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Neutrinos propagating in dense astrophysical environments sustain nonlinear refractive effects due to
neutrino-neutrino forward scattering. We study geometric phases in neutrino oscillations that arise out of
cyclic evolution of the potential generated by these forward-scattering processes. We perform several
calculations, exact and perturbative, that illustrate the robustness of such phases, and of geometric effects
more broadly, in the flavor evolution of neutrinos. The scenarios we consider are highly idealized in order
to make them analytically tractable, but they suggest the possible presence of complicated geometric effects
in realistic astrophysical settings. We also point out that in the limit of extremely high neutrino densities, the
nonlinear potential in three flavors naturally gives rise to non-Abelian geometric phases. This paper is
intended to be accessible to neutrino experts and nonspecialists alike.
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I. INTRODUCTION

Geometric phases in neutrino propagation have been
investigated in various guises [1–14] over the decades since
it was recognized that neutrino flavor transformation might
provide the solution to the mysterious deficit of solar
neutrinos [15,16]. In the intervening years the understand-
ing of how neutrino oscillations are modified in medium
has undergone a sea change. In particular, it is now
recognized that in environments with very high neutrino
density the flavor evolution of one neutrino is coupled to
that of all other neutrinos with which it interacts. The result
is a colorful tapestry of flavor-transformation phenomena
that extends far beyond the classic resonance mechanism at
work in solar neutrinos.
In this paper we conduct the first study of neutrino

geometric phases that accounts for the nonlinear coupling
of flavor states, a phenomenon known in the neutrino
literature as self-coupling. The phases that we exhibit in our
calculations persist at the probability level and are therefore
detectable in principle, though no attempt is made here to
extract geometric phases from models of any degree of
astrophysical realism. By and large such models would
necessitate numerical analysis, which may obscure some of
the insights otherwise made transparent by an analytical
treatment. Our present aim is to explore the manifestations
of geometric phases precisely without the complications
that continue to make the modeling of neutrino flavor such
a disobliging task. Even so, as we argue here, one gleans a
hint that geometric quantum effects of one form or another
may be nearly unavoidable in the flavor evolution of
neutrinos in such dense environments as core-collapse
supernovae or neutron-star mergers.
Broadly, geometric phase refers to the extra, path-

dependent quantum phase that a state accumulates in
addition to the dynamical phase from the “local” influence
of the Hamiltonian. The latter phase is present even for a

time-independent Hamiltonian and its importance has been
appreciated since the very advent of quantum mechanics;
we denote it by δ, and for a state jψi and Hamiltonian H it
has the usual form

δ ¼ −
Z

dthψðtÞjHðtÞjψðtÞi: ð1Þ

The appreciation of geometric phases as a common and
observable feature of many quantum systems is much more
recent, dating back to the seminal realization by Berry [17]
that a state acted on by a cyclic, adiabatically changing
Hamiltonian acquires a phase whose value depends on the
circuit traced out by the Hamiltonian in the space of its
parameters. If jψi begins as an instantaneous energy
eigenstate jηi, the adiabatic theorem dictates that it remains
so, i.e., jψðtÞi ¼ eiϕðtÞjηðtÞi, and the total phase has the
form ϕ ¼ δþ γ with the geometric phase given by γ. After
the system, which is described by time-dependent param-

eters ~RðtÞ, completes a circuit C, the state jψi has developed
a geometric phase

γ ¼ i
I
C
hηðtÞj∇jηðtÞi · d~R; ð2Þ

where ∇ is the gradient operator in ~R-space.
The particular incarnation of the geometric phase

defined by this expression is often called the Berry phase
and is specific to cyclic, adiabatic systems. The notion can
be generalized enormously: to entangled states [18], to
mixed states [19], and to nonadiabatic [1,20,21], noncyclic
[22–26], and even open or non-Hamiltonian [27–31]
systems. In this paper we use the broad term geometric
phase but our typical targets are indeed Berry phases of the
form in Eq. (2). At several points we will make contact with
some of these generalizations.
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On an intuitive level the existence of geometric phases in
quantum systems is perhaps most immediately grasped by
analogy to the classical world: A Foucault pendulum,
carried around a closed loop on the surface of the Earth
in such a way that the plane of oscillation is never rotated,
nonetheless returns to its starting point with a rotated plane
of oscillation, and the angle by which the plane has rotated
(known as the Hannay angle) is, moreover, equal to the
solid angle enclosed by the loop. Quantum geometric
phases are rotations of the wave function and arise, in
much the same way, from parallel transport along a path.
For readers seeking a deeper understanding of the phe-
nomenon, we sketch a picture in Sec. II of geometric phases
from the perspective of differential geometry, which per-
mits a rigorous translation of this classical intuition into the
quantum realm. The picture is also intimately related to the
“polarization vectors” (formally introduced in Sec. III) that
are ubiquitous in the literature on neutrino flavor evolution.
Put succinctly, this connection is why geometry is relevant
to neutrino oscillations.
The observability of geometric phases is today well

established in a variety of settings thanks to such landmark
experiments as those in Refs. [32–40] and the vast sweep of
investigations carried out in more recent years. The modern
understanding of geometric phases has also shed light on
instances and variations of the phenomenon that were
predicted or observed before Berry’s original analysis,
perhaps the most famous cases being the Aharonov-
Bohm effect [41], the Pancharatnam phase [42], and the
(retroactively named) molecular Berry phase [43,44].
Interferometry experiments, which comprise a large

share of the corpus of geometric-phase studies, are plainly
out of the question when it comes to neutrinos. But neutrino
oscillations are themselves fundamentally an interference
phenomenon: As mass eigenstates propagate in vacuum
they pick up phases at different rates, and the interference
between these phases gives rise to flavor oscillation. It is
natural, then, to wonder whether the interference intrinsic to
neutrino oscillations might function in some way as an
“interferometer” sensitive to geometric phases.
Much of the earliest interest in this possibility sur-

rounded the idea that the resolution of the missing-
solar-neutrinos puzzle may come from the conversion of
neutrinos into antineutrinos via the interaction of their
magnetic moments with solar magnetic fields [2,4,45,46].
Although the consensus is that the Mikheyev-Smirnov-
Wolfenstein (MSW) mechanism [15,47] ultimately won the
day as far as the solar neutrino problem, neutrino geometric
phases continue to be explored in the context of astro-
physical magnetic fields [14]. Furthermore, just as mag-
netic field vectors can trace out closed loops in physical
space, the optical potentials generated by coherent forward
scattering of neutrinos with background particles raise the
possibility that a similar mechanism might operate in
flavor space.

Shortly after the explosion of interest in geometric
phases began, Nakagawa [1] acknowledged this possibility
but observed that geometric phases cannot appear in two-
flavor neutrino oscillations in a matter background, for the
simple reason that there is just one parameter in the
Hamiltonian that is varying (viz., the density of matter
particles) and therefore a cycle of finite area cannot be
traced out. Naumov [7,8] later showed that geometric
phases can emerge in three flavors, provided that there
is both CP violation and a cyclically varying number
density of scatterers. These papers regarded vacuummixing
as the sole contributor to the off-diagonal (in the flavor
basis) Hamiltonian matrix elements; Pantaleone’s insight
[48] that self-coupling can also supply off-diagonal con-
tributions was not yet widely appreciated.
More recently geometric phases were studied by

He et al. [11] in a paper generalizing Naumov’s work to
active-sterile mixing and nonstandard interactions.
Although the authors noted that the neutrino-background
density is an additional parameter varying independently
of the matter-background density, they did not consider the
contribution of coherent neutrino-neutrino scattering to
the off-diagonal Hamiltonian elements. We thus point
out for the first time in the literature that geometric phases
can arise out of the self-coupling potential and can appear
even with just two flavors. We also argue that because of
the nonlinear nature of this potential, neutrino self-coupling
in flavor space is a particularly rich avatar for geometric
phases.
Our approach is to perform calculations on several toy

models that reveal various facets of geometric phases in the
presence of nonlinear neutrino-neutrino coupling. The
calculations that follow shed light on the precise role of
adiabaticity, the nonlinear entangling of the geometric
phases developed by neutrinos in interaction with one
another, the fragile cyclicity of flavor transformation, and
the non-Abelian phase structure of a certain three-flavor
limit. While we do not attempt to locate geometric phases in
realistic astrophysical models, our results are suggestive of
the prevalence in sophisticated numerical computations of
geometric effects generally, if not specifically the cyclic,
adiabatic phases we investigate.
In Sec. II we sketch the picture of geometric phases from

the viewpoint of differential geometry. In Sec. III we
present the relevant background on medium-enhanced
neutrino oscillations. We then turn our attention to the
flavor evolution that occurs in a system of two coupled
neutrino populations. Working in the two-flavor approxi-
mation, we examine three limiting cases: the mixed-
potential limit in Sec. IV, the pure-self-coupling limit in
Sec. V, and the weak-self-coupling limit in Sec. VI. After
examining these two-flavor scenarios, we return in Sec. VII
to the mixed-potential limit, this time in three flavors, and
show how it begets non-Abelian geometric phases. We
conclude in Sec. VIII.
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II. THE DIFFERENTIAL-GEOMETRIC PICTURE

