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Abstract

Aggregation Errors in Life-Cycle Greenhouse Gas Assessments of Heavy-duty Trucks and
Buses

by

Michael Nicholas Taptich

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Arpad Horvath, Chair

Heavy-duty trucks and buses represent one of the largest sources of greenhouse gas (GHG)
emissions in the United States, yet the degree to which the GHG intensity of these vehicles
varies is poorly understood. This dissertation improves the accuracy of GHG emission factors
for heavy-duty trucks and buses by accounting for how these vehicles are utilized given
the characteristics within infrastructure networks, and it provides details on how previous
emissions inventories change in response to masking these features. The work focuses on the
sensitivity of GHG emission factors to vehicle speed, vehicle productivity, and infrastructure
topology.

To assess the influence of vehicle speed on GHG emission factor variability, we analyze
the realtime activities of heavy-duty trucks on highways as well as buses in nine transit
agencies across California. As expected, the results our case studies indicate that expected
GHG emission rates are higher for vehicles operating within cities than along highways. For
buses, the inclusion speed-corrected emission factors could improve the accuracy of previous
emission inventories for transit agencies by upwards of 62%. In contrast, speed-corrected
emission factors only marginally improve emission inventories for heavy-duty trucks across
the state (<5% improvement). These findings suggest that speed-resolved emission factors
should be used for transit buses, while a more narrow range of GHG emission factors for
heavy-duty trucks could suffice.

Next, we assess the influence of variable vehicle loading factors (trucks: payloads, buses:
passenger ridership) on GHG emission factor for heavy-duty trucks and buses. We present
two case studies which examine (i) the fleet of heavy-duty vehicles in the United States
and (ii) the performance of single bus network in the city of San Francisco. In each case
study, we rely on highly resolved vehicle productivity data. Our results uncover systematic
errors associated with assuming an average vehicle loading factors when estimating the GHG
emission factors for heavy-duty vehicles. When this is the case, we show that emission factor
estimation biases, described by Jensen’s inequality, always result in larger-than-expected
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environmental impacts (3% - 400%) and depend strongly on the variability and skew of
truck payloads and bus ridership.

Lastly, we examine the influence of network topology (e.g., how individual portions of
an infrastructure network’s constituent parts are interrelated or arranged) on GHG emission
factors for heavy-duty trucks participating in intermodal activities in the United States. To
understand this relationship, we built a national truck and rail logistics model that quantifies
the GHG emissions from freight shipments between counties. Using this model, we find that
both network topology and GHG emission factors for heavy-duty trucks and intermodal rail
differ across commodity types. These two factors in combination cause the GHG reductions
associated with shifting freight shipments from trucks (≈ 120 g CO2,e per ton-km) to rail
(≈ 20 g CO2,e per ton-km) to vary across the United States. As a proof of concept for the
application of this model, we identify the counties with the greatest potential to reduce GHG
emissions by switching freight shipments from truck to intermodal rail for two commodity
types: meat/seafood and paper articles.

Collectively, this work advances the scientific community’s understanding of how GHG
emissions from heavy-duty vehicles vary on more resolved spatial and temporal scales,
thereby improving decision-making on a case-by-case basis. Future work on this topic should
be directed to integrating these findings into broader emissions mitigation decision tools and
also considering other important environmental impacts.
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Accessibility - The potential of opportunities for interaction about a point, given a discrete
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Data aggregation - The process of transforming a range of data points into one measure
of central tendency to represent the group as a whole.

Discrete scale - The decision-making scale for an individual vehicle and/or vehicle trip.

Emission factor - The ratio of pollutant emissions to the functional unit of activity.
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metric tons in the federal jurisdiction and above 6.35 metric tons in California (model year
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Intermodal rail - A type of freight transport that involves the combination of train and
short truck trips to and from the rail network.

Level of specificity - The degree in the individual details of a product or system are de-
scribed, considered, and/or modeled.

Loading factor - A term used in transportation life-cycle assessments to represent the ratio
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Local scale - The decision-making scale for a group of vehicles about a particular location
(e.g., encompasses both a city and route specific perspective).

Regional scale - The decision-making scale for a complete fleet of vehicles within a larger
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nals, warehouses, or other destinations.
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Chapter 1

Introduction

1.1 Motivation and Goals

The demand for heavy-duty trucks and buses (i.e., heavy-duty vehicles1) is expected to
increase in the coming decades across the United States [1, 2]. This has many implications for
the nation’s greenhouse gas (GHG) emissions. The U.S. Energy Information Administration
estimates that heavy-duty vehicles consumes 2.8 million barrels of oil equivalents per day,
and over the next 35 years this rate will increase by 12% [1]. This growth will occur even in
light of new fuel economy regulations on heavy-duty trucks and buses [3]. By 2050, heavy
duty vehicles will emit 670 mmt CO2,e per year and represent 38 percent of all on-road GHG
emissions (10% increase in share since 2010) [1].

The forecasted increases in GHGs by heavy-duty trucks and buses suggest three major
underlying trends in the future. First, the demand for these vehicles will outpace improve-
ments in the average fuel efficiency under business-as-usual conditions, leading to an increase
in GHG emissions. Second, the U.S. Environmental Protection Agency (EPA) and National
Highway Traffic Safety Administration (NHTSA) projects that GHG emissions from heavy-
duty vehicles will surpass passenger cars by 2030 [3, 4]. Thus, heavy-duty vehicles will remain
a key area for consideration and policy focus for GHG abatement strategies in the decades
to come. Lastly, if improvements to engine fuel economy can only reduce GHGs to a certain
level, more comprehensive abatement strategies will be needed in the future. Addressing
these future impacts on the global climate requires a full life-cycle approach.

Life-cycle assessments (LCA) aid the decision-making process by comparing the environ-
mental footprint of competing abatement strategies on common terms and considering all
stages of a product or system’s life cycle: from extraction of raw materials through their
production, distribution, and use phases until their disposal [5, 6]. Each assessment is car-
ried out in the context of an intended goal and study scope [5], which is defined at the onset
of the study. The comprehensive environmental assessment of competing GHG abatement

1Freight trucks make up the majority of vehicles in this category in terms of vehicle kilometers driven
annually [1], although buses (e.g., transit, commuter, school, etc.) also fall under this distinction.
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strategies, with scopes encompassing all of the direct and indirect processes relating to the
system(s)-of-interest, is often data and time intensive. Costs of the study grow as the res-
olution of the study (i.e., level of specificity or aggregation level) increases, adding both
complexity and data management challenges [7].

Within transportation policy, LCAs have been used to evaluate specific transport modes
[8, 9, 10, 11, 12, 13], compare the impacts of different vehicle technologies [14, 15, 16, 11],
perform cost-benefit analyses [17, 18], assess alternative fuel pathways [19, 20, 21, 22, 23],
and evaluate other policies relating to the management of transportation networks and their
supporting infrastructure systems [10, 24, 25, 26]. Life-cycle emissions factors for heavy-duty
vehicles found in the literature [17, 27, 28, 8, 21, 10, 20, 19, 29] and within prominent LCA
models [30, 31, 32] regularly reflect a generic or industry-average perspective, i.e., each model
input constitutes generic or composite data for a global or regional context. (see, [33, 34]).
This model formulation is intuitive since this scope is the decision-making level at which this
sector is primarily regulated (e.g., countries and states). However, by maintaining a generic
or industry-average focus, the results of LCAs on heavy-duty trucks and buses often lack the
specificity to properly characterize the performance of the individual vehicles, which could
lead to suboptimal GHG mitigation strategies at decision-making scales.

By collapsing over many individual vehicles to establish a formal emission factor, we
believe that this aggregation process may restrict the explanatory power of the LCA model
for individual cases by removing within-group information that may be useful for policy-
making. This information includes knowledge of specific trip attributes (location, road type,
time of day, etc.), vehicle attributes (gross weight vehicle rating, payload, and ridership),
driving conditions (levels of congestion), and characteristics of their respective supporting
infrastructure systems (location of critical infrastructure and route topology). While there
are many angles which to approach this thesis, the scope of this research is limited to the
study of emissions estimation errors and/or biases caused by variability in fuel economy
due to vehicle speed2, vehicle productivity (e.g., loading factor, tons delivered, passenger
ridership, etc.), and infrastructure topology (e.g., how individual portions of an infrastructure
network’s constituent parts are interrelated or arranged).

The goals of this thesis are (i) to create more accurate heavy-duty truck and bus emission
factors by increasing the dimensionality of the operational component of the LCA model,
(ii) to understand how GHG emission factors vary based on how a vehicle is utilized given
the characteristics within infrastructure networks, and (iii) to ultimately reduce uncertainty
in LCAs of heavy-duty vehicles by identifying and correcting systematic biases in forming
LCA emission factors.

The remainder of this chapter provides an overview of the current methodologies for
conducting a LCA of transportation vehicles (LCA Fundamentals, Section 1.2), which serves
as the context for the methodological components of this paper, followed by a review of
literature frequently referenced in this thesis (Review of Frequently Cited Literature, Section
1.3). The chapter concludes with a review of the questions comprising the basis of this thesis.

2Vehicle speed and, by proxy, vehicle acceleration.
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1.2 LCA Fundamentals

LCA provides a framework for evaluating energy use, emissions and wastes associated with
direct, indirect, and supply chain processes in systems. The approach is composed of life-
cycle inventorying (LCI), which quantifies the energy use, emissions, and generated waste
of an activity (e.g., MJ or g per kilometer), life-cycle impact assessment (LCIA), which
captures the environmental or human health impacts from the LCI (e.g., climate change,
eutrophication, acidification, disability adjusted life years), and an interpretation phase [5].
The interpretation phase serves as a feedback loop so that once the LCI and LCIA have
been completed, they are re-evaluated to reduce uncertainty and implement improvements
to processes.

The interconnections between the many sectors of the economy are complex and practi-
cally infinite. The circular nature of these connections (e.g., the steel that is used to make
trucks is shipped by trucks to the truck assembly plant) could lead to double counting of
emissions, truncation errors from scope reduction, and other issues regarding emission alloca-
tion. Hence, there are methods to systematically help decision-makers construct consistent,
thorough, and replicable LCAs. The three types of LCAs used in freight transportation
LCAs are process-based LCA, economic input-output analysis-based LCA, and a hybrid
LCA approach.

1.2.1 Process-Based LCA

Process-based LCA is a method for characterizing the life-cycle inventory of a product or
system based on evaluating each segment of the direct process of interest as well as each
supporting sub-process in the supply chain. The benefit of this approach is that it answers
specific questions about processes (e.g., in a factory), specific product analyses (e.g., by
brand, model year), product comparisons, and analyses in a geographic area, year, etc. An
example application of process-based LCAs in freight transportation is the treatment of
emissions during a vehicle’s operation. During this phase, the environmental and human
health indicators of interest are evaluated by quantifying the amount of fuel consumed by
the vehicle (input) and measuring the amount of emissions resulting from its combustion
(output). A shortfall of process-based LCAs is that they can be time and data intensive,
which could make the costs of performing a full LCA increase [6].

1.2.2 Economic Input-Output Analysis-Based LCA

Economic input-output analysis-based LCA (EIO-LCA) utilizes the U.S. economy’s input-
output matrix to comprehensively map the interactions between economic sectors and define
product and service supply chains [35]. These economic data are combined with publicly
available environmental data (e.g., resource consumption and environmental emission and
waste data) to produce supply-chain inventories associated with a product or service. The
benefit of this approach is that produces national averages that are representative of any place
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in the US when economy-wide studies needed quickly and relatively cheaply. The approach
is also effective at minimizing truncation assignment errors associated with selecting the
boundaries of large and complicated systems. EIO-LCA has been used to estimate the
emissions associated with vehicle maintenance and manufacturing within heavy-duty truck
LCAs [28, 8, 10]. A major shortfall of EIO-LCA is that the model aggregates multiple
commodities and industries at the level of economic sectors, so the resulting energy and
emissions results may not reflect specific processes or capture economies of scale.

1.2.3 Hybrid LCA

Hybrid LCAs combine the benefits of process-based LCA and economic input-output analysis-
based LCA (EIO-LCA), drawing from the strengths of both methods while curtailing their
weaknesses. Hybrid LCA calls for process-based LCA to be used in evaluating the specific
life-cycle components, and when sub-processes match economic sectors, the EIO-LCA ap-
proach can be used to capture the full upstream supply chain effects [35, 6]. The hybrid
LCA approach has been used in several studies producing sometimes unexpected results in
supply chains that may not have been unraveled with pure process-based LCA [28, 8, 10].

1.2.4 LCA Applied to Heavy-duty Vehicles

The use of any LCA approach requires selection of a system boundary and establishment of
functional units to normalize results. There are five major life cycle stages or components
that stand out as major contributors to the emissions footprint of a heavy-duty truck and bus.
The first two life components characterize the well-to-wheels (W2W) processes (associated
with fuel production, distribution, and storage) and the combustion of fuel. Other, non-use
phase, emissions associated the operation of a heavy-duty vehicle include emissions from
vehicle and trailer manufacturing and vehicle maintenance. The fifth component of a heavy-
duty vehicles’s life cycle is the emissions generated from the construction and maintenance
of infrastructure systems (roads, weigh stations, bus stops, etc.) that support on-road goods
movement. End-of-life emissions have been estimated as being less than 1 percent of the
total emissions footprint of a heavy-duty vehicle [28, 8, 10], so this life phase is frequently
omitted from truck and bus analyses.

The functional unit of comparison used to characterize the emissions generated by the
freight industry is the ton-km (tkm) and by public transportation is the passenger-kilometer
(pkm). This approach facilitates intermodal comparisons because it describes the efficiency
in which goods or people are moved through infrastructure networks on a unit basis. In
general, the total emissions footprint of a set of goods or passengers, i, measured in grams
per functional unit, is [28, 8, 10]:

ef,T =
n∑
i=1

Ii
A
Ei (1.1)
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where,

ef,T = Emission factor for good or passenger (pollutant per functional unit)
n = Total number of components
Ii = Input (e.g., energy, USD)
Ei = Emission intensity of each input (g CO2-eq / Ii units)
A = Vehicle activity (ton-km or passenger-km)

1.3 Review of Frequently Cited Literature

The following section provides a detailed review of literature relevant to assessing the life-
cycle GHG emission factors of heavy-duty vehicles. In order to distinguish the publications
relating to a life-cycle perspective from studies focusing strictly on a narrower point of scope,
we state the system boundaries for each respective study. The goal of sharing this literature
prior to introducing each study in the following chapters is to orient the reader to the use
of average input data in transportation LCA studies and models during a period in which
other researchers noted the limitations of such approach. The studies herein are listed in
chronological order.

Cohen et al. (2003)[17]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The goal of this study is to assess the cost effectiveness of reducing criteria pollutants
and greenhouse gases within transit bus fleets. Estimates for the well-to-wheel (W2W)
emissions for conventional diesel and compressed natural gas (CNG) vehicles are based on
dynamometer measurements for three specific engines models rather than fleet averages.
While the study’s primary focus is on costs, the authors’ results show that bus operation
GHG emissions represent the majority (>70%) of the W2W emission profile for both diesel
and CNG-powered buses.

Silva et al. (2006)[36]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The authors developed a numerical model to simulate fuel consumption and emissions for
diesel-powered and alternatively fueled road vehicles. The model estimates engine loads
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using a resistive force mathematical program, which inputs include vehicle mass, speed, ac-
celeration, and vehicle-specific properties (e.g., frontal area, rolling resistance, etc.). The
authors couple their well-to-tank emission estimates with well-to-pump fuel emission esti-
mates from conventional LCA software in a case study of transit buses operating in the
city of Porto, Portugal. While the results capture the variability in CO2 emissions of urban
transit buses, the results of the case study are based on standardized duty-cycles rather
than location-specific simulations. Nonetheless, this is the earliest example of route-oriented
W2W vehicle assessments. The methodologies in this paper have been implemented in the
review of fuel pathways for light-duty modes (Torchio and Santarelli 2010,Ferreira, Ribau,
and Silva 2011), however its application within heavy-duty vehicle fleets is limited to this
study.

Facanha and Horvath (2007)[8]

System Boundaries : Fuel extraction, production and distribution, vehicle production, vehi-
cle maintenance, vehicle operation, and infrastructure.

Summary :

The authors analyzed the life-cycle emission factors for air, rail, and road transportation
of freight goods in the United States. The emission factors are based on an input-output
analysis and process based modeling (e.g., hybrid LCA). Vehicle productivity and fuel con-
sumption inputs are based on national averages. The carbon footprint of class 2b, class 6,
and class 8 heavy-duty vehicles only includes carbon dioxide. The emission factors for these
modes are 289 g CO2/ton-mi, 230 g CO2/ ton-mi, and 187 g CO2/ ton-mi, respectively.
A parameter sensitivity analysis was performed to assess the influences of vehicle type, ge-
ography, and mode efficiency on the results. This research?s most relevant findings to this
discussion are (i) well-to-wheel processes represent the bulk (80%) of the CO2 footprint of
heavy-duty vehicles and (ii) CO2 emission factors therefore sensitive to small changes in fuel
economy. With 39 citations, this paper the most cited LCA for freight emission factors on
Web of Science and is still used as a reference in studies (8 citations between 2014-2015).

Pont (2007)[37]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

This report, which was commissioned by the California Energy Commission, performs a
comprehensive analysis of well-to-wheel emission factors for a broad spectrum of road ve-
hicles, including heavy-duty trucks and buses. Input put parameters, such as vehicle fuel
economy, ridership, etc., are based on both national and state fleet averages. W2W emission
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factors are reported over ranges to represent the uncertainty in the results, which are primar-
ily caused by variability in vehicle fuel economy. The most significant contribution of this
report is it provides W2W emission factor estimates for many fuel types, which facilitates
mode-specific emissions comparisons.

Ally and Prior (2007)[21]

System Boundaries : Fuel extraction, production and distribution, vehicle production, vehi-
cle maintenance, and vehicle operation.

Summary :

The authors analyze the life-cycle emission factors of buses powered by diesel, CNG, and
hydrogen fuel cell using a hybrid LCA modeling framework. The scope of the study is limited
to fuel pathways found in Australia and the results are based on average emission rates for
each vehicle technology. One of the major findings, in light of the purpose of this review, is
that the life-cycle emissions footprint of transit buses is significantly dependent on vehicle
fuel economy, which may vary widely on a route basis.

Chester and Horvath (2009)[10]

System Boundaries : Fuel extraction, production and distribution, vehicle production, vehi-
cle maintenance, vehicle operation, and infrastructure.

Summary :

This research provides a broad comparison of life-cycle emission factors for passenger ve-
hicles operating in the United State of America, which includes urban diesel buses. The
authors find that the operational component of nearly all vehicles represents the dominant
contribution to their respective life-cycle GHG footprint. Results from a sensitivity analysis
also show that the normalized GHG emission factors for urban diesel buses are extremely
sensitive to assumption of passenger occupancy (50 g CO2,e / pkm, high ridership; 410 g
CO2,e / pkm, low ridership). The authors base these values on a US fleet-average estimate of
vehicle fuel economy. This paper is one of the most cited studies on the life-cycle footprint of
passenger vehicles on Web of Science (54 citations) and is still used as a reference in studies
analyzing the GHG emissions of urban transit systems (6 studies on urban bus networks and
19 total citations between 2014-2015).

CA-GREET (2009)[38]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :
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CA-GREET is a life-cycle emissions model for fuels that was contracted by the California
Energy Commission specifically for fuels used within the state. The model is the primary
policy analysis tool used to assess scenarios relating to California?s Low Carbon Fuel Stan-
dard. The CA-GREET model does not include pathways for heavy-duty vehicles. However,
the well-to-wheel emissions tool bases life-cycle emission factors on average fuel economy
estimates for the light-duty vehicles it models (e.g., cars, electric plug-in vehicles, etc.). Fuel
pathways include conventional petroleum-derived products, biofuels, and gaseous fuels.

Sathaye et al. (2010)[24]

System Boundaries : Vehicle operation and infrastructure rehabilitation.

Summary :

The authors estimate the GHG emissions associated with varying the interval between pave-
ment overlays based on vehicle weights and vehicle mileage. The case studies for this research
focus on a select number of interstate highways and arterial roads in northern California.
The methods presented in this paper demonstrate the relationship between payload size,
axle configuration, and the resulting infrastructure-related GHG emissions: GHG emissions
grow by a fourth order relative to truck payload. While Facanha and Horvath (2007) es-
timate that infrastructure maintenance emissions represent the approximately 10% of the
total CO2 footprint class 8 truck, the results from this assessment indicate that this value
is much smaller.

Meyer et al. (2011)[20]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The authors estimate the well-to-wheel emission factors for class-8 heavy-duty trucks pow-
ered by diesel, biofuels, and natural gas and operated in the United States. The implemented
model assumes an average payload and fuel for each respective fuel, which is reflective of na-
tional fleets. The article states, “It is noted that, in practice, fuel consumption is a function
of truck payload, just as fuel consumption is a function of driver behavior, speed, terrain,
and other factors. Furthermore, the persistence of a legacy fleet or variabilities in engine
design, technology, and performance can affect energy consumption and emissions. In this
analysis, the relationship between these factors and fuel consumption is constrained to reduce
uncertainty; the purpose of this analysis is not to capture all of these effects, but to compare
emissions across a spectrum of fuels.” Overall, the paper advances our understanding of the
average emissions savings associated with adopting alternatively fueled vehicles. Other than
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uncertainties regarding data availability and accuracy, the major limitation of this paper
is the application of these emission factors on a route-level, given the use of average input
parameters.

GREET Fleet(2012)[39]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The GREET Fleet - Carbon and Petroleum Footprint Calculator is a Microsoft Excel
model produced by researchers at Argonne National Laboratory that calculates well-to-
wheel petroleum use and GHG emissions. This tool is exclusively for modeling medium and
heavy-duty vehicles, including buses, operating in the United States. For each mode and
fuel type, GREET Fleet provides baseline estimates for annual miles travelled, average fuel
economy, and vehicle loading factors (e.g., tons and passengers). Well-to-pump emissions are
based on estimates from the more compressive GREET model [30], which like CA-GREET
[38], only reports fuel pathways for light-duty vehicles. Fuel pathways include conventional
petroleum-derived products, biofuels, and gaseous fuels.

McKenzie and Durango-Cohen (2012)[19]

System Boundaries : Fuel extraction, production and distribution, vehicle production, vehi-
cle maintenance, and vehicle operation.

Summary :

This study analyzes the marginal abatement costs of switching from diesel-powered tran-
sit buses to two potential low-carbon alternatives: diesel hybrid and CNG transit buses.
Life-cycle emission factors for each mode were estimated using a hybrid LCA method. Well-
to-tank emissions were based on various values estimated in the literature, including Pont
(2007) and Chester and Horvath (2009). Vehicle fuel economy for each vehicle types is based
on specific transit bus demonstrations in New York City andAlameda County, California.
While previous studies report a single central estimate for life-cycle emission factors, the au-
thors publish their findings over a range of values that reflect variability in key parameters -
most notably passenger ridership. In a parameter sensitivity analysis of passenger demand,
the authors find that, “emissions for each bus type is highly dependent on the [passenger]-
load factor, as well as the capacity of the bus. At low [passenger]-load factors, the per
[passenger]-mile emissions are greatest for the diesel bus, however the higher capacity of this
bus means that it has the lowest per [passenger]-mile emissions at higher load factors.” The
authors do not relate increased passenger loads with increased emissions, however. Overall,
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the researches show that vehicle loading factors influence the cost-effectiveness of vehicle
mode-switching or technology adoption policies.

