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Use of mean residual life in testing departures from
exponentiality

S. RAO JAMMALAMADAKA† and EMANUELE TAUFER*‡

†Department of Statistics and Applied Probability, University of California,
Santa Barbara, CA 93106-3110, USA

‡Department of Computer and Management Sciences, University of Trento, Trento, I 38100, Italy

(Received June 2005; in final form April 2006)

We utilize the important characterization that E(X − t |X > t) is a constant for t ∈ [0, ∞) if and
only if X is distributed as an exponential random variable, in order to construct a new test procedure
for exponentiality. We discuss asymptotic distribution theory and other properties of the proposed
procedure. Simulation studies indicate that the proposed statistic has very good power in a large
variety of situations.

Keywords: Kolmogorov–Smirnov statistic; Mean residual life; Quantile process; Test for exponen-
tiality; Wiener process

1. Introduction

Mean residual life (MRL) is a very well-known and central concept in reliability and survival
analysis; if X denotes a non-negative random variable (r.v.) with distribution function (d.f.)
F , then the MRL at time t is defined as

m(t) = E(X − t |X > t) =
∫ ∞
t

F̄ (x)dx

F̄ (t)
(1)

where F̄ = 1 − F is the survival function. If m(t) is non-increasing (or non-decreasing) in
t , then X is said to have a decreasing (or increasing) MRL distribution (DMRL or IMRL,
respectively). MRL is related to the hazard rate λ(t) by the expression

λ(t) = 1 + m′(t)
m(t)

(2)

and it can be shown that the class of DMRL (IMRL) distributions includes the class of
increasing (decreasing) failure rate distributions (IFR and DFR, respectively). For a review of
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278 S. R. Jammalamadaka and E. Taufer

these concepts and other properties of MRL, we refer the reader to Patel [1] and Guess and
Proschan [2].

The exponential distribution is a natural boundary between DMRL and IMRL distributions,
having a constant MRL. Indeed, it has been shown by Shanbhag [3] that the exponential
distribution can be characterized by constancy of MRL, more precisely

m(t) = θ, ∀t > 0 (3)

if and only if F is exponential with mean θ . The above characterization can be easily shown
to be equivalent to either ∫ ∞

t

F̄ (x)dx = F̄ (t)θ, ∀t > 0 (4)

or

E[min(X, t)] = F(t)θ, ∀t > 0. (5)

Characterizations based on MRL have been used to build tests for exponentiality against
specialized as well as omnibus alternatives. Hollander and Proschan [4], Bergman and
Klefsjö [5] and Bandyopadhyay and Basu [6] provided tests against DMRL distributions.
Koul [7] and Bhattacharjee and Sen [8] provided tests for the larger class of new better than
used in expectation (NBUE) alternatives (recall that a distribution is NBUE if the equal sign
in equation (4) is replaced by a less than sign). More recently, Baringhaus and Henze [9] and
Taufer [10] provided omnibus tests for exponentiality. All these papers exploited equations (4)
and (5); in what follows, we utilize equation (3) directly in order to provide new tests for
exponentiality. This approach is quite different from that used in the above-mentioned papers
and, as we will see, leads to some powerful alternative tests for exponentiality.

Note that testing for exponentiality still attracts considerable attention and is the topic of
a good amount of recent research; besides the above-mentioned contributions, other authors
provide test statistics for detecting departures from the hypothesis of exponentiality against
specific or general alternatives. Alwasel [11] and Ahmad and Alwasel [12] use the lack of
memory property of the exponential distribution. Klar [13] exploits the integrated d.f., whereas
Jammalamadaka and Taufer [14] consider a characterization based on normalized spacings.
Grzegorzewski and Wieczorkowski [15] and Ebrahimi et al. [16] make use of the maximum
entropy principle. Other omnibus tests for exponentiality have been developed by Henze and
Meintanis [17], Henze [18] and Baringhaus and Henze [19, 20] who use estimators of the
Laplace transform.

Specialized tests are provided by Del Castillo and Puig [21, 22], Gatto and
Jammalamadaka [23], Klar [24] and Klar [25] who extends the work of Jammalamadaka and
Lee [26]. For a review of earlier contributions, the interested reader is referred to refs. [27–29].

2. Test statistic and its properties

2.1 Construction of the test statistic

Let X1, . . . , Xn+1 be a random sample from a distribution F with order statistics, X(1) ≤ · · · ≤
X(n+1) and suppose we wish to test the hypothesis

H0: F(x) = 1 − e−x/θ , θ > 0 versus H1: F(x) �= 1 − e−x/θ , θ > 0.