The Born rule implies that the overall phase of a quantum
state jψi is inessential for computing or measuring observ-
ables at some time t. With a rephasing j ~ψðtÞi ¼ eiαjψðtÞi
by some arbitrary phase α,

h ~ψðtÞjOj ~ψðtÞi ¼ hψðtÞjOjψðtÞi ð3Þ

for any Hermitian operator O. As a result the value of α in
j ~ψðtÞi can be chosen arbitrarily, but as shown by Berry it
does not follow that the overall phase can be ignored
altogether. At a basic level, geometric phases are in fact
amenable to observation because once α is chosen for
j ~ψðtÞi, the phase of j ~ψðt0Þi at any other time t0 is
predetermined by this choice (in conjunction, of course,
with the dynamics of the system). In other words, phase
changes are physically significant.
Granting that geometric phases exist, it is perhaps not so

surprising that they are observable—but that they should
exist at all is a profound fact about quantum mechanics.
Fundamentally the existence of geometric phases is a
consequence of Hilbert space having nontrivial geometry,
and the values of the phases are governed by that geometry
in tandem with the relevant Hamiltonian. Just as the
spheroidal shape of the Earth determines the Hannay angle
[49] of a Foucault pendulum carried along the planet’s
surface, in an analogous way the shape of Hilbert space
determines how a wave function rotates—that is, picks up
phase—as it is moved along a path.
These ideas are most naturally expressed in a rigorous

manner using the language of principal fiber bundles and
their associated structures. The relation between geometric
phases and fiber bundles was the powerful insight of Simon
[50] and has been elaborated by many subsequent authors.
We now try to elucidate this helpful way of understanding
geometric phases.
For a Hamiltonian H½~R� that depends on the time-

dependent parameters ~RðtÞ, a given nondegenerate instan-
taneous eigenstate j ~ψi can be specified by the pair

ð~R; expðiαÞÞ, where α is the arbitrary overall phase referred
to previously. We have already established that this pair
corresponds to the same physical state regardless of the
value of α; in technical terms, the pair projects down to the
same ray in projective Hilbert space for all α. Hilbert space
can thus be visualized as a manifold with an identical string
piercing through every point: A given point on the manifold
corresponds to a physical state (or, equivalently, a value of
~R) and the string through that point represents the possible
choices of phase α for that particular physical state.
A principal fiber bundle describes precisely such an

object. It consists of three parts (Fig. 1): a total space E, a
base manifold M, and a Lie-group fiber G. The translation
into bundle language uses the following associations:

E ↔ states in Hilbert space;

identified byð~R; expðiαÞÞ;
M ↔ physical states in projective

Hilbert space;

G ↔ elements eiα of the groupUð1Þ: ð4Þ

If the eigenstate is part of an n-degenerate subspace, then
the fiber G is instead the non-Abelian group UðnÞ. For
simplicity we continue to assume nondegeneracy through-
out the remainder of this section, but we demonstrate the
emergence of non-Abelian fibers in the context of neutrino
oscillations in Sec. VII.
As ~RðtÞ evolves, a curve CðtÞ in parameter space, hence

also a curve on the base manifold M, is traced out. The
curve on M, ΓðtÞ, can be visualized as the shadow of a
curve ~ΓðtÞ on E: At every point in M there is a point in E
elevated above the base manifold according to its fiber
element. The freedom to choose the value of α for j ~ψðtiÞi at
a specific time ti is manifested as a freedom to choose the
fiber element at ~ΓðtiÞ, but having made this choice, the fiber
elements are nonarbitrary for t > ti (and, for that matter, for
t < ti). For us, the condition of adiabaticity furnishes the
principal fiber bundle with a connection, which is to say a
way of moving a state from one fiber to the next. The
adiabatic connection is equivalent to the condition�

~ψðtÞ
���� ddt
���� ~ψðtÞ

�
¼ 0: ð5Þ

This constraint describes the parallel transport of the state
along the path and captures the intuitive notion that the state

FIG. 1. A visualization of the differential-geometric structures
underpinning the geometric phase. The curve ~Γ in Hilbert space
projects down to a curve Γ in projective Hilbert space. ~Γ begins
and ends on the same fiber (labeled G, denoting the Lie group)
but may not return to the same element in the fiber. The group
element at the start of the loop is brought to the element at the end
by the holonomy γΓ. The holonomy is precisely the geometric
phase acquired upon completing the cycle.
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vector moves in such a way that locally it never appears
to be rotating, modulo the dynamical phase evolution
[Eq. (1)].
If ~RðtfÞ ¼ ~RðtiÞ, then Γ forms a closed loop and the

state returns at tf to the same fiber it began on at ti. It is not
guaranteed, however, that the state will return to the same
fiber element. The difference

ei½αðtfÞ−αðtiÞ� ≡ eiΔα ð6Þ

is itself an element of the Lie group and is termed the
holonomy of the connection on the principal fiber bundle.
It is precisely equal to the geometric phase: Δα ¼ γ. The
plausibility of a global rotation occurring without any local
rotation can be seen from the nontransitivity of phase [42,51]:
h ~ψ1j ~ψ2i and h ~ψ2j ~ψ3i having the same phase does not
necessarily imply that h ~ψ1j ~ψ3i has the same phase as well.
The numerical value of the holonomy depends on the

curve Γ and the geometry of the manifold M on which
Γ lies. To illustrate this point concretely, we consider the
evolution of two-flavor neutrinos in flavor space. As with
any two-level system, wave function normalization and the
arbitrariness of αðtiÞ relegate a C2 state vector to the Bloch
sphere S2. In two flavors, therefore, it is the geometry of the
Bloch sphere that determines the geometric phase associ-
ated with passage along a closed loop C in parameter space.
The principal fiber bundle can be pictured in this case as a
ball (M ¼ S2) with spikes [G ¼ Uð1Þ] sticking out of it.

The three-flavor case with two degenerate eigenstates,
which we turn to toward the end of this study, has base
manifold CP2 ¼ SUð3Þ=Uð2Þ and is not as easily visual-
ized, but the message is the same: The geometry of Hilbert
space leaves its footprint in the flavor conversion of
neutrinos.

III. NEUTRINO OSCILLATIONS IN MEDIUM

Neutrino oscillations are conveniently studied by
tracking the time evolution of the flavor wave function

jψi ¼

0
B@

ae
aμ
aτ

1
CA; ð7Þ

where aα is the amplitude for the neutrino to have α flavor.
This same state, expressed above in the flavor basis, can be
translated into the mass basis via the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix UPMNS,

jψif ¼ UPMNSjψim; ð8Þ

where the subscript denotes the basis. [The wave function
in Eq. (7) is really jψif, but we drop the subscripts as we
proceed, leaving that job to the context.] The mixing matrix
is traditionally parametrized as

UPMNS ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13e−iδ −c12s23 − s12c23s13eiδ c23c13

1
CCA; ð9Þ

using the notation cij ≡ cos θij and sij ≡ sin θij in terms of
the oscillation angles θ12, θ23, and θ13. The parameter δ is
the Dirac CP-violating phase. Measurements of the three
mixing angles represent major triumphs of experimental
particle physics over the past two decades; the Dirac phase,
meanwhile, remains largely unconstrained but with several
groups in hot pursuit, including those, for example, at
NOνA [52], T2K [53], and DUNE [54]. Two additional
phases are present if neutrinos are Majorana particles. As
the Majorana phases have no effect on oscillations, we take
them to vanish.
The mismatch between the flavor and mass eigenstates

is one of the fundamental facts about neutrinos. It gives
rise to oscillations in vacuum and is essential to the rich
phenomenology of in-medium flavor evolution that
has been discovered since Wolfenstein’s pioneering
revelation [47] that neutrinos propagating in matter sustain
refractive effects in much the same way that photons do.
The derivation of neutrino oscillations and detection

probabilities from UPMNS can be found in the standard
references [55].
Throughout this paper we confine our attention to the

coherent limit of neutrino propagation, which is to say that
collisions (scattering processes that alter the momentum of
the neutrino) are negligible [56–59]. This approximation
holds to varying degrees of accuracy in many settings of
interest: It is applicable in vacuum, for one, as well as in
astrophysical environments such as the Earth, the solar
interior, the region far outside a core-collapse supernova or
compact-object merger, and the early Universe after weak
decoupling, but it fails in the extremely dense interior of a
supernova or merger remnant or at high enough temper-
atures in the early Universe that neutrinos are thermally
equilibrated with the plasma. The coherent and incoherent
limits are tied together by a regime in which neither
collisions nor the medium-enhanced flavor transformation
that occurs between scattering events can be neglected, as is
the case during the protracted transition of neutrinos in the
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early Universe from being strongly coupled to the plasma
to being fully free-streaming. This worst-of-both-worlds
regime is also exemplified by the “neutrino halo” region of
core-collapse supernovae [60], which is negligible during
the late-time neutrino-driven-wind epoch but may be
important during the neutronization burst or shock revival.
Environments bridging the coherent and incoherent
extremes are a frontier of research in neutrino astrophysics
and lie beyond the ambitions of the present paper.
In the coherent limit, which we henceforth adopt, the

neutrino flavor state obeys a Schrödinger-like equation

i
djψi
dt

¼ Hjψi; ð10Þ

with Hamiltonian

H ¼ Hvac þHmatt þHν; ð11Þ

where the three contributions to the Hamiltonian are
respectively due to neutrino mass, forward scattering off
of matter particles (nucleons and charged leptons), and
forward scattering off of other neutrinos [61]. We briefly
discuss each of these in turn.
The vacuum term Hvac is present in all environments

and encodes the masses of the individual neutrino
eigenstates. In the mass basis it is simply the matrix
ð1=2EÞdiagðm2