Xu et al. (2013)[40]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The authors of this study compare the well-to-wheel emissions footprint (including GHGs) for
five transit bus vehicle technologies, conventional compression ignition, parallel hybrid elec-
tric, series hybrid electric, battery electric and fuel-cell electric, in combination with three
fuel types, diesel, compressed natural gas (CNG), and 20% biodiesel. Each vehicle’s fuel
consumption was based on power requirements estimated through combining in-field mea-
surements of the vehicles speed, acceleration, and road grade with power-dependent emission
rates provided in the US EPA’s MOtor Vehicle Emissions Simulator (MOVES) model. The
case study is limited to only a few vehicle trips monitored in Atlanta, Georgia. The results of
their study show the GHG savings achieved from switching from conventional (e.g., diesel)
to low-carbon (e.x., CNG) vehicle technologies is “highly dependent upon the route char-
acteristics.” This study illustrates the advantages of coupling route-based emissions models
with regionally-based fuel models in order to improve the accuracy of life-cycle emission
factors. While the study offers new methods and tools to evaluate individual heavy-duty
vehicles, it does not address the issue of how these results could improve decisions regarding
the management of vehicle fleets where collecting ‘real-time’ operational data isn’t possible.

NEAT: Non-Light Duty Energy and GHG Emissions Accounting Tool
(2014)[32]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

Argonne National Laboratory’s Non-Light Duty Energy and GHG Emissions Accounting
Tool (NEAT) allows analyst’s to estimate the well-to-wheel energy usage of every major
freight mode in the United States. The model delineates each mode based on commodity
classes listed in the U.S. Census Bureau’s Commodity Flow Survey. Vehicle input parameters
are based on a 2002 survey of freight vehicles. Well-to-wheel energy estimates are based on
the GREET model. The model currently ignores all other environmental indicators, such as
GHG emissions and criteria air pollutants. In the model, heavy-duty vehicles are represented
as a single class: class 8 trucks. Medium-heavy duty vehicles are not included in the tool.
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CA-GREET (2015)[38]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The 2015 version of the CA-GREET tool is identical in structure and scope as the 2009
version. While the tool does not review heavy-duty vehicle fuel pathways, it does include
additional fuel types, which are considered “next-generation fuels (cellulosic alcohols, hy-
drogen, drop-in fuels, etc.) or first-generation fuels produced using innovative production
processes.”

Matute and Chester (2015)[18]

System Boundaries : Fuel extraction, production and distribution, vehicle production, vehi-
cle maintenance, vehicle operation, and infrastructure.

Summary :

The authors examine the energy and GHG emissions payback period, e.g., the period of time
required to recoup the environmental burdens expended during infrastructure construction,
for select urban transit projects in the city of Los Angeles. Bus rapid transit (BRT) was
one of the modes considered. Life-cycle emission factors for BRT are based on the “best
available technology buses today (effectively a 23% improvement from today’s buses [in the
United States]).” The studies results indicate that buses with greater vehicle loading factors
(e.g., higher ridership) have shorter payback periods, since the GHG emission savings from
switching to BRT from automobiles are greater when buses are fuller (e.g., lower normalized
emissions footprint). The biggest limitation of this paper is it assumes that BRT fuel con-
sumption rates are a constant across the network and therefore GHG emissions are linearly
proportional to vehicle distance travelled.

Tong et al. (2015)[29]

System Boundaries : Fuel extraction, production and distribution, and vehicle operation.

Summary :

The authors in this recent study aim to estimate the well-to-wheel emission factors for
medium and heavy-duty trucks and buses for natural gas fuels. Other conventional fuel
pathways (diesel and gasoline) are also analyzed. The results for each vehicle mode were
based on Monte Carlo analysis to account for the variability and uncertainties associated
with each fuel pathway. This paper shows both the strengths and the potential weaknesses
of LCAs of heavy-duty vehicles. The strengths include providing decision-makers with in-
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formation useful for comparing the climate footprint of heavy-duty vehicles. However, given
issues of data availability and uncertainty, these values represent only what can be expected
across vehicle fleets on average. The authors note that one of the paper’s biggest limitations
is its “inability to consider real-world conditions in actual operations of [heavy-duty vehi-
cles], especially the drive cycles (e.g., speed, idling, road grade) and payload profiles.” They
follow with an optimistic view of the future in which “vehicle tests and innovative method to
factor duty cycles onto assessments of vehicle [life-cycle] emissions” are available to further
refine the scope of these types of fuel pathway assessments.

1.4 Problem Statement and Questions

By 2050, heavy-duty trucks and buses are forecasted to represent 38 percent of all on-road
GHG emissions in the United States (10% increase in share since 2010). This trend in growth
is expected to continue into the next century [1]. We need comprehensive strategies to al-
locate the emissions from these vehicles to specific commodities and passengers, accounting
for all direct and indirect processes associated with their complete life cycle of vehicles, fu-
els, and infrastructure. During the policy selection process, life-cycle assessments inform
decision-makers (e.g., fleet owners, regulators, etc.) by quantifying all relevant GHG or
other emissions from the extraction of raw materials for these vehicles through their produc-
tion, distribution, and use phases until ultimately their disposal. While comprehensive, the
results of LCAs are subject to both uncertainty and variability, especially for dynamic sys-
tems like heavy-duty vehicles, which increases the risk of selecting suboptimal environmental
mitigation strategies.

This dissertation aims to improve the accuracy of LCAs of heavy-duty vehicles and the
decisions they inform by addressing the following questions:

• As of 2015, what are the fleet-scale GHG emission factors for heavy-duty
trucks and buses?

– With California as a focus, we seek to provide individual well-to-wheel GHG
emission factors for heavy-duty vehicles based on (i) the state’s designated vehicle
categories, (ii) gross vehicle weight rating (truck only), and (iii) commodity type
for trucks.

• To what extent can GHG emission factors and inventories derived from a
generic LCA model be applied to individual trucks and buses?

– We seek to present new knowledge on the uncertainties surrounding the use of
generic data, specifically generic fuel economy, vehicle productivity, and infras-
tructure topology data, in the generation of GHG emission inventories for heavy-
duty vehicles.
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– We seek to conduct original case studies on (i) trucks monitored in the Caltrans
Performance Measurement System, (ii) real-time operations of buses in nine pub-
lic transit agencies in California, (iii) each classification of trucks operating in
California, and (iv) intermodal truck activities across the United States.

– We seek to provide policy directives that guide LCA modelers as to when it
is appropriate to use generic, fleet-scale GHG emission factors to calculate the
carbon footprint of heavy-duty vehicles and when more precise emission factors
are needed.

• Are there systematic biases associate with the use of average productivity
data (e.g., freight tonnage and bus ridership) in fleet-scale LCAs?

– We seek to evaluate the relationship between the variability and skew of truck
payload and bus ridership distributions on the expected results of LCA models.

• Does the interrelation or arrangement of a freight system’s constituent parts
(i.e., topology) affect the environmental footprint of goods movement?

– We seek to understand how the proximity to critical supply chain infrastructure,
e.g., intermodal terminals, affects environmental performance of trucks and inter-
modal rail.

– We seek to improve our understanding of the GHG footprint of intermodal freight
systems by providing county-to-county GHG footprints for each county in the U.S.

– We seek to analyze this effect across commodity types and its influence on con-
sumers’ accessibility to goods from an environmental perspective.

1.5 Organization

The rest of the chapters are organized as follows.
Chapter 2 presents a study that estimates the aggregation errors in terms of percent

deviation from the average, associated with assuming a fleet-wide fuel economy in LCA
models of heavy-duty vehicles. We assess these errors across regional, local, and discrete
level of specificity (i.e., aggregation level) for trucks operating along highways and buses
operating in 9 different public transit agencies in California.

Chapter 3 presents a study that quantifies the GHG emissions bias associated with as-
suming a fleet-wide loading factor (i.e., payloads and ridership) in LCA models of heavy-duty
vehicles. We assess these biases for all truck classes operating in California, considering the
vehicle size and configuration (i.e., body and trailer types). We also conduct a case study
for San Francisco’s MUNI bus network. This chapter is based on our study published in
Environmental Science & Technology [41].

Chapter 4 presents a study that assesses the GHG emissions errors associated with ignor-
ing network topology (e.g., geometric and spatial properties of the infrastructure) in LCA
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models of heavy-duty freight trucks. In contrast to Chapters 2 and 3, this chapter primarily
focuses on these formulation of GHG emission inventories rather than solely emission fac-
tors. We analyze how the GHG reduction potentials associated with switching from truck
to rail (e.g., modal switch) differ across different product supply chains and between spe-
cific locations across the United States. This chapter is based on our study published in
Environmental Science & Technology [42].

Finally, in Chapter 5, we conclude with an overview of the work presented, its implications
on environmental decision-making, and directions for future research.
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Chapter 2

Aggregation Errors in LCAs of
Heavy-Duty Vehicles: Speed
Variability

2.1 Introduction

Spatial and temporal variability of greenhouse gas (GHG) emission factors for heavy-duty
vehicles is primarily determined by variability in fuel economy. A recent study by Taptich et
al. (2015) found that over 95% of life-cycle GHG footprint of a heavy-duty trucks and buses
results from the extraction, production, distribution, and combustion of transportation fuels
(i.e., well-to-wheel processes, W2W)[13]. The same is true for other environmental impacts
[8, 19, 20]. The allocation of these emissions is based on the rate at which fuel is consumed by
a vehicle and the process-specific energy-to-emissions conversion factors [8]. Other supply-
chain processes, such as vehicle production, maintenance, end of life, and infrastructure
support, contribute less to the overall variability of life-cycle emissions factors for heavy-
duty vehicles because their total impacts are amortized over the lifetime of the vehicle [8].
Given the significant proportion of GHG emissions tied to the well-to-wheel processes, fuel
economy variability is an important driver for overall life-cycle impact variability.

The well-to-wheel emission factors for heavy-duty vehicles found in the literature [17,
27, 28, 8, 21, 10, 20, 19, 29] and within prominent LCA databases [30, 31, 32, 38, 39]
reflect a generic or industry-average perspective, i.e., each model input constitutes generic
or composite data for a global or regional context. For instance, Argonne National Lab-
oratory’s GREET Fleet - Carbon and Petroleum Footprint Calculator (2012) (one of the
aforementioned tools) allows heavy-duty truck and bus owners to evaluate the energy usage
and GHGs emissions of their fleet based on one central estimate for fuel economy among
other inputs, e.g., payload and annual vehicle kilometers traveled. The process of using mean
input values to predict the mean values of outcomes is called aggregation. Data aggregation
is one way to reduce the dimensionality of LCAs (i.e., the number of random variables under
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consideration), which is often essential for reducing the complexity of LCAs for a general au-
dience or group of decision-makers [43]. Moreover, aggregating fuel economy data is akin to
stating that the marginal influence of vehicle attributes such as vehicle speed, acceleration,
and mass, have no significant relation to the overall decision-making process (i.e., life-cycle
footprint). While fuel economy variability is often encapsulated in sensitivity analysis [8,
20, 19, 29], the results of LCAs of heavy-duty trucks and buses often lack the specificity to
properly characterize the performance of the individual vehicles [17, 27, 28, 8, 21, 10, 20, 19,
29].

Though route-oriented emissions assessments exist, their methodologies have not been
broadly integrated within LCA models such as the Greenhouse Gases, Regulated Emissions,
and Energy Use in Transportation Model (GREET) [30] or the Ecoinvent Database [31].
Vehicle traveling speed [44, 45, 46, 47, 48, 49, 50], terrain [51, 40, 52], vehicle payload [53],
driver behavior [54], road conditions [55, 24], among other factors [56, 36] all have an impact
on fuel economy and subsequently tailpipe emissions. These variations are amplified when
well-to-pump emissions are also considered, which are linearly scaled with fuel consumption
rates (g CO2,e / MJ) [30, 38]. Each of these factors is important for understanding how fuel
economy is influenced by discrete-scale vehicle activities.

Uncertainties relating to data aggregation are a reasonably well-researched topic in the
field of life-cycle assessment [7, 6, 57]. However, there is an emerging need to understand how
aggregation bias affects the accuracy of transportation-specific LCAs [58]. It is important
for decision-makers, i.e., those using life-cycle emission factors, to know the extent to which
generic or aggregated emission factors apply. Bridging this analytical gap may allow the
decision-makers to more efficiently and accurately answer important questions, such as, “are
drayage trucks traveling within urban networks causing more GHG emissions than line-haul
trucks,” “does increasing truck payloads or bus ridership always improve the life-cycle GHG
footprint,” or “are the benefits from introducing alternatively-fueled trucks or buses uniform
across the country?”

The focus of this chapter is to evaluate whether it is appropriate to use generic well-
to-wheel emission factors under different levels of specificity or aggregation. Broadly, there
are four major decision-makers interested in knowing and reducing the GHG footprint of
heavy-duty vehicles: governments, fleet owners, and individual firms or people employing
their services. LCA practitioners rely on life-cycle GHG emissions factors for heavy-duty
vehicles to calculate the overall emissions from other products and systems. The utility
each stakeholder gains by knowing the carbon intensity of heavy-duty vehicles varies, which
influences the way decisions are made and policies are formed. For example, governments
may want a fleet of heavy-duty trucks and buses to reduce GHG emissions, while a company
may be only interested in vehicles that they utilize. The optimal decision in the former case
may be different than the latter, but both are not currently equipped with the appropriate
tools to make the correct assessment. In this chapter, we select three levels of specificity
in which we assess aggregation bias: a regional scale that is closely associated with the
geographic scope of most available, generic, or industry-average data, a local scale that
encompasses both city- and route-specific perspectives, and a discrete scale that reflects the
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scale of individual vehicle trips.
To summarize, the main goal of this analysis is to compare the explanatory power of

aggregate emission factor models on more spatially and temporally resolved scales (e.g., sub-
regional, city, etc.), so we perform a quantitative evaluation of aggregation bias resulting
from the use of fleet-wide average fuel economy data. Based on a careful review of openly
available data on heavy-duty vehicle transportation systems and transportation emissions
models, we chose to only analyze the effect speed variability has on emission factor aggre-
gation errors, though other driving conditions (e.g., vehicle acceleration, road grade) are
also important contributors to emissions variability and should be explored in the future.
In doing so, this analysis aims to contribute insights into LCA model formulation as well
as the appropriate use of secondary data in LCA models. A secondary goal is to highlight
underutilized yet publicly available data sources that could be integrated into current LCA
models.

2.1.1 Scope of Case Studies and Chapter Organization

California serves as the basis for the following case studies. In California, always at the
forefront of transportation policies, there have been recent attempts that piece wise aim to
reduce the well-to-wheel emissions footprint of on-road vehicles. Efforts include incentivizing
fuel-efficient vehicles [59, 60], setting a carbon-intensity limit on fuels sold within the state
[61], advancing tailpipe emissions standards [62], and others state bills directly addressing
climate change [63]. An important aspect of regulating the well-to-wheel emissions is es-
tablishing methods to monitor the well-to-wheel footprint of vehicles currently on the road,
especially within a temporal and spatial context, and use such information to better inform
local policy.

The chapter is partitioned into four sections: (i) a background and further motivation
section to provide a review of literature and to establish the geographic setting (California)
for the case studies; (ii) a methods section which defines in detail the decision-making scales
analyzed in this study, formalizes both heavy-duty truck and bus emission factors, and
presents the basis for our selection of representative vehicles; (iii) a case study of heavy-duty
trucks operating along highways in California; and, (iv) a case study of heavy-duty buses
operating within 9 transit agencies in California. We conclude the chapter with a summary
of the chapter’s findings, then a discussion of the results, and their impact on the life-cycle
emission factor formulation and selection process for heavy-duty vehicles.

2.2 Methods

2.2.1 Decision-Making Scales

In this study, decision-making scales include (i) a regional scale, where vehicles are modeled
as fleet-wide averages, (ii) a local scale, which represents a small subsample of the larger fleet,
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Figure 2.1: The different scales at which environmental assessments of heavy-duty vehicles
are characterized. Vehicles in regional assessments are represented in abstract as a generic or
fleet averaged vehicle. Vehicles in local assessments are characterized by a small subsample
of a larger fleet. These vehicles are classified as being within geopolitical boundaries (e.g.,
cities, zones) or along specific routes. Vehicles in discrete assessments are characterized on
a trip-by-trip basis.

and (iii) a discrete scale, which represents the movement of vehicles on a trip-by-trip basis
(Figure 2.1). For each of the levels of specificity, Figure 2.1 indicates whether additional
geographic (x) or temporal (t) information is available to differentiate a heavy-duty vehicle
from the rest of the fleet. The common assumption across the regional and local levels of
specificity is that obtaining information at more resolved scales might be costly, but not
prohibitively. That is, information may exist, but the modeler may opt to use fleet-wide
averages and trade off some amount of uncertainty. The goal of the case studies is to assess
the uncertainties in these decision pathways and guide modelers to the correct emission
factors at each scale.

2.2.2 Emission Factor Formulation

The scenarios presented evaluate whether fleet-average estimates of truck and bus emission
factors are appropriate for modeling the GHG emissions footprint of vehicles at a local (e.g.,
district, city, agency) and discrete (e.g., route, bus line) resolution. To simplify the prob-
lem,we analyze the extent to which speed variability [44, 45, 46, 47, 48, 49, 50] contributes to
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emission-factor aggregation bias at each of these decision-making levels, though other driving
conditions and vehicle attributes could also be explored [51, 40, 52, 53, 54, 55, 24, 56, 36].
Given the significant shares (>95%) of emissions relating to the production, distribution,
and ultimate combustion of transportation fuels [13], we limit the scope of the assessment to
only these system processes, ignoring GHG emissions from vehicle production, maintenance,
infrastructure, and end-of-life [8, 24].

Formally, we first restructure the current well-to-wheel impact equations (Eq. 2.1) to ac-
count for this, now endogenous variable by amending the pump-to-wheel energy consumption
rate (Eq. 2.2):

Ef,avg = EMJ,avg × (π + γ) (2.1)

Ef,s = EMJ(V )× (π + γ) (2.2)

where,

Ef,avg: Well-to-wheels emissions rate (g pollutant /km), fleet average
EMJ,avg: Pump-to-wheel energy consumption rate (MJ/km), fleet average
Ef,s : Well-to-wheels emissions rate (g pollutant /km) as a function of speed, V
EMJ(V ): Pump-to-wheel energy consumption rate (MJ/km) as a function of speed, V
π: Tank-to-Wheels emissions rate (g pollutant /MJ)
γ : Well-to-pump emissions rate (g pollutant /MJ)

Tailpipe or tank-to-wheels emission rates for GHGs were modeled using the California
Air Resources Board (CARB) EMFAC 2011 model [50]. The EPA’s MObile Vehicle Emission
Software (MOVES) model [48], among other models used in the literature [3, 36, 56, 52],
could have also been used in this assessment. EMFAC was designed specifically to model
the emissions from Californian vehicle fleets and the model results for CO2 emissions from
heavy-duty vehicles are comparable to those found in MOVES [64, 48]. For these reasons, we
rely only on this model for the assessment. CARB models heavy-duty emission rates across
varying speeds using speed correction factors (SCF) [45, 49]. The SCFs scale emission
factors to reflect average emissions measurements collected as trucks execute both federal
(e.g., Urban Dynamometer Driving Schedule, the Creep mode, the Transient mode, the
Cruise mode, and the High Speed Cruise mode test cycles) and state (e.g., ARB 4-Mode
cycle) standardized duty cycles [49]. Since vehicles are not traveling at constant speeds
across the duty cycles, these SFCs also reflect changes in emissions caused by periods of
acceleration. Thus, the following emission factors reflect average, rather than instantaneous,
emissions with respect to speed.

A comparison of the SCFs across the vehicle classes is presented later in this section. The
EMFAC model offers emission rates estimates for heavy-duty vehicles powered by gasoline,
diesel, and natural gas [49]. Electric heavy-duty vehicles, which represent <<1% of the total
vehicle stock in the state, are excluded from the EMFAC. Given this data limitation, we
assume that electric heavy-duty vehicles have similar SFCs to gasoline, diesel, and natural
gas vehicles, which is supported in part by SCFs offered by vehicle manufacturers [65].
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CARB’s official annual baseline results for total emissions rates and tailpipe emission facts
are openly published in an online database. In addition to carbon dioxide, the database also
includes estimates for criteria air pollutants (NOx, particulate matter, carbon monoxide,
sulfur dioxide) as well as ozone precursors (e.g., volatile organic compounds). While the
EMFAC database offers a basis for conducting state-level, pump-to-wheel emissions assess-
ments, it does not report fuel consumption rates as a function of speed. To correct for this
exclusion, we estimate the pump-to-wheel energy consumption rate (MJ/km) as a function
of speed based on a carbon-balance method. Given standard properties of low-sulfur diesel
and CARBOB [38], the energy consumed per distance driven was determined for heavy-duty
trucks and buses, as follows:

EMJ = Ef,CO2 ×
(

44/12 ∗ wc ∗ ×YCO2/(YCO2 + YCO + 3 ∗ YHC) ∗ γd
)−1
× LHV (2.3)

EMJ(V ) = Ef,CO2(V )×
(

44/12 ∗wc ∗×YCO2/(YCO2 + YCO + 3 ∗ YHC) ∗ γd
)−1
×LHV (2.4)

where,
Ef,CO2 = Carbon dioxide emission rate (g CO2/km), fleet average
Ef,CO2(V )= Carbon dioxide emission rate (g CO2/km) as a function of speed, V
YCO2= Mole fraction of CO2 in tailpipe exhaust
YCO= Mole fraction of carbon monoxide in tailpipe exhaust
YHC= Mole fraction of hydrocarbons in tailpipe exhaust
wc= Carbon intensity of fuel, (g C/g fuel)
γd= Density of diesel fuel, (g diesel fuel/liter fuel)
LHV= Lower heating value (MJ/liter fuel)

The three in front of YHC denotes the conversion of hydrocarbons as propane equivalents
to carbon atoms [66]. The calculated energy consumption rate per distance traveled was
then used to determine the well-to-pump GHG emissions for each respective vehicle type.
The final well-to-wheels GHG emissions rates were calculated (Eq 2.1) by combining the
results from the EMFAC2014 model (g pollutant per km) [50] with the results of our model
runs using the GREET model (g pollutant per MJ) [30].

2.2.3 Estimation of Emissions Errors

In this research, the primary interest is estimating the relative emissions deviation (δ) as an
indicator of aggregation errors, which we define as the relative difference between the fleet
average emission factor, Ef,avg, and the more resolved, speed-corrected emission factor, Ef,s:

δ =
Ef,s − Ef,avg

Ef,avg
(2.5)
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In practice, the costs (e.g., time, financial, computational) of gaining extra precision may
lead LCA practitioners to accept some level of uncertainty in emission factor estimators.
This threshold tolerance for δ could be estimated by performing a cost-benefit analysis on
an individual case basis. We were unable to find any supporting literature delineating a
generalizable method for defining an allowable emissions deviation threshold since these
decisions are made on a case-to-case basis [5]. Therefore, in the following case studies, we
arbitrarily picked |δ| = 0.2 to be a representative threshold based on a target accuracy of
80%. We assume that any deviation less than this threshold would imply that a fleet average
emission factor could suffice as a reasonable substitute for its speed-corrected counterpart.
Though this approach is admittedly subjective, establishing an arbitrary threshold value
facilitates both the discussion of the results as well as the comparison between heavy-duty
trucks and buses. Again, establishing a threshold |δ| would be and should be done on a
case-by-case basis [5].

2.2.4 Representative Vehicles

This subsection outlines the process for selecting the representative vehicles used in the
chapter’s case studies. The section presents an intermediate analysis of heavy-duty vehicle
well-to-wheel emission factors and their variability across speeds, vehicle categories, and
model years.

CARB reports emission factors for various types (e.g., car, bus, truck), subclasses (e.g.,
passenger, in-state, urban), and model years of vehicles in the EMFAC database [50]. Table
2.1 provides an overview of each vehicle class as well as the calculated fleet-average well-to-
wheel GHG emission factor.1 Figure 2.2 summarizes the speed-resolved well-to-wheel GHG
emission factors for each of the vehicle categories. For each category, the vehicle type with
the highest annual vehicle kilometers traveled in California is shown.