Use of MRL in testing departures 279

In order to exploit the characterization m(t) = θ , under exponentiality, define the ‘sample
MRL after X(k)’ as

X̄>k = 1

n − k + 1

n+1∑
i=k+1

(X(i) − X(k))

= 1

n − k + 1

n+1∑
i=k+1

(n − i + 2)(X(i) − X(i−1)).

(6)

For convenience, we define

Yi = (n − i + 2)(X(i) − X(i−1)), i = 1, . . . , n + 1 (7)

as the ‘normalized spacings’. Observe that under the null hypothesis of exponentiality, we
have that

E(X̄>k) = E(X̄) = θ, k = 1, . . . , n. (8)

Therefore, if we plot the sequence X̄, X̄>1, . . . , X̄>n on a chart, under H0 this should be
approximately constant around the true (unknown) value θ . This intuitive graphical approach
would suggest to use a distance measure between these ‘residual sample means’ in order to
build a test statistic for H0. One simple and natural way to do this is to exploit a Kolmogorov–
Smirnov type distance, that is, reject H0 when

T ′
n = max

1≤k≤n

|X̄ − X̄>k|
X̄

(9)

is large. Note that division by the sample mean makes T ′
n scale-free. However, it unfortunately

turns out that, as it is, T ′
n does not converge to zero even under the null hypothesis; this may be

immediately seen if we note that, in particular, X̄>n = Yn+1 which is exponentially distributed
with mean θ under the null hypothesis, no matter what the sample size is. To consider the
behavior of T ′

n a bit more carefully, let S(i) = ∑
j≤i ξj , where ξj are i.i.d. exponential r.v.’s

with mean 1 and let i = n − k + 1. Then we obtain

T ′
n = max

1≤i≤n

∣∣∣∣1 − X̄>n−i+1

X̄

∣∣∣∣
D= max

1≤i≤n

∣∣∣∣1 − S(i)

i

(n + 1)

S(n + 1)

∣∣∣∣
≤ max

1≤i≤n

∣∣∣∣1 − S(i)

i

∣∣∣∣ + max
1≤i≤n

S(i)

i

∣∣∣∣1 − (n + 1)

S(n + 1)

∣∣∣∣
−→ max

1≤i<∞

∣∣∣∣1 − S(i)

i

∣∣∣∣ + op(1) as n −→ ∞.

(10)

Thus, even though the statistic T ′
n is built using differences which are close to 0 under the

hypothesis, the largest difference does not converge to 0 even under exponentiality. Thus,
we need to address the question whether T ′

n can be modified to make it useful for testing
exponentiality.

Before going further, we relate T ′
n to other test statistics already proposed in the literature.

Note that X̄>k is the total time on test (TTT) transform after X(k) divided by the empirical d.f.
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evaluated at t , t ∈ [X(k), X(k+1)). Denoting the TTT statistic by

Dn+1(t) =
k∑

i=1

Yi + (n − k + 1)(t − X(k)), t ∈ [X(k), X(k+1)) (11)

and after some manipulation, we can rewrite

T ′
n = max

1≤k≤n

n + 1

n − k + 1

∣∣∣∣Dn+1(X(k))

(n + 1)X̄
− k

n + 1

∣∣∣∣ . (12)

One may compare these statistics with those proposed by Koul [7] and later by Bhattacharjee
and Sen [8], to test against NBUE alternatives in uncensored and censored cases, respectively,
and also with Baringhaus and Henze [9] for testing H0 against omnibus alternatives. The key
feature of T ′

n is the weight (n − k + 1)−1 which comes up naturally in our approach to the
problem. The question of interest here is, of course, whether this approach can be more fruitful,
especially because some power simulations indicated that T ′

n does not have good power for
certain alternatives to exponentiality. The reason, perhaps, is to be found in the ‘high’ variance
associated with the last few residual means.

This observation as well as the desire to overcome the problem in the tail noted for T ′
n,

motivates us to construct trimmed test statistics, whereby some of the last residual means are
discarded from T ′

n. This has to be done in such a way so as to be able to estimate, asymptotically,
m(t) over the whole real line. With that in mind, we define

Tn = max
1≤k≤n−[nγ ]

|X̄ − X̄>k|
X̄

, γ ∈ (0, 1). (13)

We see that the comparison of the sequence of the residual means goes up to the term with index
n − [nγ ], where γ is a parameter which determines the number of ‘later’ residual means to be
discarded and [nγ ] denotes the greatest integer in nγ . We will now investigate the properties
of this trimmed statistic Tn.

Remark 1 A nice bonus of our approach is that the statistic Tn can be straightforwardly
adapted to the more general case of unknown location

H0: F = 1 − e−(x−θ1)/θ2 versus H1: F �= 1 − e−(x−θ1)/θ2 , θ1 ∈ R, θ2 > 0, x ≥ θ1,

by simply replacing X̄ with X̄>1. This does not change the asymptotic distribution of the test
statistics.