1; m
2
2; m

2
3Þ, where mi is the mass of eigen-

state νi and E is the neutrino energy. In the flavor basis it
has the form

Hvac ¼ UPMNS

�
1

2E
diagðm2

1; m
2
2; m

2
3Þ
�
U†

PMNS: ð12Þ

It is evident that Hvac has nonzero off-diagonal elements in
the flavor basis that cause mixing between the flavor states:
This, of course, is the phenomenon of neutrino oscillations
in vacuum.
When neutrinos are immersed in a dense bath of matter

particles, as they are in many astrophysical settings, the
dispersion relations of the individual flavors are modified
by forward scattering off of the background. The most
common scenario is one in which electrons (and possibly
positrons) are abundant but muons and tauons are all but
absent; a thermal environment requires quite a high temper-
ature for the heavier charged leptons to be plentiful. Under
these circumstances, all flavors feel a forward-scattering
potential generated by the neutral-current weak interaction
with e�, but only νe feels the additional potential from the
charged-current interaction. This effect is encoded in Hmatt.
In this paper we are not concerned with the precise form of
the matter Hamiltonian (for reasons that will become
evident momentarily), so to illustrate its structure we write
down the matrix in the scenario where the matter back-
ground consists entirely of e− with number density ne. In
the flavor basis,

Hmatt ¼
ffiffiffi
2

p
GFnediagð1; 0; 0Þ; ð13Þ

where GF is the Fermi constant. Since Hmatt is diagonal in
the flavor basis and Hvac is diagonal in the mass basis, the
energy eigenstates in medium differ from both the mass and
the flavor eigenstates. Under the right conditions, the
adiabatic decrease in ne from very high down to vanishing
density induces efficient conversion through the MSW
mechanism.
The final constituent of the Hamiltonian stems from

forward scattering with other neutrinos. The physics
introduced by this term is rich, as it generalizes the effect
of Hmatt to a nonlinear, matrix-structured index of refrac-
tion. The matrix structure enters because the neutrino-
neutrino forward-scattering amplitude depends not just on
the density of the background neutrinos but on their
quantum states. The potential generated by these processes
is therefore proportional to a sum over the density matrices
ρ ¼ jψihψ j of each background neutrino. Explicitly,

ρ ¼

0
B@

ρee ρeμ ρeτ

ρ�eμ ρμμ ρμτ

ρ�eτ ρ�μτ ρττ

1
CA ¼

0
B@

jaej2 a�eaμ a�eaτ
a�μae jaμj2 a�μaτ
a�τae a�τaμ jaτj2

1
CA: ð14Þ

The diagonal element ραα is proportional to the number
density of neutrinos of flavor α and the off-diagonal
element ραβ (α ≠ β) measures the quantum coherence
between flavors α and β. If neutrinos of momentum ~q
have number density nν;~q and flavor state ρ~q, then a
neutrino of momentum ~p propagating through this back-
ground experiences

Hν ¼
ffiffiffi
2

p
GF

X
~q

ð1 − p̂ · q̂Þnν;~qρ~q; ð15Þ

where the sum is over all momentum states but could be
expanded to include any additional indices used to label
neutrinos in the system. (By writing ρ ¼ jψihψ j, we have
assumed that each density matrix describes a pure state.)
The geometric factor ð1 − ~p · ~qÞ originates from the struc-
ture of the weak-interaction current. For the sake of brevity,
we later use μ~q ≡

ffiffiffi
2

p
GFð1 − p̂ · q̂Þnν;~q. Note that this

contribution is nonlinear in the sense that it couples
together the different neutrino trajectories in flavor space.
(Note also that we are ignoring antineutrinos in this
discussion. We continue to do so in the calculations that
follow, as antineutrinos do not change the analysis in any
essential way.)
Throughout much of this paper we perform calculations

in the two-flavor approximation that is appropriate when νμ
and ντ have the same interaction potentials, which holds
whenever (1) muons and tauons are scarce and (2) νμ and ντ
have identical spectra. Specifically, we consider mixing
between νe and a state νx, the latter being a particular
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superposition of νμ and ντ. In this case jψi, ρ, and the
interaction potentials reduce in an obvious manner from the
three-flavor expressions given above. There is now just a
single mixing angle θv, with noCP-violating phase, and the
2 × 2 mixing matrix is simply the rotation

U ¼
�

cos θv sin θv
− sin θv cos θv

�
: ð16Þ

It follows from Eq. (12) that the vacuum Hamiltonian is

Hvac ¼
ω

2

�− cos 2θv sin 2θv
sin 2θv cos 2θv

�
; ð17Þ

with the vacuum oscillation frequency defined in terms
of the mass-squared splitting δm2 ≡m2

2 −m2
1 by ω≡ δm2=

2E. The mass hierarchy, which remains experimentally
ambiguous, is reflected in the sign of the oscillation
frequency: ω > 0 for the normal hierarchy (NH), ω < 0
for the inverted hierarchy (IH).
With only two flavors, coherent neutrino evolution is

tantamount to a two-level problem and can be mapped onto
the Bloch sphere; in this regard it is analogous to the
physics of electron spins, nuclear isospins, qubits, and so
on. The Bloch vector ~P formed from the su(2)-algebra
decomposition of the density matrix ρ is commonly known
in the neutrino community as the polarization vector, in
deference to photon polarization:

ρ ¼ 1

2
ðIþ ~P · ~σÞ: ð18Þ

Noting that Eq. (10) can be recast as a Liouville–von
Neumann equation

i
dρ
dt

¼ ½H; ρ�; ð19Þ

a similar decomposition of the Hamiltonian permits the
coherent equations of motion to be written as a Bloch-like
equation with infinite relaxation time:

d~P
dt

¼ ~H × ~P: ð20Þ

~P can be visualized as a vector pointing from the origin to
the surface of the S2 manifold described at the end of the
previous section. In this picture the parallel transport

condition in Eq. (5) forbids ~P from spinning and thereby

moving locally along the fiber, even as ~P precesses about
~H. Given our emphasis on the two-flavor limit, it is helpful
to have this polarization-vector picture in mind. Indeed, it is
precisely the geometric nature of Eq. (20) that underlies the
geometric phases exhibited below.

Absent the self-coupling potential Hν, the Hamiltonian
can be rewritten in terms of effective in-medium mixing
parameters:

Hvac þHmatt ¼
ωm

2

�− cos 2θm sin 2θm
sin 2θm cos 2θm

�
; ð21Þ

with in-medium oscillation frequency [using the analogous
form of Eq. (13) for two flavors]

ωm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωsin22θv þ

�
ω cos 2θv −

ffiffiffi
2

p

2
GFne

�2
s

ð22Þ

and in-medium mixing angle given by

sin22θm ≡ ω2sin22θv
ω2
m

: ð23Þ

The upshot is that flavor evolution in a matter background
looks like vacuum oscillations with modified frequency and
amplitude. For this reason, in the rest of the paper we ignore
Hmatt; it is assumed to have been absorbed into the vacuum
mixing parameters.
With Hν present, the nonlinear communication between

flavor states considerably expands the range of flavor-
evolution phenomena. These behaviors are grouped under
the heading of collective neutrino oscillations and have
been the subject of intense study in recent years [62–125].
One paradigmatic collective effect is the synchronization of
flavor: When Hν dominates the Hamiltonian, all neutrinos
experience roughly the same potential, leading them to
undergo nearly identical oscillations at a common effective
frequency. Synchronized oscillations are perhaps the clean-
est example of cyclic evolution of the Hamiltonian at strong
nonlinear coupling, but they are not alone.
Geometrically the crucial feature of neutrino self-

coupling is that even in two flavors a complex off-diagonal
potential can develop, opening the possibility for cyclic
evolution of the Hamiltonian. With the standard matrix
representation of the Pauli matrices, the y-component of ~H
corresponds to the imaginary parts of these off-diagonal
elements. Since H can always be written as a real
symmetric matrix in the standard MSW (vacuumþ
matter) scenario, in a matter background ~H never leaves
the xz-plane and closed loops on the Bloch sphere, other
than the trivial one formed by following the xz great circle,
are precluded. This conclusion no longer holds in a
neutrino background. The coherent coupling of neutrino
flavor states can thus be framed as a geometric statement.