We base the selection of vehicles based on cumulative annual vehicle kilometers traveled.
In California, diesel non-neighboring out-of-state trucks (HHD NNOOS) class represents the
most VKT, so this was used as the case study’s representative vehicle for heavy-duty trucks.
These trucks are often associated with intercity travel on highways. The Ef,s profile for
this vehicle class is the same for diesel neighboring out-of-state trucks (HHD NOOS), diesel
tractor trucks (HHD Tractor), and diesel California International Register Plan trucks (HHD
CAIRP) (Table 2.1). Collectively, these vehicle classes represent 52% of VKT by all heavy-
duty trucks in California and 77% of all class-8 tractor-trailers in California [50]. Other
vehicles were also suitable candidates within the HHDs if we were to consider the type of
commodity being transported (e.g., agricultural products, construction). The representative
model year is 2012. For heavy-duty buses, we select UBUS as the representative vehicle class
as it represents urban transit buses, which is the basis of our case study. Based on total

1GVWR refers to Gross Vehicle Weight Rating.
3Diesel-powered unless reported otherwise.
3Electric bus emission factors are based on studies independent of CARB (72).
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Table 2.1: Well-to-wheel emission factors for heavy-duty vehicles listed in EMFAC.2

Vehicle Class Description Model
Year

Ef,avg

MHD Ag Medium-Heavy Duty (MHD) Diesel Agriculture Truck 1999 1390

MHD CAIRP heavy MHD Diesel CA Int’l Reg. Plan Truck with GVWR>26000 lbs 2012 1370

MHD CAIRP small MHD Diesel CA Int’l Reg. Plan Truck with GVWR≤26000 lbs 2014 1330

MHD OOS heavy MHD Diesel Out-of-state Truck, GVWR>26000 lbs 2012 1370

MHD OOS small MHD Diesel Out-of-state Truck, GVWR≤26000 lbs 2014 1330

MHD Public MHD Diesel Public Fleet Truck 2013 1440

MHD instate construction heavy MHD Diesel instate construction Truck, GVWR>26000 lbs 2008 1370

MHD instate construction small MHD Diesel instate construction Truck, GVWR≤26000 lbs 2012 1430

MHD instate heavy MHD Diesel instate Truck with GVWR>26000 lbs 2012 1380

MHD instate small MHD Diesel instate Truck with GVWR≤26000 lbs 2012 1430

MHD utility MHD Diesel Utility Fleet Truck 2013 1430

MHD TS MHD Gasoline Truck 2008 1500

HHD Ag Heavy-Heavy Duty (HHD) Diesel Agriculture Truck 1995 1950

HHD CAIRP HHD Diesel CA Int’l Reg. Plan Truck 2012 1830

HHD CAIRP construction HHD Diesel CA Int’l Reg. Plan Construction Truck 2008 2050

HHD NNOOS HHD Diesel Non-Neighboring Out-of-state Truck 2012 1830

HHD NOOS HHD Diesel Neighboring Out-of-state Truck 2012 1830

HHD POAK HHD Diesel Drayage Truck in Bay Area 2008 2120

HHD POLA HHD Diesel Drayage Truck near South Coast 2008 2130

HHD Public HHD Diesel Public Fleet Truck 2013 1940

HHD Single HHD Diesel Single Unit Truck 2008 2060

HHD other port HHD Diesel Drayage Truck at Other Facilities 2008 2100

HHD single construction HHD Diesel Single Unit Construction Truck 2008 2050

HHD tractor HHD Diesel Tractor Truck 2012 1850

HHD tractor construction HHD Diesel Tractor Construction Truck 2008 2050

HHD utility HHD Diesel Utility Fleet Truck 2012 1930

HHD IS HHD Gasoline Truck 2007 2310

All Other Buses All Other Buses 2008 1390

OBUS Other Buses, Gasoline 2006 1520

SBUS School Buses 2008 830

UBUS Urban Buses 2001 2120

UBUS-NG Urban Buses, Natural Gas - 1590

UBUS-electric3 Urban Buses California Electricity) - 320

UBUS-electric-sf Electric Urban Buses in San Francisco (Hydropower Only) - 4
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Figure 2.2: Speed-corrected emission factors for buses, MHD trucks, and HHD trucks. Each
value represents the vehicle model year with the most annual VMT. Also shown are the
well-to-wheel baseline emission factors that are based on average fleet parameters (dashed
line, grey).
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annual VKT driven in the state, this vehicle class’s representative model year is 2001. These
statistics were derived from the EMFAC 2011 database [50].

There are two issues associated with representing the emissions deviation from a fleet
of vehicles with a single vehicle class and model year. The first issue stems from interclass
differences. Figure 2.3 compares the magnitude of the emissions deviation, δ, across vehicle
traveling speeds for the representative vehicles selected for this study as well as other heavy-
duty vehicles listed in the EMFAC database. Each value represents the vehicle model year
shown in Figure 2.2, which is based on the greatest annual VKT. CARB assigns the same
SFCs to natural gas fueled vehicles as diesel vehicles, and we assume that the same SFCs
apply to electric vehicles based on data from manufacturer’s tests [65]. Therefore, these
emission deviation estimates reflect the errors for alternatively fueled vehicles as well.

The level of error (positive or negative) varies across traveling speeds, with large negative
deviations occurring at reduced traveling speeds and positive deviations for higher speeds.
Since the Ef,s profile for the representative heavy-duty truck class is the same for HHD
NOOS, HHD Tractor, and HHD CAIRP, the relative difference in estimates across vehicle
traveling speeds are identical. Since a single vehicle class in EMFAC represents transit buses,
the first issue does not affect this mode.

The second issue arises from possible differences in emissions deviation between model
years. Figure 2.4 illustrates the standard deviation of the emissions deviation, std(δ), re-
ported across vehicle traveling speeds to examine the variability across vehicle model years.
Since vehicle model years extend back to 1971, only model years representing the top 80%
of fleet VKT are represented in the sample. Results show that emissions deviation at lower
speeds (e.g., <40 kph) is more sensitive to vehicle model year than at higher speeds. Overall,
variability in emissions factor deviation estimates are generally small, so relying on a single
model year is justified.

2.3 Long-Haul Trucking in California Case Study

2.3.1 Vehicle Speed Data

The Performance Measurement System (PeMS) network served as input data to model the
movement of heavy-duty trucks along California highways [67]. PeMS is a traffic management
network used by the state’s Department of Transportation (Caltrans) to record the movement
of vehicles around the states. The network consists of over 39,000 remote traffic detectors,
which record real-time information on vehicle counts, vehicle occupancy, vehicle speeds,
and more. Caltrans also provides an archive of data spanning 10 years for each of the
PeMS network sensor stations. The PeMs reporting systems offers many valuable pieces of
information that can be used to assess the environmental performance of vehicles, such as
traveling speeds, vehicle counts, lane widths, and is aggregated over numerous time scales.
For the purpose of this study, we chose a full week of PeMS stations reports (June 7, 2015
- June 13, 2015), which was reported in 5-minute intervals. Station samples were removed
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Figure 2.3: Results for a comparison of speed-resolved and average W2W emission factors
show the relative difference in estimates across vehicle traveling speeds. Each value represents
the vehicle model year shown in Figure 2.2, which is based on the greatest annual VKT.

from the dataset when there was no observed flow or there were equipment failures. At each
of the reporting stations, we rely on the cross-lane average speed to estimate W2W emission
rates and assume these values represent traveling speeds for cars. However, since heavy-duty
trucks must adhere to a different set of speed limits (≤ 88 kph) on California freeways [68],
speeds were constrained to these limits. Due to lack of data, the case study assumes that
truck traffic is proportional to total VKT.

During these periods of congestion, emission factors increase due to more frequent periods
of acceleration and lower vehicle traveling speeds. Since one goal of our case study is to show
how well-to-wheel emission factors vary over time and space, we choose to isolate periods
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Figure 2.4: For each vehicle class, the standard deviation of the emissions deviation, std(δ),
is reported across vehicle traveling speeds to examine the variability across vehicle model
years.

of congestion (on-peak) from periods when cars are traveling at free-flow speeds (off-peak).
We assume on-peak periods of congestion correspond to morning (7:00 - 9:30) and afternoon
(15:00 - 19:00) commutes.

Stations are not uniformly distributed along routes within the PeMs network, which
could bias aggregation statistics if not corrected. Therefore, when averaging across sample
time periods or aggregating up to route-level assessments, we weighted the emission factors
at each station based on VKT. For example, the weighted-average, well-to-wheel emission
factor,Ēf,si(t), along a generic route at time interval, t, is:
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Figure 2.5: (A) Tonnage flows by heavy-duty truck along major freight corridors (2007). (B)
Sensor locations for Caltrans PeMS vehicle monitoring network.

Ēf,si(t) =
n∑
i

(Ef,siLifi
Lifi

)
(2.6)

where

Li = Representative vehicle sensor recording distance at station i, (km) (e.g., its
fi = Vehicle flow at station i, (veh / time-interval)
n = Total number of station samples along the route at time t

One limitation of using the PeMS network to estimate emission factor aggregation bias is
the network primarily records the flow of vehicles along major highways. The lack of intercity
detectors implies that truck movements, particularly among smaller truck classes, associated
with the “last mile” of goods movement [69] are significantly under-sampled. Though im-
portant contributors to environmental impacts [24], these truck activities represent only a
small fraction of California’s total, on-road freight turnover [50]. Figure 2.5 compares the
annual tonnage (2007) moved by trucks in California [2] as well as the locations of the PeMS
network sensor stations [67]. Moreover, the results of this case study reflect primarily, if not
entirely, the movement of goods over large distances (i.e., intercity, interstate, transnational).

2.3.2 Results

Aggregation bias was assessed across 9 Caltrans districts, where PeMS monitoring stations
were available, and the results of this regional assessment are presented in Figure 2.6. Results
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Figure 2.6: Scenario results for district-level emission variability across California show that
only a small percentage of monitored VKT are subjected to periods of congestion (e.g., high
δ).

indicate that speed variability on these spatial scales does not significantly lead to variability
in GHG emissions on a weekly basis. For the select representative vehicle categories, the
average deviation between the fleet-wide average emissions factor (1,840 g CO2,e / tkm) and
the speed-corrected emission factor (1,700 g CO2,e / tkm) was ≈7%. This error is consistent
with the errors associated with trucks operating at unconstrained or free flow speeds (i.e.,
88 kph). Approximately 91-99% of VKT across the districts reported this level of GHG
emissions error.

Given the low overall variability, we report the results for this analysis as a percentage of
VKT within emission deviations bins across each district (Figure 2.6,) to better capture the
frequency of emission deviations. Here, outliers were selected based on our decision-making
threshold tolerance (e.g., |δ| = 0.2), which was discussed in a preceding section. Results
show that Caltrans District 7, which encompasses both Los Angeles and Ventura counties,
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reported the greatest share of emissions deviation, 2.3% of total VKT, above our selected
threshold tolerance. Generally, emissions deviations breach this threshold more frequently
during weekday periods of peak travel demand. Across the districts, evening periods of
congestion caused higher levels of deviation than morning periods.

The overall low deviations within and across Caltrans districts suggest that fleet wide
average emission factors would suffice for LCAs at the regional level of specificity. The higher
deviations during periods of congestions, however, suggest that peak and off-peak emission
factor subclasses could improve the accuracy of these models. Continuing the previous
assertion, freeway-level (i.e., local specificity) emission variability across California during
weekday travel periods was explored in more detail.

From analysis of 89 freeways across California [67], results again suggest that speed
variability on these spatial scales does not significantly lead to variability in GHG emission on
a weekly basis. Expected emissions deviations reflect the errors common to trucks traveling
at free flow speeds. Over 90% of VKT across the highways recorded within the PeMS network
reported this error. This, again, suggests that a single speed-resolved W2W emission factor
(typically average free-flow speed) can be used to represent overall vehicle travel within this
network.

Figure 2.7 shows that the largest errors occur among a smaller portion of vehicles during
weekday on-peak periods. The top 60 of the top 89 freeways based on recorded VKT are
shown. Two major trends are apparent. First, nearly all of the emissions deviation occurs
within the designated periods of congestion. Trucks operating during off-peak periods of the
day along every route recorded within the network emit GHGs at a rate of approximately
1,700 g CO2,e / tkm. Second, evening periods of congestion do not always report higher lev-
els of deviation than morning periods, which was the finding reported at the regional level
of specificity. In fact, along freeways such as Route 170 in Burbank (Los Angeles County),
morning emissions deviations can be far greater than their evening counterparts. At this
level of specificity, the percentage of emissions deviation above our selected threshold toler-
ance during peak demand periods ranges from 0-17%. Along routes with higher emissions
deviation, peak and off-peak emission factor subclasses could improve the accuracy of these
models.

Next, analysis was performed to evaluate emissions deviation within studies where trip-
levels emission estimates are performed (i.e., discrete specificity). Figure 2.8 shows a time-
location emissions deviation diagram for the study’s representative truck class along south-
bound I-405 in Los Angeles. At this discrete scale, results along this 77 km stretch of freeway
show that large emission deviations (e.g., |δ| > 0.2) are spatially and temporally correlated,
corresponding to locations of reduced speeds caused by congestion. Analysis suggests that
during on-peak periods of congestion well-to-wheel emission factors often deviate from aver-
age conditions within clusters or deviation hotspots.4 Within the congestion-induced clusters

4Clusters can be identified both visually and computationally using machine-learning algorithms, such
as k-means or DBCAN. For more formation, see http://scikit-learn.org/stable/auto_examples/

#clustering

http://scikit-learn.org/stable/auto_examples/#clustering
http://scikit-learn.org/stable/auto_examples/#clustering
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Figure 2.7: Freeway-level emission variability across California during weekday travel peri-
ods. Results are reported as the mean percentage of monitored VKT where truck emissions
deviation (δ) is greater than 0.2.
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Figure 2.8: Time-location diagram along southbound Interstate 405 through western Los
Angeles illustrates how W2W emission hotspots, or neighboring stations with emission rates
that deviate from average emission factors may form along portions of routes.
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Figure 2.9: Map depicts clusters of high emissions deviation (e.g., |δ| > 0.2) across District
7 on Friday, June 12, 2015. The clusters are partitioned into morning and evening classifi-
cations. The area of each data point represents the total number of PeMS recording sensors
reporting high deviations at a particular time and location. Clustering was performed using
the DBSCAN algorithm and plotted with Google Maps.

shown in Figure 2.8, emissions deviations reach as great as δ = 1.8. Figure 2.8 also indi-
cates that hotspots along this section of highways vary in frequency throughout the week.
Figure 2.9 illustrates the frequency of congestion-induced emission deviation hotspots across
District 7 (Los Angeles and Ventura Counties) on Friday, June 12, 2015. Clustering records
allows modelers to retain some information regarding when and where emissions deviations
occur while aggregating the data to a local level of specificity (e.g., Los Angeles area).

Only a small percentage of reported VKT along this stretch of highway deviates from what
would be expected at larger aggregate levels (e.g., regional and local specificity). However,
identifying and accounting for these isolated instances of emission deviation could improve
the accuracy of GHG inventories on a trip basis. For example, Figure 2.10 shows the total
W2W emissions for vehicles traveling southbound on I-405 (see also Figure 2.8) as they
enter the freeway at different times of the day. During on-peak periods of congestion, W2W
emissions footprint of a trip will rise as high as 47% greater than estimates based on average
W2W emission factors. Avoiding the W2W emission hotspots that form during on-peak
periods can lower the overall GHG emissions. For example, if a truck were removed from the
southbound I-405 on Friday during evening morning rush hour traffic (17:00) and instead
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Figure 2.10: The well-to-wheel emissions footprint of a vehicle depends on when it enters a
freeway network and travels the length of I-405 (77km). The graphs above show the total
well-to-wheel emissions for GHGs associated with the time a truck enters the southbound I-
405 throughout the day. Well-to-wheel emissions estimates based on average emission factors
(blue line) are also shown.

began its trip during the late evening (21:00), net GHG W2W emissions would be reduced
by 40 kg CO2,e per trip, a 23% reduction in GHG emissions. However, this example may only
represent a small fraction of total freight turnover within the state, as 7% of total ton-km
fall within 161 km of total trip distance on average across the United States, while 51% of
all goods are moved within this distance on a mass basis (78).

While this example suggests that incorporating speed-corrected emission factors into
discrete level of specificity could reduce the overall uncertainties relating to congestion’s
influence on life-cycle emission factors for heavy-duty trucks, modelers should also relate
these uncertainties in relative to the total emission inventory. For example, if the analysis
results shown in Figure 2.10 include an additional 200-km portion of truck travel at free flow
speeds, then shifting a truck trip to evening traffic would only amount to a 9% reduction in
total GHGs. In this case, a fleet-average average emission factor would suffice. Ultimately,
determining the appropriate selection of emission factor models at a discrete level may depend
on when, where, and for how long a heavy-duty truck is operating.
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2.4 California Transit Bus Case Study

2.4.1 Vehicle Speed Data

In this case study, bus speeds were estimated using real-time GPS feeds provided by NextBus
during a 7-day period from 8/28/2015 to 9/5/2015 [70]. NextBus is a private real-time pas-
senger information provider that works with public transit agencies to monitor, assess, and
disseminate data regarding the performance of their vehicle fleets. Real-time data systems
could be considered the most advanced technological system for informing both agencies
and their riders about the current performance of public transit systems (i.e., bus, bus rapid
transit, light rail, and subway). Through its application program interface (API), NextBus
provides GPS feeds that track the location, orientation, and speeds of active buses, which
it updates cyclically at various time intervals (e.g., seconds to minutes). This information
serves as the basis for the vehicle speed dataset.

The primary benefits of utilizing this data source are: (i) it more accurately details
the current operational performance of transit systems in comparison to the more readily
adopted General Transit Feed Specification (GTFS) vehicle scheduling system [71] (ii) like
GTFS, this information is often available for third-party applications free of change; and, (ii)
real-time data feeds can be stored to analyze historical trends in the performance of transit
systems. While informative, real-time data systems are only available for a select number of
public transit agencies [70]. These data feeds also lack important information about route
schedules, which are commonly offered under the GTFS. Given its limited availability, only
nine California public transit agencies were assessed, though the top four agencies in the
state [73] are represented.

The following sections provide a brief description of the locations in which samples were
collected for each public agency. The agencies are presented in descending order based on
the size of their respective bus fleets. Information on bus fuel types is also included.

Los Angeles County Metropolitan Transportation Authority

The Los Angeles County Metropolitan Transportation Authority (lacmt) is a public transit
agency supporting the greater Los Angeles County (Figure 2.11). The agency manages
a number of transit services (bus, bus rapid transit, light rail, and subway), though the
NextBus data collected for this system was limited to only buses. In total, the lacmt transit
network spans 2,300 km, encompasingg 169 bus routes and 2,738 buses (2,301 are represented
in the sample) [70]. Of the nine public transit agencies reviewed, lacmt is the largest in
terms of annual passenger kilometers traveled (PKT). Nationally, the agency is ranked 2nd
in annual PKT by bus with 2.4 billion pass-km per year in 2011[73]. During the week-long
sample period, 2.04 million vehicle speed measurements were recorded. The agency manages
a fleet of both natural gas- and diesel-powered buses [74].
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Figure 2.11: An overview of the samples collected for the Los Angeles County Metropolitan
Transportation Authority (lacmt) plotted on Google Maps [72].

San Francisco Municipal Transportation Agency

The San Francisco Municipal Transportation Agency (sfmuni) is a public transit agency
supporting the city of San Francisco (Figure 2.12). Like the lacmt, the sfmuni agency
manages a fleet of public transit modes, however, only buses were considered within the week-
long study period. The sfmuni network is the second largest transit system in our dataset in
terms of annual passenger kilometers (325 million pass-km per year, 21st nationally) [73]. It
offers 71 unique bus routes, including bus rapid transit and commuter bus services). From
the sample data, we estimate that the agency’s 967 active buses traverse a total of 142,000
km on average during weekdays [70]. During the sample period, 3.98 million vehicle speed
measurements were recorded. The agency manages a fleet of both diesel- and electric-powered
buses [75].

Alameda-Contra Costa Transit District

The Alameda-Contra Costa Transit District (actransit) is a public transit agency supporting
Alameda and Contra Costa counties (Figure 2.13). The public transit network serves many
cities in the East Bay (e.g., Oakland, Hayward, Richmond, etc.), including other major cities
in San Francisco, San Mateo, and Santa Clara counties. The actransit network is ranked
25th nationally (2011) in terms of total PKT by bus with 300 million pass-km per year [73].
The agency has the third largest bus fleet among the nine agencies measured in the case
study. In total, actransit operated 547 buses during the week sample period across 107 bus
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Figure 2.12: An overview of the samples collected for the San Francisco Municipal Trans-
portation Agency (sfmuni) plotted on Google Maps [72].

Figure 2.13: An overview of the samples collected for the Alameda-Contra Costa Transit
District (actransit) plotted on Google Maps [72].
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Figure 2.14: An overview of the samples collected for the University of Californa — San
Francisco (ucsf) Transportation Department plotted on Google Maps [72].

routes. 596,000 vehicle speed measurements were recorded during this period. The agency
manages a fleet of both diesel- and hydrogen-powered buses [76].

University of California — San Francisco

The University of California — San Francisco (ucsf) Transportation Department is a bus
shuttle service that transports students between the multiple university campuses in the city
(Figure 2.14). Both ucsf and sfmuni are located in the city of San Francisco. The ucsf network
is one of two public transit networks in the dataset that primarily supports a university. The
department operates 50 diesel-powered buses [77] along a total of 16 routes [70]. During the
week-long sampling period, 596,000 vehicle speed measurements were recorded.

University of California —Davis University Transportation

The the University of California —Davis University Transportation (unitrans) department
is a public transit agency that serves both the university as well as the adjacent communities
in northern California (Figure 2.15). Unitrans is well-known for their London double decker-
style buses. The buses, 37 recorded in total during the sampling period, are primarily run by
compressed natural gas (CNG), but a small portion of the fleet is powered by diesel engines
[78]. The unitrans network is composed of 19 routes. During the week-long sampling period,
166,000 vehicle speed measurements were recorded.
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Figure 2.15: An overview of the samples collected for the University of California —Davis
University Transportation (Unitrans) system plotted on Google Maps [72].

Ventura County Transportation Commission — Intercity

The Ventura County Transportation Commission — Intercity (vista) is a public transit
agency supporting intercity transport services for the county in southern California (Figure
2.16). The vista bus transit network is unique within the sample because the network is
primarily along major state and interstate highways, while the other networks are composed
of mostly urban arterial roads. The agency maintains a fleet of 25 diesel buses [79], which
operate 8 routes between the cities of Ventura, Santa Barbara, Camarillo, and Thousand
Oaks. During the week sampling period, 138,000 vehicle speed measurements were recorded
[70].

Emeryville Transportation Management Association

The Emeryville Transportation Management Association (emery) is a public transit agency
supporting intercity transport services for the city of Emeryville in northern California (Fig-
ure 2.17). The service area for emery is the smallest among the 9 agencies examined in this
study. The bus fleet is comprised of 16 diesel buses that operate along 5 routes [80]. Many
of the routes transport riders to and from the MacArthur BART Station to various locations
throughout the city. During the week sampling period, 77,000 vehicle speed measurements
were recorded [70].
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Figure 2.16: An overview of the samples collected for the Ventura County Transportation
Commission Intercity (vista) bus service plotted on Google Maps [72].

Figure 2.17: An overview of the samples collected for the Emeryville Transportation Man-
agement Association Emery Go-Round bus (emery) bus service plotted on Google Maps
[72].
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Figure 2.18: An overview of the samples collected for the Gold Coast Transit District,
formerly known as South Coast Area Transit (south-coast) system plotted on Google Maps
[72].

