of the current study is to identify sleep-specific features that support WM enhancement. 

Sleep plays an important role in the maintenance and improvement of a wide range of 

cognitive processes (Lowe et al., 2017; Mednick et al., 2011; Rasch & Born, 2013; Whitney et al., 

2017), including executive functions, (e.g., sustained attention and WM (Könen, Dirk, & Schmiedek, 

2015; Vriend et al., 2013; Cellini et al. 2015; Goel et al. 2009; Lo et al. 2012)). Sleep deprivation 

negatively impacts WM performance as measured with digit span (Quigley, Green, Morgan, 

Idzikowski, & King, 2000) and the N-back task (Choo, Lee, Venkatraman, Sheu, & Chee, 2005). 

Additionally, studies suggest that sleep between WM training sessions, compared to wake, may be 

critical for enhancing WM performance (Zinke et al., 2018b; Kuriyama et al., 2008b; Lau et al., 

2015b; Chen, Whitehurst, & Mednick, 2020). For example, training participants on an n-back task 
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over several sessions improved accuracy of performance, but only if the interval between training 

sessions contained nocturnal sleep (Zinke et al., 2018b; Kuriyama et al., 2008b) or a nap (Lau et al., 

2015b), but not wake. Recent observations suggest that SWS may provide an optimal brain state for 

modification of prefrontal functioning. SWS constitutes between 10 and 25% of total sleep time 

(Ohayon et al., 2004) and is thought to play an important role in cerebral restoration and recovery 

(Horne, 1992), and SWA is a global index of sleep homeostasis (Borbély & Achermann, 2000). 

Several studies have shown a specific association between EEG activity during SWS in the 

enhancement of WM suggesting that SWA may reflect localized, experience-dependent, cortical 

plasticity (Huber et al., 2004; Miyamoto et al., 2017; Rodriguez et al., 2016). Specifically, Pugin and 

colleagues demonstrated fronto-parietal increases in SWA following WM training, and the 

magnitude of SWA correlated with WM performance after three weeks of training (Pugin et al., 

2015). Furthermore, SWA predicted WM gains across a period of sleep in both young (Ferrarelli et 

al., 2019) and older adults (Sattari et al., 2019). Taken together, these studies suggest that 

experience-induced changes in SWA support efficient WM improvement.  

In recent years, a number of studies have explored the association between central and 

autonomic activity during sleep, offering promising new perspectives to understand brain-body 

interplay in humans (Ako et al., 2003; Brandenberger et al., 2001b; Thomas et al., 2014; Whitehurst 

et al., 2020). For example, a recent study investigated the relationship between cardiac activity and 

K-complexes (KC; 0.5-1 Hz)-a positive-negative-positive waveform during Stage 2 sleep similar to 

slow oscillations-and demonstrated that KCs were associated with a biphasic cardiac response, 

with a marked heart rate acceleration followed by a gradual deceleration (de Zambotti et al., 2016). 

Interestingly, this biphasic fluctuation in heart rate has also been shown to coincide with bursts 

of K-complexes and delta waves (Sforza et al., 2000), which, together, indicate a synchronization of 

central and autonomic events. Furthermore, our group recently identified cardiovascular events 

during NREM sleep, termed heart rate bursts, that last 2-3 seconds and occur mostly in Stage 2 and 
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SWS (Naji et al., 2019). Heart rate bursts are temporally coincident with EEG activity, including 

SWA and spindle/sigma activity (12-15Hz) and are followed by vagal rebound reflected in a surge 

in the high frequency component (HF; 0.15–0.4 Hz) of the ECG. The increased SWA and Sigma 

activity before the HR bursts and the vagal activity after the HR burst were termed as ACE activity 

(ACE SWA, ACE Sigma, and ACE RRHF, respectively). These Autonomic/Central Events (ACEs) 

significantly predicted the magnitude of long-term, episodic memory improvement to a greater 

extent than non-ACE sleep activity and overall sleep activity.  The current study builds on these 

findings by investigating the role of ACE activity in WM improvement. 

We tested whether ACE activity during SWS sleep supports sleep-related improvement in 

the Operation Span Task (OSpan), a dual-task consisting of a processing subtask and a short-term 

memory subtask that has been commonly used to test central constructs of WM. In summary, the 

current study aimed: (1) to replicate ACE activity in sleep during a daytime nap; and (2) to 

determine the impact of ACE activity during SWS on WM gains. Given prior associations between 

SWA and WM improvement, we hypothesized that ACE SWA would be significantly associated with 

WM gains across the nap. We considered ACE sigma activity as a positive control that would not be 

correlated with WM improvement. 

Methods 

Participants  

104 young (Age:17-23 [Mean=20.7, SD= 2.95], 64 males) healthy adults with no personal 

history of neurological, psychological, or other chronic illness provided informed consent, which 

was approved by the University of California, Riverside Human Research Review Board. 

Participants were randomized to either have a 2-hour nap opportunity monitored with 

polysomnography (PSG) (n=53), stay awake (n=51), where subjects engaged typical daily activities 

with actigraph monitoring. Participants included in the study had a regular sleep-wake schedule 



 

41 
 

(reporting a habitual time in bed of about 7–9 h), and no presence or history of sleep, psychiatric, 

cardiovascular, or neurological disorder determined during an in-person, online, or telephone 

interview. Participants received monetary compensation for participating in the study. For PSG 

measures, 4 participants’ nap recordings were not collected due to recording computer failures. 

Among the 50 participants whose PSG were recorded, 2 of them did not have stage 2 sleep and 13 

of them did not have SWS.  

 

Working memory task  

The current study used the Operation Span Task (OSpan; Turner & Engle, 1989) as a 

measure of WM performance, which requires participants to solve a series of math operations 

while trying to memorize a set of unrelated letters. The task was programmed in Matlab (The 

MathWorks Inc., 2015) using Psychtoolbox (Kleiner et al., 2007). The task included 3 practice and 

20 test trials. Participants were tested in letter strings of seven. For each letter string, participants 

were shown a series of math problems that they had to confirm were correct within 3 seconds, 

using pre-determined responses on the keyboard. After each equation, a letter would appear on the 

screen and the subject was instructed to remember each letter. At the end of each string, the 

participant was instructed to recall the letters in the order presented by typing responses on a 

computer keyboard. Immediately after each trial, the next letter string would be presented. If the 

participants forgot one of the letters in a trial, they were instructed to provide their best guess. In 

addition, to decrease trade-off between solving the operations and remembering the letters, a 70% 

accuracy criterion on the math operations was required for all the participants. We excluded 6 

participants based on this criterion. We calculated performance as: number of correct letters 

recalled in the correct order/ total number of letters in the string. For assessing change in 

performance from session 1 and session 2, we calculated the difference in performance between 

the two sessions (session 2 – session 1).  
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Study Procedure 

Participants were asked to refrain from consuming caffeine, alcohol, and all stimulants for 

24 h prior to and including the study day. Participants filled out sleep diaries for one week prior to 

the experiment and wore wrist-based activity monitors the night before the study (Actiwatch 

Spectrum, Philips Respironics, Bend, OR, USA) to ensure participants were well-rested, defined as at 

least 7 hours on average during the week and the eve of the experimental day. On the experimental 

day, participants arrived at the Sleep and Cognition lab at 10:00AM and had EEG electrodes 

attached, followed by an Operation Span (OSpan) working memory task. Nap/Wake interventions 

occurred between 1:30-3:30 PM. At 1:30PM, subjects in the Nap group were given 2-hours time-in-

bed to obtain up to 90-min total sleep time during which their sleep were polysomnographically-

recorded. Sleep was monitored online by a trained sleep technician. Subjects in the Wake group 

were asked not to nap, exercise, or consume caffeine or alcohol, and were monitored with 

actigraphy during the active wake period. All subjects were retested on the memory task between 4 

and 4:30PM. Subjects completed the Karolinska Sleepiness Scale (KSS, Åkerstedt et al., 1990) 

questionnaire two times throughout the experimental day; at the start of each WM task (Session 1 

and Session 2) to report their sleepiness. KSS is a 9-point Likert scale often used when conducting 

studies involving self-reported, subjective assessment of an individual’s level of drowsiness at the 

time, in which a higher score yields a sleepier state. 

Sleep recording and scoring 

Polysomnography (PSG) data, including electroencephalogram (EEG), electrocardiogram 

(ECG), chin electromyogram (EMG), and electrooculogram (EOG), were collected using a 32-channel 

cap (EASEYCAP GmbH) with Ag/AgCI electrodes placed according to the international 10–20 

System (Jasper, 1958). Electrodes included 24 scalp, two electrocardiogram (ECG), two 

electromyogram (EMG), two electrooculogram (EOG), 1 ground, and 1 on-line common reference 
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channel. EEG signals were recorded at a 1000 Hz sampling rate and referenced on-line to the 

common reference channel. Scalp EEG and electrooculographic (EOG) electrodes were referenced 

to unlinked contralateral mastoids (F3/A2, F4/A1, C3/A2, C4/A1, P3/A2, P4/A1, O1/A2, O2/A1, 

LOC/A2, ROC/A1), and two EMG electrodes were attached under the chin and referenced to each 

other. After recording, all data were then digitized at 256 Hz. High-pass filters were set at 0.3 Hz, 

and low-pass filters were set at 35 Hz for EEG and EOG electrodes. A notch filter was set at 60 Hz. 

The EEG data were scored using Hume, a custom MATLAB toolbox. The records were scored in 30-

second epochs using eight scalp electrodes: Frontal (F3, F4), Central (C3, C4), Parietal (P3, P4), and 

Occipital (O1, O2). Next, all epochs of the filtered data with artifacts and arousals were identified by 

visual inspection and rejected. Five sleep stages (i.e., wake, Stage 1, Stage 2, SWS, and REM) were 

reclassified in continuative and undisturbed 3-min bins and the bins were used for further analysis. 

Descriptive statistics for sleep architecture were shown in Table 3.1. 

Power spectral analysis 

The EEG power spectrum was computed using the Welch method (4 sec Hanning windows 

with 50 % overlap). The frequency for sigma power was 12- 15Hz and for SWA was .5–1 Hz. For RR 

time-series, the power spectral estimation was performed by the autoregressive model and the 

model order was set at 16. Summary statistics for EEG power spectrum were shown in Table 3.2. 

 

Heart-beat detection  

We analyzed HRV of the R-waves series using Kubios HRV Analysis Software 2.2 (Biosignal 

Analysis and Medical Imaging Group, University of Kuopio, Finland), according to the Task Force 

guidelines (Electrophysiology Task Force of the European Society of Cardiology the North American 

Society of Pacing, 1996). RR peaks were automatically detected by the Kubios software and visually 

examined by trained technicians. Incorrectly detected R-peaks were manually edited. Next, the data 

was passed to a MATLAB (MathWorks) based algorithm to measure perform further analyses. 
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Electrocardiogram (ECG) data were acquired at a 1000-Hz sampling rate using a modified Lead II 

Einthoven configuration. The ECG signals were filtered with a passband of 0.5-100 Hz by 

Butterworth filter. R waves were identified in the ECG using the Pan-Tompkins method. In order to 

extract continuous RR tachograms, the RR intervals were resampled (at 4 Hz for power spectrum 

estimation) and interpolated by piecewise cubic spline. Zero-phase Butterworth filters were 

applied to the interpolated RR time-series to extract RRHF.  

 

HR burst detection 

Within 3-min bins of the RR time-series during wake and sleep stages, the HR burst events 

were detected as RR intervals shorter than two standard deviations below the mean. Summary for 

HR bursts Density were shown in Table 3.3. 

 

Time-locked analysis 

In order to calculate changes in SWA and sigma power around the HR burst, the Hilbert 

transform was applied on filtered EEG signals in bands of interest (0.5–1 Hz for SWA and 12–15 Hz 

for sigma activity). To assess the HF amplitude fluctuation around the HR burst (RRHF), the Hilbert 

transform was applied on RRHF (0.15–0.4 Hz). See Naji et al 2019 for detailed methods. 

 

ACE Change scores 

We investigated ACE coupling during wake and sleep stages by tracking fluctuations in the 

EEG in a 20-sec window from 10 second before to 10 second after the HR burst peak. As we were 

specifically interested in sleep EEG activity previously demonstrated to correlate with WM 

improvement, we focused on SWA as our primary frequency band of interest and sigma activity as a 

positive control band. In addition, we examined RRHF in the ECG channel, about which we did not 

have a specific hypothesis.  
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EEG/ECG data were binned into 5-sec intervals within the 20-sec windows around the HR 

burst, named -10, -5, +5, +10 window. The average RRHF, SWA, and sigma activity were calculated in 

each of the four 5-sec windows. For non-ACE brain activity, we calculate average RRHF, SWA, and 

sigma activity in periods with no HR burst (including 20 s windows around them). We computed 

ACE change scores for each 5-sec interval as follows: (ACE activity in each 5 s interval – non-ACE 

activity)/ (ACE activity in each 5 s interval + non-ACE activity). We computed similar change scores 

for RRHF. Change scores in frontal areas were averaged across F3 and F4 channels and activity in 

central areas were averaged across C3 and C4. Besides ACE and non-ACE activity, overall sleep 

values (SWA and sigma power) were calculated as average EEG power in the entire sleep stage 

(regardless of ACE or non-ACE). Given prior findings, we specifically focused two ACE change 

scores when examining the role of ACE on cognition: (1) PreBase: the change score of the -5 

window, and (2) PrePost: ACE activity in the -5 window subtracted from +5 window. Summary for 

ACE change scores during SWS and Stage 2 were shown in Table 3.4a and 3.4b, respectively. Figure 

3.1 showed an example of ACE time-locked analysis. 
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Figure 3.1 Autonomic-central 
events (ACEs) coupling analysis 
Heart-rate-bursts and SWA change 
scores time-locked on HR bursts during 
SWS.  
(a) Average of the HR bursts (b) ACE 
SWA change scores show a significant 
increase in the -5 window.  
Asterisks indicate significant differences 
between a change score in a bin and 
zero (non-ACE baseline) after 
Bonferroni correction for multiple 
comparisons (***p<.001).  
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Data Reductions 

104 (Males = 64) young adults were recruited and randomized into the Wake condition = 

51 or the Nap condition = 53. 3 participants in the Nap condition and 1 participant in the Wake 

condition were excluded based on math accuracy (70%) during Session 1. 1 participant in the Nap 

condition was excluded based on math accuracy (70%) during Session 2. Therefore, for the WM 

task, we have Wake condition =50 and Nap condition =49 participants in our dataset. For sleep 

data, 2 participants nap recordings were not collected due to recording computer failures, so there 

were 51 subjects included in the sleep analyses. Among the 51 subjects, we were unable to detect 

stable 3-min bins of Stage 2 sleep for 2 of them, so there were 49 subjects included in the Stage 2 

data. Among the 49 subjects, we were unable to detect stable 3-min bins of SWS for 11 of them, so 

there were 38 subjects included in the SWS data. Hence, we have 32 subjects for correlation and 

regression as there were 32 subjects who had both WM data and 3-min bins of SWS. 
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EEG Fluctuation Around the HR Bursts 

In order to investigate within-subject profiles of ACE activity across sleep stages, channels, 

and windows, we used a linear-mixed effect models (LME), which do not depend on limited 

assumptions about variance-covariance matrix assumptions (sphericity). Additionally, LME models 

eliminate the need of averaging epochs across sleep stages and allow inclusion of an unbalanced 

number of observations per subject in the analyses. Moreover, LME models take into account the 

influence of factors whose levels are extracted randomly from a population (i.e. participants), thus 

yielding more generalizable results (Baayen et al., 2008).  