IV. MIXED POTENTIALS WITH TWO FLAVORS

In this and the next two sections we analyze geometric
effects that arise in a scenario with two-flavor neutrinos
interacting with each other by way of coherent forward
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scattering. For simplicity we neglect any contributions from
a matter background, which as noted previously can be
absorbed into the vacuum potential by working in terms of
effective in-medium mixing parameters. By dialing the
strengths of the vacuum and self-coupling potentials, one
finds that the system gives rise to a panoply of flavor-
transformation phenomena. We take three different limits
of the coupling strengths that illuminate in particular how
the flavor transformation enmeshes with geometry.
The equations of motion for two pure populations of

neutrinos interacting with one another are

i
djψ1ðtÞi

dt
¼ ½ω1Bþ μ2ρ2ðtÞ�jψ1ðtÞi;

i
djψ2ðtÞi

dt
¼ ½ω2Bþ μ1ρ1ðtÞ�jψ2ðtÞi; ð24Þ

where mode i has wave function jψ iðtÞi, vacuum
oscillation frequency ωi, and density parameter μi [defined
below Eq. (15)]. The matrix B is equal to Hvac with
the energy-dependent part taken out. In the mass basis it is

B ¼ diagð−1=2; 1=2Þ and has vector form ~B ¼ −ð1=2Þẑ.
In this section we consider the limit in which the

neutrinos of mode 2 are extremely dilute but those of
mode 1 are extremely dense:

i
djψ1ðtÞi

dt
¼ ω1Bjψ1ðtÞi;

i
djψ2ðtÞi

dt
¼ μ1ρ1ðtÞjψ2ðtÞi: ð25Þ

As a shorthand, we term this arrangement mixed potentials.
The first equation of motion describes vacuum oscil-

lations and is easily solved:

jψ1ðtÞi ¼ exp ð−iω1BtÞjψ1ð0Þi: ð26Þ

In the mass basis the matrix exponential is diagonal and,
taking as an initial state

jψ1ð0Þi ¼
�

cos θ1
2

eiϕ1 sin θ1
2

�
; ð27Þ

one finds that jψ1i corresponds to a polarization vector ~P1

precessing about the z-axis with fixed frequency ω1 and at
fixed polar angle θ1:

jψ1ðtÞi ¼
�

cos θ1
2

eiðϕ1−ω1tÞ sin θ1
2

�
: ð28Þ

In the case of the IH, ω1 < 0 and the direction of precession
is reversed. The other mode jψ2i, a flavor state evolving
under a Hamiltonian that sweeps out a circle in flavor

space, is mathematically identical to a spin in a magnetic
field that sweeps out a circle in physical space. Although
we are indicating with the notation that jψ1i represents a
pure state of neutrinos at a chosen energy, it may be that
jψ2i interacts with an ensemble—pure or mixed—with
some spectrum. If the ensemble undergoes synchronized
oscillations, then the computation proceeds almost
unchanged.
In Sec. IVA we adopt an adiabatic treatment, thereby

reproducing the neutrino version of the classic result for the
geometric phase of a spin in a cyclic magnetic field, and we
point out that in principle this phase is observable. In
Sec. IV B we find the exact (nonadiabatic) solution and
demonstrate the geometric-dynamical phases that appear as
perturbative corrections to the traditional purely geomet-
ric phase.

A. Adiabatic treatment

We now set out to determine, under the assumption of
adiabatic evolution, the phase acquired by jψ2i after
~H2ðtÞ ¼ μ1 ~P1ðtÞ undergoes one period of cyclic evolution.

Based on the foregoing discussion, we know that ~H2 rotates
with frequency ω1 about the mass-eigenstate axis B̂ ¼ −ẑ
(Φ1ðtÞ ¼ ϕ1 − ω1t), maintaining a constant magnitude

j ~H2ðtÞj ¼ μ1 and a constant polar angle Θ1ðtÞ ¼ θ1. The
coordinate system is chosen such that the flavor-eigenstate
axis L̂, which is defined to point along the polarization
vector associated with νe, is in the xz-plane. This setup is
depicted in Fig. 2.

FIG. 2. Initial (t ¼ 0) configuration of polarization vectors in

the mixed-potentials scenario. ~P1 undergoes vacuum oscillations
(clockwise about ẑ ¼ −B̂ for the NH, counterclockwise for the

IH). Its trajectory is shown by the dashed circle. ~P2 is in an
electron-flavor eigenstate and points along L̂.
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If the test neutrino is initially electron flavor, that is,

jψ2ð0Þi ¼ jνei; ð29Þ

then ~P2 has initial azimuthal angle Φ2ð0Þ ¼ 0 and initial
polar angle Θ2ð0Þ ¼ 2θv, where θv is the mixing angle in
vacuum. We stress that this problem has four physically
relevant vectors. Making the reasonable stipulation that
jψ1i also decouples into a flavor eigenstate, at any given
time the vectors L̂, B̂, P̂1, and P̂2 are generally not
coincident. One can see quite readily that should any
two of these unit vectors be identical at all times, geometric
phases in jψ2i are either absent or unobservable:

(i) If B̂ ¼ L̂, then oscillations do not occur.
(ii) If P̂1ðtÞ ¼ B̂, then the path of ~H2 does not enclose a

finite area in parameter space.
(iii) If P̂2ðtÞ ¼ P̂1ðtÞ, then in the adiabatic limit jψ2i is in

an energy eigenstate at all times and its phase will
not show up at the probability level.

(iv) If P̂1ðtÞ ¼ L̂, P̂2ðtÞ ¼ L̂, or P̂2ðtÞ ¼ B̂, then L̂ must
be equal to B̂.

It follows immediately that if decoupling occurs in flavor
eigenstates, it is a prerequisite for the appearance of an
observable adiabatic geometric phase that two parameters
be nonzero: the initial relative phase ϕ1 between the two
modes and the vacuum mixing angle θv. With these
considerations in mind, we proceed to derive the geometric
phase.
In the chosen coordinate system the Hamiltonian

matrix is

H2 ¼
μ1
2

�
cos θ1 e−iðϕ1−ω1tÞ sin θ1

eiðϕ1−ω1tÞ sin θ1 − cos θ1

�
; ð30Þ

which is represented by the vector

~H2 ¼
μ1
2

0
B@

sin θ1 cos ðϕ1 − ω1tÞ
sin θ1 sin ðϕ1 − ω1tÞ

cos θ1

1
CA: ð31Þ

The energy eigenstates of this Hamiltonian correspond to
the normalized polarization vectors parallel and antiparallel
with ~H2. As kets they are

jνþðtÞi ¼
 

cos θ1
2

eiðϕ1−ω1tÞ sin θ1
2

!
;

jν−ðtÞi ¼
 

− sin θ1
2

eiðϕ1−ω1tÞ cos θ1
2

!
; ð32Þ

and they have energy eigenvalues E� ¼ �μ1=2.

The geometric phase, defined in Eq. (2), can be recast in
the form

γ ¼
I
C

~A · d~R; ~A ¼ ihηðtÞj∇jηðtÞi ð33Þ

for eigenstate jηðtÞi. The vector ~A is the gauge potential
associated with the adiabatic connection. In this case the
gauge potentials are given by

~Aþ ¼ ihνþj∇jνþi ¼ −
sin2 Θ1

2

sinΘ1

Φ̂;

~A− ¼ ihν−j∇jν−i ¼ −
cos2 Θ1

2

sinΘ1

Φ̂: ð34Þ

Integration along the curve swept out by ~H2 then yields the
geometric phases acquired by these energy eigenstates,

γþ ¼
I
C

~Aþ · d~R ¼ �πð1 − cos θ1Þ;

γ− ¼
I
C

~A− · d~R ¼ �πð1þ cos θ1Þ; ð35Þ

where the upper (lower) signs are for the NH (IH).
Evidently the geometric phase is sensitive to the mass
hierarchy, with the proper sign being fixed by the direction
of traversal about the loop. The dynamical phase, mean-
while, is

δ� ¼ −
Z

T

0

E�dt ¼∓ μ1
2
T; ð36Þ

so that the energy eigenstates after one period T are

jνþðTÞi ¼ e�iπð1−cos θ1Þe−i
μ1
2
T jνþð0Þi;

jν−ðTÞi ¼ e�iπð1þcos θ1Þeþi
μ1
2
T jν−ð0Þi; ð37Þ

where again the upper (lower) signs are for the NH (IH).
The calculation thus far is identical to the standard one

for a spin-1=2 particle in a rotating magnetic field, and as
usual the geometric phase is half the solid angle enclosed in
parameter space by the loop traced out by the Hamiltonian
vector. But a key point for neutrinos is that their production
and detection project onto the flavor axis. It is therefore
necessary to convert between the interaction and energy
bases. The unitary matrix U effecting the transformation