Gold Coast Transit District, formerly known as South Coast Area Transit

The Gold Coast Transit District, formerly known as South Coast Area Transit (south-coast)
is a public transit agency supporting transport services for the cities of Oxnard, Ventura,
and Port Hueneme, among others, in southern California (Figure 2.18). The south-coast
agency manages a mixed fleet of both CNG and diesel buses (11 in total) along 21 routes
[81]. During the sampling period, 61,000 vehicle speed measurements were recorded for
south-coast [70].

Thousand Oaks Transit

The Thousand Oaks Transit (thousand-oaks) is a public transit agency supporting transport
services for the city of Thousand Oaks in southern California (Figure 2.19).The agency
schedules only four routes that are serviced by two CNG buses [82]. During the week-long
sampling period, 6,800 vehicle speed measurements were recorded for thousand-oaks [70].

2.4.2 Results

Figure 2.20 illustrates the frequency of speeds reported during the 7-day sampling period
across the state (A, top) and by individual agencies (B, bottom). In this figure, we partition
the respective dataset into 1 kilometer per hour (kph) bins and exclude samples in which
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Figure 2.19: An overview of the samples collected for the Thousand Oaks Transit (thousand-
oaks) system plotted on Google Maps [72].

buses were idling (i.e, 0 kph). Idling vehicles fall within the scope of this study since these
emission rates are not recorded on a VKT basis. For a point of reference, the bus traveling
speed in the EMFAC model that corresponds to δ equal to zero is 30 kph [50, 49], which is
approximately the expected value (28 kph) and mode (27 kph) when jointly considering the
collective nine agencies (A, top).

By disaggregating the samples by agency, we show that each agency has speed distribution
profile that is unique in overall expectation, mode, and skewness. The expected vehicle
traveling speeds for each agency in ranked order are 12.0 kph (actransit, lowest), 19.2 kph
(lacmt), 19.9 kph (sfmuni), 21.8 kph (ucsf), 26.5 kph (emery), 29.0 (unitrans), 36.1 (south-
coast), 43.5 (thousand-oaks), and 64.5 (vista, highest). The most frequently occurring vehicle
traveling speeds in ranked order are 5 kph (actransit, lowest), 25 kph (sfmuni), 31 kph (ucsf),
38 (unitrans), 40 kph (emery), 41 (south-coast), 43 kph (lacmt), 52 kph(thousand-oaks), and
106 kph(vista, highest).

Figure 2.20 (B) shows that each agency’s speed frequency distribution is asymmetric,
with two agencies displaying large skewness (actransit: positively; vista: negatively). Vista’s
skewness is the easiest to explain, as most of the VKT for this agency occur on highways.
The mode for this agency’s distributions (106 kph) aligns with typical operating conditions
along these road types (e.g., freeflow speeds range from 88 kph — 120 kph). The skewness
in the actransit network is less clear. As described previously, the majority of the actransit
network is situated along urban arterial roads, where speed limits range from 32 to 40 kph.
The mode for this agency’s sample data (5 kph) falls well below these limits, which suggests
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Figure 2.20: The distribution of vehicle traveling speeds across all nine agencies (e.g., state)
(A) and by each individual agency (B).

that other factors may be at play. Further analysis is provided in the following discussion of
the emission deviation results.

After transforming the vehicle speed data into speed-corrected emission factors, we an-
alyzed the range of emission deviations for each agency in order to determine where fleet-
average emission factors were appropriate at this level of specificity. Figure 2.21 shows the
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Figure 2.21: The overall magnitude and distribution of emissions deviations varies between
agencies, as show by the interquartile ranges above. The agencies are listed in descending
order based on total bus stock. The overall trend suggests that agencies servicing large
metropolitan populations have generally larger emissions deviation.

results of this assessment. Again, the emissions from idling buses were not considered as
these emissions can be considered in a separate category. For each agency, we report the
25th (P25), 50th (P50), and 75th (P75) percentiles. The rectangular area in each graph
represents represents the inner 50% of all bus samples during the week sample period. To
illustrate a sense of scale in the results, we report agencies in descending order based on total
bus stock (i.e., largest agencies on top).

The results from the regional analysis show that over 60% of the buses had emission
deviation scores beyond the study’s threshold limit for variability, |δ| > 0.2 (lacmt: 52%,
sfmuni: 63%, actransit: 91%, ucsf: 53%, unitrans: 43%, vista: 73%, emery: 44%, south-
coast: 43%, thousand-oaks: 49%). Agencies that operate buses at low traveling speeds
(e.g., <30 kph) have larger positive emission deviations errors. This is true for the top four
agencies listed in Figure 2.21, where each are situated in a major metropolitan area. These
agencies also have the greatest emissions variability as the marginal change in emissions due
to a change in speed is larger for slower rates of travel (<30 kph; Figure 2.3). For instance,
actransit, i.e., the agency with the lowest expected speeds, reported over half of its samples
at a deviation level greater or equal to δ >1, which would imply emission rates are 2 times
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Table 2.2: Expected route-level emissions deviation.

Agency
Expectation,

E(δ)
Stand. Dev.,

std(δ)

vista -0.131 0.012
thousand-oaks -0.008 0.072
emery 0.210 0.079
unitrans 0.246 0.080
lacmt 0.303 0.089
south-coast 0.080 0.092
ucsf 0.397 0.103
sfmuni 0.382 0.137
actransit 0.618 0.38

greater than what would be expected at the level of specificity of the entire state.
In contrast, agencies with higher average speeds (the bottom 5 agencies in Figure 2.21)

tend to have a greater share of negative emission deviation. Since the marginal change
in emissions due to a change in speed is comparatively smaller for higher rates of speeds,
agencies with bus traveling speeds similar to those found on highways tend to show lower
emission deviation variability. This is true for both vista and thousand-oaks, which offer
bus services primarily along highways. Thousand-oaks and south-coast agencies have a large
share of emissions estimates within the study’s threshold limit for variability, |δ| > 0.2, so a
case could be made that the statewide fleet average emissions factors are sufficient for these
agencies. Nonetheless, Figure 2.21 suggests that a single statewide average emission factor
for buses may not be appropriate at a local (e.g., agency) level of specificity.

Next, we consider the variability in emission factors at a route level across each of the nine
agencies. Figure 2.22 shows the results of a route-level analysis and indicates that emissions
deviation varies by individual bus route, though the scale of variability depends on the
agency. Each line in the figure represents the cumulative percentage of emissions deviation
for an individual route during the 7-day sampling period. The figure shows that bus routes
take on a range of emissions deviations value, resulting from the fact that buses along routes
hardly maintain a constant speed. Table 2.2 estimates the variability in emissions deviation
across each agency.

While a single statewide average emission factor for buses may not be appropriate for
estimating an agency’s emissions inventory due to accuracy concerns, adjusting the Ef,avg
based on an expected emissions deviation statistics is a better alternative. Even so, this
may still lead to varying amounts of inaccuracy in emissions inventory as Table 2.2 standard
deviation scores indicate (i.e., vista vs. actransit). If a study’s scope is set to a local level of
specificity, we suggest to adjust fleet average emissions based on route-estimated expected
deviation. To assist future analyses of bus greenhouse gas emissions at this level of specificity,
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Figure 2.22: Results indicate that emissions deviation vary by individual bus route, though
the scale of variability depends on the agency. The cumulative distribution depicts the
percentage of total samples (y-axis) recorded at increasing emissions deviation for individual
routes (lines). Agencies are presented in order of increasing emissions deviation variability.

we provide an appendix to this dissertation (Appendix A, Table A.1) that lists the expected
emissions deviation values for all of the routes examined in the dataset.

We complete this bus case study by observing the variability of emissions deviation at a
discrete level of specificity. For this example, we narrow the scope of the study to only buses
operating within the sfmuni bus network. Given large gaps in time between samples taken
from NextBus (latency≈ 30 seconds), it was not possible to model a single bus traveling along
a route within sfmuni or any other of the agencies examined. To overcome this limitation,
we instead partition the bus road network into 50-meter segments and analyze the variability
in emissions deviation within each segment as a proxy for an individual bus trip.

Figure 2.23 illustrates some of the spatial trends in emission deviation found within the
sfmuni bus network. After reviewing the data, results suggest that there are three major
factors that influence emission variability. The first factor involves the process of passengers
entering and leaving the bus transit network. Across the dataset, regression analysis suggests
that routes with higher bus stop density (e.g., stop-to-stop distance) tend to have higher
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expected emissions deviation, presumably due the fact that closer stops reduce the potential
for a bus to travel at higher rates of speed. The second major factor is road type. Figure 2.23
(B) highlights the noticeably negative emissions deviation along a section of highway 101
(≈100 kph highway speed limit) while contrasts the noticeably positive emissions deviation
along the arterial roads transecting the Mission and Potrero Hills neighborhoods (≈40 kph
arterial road speed limit). However, literature suggests (38, 41) that other factors, such as
vehicle density (e.g., congestion) which was not directly observed in the dataset, also lead to
differences between these road types. The third factor influencing bus speeds and therefore
emission deviation is route topology. Data suggest that buses navigating between road types
(Figure 2.23 C) and entering intersections (Figure 2.23 A) often reduce their speeds during
these activities, resulting in a change in their expected emissions deviation.

To conclude the case study, we aim to give perspective on how emissions deviation affects
local GHG emissions inventories. We estimate the bias in bus emissions for an average
weekday across sfmuni. Unfortunately, the NextBus dataset and other prominent public
data sources (e.g., GTFS) do not provide the type of fuel used to powered buses along
routes. This information is known within agencies, however, and we were able to acquire it
through personal correspondence with the San Francisco Municipal Transportation Agency
(sfmuni).

After scaling the respective emission factors using bus schedule data [71], we estimated
that the resulting emissions estimation errors in the city-wide GHG emission inventory is
72 metric tons of CO2,e per day, or a roughly 35% underestimation of total, daily bus-
related GHG emissions in San Francisco. Figure 2.24 summarizes the results of this analysis.
The plotted dotted line represents the cumulative estimate of total daily GHG emissions
(e.g., well(grid)-to-wheel only) using an average emission factor. In contrast, the plotted
dashed line represents the results of the same assessment, using the respective speed-resolved
emission factors. The gap between the two lines, shown as the grey area, represents the
cumulative aggregation bias associated with using an average emission factor, which grows
and shrinks based on the route-based emission deviation.

The routes in the figure are shown in ranked-order by increasing VKT and colors by fuel
type (i.e., diesel: red, electric: pink). For a point of reference, the average GHG emission
factors for diesel and electric buses is 2,120 g CO2,e / km and 4 g CO2,e / km, respectively.
Total estimation errors for electric buses represents only 0.05% of the total error since electric
buses are multiple orders of magnitude lower than diesel buses due to sfmuni sourcing 100%
of its electricity from the Hetch Hetchy hydropower plant in Yosemite National Park,, CA
(91). If the buses were powered by the average California energy mix (280 g CO2,e / kWh)
(92), the total estimation errors within this network would be 5.7 tons per day higher, a 4%
increase. These results suggest that emissions deviation may only result in significant errors
if the average bus emissions are relatively large and represent a significant fraction of the
fleet activity.

Overall, the results from the assessment on discrete level of specificity show that bus
speeds are highly variable, leading to high variability in bus emissions rates. As a result,
LCA modelers should seek to implement speed-resolved emission factors.
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Figure 2.23: An annotated map of San Francisco’s Mission neighborhood highlights three
factors that influence bus speeds and therefore emission deviation. (A) Emission deviation
around bus stops (shown in the map as X’s) tends to be greater as buses lower their speeds
to complete pickups. (B) Emissions deviation varies based on route type. Across the sf-
muni network, bus routes along highways (shown here) and bus rapid transit (e.g., 38R,
not shown) tend to have lower expected emission rates compared to arterial roads since
bus speeds are generally higher along these road types. (C) Network topology also affects
emissions deviation. Data suggest that buses changing road types (shown) and/or entering
intersections (see A) often reduce their speeds during these activities, resulting in a change
in their expected emissions deviation scores.
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Figure 2.24: Estimates of total bias in kilograms of CO2,e, for the daily, well-to-wheel GHG
inventory for the San Francisco MUNI transit network. Bus routes were rank-ordered by
daily vehicle kilometers traveled and colored by fuel type (i.e., diesel: red, electric: pink).

2.5 Chapter Summary

Life-cycle emissions factors for heavy-duty vehicles found in the literature [17, 27, 28, 8,
21, 10, 20, 19, 29] and within prominent LCA models [30, 31, 32, 38, 39] estimate well-
to-wheel greenhouse gas emission factors based on fleet-average fuel economy. In recent
years, however, studies have shown that these emission factors are greatly influenced by
operational variability [51, 40, 52, 53, 54, 55, 24, 56, 36], especially vehicle traveling speeds
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[44, 45, 46, 47, 48, 49, 50]. In this chapter, we quantified the expected difference between
GHG emission factors based on fleet averages with emission factors estimated at a regional,
local, and discrete level of specificity (aggregation level). The purpose of the chapter is to
formally provide decision-making directives to LCA modelers to indicate if average emissions
factors are appropriate, should be considered under specific conditions, or be avoided when
conducting an LCA of heavy-duty vehicles. The scope of the study was limited to heavy-duty
trucks (diesel) operating along California’s highway network ad heavy-duty buses (diesel,
gasoline, electric, and natural gas) operating within nine public transportation agencies in
the same state.

In order to reorient the reader to the key findings of this current chapter prior to the
chapter’s ending discussion, the following summarizes the chapter:

• The level of emission estimation errors (positive or negative) vary across traveling
speeds, with larger errors occurring at reduced and elevated traveling speeds.

• As would be expected, there is more variability in speeds along urban arterial road
networks than on highways. As a result, our case study results show that emission
estimation errors are greater for buses operating in cities than heavy-duty trucks op-
erating along highways.

• For heavy-duty trucks operating along highways, congestion (resulting in low vehicle
speeds) is the biggest driver of emission estimation errors since vehicle speed limits
presumably cap emissions deviation caused at high traveling speeds. For the week
sampling period, data indicate that congestion is primarily limited to the peak traffic
hours of the day (7am-9am and 5pm-7pm) and along only certain sections of the
observed interstate highway network.

• Bus speeds differ across public transit agencies, which subsequently causes each agency
to have a unique GHG emissions rate distribution. The range of emission factors
expected also varies by agency. On a discrete level of specificity, network features such
as road type, bus stops, route topology, and aspects of congestion all drive emissions
variability.

2.6 Discussion

Policies based on route-oriented hybrid trucking LCA methodologies have numerous advan-
tages over those applying traditional LCA models. Speed-resolved GHG emission factors
can be integrated into current transportation network models to provide valuable informa-
tion about how the GHG footprint of trucks and buses may change within specific settings.
Until now, heavy-duty vehicle LCAs have primarily been a way of modeling the footprint of
moving goods and passengers from a generic or industry-average perspective [17, 27, 28, 8,
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21, 10, 20, 19, 29]. By including the influence average speed has on fuel economy, this ap-
proach allows decision-makers to manage the GHG footprint of heavy-duty trucks and buses
in a more localized context using route-based modeling techniques. Removing the constraint
of utilizing average data, new statistics can be formed given additional information that is
readily available today. We find that increasing the dimensionality of heavy-duty vehicle fuel
economy models reduces overall aggregation errors in GHG emissions inventories.

Overall, we see many applications for this method to be implemented within current
transportation systems monitoring and environmental management. We have shown that
well-to-wheel emission factors can be incorporated into existing vehicle monitoring networks,
since these systems already report vehicle speeds. Data collected from networks such as PeMs
or Nextbus can be used to better record well-to-wheel emissions variability over time and
space, helping to identify and mitigate emissions“hot-spots” through targeted mitigation
policies. The incorporation of well-to-wheel emission estimates within transportation mon-
itoring networks could also make emissions data more accessible to parties unfamiliar with
environmental analyses but who have intimate knowledge of how vehicle networks function
and how they are managed. In addition, speed-resolved emission factors can also be incor-
porated into trip-level decision-making, such as vehicle routing optimizations. One of the
major limitations of this study is that speed-resolved emission factors are based on an a
priori vehicle duty cycle. In reality, vehicle operational conditions (e.g., speed, mass, ac-

Table 2.3: Summary Decision-Making Directives.

Level of Specificity

Mode Regional Local Discrete

Trucks
(Highways)

Approximately 91-99% of
VKT across the districts re-
ported an error less than 7%.
Therefore, an average emis-
sion factor will suffice.

Emissions deviation only oc-
curs during on-peak periods
of the day, though only a few
highways are affected. An
average emission factor will
suffice.

Emission deviation could be
large, but this only oc-
curs when trucks hit conges-
tion. Speed-resolved emis-
sion factors are preferred,
but should take into account
the fraction of the total trip
that experience periods of
high emissions deviation.

Buses
(Arterial
Roads and
Highways)

Emissions deviation will
vary across agencies. In
some cases, the bulk ma-
jority of buses could be
characterized using the
statewide average emission
factor. The only way to
determine would be to
assess bus speeds, however.
Given this requirement,
speed-resolved emission
factors are preferred but
could be substituted for
average emission factors
when appropriate.

Emissions deviation is
highly variable on an in-
dividual route basis. In
some cases, the differences
between the expected emis-
sions deviation across routes
may be small. In these
cases, an agency-specific
emission factor corrected
to reflect an expected δ
could suffice. Otherwise,
speed-resolved emission
factors are recommended.

Again, emissions deviation
is highly variable across bus
networks. The major fac-
tors that influence this vari-
ability are road type, lo-
cations of bus stops, con-
gestion, and route topol-
ogy. Speed-corrected emis-
sion factors should always be
used when referring to the
carbon footprint of an indi-
vidual bus trip.
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celeration, grade) and vehicle configurations vary. Future work should focus on improving
emission factors so that they reflect true operational variability.

To conclude this chapter, we outline specific decision-making directives for governments,
fleet owners, companies, and LCA practitioners to help evaluate whether it is appropriate
to use generic or industry-average GHG emission factors (e.g., fleet scale) under different
levels of specificity or aggregation. Table 2.3 summarizes the major findings of the heavy-
duty truck and bus case studies in the form of a stoplight diagram. The table cells, which
reflect the vehicle mode and study’s level of specificity, are colored to indicate if generic
or industry-average emissions factors are appropriate (green), should be considered under
specific conditions (yellow), or be avoided (red) when conducting an LCA of heavy-duty
vehicles. Overall, we find the fleet-average emission factors to be more appropriate for
heavy-duty trucks than buses.

Moreover, integrating speed-corrected emission factors into LCA models can allow decision-
makers to identify when, where, and how often heavy-duty truck emission rates deviate from
fleet-wide averages. Average emission factors have the potential to mask vehicles that are
more environmentally burdensome. Targeting vehicles with higher emissions rates may be an
effective way to minimize emissions and their subsequent impacts in a cost effective manner,
assuming the unit cost of mitigation is uniform across vehicles. Since increased emissions can
be very localized, we find that assessments at finer resolutions (local and discrete) may be
best to capture this variability and provider better context regarding the value of removing
vehicles from the vehicle networks.
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Chapter 3

Aggregation Errors in LCAs of
Heavy-Duty Vehicles: Vehicle
Payloads and Ridership Variability

3.1 Introduction

1 The interactions between infrastructure systems (e.g., roads, transportation, water dis-
tribution, waste collection, etc.) and the environment are highly complex due to the het-
erogeneous nature of these systems’ design, operation, and scale of coverage. Life-cycle
assessment (LCA) has been a powerful analytical process used to evaluate the environmen-
tal impacts across all stages of a life cycle, which include material extraction, manufacturing,
use, maintenance, and end of life. The results of the study, normalized by a functional unit,
inform policy by allowing different parts of a system and its alternatives to be compared on
equivalent terms.

While comprehensive, LCAs of infrastructure systems are not without their own method-
ological challenges [43], many of which arise from the fact that our knowledge about the
connections between these systems and our environment is constantly evolving [83, 84, 85,
86]. Conducting a thorough LCA of infrastructure systems is data and time intensive. As a
result, LCA practitioners often construct models based on average characteristics of systems
and emission factors, such as secondary data found in published studies and LCA databases.
This appears in the literature for environmental assessments of goods movement [87, 27, 8,
20, 88, 89], transit buses [10, 90, 19], other passenger transportation modes [11], water and
wastewater systems [91, 92, 93], infrastructure materials [94, 24, 25, 26], buildings [95, 96,
97], telework [98], solid waste [99], as well as in tools used in life-cycle footprinting. The

1Reproduced in part with permission from Taptich, MN. Horvath, A. Bias of Averages in Life-Cycle
Footprinting of Infrastructure: Truck and Bus Case Studies. Environmental Science & Technology, 2014, 48
(22), pp 13045-13052. Copyright 2014 American Chemical Society. Weblink to Article: http://pubs.acs.

org/doi/abs/10.1021/es503356c

http://pubs.acs.org/doi/abs/10.1021/es503356c
http://pubs.acs.org/doi/abs/10.1021/es503356c
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resulting average evaluations are important to understanding the magnitude of environmen-
tal burdens, and offer insights into possible energy and emissions tradeoffs between different
system alternatives. However, uncertainties resulting from model configuration, data qual-
ity, data availability [100], and location of and population exposure to impacts [101, 102,
103] have lead some researchers to call into question the representativeness of results from
average assessments under varying spatial and temporal scales [104, 57, 105, 106, 58].

Variability in life-cycle emission factors can be the result of heterogeneity in emission rates
or level of service across like systems. The inherent randomness of these parameters is an
irreducible form of uncertainty and its influence on emission factors is often, but not always,
addressed in LCAs through sensitivity analyses, quantitative ranges, or process scenarios and
simulations [100]. Interpreting the results of these assessments of variability and integrating
them into future LCAs is challenging, specifically when it is unclear if the systems of interest
represent the ‘average’ or typically modeled system. A very good example of average versus
marginal comparisons is electricity production in the United States, where environmental
impacts vary by production output, fuel type, efficiency, year-specific regulations, etc. [107].
In these situations, inherent errors are likely to exist.

The literature offers insights how to address these uncertainties when forming policies
regarding infrastructure systems [108, 109, 110], and a few studies have attempted to quantify
the level of errors associated with the use of average emission rate data over varying spatial
and temporal scales [106, 58]. However, there is no study addressing the errors introduced
by normalizing emissions based on average levels of service across systems, as opposed to
averaging emission factors that apply across various levels of service (Jensen’s inequality).
This form of estimation bias is a function of both the variability of infrastructure system
outputs (i.e., normalizing unit) and emission rates. We sought to examine the influences of
the former in the context of two transportation systems where services are highly variable
over time and space.

This study explored scenarios for estimating the well-to-wheels (W2W) greenhouse gas
(GHG) emissions associated with on-road goods movement by medium- and heavy-heavy-
duty trucks and bus travel. We present two case studies which examine (i) the fleet of
heavy-duty vehicles in the United States and (ii) the performance of a single bus network
in the city of San Francisco over the course of a week. Previous studies that reported the
GHG footprint of these modes normalized to the ton-km [27, 28, 8, 20] and passenger-km
[10], respectively, did so based on average levels of service (i.e., the number of tons or people
transported) while accounting for parameter variability through a sensitivity analysis or
reporting emission factors over a range of system outputs [19]. Each study found that GHG
emission factors are sensitive to levels of service when GHG emission rates are assumed
constant (i.e., the vehicle’s total emissions per kilometer are not a function of the level of
service).

By focusing the scope of our scenarios only on the variability in productivity for trucks
and buses, we show that traditional methods for reporting the normalized GHG footprint
of these services give biased “average” estimates by undervaluing the influence of under-
productive or inefficient trips. These biases stem from the linear approximation of the
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nonlinear relationship shared between emission factors and the functional units used to nor-
malize life-cycle energy and emissions inventories. While there are many conceivable policy
implications, we focus on the underlying mathematics driving these estimation errors, and
comment on their potential applications to other infrastructure systems. In addition, we
provide updated well-to-wheel GHG emission factors as well as estimates of bias resulting
from scenario analyses.