We built a separate model for each change score (ACE SWA, ACE Sigma, and ACE RRHF), 

using participant as crossed random effects and Stage (Stage 2, SWS), Channel (Frontal, Central), 

and Window (-10, -5, +5, +10) as within-subject fixed effects. Post hoc comparisons were corrected 

using the Bonferroni method.  

Furthermore, a one-sample t-test for each change score compared to zero was performed to 

capture if the modulation around the HR bursts were significant. Bonferroni corrections were used 

to adjust multiple testing (total 40 t-tests). Asterisks in Table 3.5a and 3.5b significant differences 

between a change score in a bin and zero (non-ACE baseline).  

 

Correlations 

To investigate the contribution of ACE vs non-ACE events to WM improvement across the 

nap, we computed Pearson’s correlations with WM improvement. We ran total 26 correlations. 

Multiple testing was corrected using Benjamini–Hochberg procedure with critical value for a false 

discovery rate of 0.1. The adjusted critical values () were added next to each significant 

correlation report. 
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Regression Models 

To assess the relative importance of ACE and non-ACE activity for WM improvement, we 

utilized a hierarchical, linear regression approach. Two linear regression models were built to 

predict WM gain. In Model 1, Session1 WM performance and overall frontal SWA in SWS were the 

independent variables. In Model 2, we added the ACE change scores (PreBase & PrePost) for frontal 

SWA in SWS. Baseline WM performance was included in the models as a covariate to account for 

individual differences in WM capacity (Matysiak et al., 2019). The regression results for the 

averaged frontal and central activity are tabulated in Table 3.6a and Table 3.6b, respectively. By 

comparing Model 1 and 2, we measure the explanatory gain of ACE values over and above general 

sleep EEG and WM capacity for WM improvement. 

 

Results 

Working Memory Performance: Comparing Nap vs Wake 

Our analysis revealed no significant difference in WM between the two nap conditions in 

Session 1 [F(1,101) = 0.804, p = 0.372; Figure 3.2a]. We compared differences in WM improvement 

after either a nap or wake period using a one-way ANOVA with Nap condition (Nap vs. Wake) as the 

independent variables, WM improvement as the dependent variable. The analysis revealed a main 

effect of nap condition [F(1,101) = 5.734, p = 0.0185; Figure 3.2b], in which participants showed a 

greater differential benefit from the nap compared to the wake condition.  
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EEG power is modulated by RR phase 

For SWA change scores [Figure 3.3a, 3.3b], we found a significant main effect of windows 

(F(3,632) = 129.518, p< .0001), a main effect of sleep stages (F(1,632) = 5.861, p=.0158) and an 

interaction between windows and sleep stages (F(3,632) = 13.013, p< .0001). Post hoc comparisons 

revealed that SWA change scores during the -5 window (prior to the HR burst) were greater than 

the rest three windows during Stage 2 (all ps < 0.0001), as well as during SWS (all ps < 0.0001), 

adjusted by Bonferroni correction. No main effect or interaction effect of channels were found. SWA 

change scores during the -5, +5, and +10 window were greater during SWS, compared to Stage 2. 

 

(a)                                                     (b)                           

 

1       2                1       2 
Session 

＊ 

Figure 3.2 WM improves across a nap 

Working Memory Performance by Nap Condition:  
(a) Session 1 and 2 performances by Nap Condition  

(b) WM improvement by Nap Condition: Significant difference in WM 
improvement after a nap or a period of wake was observed.  

Asterisks between error bars indicate significant differences between nap 
conditions (*p < 0.05). Error bars represent standard error of the mean. 
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For Sigma change scores [Figure 3.3c, 3.3d], we found a significant main effect of windows 

(F(3,632) = 91.537, p< .0001), and an interaction between windows and sleep stages (F(3,632) = 15.268, 

p< .0001). Post hoc comparisons revealed that Sigma change scores during the -5 window (prior to 

the HR burst) were greater than the rest three windows during Stage 2 (all ps < 0.0001), as well as 

during SWS (all ps < 0.0001), adjusted by Bonferroni correction. Furthermore, the +10 window 

during Stage 2 showed significantly lower change scores than the +5 window (ps < 0.001). No main 

effect or interaction effect of channels were found. Sigma change scores during the -5 and +10 

window were greater and lower during Stage 2, compared to SWS, respectively. 

For RRHF change scores [Figure 3.3e], we found a significant main effect of windows (F(3,292) 

= 37.223, p< .0001). Post hoc comparisons revealed that RRHF change scores during the +5 window 

(prior to the HR burst) were greater than the rest three windows during Stage 2 (all ps < 0.0001), 

as well as during SWS (all ps < 0.0466), adjusted by Bonferroni correction. Furthermore, the -5 

window during Stage 2 showed significantly greater change scores than the -10 and +10 window 

during Stage 2 (ps < 0.032). No main effect or interaction effect of sleep stages were found.  

Lastly, our t-test showed significant differences between SWA/ Sigma change scores during 

the -5 window (prior to the HR burst) and zeros. In addition, there were significant differences 

between RRHF change scores during the -5 and+5 window and zeros, adjusted by Bonferroni 

correction. Asterisks in Table 3.5a-b significant differences between a change score in each bin and 

zero (non-ACE baseline).  

Taken together, we replicated the profile of ACE activity in Naji et al., with sigma and SWA 

power in Stage 2 and SWS increased from overall average to a maximum level prior to the peak of 

the HR bursts (-5 window), and returned to average post-HR-peak, and RRHF increased from 

average and reached the maximum level after the peak of the HR bursts (+5 window).  
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Figure 3.3 Autonomic central fluctuations 
time-locked on heart rate bursts 
ACE change scores during the four windows across 
HR burst during Stage 2 sleep (solid yellow line) 
and SWS (dashed blue line):  
(a)ACE SWA change scores in the frontal region; 
(b) ACE SWA change scores in the central region; 
(c) ACE Sigma change scores in the frontal region; 
(d) ACE Sigma change scores in the central region; 
(e) ACE RRHF change scores.  
Error bars represent standard error of the mean. X 
axis represents the four 5-sec intervals within the 
20-sec windows around the HR burst, named -10, -
5, +5, +10 window. Y axis represents ACE change 
score during the four windows. 
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Correlations with WM Improvement  

As predicted, WM improvement was positively correlated with ACE SWA change scores in 

PreBase (Figure 3.4a p.52 Frontal: r= .447, p= .012, =.0154; Figure 3.4c p.52 Central: r= .524, 

p= .003, = .0077, as well as PrePost (Figure 3.4b p.52 Frontal: r= .560, p= .001, = .0038; Figure 

3.4d p.52 Central: r= .455, p= .010, =.0115) during SWS. Interestingly, the correlations between 

WM improvement and overall SWA power in SWS were not significant (see Figure 3.5; all 

ps > .668).  
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Figure 3.4 WM improvement correlated with autonomic-central events 
 
Correlations between ACE SWA change scores (X-axis) and WM improvement (Y-
axis)  
(a) Frontal ACE PreBase SWA during SWS (r= .447, p= .012, =.0154);  
(b) Frontal ACE PrePost SWA during SWS (r= .560, p= .001, = .0038);  
(c) Central ACE PreBase SWA during SWS (r= .524, p= .003, = .0077);  
(d) Central ACE PrePost SWA during SWS (r= .455, p= .010, =.0115). 
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Additionally, as predicted, we found no significant correlations between WM improvement 

and ACE sigma change scores (PreBase: all ps > .153; PrePost: all ps > .051) or overall sigma power 

(all ps > .237) during SWS. For Stage 2, no significant correlations between WM improvement and 

ACE SWA power were found for PreBase (all ps > .439) or PrePost (all ps > .619). Similarly, we 

found no significant correlations between WM improvement and ACE sigma change scores 

(PreBase: all ps > .672; PrePost: all ps > .257) or overall sigma power (all ps > .352) during Stage 2 

sleep. Lastly, we found no significant correlations between WM improvement and RRHF activity 

during Stage 2 sleep (p = .054) or SWS (p = .392). 

 

Importance of ACEs for WM Improvement 

Next, we assessed the relative importance for WM performance of ACE and non-ACE activity 

using hierarchical, linear regression. The regression results using frontal and central channels are 

shown in Table 3.6 a-b, respectively.  

W
M

 I
m

p
ro

v
em

en
t 

W
M

 I
m

p
ro

v
em

en
t 

Overall SWA during SWS 

(Frontal) 

Overall SWA during SWS 

(Central) 

r= -0.027, p= .886 r= -0.080, p= .669 

Figure 3.5 WM improvement not correlated with slow wave activity 
Correlations between overall SWA power (X-axis) and WM improvement (Y-axis) 
(a) Frontal SWA during SWS (r= -0.027, p= .886); and (b) Central SWA during 
SWS (r= -0.080, p= .669). 
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Regression Models using the Averaged Frontal Channel 

In Model 1, WM gain was the dependent variable and Session 1 WM performance and 

overall frontal SWA in SWS were the independent variables. Model 1 reached significance (F(2,29)= 

4.798, p= .016; adj R2 = .196), but adding the ACE measures (PrePost) in Model 2 enhanced the 

prediction of the model (F(3,28)= 5.974, p= .021; adj R2 = .325), with the ACE SWA (PrePost) being a 

significant predictor (p= .016). Model 2 accounted for significantly more of the variance in WM 

improvement than Model 1 (change in adj R2 = .142, F(1,28)= 6.504, p=.016). Similarly, adding the 

ACE SWA (PreBase) measures in Model 2 enhanced the prediction of the model (F(3,28)= 4.319, p= 

.013; adj R2 = .243), although non-significantly (change in adj R2 = .068, F(1,28)= 2.774, p=.106).  

 

Regression Models using the Averaged Central Channel 

In Model 1, baseline WM performance and overall central SWA in SWS were the 

independent variables. Model 1 reached significance (F(2,29)= 4.796, p= .016; adj R2 = .196), but 

adding the ACE SWA measures (PreBase) in Model 2 elevated significance of the model (F(3,28)= 

5.222, p= .005; adj R2 = .290), with the ACE SWA (PreBase) being a significant predictor (p= .036). 

Again, Model 2 accounted for significantly more of the variance in WM improvement than Model 1 

(change in adj R2 = .147, F(1,28)= 4.812, p=.036). Similarly, adding the ACE SWA measures (PrePost) 

in Model 2 elevated the model (F(3,28)= 4.6, p= .009; adj R2 = .258), although non-significantly 

(change in adj R2 = .109, F(1,28)= 3.411, p=.075).  

In summary, while the overall SWA power did not predict individual differences in sleep-

dependent WM gain, ACE events predicted up to 18.8% of the variance in performance 

improvement on this WM task.  
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Discussion 

Consistent with Naji et.al (2019), we confirmed an autonomic cardiac event during NREM 

sleep that is temporally coupled with a significant boost in brain oscillations, and reported that 

these autonomic/central events (ACEs) contribute to WM improvement. Specifically, we showed 

that increases in the EEG amplitude in SWA and sigma bands preceded the large-amplitude HR 

bursts. Furthermore, we showed that these time-locked boosts in SWA during SWS, but not sigma 

or RRHF, can predict WM improvement across a daytime nap to a greater extent than overall SWA. 

Taken together, the results suggest that heart-brain interactions during sleep may be a critical 

mechanism for sleep-related WM gain.  

 

Heart-brain interaction during sleep: findings and potential mechanisms 

Emergent research examining brain-body communication suggests that autonomic activity 

may be linked with sleep brain activity, and that this interaction is likely a distinct predictor of 

plasticity, cognitive ability and enhancement. Studies have revealed a consistent symmetry between 

heart and brain activity with temporal changes in NREM delta (0.5-4Hz) power and ANS activity 

(Ako et al., 2003; Brandenberger et al., 2001a; Jurysta et al., 2003, 2005; Kuo & Yang, 2004; 

Rothenberger et al., 2015; Thomas et al., 2014; Yang et al., 2002). Delta EEG power, a marker of 

homeostatic sleep drive dissipates across successive NREM periods. Brandenberger and colleagues 

(2001) demonstrated an inverse coupling between oscillations in delta wave activity (0.5-3.5Hz) 

and autonomic activity during nighttime sleep. Using a cross-correlation approach, Thomas et al. 

(2014) showed a temporal relationship between SWA and high frequency cardiopulmonary (0.1-

0.4Hz) coupling, an ECG-derived biomarker of stable sleep, during both stage 2 sleep and SWS. 

These findings suggest that CNS-ANS dynamics support the interdependency between cortical and 

cardiac function during sleep.  
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Several studies have attempted to provide insight on directionality and potential 

mechanisms of heart-brain communication, with some suggesting that vagal modulation may 

precede increases in EEG delta power (Jurysta et al., 2003, 2005) and some suggesting that the 

relationship may be more strongly driven by CNS than ANS activities (Rothenberger et al., 2015). 

Although more research is needed to understand the complicated relation between the ANS and 

CNS, one possible reason for the discrepancy regarding ANS-CNS coupling in previous work may be 

due to the method of averaging across large periods of the night that underestimate tight temporal 

interactions between the heart and brain. Traditional measures examine activity over 5-minute 

windows, which may average out fluctuations that occur in shorter time scales (e.g., heart rate 

bursts <5 sec). Building upon these findings, the current study adopted a high temporal precision 

time-domain analysis approach to the cardiac signal, which allowed for the identification of HR 

burst that lasted 4-5 seconds and predominated (~1 per minute) in NREM sleep. By focusing on 

beat-to-beat changes in sleep ECG/EEG, the current study attempted to demonstrate functional 

significance of ACE activity for cognitive processes.  

While mechanisms driving EEG fluctuations time-locked on HR bursts remains unclear, 

some evidence points to arousal responses during sleep. In line with our findings, de Zambotti et al. 

(2016) showed that tone-triggered K-complexes are temporally coupled with a rapid increase and 

then decrease in heart rate activity, and coincide with bursts of K-complexes and slow 

waves (Sforza et al., 2000). In this context, both synchronous EEG (K-complexes, or bursts of SOs) 

and cardiovascular activations (heart-rate acceleration) were viewed as responses to arousal from 

sleep, as when acoustic tones were not accompanied by a K-complex, the heart rate fluctuation was 

reduced or absent, indicating that arousal responses might be driving ANS/CNS activities.  It’s been 

hypothesized that in the case of the K-complex, the recruited synchronized EEG response acts as a 

mechanism to decrease cortical arousal, suggesting that the heart-rate acceleration (tachycardia, or 

HR bursts) can be viewed as peripheral response of arousal from sleep. Taken together, the 
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subsequent heart-rate deceleration that de Zambotti et al. (2016) showed and the surge of HF that 

Naji et al. (2019) and the current study found may reflect a feedback effect of arousal showing an 

inertial effect once the arousal stimulus is removed. Alternatively, arousal and post-arousal periods 

may modulate the autonomic system reflecting the activation-deactivation of neuronal oscillations 

intrinsically regulated by the cyclic arousability of the sleepy brain (Schnall et al., 1999; Sforza et al., 

1999; Ferri et al., 2000). 