� jν−i
jνþi

�
¼ U

� jνei
jνxi

�
ð38Þ

is given by
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U ¼
 
U11 U12

U21 U22

!
¼
 
eiΦ1 sin θv cos

θ1
2
− cos θv sin

θ1
2

eiΦ1 cos θv cos
θ1
2
þ sin θv sin

θ1
2

eiΦ1 sin θv sin
θ1
2
þ cos θv cos

θ1
2

eiΦ1 cos θv sin
θ1
2
− sin θv cos

θ1
2

!
: ð39Þ

Note that U is time dependent, since Φ1ðtÞ ¼ ϕ1 − ω1t.
Using the unitarity of U, one can write the initial state,

assumed to be νe, as

jψ2ð0Þi ¼ U�
11jν−ð0Þi þ U�

21jνþð0Þi: ð40Þ

After one period has elapsed, the state has evolved to

jψ2ðTÞi ¼ U�
11e

−iπð1þcos θ1Þei
μ1
2
T jν−ð0Þi

þ U�
21e

−iπð1−cos θ1Þe−i
μ1
2
T jνþð0Þi: ð41Þ

Projecting jψ2ðTÞi onto the flavor state in which it was
produced at t ¼ 0 yields

jhνejψ2ðTÞij2 ¼ 1 − 4jU11j2jU21j2sin2
�
π cos θ1 −

μ1
2
T
	
:

ð42Þ

Letting x≡ cos 2θv cos θ1 þ cosϕ1 sin 2θv sin θ1, we have

jU11j2 ¼
1

2
ð1 − xÞ; jU21j2 ¼

1

2
ð1þ xÞ; ð43Þ

allowing us to write

jhνejψ2ðTÞij2 ¼ 1 − ð1 − x2Þsin2
�
π cos θ1 −

μ1
2
T

�
: ð44Þ

Recalling that γ� ¼ −π � π cos θ1, one has, finally,

jhνejψ2ðTÞij2 ¼ 1 − ð1 − x2Þsin2ðγ� þ δ�Þ; ð45Þ

where the choice of� is arbitrary. Wewould have arrived at
the same expression if we had instead chosen the neutrino
to be initially νx.
Moreover, Eq. (45) is independent of the choice of

hierarchy. But since the overall sign of γ changes upon
flipping the hierarchy—whereas the sign of δ goes
unchanged—the transition probability turns out to be
hierarchy dependent. This finding has a simple explanation
in the polarization-vector picture: The precession direction

of ~P1 about B̂ is set by the hierarchy, while the precession

direction of ~P2 about P̂1 is not.
It may be helpful to note that jhν�ð0Þjν�ðTÞij ¼ 1, since

the geometric and dynamical phases vanish under the
modulus. In other words, the fact that the neutrino is
produced and detected in a state other than one of the
energy eigenstates is necessary for the phases to appear at
the probability level. In fact, if one knows the flavor of the

neutrino at t ¼ 0, then by measuring the flavor of the
neutrino at t ¼ T, one is effectively performing an inter-
ferometry experiment capable in principle of probing the
geometric phase. In this case, that phase is a measure of the
flavor-space path traced out by the other neutrino, which
need not be directly observed.

B. Exact solution

The formulas applied in the previous section are appro-
priate to the adiabatic limit, in which the energy eigen-
vectors track the Hamiltonian vector as it sweeps out a
circuit. But it turns out that an exact solution can be found
even without this assumption. Let

jψ2ðtÞi ¼ aðtÞjνþðtÞi þ bðtÞjν−ðtÞi ð46Þ

and suppose that jψ2ð0Þi ¼ jνþðtÞi, so that að0Þ ¼ 1 and
bð0Þ ¼ 0. This initial condition is equivalent to the one in
the previous subsection, but here we are not demanding that
jψ2i remain in the eigenstate jνþi.
The Schrödinger equation says that the coefficients of

jψ2ðtÞi obey the system of equations

daðtÞ
dt

þ aðtÞ
�
νþðtÞ

���� ddt
����νþðtÞ

�
þ bðtÞ

�
νþðtÞ

���� ddt
����ν−ðtÞ

�

¼ −i
μ1
2
aðtÞ;

dbðtÞ
dt

þ aðtÞ
�
ν−ðtÞ

���� ddt
����νþðtÞ

�
þ bðtÞ

�
ν−ðtÞ

���� ddt
����ν−ðtÞ

�

¼ i
μ1
2
bðtÞ: ð47Þ

Enforcing bðtÞ ¼ 0 amounts to the adiabatic approxima-
tion; it can be seen that the deviation from this limit is
associated with the “cross terms” that mix the eigenstates.
The coupled first-order differential equations can be rewrit-
ten as decoupled second-order differential equations. The
equation for aðtÞ is

d2a
dt2

− iω1

da
dt

þ

�

μ1
2

�
2

þ μ1
2
ω1 cos θ1

�
a ¼ 0: ð48Þ

This is the equation of a (complex) damped harmonic
oscillator with real frequency-squared and imaginary fric-
tion and can be solved with the usual ansatz aðtÞ ∼ expαt.
The resulting algebraic equation for α has solutions
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α� ¼ iω1

2
� iμ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ω1

μ1
cos θ1 þ

�
ω1

μ1

�
2

s
: ð49Þ

The general solution, of course, can be written as

aðtÞ ¼ cþeαþt þ c−eα−t; ð50Þ

and the initial condition jνð0Þi ¼ jνþð0Þi implies that

cþ ¼ 1

2
−

1

2Δ



1þ ω1

μ1
cos θ1

�
;

c− ¼ 1

2
þ 1

2Δ



1þ ω1

μ1
cos θ1

�
; ð51Þ

where Δ is the square root of the discriminant,

Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ω1

μ1
cos θ1 þ

�
ω1

μ1

�
2

s
: ð52Þ

Observe that α� are purely imaginary regardless of the
values of ω1, μ1, and θ1.
An important quantity found throughout the neutrino

literature is the adiabaticity parameterϒ (usually denoted γ,
but our hands are tied), upon which the transition proba-
bility P through a resonance depends exponentially: P ≈
e−πϒ=2 [126]. The parameter can be cast into the form [123]

ϒ ≈
jHT j2
j _Hzj

; ð53Þ

where HT ¼ H2
x þH2

y is the transverse part of the
Hamiltonian vector and the right-hand side is evaluated
at resonance. In circumstances where a flavor-state level
crossing occurs, such as in the MSW mechanism, this
definition implies that transitions are unlikely to occur if the
separation between the energy eigenstates at closest
approach is large relative to the speed with which the
resonance is traversed. Although the system we are
analyzing has no such level crossing, ϒ nonetheless
coheres with what we mean by adiabaticity. Applying
the definition above, one has

ϒ ≈
μ1jP1;T j2

jω1ð~B × ~P1Þzj
: ð54Þ

Dropping factors of order unity, this becomes simply
ϒ ≈ μ1=ω1, so that the adiabatic limit corresponds to
ω1=μ1 → 0. Thus the neutrino adiabaticity parameter, even
in this nonresonant scenario, is consistent with the more
general intuition that adiabaticity prevails when the change
in the Hamiltonian is slow compared to the response of the
particle.

To zeroth order in ω1=μ1 one has, for T ¼ 2π=ω1,

α�T → �i
μ1
2
T þ iπð1 ∓ cos θ1Þ: ð55Þ

The dynamical and geometric phases from the previous
section are therefore recovered as the leading-order terms in
the perturbation expansion in the adiabaticity parameter.
The probability of jψ2ðtÞi being in the upper eigenstate

at any time t is

jaðtÞj2 ¼ 1 − 2cþc−ð1 − cos μ1ΔtÞ: ð56Þ

It is interesting to coerce aðtÞ into the form rðtÞ exp iϕðtÞ.
The modulus is simply rðtÞ ¼ jaðtÞj and the phase is

ϕðtÞ ¼ arctan



cþ sin ðω1t

2
þ μ1Δt

2
Þ þ c− sin ðω1t

2
− μ1Δt

2
Þ

cþ cos ðω1t
2
þ μ1Δt

2
Þ þ c− cos ðω1t

2
− μ1Δt

2
Þ

�
:

ð57Þ

Specifying t ¼ T leads to

rðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2cþc−ð1 − cos μ1ΔTÞ

p
ϕðTÞ ¼ arctan



ð1 − 2c−Þ tan

μ1ΔT
2

�
: ð58Þ

Expanding each to first order in ω1=μ1 yields

rðTÞ ≈ 1 −
ω1

2μ1
sin2θ1sin2

�
μ1
2
T þ π cos θ1

�
;

ϕðTÞ ≈ −
μ1
2
T − π cos θ1 −

ω1

μ1

πsin2θ1
2

: ð59Þ

These can be combined to give an expression for aðTÞ, with
the adiabatic-limit geometric and dynamical phases sub-
stituted appropriately:

aðTÞ ≈ −


1þ π

2δþ
sin2θ1sin2ðδþ þ γþÞ

�

×exp

�
i



δþ þ γþ þ π2sin2θ1

2δþ

�

: ð60Þ

As expected, in the zeroth-order expansion one obtains

aðTÞ ¼ − exp ½iðδþ þ γþÞ�: ð61Þ

This is identical to our result from the previous subsection,
up to an unobservable minus sign. Note also that the
corrections to the fully adiabatic result intertwine geometry
and dynamics. It is only at lowest order that the two can be
neatly separated.
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V. PURE SELF-COUPLING WITH TWO FLAVORS