3.2 Methods

3.2.1 Well-to-wheel Emission Factor Formulation

The allocation of well-to-wheel (W2W) greenhouse gas (GHG) emissions to passenger travel
or goods movement can be described by a convex function [8] that is dependent upon an
emissions rate and level of activity,

ef =
Ef
A

(3.1)

where,

Ef = well-to-wheels emissions rate for activity (g CO2,e /km, CO2,e: CO2, CH4, N2O)
A = functional unit associated with activity, (personal travel: passengers; freight: metric
tons, mt)
ef = well-to-wheels emissions factor, (personal travel: g CO2/passenger-km; freight: g CO2/
metric ton-km, t-km)

Previous LCAs of heavy-duty trucks have included the distance driven without payload
(e.g., the dispatch and backhaul portions of a delivery) within the scope of A [27, 8]. The
emissions generated during this portion of a delivery are shared equally among the goods
transported along the trip. Therefore,

A = p× (1− e) (3.2)

where,

p = The amount of goods transported, (metric ton)
e = The proportion of empty driving associated with each delivery, (%)

Empty-driving has not been considered in previous LCAs of buses [10, 19] and is not con-
sidered a part of this study.

Emissions are allocated to passengers and goods on a proportional basis, and the alloca-
tion takes into consideration the distances traveled while empty. For vehicles, we describe
A in terms of levels of service (i.e., truck payloads and bus riders). When fuel economy and
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subsequently well-to-wheel GHG emission rates are assumed to be constant over a range of A
[27, 28, 8, 10, 20, 19], the environmental efficiency of a vehicle increases as it becomes more
productive (as A increases). However, previous studies have noted that negative feedbacks
to energy consumption and infrastructure emissions occur with high vehicle payloads [24,
53]. These externalities should be accounted for. When these feedbacks are incorporated,
the levels of bias that we describe herein would likely be smaller. In this study, we mirror
the assumptions of previous W2W assessments of trucks and buses [27, 28, 8, 10, 20, 19] and
do not consider these factors within the scope of the following scenarios.

Well-to-wheel (W2W) emissions include the direct and indirect pollutant releases asso-
ciated with fuel production, distribution, storage and then the ultimate release of the fuel
emissions at the tailpipe. Different fuel pathways and vehicle engine technologies will have
unique W2W profiles. Due to certain rights granted within the Clean Air Act, the state of
California is able to regulate vehicles and fuels beyond what is required based upon federal
standards, and therefore have fuel pathways that are distinct from other states across the
country [61]. In our case studies, we only consider the well-to-pump GHG emissions for
ultra-low sulfur diesel sold within California. These emissions, which are reported in g CO2,e

per mmBTU, were modeled using Argonne National Laboratory’s GREET model [30] with
a 2015 scenario year.

Tailpipe carbon dioxide emissions were modeled using the California Air Resources Board
(ARB) EMFAC2011 model [50]. ARB reports GHG emission factors (g CO2 per mile) for
various types (e.g., car, bus, truck), subclasses (e.g., passenger, in-state, urban, etc.), and
model years of vehicles. ARB also reports emission rates by vehicle traveling speeds, which
are based on dynamometer studies. In our case studies, we assumed medium-heavy duty
trucks, heavy-heavy duty trucks, and buses fall within ‘T-6 Instate Small’, ‘T7 California
IRP’, and ‘UBus’ subclasses, respectively. There were other suitable subclasses which we
could have used in this study, which is a limitation of this research. However, the variability
in CO2 tailpipe emission rates reported by ARB is small across subclasses and would not
have significantly affected the final results.

The final well-to-wheels GHG emissions rates were calculated by combining the results
from the EMFAC2011 model (g CO2 per mile) with the results of our model runs using
the GREET model (g CO2,e per mmBTU) by carbon balance. Given standard properties of
low-sulfur diesel, the energy consumed per distance driven was determined for heavy-duty
trucks and buses:

EBTU = ECO2 × (44/12 ∗ wc ∗ ×YCO2/(YCO2 + YCO + 3 ∗ YHC) ∗ γd)−1 × LHV (3.3)

where

EBTU = Energy consumption rate for activity, (BTU / km)
ECO2 = Carbon dioxide emission rate for activity, (g CO2 /km)
YCO2 = Mole fraction of carbon dioxide in tailpipe exhaust
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YCO = Mole fraction of carbon monoxide in tailpipe exhaust
YHC = Mole fraction of hydrocarbons in tailpipe exhaust
wc = Carbon intensity of Diesel, (g C per g diesel fuel)
γd = Density of diesel fuel, (g diesel fuel / gal diesel fuel)
LHV = Lower heating value for diesel fuel (BTU / gal diesel fuel)

For low-sulfur diesel, we assumed wc= 0.871 and LHV = 129,500 BTU / gal of diesel fuel
(9). The three in front of YHC denotes the conversion of hydrocarbons as propane equivalents
to carbon atoms [66]. The calculated energy consumption rate per distance traveled was then
used to determine the well-to-pump GHG emissions for each respective vehicle type.

The expected well-to-wheel GHG emission rates were corrected to reflect the varying emis-
sions rates at different traveling speeds [50]. We assume a standard profile for heavy-heavy
duty (truck modeled: class 8) and medium-heavy duty (truck modeled: class 6 delivery)
trucks [111]. Figure 3.1 shows that the smaller delivery trucks spend a larger percentage of
their total trip distances traveling at lower speeds than the larger class 8 trucks. This is pri-
marily due to the services each truck type provides. The average percentage of miles traveled
at each speed is reported (red line) as well as the average percentage of CO2,e emissions (blue
line). Fuel consumption rates reported in the EMFAC2011 model are the greatest at lower
traveling speeds; therefore, CO2,e emission rates are highest at these speeds [50]. Overall,
the well-to-wheel GHG emission factors were estimated to be on average 1350 g CO2,e per
km and 840 g CO2,e per km for medium- and heavy-heavy duty trucks, respectively.

For urban transit buses, we compare the change in emission factors based on a relative
value for Ef . At the time in which this study was submitted to and ultimately published in
Environmental Science & Technology, we were unable to find a public source of information
that completely listed the fuel types for the buses in our case study of the San Francisco
Municipal Transportation Agency (SFMTA) MUNI bus network. We do provide on example
calculation for diesel buses to discuss the impact of emission bias in nominal terms. Since we
did not have real-time data on bus speeds during the time period when the passenger data
was recorded, which were the basis for the previous chapter’s case study, we instead needed
to first estimate traveling speeds at each of the bus stops. We accomplished this by mapping
bus stop arrival times to distances along route using transit stop and schedule data:

Vi+1 =
di+1 − di
ti+1 − ti

(3.4)

where,

Vi+1 = Average velocity at bus stop i, kph
di = Distance along route at bus stop i, km
ti = Time along route at bus stop i, hour
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Figure 3.1: The distance-weighted speed profiles for medium-heavy duty (top) and heavy-
heavy duty (trucks) based on data collected from the National Renewable Energy Labora-
tory’s Fleet DNA project [111].

3.2.2 Estimating Aggregation Bias

It is important to consider the distribution of productivity when developing vehicle emission
factors. Based on our assumptions, the marginal change in W2W emission factor

∂ef
∂A

mono-
tonically increases with increasing A, signifying that small changes in productivity at low
A have a disproportionally higher impact on average emission factor estimates than at high
A (Figure 2). Since in our scenarios

∂ef
∂A

is not constant, using average values for A rather
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Figure 3.2: When emission rates Ef are assumed to be fixed over a range of system outputs
A, average level of service estimates may suffice when activity parameters are contained
within the sub-marginal region. Higher errors are possible if productivity drops into either
super- or critically-marginal regions, where unit changes in outputs have large effects on
emission factors.

than distributions has the potential to underestimate the true average ef by undervaluing
the impact of less productive trips (e.g., low truck payloads or bus trips with few riders).

As described by Jensen’s inequality (and explained on an example in Figure 3.2), the
average W2W emission factor will always be greater than estimates based on average pro-
ductivity. The difference δ between the expected value of the W2W emission factor EA[ef (a)]
(i.e., the unbiased estimate) and the mean after convex transformation ef (EA[A]) (i.e., the
estimate based on average productivity) depends on the extent and distribution of A as well
as Ef :

δ = EA[ef (a)]− ef (EA[A]),∀a ∈ A (3.5)

The bias δ, or Jensen’s gap, will vary across different products and services and is largely
dependent upon the minimum and maximum values of A. Figure 3.2 simplifies average versus
marginal comparisons for when emission rates and levels of service are assumed independent
of each other by dividing the emission factor function ef into three regions we call sub-
marginal, super-marginal, and critically marginal over increasing levels of service. Without
knowing the precise distribution of A, the relative level of estimation error can be gauged
based on where the range of A falls on the ef − A graph. Within the sub-marginal region,
the level of bias is relatively small because ef can be approximated as linear within this
region. Thus, variations in productivity have limited influence on the final emission factor
estimate. In super-marginal and critically marginal regions, improving productivity by a
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unit will noticeably improve emission factors. The threshold between critically marginal and
super-marginal occurs when productivity is equal to one unit (e.g., one ton). Below this
limit, the emission factors change exponentially with even small changes in productivity.

The transition between super- and sub-marginal regions may not be defined simply in
terms of A. Different analyses will have different reduction thresholds, where improving
A beyond these points yields negligible reduction in emissions. For example, the marginal
improvement in an emission factor by increasing A incrementally is less than 5 percent
beyond A ≈5 and less than 1 percent beyond A ≈14. Defining this threshold in studies may
be subjective, but should take into consideration levels of uncertainty as well as scale. In
our case studies, the transition between super-marginal and sub-marginal depends on the
magnitude of Ef ,while in situations where emission rates are considered a function of levels
of service, the structure of Ef should also be considered.

Incidentally, the same marginal evaluations can also be made for indirect supply chain
emissions within the scope of an LCA. In some stages of an infrastructure system’s life cycle,
such as those associated with manufacturing, construction, and end of life, large portions of
emission rates are independent of the lifetime output. Previous studies for buses and truck
have allocated emissions from vehicle production and end of life based on lifetime output
in terms of ton-km or passenger-km, respectively [27, 28, 8, 10]. With years of operation,
the share of these burdens in the total GHG footprint of the vehicle quickly diminishes as
W2W emissions increase, and in time, represents only a small fraction of the total footprint
(<5%). This is an example of operating within the sub-marginal region of the ef −A graph.
We have not considered these emissions in our study because the biases are likely small.

3.2.3 Case Scenarios

To analyze the variability of level of service on W2W GHG emission factor estimates, we
describe a goods movement and a personal travel case study using data from California.
For goods movement, we focus on medium- and heavy-heavy trucks, which account for the
majority of on-road freight turnover (280 billion ton-km in 2012) in the state [2] and emit
49 million metric tons of CO2 (mmtCO2) annually (tailpipe only) [50]. For context, the
total direct GHG emissions in California are estimated to be 460 million metric tons of CO2

equivalents [112]. GHG emissions from heavy-duty trucks are likely to rise in the coming
decades as increased on-road freight demand is projected [2] to raise total fuel consumption
[50], even in light of stricter federal fuel economy standards [113].

Statistics on average payload size and their standard deviations within truck classifica-
tions were taken from the US Environmental Protection Agency’s (EPA) SmartWay program
[114]. A full description of the truck equipment analyzed in this study (49 in total) is pro-
vided in the Supporting Information of Taptich and Horvath (2014) [41]. We assume payload
distributions follow a truncated normal distribution that is bounded between zero metric tons
and each truck’s maximum payload capacity [115]. Trucks are driven empty for 29 percent
of their operational lifetime on average, though this range will likely vary depending on the
commodity type [116]. The truck duty cycles used in this study are based on measurements
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taken from the National Renewable Energy Laboratory’s Fleet DNA project [111] for class
8 trucks (heavy-heavy duty) and delivery trucks (medium-heavy duty).

For personal travel, we estimate the W2W GHG emission factor bias δ for buses operating
in San Francisco. We obtained a complete inventory of bus ridership at each of the city’s
3,341 bus stops for a week through one of the city’s open governmental data initiatives [117].
This allowed us to measure W2W emission factor variability along routes throughout the
city caused by variable ridership. Since we were unable to identify each bus’s fuel type (e.g.,
diesel or electric), we report bias δ as a percentage of ef (EA[A]).

We report only the W2W greenhouse gas emissions for ultra-low sulfur diesel manufac-
tured for California according to the Low Carbon Fuel Standard [61]. Tailpipe CO2 emissions
are taken from the ARB’s EMFAC2011 model [50]. Emissions associated with the material
extraction, production, distribution, and storage of diesel fuel powering trucks in California
are based on estimates from the GREET model for 2015 [30].

3.3 Results

3.3.1 Heavy-duty Trucks in California

Heavy-duty trucks represent a range of vehicle sizes and performance capabilities. In the
United States, they are classified based on their Gross Vehicle Weight Rating (GVWR),
which bin trucks based on the manufacturer’s suggested maximum operating weight [115].
They may also be designated as light (class 2b-3), medium (classes 4-6), or heavy-heavy duty
(classes 7-8b) [116]. The size of a truck influences the types of services it can provide and its
truck-body/trailer configuration (50, 48). In the United States, medium-heavy duty trucks
have smaller payloads and are driven over shorter distances than the larger heavy-heavy
duty trucks [116].

Statistics published by the EPA SmartWay program [114] indicate that truck payloads
vary over different ranges across GVWR classes. participants in SmartWay, they were unable
to provide further information regarding the shape and skew of payload distributions. There-
fore, we assume that truck payloads follow a truncated normal distribution that is bounded
between zero metric tons and each truck’s respective maximum suggested payloads [115] and
estimate the distribution via Monte Carlo Analysis. For some of the larger specialty trucks,
average payloads exceeded the suggested maximum payload values provided by Oak Ridge
Laboratory’s Energy Databook and could not be appropriately bounded. For this reason,
we excluded these trucks from our results.

Figure 3.3 shows that the average payload distribution varies by GVWR class and trailer
type [114, 116]2. Statistics from the EPA SmartWay3 program indicate that trucks the aver-

2VIUS, though now-dated, is useful for obtaining state and national level data on the physical and
operating characteristics of fleets in the United States Many freight logistic models utilize this data for
planning and forecasting purposes.

3The EPA’s SmartWay program has been working with shippers and carriers for over 10 years in order
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Figure 3.3: Average truck payload varies within GRWR classes. This variability may due
to differences in the types of goods being shipped. The shaded area shows the distributions
by different truck + trailer combinations (EPA 2013) versus average VIUS payload statistics
(line).

age payload estimates from the now dated Vehicle Use Survey fall in line with current fleet
estimates for most GVWR classes. A few additional characteristics about US trucking fleets
can be gleaned from the figure. First, trucks with high capacity see the largest variations in
payloads (tons). Second, different trailer types achieve a different distribution of payloads
within classes of trucks. For example, among SmartWay participants, class 8 trucks that
transport tanker trailers typically carry double the payload of trucks providing less than
truckload services. Lastly, Figure 3.4 indicates that larger trucks carry a proportionally
higher volume of goods per trip. Trucks with larger payloads allocate emissions over a larger
amount of goods.

For each truck class, a feasible cumulative distribution function (CDF) range for truck
payloads was reported (Figure 3.4). Again, we constructed a payload CDF for each truck
type by creating a random number generator based on the truncated normal distribution and
sorting in increasing order the results of 10,000 sample iterations. The bounds of the payload
area graphs were determined by taking the lower and upper estimated CDF functions within
each truck GWVR class.

to evaluate truck fleet performance in terms of criteria air and CO2 pollutant performance metrics. The
EPA recently (2013) published fleet-specific statistics on the over 3,500 trucking and logistic companies
participating in the program. Prior to SmartWay, VIUS was the most comprehensive freight data source.
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Figure 3.4: (TOP) Distributions formed from data collected through the EPA’s clean truck-
ing partnership [114] indicate that medium- and heavy-heavy duty truck payloads vary both
across and within GVWR classes. This suggests that each truck class has a unique set
of GHG emission factors. (BOTTOM) Illustratively, the secant line ADB represents the
weighted means of the well-to-wheel GHG emission factor for diesel-powered trucks operat-
ing in California assuming constant W2W emission rates (Class 4-6: 840 g CO2,e / km; Class
7-8b: 1350 g CO2,e / km ). The emission factors are not shown for less than 1 ton for class
5 and less than 4 tons for class 8b. Given equal weights to points A and B, the difference
between points C and D represents the level of bias between the two estimations.

Each line in Figure 3.4 (top) represents the assumed cumulative distribution functions for
all of the truck types provided by the EPA. Each GVWR truck class (labeled on top of the
figure) shares a common maximum payload capacity, but has utilization rates that reflect the
types of services they provide. For instance, less-than-truckload (LTL) class 8 tractors move
goods from many different customers at a time and are more likely to see variable payloads,
as compared to class 8 tractors with tanker trailer that perform primarily full-truckload
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services. As a result, we find that heavy-duty trucks span different portions of the ef − A
graph. Payload variability in medium-heavy duty trucks may result in large fluctuations
in the well-to-wheels GHG footprint since these vehicles fall within the super- or critically-
marginal regions. In contrast, heavy-heavy duty truck emission factors are less sensitive to
payload variability because payloads generally fall within the sub-marginal region. Overall,
short-haul trucks (class 4-7) are located within the super- or critically-marginal regions, while
long-haul trucks (class 8a and 8b) are within the sub-marginal region.

Figure 3.4 (bottom) shows an illustrative example of the level of bias (e.g., the distance
along the y-axis between points C and D) associated with W2W GHG emission factors for
two classes of trucks when average payload statistics are used. For each truck class, half of
its trips contain payloads one standard deviation below their average and the other half one
standard deviation above. For context, a class 5 walk-in van (left) provides services such
as parcel deliveries in cities, and an LTL class 8 tractor provides services such as linehaul
between freight terminals (right). Points A and B represent the upper and lower emissions
factor estimate for each truck, respectively. The expected emission factor (g CO2,e/t-km),
represented by the dashed secant line ADB, lies above the graph of the function. Since
ef (A) is a convex function when fuel economy is assumed to be constant over a range of
A, EA[ef (a)] (point D) will always be greater than ef (EA[A]) (point C). The degree of bias
associated with estimating W2W emission factors based on average payload statistics will
depend on where trucks operate on the ef − A graph. In this example, the walk-in van has
larger estimation errors than the dry van because its payloads fall within the super-critical
region. The errors for the dry van are less than 10 percent, which indicates that the use of
emission factors based on average payloads may be appropriate for these truck types.

Table 3.1 summarizes the results of analyzing the W2W GHG footprint of various GWVR
truck classes. Both medium- and heavy-heavy duty trucks have a range of expected GHG
footprints and cannot be described based on a single central tendency. The corrected W2W
GHG emission factors for medium-heavy duty trucks can range from 390 g CO2,e /t-km to
1,500 g CO2,e /t-km, which is 2-5 times greater than what was reported by Facanha and
Horvath (2007) [8] and Meyer et al. (2011) [20]. Over a 50-km trip, these errors would result
in 36-150 kg CO2,e of underestimated, unallocated emissions. For the larger heavy-heavy
trucks, corrected W2W GHG emissions range from 87 g CO2,e/t-km to 700 g CO2,e/t-km.
The unallocated emissions over a 50-km trip would be 10,190 kg CO2,e. Truck types that
are often associated with load consolidation freight operations (e.g., dry vans, reefers) have
typically smaller Pavg and more variable Pstd payloads than those dedicated to specific truck
services (e.g., tanker, beverage, bulk, etc.). Accordingly, these truck types have a higher
W2W GHG footprint.

Table 3.1 also shows that emissions estimates based on average payloads significantly
underestimate the marginal influence of underproductive trucks. For most truck types an-
alyzed, the magnitude of bias δ is greater in both net GHG emissions and as a percentage
of expected GHG emissions than for smaller GVWR truck classes. These errors could be as
high as 1,100 g CO2,e/tkm or 240% larger than estimates based on average payload statis-
tics. The bias δ would likely be smaller if W2W emission rates depended upon the levels
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Table 3.1: Scenario results for levels of bias along with summary statistics for medium-heavy
duty (top three) and heavy-heavy duty (bottom three) truck classes by truck-body/trailer
configuration.

Class Truck Type
Pavg,
(mt)

Pstd,
(mt)

EA[ef (a)],
(g/tkm)

δ,
(g/tkm)

δ, (%)

Class 4 Flatbed 2.7 1.5 1500 1100 240%

Step Van 2.2 1.2 1400 900 170%

Walk-In Van 1.7 0.8 1800 1100 170%

Conventional Van 2.3 0.9 850 330 60%

Class 5 Walk-In Van 2.0 1.1 1100 500 85%

Conventional Van 3.4 1.0 450 100 30%

Class 6 Flatbed 4.7 1.7 410 160 62%

Refrigerated (Reefer) 4.8 1.8 390 150 61%

Walk-In Van 4.0 1.7 840 550 190%

Class 7 Beverage 6.1 2.2 450 130 42%

Flatbed 7.1 0.9 280 8 3%

Refrigerated (Reefer) 6.0 1.3 340 20 6%

Tanker 7.5 0.9 270 12 5%

Single-Axle Van 5.5 1.8 470 120 35%

Class 8a Flatbed 10.0 5.9 410 220 120%

Tanker 12.1 5.4 360 210 130%

Single-Axle Van 8.1 3.8 700 470 200%

Beverage 12.3 4.4 190 35 23%

Class 8b
Dry Van - Single
(LTL-Moving-Package)

15.0 4.1 140 13 10%

Dry Van - Single (Heavy-Bulk) 24.1 3.0 87 8 10%

Specialty (Auto bin) 16.2 5.2 140 23 19%

Dry Van - Double (Tanker) 24.1 3.0 88 8 11%

Combination Flatbed 22.5 4.2 100 12 14%

of service provided [53]. Nonetheless, estimates of bias for medium heavy-duty trucks are
up to an order of magnitude greater than heavy-heavy duty trucks because the maximum
payloads for these truck classes limit them to within the super- or critically-marginal regions
where errors tend to be the greatest.

The large errors for medium-heavy duty trucks could have major implications on the
carbon footprint of goods shipped during the “first- and last-miles” of freight distribution
networks [118] since these vehicles are often associated with this portion of many product
supply chains (e.g., food stuffs, retail products, mail, etc.). Though representing a small
proportion of total freight turnover in California (≈10%) [50], medium-heavy duty trucks
emit CO2 on the same order of magnitude as the larger heavy-heavy-duty trucks in the
state. In 2014, the ARB estimates that medium- and heavy-heavy duty trucks will release
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21 mmtCO2 and 28 mmtCO2 (tailpipe only), respectively [50]. Improving the productivity
(e.g., preventing small payload size) for these smaller vehicles would be the best strategy for
reducing their GHG footprint.

3.3.2 San Francisco Bus Case Study

The goal of the bus case study is to measure the level of bias associated with emission
factors that are based on average passenger ridership statistics. The scope of our study
is limited to the San Francisco Muni bus system, which supports the sixth largest average
weekday ridership (approximately 312,400 persons) in the United States [73], but the analysis
framework is applicable to any bus network. We rely on a robust dataset [117] that contains
nearly complete information on bus ridership from the first week of October 2012. In total,
over 27,000 bus trips and 9.3 million total riders are represented across 72 bus routes. With
this information, we were able to measure ridership at each bus stop in the city and then use
this information to estimate δ over the course of the week. As a point of reference, Chester
and Horvath (2009) have reported the W2W GHG footprint of an urban diesel bus to be 80
g CO2,e per passenger-km [10].