In addition to arousal responses, ANS-CNS coupling events may also represent the 

brainstem’s dynamic maintenance of homeostasis during the transition from wake to sleep. As 

homeostatic pressure drives the transition from lighter sleep to deeper stages, the CNS and ANS 

experience large and rapid slowing in physiological rhythms, including decreased heart rate, broad 

synchronization of EEG slow waves (Fernandez Guerrero & Achermann, 2018), as well as alignment 

of cortical and autonomic signals (Ulke et al., 2017). Brainstem medullary nuclei are responsible for 

a wide range of bodily functions including deepening of slow wave sleep (Anaclet & Fuller, 2017) 

and deceleration of heart rate (Monge Argilés et al., 2000). It is, therefore, possible that medullary 

nuclei regulating wake to sleep transitions modulate the pace of the slow down with brief 

accelerations in cardiac activity. Due to the relative overlap between nuclei, these fluctuations may 

promote time-locked ACEs between sleep promoting oscillations such as SOs and spindles. Thus, 

ACE coupling may represent the adaptive and flexible modulation of central and peripheral 

activities by the brainstem. However, more research is needed to make definite conclusions. 

Regardless of mechanism, these interactions have an intriguing interplay with sleep-related 

cognitive plasticity. 

 

Heart-brain interactions during sleep for cognition 

Though the functional significance of CNS-ANS couplings during sleep is only beginning to 

be explored, we hypothesize that ACE activity may play an important role in hippocampal-
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prefrontal cognitive enhancement. Results from our group have shown ACE (SWA and spindles) 

contributions to long-term, episodic memory (Naji et al., 2019), as well as WM  gains (SWA, current 

study). In addition, recent studies implicate frontal SWA with improvement in WM, a cognitive 

ability strongly supported by the prefrontal cortex (Wager & Smith, 2003). For example, Ferrarelli 

et al. (2019) demonstrated that fronto-parietal SWA during nocturnal sleep can predict the WM 

improvement across the sleep. Similarly,  Sattari et al. (2019) showed that frontal SWA, but not 

sigma, during a nap predicted WM improvement in older adults. Furthermore, ventromedial 

prefrontal cortex has been shown to regulate both vagal activity and slow oscillations (Dang-Vu et 

al., 2010; Thayer & Lane, 2000), and higher waking vagal activity is associated with better executive 

function (including WM). Anatomically, bidirectional projections from the prefrontal cortex to the 

hypothalamus and brainstem create a feedback loop for communication between peripheral sites 

and central cognitive areas (Shaffer et al., 2014; Thayer & Lane, 2009a). Furthermore, the 

prefrontal cortex is implicated in top-down control of the vagus nerve, and prefrontal cortical 

thickness is positively associated with vagally-mediated autonomic activity during wake in both 

young (Winkelmann et al., 2016) and older adults (Lin, Ren, et al., 2017).  Together, these studies 

point to a significant role of prefrontal processing in the improvement of working and long-term 

memory during sleep that is mediated by autonomic activity.  

The current study is the first, to our knowledge, to identify a functional role of ANS-coupled 

EEG fluctuations on WM improvement. Moreover, we find a high degree of specificity with ACE-

SWA but not ACE-sigma or ACE-RRHF benefitting performance. Both SWA and Sigma changes scores 

were significantly modulated by HR bursts, with the peak SWA occurring during the -5 window 

during both NREM stage 2 and SWS. However, only the SWA during SWS significantly predicted WM 

improvement. Indeed, SWS has been linked to synaptic plasticity and cortical reorganization 

(Tononi and Cirelli, 2003; Takashima et al., 2006; Dang-Vu et al., 2010), and is thought to play an 

important role in cerebral restoration and recovery (Horne, 1992), thereby making it a candidate 
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for facilitating WM improvement. In addition, the low levels of acetylcholine and catecholamines 

that exist SWS have been shown to facilitate the occurrence of synaptic depression (Harley, 1991; 

Seol et al., 2007). Furthermore, the most prominent EEG event during SWS, SWA has been 

considered to reflect localized, experience-dependent, cortical plasticity (Huber et al., 2004; 

Miyamoto et al., 2017; Rodriguez et al., 2016). Taken together, results in the current study were 

consistent with the previous literature that SWS might provide an optimal brain state that can be 

exploited to enhance WM changes. 

It’s noteworthy that the current study only showed an association between ACE SWA and 

WM improvement, but not overall SWA. Intrudingly, studies examining the association between 

SWA power during sleep and WM improvement showed mixed results. While some previous 

studies showed an association between SWA power during sleep and WM improvement (Ferrarelli 

et al., 2019; Pugin et al., 2015; Sattari et al., 2019), we and others (Lau et al., 2015b; MacDonald et 

al., 2018) failed to find a correlation between WM improvement and overall SWA. In fact, previous 

studies showing a positive association were either examined in a different age group (Sattari et al., 

2019), or tested under different experimental design (Ferrarelli et al. 2019; Pugin et al. 2015). 

Specifically, Ferrarelli et al. (2019) tested WM and overnight sleep on two consecutive nights and 

showed that the increased SWA across the two nights were correlated with the WM improvement 

across the two days (measured with 1-Back accuracy). Similarly, Pugin et al. (2015) tested 

overnight sleep on two nights, separated by three weeks of WM training, and showed that the 

increased SWA across the two nights were correlated with the WM improvement (from pre-

training to post training; measured with auditory N-back capacity). In contrast, previous studies 

that used similar pre-nap/ post-nap paradigm showed no effect of overall SWA (Lau et al., 2015b; 

MacDonald et al., 2018). The overall SWA might reflect the experience-dependent changes in the 

brain following a learning period, whereas the ACE SWA might reflect the adaptive prefrontal 

functioning that contributes to WM improvement. The current mechanism underlying the role of 
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SWA on WM remain unclear. We suggested that adding ACE analysis to future studies will be 

critical for understanding potential sleep mechanisms for WM improvement. 

Our data suggest that robust coupling between frontal SWA and HR reflects increased functioning 

of prefrontal cortex during NREM sleep, including benefits to WM and long-term memory. This 

hypothesis is consistent with the neurovisceral integration model (Thayer and Lane, 2000) that 

contends that medial prefrontal cortex regulates autonomic activity through its connections with 

the nucleus tractus solitarii (NTS), and proposes that autonomic activity reflects the functional 

capacity of the brain structures that support WM and physiological self-regulation (Thayer et al., 

2009). These findings suggest the intriguing possibility that modulation of autonomic activity 

during sleep may provide a novel method for boosting executive function. Vagal nerve stimulation, 

for example, has been considered a valuable therapeutic option for neurologic diseases, and studies 

have demonstrated the ability of vagal nerve stimulation during wake to modulate vagal afferents 

activation (Nonis et al., 2017), and to enhance verbal memory performance (Clark et al., 1999), 

cognitive flexibility (Ghacibeh et al., 2006), and recently, WM (Sun et al., 2017). Future research 

should investigate the potential benefit of sleep-related interventions (i.e. non-invasive brain 

stimulation and vagal nerve stimulation) on heart-brain communication and its potential benefit for 

cognitive enhancement or as a clinical intervention in age-related cognitive decline.  
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Chapter Four: Competitive dynamics underlie cognitive improvements 

during sleep 

 

Abstract 

We provide evidence that human sleep is a competitive arena where cognitive domains vie 

for limited resources. Using pharmacology and effective connectivity analysis, we demonstrate that 

long-term memory and working memory are served by distinct offline neural mechanisms that are 

mutually antagonistic. Specifically, we administered zolpidem to increase central sigma activity and 

demonstrated targeted suppression of autonomic vagal activity. With effective connectivity, we 

determined the central activity has greater causal influence over autonomic activity, and the 

magnitude of this influence during sleep produced a behavioral trade-off between offline long-term 

and working memory processing. These findings show the first evidence of a slow oscillation switch 

mechanism that toggles between central sigma-dependent long-term memory and autonomic 

vagal-dependent working memory processing. 

 

Introduction 

Working memory (WM) and long-term memory (LTM) serve separate functions and the 

idea that they are supported by separate systems has become a core assumption of modern 

cognitive psychology (James, 1890). WM is a control process for planning and carrying out behavior 

that is information-independent, whereas LTM is an information-dependent vast store of 

knowledge and record of prior events. Both WM and LTM rely on offline periods that include sleep 

to facilitate performance improvement. According to the framework of systems consolidation, long-

term memories are initially bound by a fast-learning system in the hippocampus (i.e. encoding), 

followed by stabilization of these memory traces in cortical stores (i.e., consolidation). Non-rapid-
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eye-movement (NREM) sleep may facilitate consolidation by increasing communication between 

cortico-thalamo-hippocampal circuits via nested oscillations of slow oscillations (<1Hz, SO), 

spindles (sigma power; 12-15Hz), and sharp wave ripples (SPW-R), respectively (Latchoumane et 

al., 2017; Niethard et al., 2018; Rasch & Born, 2013). SOs reflect fluctuations of the membrane 

potential and orchestrate transitions from neuronal silence (hyperpolarized downstates) to 

neuronal excitation (depolarized upstates). Spindles, nested in SO upstates, gate dendritic Ca2+ 

influx and promote synaptic plasticity. Hippocampal SW-Rs nested in spindles are closely linked to 

the reactivation of cell assemblies engaged during encoding. Prior studies suggested that spindles 

may initiate hippocampal-cortical dialogue by grouping SW-Rs, which facilitates information 

transfer between neocortical and hippocampal cell assemblies. In humans, pharmacological 

interventions that boost spindle activity enhance sleep-dependent hippocampal LTM, measured by 

the paired-associates task (Mednick et al., 2013; Wamsley et al., 2013; Zhang et al., 2020). 

 Classic models of WM propose two governing mechanisms: 1) an active maintenance of 

information online through the elevated firing of prefrontal neurons, and 2) a supervisory executive 

control process that is supported by a prefrontal-subcortical inhibitory network (Compte et al., 

2000; Funahashi et al., 1993). Due to innervations to the heart via sympathetic stellate ganglia and 

parasympathetic vagal nerve efferents, cardiac autonomic activity is thought to reflect functioning 

of prefrontal inhibitory processing (Thayer et al., 2009). Accordingly, vagally-mediated, high 

frequency heart rate variability (0.15-0.40, HF HRV) during wake correlates with executive function 

tasks, such as WM, which rely on PFC activity (Mosley et al., 2018). Improvement in WM, however, 

only occurs when the interval between training sessions contains a period of sleep, measured by N-

back, complex-span task, and digit span (Ferrarelli et al., 2019; Kuriyama et al., 2008a; Sattari et al., 

2019; Scullin et al., 2012; Zinke et al., 2014). Although the exact mechanisms of WM improvement 

during sleep are still not entirely understood, prior studies point to SWS as an optimal state for 

synaptic plasticity and cortical reorganization. During SWS, vagal activity is also at its highest 
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compared to all other states of consciousness (Trinder et al., 2001). Building on this foundation, a 

recent study identified vagal HF HRV during SWS as a strong predictor of WM improvement, 

measured by the operation-span task (Chen, Whitehurst, Naji, et al., 2020a). 

Together, theoretical models and empirical data suggest that NREM sleep may facilitate 

improvement in WM via strengthening of prefrontal-autonomic inhibitory networks, measured by 

HF HRV, while facilitating the formation of LTM via thalamic spindles driving the hippocampal-

cortical dialogue, measured by sigma power. The question is how the sleeping brain performs both 

of these complex feats and which sleep features are associated with these processes? Prior animal 

studies suggest a potentially antagonistic interplay between the cortico-thalamo-hippocampal 

networks and the prefrontal-autonomic inhibitory networks (Logothetis et al., 2012; Novitskaya et 

al., 2016). However, this possibility and its functional significance has not been studied in humans.  

In the present study, we enacted a pharmacological strategy to investigate the bi-directional 

interplay between central (reflected in sigma activity) and autonomic (reflected in vagal HRV) 

activities during overnight sleep and its impact on LTM and WM, measured by the word-paired 

associative task and the operation-span task. Specifically, we tested our model that central sigma 

activity would suppress autonomic vagal activity using effective connectivity (Friston, 2011), 

defined as the influence that one neural system exerts over another, which can be estimated using 

Granger causality (Figure 4.3a). We identified a novel antagonistic relationship between sigma and 

vagal activity during sleep, with the degree of mutual antagonism between sigma and vagal activity 

predicting a heretofore unreported behavioral trade-off between LTM and WM. These results 

suggest that NREM sleep confers benefits to WM and LTM by switching between separate offline 

mechanisms, i.e., the prefrontal-autonomic inhibitory processing and the hippocampal-cortical 

dialogue. Furthermore, this slow oscillation switch can be biased towards LTM consolidation by 

increasing sigma activity, in this case pharmacologically, and presumably by other methods as well. 

These results illuminate the dynamics interplay underlying LTM and WM processes during sleep. 
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Methods 

Participants 

34 adults in experiment 1 (Mage = 20.88 ± 1.88 years, 17 Females) and 38 adults in 

experiment 2 (Mage = 20.85 ± 2.97 years, 19 Females) with no history of neurological, psychological, 

or other chronic illnesses were recruited for the study (Table 4.1 demographics). All participants 

signed informed consent, which was approved by the Western Institutional Review Board and the 

University of California, Riverside Human Research Review Board. Exclusion criteria included 

irregular sleep/wake cycles; sleep disorder; personal or familial history of diagnosed 

psychopathology; substance abuse/dependence; loss of consciousness greater than 2 minutes or a 

history of epilepsy; current use of psychotropic medications; and any cardiac or respiratory illness 

that may affect cerebral metabolism, which was determined during an in-person psychiatric 

assessment with trained research personnel. Additionally, all participants underwent a medical 

history and physical appointment with a staff physician to ensure their physical well-being. All 

subjects were naive to or had limited contact with (<2 lifetime use and no use in last year) the 

medication used in the study. Participants were asked to refrain from consuming caffeine, alcohol, 

and all stimulants for 24 h prior to and including the study day. Participants filled out sleep diaries 

for one week prior to each experiment and wore wrist-based activity monitors the night before the 

study (Actiwatch Spectrum, Philips Respironics, Bend, OR, USA) to ensure participants were well-

rested (at least 7 hours per night during the week including the eve of the experimental day). 

Participants received monetary compensation and/or course credit for participating in the study. 

Study procedures were illustrated in Figure 4.1. 
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  Figure 4.1 Experimental design and behavioral tasks 

 
Experiment 1: Participants reported to the lab at 9:00PM and were hooked up to polysomnography 
(PSG), including electroencephalography (EEG), electrocardiogram (ECG), electromyogram (EMG), and 
electrooculogram (EOG). Before sleep, we recorded 5-min resting HRV while subjects lay awake in a still, 
supine position. At 11:00PM, directly before lights-out, subjects ingested either 10mg of zolpidem or 
placebo. Sleep was monitored online by a trained sleep technician. Participants were woken up at 
9:00AM the next morning and permitted to leave the lab. Each participant experienced two visits per 
drug condition (a total of four visits). 
 