We have seen that if the Hamiltonian for a neutrino
sweeps out a circle, then the neutrino acquires a geometric
phase after one period that is proportional to the solid angle
of this circle on the Bloch sphere. It is well known from
geometric-phase lore that in fact the path could be any
closed circuit and in all cases the phase acquired is
determined by the enclosed solid angle.
In the neutrino context with strong nonlinear coupling

between modes, the possibility arises that the geometric
phase is not set by the path but rather that the phase and the
path mutually determine one another. The simplest case,
which we examine in this section, is that of two modes
interacting with one another and experiencing negligible
vacuum potential. We can picture this scenario as two
vectors rotating about each other in some complicated way.
If it can be shown that the Hamiltonian generated by one
vector ~P1 is cyclic (i.e., if that vector is itself cyclic) and if
the other vector ~P2 does not adiabatically track an energy
eigenstate, then it is to be expected that geometric phases
will appear at the probability level in the second mode,
which is to say that the position of ~P2 depends on the
geometric phases generated by ~P1. Thus far all of this
applies equally to the mixed-potentials scenario, as we just
saw. But with two neutrino populations interacting solely
through self-coupling, these considerations are mutual,
implying that the paths and geometric phases of the vectors
are inextricably bound. The scenario of the previous section
was analogous to a spin in a rotating magnetic field; the
scenario here is more akin to two spins interacting through
their magnetic moments.
With these thoughts in mind, we return to the general

equations of motion in Eq. (24) and set ω1 ¼ ω2 ¼ 0,
leaving the self-coupling potentials nonzero. To be explicit,
we have

i
djψ1i
dt

¼ μ2ρ2jψ1i;

i
djψ2i
dt

¼ μ1ρ1jψ2i: ð62Þ

Formally the solutions are

jψ1ðtÞi ¼ P exp

�
−iμ2

Z
t

0

dt0ρ2ðt0Þ
�
jψ1ð0Þi;

jψ2ðtÞi ¼ P exp
�
−iμ1

Z
t

0

dt0ρ1ðt0Þ
�
jψ2ð0Þi; ð63Þ

where P denotes the path-ordering operator, but clearly
these expressions are of little help since the equations have
not been decoupled.
In fact the equations can be decoupled, allowing for

exact solutions to be obtained. First note the important fact
that

i
d
dt

hψ2jψ1i ¼ ðμ2 − μ1Þhψ2jψ1i; ð64Þ

hence the solution at time t is given by

hψ2ðtÞjψ1ðtÞi ¼ exp ½−iðμ2 − μ1Þt�hψ2ð0Þjψ1ð0Þi ð65Þ

and jhψ2ðtÞjψ1ðtÞij2 is constant. The geometric meaning of
these statements is more transparent when Eq. (62) is
rephrased in terms of polarization vectors:

d~P1

dt
¼ μ2 ~P2 × ~P1;

d~P2

dt
¼ μ1 ~P1 × ~P2: ð66Þ

The magnitudes of the polarization vectors are conserved as

usual, as is ~P1 · ~P2, and the conservation of jhψ2ðtÞjψ1ðtÞij2
corresponds to the preservation of the angle between ~P1

and ~P2 even as the vectors drift through flavor space. From
a certain viewpoint, these are consequence of the con-

servation of ~D≡ μ1 ~P1 þ μ2 ~P2, which acts as a kind of
“center of flavor” in analogy to the center of mass of a
mechanical system.
The first equation of motion in Eq. (62) can be

rearranged to read

jψ2i ¼
1

μ2hψ2jψ1i
i
djψ1i
dt

: ð67Þ

Differentiating this—while keeping in mind Eq. (65)—and
using the second equation of motion yields

d2jψ1i
dt2

þ iðμ2 − μ1Þ
djψ1i
dt

þ μ1μ2jhψ2jψ1ij2jψ1i ¼ 0:

ð68Þ

jψ1i obeys the complex conjugate of this equation. As with
the decoupled equations of motions in the mixed-potentials
limit, the friction coefficient is imaginary and the frequency
squared is real.
Both flavor amplitudes must individually satisfy

Eq. (68), which has solutions that are superpositions of
eλþt and eλ−t with

λ� ¼ i
μ1 − μ2

2



1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

μ1μ2
ðμ1 − μ2Þ2

jhψ2ð0Þjψ1ð0Þij2
r �

:

ð69Þ

Note that the signs of the eigenvalues depend on whether μ1
or μ2 is larger. In both cases we are letting λþ denote the
eigenvalue of greater magnitude. Thus
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ψ1ðtÞ ¼
�
aþeλþt þ a−eλ−t

bþeλþt þ b−eλ−t

�
;

ψ2ðtÞ ¼
�
cþe−λþt þ c−e−λ−t

dþe−λþt þ d−e−λ−t

�
: ð70Þ

With pure self-coupling, the mass axis is irrelevant and we
are free to choose more convenient coordinates than those

used in the previous section. We let ~P1ð0Þ point along the

z-axis, and we let ~P2ð0Þ be at an angle θ (Fig. 3). Then
jhψ1ðtÞjψ2ðtÞij2 ¼ cos2 θ

2
and the coefficients in Eq. (70)

are fixed by the parameters of the system.
We now pose this question: If H1 undergoes cyclic

evolution, does jψ2i acquire a geometric phase? Given the
structure of the solutions in Eq. (70) it is clear that H1 and
H2 both cycle after a shared period T. The same question
can then be asked of jψ1iwith respect to cyclic evolution of
H2, and the geometric phases that emerge in this scenario
must in some sense be coupled to one another. Based on the
solutions found above, jψ1i and jψ2i each complete a cycle
after a time

T ¼ 2π

jμ1 − μ2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 μ1μ2

ðμ1−μ2Þ2 cos
2 θ
2

q ; ð71Þ

at which point the wave functions have acquired the phases
eiα1 and eiα2 , respectively, with α2 ¼ −α1 and

α1 ¼ sgnðμ1 − μ2Þ
"

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 μ1μ2

ðμ1−μ2Þ2 cos
2 θ
2

q þ π

#
: ð72Þ

These are the exact phases acquired by the states after a
time T. Their geometric structure is manifest, and they are

clearly coupled, as one is the negative of the other
regardless of the choice of system parameters. The result
is also notable in that the dynamical phase makes no
appearance: Since there are neither external parameters
tuning the system nor even internal parameters associated
with vacuum oscillations, the only time scale available is
the intrinsic dynamical one set by the neutrino densities and
the initial flavor states.
If μ1 ¼ μ2, then no observable phase results at all. With

the neutrino densities equal, the first-derivative term in
Eq. (68) drops out and the eigenvalues are related by a sign
change. The result is that only trivial overall phases can
develop over the course of a cycle. It is also straightforward
to show that in the extreme limit μ1 ≫ μ2, the geometric
phase acquired by jψ1i reduces to

α1 → −2π
μ2
μ1

cos2
θ

2
; ð73Þ

and still α2 ¼ −α1. Using Eq. (53), an analysis like the one
in the previous section shows that the jψ2i adiabaticity
parameter is ϒ ∼ μ1=μ2. This limit therefore describes
adiabatic evolution of the relatively dilute population of
neutrinos.
The same result can be obtained through the usual

adiabatic treatment, where the eigensystem is solved for
and the gauge potentials are calculated. To demonstrate
this, we now assume adiabaticity and compute the eigen-
vectors of H2 ¼ μ1ρ1. The first eigenvector is simply
jνμðtÞi ¼ jψ1ðtÞi, with eigenvalue λμ ¼ μ1. The second
eigenvector jν0ðtÞi has eigenvalue λ0 ¼ 0 and satisfies
hν0ðtÞjψ1ðtÞi ¼ 0. These can be written out as

jνμi ¼
�
aþeλþt þ a−eλ−t

bþeλþt þ b−eλ−t

�
;

jν0i ¼
�−b�þeλ

�
þt − b�−eλ

�
−t

a�þeλ
�
þt þ a�−eλ

�
−t

�
; ð74Þ

from which the gauge potentials—now written as scalars in
order to facilitate the computation—may be evaluated,

Aμ ¼ i

�
νμ

���� ddt
����νμ
�

¼ μ2cos2
θ

2
; ð75Þ

A0 ¼ i

�
ν0

���� ddt
����ν0
�

¼ −μ2cos2
θ

2
: ð76Þ

The computation of the first of these is significantly
aided by using ihνμj ddt jνμi ¼ hψ1jH1jψ1i, and the second
can then be obtained easily by confirming that
hν0j ddt jν0i ¼ hνμj ddt jνμi�. Thus, to first order,

FIG. 3. Initial (t ¼ 0) configuration of polarization vectors in
the pure-self-coupling scenario. For convenience the coordinate

system is chosen such that ~P1 lies along the z-axis.
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i
Z

T

0

dt

�
νμ

���� ddt
����νμ
�

¼ 2π
μ2
μ1

cos2
θ

2
;

i
Z

T

0

dt

�
ν0

���� ddt
����ν0
�

¼ −2π
μ2
μ1

cos2
θ

2
: ð77Þ

These results yield a geometric phase consistent with the
expansion of the exact phase in the μ1 ≫ μ2 limit. Here we
have exhibited phases that, while not purely geometric,
nonetheless arise in addition to the dynamical phase.
It is in fact not immediately apparent that this adiabatic

treatment, where the geometric phase is calculated from the
gauge potentials, even should give the correct result. To see
why, consider that the off-diagonal matrix elements are

�
ν0

���� ddt
����νμ
�

¼ −iμ2 cos
θ

2
sin

θ

2
eiðμ2−μ1Þt ð78Þ

and hνμj ddt jν0i ¼ −hν0j ddt jνμi�, which is to say that they do
not vanish any faster in the small-μ2 limit than the diagonal
gauge potentials do. Evidently, however, one gets the
correct results if these terms are simply dropped. The
reason is that if the state is purely jνμi or jν0i at t ¼ 0, then
the component along the other eigenstate grows slowly by
virtue of being driven by μ2. This small component in turn
contributes to the phase evolution of the dominant compo-
nent with another factor of μ2. Hence it is appropriate after
all to ignore the overlap with the small component.
What we have shown in this section is that even away

from the adiabatic limit phases arise that depend on (1) the
number densities of the two neutrino populations and
(2) the constant angle between the polarization vectors,
but not explicitly on the time over which the system is
evolved. Furthermore, the geometric phases associated with
the two states are necessarily related. In contrast to what
was found in the previous section, the geometric phases
here are living creatures: jψ1i and jψ2i mutually settle,
simultaneously, on their paths in flavor space and on the
attendant phases.