Bus ridership in San Francisco, like in many cities, varies by both time of day and day
of the week (Figure 3.5, top). Figure 3.5 (middle) shows that buses transport between 8
(10th percentile) and 24 (90th percentile) passengers on average (i.e., 8-30% of capacity).
Daily peak average ridership corresponds to morning (inbound toward the city center) and
evening (outbound toward residential neighborhoods) commutes. The choropleth graph also
indicates that the greatest average ridership occurs during the weekends, but total hourly
ridership is the highest during weekday commute hours (8-10 AM and 5-7 PM). Across the
city the median value for average ridership at bus stops is 14 riders. This is an interesting
result because it suggests that half of the bus stops in the city fall within the sub-marginal
region of the ef − A graph while the other half fall within the super-marginal region.

Figure 3.5 (bottom) shows δ as a percentage of ef (EA[A]), which allows us to compare
levels of bias across both diesel- and electric-powered buses without needing to prescribe
bus-specific Ef . The bias δ, based on hourly averages, ranges between 90% (10th percentile)
and 157% (90th percentile) across the city. The greatest estimation errors occur on the
weekend when average ridership is the highest. The reason for these high errors is that the
distribution of ridership at bus stops across the city exhibits large skewness, meaning that
buses can be either very full or practically empty. Thus, emission factors based on average
ridership predict values that are between these extremes, which in this case fall within the
sub-marginal region. However, since ridership spans across both super- and sub-marginal
regions, we see higher expected ef values and large levels of bias.

The number of riders also varies depending on the stop location. To simplify the reporting
of results, in Figure 3.6 we show values for the top five routes based on total weekly ridership.
Stops located within the downtown and its surrounding districts yield more riders than stops
along the bus route termini. Overall, these routes average 18-25 passengers or operate 23-
31% full. Figure 6 shows that the inner quartile values for bias δ vary depending on the
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Figure 3.5: (TOP) Total hourly ridership by days of the week for San Francisco (binned by
percentile ridership). (MIDDLE) Average hourly bus ridership by days of the week for San
Francisco (binned by percentile ridership). Maximum capacity for most Muni buses is 80
passengers, which accounts for both sitting and standing room. (BOTTOM) The bias δ for
well-to-wheel bus emission factors for San Francisco is reported as a percentage of ef (EA[A])
(e.g., emission factor based on average hourly ridership) and are binned by percentile bias.
In each, the 90th percentile is highlighted by yellow borders.
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Figure 3.6: In each graph, the inner quartile values for bias δ are shown. These results reflect
a local level of specificity.

route. The results indicate that bus emission factors based on average ridership underallocate
emissions by 40-89% across the city, but the bias δ could be as great as 400%. When large
portions of a route fall into the low-occupancy ranges (<15% capacity), W2W GHG emission
factor estimates based on average ridership have higher levels of bias. Less than 5% of the
bus stops in San Francisco had bias estimates smaller than 10%, which suggests that average
weekly ridership data do not properly characterize the expected environmental implications
of this system. Instead, analyses must include the distribution of ridership at more refined
temporal scales or correct for these biases otherwise.

For a more specific example, we calculated the W2W GHG emission factors along route
38 (Geary Street), which extends east to west for 12 km across the city and services 6% of the
weekly bus ridership. Figure 3.7 illustrates how bus ridership changes throughout the day for
both inbound and outbound routes. Only diesel buses are used along this route. Average bus
traveling speeds throughout the day were calculated to be 17 kilometers per hour (≈10 miles
per hour) [75]. On a weekly basis, buses along this route have an average GHG footprint of
220 g CO2,e per passenger-km (bus stop minimum: 53 g CO2,e per passenger-km, bus stop
maximum: 810 g CO2,e per passenger-km). As expected, buses are more environmentally
efficient during peak hours and less during off-peak hours, such as at night.
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Figure 3.7: Weekday ridership along the bus route 38 (Geary St.) inbound and outbound in
San Francisco (Fall 2012). Peak occupancy periods are depicted in the maps below in order
to provide spatial context. Each circle represents average number of passengers at bus stops
during peak ridership and indicate high (green, >50%), medium (yellow, 25-50 %), and low
(red, <25%) occupancy levels.

3.4 Chapter Summary

The life-cycle output (e.g., level of service) of infrastructure systems heavily influences their
normalized environmental footprint. Many studies and tools calculate emission factors based
on average productivity, however, the performance of these systems varies over time and
space. We evaluate the appropriate use of emission factors based on average levels of service
by comparing them to those reflecting a distribution of system outputs. For the provision
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of truck and bus services where fuel economy is assumed constant over levels of service,
emission factor estimation biases, described by Jensen’s inequality, always result in larger-
than-expected environmental impacts (3% - 400%) and depend strongly on the variability
and skew of truck payloads and bus ridership. Well-to-wheel greenhouse gas emission factors
for diesel trucks in California range from 87 to 1,500 grams of CO2 equivalents per ton-km,
depending on the size and type of trucks and the services performed. Along a bus route
in San Francisco, well-to-wheel emission factors ranged between 53 and 940 grams of CO2
equivalents per passenger-km. The use of biased emission factors can have profound effects
on various policy decisions. If average emission rates must be used, reflecting a distribution
of productivity can reduce emission factor biases.

3.5 Discussion

When emission rates are held constant over a range of services, the expected environmental
impacts associated with transporting goods and people cannot be correctly predicted using
average values for truck payloads or bus ridership. We show that the bias in GHG emission
factors for heavy-duty trucks and buses always results in errors, i.e., larger-than expected
environmental impacts. The levels of bias depend strongly on the variability and skew of
truck payload and bus ridership distributions.

For many applications, using emission factors that are based on average productivity
may suffice. For example, a concrete truck may always run at nearly full payloads, thus
consistently operating within the sub-marginal region. In all other cases, emission factors
based on average productivity significantly underestimate the environmental burdens. This
is especially important for product environmental assessments that use trucking as a delivery
option, which in effect includes all products in the economy, at least in the first and the last
mile of a trip.

Addressing the levels of bias requires an understanding of the extent and distribution of
system productivity as well as its impact on W2W emission rates. More resolved emission
factors can help policy makers better understand how infrastructure systems are performing
from an environmental perspective, which could lead to lower environmental burdens through
more effective resource allocation. For smaller trucks and buses with low ridership, focusing
on improving productivity can provide opportunities to lower their overall carbon intensity,
without necessarily lowering the W2W emission rates.

Future work should focus on the relationship shared between productivity and emission
rates for vehicles and other infrastructure systems. While we show the biases in GHG
emission factors when emission rates are assumed independent of levels of service, these
biases would be smaller if this assumption were relaxed. For heavy-duty vehicles, studies have
shown that fuel consumption and GHG emission rates are linearly proportional to vehicle
mass [53], and emissions from road infrastructure maintenance grow by a fourth-power law
with mass (21). Similar feedbacks to emission rates may be found in other infrastructure
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systems. In cases where ef (A) is linear (i.e., emission rates exponentially grow with levels of
service), there is no bias associated with ef (EA[A]).

There are also other forms of bias associated with W2W emission factors for heavy-duty
vehicles. Most notably is the assumption that emission factors scale emissions and impacts
linearly with distance, irrespective of when, where, or how a truck is driven. This assumption
of linearity significantly impedes comparisons between different trucks on a micro scale, since
each road segment is treated as being one and the same. In reality, traveling speed [119, 47],
terrain, vehicle payload [44], driver behavior [120], road conditions [24], extended periods
of idling associated with frequent stops, among other factors [56], all have impacts on fuel
economy and GHG emissions.
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Chapter 4

Aggregation Errors in LCAs of
Heavy-Duty Trucks: Infrastructure
Topology Variability

4.1 Introduction

1 The potential for exchanges between producers and consumers with minimal environmental
impacts is important for sustainable development. Freight modes (trucks, trains, ships,
airplanes) have varying life-cycle environmental impacts per ton-km of transport [8, 20, 12, 9,
29], depending on fuel consumption rates, pollution control technologies, consignment sizes,
and lifetime productivity [41]. These differences result in varying levels of access potential
[121], as modes with lower emissions footprints can travel larger distances per unit emissions
[122, 123]. Ideally, total ‘localization’ of the supply of goods would completely minimize
the environmental impacts stemming from exchanges between producers and consumers by
eliminating the need for freight transportation. This is unrealistic in practice, however.

Measuring market accessibility from an environmental perspective takes into account
many location-specific factors, such as levels of producer outputs, critical infrastructure avail-
ability, etc . Accessibility, broadly defined, is the potential of opportunities for interaction
about a point, given a discrete spatial limit or impedance over a distance [124]. Generally,
consumers have good access to a supply of a commodity if there exists a large quantity of
this supply that can be attained through some form of logistics at minimum environmental
cost. In the United States, like other areas of the world, the production centers for differ-
ent commodities are regionally dependent [2, 125]. The dispersed nature of industries has
major implications on how supply chains form, freight infrastructure networks develop, and

1Reproduced in part with permission from Taptich, MN. Horvath, A. Freight on a Low-Carbon Diet:
Accessibility, Freightsheds, and Commodities. Environmental Science & Technology, 2015, 49 (19), pp
11321—11328. Copyright 2015 American Chemical Society. Weblink to Article: http://pubs.acs.org/

doi/full/10.1021/acs.est.5b01697

http://pubs.acs.org/doi/full/10.1021/acs.est.5b01697
http://pubs.acs.org/doi/full/10.1021/acs.est.5b01697
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shippers operate. Thus, the geographic area in which trade is possible given some external
environmental goal (e.g., energy, emissions, or impacts budget) will likely differ across the
United States. In this paper, we refer to this area as a location’s environmental freightshed.

We evaluate how transportation mode choice influences the spatial extent of freightsheds
in terms of the amount of production that is attainable under a transportation emissions
budget for different commodities. We seek to identify which counties in the United States
have the best accessibility to goods. We also seek to assess how county-level emissions inven-
tories are affected by infrastructure topology, e.g., the manner in which freight infrastructure
components are interrelated or arranged. We consider greenhouse gases (GHG) emissions as
the guiding decision-making metric, though other environmental metrics are also important,
and may be explored in future work. To showcase how the extent of freightsheds is also tied
to commodity-specific mode choice, we consider only shifting truck demand to intermodal
rail, which is a combination of rail transport and truck drayage (e.g., short truck trips re-
quired to and from the rail network) between producers and consumers [121]. Truck and rail
freight modes represent the majority of goods moved in the United States [2] and have the
greatest combined infrastructure network [126, 127]. We do not considered waterway freight
primarily because these modes represent only a small percentage of the total goods move-
ment in the United States (8% of ton-km) [2] and are limited to only select transportation
corridors. However, we could consider these alternatives in future studies.

In order to determine low-GHG accessibility across the United States, we first estimate
the number of tons of goods shipped by truck (e.g., production volumes) a consumer could
reach across the US given some carbon budget or preference for low-carbon goods, using a
combination of disaggregation methods and network flow optimization techniques. Given
variations in statistical significance [128, 129, 130], we select only two commodity classes
listed in the US Census Bureau’s Commodity Flow Survey (CFS) [125]: “Meat/Seafood” and
“Paper Articles.” Meat/seafood includes fresh, frozen, and chilled beef, pork, poultry, fish
and aquatic invertebrates. Paper articles include toilet paper, towel, tissue, personal hygiene,
paperboard, and other paper packaging items [131]. It is important to note, however, that
many other commodities could be assessed in the future. We then model how upgrading
current intermodal terminals to allow the exchange of all types of goods could increase
overall accessibility as well as expected GHG savings of mode-switching policies.

4.1.1 Background and Further Motivation

The demand for freight transportation is projected to increase in the coming decades across
the United States [2, 1], which has many implications for the nation’s total annual GHG
emissions. The transportation sector is the second greatest source of GHG emissions in
the U.S. after electric power systems [1], while freight transportation represents about a
quarter of these emissions. Of all the domestic freight modes (e.g., road, rail, waterway, air),
heavy-duty trucks move the greatest amount of goods [2], have the highest GHG footprint
among land-based freight modes [125], and thus emit the most GHGs annually [8]. Hence
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shifting demand from trucks to modes that emit less is one pathway to reducing overall GHG
emissions.

Studies have shown that stakeholders can reduce GHG emissions by promoting intermodal
freight activities, e.g., augmenting portions of freight flows by Class 8b trucks (on average
120 g CO2e/tkm) to rail (on average 19 g CO2e/tkm) or water vessel (on average 33 g
CO2e/tkm) [88]. In a case study of a major logistics company, Craig et al. (2012) found
that the GHG footprint of intermodal rail is less than trucking, though the benefits of mode-
switching policies are location dependent [121]. In addition, the researchers note that access
to intermodal terminals is a key contributor to the overall carbon footprint of this mode.
These researchers did not explore the effects of specific commodities or locations, however.
Corbett et al. (2010) developed a comprehensive and GIS-based intermodal freight model
that estimates the shortest environmental path — along with other measures of costs (e.g.,
time and dollars) — between origin-destination (OD) pairs in the United States [132]. Their
research shows that shifting West Coast port-generated truck demand to intermodal freight
could reduce GHG emissions by 1.7 million metric tons of CO2 per year. The researchers
also showcase the value of coupling national commodity flows with GIS-based informational
tools [133] and suggest that these tools could be used to measure mode accessibility. Using
input-output analysis (i.e., a top-down model), Nealer et al. (2012) examined the energy and
emissions benefits of mode-switching policies across different sectors of the US economy in
2002 [88]. Their scenarios suggest that improving the fuel efficiency of trucks may be a more
prudent way to reduce GHG emissions within the freight sector, as historically unprecedented
sums of mode switching would need to occur in order amount to the same levels of GHG
reductions. However, these findings are highly uncertain [88], are based on shifting modes
in the top 20% of all sectors, and ignore all added emissions required for mode switching to
occur (e.g., truck drayage).

Transportation is only one part of a good’s life cycle. Weber and Matthews (2008), who
focused only on food products, assert that product selection has greater influence on envi-
ronmental impacts as opposed to localism, or the preference for locally or regionally sourced
goods, because transportation accounts for only a small portion of many products’ total en-
vironmental footprint [134]. While that may be true on average across a national economy,
the intent of this paper is to evaluate and put into use the environmental performance of
freight transportation for different, specific commodities and locations.

Each of these previous studies evaluate the environmental impacts associated with in-
termodal freight policies and, in parts, low-carbon accessibility; however, they do not fully
address the questions of where to incentivize mode-shifts and how proximity to infrastruc-
ture may influence the access between producers and consumers for different commodities.
By best locations, we mean the 3,109 counties in the lower 48 states. By incentivizing, we
denote our efforts to provide complete information to stakeholders in order for them to make
more informed decisions.

Moreover, to address these concerns, we need to understand how these benefits may
change across different product supply chains and between specific locations across the
United States. In a study on whether locally or regionally sourced goods reduce GHG emis-
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sions, Edwards-Jones et al. (2008) concluded that “spatially explicit life-cycle assessment[s]”
are needed in order to fully address this question [123]. Thus, to model the environmental
impacts of different product supply chains and between specific locations across the United
States requires a bottom-up modeling approach [123, 132, 135, 136] that accounts for freight
infrastructure networks, commodity flows, and commodity-specific freight characteristics and
life-cycle environmental impacts.

4.2 Methods

4.2.1 Measures of Accessibility

To identify which areas of the country have the greatest opportunities for low-carbon ex-
changes between producers and consumers, we rely on both discrete and continuous measures
of accessibility. We define accessibility, Ai, as the potential amount of production (Tj, tons)
a consumer could reach for a respective commodity at a particular location i. For discrete
measures of accessibility, the spatial extent of GHG freightsheds is limited such that the
GHG emissions produced in transport between producers and consumer, Ej, is within a set
GHG budget, B. Ej is a function of both distance travelled as well as the GHG emission
rates associated with a particular freight mode:

Ai =
∑

j∈n such that Ej≤Bj

Tj (4.1)

Generally, the discrete accessibility measure is effective at comparing system performance
against external goals and targets as well as communicating results to stakeholders. However,
discrete measures of accessibility require an a priori limit or budget and treat all accessible
tonnage the same, which is a limitation of the model. In contrast, the results of a contin-
uous accessibility model could be viewed as more ambiguous from a policy implementation
standpoint, but are the best for comparing against itself as it accounts for all possible des-
tinations. Low-carbon accessibility, when evaluated over a continuum, is measured using an
exponential decay-type potential accessibility model:

Ai =
∑
j∈n

Tje
−βEJ (4.2)

The impedance function, e−βEJ , reflects the severity of higher emissions deterrence. This
discounting factor, β, captures a consumer’s preference for low-carbon transportation emis-
sions. Lim and Thill 2008 point out that there is these constants are usually estimated
empirically rather than ex-ante. In their study, the authors assign parameters based on a
shippers cost preference under three scenarios: large cost decays (e.g., shippers have a larger
preference for local goods), medium cost decays, and low cost decays (e.g., shippers have a
smaller preference for local goods). We follow the reasoning presented by these researchers
[135, 136] and assume that environmentally conscious shippers discount GHG emissions by
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95% (large), 90% (medium), and 75% (low) at a location whose shipping distances would be
1,600 kilometers (1,000 miles) or 190 kg CO2,e by truck away. Our resulting values for β are
0.0158, 0.0121, and 0.0073, respectively.

4.2.2 National Intermodal Assessment

The scenarios presented in this chapter compare the potential benefits of shifting demand
from heavy-duty trucks to intermodal rail across all counties in the United States. To assess
these benefits at a county level for specific commodities, we had to develop a bottom-up
model that incorporates the locations of commodity producers within the national high-
way and freight rail networks [126, 127]. For each county, origin and destination locations
were established by snapping county centroids to the closest highway network nodes. Then,
we joined both networks at road-to-rail intermodal terminals, or ramps that allow cargo
to be exchanged unilaterally between modes. All other terminal types were excluded from
the national network. Road-to-rail intermodal terminals vary by cargo (e.g., containerized,
breakbulk, dry bulk, liquid bulk) and transfer type (e.g., direct, short-term, long-term),
which results in each commodity class having a unique set of possible exchange points along
the network [126]. In this study, commodities were assigned to terminals based on infor-
mation provided in the US National Transportation Atlas [126]. Table 4.1 summarizes the
distribution of road-rail intermodal terminals for the commodities explored in this study and
others listed in the Commodity Flow Survey. The final intermodal networks were adapted
to allow goods to flow between their respective intermodal terminals. For truck flows, only
the national highway network was used.

Based on methods developed in prior freight studies [128, 129, 130] we compiled a sub-
national commodity dataset that reflects county-level truck freight flow patterns between
producers and consumers. This involved a four-step process, which disaggregated national
freight flows using scaling factors based on county-level industry employment [137]. First, we
determined employment at the three-digit North American Industry Classification System
(NAICS) [138] for each county, using mid-point imputing to account for flagged data entries
[128].

Next, we created a bridge between the three-digit NAICS employment data and freight
flows listed at the two-digit Standard Classification of Transported Goods (SCTG) [131]
within the Freight Analytic Framework 3 (FAF) database [2]. The FAF database provides
information regarding the flow of goods (tons) between states and major metropolitan areas
(123 FAF zones) in the United States (Figure 4.1). The SCTG to NAICS pairing was guided
by an unpublished Federal Highway Administration study [128].

To estimate the level of production and attraction (e.g., demand) at a county-level, we
rely on regressions of commodity-specific employment and population data with commodity
flows found in the within the Freight Analytic Framework 3 (FAF) database [2]. We referred
to Cambridge Systematics (2009)[128] for commodity class to North American Industry
Classification System (NAICS) industrial pairs, while only including employment categories
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Table 4.1: Summary of Road-Rail Intermodal Terminal Availability

Commodity Description
SCTG
Code

Road-Rail
Terminals

(total)

Fraction
of Total

Live Animals And Fish 1 8 0.1%
Cereal Grains 2 261 4.2%
Other Crops 3 157 2.5%
Animal Feed, Pet Food, And Products Of Animal Orig 4 71 1.1%
Meat, Fish, And Preparations 5 129 2.1%
Milled Grain Products And Preparations And Bakery 6 211 3.4%
Other Prepared Food Stuffs 7 422 6.8%
Alcoholic Beverages 8 109 1.8%
Tobacco And Manufactured Tobacco Substitutes 9 13 0.2%
Monumental Or Building Stone 10 31 0.5%
Gravel And Crushed Stone 11 82 1.3%
Natural Sands Except Metal-Bearing 12 91 1.5%
Non-Metallic Mineral Products N.E.C. 13 225 3.6%
Metallic Ores 14 82 1.3%
Coal 15 97 1.6%
Crude Petroleum 16 47 0.8%
Gasoline 17 11 0.2%
Fuel Oils Including Aviation Turbine 18 28 0.5%
Refined Petroleum Products N.E.C. 19 193 3.1%
Basic Chemicals 20 274 4.4%
Pharmaceutical Products 21 19 0.3%
Fertilizers 22 78 1.3%
Chemical Preparations N.E.C. 23 352 5.7%
Plastics And Rubber 24 271 4.4%
Forest Products 25 204 3.3%
Wood Products 26 357 5.8%
Pulp, Newsprint, Paper, And Paperboard 27 328 5.3%
Converted Paper And Converted Paper Products 28 19 0.3%
Printed Products 29 4 0.1%
Textiles, Leather, And Articles 30 25 0.4%
Articles Of Stone, Ceramic, Or Glass 31 388 6.3%
Iron And Steel In Primary Forms And Basic Shapes 32 315 5.1%
Other Metal, And Articles Of Metal 33 297 4.8%
Mechanical Machinery 34 407 6.6%
Computers, Components, Peripherals, And Software 35 9 0.1%
Electrical Machinery And Equipment 36 103 1.7%
Motor Vehicles 37 56 0.9%
Engines, Parts, And Accessories For Motor Vehicles 38 36 0.6%
Transportation Equipment N.E.C. 39 7 0.1%
Precision Instruments And Apparatus 40 54 0.9%
Furniture And Furnishings 41 127 2.1%
Miscellaneous Manufactured Products 42 37 0.6%
Waste And Scrap 43 147 2.4%

that were statistically significant at the 95 percent confidence level (e.g., P>|t| <0.05) as
explanatory variables (Xi) in the regression (Eq 4.3 and 4.4).

P (Production) = β1X1 + β2X2 + β3X3 (4.3)
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Figure 4.1: Zones listed within the Freight Analytic Framework 3 (FAF) database for the
lower 48 states.

Table 4.2: SCTG-NAIC Pairs and Regression Summaries (Production)

NAICS Code Description Coefficient t-stat

Meat and Seafood

311 Food Manufacturing 0.0698 24.8

Paper Articles
322 Paper Manufacturing 0.1139 6.0

323
Printing and Related
Activities

0.0813 5.4

P (Attraction) = β1X1 + β2X2 + β3X3 (4.4)

For each data point, data for our explanatory variables were aggregated to match the geo-
graphic scope of the parent FAF zone. For example, a single data point for the FAF zone
representing the state of Kansas (Figure 4.1) would include the summation of all the relevant
data from the counties falling within this zone, which would then be compared against the
commodity data listed in the FAF database for this zone. Tables 4.2 and 4.3 represent a
summary of the results for our regression coefficients.