Experiment 2: At 8:00AM, participants began encoding for the episodic memory word-paired-associates 
(WPA) task, followed by the working memory operation-span task (OS) task and immediate recall for 
the WPA (Test 1). Participants left the lab after cognitive testing. Participants were asked not to nap, 
exercise, or consume caffeine or alcohol, and were monitored with actigraphy during the break. 
Participants returned to the laboratory at 9:00 PM to complete the delayed recall over wake for WPA 
and OS (Test 2). Participants were then hooked up to polysomnography (PSG), including 
electroencephalography (EEG), electrocardiogram (ECG), electromyogram (EMG), and 
electrooculogram (EOG). Before sleep, we recorded 5-min resting HRV while subjects lay awake in a still, 
supine position. At 11:00PM, directly before lights-out, subjects ingested either 10mg of zolpidem or 
placebo. Sleep was monitored online by a trained sleep technician. Participants were woken up at 
9:00AM the next morning and provided a standardized breakfast. At 10:30 AM, participants completed 
the delayed recall over sleep for WPA and OS (Test 3). For both tasks, to assess the change in 
performance, we measured two difference scores: overnight change (Test 3 – Test 2); 24-hr change (Test 
3 – Test 1). Each participant experienced one visit per drug condition (a total of two visits). 
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Data Reduction 

Experiment 1 

25 participants completed 4 visits (2 placebo nights and 2 zolpidem nights), 8 participants 

completed 2 visits (1 placebo night and 1 zolpidem night), 1 participant completed a zolpidem visit, 

due to scheduling conflicts. Therefore, 56 placebo and 59 zolpidem nights were included in the 

analyses. 

 

Experiment 2 

36 participants completed the placebo night, and 35 participants completed the zolpidem 

night PSG recordings. 35 participants completed all three sessions of operation-span (working 

memory) task in both placebo and zolpidem conditions. 33 participants completed all three 

sessions of word-paired associates (long-term memory) task in both placebo and zolpidem 

conditions. 

 

Sleep Recording 

EEG data were acquired using a 32-channel cap (EASEYCAP GmbH) with Ag/AgCI 

electrodes placed according to the international 10-20 System (Jasper, 1958). 22 electrodes were 

scalp recordings and the remaining electrodes were used for electrocardiogram (ECG), 

electromyogram (EMG), electrooculogram (EOG), ground, an online common reference channel (at 

FCz location, retained after re-referencing), and mastoid (A1 & A2) recordings. The EEG was 

recorded with a 1000 Hz sampling rate and was re-referenced to the contralateral mastoid (A1 & 

A2) post-recording. Data were pre-processed using BrainVision Analyzer 2.0 (BrainProducts, 

Munich Germany).  Eight scalp electrodes (F3, F4, C3, C4, P3, P4, O1, O2), the EMG, and EOG were 

used in the scoring of the nighttime sleep data. High pass filters were set at .3 Hz and low pass 

filters at 35 Hz for EEG and EOG. Raw data were visually scored in 30-sec epochs into Wake, Stage 1, 



 

67 
 

Stage 2, Slow Wave Sleep (SWS) and rapid eye movement (REM) sleep according to the 

Rechtschaffen & Kales’ manual using HUME, a custom MATLAB toolbox. After staging, all epochs 

with artifacts and arousals were identified rejected by visual inspection before spectral analyses. 

Minutes in each sleep stage and sleep latencies (SL) (the number of minutes from lights out until 

the initial epoch of sleep, Stage 2, SWS and REM) were calculated. Additionally, wake after sleep 

onset (WASO) was calculated as total minutes awake after the initial epoch of sleep, and sleep 

efficiency (SE) was computed as total time spent asleep after lights out (~11:00PM) divided by the 

total time spent in bed (~11:00PM-9:00AM) * 100. Sleep architectures were reported in Table 4.2a 

and 4.2b. 

 

Heart Rate Variability 

Electrocardiogram (ECG) data were acquired at a 1000-Hz sampling rate using a modified 

Lead II Einthoven configuration. We analyzed HRV of the R-waves series across the whole 

sleep/wake period using Kubios HRV Analysis Software 2.2 (Biosignal Analysis and Medical 

Imaging Group, University of Kuopio, Finland), according to the Task Force guidelines [57]. RR 

peaks were automatically detected by the Kubios software and visually examined by trained 

technicians. Incorrectly detected R-peaks were manually edited. Missing beats were corrected via 

cubic spline interpolation. Inter-beat intervals were computed, and a third-order polynomial filter 

was applied on the time series in order to remove trend components. Artifacts were removed using 

the automatic medium filter provided by the Kubios software.  

The HRV analysis of the RR series was performed by using a Matlab-based algorithm. An 

autoregressive model (Model order set at 16) was employed to calculate the absolute spectral 

power (ms2) in the LF HRV (0.04–0.15 Hz; ms2) and the HF HRV (0.15–0.40 Hz; ms2; an index of 

vagal tone) frequency bands, as well as total power (TP; ms2; reflecting total HRV), and HF peak 

frequency (HFpf; Hz; reflecting respiratory rate). From these variables, we derived the HF 
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normalized units (HFnu = HF[ms2]/HF[ms2]+LF[ms2]) and the LF/HF ratio (LF[ms2]/HF[ms2]), an 

index often considered to reflect the sympathovagal balance (i.e., the balance between the two 

branches of the ANS), but whose meaning has been recently put into question. The LF, HF, and TP 

measures had skewed distributions and as such were transformed by taking the natural logarithm. 

Since the LF normalized units are mathematically reciprocal to HFnu (i.e. LFnu =1- HFnu), to avoid 

redundancy, only the HFnu index is computed, an index often thought to reflect vagal modulation. 

Due to controversies about the physiological mechanisms that contribute to changes in LF activity, 

LF, LF/HF ratio and HFnu are difficult to make for these parameters, but they are reported for 

descriptive purposes.  

In addition to the frequency domain parameters, RMSSD (ms; root mean square of 

successive differences) was calculated as a measure of vagally-mediated HRV in the time-domain. 

Similar to the frequency adjustments, to adjust for skewed distributions in the RMSSD, we report 

the natural logarithm. Additionally, RR (ms; time interval between consecutive R-peaks, reflecting 

frequency of myocardial contraction) were calculated as an index of cardiac autonomic control in 

our analyses. 

For time-domain and frequency-domain HRV measures during different sleep stages, 

consecutive artifact-free 5-min windows of undisturbed sleep were selected across the whole night 

using the following rules: (a) the 1.5-min preceding, and (b) the entire 5-min epoch selected must 

be free from stage transitions, arousal, or movements. Windows were identified and averaged 

within Stage 2 sleep, slow-wave sleep (SWS), and REM sleep. We also analyzed 5 min of pre-sleep 

wakefulness (Rest). Epochs of N1 were not analyzed. All the HRV parameters by drug condition and 

sleep stage were reported in Supplemental Table 4.3a-c. 
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Power spectral analysis  

The EEG power spectrum was computed using the Fast Fourier Transformation. SWA (0.5-

2Hz), delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), sigma (12-15Hz), beta (15-30Hz), and total 

power (0.3-35Hz) were calculated for each sleep stage (Stage 2, SWS and REM). The EEG epochs 

that were contaminated by muscle and/or other artifacts were rejected using a simple out-of-

bounds test (with a ±200 µV threshold) on high-pass filtered (0.5 Hz) version of the EEG signals. 

Then, the normalized power spectra (% power of each frequency band of interest/ total power) 

were averaged bilaterally within each sleep condition/stage/subject. Power analyses that showed 

significant drug effect were reported in Table 4.4a-b. 

 

Effective Connectivity  

To explore the causal information flow between CNS and ANS sleep features, we considered 

sigma to reflect CNS activity and HFln to reflect ANS activity. Sigma power of eight EEG channels 

(F3, F4, C3, C4, P3, P4, O1, O2) and HF of HRV were considered as signals to estimate effective 

connectivity. To adopt uniform timing across signals and avoid temporal misalignments between 

EEG signals and HF time series, a sliding window technique was incorporated with window length 

of 5 minutes and stride of 5 seconds. All data during nighttime sleep was used to have continuous 

time series of Sigma powers and HF, and length of 5 minutes was selected to be consist with HRV 

process. Therefore, for each subject, nine different signals were constructed including ratio of 

Sigma power band to total power of EEG of eight channels and HF power of HRV for each five-

minute window (see Figure 4.3a). 

Generalized partial direct coherence (GPDC) measure was used to estimate causal 

information flow between Sigma power and HF. GPDC uses multivariate vector autoregressive 
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(MVAR) model to model causal interactions between signals and estimate directed causal 

information flow between signals by using the coefficients and parameters of MVAR.  

After constructing Sigma power and HF signals, GPDC was computed for each window with 

length of 500 samples (500 * 5 s = 2500 s) with stride of 250 samples. First, signals interactions 

were modeled by MVAR model (Eq. 1). 

𝑋(𝑛) = ∑𝐴𝑘𝑋(𝑛 − 𝑘)

𝑝

𝑘=1

+𝑤(𝑛) 

Where 𝑋(𝑛) is the vector of signal values (with length of 𝑁, the number of signals, 𝑁 = 8) in time 𝑛, 

𝑋(𝑛) = [𝑥1(𝑛), 𝑥2(𝑛),… , 𝑥𝑁(𝑛)]
𝑇. 𝑝 is order of the MVAR model which was selected according to 

Akaike criterion (AIC), 𝑝 = 4. 𝐴𝑘 is the matrix of MVAR coefficients and each element, 𝑎𝑖𝑗(𝑘), stands 

how much 𝑗-th signal in time  𝑛 − 𝑘 affects 𝑖-th signal in time 𝑛 and 𝑤(𝑛) is the vector of model’s 

additive Gaussian noise with zero mean and covariance matrix Σ. After modeling the interaction of 

the signals, GPDC was computed using frequency domain of coefficients and covariance matrix as: 

�̅�𝑖𝑗(𝑓) =

1
Σ𝑖𝑖

𝐴𝑖𝑗(𝑓)

√∑
1

Σ𝑘𝑘
2 |𝐴𝑘𝑗(𝑓)|

2𝑁
𝑘=1

 

consequently: 

0 ≤ |�̅�𝑖𝑗(𝑓)|
2
≤ 1 

And 

∑|�̅�𝑖𝑗(𝑓)|
2

𝑁

𝑖=1

= 1 

�̅�𝑖𝑗(𝑓) is the estimated matrix of causal information flow and the 𝑗-th column represent causal 

information outflow from the 𝑗-th signal to all the other signals. Average values over frequencies 

were considered for further process and based on the main purpose of the study two quantifier 

were defined as follow (see Figure 4.3a): 

(1) 

(2) 

(3) 

(4) 
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1. Causal information outflow from HF to all EEG channels, HFOutflow – Average (n=8) of causal 

information flow from HF to EEG sigma activity. HFOutflow represents the strength of causal 

effect of HF to Sigma power. 

2. Causal information inflow to HF from all EEG channels, HFInflow – Average (n=8) of causal 

information flow from EEG sigma activity to HF. HFinflow represents the strength of causal 

effect of Sigma to HF. 

3. Effective connectivity ratio: HFInflow over HFOutflow, where greater numbers represented 

a greater central sigma control over autonomic vagal activity than vice versa.   

 

Sigma/SO Coupling 

Slow oscillations (SO) trough were detected for each channel automatically using the 

algorithm introduced by Dang-Vu et al. [58]. For each SO, the sigma power spectrum (12-16 Hz) 

was computed in the time margin of SO trough to 1s post SO trough. To access SOs which were 

coupled with Sigma waves, the median of all normalized Sigma power of SOs for all recording was 

computed for each channel. The SOs which had Sigma power greater than the median values in each 

quartile was considered as the SO-Sigma coupled and the number of coupled SOs was considered to 

further statistical analysis. 

 

Statistical Analyses 

All statistical analyses were performed in R 3.6.2, using the libraries lme4 and lsmeans. P-

values less than 0.05 were considered significant; p-values between 0.05 and 0.07 were considered 

trend-significant; p-values greater than 0.07 were considered non-significant. We used a linear 

mixed model (LMM) to evaluate the effects of zolpidem on sleep architecture, EEG power spectrum, 

autonomic profiles, and behavioral improvements. LMMs were chosen because it allows modeling 

of random effects and allow for the intercept and slope to be correlated [59]. LMMs are parametric 
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models that use Maximum Likelihood Estimates (MLE) to obtain coefficients and covariance 

structures. LMMs do not depend on limited assumptions about variance-covariance matrix 

assumptions (sphericity). Additionally, LMMs allow inclusion of an unbalanced number of 

observations per participants in the analyses. Moreover, LMMs models take into account the 

influence of factors whose levels are extracted randomly from a population (i.e. participants), thus 

yielding more generalizable results. 

 

Sleep architecture and Power spectrum 

Using LMMs, we tested for the main effect of drug condition for sleep architecture (see 

Table 4.2), EEG power spectrum (see Table 4.4). 

 

Autonomic Profiles 

For autonomic profiles, we tested for the main effect of drug condition and interactions 

between sleep stage and drug condition by approximating likelihood ratio tests (LRT) to compare 

LMMs with and without the effect of interest . We first built a reduced (nested) model, with sleep 

stage as the only effect, and then included drug condition as a fixed effect in the full model. By 

comparing the reduced and full model using the LRT, we can interpret if drug condition 

significantly modulated the outcomes. Tukey’s correction for multiple testing was used for post-hoc 

comparisons.  

 

Effective Connectivity 

Using LMMs, we tested for the main effect of drug condition, the main effect of inflow vs 

outflow, and interaction between the two factors (see Figure 4.3b 4.3c). We first built a reduced 

(nested) model, with inflow vs outflow, as the only effect, and then included drug condition as a 

fixed effect in the full model. By comparing the reduced and full model using the LRT, we can 
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interpret if drug condition significantly modulated the outcomes. Tukey’s correction for multiple 

testing was used for post-hoc comparisons.  

 

Behavioral Tasks 

To investigate the drug effect on cognitive enhancement, LMMs were used with the drug 

condition as the predictor of interest (fixed effect), the improvement in WPA and OS tasks as 

outcome variables, and participants as crossed random effects. As we assume larger individual 

differences of improvement and difference in improvement between drug conditions, our LMMs 

include both a random intercept and a random slope term. To account for practicing effect on the 

tasks, we included visit and baseline performance as a covariate in the models. We first confirmed 

no differences at baseline (Test 1) between the placebo and zolpidem visits. Next, we confirmed no 

differences of improvements across 12-hr of waking (Test 2 – Test 1) between the placebo and 

zolpidem visits. We then tested the sleep-dependent changes in improvement: the overnight (Test 3 

– Test 2) and 24-hr (Test 3 – Test 1) changes (see Figure 4.4a 4.4b). Again, we tested for the effect 

of drug condition by approximating LRTs. 

 

Correlations 

Lastly, we used a Pearson’s correlation coefficients to examine the functional roles of sigma, 

vagal activity, and causal information flow on sleep-dependent behavioral changes. We further used 

the Fisher r-to-z transformation to compare the differences between two correlations of interests. 

 

Results 

Experiment 1.  