VI. THE μ ≪ ω LIMIT WITH TWO FLAVORS

In Sec. IV we showed that a neutrino acquires a geo-
metric phase when it is strongly coupled to another neutrino
undergoing vacuum oscillations; under these circumstances
the Hamiltonian acts like an external, time-dependent
“flavor-magnetic” field. In Sec. V we showed that geo-
metric phases can survive when the evolution of the
magnetic field is coupled back to the test neutrino. We
now ask whether geometric phases persist when vacuum
oscillations and self-coupling are accounted for in both
populations of neutrinos. In particular, we consider geo-
metric effects arising in the μ ≪ ω limit.
We return to Eq. (24) and assume that the neutrino-

neutrino forward-scattering potentials are small compared

to the vacuum potentials. To prepare to use perturbation
theory, we write the equations of motion as

i
djψ1i
dt

¼ ½ω1Bþ ϵμ2ρ2�jψ1i;

i
djψ2i
dt

¼ ½ω2Bþ ϵμ1ρ1�jψ2i: ð79Þ

We expand perturbatively in the small parameter ϵ,

jψ1i ¼ jψ ð0Þ
1 i þ ϵjψ ð1Þ

1 i þ � � � ;
jψ2i ¼ jψ ð0Þ

2 i þ ϵjψ ð1Þ
2 i þ � � � : ð80Þ

To zeroth order the equations of motion are just those for
vacuum oscillation,

i
djψ ð0Þ

1 i
dt

¼ ω1Bjψ ð0Þ
1 i;

i
djψ ð0Þ

2 i
dt

¼ ω2Bjψ ð0Þ
2 i; ð81Þ

which have solutions

jψ ð0Þ
1 ðtÞi ¼ exp ð−iω1BtÞjψ ð0Þ

1 ð0Þi;
jψ ð0Þ

2 ðtÞi ¼ exp ð−iω2BtÞjψ ð0Þ
2 ð0Þi: ð82Þ

The first-order equation for jψ1i is

i
djψ ð1Þ

1 i
dt

¼ ω1Bψ
ð1Þ
1 þ μ2ρ

ð0Þ
2 jψ ð0Þ

1 i; ð83Þ

which, after plugging in the zeroth-order solution for jψ2i,
becomes

djψ ð1Þ
1 i

dt
¼ −iω1Bjψ ð1Þ

1 ðtÞi

− iμ2e−iω2Btρð0Þ2 ð0Þeiðω2−ω1ÞBtjψ ð0Þ
1 ð0Þi: ð84Þ

This has solution

jψ ð1Þ
1 ðtÞi ¼ e−iω1Bt



jψ ð1Þ

1 ð0Þi − iμ2

×
Z

t

0

dt0eiω1Bt0ρð0Þ2 ðt0Þjψ ð0Þ
1 ðt0Þi

�
; ð85Þ

and jψ ð1Þ
2 ðtÞi has an identical form but with subscripts

interchanged.
Cyclicity fails to materialize as naturally here as it did in

earlier sections. To find geometric effects analogous to
the ones reported above, we seek values of the period T
such that
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jψ2ðTÞi ¼ eiαjψ2ð0Þi: ð86Þ

The phase α is to be solved for concomitantly. Since jψ1i
may not be cyclic with the same period, in general α is not a
phase of the Berry genus.
The phase and period are expanded as

α ¼ αð0Þ þ ϵαð1Þ;

T ¼ Tð0Þ þ ϵTð1Þ: ð87Þ

If ~P2 is initially at angles ðθ2;ϕ2Þ, then the initial conditions
for this mode are

jψ ð0Þ
2 ð0Þi ¼

�
cos θ2

2

eiϕ2 sin θ2
2

�
;

jψ ð1Þ
2 ð0Þi ¼

�
0

0

�
: ð88Þ

Demanding that jψ2i satisfy Eq. (86) then amounts to the
following requirements on α and T:

jψ ð0Þ
2 ðTð0ÞÞi ¼ eiα

ð0Þ jψ ð0Þ
2 ð0Þi;

jψ ð1Þ
2 ðTð0ÞÞi þ Tð1Þ djψ ð0Þ

2 i
dt

����
Tð0Þ

¼ iαð1Þeiαð0Þ jψ ð0Þ
2 ð0Þi: ð89Þ

The first equation is satisfied if

Tð0Þ ¼ 2πn
ω2

; αð0Þ ¼ nπ; ð90Þ

with n ∈ Z. The second equation then becomes

����ψ ð1Þ
2

�
2πn
ω2

��
¼ �iðαð1Þ þ ω2Tð1ÞBÞjψ ð0Þ

2 ð0Þi; ð91Þ

where jψ ð1Þ
2 i can be evaluated using Eq. (85). The þ (−)

corresponds to even (odd) n.
In deriving the first-order corrections to the phase

and period it is helpful to note a few intermediate results.
First, the term in the integrand of Eq. (85) that multiplies

jψ ð0Þ
1 ðtÞi is

eiðω2−ω1ÞBtρð0Þ1 ð0Þe−iðω2−ω1ÞBt

¼
 

cos2 θ1
2

eiðω1−ω2Þte−iϕ1 cosθ1
2
sinθ1

2

e−iðω1−ω2Þteiϕ1 cosθ1
2
sinθ1

2
sin2 θ2

2

!
:

ð92Þ

The two conditions that can be extracted from the matrix
solution for jψ ð1Þ

1 ðtÞi are then

2πn
μ1
ω2

cos2
θ1
2
þ ξ� tan

θ2
2
¼ −αð1Þ þ ω2Tð1Þ

2
;

2πn
μ1
ω2

sin2
θ1
2
þ ξ cot

θ2
2
¼ −αð1Þ −

ω2Tð1Þ

2
; ð93Þ

where

ξ≡ iμ1
e−2πnið

ω1
ω2
−1Þ − 1

ω1 − ω2

eiðϕ1−ϕ2Þ cos
θ1
2
sin

θ1
2
: ð94Þ

These equations can be solved to yield

αð1Þ ¼ −nπ
μ1
ω2

−
ξ

2
cot

θ2
2
−
ξ�

2
tan

θ2
2
;

Tð1Þ ¼ 2πn
ω2

μ1
ω2

cos θ1 þ
ξ�

ω2

tan
θ2
2
−

ξ

ω2

cot
θ2
2
: ð95Þ

Notice that in general ξ is complex. Demanding that the
period be real (but without putting contrived restrictions on
the angles) requires that ω1=ω2 be a rational number of the
form m=n, with m ∈ Z. Choosing ω1 to satisfy this
constraint, one obtains

αð1Þ ¼ −πn
μ1
ω2

;

Tð1Þ ¼ 2πn
μ1
ω2
2

cos θ1; ð96Þ

so that to first order we have

T ¼ 2πn
ω2

�
1þ μ1

ω1

cos θ1

�
;

α ¼ nπ

�
1 −

μ1
ω2

�
: ð97Þ

To ensure that jψ2i is cyclic, the rationality condition
ω1=ω2 ¼ m=n is necessary—but having so picked the
vacuum oscillation frequencies, jψ2i oscillates with a
geometry-dependent period and acquires a phase sensitive
to the density of the other neutrino population.
Analogous results apply if instead we take jψ1i to be

cyclic and seek out the period and phase consistent with
such a requirement. If μ1 ¼ μ2 and ω1 ¼ ω2, then jψ1i and
jψ2i are cyclic with the same period and accrue identical
phases. In this particular scenario, where the two neutrino
populations consist of particles of the same energy and
density, the phases are of the classic Berry type, with each
population experiencing adiabatic evolution under a cyclic
Hamiltonian. In general the adiabaticity parameter for jψ1i
is ϒ1 ∼ ω2

1=μ2jω2j, and similarly for jψ2i. Adiabaticity is
therefore established automatically by taking the limit
μ ≪ ω, so long as the frequencies are of comparable
magnitude. This observation also matches intuition: The
time-dependent self-coupling potential, which elicits
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deviations from adiabaticity, is only a small part of the total
Hamiltonian.
In the final assessment, cyclicity is typically jeopardized

when the nonlinear coupling acts to perturb the neutrinos
away from vacuum oscillations. Nonetheless geometry
remains relevant to the flavor transformation that
occurs in such a system, as evidenced by the noncyclic
variants of the geometric phase already alluded to in Sec. I
(see, e.g., Refs. [10,13] for applications to neutrinos in
vacuumþmatter). We do not pursue this direction any
further but we do emphasize that the imprints of geometry
in flavor transformation transcend the cyclic, adiabatic
phase.