Then we estimated allocation coefficients based on regressions for both the production
and attraction of goods at a FAF zone resolution for the year 2012 [128, 129, 130]. Lastly,
the allocation coefficients were used to estimate county-level production and attraction (e.g.,
demand) for all commodities and subsequently county-to-county flows [128, 132]:
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Table 4.3: SCTG-NAIC Pairs and Regression Summaries (Attraction)

NAICS Code Description Coefficient t-stat

Meat and Seafood
311 Food Manufacturing 0.0285 8.0

722
Food Services and
Drinking Places

0.0068 12.0

Paper Articles
322 Paper Manufacturing 0.0699 5.4

323
Printing and Related
Activities

0.0297 2.0

- Population, 2012 0.0001 6.6

CFi,j = Tk,l

(
p̂i∑

m∈k p̂m

)(
âi∑
n∈l ân

)
(4.5)

where

CFi,j = The flow of tons by truck from county i to county j
Tk,l = The flow of tons by truck from parent FAF zones k and l(

p̂i∑
m∈k p̂m

)
= The ratio of estimated production in county, i, relative to the total estimated

production in parent FAF zone, k(
âi∑

n∈l ân

)
= The ratio of estimated attraction in county, j relative to the total estimated

attraction in parent FAF zone, l

Table 4.4 shows a detailed calculation for the flow of Meat/Seafood productions from the San
Francisco Bay Area to Los Angeles metropolitan area using data from the 2007 Commodity
Flow Survey. The column labeled “Meat tons (2007)” represents the total amount of goods
being shipped from the Bay Area to Los Angeles.

As was noted in ref. [128], only a small subset of commodities can be appropriately
disaggregated to the counties using employment data. Accordingly, we limited the scope of
our study to two commodity types that have strong correlations between these variables:
meat/seafood (production r-squared: 0.84, attraction r-squared: 0.90) and paper articles
(production r-squared: 0.77, attraction r-squared: 0.87). Through well correlated, using
employment data to disaggregate national-commodity flows is subject to uncertainty. Other
commodities types had strong correlations, however, but were excluded. Information regard-
ing the FAF’s geospatial boundaries, the SCTG to NAICS pairing, and regression analysis
is provided in the Supporting Information section of this paper.

Once county-level commodity flows were estimated, we then constructed truck life-cycle
emission factors for each of the commodity types based on the methodologies established
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Table 4.4: County-Level Freight Flow Allocation (Meat /Seafood, SF to Los Angeles)

County
Source
FIPS

County
Sink FIPS

Parent
FAF ID,
Source

Parent
FAF ID,
Sink

Meat tons
(2007),

1000 tons

Source
County

Allocation
Factor

Sink
County

Allocation
Factor

Final
County-
Level

Shipment,
1000 tons

6001 6037 64 61 32.018 0.321 0.596 6.126
6001 6059 64 61 32.018 0.321 0.186 1.908
6001 6065 64 61 32.018 0.321 0.085 0.873
6001 6071 64 61 32.018 0.321 0.092 0.946
6001 6111 64 61 32.018 0.321 0.041 0.419
6013 6037 64 61 32.018 0.070 0.596 1.331
6013 6059 64 61 32.018 0.070 0.186 0.415
6013 6065 64 61 32.018 0.070 0.085 0.190
6013 6071 64 61 32.018 0.070 0.092 0.206
6013 6111 64 61 32.018 0.070 0.041 0.091
6041 6037 64 61 32.018 0.011 0.596 0.206
6041 6059 64 61 32.018 0.011 0.186 0.064
6041 6065 64 61 32.018 0.011 0.085 0.029
6041 6071 64 61 32.018 0.011 0.092 0.032
6041 6111 64 61 32.018 0.011 0.041 0.014
6055 6037 64 61 32.018 0.028 0.596 0.543
6055 6059 64 61 32.018 0.028 0.186 0.169
6055 6065 64 61 32.018 0.028 0.085 0.077
6055 6071 64 61 32.018 0.028 0.092 0.084
6055 6111 64 61 32.018 0.028 0.041 0.037
6069 6037 64 61 32.018 0.019 0.596 0.367
6069 6059 64 61 32.018 0.019 0.186 0.114
6069 6065 64 61 32.018 0.019 0.085 0.052
6069 6071 64 61 32.018 0.019 0.092 0.057
6069 6111 64 61 32.018 0.019 0.041 0.025
6075 6037 64 61 32.018 0.064 0.596 1.223
6075 6059 64 61 32.018 0.064 0.186 0.381
6075 6065 64 61 32.018 0.064 0.085 0.174
6075 6071 64 61 32.018 0.064 0.092 0.189
6075 6111 64 61 32.018 0.064 0.041 0.084
6081 6037 64 61 32.018 0.131 0.596 2.495
6081 6059 64 61 32.018 0.131 0.186 0.777
6081 6065 64 61 32.018 0.131 0.085 0.356
6081 6071 64 61 32.018 0.131 0.092 0.385
6081 6111 64 61 32.018 0.131 0.041 0.170
6085 6059 64 61 32.018 0.107 0.186 0.639
6085 6065 64 61 32.018 0.107 0.085 0.292
6085 6071 64 61 32.018 0.107 0.092 0.317
6085 6111 64 61 32.018 0.107 0.041 0.140
6085 6037 64 61 32.018 0.107 0.596 2.051
6087 6037 64 61 32.018 0.052 0.596 0.989
6087 6059 64 61 32.018 0.052 0.186 0.308
6087 6065 64 61 32.018 0.052 0.085 0.141
6087 6071 64 61 32.018 0.052 0.092 0.153
6087 6111 64 61 32.018 0.052 0.041 0.068
6095 6037 64 61 32.018 0.056 0.596 1.064
6095 6059 64 61 32.018 0.056 0.186 0.331
6095 6065 64 61 32.018 0.056 0.085 0.152
6095 6071 64 61 32.018 0.056 0.092 0.164
6095 6111 64 61 32.018 0.056 0.041 0.073
6097 6037 64 61 32.018 0.141 0.596 2.700
6097 6059 64 61 32.018 0.141 0.186 0.841
6097 6065 64 61 32.018 0.141 0.085 0.385
6097 6071 64 61 32.018 0.141 0.092 0.417
6097 6111 64 61 32.018 0.141 0.041 0.184
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by Facanha and Horvath (2007). Data driving these estimates is based on average truck
manufacturing and maintenance costs [139, 8], national average fuel consumption rates [1,
88, 140], commodity-specific payloads [116], and commodity-specific empty driving statistics
[116].

The scope of this assessment includes GHG emissions from truck operation, fuel pro-
duction and distribution, truck manufacturing, and maintenance. Fuel economy estimates
for diesel-powered engines were taken from Argonne National Laboratory’s VISION model,
which was developed to quantify and forecast the energy, oil, and carbon emissions asso-
ciated from the U.S. transportation sector [1]. Tailpipe GHG emission rates are assumed
to be proportional to fuel rates. The GREET model (2013) was used to model the GHG
emissions generated along the fuel production pathways for ultra-low sulfur diesel fuels [140].
Heavy-duty trucks (class 7-8) are modeled assuming the trailer type is dry van that drives
empty for 20% for Meat/Seafood and 23% for Paper Articles over its lifetime usage [116].
Infrastructure-related emissions are based on Sathaye et al. (2009) (46). In this study, it
is assumed that trucks remain in operation for on average 20 years. This corresponds to a
scrappage odometer reading of 1.8 million vehicle kilometers traveled (VKT). Manufacturing
and maintenance GHG emissions were estimated using EIO-LCA [8].

The functional unit of comparison used to characterize the emissions generated by the
freight industry is the ton-km. This approach facilitates intermodal comparisons because it
describes the efficiency in which goods are moved through infrastructure networks on a unit
basis. In this study, we assume average payloads of 20 tons for Meat/Seafood and 18.9 tons
for Paper Articles, which are based on the 2002 Vehicle Use Inventory Survey[116].

The total GHG emissions footprint per ton-km of a set of goods, ef , is:

eft = efs + eff + efi (4.6)

where efs represents supply-chain emissions,

eft =
Es

V KT × P × (1− e)
(4.7)

where eff represents well-to-wheel emissions,

eff =
Ef

P × (1− e)
(4.8)

where efi represents infrastructure emissions,

efi =
Ei

P × (1− e)
(4.9)

and the remaining variables:

Es = Emissions from supply-chain process [ g CO2,e]
Ef = Emissions from well-to-wheel processes [g CO2,e / km]
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Table 4.5: Commodity-resolved, Life-Cycle GHG Emission Factors for Heavy Heavy-duty
Trucks (g CO2,e/tkm)

Commodity
ef ,

g/tkm
Commodity

ef ,
g/tkm

Live animals/fish 104 Fertilizers 116
Cereal grains 110 Chemical prods. 119
Other ag prods. 84 Plastics/rubber 128
Animal feed 109 Logs 107
Meat/seafood 101 Wood prods. 114
Milled grain prods. 93 Newsprint/paper 91
Other foodstuffs 82 Paper articles 97
Alcoholic beverages 98 Printed prods. 182
Tobacco prods. 120 Textiles/leather 70
Building stone 128 Nonmetal min. prods. 89
Natural sands 111 Base metals 116
Gravel 117 Articles-base metal 137
Nonmetallic minerals 123 Machinery 109
Metallic ores 86 Electronics 151
Coal 73 Motorized vehicles 99
Crude petroleum 92 Transport equip. 86
Gasoline 101 Precision instruments 105
Fuel oils 113 Furniture 137
Coal-n.e.c. 123 Misc. mfg. prods. 122
Basic chemicals 139 Waste/scrap 197
Pharmaceuticals 178

EI = Emissions from infrastructure processes [g CO2,e / km]
V KT = Lifetime vehicle kilometers traveled [km]
P = Payload (mt)
e = Average lifetime empty driving (%)

The resulting GHG emission factors for diesel-powered trucks were 101 g CO2,e/tkm and
97 CO2,e/tkm for meat/seafood and paper articles, respectively (Table 4.5). Though the
life-cycle emission factors for these two commodities are quite similar, we note that this will
not be the case for all commodity types (Table 4.5) as truck payloads and empty driving are
unique to each type of good moved [32]. Given the large payloads for diesel-powered trains
(3,000 tons per train, US average)[41], we relied upon a single average emission factor of 19
g CO2,e/tkm [88, 32]. The final intermodal rail GHG emissions were calculated by totaling
the GHG emissions generated during truck drayage to and from intermodal terminals as well
as the GHGs from the associated rail portion of a delivery [121]. Due to lack of data, we
assume no emissions penalty for exchanging goods at intermodal terminals.

Lastly, we model the flow of goods through commodity-specific networks to be based
on the lowest GHG pathway. For each commodity and mode type (i.e., truck-only and
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intermodal rail), we created travel cost matrices for pairwise county-to-county sets by solving
for the shortest GHG emission paths using an open-sourced routing model that implements
the Dijkstra algorithm [141]. We ignore alternative routing schemes that may often occur
due to queuing at busy exchange terminals, which may increase the degree of uncertainty
in our results. The expected county-level GHG benefits from mode-switching and average
county-level truck drayage distances were estimated by assigning a weight to each pairwise
county-to-county set based on a percentage of total county-to-county commodity flow (tons).

4.3 Results

To illustrate the effect mode choice has on the spatial extent of GHG freightsheds, we
show the results for a single county (Cook County, IL, population 5.2 million, including
Chicago), in Figure 4.2, which has access to a well-developed intermodal transportation
system. The geographic extent of truck and intermodal rail freightsheds are compared. For
each commodity, a GHG budget was set to 800 km or roughly 80 kg CO2,e per ton emitted
by a Class 8b truck on average. The 800-km distance traveled represents a threshold in
which a commodity is considered to be locally or regionally produced under the US Green
Building Council’s LEED program [142], though other spatial definitions of localism exist
[61, 143, 144, 145]. This GHG budget was motivated by the increased attention being paid
to the economic, environmental, etc. benefits of using locally-sourced goods, services, and
resources [134, 146, 147, 148]. For perspective, one can also define a budget in the context
of emission reduction goals. For instance, a budget could be set relative to current emission
levels (20% from business-as-usual) or with specific end-points in mind (e.g., kg emissions
per person-day)[149].

When only trucks are considered, freightsheds are of similar size and symmetry for two
major reasons. First, trucks of equivalent size and payload have equal opportunities within
the highway networks and can therefore choose similar paths between origin-destination (OD)
pairs. Second, we chose two commodity types that have similar emission factors, causing the
total GHG emissions (e.g., transport costs) between OD pairs to be of similar magnitude.
However, as we noted earlier, this may not be the case for all commodities. Overall, trucks
with larger payloads or lower well-to-wheel GHG emission rates can travel greater distances
given a GHG budget since their normalized GHG footprint is smaller [41].

In contrast, despite sharing the same GHG budget, the geographic reach and symmetry
of intermodal rail freightsheds are vastly different between the commodity types. Intermodal
rail freightshed are significantly larger than truck freightsheds due to the differences in nor-
malized emission rates between the modes. The major factors differentiating each freightshed
are due to intermodal terminal availability. As noted earlier, intermodal terminals are not
equipped to handle all types of goods, therefore, commodities are restricted in access to
only a subset of the total number of terminals. Only a small fraction of road-rail terminals
accommodate meat/seafood (127 or 4.9%) and paper articles (19 or 0.7%). For perspective,
terminal availability for our case examples is less than the US average (µ =144) but more
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Figure 4.2: A commodity-focused comparison of the greenhouse gas emissions per ton,
shipped from Cook County, IL by truck only (top) and intermodal freight (bottom). To
illustrate the differences in spatial coverage, a carbon budget of 80 kg CO2,e, or roughly
equivalent to 800 km driven by truck is shown for each commodity. Intermodal terminals
are shown as circles.

than the median (x̂= 97) for the all of the commodities listed in the CFS. Overall, the added
emissions from longer trips during truck drayage, which are the result of limited intermodal
terminal availability, cause the extent of the paper articles freightshed to be less than the
freightshed for meat/seafood.

As Craig et al. (2013) point out, when terminals are dispersed over great distances,
isolated commercial markets may form [121]. To illustrate, we call the reader’s attention
to the market at the southwestern corner of the state of Washington (Figure 4.2, bottom
right). Paper articles sourced from this location for Cook County using intermodal rail is
equivalent to trucking in goods from Pittsburgh, PA. This finding reaffirms the position [134]
that ’local’ is a poor metric for defining the overall environmental impacts associated with
the production and supply of a commodity, especially in the context of multimodal freight
operations.

Overall, we find that consumers could increase their opportunities to supply a product
by choosing intermodal rail over trucks, but the scale of this increase in access depends on
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Figure 4.3: A summary of county-level differences in accessibility between intermodal rail
and truck-only transport (baseline) under varying GHG budgets. Interquartile ranges are
shown in the area and median estimates are shown as a line for each commodity, respectively.
At low budgets, truck-only routes are possible; therefore, the relative change is zero. At high
budgets, nearly all locations can be reached by each mode; therefore, the relative change is
low. Overall, intermodal rail positively improves accessibility but this change is commodity
dependent.

the commodity and GHG budget. Figure 4.3 compares the differences in consumer access to
producers under varying GHG budgets for both commodity classes across the United States.
Maps of the total tons shipped by truck (herein referred to as production) at a county and
regional level are provided in the Supporting Information. For reference, regional [150] shares
of production for meat/seafood and paper articles are 11% and 18% (Northeast), 30% and
25% (South), 45% and 38% (Midwest), and 14% and 19% (West), respectively.

The percentage change in total accessibility depends on the magnitude of the GHG
budget. At very low budgets, trucking policies dominate intermodal rail policies, causing
the differences in total access (tons by truck in 2012) between the two networks to be zero.
Once GHG budgets breach a commodity-specific departure point (meat/seafood: 20 kg
CO2,e/ton, paper articles: 50 kg CO2,e/ton), differences in accessibility quickly grow as
goods could feasibly be transported by intermodal rail. At the point of greatest relative
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change between the two freightsheds (meat/seafood: 70 kg CO2,e/ton, paper articles: 90
kg CO2,e/ton), the percent change in access between intermodal and truck-only freightsheds
begins to decline and converges to zero, as all locations can be reached by both modes within
the budget. Additional analysis is provided in a later subsection to assess uncertainty of our
freight flow disaggregation methods as well as life-cycle GHG emission factors.

In order to determine which areas of the country have greatest opportunities for low-
carbon exchanges between producers and consumers, we measure intermodal rail accessibility
over a continuum under two scenarios for each county in the United States. In our 2012 or
baseline infrastructure scenario, we assume a medium rate of impedance over space (β =
0.0121) and that the movement of goods is constrained to commodity- specific intermodal
terminals. In an alternative future scenario, we assume goods can be exchanged across
all of terminals (n=2612). This scenario represents the best case for improving the low-
GHG accessibility without increasing the number of terminals to the network. The scenario
also provides insights as to how improving accessibly may increase GHG emissions savings
associated with mode-switching policies.

The scenario results (4.4, top) show that the counties with the greatest access in terms of
percentage of total production share two common characteristics. First, these counties are
collocated near intermodal freight terminals, which reduces the truck trip distances required
to move goods onto the rail network and ultimately complete a delivery (e.g., drayage).
Overall, we estimate the average county-level drayage distances to be 220 km ± 79 km
(standard deviation, sd) for meat/seafood and 397 km ± 175 km (sd) for paper articles in
our baseline scenario. Second, counties with the best low-GHG accessibility are also located
near major regions of production. For meat/seafood and paper articles, we find average
regional accessibility estimates as a percentage of total commodity production to be 46%
and 38% (Northeast), 48% and 34% (South), 49% and 36% (Midwest), and 35% and 17%
(West), respectively. It is important to note that counties with nearby intermodal access
do not always have high accessibility (see Figure 4.4 top left, California). In these cases, a
large share of total US production occurs at distant locations, which worsens the accessibility
score. Overall, more counties in the United States have better access to meat/seafood than
paper articles.

In an alternative future scenario, upgrading current terminals to allow the exchange
of all types of goods will allow consumers the same level of access to both commodities
reviewed in the study. Across the country, average drayage distances were reduced by 75%
for meat/seafood and 86% for paper articles, causing accessibility scores to significantly
improve (Figure 4.4, bottom). The results of this scenario for meat/seafood and paper
articles, respectively, show that 60% and 62% (Northeast), 64% and 63% (South), 65% and
64% (Midwest), and 46% and 46% (West) of total commodity production is accessible to
consumers. Overall, we find that states in the eastern half of the United States have better
access to meat/seafood and paper articles than the western United States. In the following
subsection, we provide a summary chart that explores the sensitivity of our accessibility
results under varying assumptions for the discounting factor, β.

Increasing the availability of intermodal terminals will increase low-GHG accessibility na-
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Figure 4.4: A comparison of county-level accessibility using intermodal rail under current
infrastructure availability (top) and a scenario where all road-rail terminals can transfer all
types of goods (bottom). The results were derived using a continuous approximation model
for accessibility (Eq. 2) and are reported as the fraction of total US production (tons shipped
by truck) attainable given a medium rate of impedance over space (β = 0.0121).

tionwide, but it also has beneficial impacts on GHG reduction potentials of mode-switching
policies. Figure 4.5 shows the average county-level GHG savings from mode-switching poli-
cies, weighted by county-level commodity flows (2012). On average, the split of kilometers
traveled for our baseline scenario was estimated to be 43% rail to 57% truck for meat/seafood
and 17% rail to 83% truck for paper articles. We find that the amount of GHG emissions
reduced through mode-shifting policies is commodity dependent. In our baseline scenario,
median GHG savings for meat/seafood and paper articles were estimated at 23 kg CO2,e/ton
and 8 kg CO2,e/ton, respectively. By comparison, upgrading current intermodal terminals
to allow the exchange of all commodity types may increase the median GHG savings for
meat/seafood and paper articles to 40 kg CO2,e/ton and 33 kg CO2,e/ton. This improve-
ment can be attributed to the reduction in truck drayage needed as intermodal availability
increases. For this alternative future scenario, we find that the national average split of
kilometers travelled was estimated to be 82% rail to 18% truck for meat/seafood and paper
articles, respectively.
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Figure 4.5: Average county-level GHG savings associated with switching from truck-only to
intermodal freight rail under current and all terminals available scenarios. By upgrading all
of its current intermodal terminals, the United States could improve its median GHG savings
associated with truck-to-rail mode-switching policies by 70% and 310% for Meat/Seafood
and Paper Articles, respectively.

4.3.1 Accessibility Sensitivity Analysis for Discrete GHG budget

To assess the sensitivity our results, we provide four additional cases for comparison. Figure
4.6 shows a summary of our results for discrete accessibility under varying GHG budgets. In
the first case, we allocated goods flowing between FAF zones to counties uniformly, meaning
each county within a parent FAF zone produces and attracts an equal amount of goods. We
find that the results for this assumption and those presented in our base case are similar.
Future work should be dedicated to see if this finding holds for other commodities. Our
second case disaggregates goods proportionately to county level populations. We find that
this results in a lower relative change in the accessibly between intermodal rail and truck-only
freightsheds. This finding could be due locating major production areas closer to populations,
which would increase the extent of truck-only freightsheds and thus decrease the intermodal
differences in accessibility. The final two cases look at the sensitivity of our results to
trucking GHG emission factors. We find that increasing truck emission factors will decrease
overall accessibility to goods. However, increasing truck emission rates will increase the
relative change in accessibility between intermodal rail and truck-only freightsheds. These
results indicate that higher trucking emissions reduce the extent of truck-only freightsheds
at a greater rate than intermodal rail, which only utilizes trucks for a small portion of the
complete exchange of goods.

The impacts on the GHG reduction potentials of mode-switching policies for each of
these scenarios are shown in Figure 4.7. The results of our scenario analysis under varying
assumptions for β coefficient are shown in Figure 4.8. Overall, a greater preference for
low-GHG transport emission (e.g., higher β) results in less accessibility to goods.
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Figure 4.6: A summary of county-level differences in accessibility between intermodal rail
and truck-only transport (baseline) under varying GHG budgets under different modeling as-
sumptions (Base: Originally reported data; Uniform: Freight flows disaggregated uniformly
to counties; Pop.: Freight flows disaggregated based on population to counties; +25%: Truck-
ing emission factors were increased by 25%; -25% Trucking emission factors are reduced by
25%). The estimated median values are shown for each scenario.

4.3.2 Limitations and Uncertainties

Scenario analysis reveals that investments into freight infrastructure can improve the ac-
cessibility to commodities and lower the GHG footprint of intermodal freight operations.
These results are based on emission factors that reflect life-cycle GHG emission rates that
coincide with estimates from previous research [8, 20, 41, 88]. Given that commodity flow
estimates for the two commodities considered are well correlated with industry employment
and that the transportation network is well defined, our low-GHG accessibility scores for the
considered modes are robust on a county basis. For other commodities, the disaggregation
method implemented in this research [128, 129, 130], which assigns national freight flows
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Figure 4.7: Average county-level GHG savings associated with switching from truck-only
to intermodal freight rail under current and all terminals available scenarios budgets under
different modeling assumptions. In the parenthesis, the left term refers to the commodity
while the right term refers to the scenario.

to counties, may bias results for goods produced in industrial sectors where operations are
capital intensive or where SCTG and NAICS classification groups are jointly inconsistent.

In terms of generalizing our results, this research?s largest uncertainties stem from analyz-
ing only a portion of the US freight distribution network and vehicle routing decision-making
process. We compare only truck and intermodal freight services, though other low-GHG
modes should be considered in the future. For instance, if freight transport along inland
waterways were considered, counties within proximity to intermodal terminals that serve
waterways would likely have higher accessibility scores.