Based on previous findings, we predicted that central sigma power would have an 

inhibitory effect on cardiac vagal tone. To this end, we administered zolpidem in a double-blind, 
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placebo-controlled, randomized cross-over design, in which each participant experienced two 

nights per drug condition (zolpidem or placebo; a total of 4 nights; N = 34; Mage = 20.88 ± 1.88 

years, 17 Females), with EEG and ECG monitored (Figure 4.1 shaded area). The order of drug 

conditions was counterbalanced with at least a one-week interval between the experimental visits 

to allow for drug clearance. We performed power spectral analysis to quantify normalized sigma 

activity and analyzed HRV profiles. Our intervention was successful, whereby zolpidem increased 

time spent in SWS while decreasing WASO (Supplemental Table. S2), and enhanced sigma activity 

during stage 2 sleep (central channels: t = 2.112, p = .0349; parietal channels: t = 2.214, p = .0270, 

corrected by Tukey’s multiple comparisons; Table 4.4), consistent with prior literature.  

 
 
  

(a) (b) (c)

Figure 4.2 Zolpidem decreased vagally-mediated HRV, but not LF, during SWS 
 
(a) RMSSD: We report a significant main effect of sleep stage (F(3, 366) = 21.257, p < .0001), with a 
decreased HRV during SWS compared to Rest, Stage 2, and REM (all ps < .0001). We also found a significant 
interaction (F(3, 366) = 3.8630, p = .0096) between sleep stage and drug condition, with decreased vagal 
activity during SWS (p = .0006) in zolpidem compared with placebo, but not during Stage 2 (p = .3549), 
REM (p = .3804), or Rest (p = .6152). The likelihood ratio test was significant (LR = 13.8544; p = .0078), 
suggesting that zolpidem significantly modulated the time-domain measure of HRV.  

 

(b) High-frequency (HF) HRV: We report a significant main effect of sleep stage (F(3, 366) = 16.9891, p < 
.0001), with a decreased HRV during SWS compared to Rest (p = .0006), Stage 2 (p < .0001), and REM (p < 
.0001).  Similarly, we also report a significant interaction (F(3, 366) = 3.1899, p = .0238) between sleep 
stage and drug condition, with decreased vagal activity during SWS (p = .0020) in zolpidem compared with 
placebo, but not during Stage 2 (p = .4194), REM (p = .4365), or Rest (p = .6070). The likelihood ratio test 
was significant (LR = 11.3671; p = .0227), suggesting that zolpidem significantly modulated the frequency-
domain measure of HRV.  
 
(c) Low-frequency (LF) HRV: We report a significant main effect of sleep stage (F(3, 366) = 93.0330, p < 
.0001), with a decreased LF power during SWS compared to Rest, Stage 2, and REM (all ps < .0001), and an 
increased LF power during REM compared to Rest and Stage 2 (all ps < .0001). No significant main effect of 
drug condition (p = .6337), nor interaction between sleep stage and drug condition (p = .5681) were found. 
The likelihood ratio test was not significant (LR = 2.2889; p = .6828), suggesting that zolpidem did not 
significantly modulate low frequency HRV. 
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As we hypothesized, zolpidem not only increased sigma activity, but also selectively 

suppressed vagal tone during sleep, measured by root mean square of the successive differences 

(RMSSD) (Figure 4.2a) and high-frequency HRV (HF; Figure 4.2b), but had no impact on low-

frequency HRV (0.04-0.15, LF; Figure 4.2c). Other HRV indices were reported in Table 4.3.  

We then tested our hypothesis that central sigma power would exert greater causal 

influence over vagal autonomic activity than the influence of vagal over sigma activity, and such 

difference would be increased by zolpidem. To test this prediction, we used effective connectivity 

estimation (Figure 4.3a). In particular, we tested the hypotheses that central sigma naturally 

exercises greater causal influence on autonomic vagal activity than vice versa in the placebo 

condition, and that increasing sigma with zolpidem would increase causal information flow from 

sigma to vagal activity, while decreasing the causal information flow from vagal to sigma activity in 

the zolpidem condition. For each subject, we calculated two measures: HFInflow and HFOutflow, 

respectively (see Methods). We confirmed our hypothesis that central sigma power exerted greater 

flow on vagal activity than vice versa in the placebo condition (p < .0001; Figure 4.3b). We also 

confirmed that such difference was increased by zolpidem (p = .0369; Figure 4.3b). Next, we 

calculated a composite score, the effective connectivity ratio: HFInflow over HFOutflow, where 

higher numbers represented greater central sigma control over autonomic vagal activity. We 

observed a higher effective connectivity ratio during the zolpidem night (p = .0059). Taken 

together, results from Experiment 1 were consistent with our hypotheses that central sigma activity 

naturally exerts dominance over autonomic activity during NREM sleep, and that increasing sigma 

activity via zolpidem inhibits vagal activity and enhances central sigma control over autonomic 

vagal activity.  
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Figure 4.3 Effective Connectivity Modulated by Drug Condition 
 
(a) Effective Connectivity Estimation Procedure (see Methods for details): Prior research using 
functional connectivity analysis has measured temporal similarity or correlations between 
different EEG channels. Although functional connectivity can reveal important information 
about communication, it is limited to correlational measures, and cannot identify directional 
causal communication. In contrast, Effective connectivity is defined as the influence that one 
neural system exerts over another either directly or indirectly, which can be estimated using 
Granger causality. According to Granger causality, a causal relation is detected if past values of a 
source signal help predict a second signal (sink signal) beyond the information contained in its 
past alone. Granger causality and causal information flow can be quantified using a multivariate 
vector autoregressive model (MVAR) and then examining the coefficients of the fitted model. 
Partial directed coherence (PDC) quantifies direct causal information outflow from each signal 
to all other signals, emphasizing the sinks, rather than the sources. The current study adopted 
the generalized form of PDC (GPDC) to quantify causal information flow with respect to both 
the source and the sink regions. Model order (p) of the MVAR model was the only parameter 
and was selected based on the Akaike information criterion (AIC).  
 
(b) Experiment 1 Effective Connectivity: We report a main effect of inflow vs outflow (F(1, 185) 
= 273.317, p <.0001), with a greater HFinflow than HFoutflow in both drug conditions; an 
interaction between drug condition and inflow vs outflow (F(1, 185) = 5.744, p = .0175), with a 
greater HFinlfow during zolpidem compared to placebo (p = .0369). No main effect of drug 
condition was found (F(1, 185) = 0.512, p = .4751). The likelihood ratio test was significant (LR 
= 6.0745; p = .0480), suggesting that zolpidem significantly modulated the causal information 
flow between sigma and HF activity. Effective connectivity ratios (HFInflow/ HFOutflow) 
increased significantly during the zolpidem night (F(1, 79) = 8.0607, p = .0059). 
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Experiment 2. 

In an independent sample of participants (N = 38; Mage = 20.85 ± 2.97 years; 19 Females), 

we added a behavioral experiment (Experiment 2; Figure 4.1) to the original design of Experiment 

1 to test whether we could replicate the physiological results of Experiment 1 and determine their 

functional importance for sleep-dependent cognition. Again, we exploited zolpidem to modulate the 

interaction between central sigma and autonomic vagal activity and examined its impacts on the 

improvements of LTM and WM (Figure 4.1). The order of drug conditions was counterbalanced 

with at least a one-week interval between the two experimental visits to allow for drug clearance. 

The goal of experiment 1 was to thoroughly describe the physiological phenomenon across the 

whole night, whereas the goal for experiment 2 was to examine the functional impact of the 

pharmacological intervention on performance. For this reason, in experiment 2 we divided the 

night into quartiles and focused our analyses on quartile two and three combined to maximize 

zolpidem’s effect, due to the pharmacodynamics of zolpidem, which has a half-life of (1.5–4.5 h), 

and onset (mean Tmax 1.6h). We hypothesized that sigma-guided vagal suppression effects would 

result in parallel behavioral effects with greater long-term memory and reduce improvement in 

working memory. We further hypothesized that the magnitude and the direction of causal 

information flow between central and autonomic systems would be correlated with the trade-off 

between LTM and WM. 

The physiological results across one night of sleep in Experiment 2 were consistent with 

those from two nights of sleep in Experiment 1 (see Table 4.2 for sleep architecture; Table 4.4 for 

power spectrum; Table 4.3 for HRV). We confirmed that zolpidem increased sigma activity during 

sleep while suppressing vagal tone, measured by RMSSD and HF, but had no impact on LF. 

Similarly, we replicated the effective connectivity results (Figure 4.3c), in which zolpidem increased 

effective connectivity ratio (p = .0265), indicating greater causal influence of central sigma activity 

on autonomic vagal activity. 
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We further assessed the functional roles of each physiological measure (EEG sigma activity, 

cardiac vagal activity, and effective connectivity ratio) on LTM and WM changes across sleep. We 

hypothesized that increasing sigma activity would benefit LTM retention in a word-pair-associates 

(WPA) task, whereas decreasing vagal activity would hinder WM improvement on a working 

memory operation span (OS) task. To this end, we examined overnight and 24-hr change scores in 

each task between the two drug conditions. For the word-pair task, our analysis showed that 

zolpidem significantly increased 24-hr LTM retention (Figure 4.4a right panel) and overnight 

retention (Figure 4.4a left panel). For the working memory operation span task, our analysis 

demonstrated that zolpidem decreased overnight improvement (Figure 4.4b left panel) and 24-hr 

improvement (Figure 4.4b right panel), compared to placebo. In summary, we confirmed our 

behavioral hypothesis that sigma-guided vagal suppression would increase LTM (Figure 4.4a) and 

decrease WM improvement (Figure 4.4b).  

Next, we tested the correlations between each physiological measure (EEG sigma activity, 

cardiac vagal activity, and effective connectivity ratio) and memory changes across sleep using 

Pearson’s correlation coefficients. We found a functional dissociation in vagal activity and behavior, 

where vagal activity during SWS was negatively correlated with LTM in the zolpidem condition (24-

hr retention and HFln: r = -.460; p = .018; Figure 4.4c right panel), and positively correlated with 

WM improvement (overnight retention and HFln: r = .422; p = .032; Figure 4.4c left panel) in the 

placebo condition. We compared correlations between HFln and LTM versus HFln and WM, and the 

difference was significant (Z = 3.67; p = 0.0001). This result is in line with our expectation that 

vagal activity during sleep differentially supports LTM and WM. Correlational statistics between 

vagally-mediated HRV parameters and behavioral improvements are shown in Table 4.5. No 

significant correlations were found between EEG sigma activity and WM improvement (zolpidem: 

all ps > .5687; placebo: all ps > .1943) or between EEG sigma activity and LTM retention (zolpidem: 



 

79 
 

all ps > .15516; placebo: all ps > .1383). Taken together, vagal activity was positively associated 

with WM improvement, but inversely related to LTM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Zolpidem increases LTM but decreases WM improvement 

(a) Long-term memory (WPA task) improvement by drug conditions and time. (Y axis: WPA 
Overnight [Test3-Test2] and 24-hr [Test3-Test1] improvement; asterisks indicate significant 
differences in behavioral changes between two drug conditions; *p<0.05) ZOL yielded greater but 
not significant overnight retention of WPA than the PBO condition (estimate= -0.1156, CI= (-0.2408, 
-0.0095), t= -1.8104, p= 0.0810), accounting for visit, as well as greater 24-hr retention of WPA than 
PBO visits (estimate= -0.1810, CI= (-0.3519, -0.0096), t= -2.0704, p= 0.0474), accounting for visit.  
 
(b) Working memory (OS task) improvement by drug conditions and time. (Y axis: OS Overnight 
[Test3-Test2] and 24-hr [Test3-Test1] improvement; asterisks indicate significant differences in 
behavioral changes between two drug conditions; *p<0.05) PBO showed significantly greater 
overnight improvement of OS than ZOL visits (estimate= 0.1242, CI= (0.0201, 0.2284), t= 2.3377, p= 
0.0260), accounting for Test 2 performance and visit, as well as greater but not significant 24-hr 
improvement of OS than ZOL visits (estimate=0.1000, CI= (-0.0184, 0.2185), t= 1.6546, p= 0.1081), 
accounting for Test 1 performance and visit. 
 
(c) Functional role of vagal activity on memory. (Y axis: HFln during SWS, X axis: OS overnight and 
WPA 24-hr improvement) Vagal activity during SWS positively predicted working memory (OS task) 
improvement (r = .422; p = .032) but negatively predicted long-term memory (WPA task) 
improvement (r = -.460; p = .018). The difference between these two correlations was significant (Z 
= 3.67; p = .0001). 
 
(d) Functional role of effective connectivity ratio on memory trade-off. (Y axis: normalized WPA 
improvement - normalized OS improvement score, X axis: effective connectivity ratio = HFInflow/ 
HFOutflow) Effective connectivity ratio (a higher ratio indicates a greater causal effect from sigma to 
vagal) during sleep positively predicted memory trade-off (a greater difference indicates a greater 
improvement in the WPA task than the OS task) during the zolpidem night (r = .429; p = .020), but 
not the placebo night (r = .251; p = .190). The difference between these two correlations not 
significant (Z = 0.78; p = 0.2177). 
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 We, then, asked whether central and autonomic antagonism impacted the trade-off between 

LTM and WM improvement by correlating the effective connectivity ratio with the normalized LTM-

WM difference score, where higher numbers represent greater LTM than WM improvement. We 

found a positive correlation between the effective connectivity ratio and normalized LTM-WM 

difference score in the zolpidem (r = .429; p = .020; Figure 4.4d right panel) and non-significant 

positive correlation in the placebo condition (r = .251; p = .190; Figure 4.4d left panel). These 

results suggested that the more central activity exerted influence on autonomic vagal activity, the 

more sleep was biased towards sigma-dependent LTM consolidation (and away from vagal-

dependent WM processing). We further compared correlations between LTM-WM difference score 

and the effective connectivity ratio in the placebo versus zolpidem condition. The difference was 

not significant (Z = 0.78; p = 0.2177), suggesting that zolpidem amplified the natural vagal 

suppression by sigma and thus increased the magnitude of the correlations. 

 

Figure 4.5 Functional roles of sigma power coupled with SO up-state on LTM and WM 

 
(a) Long-term memory (WPA task) improvement positively correlated with sigma power coupled with SO up-
state. (Y axis: normalized score of WPA 24-hr improvement; X axis: normalized sigma power coupled during 
the up-state of SOs; r = .400; p = .034) 
 
(b) Working memory (OS task) improvement negatively correlated with sigma power coupled with SO up-state. 
(Y axis: normalized score of OS overnight improvement; X axis: normalized sigma power coupled during the 
up-state of SOs; r = -.380; p = .033) 
 
(C) Improvement difference positively correlated with sigma power coupled with SO up-state. (Y axis: 
normalized WPA improvement - normalized OS improvement score; X axis: normalized sigma power coupled 
during the up-state of SOs; r = .560; p = .002) 
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Given the critical role for system consolidation of nested oscillations between sigma and 

SOs, the current findings led us to the prediction that greater sigma-SO coupling would evince 

increased LTM via suppressed WM. We tested this prediction by computing sigma power during the 

up-state of SOs and correlating this magnitude with the normalized LTM-WM improvement 

difference score (see Table 4.5 for SO counts and Sigma/SOs Summary Statistics; Table 4.6 for 

correlations). We found that zolpidem decreased the number of SOs, a finding consistent with prior 

literature that zolpidem shifts brain activity to faster frequencies. This decrease in SOs by zolpidem 

led us to examine coupling in the placebo condition, in which we found a significant positive 

correlation between sigma power during SOs up-state and difference in LTM-WM improvement 

(Figure 4.5), consistent with the notion that competitive dynamics underlie the fundamental 

mechanisms of cognitive improvements during sleep. 