2.2 Asymptotic properties

In terms of the asymptotic properties of the statistic Tn, we first note that from equation (6),
there are at least [nγ ] + 1 terms in X̄>k for 1 ≤ k ≤ n − [nγ ]. Under H0, the normalized
spacings are exponentially distributed with mean θ , hence we have

X̄>k
a.s.−→ θ 1 ≤ k ≤ n − [nγ ]

by the strong law of large numbers, the speed of convergence depending on the choice of the
parameter γ . From this, it follows that under exponentiality of the observations

Tn
a.s.−→ 0.

The convergence properties of Tn can be studied under more general conditions, which we do
in the following theorem.
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THEOREM 1 Let m(t) < ∞ and F be a continuous d.f. with mean θ . Then, as n → ∞,

max
1≤k≤n−[nγ ] |X̄ − X̄>k| a.s.−→ sup

0≤t<∞
|θ − m(t)| . (14)

The proof of this theorem relies on the results obtained earlier by Koul [7] and is presented
at the end of the paper. The asymptotic distribution of Tn is given by the following result.

THEOREM 2 Let γ ∈ (0, 1), then under the null hypothesis of exponentiality

nγ/2Tn
D−→ sup

0≤t≤1
|W(t)| (15)

where W(t) is a Wiener process.

Observe that these two theorems do not hold without the ‘trimming’. The consistency of
our proposed test procedures is a consequence of Theorems 1 and 2, which we state below.

COROLLARY 1 The test rejecting the hypothesis of exponentiality for large values of Tn is
consistent against each fixed non-exponential alternative distribution with finite mean.

Theorem 2 shows that the appropriate normalizing constants depend on trimming. The proof
of this theorem relies on asymptotic results for functionals of the uniform quantile process in
a weighted metric, its proof being presented in the last section. From the proof of Theorem 2,
we will see that result (15) still holds if we substitute nγ by any na(n) such that a(n) → 0
and na(n) → ∞, as n → ∞.

Simulations show that the asymptotic approximation works better when the trimming is not
too large; however, Tn tends to be too conservative even for large sample sizes.

For practical implementation of the test for small to moderate sample sizes, it becomes
necessary to evaluate the critical points empirically. Table 1 provides such critical values for
tests of size α = 0.05, obtained by Monte Carlo simulations with 10,000 replications, giving
them high accuracy. For other sample sizes and values of γ , a computer program written in
‘Gauss’ is available from the authors upon request.

Table 1. Empirical critical points of nγ/2Tn.

γ

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 1.289 1.439 1.606 1.358 1.226 1.368 1.251 1.139 0.777
20 1.536 1.780 1.612 1.536 1.570 1.621 1.480 1.281 0.937
30 1.708 2.021 1.842 1.812 1.688 1.664 1.547 1.405 1.095
40 1.699 1.627 1.647 1.725 1.706 1.656 1.654 1.472 1.106
50 1.790 1.738 1.763 1.890 1.766 1.773 1.646 1.504 1.142
60 1.790 1.756 1.843 1.795 1.886 1.818 1.721 1.522 1.176
80 1.806 1.796 1.923 1.898 1.908 1.851 1.756 1.606 1.233

100 1.905 1.926 2.045 1.900 1.957 1.893 1.785 1.611 1.260
120 1.863 1.900 1.827 1.951 1.969 1.906 1.815 1.663 1.306
140 1.924 1.960 1.892 1.885 1.970 1.910 1.886 1.713 1.342
160 1.943 2.018 1.9416 1.959 1.977 1.960 1.869 1.710 1.357
180 1.908 1.965 1.931 2.005 1.9451 1.955 1.855 1.707 1.365
200 1.978 2.076 2.026 1.9596 1.934 1.973 1.891 1.703 1.360

Note: Tests of size α = 0.05.
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Remark 2 As we have seen, trimming is necessary in order to avoid the last few residual
means which happen to have high variability and this, in turn, allows, as it has been shown
in Theorems 1 and 2, to obtain consistent test statistics. This strongly suggests that trimming,
i.e. the value [nγ ], has to increase markedly along with sample size in order to have powerful
procedures. This is further confirmed by the simulation study of the next section.

Remark 3 The null distribution of Tn depends on that of an ordered uniform random sample.
Hence, as noted by Gupta and Richards [30], the distribution of Tn shares the same invariance
property with several other tests for exponentiality and remains the same for all random vectors
X1, . . . , Xn+1 having a multivariate Liouville distribution.