VII. MIXED POTENTIALS WITH THREE
FLAVORS: NON-ABELIAN PHASE

We now generalize the mixed-potentials scenario of
Sec. IV to three flavors. As before, the vacuum oscillations
of one neutrino determine the Hamiltonian experienced by
the other. That is,

i
djψ1ðtÞi

dt
¼ μ2ρ2ðtÞjψ1ðtÞi;

i
djψ2ðtÞi

dt
¼ Hvac;2jψ2ðtÞi; ð98Þ

where jψ ii is a three-component vector, ρi is a 3 × 3matrix,
and in the mass basis

Hvac;2 ¼
1

3

0
B@

−Δ21 − Δ31 0 0

0 Δ21 − Δ32 0

0 0 Δ32 þ Δ31

1
CA;

ð99Þ

using the notationΔij ≡ δm2
ij=2E. The equations of motion

have solutions

jψ1ðtÞi ¼ P exp

�
−iμ1

Z
t

0

dt0ρ2ðt0Þ
�
jψ1ð0Þi;

jψ2ðtÞi ¼ exp ð−iHvac;2tÞjψ2ð0Þi: ð100Þ

The matrix exponential for the second of these is
straightforward to compute. The solution, for jψ2ð0Þi ¼
ða; b; cÞT , is

jψ2ðtÞi ¼

0
BBBBB@

exp
�
i Δ21þΔ31

3
t
	
a

exp
�
i Δ32−Δ21

3
t
	
b

exp
�
−i Δ32þΔ31

3
t
	
c

1
CCCCCA: ð101Þ

It follows that

ρ2ðtÞ

¼

0
BB@

jaj2 expðiΔ21tÞab� expðiΔ31tÞac�
expð−iΔ21tÞba� jbj2 expðiΔ32tÞbc�
expð−iΔ31tÞca� expð−iΔ32tÞcb� jcj2

1
CCA

ð102Þ

and thus the geometric phases induced by the Hamiltonian
H1ðtÞ ¼ μ2ρ2ðtÞ can be found by solving for the eigensys-
tem. (In carrying out this procedure, one is aided by the
Cardano formula.) The eigenvalues are Eμ ¼ μ2, E0 ¼ 0,
and E00 ¼ 0, which correspond respectively to the eigen-
vectors

jνμi ¼
1

jcj

0
B@

exp ðiΔ31tÞac�
exp ðiΔ32tÞbc�

jcj2

1
CA;

jν0i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jcj2
jbj2

q
0
B@

exp ðiΔ31tÞac�
�
1 − 1

jaj2
	

exp ðiΔ32tÞbc�
jcj2

1
CA;

jν00 i ¼
jaj2

jcj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jaj2

p
0
B@

0

− exp ðiΔ32tÞ c�
b�

1

1
CA: ð103Þ

In this scenario two of the energy eigenstates are always
degenerate, indicating that the geometric phases have a
non-Abelian gauge structure [127].
In the two-flavor case, where the gauge was Abelian, the

geometric phases acquired by the energy eigenstates could
be deduced by solving the Schrödinger equation with
jψ�ðtÞi ¼ exp ðiϕ�ðtÞÞjν�ðtÞi; this is the condition that
enforces perfect adiabaticity. But nothing prevents the
states within the degenerate subsystem from mixing with
each other, regardless of how adiabatic the evolution is.
To find the phases in the degenerate subsystem, one
must therefore solve the Schrödinger equation with
jψ iðtÞi ¼ UijðtÞjνjðtÞi, where jνjðtÞi is the jth eigenstate
and UðtÞ is the matrix generalizing the Abelian phase from
the two-flavor case. If the path over a time t corresponds to
a closed loop C, then the matrix is given by the Wilson loop

UðCÞ ¼ P exp

�
i
I
C

~A · d~R

�
; ð104Þ

where the gauge potential is now a vector-valued matrix
with components

~Aij ¼ ihνiðtÞj∇jνjðtÞi: ð105Þ

Equation (104) generalizes Eq. (2). We do not write out all
of the gauge potentials since they are not particularly
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enlightening, but we do note that the off-diagonal elements
of A are nonzero, allowing for transitions between jν0i and
jν00 i even in the adiabatic limit. If jψ2ð0Þi ¼ jναi for α ¼ e,
μ, τ, the transitions occur between orthogonal linear
combinations of the other two flavors.
For H1 to be cyclic, the period must be an integer

multiple, all at once, of 2π=Δ21, 2π=Δ31, and 2π=Δ32. This
reflects the requirement for a three-flavor neutrino to
oscillate back into its original state in finite time, a
condition that was guaranteed in the two-flavor case.
Supposing that such a T does exist, one can show that
indeed the phases arising from the gauge potentials do not
depend explicitly on time.
The non-Abelian structure owes its existence to a basic

fact about the Hamiltonian for jψ1i. It is a fact that appeared
previously in our study of the pure-self-coupling scenario
in two flavors: WhenH ∼ ρ ¼ jψihψ j, one eigenstate is jψi
itself and all others are orthogonal states with eigenvalue 0.
(Note that for the mixed-potential scenario in two flavors,
where this trait of the Hamiltonian was also relevant, we
pulled out the trace of the self-coupling Hamiltonian and
thereby shifted the orthogonal-eigenstate energy down to
−μ1=2.) To put it more starkly, the non-Abelian phase
structure is a consequence of the coupling of neutrino
flavor quantum states—with off-diagonal coherence
included—rather than merely neutrino flavor number
densities.

VIII. CONCLUSION

We have pointed out that the self-coupling potential
generated by neutrino-neutrino forward scattering is
capable of inducing geometric phases in flavor evolution.
The mechanism is most easily understood in the two-flavor
approximation, where a neutrino’s flavor state and
Hamiltonian correspond graphically to vectors ending on
the Bloch sphere. In a background consisting strictly of
matter particles, the Hamiltonian vector ~H is confined to a
plane. But in a medium dense in neutrinos, ~H is liberated
from the plane and, should it undergo a closed cycle, may
return to its initial point having enclosed a finite solid angle
on the sphere. Path-dependent geometric phases in the
energy eigenstates are the result—and since flavor trans-
formation at its heart is an interference phenomenon of the
neutrino’s energy eigenstates, the phases surface in flavor
transition probabilities and are observable in principle.
To examine these phases in an analytically tractable

setting, we have considered various limits of a very simple
toy model devoid of the astrophysical complications that
beckon a numerical treatment. Despite the model’s sim-
plicity, the calculations presented in this paper illuminate

several facets of geometric phases in environments with
nonlinear refraction from neutrino self-coupling.
Foremost among these aspects are the roles of adiaba-

ticity and cyclicity. We have seen that adiabatic evolution is
not a necessity, and that geometric effects are apparent in
the nonadiabatic corrections, albeit in a way entangled with
the dynamics. We have also seen that the complicated
interplay between oscillations and self-coupling tends to
compromise cyclicity. But cyclicity is also dispensable, and
though we have not pursued this direction here, it is
expected that geometric effects should prove to be a generic
feature of noncyclic evolution as well.
Beyond these, two other interesting phenomena have

emerged from the calculations: the entwining of the paths
and phases of the two neutrino populations, as exhibited in
the pure-self-coupling scenario, and the non-Abelian phase
structure of the three-flavor case. These effects hinge on the
peculiar nature of the neutrino-neutrino forward-scattering
potential, which allows neutrinos to communicate to one
another the quantum coherence of their flavor states.
This study was motivated by the possibility for collective

flavor-transformation effects in the extreme environments
found, for instance, in the torrid plasma of the early
Universe or the incendiary outflow from a core-collapse
supernova. We have made no attempt to locate geometric
phases in astrophysically realistic models but have instead
strived to make clear, based on calculations in uncluttered
toy models, how such phases might emerge. Indeed, we
expect that the ideas underlying this study may find a place,
in some form, in a variety of applications: in synchronized
or bipolar oscillations in the early Universe, in a possibly
cyclic halo-affected region outside a supernova, in active-
sterile oscillations, and elsewhere. To be sure, sophisticated
numerical computations already have geometric effects
built in implicitly, albeit in far more complicated manifes-
tations than those analyzed here. After all, the provenance
of these effects—the shape of Hilbert space and the
structure of the Hamiltonian—is encoded in the equations
of motion. But the importance of geometry in the results
that these equations output is often overlooked.
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