 

Discussion 

The current work identified two neural mechanisms during NREM sleep that support the 

distinct enhancements in long-term and working memory. In experiment 1, we exploited the 

hypnotic zolpidem to enhance sigma activity during NREM sleep and report the novel finding that 

increasing sigma activity resulted in targeted vagal suppression during NREM. Next, we used the 

effective connectivity estimation technique to test the causal hypothesis that central sigma activity 

actively suppressed vagal autonomic activity. Consistent with our hypothesis, results showed that 

central sigma exerted greater causal control over autonomic vagal activity and that 

pharmacologically increasing sigma activity boosted causal information flow from central to 

autonomic channels and decreased flow from autonomic to central channels. In a separate set of 

subjects, we replicated the pharmacological intervention and tested the functional significance of 

the sigma-vagal mutual antagonism during NREM sleep by testing LTM and WM before and after a 

night of sleep. The physiological and effective connectivity results replicated those of experiment 1. 
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Moreover, the sigma-guided vagal suppression was associated with enhanced LTM retention at the 

cost of reduced WM improvement. Additionally, the magnitude of vagal suppression, as well as the 

degree of sigma-SO coupling, predicted a not previously reported trade-off between LTM and WM 

processing. These findings suggest evidence for a slow oscillation switch that toggles between 

separate and non-overlapping NREM mechanisms that support LTM and WM processing. 

Furthermore, this switch can be biased towards greater LTM consolidation by boosting sigma 

activity. 

 

Sigma activity is proposed to facilitate plasticity by producing long-term changes in 

responsiveness in cortical neurons (Timofeev et al., 2002) and increasing dendritic Ca2+ influxes 

(Seibt et al., 2017), particularly enhanced when coupled to down-to-up transitions of the sleep slow 

oscillation. Recently, Dickey and colleagues demonstrated sigma activity may promote spike-

timing-dependent plasticity (STDP), which facilitates long-term potentiation (LTP), the cellular 

mechanism thought to underlie learning and memory (Dickey et al., 2021). Thus, sigma activity may 

promote LTM via cellular synaptic plasticity. Furthermore, at the systems level, sigma nested within 

SOs may also support the replay of memory traces during consolidation (Latchoumane et al., 2017), 

and causally increasing sigma activity boosts hippocampal-dependent memory consolidation 

(Cairney et al., 2018; Mednick et al., 2013). The current findings demonstrate that sigma activity, 

especially when coupled with SOs also suppresses subcortical vagal activity with significant 

functional outcomes, specifically a reduction in WM. 

Vagal influence on cognitive function is a core principle of the Neurovisceral Integration 

Model (Thayer & Lane, 2009a), which posits that ANS activity is a peripheral index of the integrity 

of prefrontal-autonomic networks that support inhibitory, goal-directed, high-order brain 

functions. The tenth cranial vagus nerve communicates peripheral information to and from the 

brainstem, with afferents projecting to higher-order, cognitive areas such as prefrontal cortex, 
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anterior cingulate, and amygdala. Additionally, descending projections from the PFC to the 

brainstem and hypothalamic structures allow for bi-directional communication between the central 

nervous system and the ANS through the vagus nerve. As such, high levels of vagally-mediated HRV 

are associated with superior executive function (Williams et al., 2019), working memory (Mosley et 

al., 2018), and emotional regulation (Mather & Thayer, 2018). Cognitive training including working 

memory has demonstrated that vagal activity reflects enhanced cognitive control of prefrontal 

networks (Lin, L Heffner, et al., 2017). Although sleep is not typically measured across the cognitive 

training interventions, the current findings suggest that executive function improvement may be 

mediated by the strengthening of prefrontal-autonomic networks during sleep. 

Parasympathetic vagal activity is highest during SWS compared to all other states of 

consciousness (Whitehurst et al., 2020). Vagal activity is strongly coupled with delta activity (< 

4Hz) during SWS and vagal enhancement precedes the onset of SWS (Rothenberger et al., 2015). 

Several studies have linked SOs with WM improvement. For example, studies have shown that 

fronto-parietal SOs, but not sigma, predicts WM improvement (Ferrarelli et al., 2019; Pugin et al., 

2015). However, not all studies report a consistent association between SOs and WM (Chen, 

Whitehurst, Naji, et al., 2020b; Lau et al., 2015b; MacDonald et al., 2018), and few accounts for 

autonomic activity. Chen and colleagues reported that vagal activity during SWS was a better 

predictor of WM improvement than SWA or vagal activity during wake (Chen, Whitehurst, Naji, et 

al., 2020a). In the current work, we found that changes in vagal autonomic activity during SWS, but 

not SOs per se, was critical for WM performance improvement. This, together with prior findings, 

suggests a non-negligible role of vagal influence on WM plasticity.  

Given that both LTM and WM appear to rely on NREM sleep, one clear question emerges: 

How are the limited resources of NREM sleep shared across cognitive processes? The current 

findings are consistent with the hypothesis that competitive neural dynamics during NREM sleep 
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underlie cognitive improvement. Supporting this hypothesis, prior research has shown that vagal 

nerve stimulation activates neurons in the locus coeruleus (LC) and increases NE levels in the brain 

(Hassert et al., 2004; Roosevelt et al., 2006), and inactivation of LC impairs WM acquisition, while 

having no effect on consolidation or retention of spatial memories (Beste et al., 2016; Chamberlain 

et al., 2006; Khakpour-Taleghani et al., 2009; Pihlaja et al., 2020; Sun et al., 2017), whereas 

upregulating GABAergic networks impaired WM performance (Lozano-Soldevilla et al., 2014). On 

the other hand, using ripple-triggered fMRI in monkeys, Logothetis and colleagues demonstrated 

that ripples orchestrate a privileged state of enhanced central brain activity by silencing output 

from the diencephalon, midbrain and brainstem, regions associated with autonomic regulation, 

which may serve to boost communication between hippocampus and cortex (Logothetis et al., 

2012). In addition, in both humans and mice, Lecci et al. (2017) demonstrated that heart rate and 

sigma power oscillate in antiphase with each other at 0.02 Hz, suggesting a periodic switch between 

sigma and autonomic activation every 50 seconds (Lecci et al., 2017). 

Here, using effective connectivity, we demonstrated that a GABAergic agonist enhanced 

naturally occurring cortical sigma dominance over vagal autonomic activity. Similar vagolytic 

findings have been shown with zolpidem in persistent vegetative state patients (Machado et al., 

2014, 2011). Furthermore, the magnitude of this central sigma influence on vagal activity predicted 

the trade-off between overnight LTM and WM improvement. Together with the previous literature, 

these finding suggest that sigma-dependent processes, including GABAergic hippocampal-

thalamocortical networks, and vagal-dependent processes, including noradrenergic frontal-

autonomic networks, may compete for sleep resources during NREM sleep. We hypothesize that the 

shared resource may be the SOs, which when coupled with ripple-nested sigma, promotes LTM and 

suppresses other processes, and when uncoupled, facilitates WM by enhancing prefrontal-

autonomic networks. We further hypothesize that sigma may act as a gating mechanism that 

regulates SO resources for other processes, which would explain the mixed findings of SOs for WM 
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improvement. Given that approximately 20% of slow oscillations during NREM are sigma-coupled 

(Malerba et al., 2018), this leaves plenty of resources to be divided amongst other processes, 

including WM. 
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Sleep Switch Model: The model represents the proposed brain regions, neuromodulators, and sleep mechanisms involved in the Long-term memory state and
the Working memory state that toggle throughout non-rapid eye movement (NREM) sleep. During the Long Term Memory state, consolidation occurs via sigma-
coupled SOs, which leads to reduced autonomic vagal-dependent activity and less WM improvement. During the Working Memory state, greater efficiency

occurs during uncoupled SOs associated with increased autonomic vagal-dependent activity, which leads to reduced central sigma-dependent activity and less
LTM consolidation.

Figure 4.6 Slow Oscillation Switch (SOS) Model 
The model represents the proposed brain regions, primary neuromodulators, and sleep mechanisms 
involved in the Long-term memory state and the Working memory state that toggle throughout non-
rapid eye movement (NREM) sleep. During the Long-Term Memory state, consolidation occurs via 
sigma-coupled SOs, which leads to reduced autonomic vagal-dependent activity and less WM 
improvement. During the Working Memory state, greater efficiency occurs during uncoupled SOs 
associated with increased autonomic vagal-dependent activity, which leads to reduced central sigma-
dependent activity and less LTM consolidation. 
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These data suggest a trade-off in which the two memory processes (LTM and WM) alternate 

during NREM sleep via a complex interaction at the synaptic (GABA vs NE activation), systems 

(thalamocortical vs frontal-midbrain), and mechanistic level (sigma-coupled SO vs uncoupled SO) 

(see graphical model in Figure 4.6). Further research enhancing vagal activity and suppressing 

sigma activity is needed to show a double dissociation and tease apart these competitive 

mechanisms. Future work is also required to test the generalizability across multiple cognitive 

domains (i.e. motor learning) and tasks (i.e. non-associative LTM and N-back WM tasks) that relies 

on NREM sleep. The slow oscillation switch mechanism and separable sleep features associated 

with WM and LTM processing suggest directions for future translational research on cognitive 

disturbances observed in neurodegenerative disorders such as Alzheimer’s and Parkinson's 

disease, both of which involve the decline of sleep.  

 

Limitations and future research 

Limitations of this study include using a convenience sample of both men and women, and a 

lack of hormonal status among the young women, which can have an impact on cardiac vagal 

activity (Schmalenberger et al., 2019) and sigma activity (de Zambotti et al., 2015). Future studies 

examining hormonal fluctuation are needed to understand the interaction between central sigma 

and ANS profiles during sleep and their impact on cognition. Additionally, though we did not 

measure respiration directly, we did analyze the frequency peak of HF (HFfp) in order to control for 

respiratory rate, which can affect the HRV. HFfp showed no difference between the two drug 

conditions and varied within a narrow range in the HF spectrum, between 0.22 and 0.26 Hz. Thus, it 

is unlikely that respiratory activity played a key role in zolpidem’s modulation on HRV and 

memory. However, we cannot completely exclude the effect of drug on cardiopulmonary coupling, 

as may be detected using measures of coherence. In addition, our experimental design did not 
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include an adaptation night, and thus may have caused the “first-night effect”. However, the visits 

were counterbalanced by drug conditions, therefore the first-night effect should have canceled out 

across subjects. Furthermore, given that zolpidem is commonly prescribed to insomniacs, studies 

are needed to investigate if chronic use of zolpidem leads to WM deficits or biased memory trade-

off during sleep. Lastly, due to methodological differences between EEG and ECG analyses, we 

measured sigma power as a proxy of spindles, which was not directly correlated with sleep-

dependent behavioral changes. In addition, our study was limited by adhering to standard 

measures of vagal activity that require 5 min epochs, which reduced temporal specificity. This 

limitation constrains our effective connectivity analysis to all sleep epochs. It’s therefore crucial 

that future research develop validated markers of vagal activity in shorter windows. Our results are 

lack of temporal specificity of sleep micro events and thus future research with a greater temporal 

precision around physiological events is needed to provide insight into shifts between central- and 

autonomic-dependent activities. 
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Concluding Remarks 

Here, I present a novel investigation into the interaction between autonomic and central 

nervous system during sleep. I presented three experimental studies, the first which examined the 

role of autonomic activities during sleep on WM improvement. From this study, we can glean two 

main points, 1) vagal/parasympathetic activity is boosted during NREM sleep in a nap, compared 

with wake or REM sleep, and 2) natural boost in vagal/parasympathetic activity during SWS may 

benefit gains in prefrontal inhibitory function in young adults. In the second experimental study, I 

examined autonomic-central coupling events during sleep and their impacts on WM improvement. 

In this study, I showed that 1) slow oscillations and spindles are boosted prior to the peak of the 

heart rate busts followed by a vagal surge, and that 2) slow oscillations coordinate with autonomic 

events during SWS to support sleep-dependent WM improvement. 

In the third study, I used a pharmacological within-subjects, double-blind, placebo-

controlled approach to identify separate and competing underlying mechanisms between 

autonomic and central activities supporting WM and LTM. WM is the ability to hold a small amount 

of information active and relevant for a short amount of time, whereas episodic LTM is a seemingly 

unlimited bank of autobiographical experiences, each of which can be explicitly evoked. Sleep, 

specifically brain activity during NREM sleep, has been shown to influence both types of memory 

processes. Additionally, vagal activity measured by HF-HRV is associated with WM, while studies 

investigating the effect of ANS on episodic memory yield inconsistent results. Therefore, the 

mechanism underlying how CNS and ANS activity during sleep coordinate to facilitate both types of 

cognitive processes is unknown. In this study, I showed that zolpidem, a GABA agonist, can increase 

central spindle activity while suppressing autonomic vagal activity, resulting in an increased LTM 

retention and a decreased WM improvement across the night. I further showed that the more 

spindles inhibiting vagal activity, the more sleep dependent LTM than WM benefit one 
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demonstrated. Based on these findings, I proposed that the brain switches between separate and 

non-overlapping mechanisms that support LTM and WM processing, and that the shared resource 

for which they compete may indeed be SOs. In this way, when coupled with ripple-nested spindles, 

SOs promote LTM and suppress other processes, and when uncoupled, facilitate WM by enhancing 

prefrontal-autonomic networks. The competitive dynamics between these networks are 

theoretically guided by animal studies showing antagonistic relations between brain regions that 

regulate autonomic activity versus memory replay (Logothetis et al., 2012; Novitskaya et al., 2016), 

and evidence for a periodic switch between spindles and autonomic activity (Lecci et al., 2017). 

One might wonder what determines the priority of the switch mechanism if sleep acts like a 

switch that toggles between the LC-NE prefrontal-subcortical autonomic processes and the 

GABAergic thalamocortical-hippocampal replay? Here, I present two possibilities – a natural 

periodic switch versus an experience-dependent bias. Lecci et al. (2017) demonstrated a periodic 

alternating pattern between spindle bursts and heart rate accelerations, occurring every 50 

seconds, supporting a possibility that the slow oscillation switch mechanisms alternate periodically 

under tonic conditions. Alternatively, learning, emotional experiences, novelty, or cognitive load, 

might determine prioritization. Consistent with this idea, more demanding memory tasks show a 

greater number of spindles during subsequent sleep (Gais et al., 2002). Similarly, intensive WM 

training can increase frontal SOs and vagal activity to a higher degree, compared to less-intense WM 

training (Lin, L Heffner, et al., 2017; Pugin et al., 2015). Futures studies investigating how our brain 

and body coordinate to control this slow oscillation switch would allow further understanding of 

the competitive dynamics between different memory domains. 