As well, emissions generated during intermodal exchanges between truck and rail net-
works have not been accounted for as they have not been thoroughly researched. Including
these emissions would increase the ‘fixed’ emissions associated with intermodal rail services
and decrease to an extent the accessibility of counties that utilize these services. We also
assume that carriers traverse the highway and rail network along the lowest GHG emissions
pathways. However, this policy choice comes at time, financial, and external costs (e.g.,
safety, human health, etc.) [151, 103, 24] and considerations of scale (e.g., production, link,
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Figure 4.8: (A) Average county-level GHG savings associated with switching from truck-only
to intermodal freight rail under current and all terminals available scenarios. (B) Sensitivity
analysis of β coefficient on accessibility scores across the United States.

and node capacities) were not included in this analysis but could have been implemented
[132]. Ultimately, each of these factors is an important consideration that influences con-
sumer choice. Future research should evaluate the tradeoffs related to mode-switching poli-
cies at a county level while considering these factors as well as including other environmental
measures.
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4.4 Chapter Summary

The freight infrastructure network (e.g., roads, railways, waterways, etc.) is the backbone
of nearly all trade partnerships in the United States and abroad. The manner in which each
portion of its constituent parts are interrelated or arranged plays an important role for de-
termining the environmental footprint of goods moved within its network. In this study, we
compared the spatial distribution of potential consumer-producer exchanges (i.e., accessibil-
ity) under varying greenhouse gas (GHG) budgets or preferences for minimal transportation-
related GHG emissions. We conducted case studies using two freight modes (truck and in-
termodal rail) for two representative commodities listed in the US Commodity Flow Survey:
meat/seafood and paper articles. Results across all counties in the United States indicate
that the geographic area in which trade is possible given a GHG budget varies by trans-
portation mode, location, and commodity. Our results suggest that intermodal terminal
availability is an important determinant of low-GHG accessibility. Since only a fraction of
road-to-rail terminals accommodate meat/seafood (4.9%) and paper (0.7%), the U.S could
increase its expected GHG savings associated with truck-to-rail mode-switching policies by
70% (+20 kg CO2,e/ton, meat/seafood) and 310% (+30 kg CO2,e/ton, paper) by upgrading
current terminals to allow the exchange of all types of goods.

4.5 Discussion

Our results show that counties with the best accessibility to resources from a GHG perspec-
tive are not necessarily collocated in major regions of production. We show that proximity
to critical supply-chain infrastructure, e.g., intermodal terminals, is an equally important
consideration when evaluating the environmental performance of freight transportation for
different locations. Overall, improving the availability of intermodal terminals effectively ex-
pands GHG freightsheds, which can lead to overall reductions in emissions. While we show
a case for only two commodity types, one environmental indicator, and two modes, evidence
suggests that the spatial extent of environmental freightsheds at any particular location in
the United States is commodity dependent.

From a policy perspective, environmental freightsheds may take on a different meaning
based on whether someone is shipping a good or receiving it. Shippers could use this approach
for defining a freightshed in order to evaluate the environmental footprint of their downstream
supply chain logistics, to choose modes that maximize their coverage areas while minimizing
their environmental impacts, or to expand production in regions where the potential for low
energy and emissions trade is greatest. Receivers may want to know their freightsheds to
maximize the quality of their goods in terms of utility and environmental impacts [134] and
to choose freight mode combinations that minimize their total environmental footprint.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

In Chapters 2, 3, and 4, we develop GHGn factors for heavy-duty trucks and/or
buses.

In Chapter 2, we assessed whether it is appropriate to use generic, aggregated LCA emis-
sion factors available in the literature and LCA databases within regional, local, and discrete
analyses in leu of emission factors that change with respect to speed. To complete this task,
we calculated GHG emission factors for 34 categories of heavy-duty vehicles operating in Cal-
ifornia, comprising both medium and heavy heavy-duty trucks as well as buses (e.g., transit,
school, charter). One set of these emission factors was based on fuel economy data reflective
of the state-wide fleet of vehicles (Table 2.1). The second set of GHG emission factors was
based on speed-corrected fuel economy (Figure 2.2), which could be used to differentiate the
GHG footprint of trucks and buses based on their traveling speeds.

In Chapter 3, we assessed the extent to which the life-cycle output (level of service) of in-
frastructure systems influences their normalized environmental footprint. In two case studies,
we quantified the well-to-wheels GHG emissions associated with on-road goods movement
by medium- and heavy-heavy-duty trucks and buses that travel under varying loading fac-
tors (i.e., truck payloads and bus ridership). For heavy-duty trucks, we calculated GHG
emission factors for six gross vehicle weight rating classifications and their respective truck
types operating in California (Table 3.1). We also quantified GHG emission factors for buses
operated by the San Francisco Municipal Transportation Agency based on minute-by-minute
bus ridership data (Figure 3.5).

In Chapter 4, we evaluated how the GHG emissions rates for heavy-duty trucks and
intermodal rail (e.g., the combination of heavy-duty trucks and freight rail) change across
different product supply chains (i.e., commodity types) and between specific counties across
the United States. In our case study, we provide life-cycle GHG emission factors for class 8
heavy-duty trucks based on commodity-specific data (payloads and empty driving) (Table
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4.5).

This dissertation quantifies the level of estimation errors in GHG inventories
resulting from the use of generic emission factors for trucks and buses across
different levels of specificity or aggregation, which ultimately leads to more in-
formed decisions and actions related to climate change mitigation.

We presented new knowledge on the uncertainties surrounding the use of generic data,
specifically generic fuel economy, vehicle productivity, and infrastructure topologic data, to
generate GHG emission inventories for heavy-duty vehicles. By assessing these uncertainties
and improving the accuracy of GHG emission factors, decision-makers now have better and
more reliable information to assess the environmental performance of heavy-duty trucks and
buses on more resolved levels of specificity.

In Chapter 2, we conducted original case studies for trucks monitored in the Caltrans
Performance Measurement System and real-time operations of buses in nine agencies in
California. In each of the case studies, we measured the relative difference, δ, between GHG
emission factors based on fleet-scale fuel economy data, Ef,avg, and GHG emission factors
based on speed-corrected estimates for fuel economy, Ef,s. Our results indicate that the level
of emission deviation, δ, varies across traveling speeds, with large deviations occurring at
reduced and elevated traveling speeds (Figure 2.3). We show that there is more variability
in speeds along urban arterial road networks than on highways. Hence, emissions deviation
is greater for buses operating in cities than heavy-duty trucks operating along highways
(Figure 2.6 and Figure 2.20). For buses in particular, we estimate that the expected route-
level emissions deviation varies from -13% — 62% across the 9 agencies considered in the
case study. These errors have significant implications on local GHG emission inventories
(Figure 2.24). We conclude the chapter with summary decision-making directives that guide
LCA modelers as to when it is appropriate to use generic, fleet-scale GHG emission factors
to calculate the carbon footprint of heavy-duty vehicles (Table 2.3).

In Chapter 3, we evaluated the appropriate use of emission factors based on average levels
of productivity (e.g., truck payloads and bus ridership) by comparing them to those reflecting
a distribution of system outputs. This work identified a systematic bias associate with the
use of average productivity data (e.g., freight tonnage and bus ridership) in fleet-scale LCAs
[41]. For the provision of truck and bus services where fuel economy is assumed constant
over levels of service, we found that emission factor estimation error resulting from the use
of average loading factors, e.g., EA[ef (a)]− ef (EA[A]), always result in larger-than-expected
environmental impacts. The magnitude of this emissions error depends on the truck vehicle
classification and truck type (see, Table 3.1) as well as the utilization rates of buses within
public transit networks (see, Figure 3.6). Overall, well-to-wheel greenhouse gas emission
factors for diesel trucks in California range from 87 to 1,500 grams of CO2 equivalents per
ton-km, depending on the size and type of trucks and the services performed. Along a bus
route in San Francisco, well-to-wheel emission factors ranged between 53 and 940 grams of
CO2 equivalents per passenger-km.
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In Chapter 4, we estimate the expected county-level GHG reduction potential from mode-
switching policies in the United States [42]. We conduct case studies using two freight modes
(truck and intermodal rail) for two representative commodities listed in the US Commodity
Flow Survey: meat/seafood and paper articles. Our results across all counties in the United
States indicate that effectiveness of mode-switching policies varies by both location and com-
modity type. We find that intermodal terminal availability is an important determinant of
both low-GHG accessibility as well as low-GHG mobility when intermodal activities are con-
sidered. Through a scenario analysis, we show that the U.S could increase its expected GHG
savings associated with truck-to-rail mode-switching policies by 70% (+20 kg CO2,e/ton,
meat/seafood) and 310% (+30 kg CO2,e/ton, paper) by upgrading current terminals to al-
low the exchange of all types of goods.

In Chapter 4, we developed a national freight logistics model, which routes trucks
and trains along the ‘lowest impact’ pathway.

To assess the potential GHG reduction benefits of shifting demand from heavy-duty
trucks to intermodal rail at a county level for specific commodities, we developed a bottom-
up vehicle routing model that incorporates the locations of commodity producers within the
national highway and freight rail networks. This model is unique from other models found in
the literature in that it differentiates the movement of goods based on their respective com-
modity classes. The reason that this distinction is important is because road-rail intermodal
terminal availability varies across the United States. Hence, we show that proximity to crit-
ical supply chain infrastructure, e.g., intermodal terminals, is an important consideration
when comparing the environmental performance of trucks and intermodal rail.

5.2 Future Work

5.2.1 Greenhouse Gas Marginal Abatement Cost Curves

Speed-specific GHG emission factors can be integrated into current transportation network
models to provide valuable information about how the GHG footprint of trucks may change
within specific settings. Until now, transportation LCAs have primarily been a way of mod-
eling the footprint of goods from an average perspective. This new dynamic LCA modeling
approach allows scientists and engineers to manage the GHG footprint of goods in a more
localize context, using route-based modeling techniques. Removing the constraint of utiliz-
ing average data, new statistics can be formed given additional information that is readily
available today.

Targeting “high emitter” trucks is an effective way to reduce GHG emissions. Research
has shown that a small number of trucks may represent a substantial portion of total emis-
sions in certain areas of the country. Ideally, stakeholders that are looking to reduce emis-
sions at the lowest cost would prescribe targeted vehicle substitution policies to either remove
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these trucks, subsidize the adoption of cleaner technologies within these fleets, or incentivize
complete mode switches. Before these policies can be developed, there needs to be an un-
derstanding of how GHG emissions vary along the different points in the supply chain that
are serviced by heavy-duty trucks.

Cost effective GHG mitigation strategies should target heavy-duty trucks that have the
greatest GHG reduction potentials at the lost marginal costs. Marginal abatement cost
curves (MACC) are used to make comparisons of the cost-effectiveness of mitigation options
between different technologies, and are often utilized in climate science to identify efficient
reductions of greenhouse gases. MACCs plot the marginal unit cost of an action against
its abatement potential. Different mitigation options will occupy different positions on the
curve, but are ranked from most to least effective at reducing customer demand. These
curves are powerful tools due to their simple and effective display of information. MACCs
for GHGs can benefit shippers, carriers, and other stakeholders by helping them prioritize
GHG saving options.

5.2.2 “First- and Last-Miles” of Freight Networks

This research outlines the methods and tools needed to quantify the change in the GHG
footprint of goods during the “first- and last-miles” of a freight distribution network. It is
well known that the unit costs of moving goods during the“first- and last-miles” are dispro-
portionately larger, but little is known from about the change in the total environmental
costs. I would expect to see emissions increase along these sections due to increases in con-
gestion and lowered payloads. The key insight from this research would then be to relate
the emissions along “first- and last-miles” to other portions of freight distribution network,
which may include rail, shipping, or air freight modes, as well.

5.2.3 Criteria Air Pollutant and Short-Lived GHG Emission
Factors

The modeling tools and allocation methods presented in this proposed research can be
adapted to capture life-cycle criteria air pollutant and short-lived GHG emissions, too. These
emissions have significant impacts to local air quality and human health and may varying in
magnitude over time, location, or scale. I hope to one day explore the non-linear nature of
human exposure to these pollutants with the goal of evaluating the tradeoffs or co-benefits
associated with improving long-lived GHG emission factors.
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Appendix A

Emission Deviation Due to Variability
in Vehicle Speeds

Table A.1: Expected Emissions Deviation by Agency and Bus Route.

Agency Route E(deviation)
actransit 1 0.686709
actransit 11 0.944221
actransit 12 1.056222
actransit 14 0.426420
actransit 18 1.013350
actransit 1R 1.006335
actransit 20 0.717343
actransit 200 0.567699
actransit 21 0.613425
actransit 210 0.580033
actransit 212 0.902881
actransit 215 0.851077
actransit 216 0.961562
actransit 217 0.547420
actransit 22 0.712504
actransit 232 0.857393
actransit 239 0.556654
actransit 25 1.061973
actransit 251 0.796964
actransit 26 1.025433
actransit 275 0.902566
actransit 31 1.018741
actransit 314 0.509333
actransit 32 1.027286
actransit 339 0.568914
actransit 356 0.332195
actransit 37 1.009302
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actransit 376 0.521908
actransit 386 0.982649
actransit 39 0.942515
actransit 40 0.470107
actransit 45 0.375888
actransit 46 -0.105565
actransit 47 0.441421
actransit 48 1.033030
actransit 49 1.081035
actransit 51A 0.601839
actransit 51B 1.069492
actransit 52 1.094614
actransit 54 0.298776
actransit 57 0.341667
actransit 58L 0.291286
actransit 60 0.514376
actransit 62 0.545488
actransit 65 1.013406
actransit 67 1.044198
actransit 687 0.054286
actransit 7 1.000854
actransit 70 1.069971
actransit 71 0.934051
actransit 72 0.923336
actransit 72M 0.954828
actransit 72R 1.074100
actransit 73 0.285305
actransit 74 0.999032
actransit 75 0.974747
actransit 76 0.822577
actransit 800 0.889491
actransit 801 0.773173
actransit 802 1.026728
actransit 805 0.077643
actransit 822 0.043969
actransit 83 0.993062
actransit 840 0.023610
actransit 85 1.017606
actransit 851 1.046843
actransit 86 0.962466
actransit 88 1.060022
actransit 89 0.964730
actransit 93 0.995703
actransit 94 0.974218
actransit 95 0.994269
actransit 97 0.658962
actransit 98 0.501272



APPENDIX A. EMISSION DEVIATION DUE TO VARIABILITY IN VEHICLE
SPEEDS 111

actransit 99 0.636125
actransit B 0.169799
actransit BSD 1.097294
actransit BSN 1.094691
actransit C 0.188630
actransit CB 0.072710
actransit E -0.053894
actransit F 0.844391
actransit FS 0.577877
actransit G 0.542360
actransit H 0.520726
actransit J 0.618278
actransit L 0.468583
actransit LA 0.293526
actransit LC 0.392412
actransit M 0.415360
actransit NL 0.138665
actransit NX -0.071313
actransit NX1 0.092857
actransit NX2 -0.060980
actransit NX3 0.068265
actransit NX4 -0.224906
actransit NXC -0.089867
actransit O 0.271160
actransit OX 0.052937
actransit P 0.027660
actransit S 0.318141
actransit SB 0.234239
actransit U 0.497810
actransit V -0.154390
actransit W -0.030147
actransit Z 0.636892
emery Hollis 0.273761
emery powell 0.223767
emery south hollis 0.294170
emery wgexp am 0.116312
emery wgexp pm 0.142220
lacmt 10 0.382449
lacmt 102 0.285483
lacmt 105 0.362038
lacmt 108 0.291740
lacmt 110 0.332676
lacmt 111 0.244334
lacmt 115 0.309324
lacmt 117 0.266573
lacmt 120 0.248205
lacmt 125 0.249246
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lacmt 126 0.264295
lacmt 127 0.205346
lacmt 128 0.209889
lacmt 130 0.277512
lacmt 14 0.360711
lacmt 150 0.231384
lacmt 152 0.165122
lacmt 154 0.269174
lacmt 155 0.309409
lacmt 156 0.330245
lacmt 158 0.150515
lacmt 16 0.396094
lacmt 161 0.209685
lacmt 162 0.250008
lacmt 163 0.217021
lacmt 164 0.163428
lacmt 165 0.166317
lacmt 166 0.151704
lacmt 167 0.222281
lacmt 169 0.237121
lacmt 175 0.460841
lacmt 176 0.377502
lacmt 177 0.223439
lacmt 18 0.391580
lacmt 180 0.378344
lacmt 181 0.400401
lacmt 183 0.312353
lacmt 190 0.363045
lacmt 194 0.336843
lacmt 2 0.371746
lacmt 20 0.409090
lacmt 200 0.444122
lacmt 201 0.410302
lacmt 202 0.338793
lacmt 204 0.350129
lacmt 205 0.254726
lacmt 206 0.308458
lacmt 207 0.288706
lacmt 209 0.273376
lacmt 210 0.267205
lacmt 211 0.195186
lacmt 212 0.397142
lacmt 215 0.342480
lacmt 217 0.400571
lacmt 218 0.332577
lacmt 220 0.528689
lacmt 222 0.288617
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lacmt 224 0.203879
lacmt 230 0.248748
lacmt 232 0.256479
lacmt 233 0.280089
lacmt 234 0.216413
lacmt 236 0.140986
lacmt 237 0.189512
lacmt 239 0.171832
lacmt 240 0.243526
lacmt 242 0.119222
lacmt 243 0.173779
lacmt 244 0.199038
lacmt 245 0.184002
lacmt 246 0.207242
lacmt 251 0.327048
lacmt 252 0.367999
lacmt 254 0.297831
lacmt 256 0.256506
lacmt 258 0.341637
lacmt 260 0.407222
lacmt 264 0.364360
lacmt 265 0.295603
lacmt 266 0.198726
lacmt 267 0.373105
lacmt 268 0.372357
lacmt 270 0.333612
lacmt 28 0.302956
lacmt 292 0.267770
lacmt 30 0.426513
lacmt 302 0.367235
lacmt 311 0.297838
lacmt 312 0.383717
lacmt 316 0.413225
lacmt 33 0.283505
lacmt 330 0.441994
lacmt 344 0.083146
lacmt 35 0.247781
lacmt 352 0.334844
lacmt 353 0.279846
lacmt 355 0.427964
lacmt 358 0.259437
lacmt 364 0.197594
lacmt 37 0.310172
lacmt 378 0.399859
lacmt 38 0.296915
lacmt 4 0.377497
lacmt 40 0.330681
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lacmt 442 0.327324
lacmt 45 0.350817
lacmt 450 0.168679
lacmt 460 0.221464
lacmt 48 0.384941
lacmt 485 0.304973
lacmt 487 0.350075
lacmt 489 0.349497
lacmt 51 0.394490
lacmt 52 0.370827
lacmt 53 0.357324
lacmt 534 0.188453
lacmt 55 0.389516
lacmt 550 0.072922
lacmt 577 0.191162
lacmt 60 0.369311
lacmt 603 0.372177
lacmt 605 0.443172
lacmt 607 0.432135
lacmt 611 0.307906
lacmt 612 0.262575
lacmt 62 0.288773
lacmt 620 0.428468
lacmt 625 0.124494
lacmt 656 0.167010
lacmt 66 0.380761
lacmt 665 0.409113
lacmt 68 0.371631
lacmt 685 0.206261
lacmt 686 0.415630
lacmt 687 0.453297
lacmt 70 0.432510
lacmt 704 0.381305
lacmt 705 0.361908
lacmt 71 0.457481
lacmt 710 0.295352
lacmt 720 0.325929
lacmt 728 0.438609
lacmt 733 0.342598
lacmt 734 0.228970
lacmt 740 0.291757
lacmt 744 0.218314
lacmt 745 0.366188
lacmt 750 0.252291
lacmt 751 0.314515
lacmt 754 0.290592
lacmt 757 0.325117
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lacmt 76 0.394091
lacmt 760 0.379794
lacmt 762 0.260284
lacmt 770 0.360172
lacmt 78 0.369578
lacmt 780 0.369001
lacmt 788 0.284807
lacmt 79 0.354489
lacmt 794 0.256934
lacmt 81 0.308809
lacmt 83 0.331531
lacmt 90 0.230374
lacmt 901 0.075713
lacmt 91 0.273170
lacmt 910 0.125472
lacmt 92 0.439182
lacmt 94 0.256930
lacmt 96 0.304400
sfmuni 1 0.478555
sfmuni 10 0.524646
sfmuni 12 0.504764
sfmuni 14 0.488196
sfmuni 14R 0.409488
sfmuni 14X 0.148269
sfmuni 18 0.131833
sfmuni 19 0.448924
sfmuni 1AX 0.324118
sfmuni 1BX 0.416730
sfmuni 2 0.597838
sfmuni 21 0.590495
sfmuni 22 0.604632
sfmuni 23 0.227957
sfmuni 24 0.508053
sfmuni 25 0.036762
sfmuni 27 0.494581
sfmuni 28 0.150172
sfmuni 28R 0.256671
sfmuni 29 0.203588
sfmuni 3 0.623298
sfmuni 30 0.617227
sfmuni 30X 0.503569
sfmuni 31 0.464798
sfmuni 31AX 0.279967
sfmuni 31BX 0.355928
sfmuni 33 0.517982
sfmuni 35 0.424414
sfmuni 36 0.287972
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sfmuni 37 0.397819
sfmuni 38 0.467060
sfmuni 38AX 0.282108
sfmuni 38BX 0.343671
sfmuni 38R 0.408186
sfmuni 39 0.568385
sfmuni 41 0.633844
sfmuni 43 0.400585
sfmuni 44 0.299041
sfmuni 45 0.579785
sfmuni 47 0.519743
sfmuni 48 0.396005
sfmuni 49 0.545479
sfmuni 5 0.393360
sfmuni 52 0.340619
sfmuni 54 0.338580
sfmuni 55 0.380176
sfmuni 56 0.351612
sfmuni 57 0.367083
sfmuni 5R 0.377125
sfmuni 6 0.471020
sfmuni 66 0.333691
sfmuni 67 0.428538
sfmuni 7 0.392998
sfmuni 76X 0.198855
sfmuni 7R 0.422365
sfmuni 7X 0.315026
sfmuni 8 0.372096
sfmuni 81X 0.481811
sfmuni 82X 0.444509
sfmuni 83X 0.401036
sfmuni 88 0.394866
sfmuni 8AX 0.251813
sfmuni 8BX 0.422030
sfmuni 9 0.332051
sfmuni 90 0.184416
sfmuni 91 0.103334
sfmuni 9R 0.322969
sfmuni BUS 0.236563
sfmuni E 0.554931
sfmuni KT 0.320318
sfmuni K OWL 0.236656
sfmuni L OWL 0.160642
sfmuni NX 0.229349
sfmuni N OWL 0.231616
south-coast 10 -0.003072
south-coast 11 0.024655
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south-coast 15 0.123623
south-coast 16 -0.045533
south-coast 17 0.027805
south-coast 18a 0.171892
south-coast 18c -0.029231
south-coast 18f 0.022249
south-coast 18g 0.111830
south-coast 19 -0.017823
south-coast 1a 0.111327
south-coast 1b 0.129953
south-coast 2 0.314372
south-coast 21 -0.006312
south-coast 22 -0.043963
south-coast 3 0.182933
south-coast 4b 0.157663
south-coast 5 0.095859
south-coast 6 0.122215
south-coast 8 0.083999
south-coast 9 0.154609
thousand-oaks blue 0.088819
thousand-oaks gold -0.021106
thousand-oaks green -0.016862
thousand-oaks metrolink shuttle -0.084314
ucsf black 0.340990
ucsf blue 0.343137
ucsf bronze 0.633733
ucsf gold 0.351769
ucsf green 0.410948
ucsf grey 0.308915
ucsf lime 0.387242
ucsf pink 0.609910
ucsf purple 0.304282
ucsf red 0.364246
ucsf tan 0.314926
ucsf va 0.258050
ucsf yellow am 0.406955
ucsf yellow midday a 0.423434
ucsf yellow midday b 0.437607
ucsf yellow pm 0.450784
unitrans A 0.294779
unitrans B 0.243348
unitrans C 0.332087
unitrans D 0.147882
unitrans E 0.316759
unitrans F 0.214777
unitrans G 0.229320
unitrans J 0.279507
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unitrans K 0.186893
unitrans L 0.293503
unitrans M 0.287656
unitrans O 0.226275
unitrans P 0.105776
unitrans Q 0.115392
unitrans S 0.114200
unitrans T 0.288739
unitrans V 0.346237
unitrans W 0.358672
unitrans Z 0.287170
vista 101 -0.145195
vista 126 -0.129202
vista cc -0.139731
vista coast -0.145970
vista coastexp -0.130639
vista csucam -0.122687
vista csuox -0.118053
vista eastco -0.115654
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