Furthermore, although WM training studies have demonstrated that executive function in 

general and WM specifically does improve (Melby-Lervåg & Hulme, 2013) and recent studies show 

that sleep supports this improvement (Chen, Whitehurst, Naji, et al., 2020a; Zinke et al., 2018a), the 
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underlying mechanisms of this benefit, however, are unclear. We know little about how prefrontal-

subcortical autonomic networks might coordinate SOs and vagal activity to facilitate WM. One study 

suggested an association between cognitive control, vagal activity, and automaticity in the 

prefrontal-subcortical autonomic networks. Lin and colleagues (2017) showed that cognitive 

training decreased functional connectivity in the bilateral striatum-prefrontal networks while 

increasing vagal activity, thereby facilitating performance in trained and untrained tasks, with 

fewer resources needed for successful cognitive inhibitory control (Lin, L Heffner, et al., 2017). 

However, how such dynamics are modulated during sleep or SOs remains unexplored. Future 

neural imaging studies with simultaneous EEG-fMRI are crucial to allow understanding of the 

neural mechanisms underlying WM plasticity during specific sleep events. 

Taken together, even though significant progress has been made over the past decade, there 

is still much to understand about the role of sleep in different cognitive domains. In my dissertation 

work, I present several lines of research on the role of heart-brain interaction during sleep in sleep-

dependent cognitive gains. My works collectively demonstrate a scenario in which episodic LTM 

and WM are supported by separate circuitry that vie for limited resources during sleep. 

Importantly, I highlight the potential that SOs could be further divided into sub-categories 

implicated in different functions, as electrophysiological events that share the same frequency may 

have separate functions, a possibility recently explored by Ngo and colleagues (2019), showing a 

functional dissociation between delta and SOs, with delta waves facilitating forgetting whereas SOs 

are more likely to couple with spindles and facilitating episodic LTM consolidation (Kim et al., 

2019; Ngo et al., 2019). Identifying autonomic-central biomarkers during sleep for different 

cognitive processes and understanding their competitive dynamics may facilitate novel insights to 

the memory models in the field and provide new targets to combat neurodegenerative disease. 
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Table 2.1. Summary of HRV Parameters Across Sleep Stages 

Stage Wake       Stage 2       SWS        REM  

RR (ms) 949.46 

  

 

 

1006.61 

 

1001.21 

 

923.71 

 

*** 
 (21.76) (25.51) (30.73) (40.28)  

RMSSD 

(ln) 

4.24 

  

 

4.35 

 

4.23 

 

4.14  

 

** 

 (0.08) (0.07) (0.11) (0.17)  

HF HRV 

(ln ms2) 

6.77  

 

7.04 

 

6.87 

 

6.52 

 

*** 

 (0.15) (0.14) (0.19) (0.32)  

HFnu 

(%) 

52  

 

59 

 

71.8 

 

46.6 

 

*** 

 (2.3) (2.5) (2.7) (3.5)  

Data are reported as Mean. Standard errors are shown in the rows below the Mean. Note: RR = RR 
intervals; RMSSD = Root mean square of successive differences; HF HRV= Power in the Low 

Frequency band of the HRV spectrum, often between 0.04 - 0.15 Hz; HFnu = HF/(HF+LF)%; N2 = 
Stage 2 Sleep; SWS = Slow Wave Sleep; REM = Rapid Eye Movement sleep. Asterisks indicate 

significant main effects of Sleep Stages on HRV indices (**p < 0.01; ***p < 0.001).  
 

 

Table 2.2. Karolinska Sleepiness Scale (KSS) scores across the day 

Session Wake (N=51) Nap (N=54) 

Session 1 5.31 (0.29) 5.96 (0.28) 
Session 2 4.98 (0.30) 3.35 (0.20) 

Data are reported as Mean (Standard Error). 
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Table 3.1. Summary of Sleep Architecture 

 
 

 
 
 
 
 
 
 
 
 
 

Note: Data are reported as Mean (standard error); TIB = Total Time in Bed; TST = Total Sleep Time; 
SWS = Slow Wave Sleep; REM = Rapid Eye Movement sleep; WASO = Wake After Sleep Onset 

(calculated as the minutes of wake after first epoch of sleep); SOL = Sleep Latency (calculated as the 
time to first epoch of sleep); SE = Sleep Efficiency (calculated as 100*TST/TIB). All stats are 

represented in minutes besides SE which is in percentage. 

 

 

Table 3.2. Summary of EEG Power Across Sleep Stages 

Stage (N) Stage 2 (49) SWS (38) REM  (19) 

SWA (0.5-1Hz) 70.8 (5.08) 165.7 (12.7) 85.4 (37.0) 
Delta (0.5-4Hz) 

) 

135 (38.5) 302 (23.8) 166 (77) 

Theta (4-8Hz) 10.7 (2.35) 14.0 (1.37) 13.7 (3.41) 

Sigma (12-15Hz) 4.91 (1.08) 5.42 (0.493) 5.13 (1.47) 

Data are reported as Mean (standard error). 

 

 

Table 3.3. Summary of HR Burst Density (per Minute) Across Sleep Stages 

Stage 2 SWS REM Wake 
0.932 (0.0393) 0.896 (0.0443) 0.760 (0.0600) 0.358 (0.0432) 

Data are reported as Mean (standard error). Note: SWS = Slow Wave Sleep; REM = Rapid Eye 
Movement sleep. 

 

 

  

 
 

 (n=49) 
TIB (min) 78.069 (3.1) 

TST (min) 61.500 (2.94) 

SOL (min) 7.664 (0.99) 

Stage 1 (min) 4.586 (0.47) 

Stage 2 (min) 31.448 (1.94) 

SWS (min) 19.224 (1.96) 

REM (min) 6.241 (1.09) 

WASO (min) 6.560 (0.88) 

SE (%) 77.588 (2.21) 
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Table 3.4. Change Scores for ACE variables 

 

Table 3.4a. Change Scores for ACE variables during SWS  

Window -10 -5 +5 +10 

SWA Frontal Mean -0.036 0.183*** 0.047 0 

S.E. 0.024 0.034 0.030 0.030 

Central Mean -0.047 0.197*** 0.047 0.022 

S.E. 0.017 0.019 0.018 0.017 

Sigma Frontal Mean -0.006 0.083*** 0.014 -0.003 

S.E. 0.022 0.014 0.022 0.018 

Central Mean 0.003 0.072*** 0.015 -0.005 

S.E. 0.020 0.015 0.021 0.018 

RRHF  Mean 0.022 0.076* 0.138*** 0.045 

S.E. 0.016 0.022 0.022 0.022 

Asterisks show the significant differences (*p<.05;***p<.001) between a change score in a bin and 
zero (baseline), adjusted by Bonferroni correction.  
 
 
 
 
 
 
Table 3.4b. Change Scores for ACE variables during Stage 2 Sleep 

Window -10 -5 +5 +10 

SWA Frontal Mean -0.036 0.147*** -0.026 -0.047 

S.E. 0.011 0.019 0.011 0.009 

Central Mean -0.034 0.132*** -0.023 -0.040 

S.E. 0.010 0.016 0.010 0.009 

Sigma Frontal Mean -0.008 0.137*** -0.008 -0.098 

S.E. 0.017 0.020 0.016 0.019 

Central Mean -0.011 0.117*** -0.020 -0.104 

S.E. 0.016 0.017 0.015 0.019 

RRHF  Mean 0.006 0.062** 0.179*** 0.029 

S.E. 0.009 0.014 0.014 0.010 

Asterisks show the significant differences (**p<.01; ***p<.001) between a change score in a bin and 
zero (baseline), adjusted by Bonferroni correction. 
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Table 3.5. Regression models: ACE predicting WM improvement  

 

Table 3.5a. Regression models: ACE frontal channels predicting WM improvement  
Variables Model 1 Model 2 (PrePost) Model 2 (PreBase) 

Estimate Std. 

Error 

t-value Estimate Std. 

Error 

t-value Estimate Std. 

Error 

t-value 

WM baseline -0.266 0.087 -3.072** 

 

-0.178 0.087 -2.060*  -0.215 0.089 -2.397* 

Overall SWA <0.001 <0.001 -1.019 <0.001 <0.001 -1.220  <0.001 < 0.001 -0.780 

ACE SWA     0.012 0.004 2.550* 0.021 0.126 1.666 

F   4.798   5.974   4.319 

R2   0.248   0.390   0.316 

Adjusted R2   0.196   0.325   0.243 

Change in adj R2      0.188*   0.068 

†p < .1, *p < .05, **p<.01, ***p<.001  

 

 

Table 3.5b. Regression models: ACE central channels predicting WM improvement   
Variables Model 1 Model 2 (PrePost) Model 2 (PreBase) 

Estimate Std. 

Error 

t-value Estimate Std. 

Error 

t-value Estimate Std. 

Error 

t-value 

WM baseline -0.257 0.085 -3.011** 

 

-0.204 0.087 -2.352*  -0.192 .085 -2.247* 

Overall SWA <.001 <.001 -1.017 <.001 <.001 -1.275  <.001 < .001 -0.854 

ACE SWA     .008 .004 1.847† .316 .144 2.194* 

F   4.796   4.6   5.222 

R2   0.248   0.330   .359 

Adjusted R2   0.196   0.258   0.290 

Change in adj R2      0.082†   0.110* 

†p < .1, *p < .05, **p<.01, ***p<.001  
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Table 4.1. Descriptive statistics for Demographics 

 
 

 
 
 
 
 
 
 
 

Note: Data are reported as Mean (standard deviation) for quantitative variables and N (%) for 
categorical variables; ESS: Epworth Sleepiness Scale; BMI: Body Mass Index. 

 
  

 Experiment 1 Experiment 2 

Age (years) 20.38 (1.88) 20.85 (2.97) 

Male/female 17/17 (50/50) 19/19 (50/50) 

Education (years) 14.13 (1.66) 14.67 (2.17) 

ESS 7.59 (2.81) 6.61 (2.42) 

BMI (kg/m2) 24.29 (3.73) 24.82 (3.45) 

Weight (lb) 152.38 (31.39) 158.84 (28.17) 

Right-handed/ left-
handed 

34/0 (100/0) 
 

35/3 (92/8) 
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Table 4.2. Sleep Architecture 

 

Table 4.2a. Experiment 1 Sleep Architecture 

 

 

 

 

 

 

 

 

 

 
Note: Data are reported as Mean (standard error). TIB = Time in bed; TST = Total Sleep Time; WASO = 

Wake After Sleep Onset (calculated as the minutes of wake after first epoch of sleep); SE = Sleep 
Efficiency (calculated as 100*TST/Total Time in Bed). Asterisks indicate significant differences 

between conditions (n.s. p >0.05; *p < 0.05; **p < 0.01; ***p < 0.001). 
 

 

Table 4.2b. Experiment 2 Sleep Architecture 

 

 

 

 

 

 

 

 

 

 
Note: Data are reported as Mean (standard error). TIB = Time in bed; TST = Total Sleep Time; WASO = 

Wake After Sleep Onset (calculated as the minutes of wake after first epoch of sleep); SE = Sleep 
Efficiency (calculated as 100*TST/Total Time in Bed). Asterisks indicate significant differences 

between conditions (n.s. p >0.0; *p < 0.05; **p < 0.01; ***p < 0.001). 

  

Drug 
 

PBO  ZOL   
TIB (min) 531.1983 (10.0147) 512.7203 (9.9295) n.s. 

TST (min) 471.5086 (11.0225) 470.7034 (10.9287) n.s. 

Stage 1 
(min) 

15.0372 (1.8978) 10.7450 (1.8899) n.s. 

Stage 2 
(min) 

244.0504 (8.7200)  234.4514 (8.7642)  n.s. 

SWS (min) 95.2869 (6.1151) 114.6660 (6.1580) *** 

REM (min) 115.2036 (5.8510) 106.0416 (5.8623) n.s. 

WASO 
(min) 

37.3222 (5.7574) 26.4467 (5.7965) * 

SE (%) 87.6834 (2.1189) 89.7306 (2.1284) n.s. 

Drug 
 

PBO  ZOL   
TIB (min) 582.2941 (6.2418) 575.8939 (5.4352) n.s. 

TST (min) 541.1471 (7.8834) 538.4394 (7.5856) n.s. 

Stage 1 
(min) 

13.4706 (1.4540) 11.8485 (1.9770) n.s. 

Stage 2 
(min) 

285.6176 (8.3986) 284.5909 (7.6952) n.s. 

SWS (min) 109.3676 (6.1462) 125.4091 (7.3790) ** 

REM (min) 132.4412 (5.9244) 116.197 (5.6641) ** 

WASO 
(min) 

29.5735 (4.6177) 24.2576 (4.2369) n.s. 

SE (%) 92.9503 (0.9376) 93.4436 (0.8178) n.s. 
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Table 4.3. Summary of HRV Parameters Across Sleep Stages 
 
 
Table 4.3a. Experiment 1 Summary of HRV Parameters Across Sleep Stages 
 

Stage Rest  Stage 2  SWS  REM  

Drug/N PBO/48 ZOL/45  PBO/54 ZOL/54  PBO/52 ZOL/53  PBO/50 ZOL/54  

Epochs 0.9265 
(1.0750) 

0.7516 
(1.1060) 

n.s. 28.3514 
(1.0469) 

29.4467 
(1.0195) 

n.s. 12.8394 
(1.0381) 

16.7343 
(1.0278) 

** 17.1589 
(1.0560) 

14.3541 
(1.0195) 

* 

RR  
(ms) 

943.8518 
(20.0360) 

939.4200 
(20.1655) 

n.s. 1019.4037 
(19.9060) 

982.7458 
(19.7599) 

** 1002.7592 
(19.8653) 

922.0266 
(19.7976) 

*** 975.6168 
(19.9479) 

970.5194 
(19.7599) 

n.s. 

RMSSD 
(ln)  

) 

4.2359 
(0.0733) 

4.2642 
(0.0739) 

n.s. 4.2683 
(0.0727) 

4.2194 
(0.0719) 

n.s. 4.1433 
(0.0725) 

3.9617 
(0.0722) 

*** 4.3145 
(0.0729) 

4.3611 
(0.0719) 

n.s. 

HF  
(ln 
ms2) 

6.6928 
(0.1443) 

6.7489 
(0.1455) 

n.s. 6.8488 
(0.1431) 

6.7663 
(0.1418) 

n.s. 6.5898 
(0.1427) 

6.2717 
(0.1422) 

** 6.8766 
(0.1435) 

6.9565 
(0.1418) 

n.s. 

LF  
(ln 
ms2) 

6.4687 
(0.1066) 

6.6036 
(0.1088) 

n.s. 6.6530 
(0.1045) 

6.5559 
(0.1024) 

n.s. 5.6299 
(0.1039) 

5.6921 
(0.1030) 

n.s. 6.9610 
(0.1052) 

6.9894 
(0.1024) 

n.s. 

TP  
(ln 
ms2) 

7.7537 
(0.0993) 

7.9607 
(0.1009) 

n.s. 7.9888 
(0.0977) 

7.9231 
(0.0960) 

n.s. 7.2827 
(0.0972) 

7.2369 
(0.0964) 

n.s. 8.3585 
(0.0982) 

8.4724 
(0.0960) 

n.s. 

HFnu 0.5479 
(0.0222) 

0.5279 
(0.0225) 

n.s. 0.5592 
(0.0220) 

0.5541 
(0.0218) 

n.s. 0.7044 
(0.0219) 

0.6194 
(0.0218) 

*** 0.4774 
(0.0221) 

0.4856 
(0.0218) 

n.s. 

HFpf 0.2626 
(0.0079) 

0.2607 
(0.0080) 

n.s. 0.2506 
(0.0078) 

0.2592 
(0.0077) 

n.s. 0.2689 
(0.0078) 

0.2774 
(0.0077) 

n.s. 0.2276 
(0.0078) 

0.2502 
(0.0077) 

n.s. 

Data are reported as Mean (standard error). N: number of nights.  Epochs: number of consecutive 5-
min epochs per stage. Asterisks indicate significant differences between conditions (corrected by 

Tukey’s; n.s. p >0.05; *p < 0.05; **p < 0.01; ***p < 0.001) 
 
 
 
Table 4.3b. Experiment 2 Summary of HRV Parameters Across Sleep Stages (Q2 and Q3) 
 

Stage Stage 2  SWS  REM  

Drug/ N PBO/36 ZOL/35  PBO/35 ZOL/33  PBO/36 ZOL/35  

Epochs 17.92 (0.864) 19.71 (0.876) n.s. 5.28 (0.963) 4.50 (0.980) n.s. 11.00 (0.876) 7.40 (0.876) ** 

RR (ms) 1005 (24.8) 960 (24.8) *** 980 (25.8) 926 (26.0) *** 952 (24.9) 930．(25.5) n.s. 

RMSSD (ln)  

) 

4.21 (.0999) 4.04 (.0999) ** 4.10 (.1058) 3.78 (.1065) *** 4.13 (.1003) 4.04 (.1021) n.s. 

HF (ln ms2) 6.81 (.187) 6.56 (.187) * 6.56 (.200) 5.96 (.201) *** 6.56 (.188) 6.46 (.192) n.s. 

LF (ln ms2) 6.43 (.126) 6.30 (.126) n.s. 5.61 (.138) 5.63 (.139) n.s. 6.80 (.127) 6.66 (.131) n.s. 

TP (ln ms2) 7.84 (.125) 7.69 (.125) n.s. 7.27 (.136) 6.97 (.137) * 8.20 (.125) 8.13 (.129) n.s. 

HFnu .590 (.0245) .562 (.0245) n.s. .692 (.0266) .571 (.0269) *** .444 (.0247) .463 (.0253) n.s. 

HFpf 0.242 (.00566) 0.242 (.00567) n.s. 0.257 (.00647) 0.262．(.00656) n.s. 0.226 (.00572) 0.223 (.00597) n.s. 

Data are reported as Mean (standard error). N: number of nights. Epochs: number of consecutive 5-
min epochs per stage. Asterisks indicate significant differences between conditions (corrected by 

Tukey’s; n.s. p >0.05; *p < 0.05; **p < 0.01; ***p < 0.001) 
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Table 4.3c. Experiment 2 Summary of HRV Parameters Across Sleep Stages (Whole Night) 
 

Stage Rest  Stage 2  SWS  REM  

Drug PBO/36 ZOL/35  PBO/36 ZOL/35  PBO/35 ZOL/33  PBO/36 ZOL/35  

Epochs 1.1952 
(1.3512) 

1.2298 
(1.3513) 

n.s. 32.2223 
(1.1923) 

34.0776  
(1.2092) 

n.s. 14.9445 
(1.1923) 

17.5057 
(1.2267) 

n.s. 17.5834 
(1.1923) 

12.9634 
(1.2092) 

** 

RR  
(ms) 

921.3591 
(25.5762) 

916.2846 
(25.5832) 

n.s. 995.8569 
(24.7979) 

965.1472 
(24.8780) 

* 960.8052 
(24.7979) 

912.5708 
(24.9602) 

** 952.8750 
(24.7979) 

946.8405 
(24.8780) 

n.s. 

RMSSD 
(ln)  

) 

4.1161 
(0.1033) 

4.0245 
(0.1033) 

n.s. 4.2109 
(0.0999) 

4.1360 
(0.1002) 

n.s. 4.0433 
(0.0999) 

3.8658 
(0.1006) 

** 4.1640 
(0.0999) 

4.2163 
(0.1002) 

n.s. 

HF  
(ln ms2) 

6.5489 
(0.1914) 

6.4349 
(0.1915) 

n.s. 6.8411 
(0.1844) 

6.8331 
(0.1851) 

n.s. 6.5257 
(0.1844) 

6.2111 
(0.1859) 

* 6.6926 
(0.1844) 

6.8286 
(0.1851) 

n.s. 

LF  
(ln ms2) 

6.3585 
(0.1601) 

6.1928 
(0.1602) 

n.s. 6.5391 
(0.1499) 

6.6276 
(0.1510) 

n.s. 5.5960 
(0.1499) 

5.6329 
(0.1520) 

n.s. 6.8107 
(0.1499) 

6.9788 
(0.1510) 

n.s. 

TP  
(ln ms2) 

7.6236 
(0.1964) 

7.5546 
(0.1965) 

n.s. 7.9143 
(0.1817) 

8.1351 
(0.1832) 

n.s. 7.2577 
(0.1817) 

7.1264 
(0.1848) 

n.s. 8.2623 
(0.1817) 

8.5266 
(0.1832) 

n.s. 

HFnu 0.5366 
(0.0257) 

0.5547 
(0.0257) 

n.s. 0.5696 
(0.0239) 

0.5661 
(0.0241) 

n.s. 0.6875 
(0.0239) 

0.6143 
(0.0243) 

** 0.4654 
(0.0239) 

0.4694 
(0.0241) 

n.s. 

HFpf 0.2655 
(0.0082) 

0.2477 
(0.0082) 

n.s. 0.2396 
(0.0074) 

0.2397 
(0.0074) 

n.s. 0.2596 
(0.0074) 

0.2625 
(0.0075) 

n.s. 0.2219 
(0.0074) 

0.2257 
(0.0074) 

n.s. 

Data are reported as Mean (standard error). Epochs: number of consecutive 5-min epochs per stage. 
Asterisks indicate significant differences between conditions (corrected by Tukey’s; n.s. p >0.05; *p < 
0.05; **p < 0.01; ***p < 0.001) 
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Table 4.4. Normalized EEG Power during NREM Modulated by Drug Conditions 
 
 
Table 4.4a. Experiment 1 Normalized EEG Power during NREM Modulated by Drug 
Conditions (Whole Night) 
 

Stage Stage 2  SWS  

Drug PBO ZOL  PBO ZOL  

SWA Frontal .2938 (.0161) .3063 (.0169) n.s. .4436 (.0209) .4637 (.0200) n.s. 

0.5-2Hz Central .2668 (.0142) .2821 (.0162) n.s. .4104 (.0201) .4409 (.0203) n.s. 

 Parietal .2539 (.0139) .2647 (.0159) n.s. .3968 (.0206) .4286 (.0214) n.s. 

 Occipital .2212 (.0138) .2387 (.0158) n.s. .3437 (.0212) .3887 (.0225) n.s. 

Delta Frontal .1966 (.0135) .1952 (.0137) n.s. .2550 (.0150) .2329 (.0131) n.s. 

1-4Hz Central .1895 (.0128) .1900 (.0135) n.s. .2294 (.0145) .2159 (.0131) n.s. 

 Parietal .1832 (.0123) .1807 (.0127) n.s. .2163 (.0142) .2014 (.0127) n.s. 

 Occipital .1651 (.0120) .1723 (.0124) n.s. .1806 (.0134) .1812 (.0119) n.s. 

Sigma Frontal .0123 (.0017) .0149 (.0013) n.s. .0059 (.0015) .0059 (.0005) n.s. 

12-16Hz Central .0166 (.0018) .0212 (.0018) * .0073 (.0016) .0078 (.0006) n.s. 

 Parietal .0223 (.0022) .0274 (.0022) * .0088 (.0016) .0095 (.0008) n.s. 

 Occipital .0180 (.0019) .0223 (.0019) * .0076 (.0016) .0079 (.0007) n.s. 

Theta Frontal .0439 (.0045)  .0370 (.0029) n.s. .0327 (.0037) .0241 (.0014) n.s. 

4-8Hz Central .0518 (.0048) .0432 (.0032) n.s. .0344 (.0038) .0256 (.0015) n.s. 

 Parietal .0580 (.0049) .0477 (.0035) n.s. .0368 (.0039) .0275 (.0018) n.s. 

 Occipital .0664 (.0058) .0587 (.0044) n.s. .0432 (.0042) .0360 (.0026) n.s. 

 
Data are reported as Mean (standard error). Powers were averaged bilaterally from channel F3, F4, 
C3, C4, P3, P4, O1, O2. (Asterisks indicate significant differences between drug conditions by linear-
mixed models; n.s. p >0.05; *p < 0.05; **p < 0.01; ***p < 0.001). 
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Table 4.4b. Experiment 2 Normalized EEG Power during NREM Modulated by Drug 
Conditions (Q2 & Q3) 

Stage Stage 2  SWS  

Drug PBO ZOL  PBO ZOL  

SWA Frontal .4683 (.0107) .4723 (.0133) n.s. .6254 (.0148) .6188 (.0181) n.s. 

0.5-2Hz Central .4216 (.0109) .4271 (.0131) n.s. .5898 (.0134) .5849 (.0178) n.s. 

 Parietal .4039 (.0098) .4030 (.0129) n.s. .5888 (.0138) .5746 (.0187) n.s. 

 Occipital .3602 (.0113) .3660 (.0142) n.s. .5199 (.0167) .5087 (.0223) n.s. 

Delta Frontal .3117 (.0103) .3041 (.0113) n.s. .3501 (.0114) .3057 (.0125) ** 

1-4Hz Central .2970 (.0099) .2958 (.0106) n.s. .3210 (.0108) .2829 (.0126) ** 

 Parietal .2898 (.0091) .2870 (.0106) n.s. .3158 (.0092) .2740 (.0126) ** 

 Occipital .2735 (.0114) .2772 (.0121) n.s. .2863 (.0104) .2531 (.0132) * 

Sigma Frontal .0238 (.0019) .0286 (.0026) ** .0096 (.0010) .0121 (.0015) * 

12-16Hz Central .0314 (.0023) .0394 (.0031) *** .0125 (.0011) .0161 (.0018) * 

 Parietal .0395 (.0030) .0497 (.0039) *** .0150 (.0014) .0197 (.0022) * 

 Occipital .0330 (.0022) .0401 (.0031) ** .0130 (.0012) .0164 (.0018) n.s. 

Theta Frontal .0693 (.0037) .0605 (.0037) *** .0436 (.0026) .0353 (.0025) ** 

4-8Hz Central .0816 (.0041) .0724 (.0040) ** .0492 (.0031) .0402 (.0030) ** 

 Parietal .0897 (.0043) .0785 (.0042) ** .0548 (.0035) .0443 (.0034) ** 

 Occipital .1046 (.0056) .0944 (.0056) n.s. .0703 (.0049) .0585 (.0051) * 

Data are reported as Mean (standard error). Powers were averaged bilaterally from channel F3, F4, 
C3, C4, P3, P4, O1, O2. (Asterisks indicate significant differences between drug conditions by paired t-
tests; n.s. p >0.05; *p < 0.05; **p < 0.01; ***p < 0.001). 
 
  



 

101 
 

Table 4.5. Correlations between HRV Parameters and Behavioral Improvements 
 WPA OS 

 HFln RMSSDln HFnu HFln RMSSDln HFnu 

Drug PBO ZOL PBO ZOL PBO ZOL PBO ZOL PBO ZOL PBO ZOL 

Stage 2 r = -.035 
p = .851 

r = -.460 
p = .008 

r = -.094 
p = .615 

r = -.508 
p = .003 

r = -.036 
p = .846 

r = -.406 
p = .021 

r = .051 
p = .773 

r = .015 
p = .933 

r = .086 
p = .629 

r = -.065 
p = .709 

r = -.019 
p = .915 

r = .117  
p 
= .501 

SWS 
) 

r = -.096 
p = .654 

r = -.460 
p = .018 

r = -.168 
p = .431 

r = -.513 
p = .007 

r = -.014 
p = .948 

r = -.350 
p = .080 

r = .422 
p = .032 

r = .131 
p = .507 

r = .397 
p = .044 

r = .068 
p = .731 

r = .141 
p = .491 

r = .220 
p 
= .260 

Data are reported as Pearson’s correlation coefficients (r) and p-values (p). 

 
 
 
 
Table 4.6. SOs Counts and Sigma/SOs by Drug Conditions 

Drug PBO ZOL  

SO F3 169.242 (28.061) 160.909 (44.758) n.s. 

Counts F4 185.242 (34.602) 174.484 (49.172) n.s. 

 C3 122.636 (20.164) 105.485 (25.098) n.s. 

 C4 102.970 (22.061) 94.333 (22.011) n.s. 

 P3 104.212 (18.445) 78.757 (16.317) * 

 P4 94.394 (18.007) 71.303 (16.093) * 

SO up-state F3 0.01066241 (0.000572956) 0.01052726 (0.0007072569) n.s. 

Sigma F4 0.01179984 (0.0009264091) 0.01172965 (0.0007314609) n.s. 

Normalized C3 0.01175520 (0.0006375368) 0.01146652 (0.0007709227) n.s. 

Power C4 0.01066014 (0.0007590402) 0.01076715 (0.0006134255) n.s. 

 P3 0.01034928 (0.0006057417) 0.01170495 (0.0008417385) n.s. 

 P4 0.010588097 (0.0006876312) 0.009728913 (0.0006714047) n.s. 

Data are reported as Mean (standard error). (Asterisks indicate significant differences between drug 
conditions by paired t-tests; n.s. p >0.05; *p < 0.05). 
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Table 4.7. Correlations between Sigma/SOs couplings and Behavioral Improvements 
PBO F3 F4 C3 C4 P3 P4 

WPA r = .33 
p = .082 

r = .28 
p = .150 

r = .24 
p = .200 

r = .34 
p = .073 

r = .40 
p = .034 

r = .21 
p = .27 

OS r = -.51 
p = .003 

r = -.33 
p = .075 

r = -.31 
p = .085 

r = -.17 
p = .370 

r = -.38 
p = .033 

r = -.16 
p = .400 

WPA - OS 
 

r = .59 
p < .001 

r = .45 
p = .016 

r = .39 
p = .036 

r = .38 
p = .041 

r = .560 
p = .002 

r = .29 
p = .130 

 
ZOL F3 F4 C3 C4 P3 P4 

WPA r = .16 
p = .378 

r = -.11 
p = .543 

r = .16 
p = .373 

r = -.18 
p = .351 

r = .12 
p = .530 

r = -.09 
p = .632 

OS r = .20 
p = .291 

r = -.04 
p = .817 

r = .11 
p = .559 

r = -.18 
p = .351 

r = .24 
p = .217 

r = -.14 
p = .472 

WPA - OS 
 

r = -.10 
p = .598 

r = -.60  
p = .758 

r = -.02 
p = .915 

r = -.01 
p = .950 

r = -.12  
p = .551 

r = .02 
p = .911 

Data are reported as Pearson’s correlation coefficients (r) and p-values (p). 
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