3. Power estimates and examples

In this section, we consider some power estimates obtained by the method of Monte Carlo.
For selected values of the parameter θ , we generated 10,000 samples of size 20, 50 and 80 for
the following alternative distributions (all for θ > 0):

• Weibull, f (x) = θxθ−1 exp{−xθ }1(x≥0);
• Power, f (x) = θ−1x(1−θ)/θ1(x∈[0,1]);
• Lomax, f (x) = (1 + θx)−(θ+1)/θ1(x≥0);
• Dhillon, f (x) = θxθ−1 exp{xθ + 1 − exθ }1(x≥0);
• Log-logistic, f (x) = θxθ−1

(1+xθ )2 1(x≥0);

• Compound Rayleigh, f (x) = 2θx
(1+x2)θ+1 1(x≥0).

These distributions are commonly considered in power studies of tests for exponentiality;
in addition, they cover a variety of situations which differ from the point of view of the hazard
rate (and hence MRL). We have distribution with monotone failure rate as well as mixed
cases with either increasing and then decreasing failure rate (IDFR) or decreasing and then
increasing failure rate (DIFR). A complete classification is summarized in table 2.

As a yardstick for Tn, we consider the classical Kolmogorov–Smirnov statistic (KSn) with
estimated mean and the statistic Ln developed by Baringhaus and Henze [9]. The former is well
known and is typically used in virtually all empirical power studies and the latter is based on a
Kolmogorov–Smirnov type distance and exploits the equivalent characterization (5) exploiting
in practice a different weighting scheme for the distances between the general mean and the
MRLs; for details, see ref. [9] but also refer to formula (12). Hence, this comparison allows
us to address the question raised in section 2 as to whether the weights (n − k + 1)−1 may
bring some advantage over the other ways to use MRL for testing procedures.

Figures 1–4 show the empirical power obtained for tests of size 0.05 for various values of
the trimming parameter γ going from 0.1 to 0.9, by steps of size 0.1; in order to assess the

Table 2. FR and MRL classification of the distributions used in simulations, θ > 0.

IFR DFR DIFR IDFR
Distribution (DMRL) (IMRL) (IDMRL) (DIMRL)

Weibull (θ ) θ > 1 θ < 1 – –
Power (θ ) θ ≤ 1 – θ > 1 –
Lomax (θ ) – θ > 0 – –
Dhillon (θ ) θ ≥ 1 – θ < 1 –
Log-logistic (θ ) – θ ≤ 1 – θ > 1
Compound Rayleigh (θ ) – – – θ > 0
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Figure 1. Power values, in percentage, of Tn (dashed), KSn (solid) and Ln (dotted). Distributions are Weibull (1.2),
x (cross); Power (0.5), o (circle).
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Figure 2. Power values, in percentage, of Tn (dashed), KSn (solid) and Ln (dotted). Distributions are Lomax (0.5),
x (cross); Weibull (0.8), o (circle).
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Figure 3. Power values, in percentage, of Tn (dashed), KSn (solid) and Ln (dotted). Distributions are Power (2), x
(cross); Dhillon (0.5), o (circle).
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Figure 4. Power values, in percentage, of Tn (dashed), KSn (solid) and Ln (dotted). Distributions are Log-logistic
(3), x (cross); Compound Rayleigh (1), o (circle).
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limit to which trimming can be stretched, we also consider the values γ = 0.93 and γ = 0.95.
These figures show that Tn performs quite well.

In figure 1, we have two distributions with IFR (DMRL), i.e. Weibull with θ = 1.2 and
Power with θ = 0.5. Here, we see that the power of Tn is generally increasing with γ and
it seems that it can be safely stretched to its extremes even for small sample sizes. In nearly
all cases, a value of γ = 0.9 obtains the highest or close to highest power. For Weibull(1.2),
the power of Tn is higher (especially for small samples) or at least comparable to that of its
competitors. KSn and Ln have very high performance for the Power(0.5), but Tn obtains the
same result for a large span of the truncation parameter γ . For these distributions, we ran more
extensive simulations with other parameter values obtaining similar conclusions.

In figure 2, we consider distributions with DFR (IMRL), i.e. Lomax with θ = 0.5 and
Weibull with θ = 0.8. Contrary to the situation of figure 1, here we see that too large trimming
may not be appropriate, especially for small sample sizes; however, note that in such situations,
the power of Tn can be much higher than that of its competitors; a value of γ = 0.8 maintains
comparable power with Ln and KSn in most cases.

In figure 3, we have Power(2) and Dhillon(0.5), i.e. two distributions with DIFR (IDMRL).
Again, extreme trimming is not appropriate for small sample sizes, for which a value of γ = 0.8
obtains the highest power among all tests. For larger sample sizes, larger trimming becomes
preferable by which Tn achieves higher power than Ln and KSn.

Figure 4 depicts the results for Log-logistic(3) and Compound Rayleigh(1), which represent
the case of IDFR (DIMRL) distributions. Again, very large trimming achieves the highest
power values which are comparable to those of Ln and KSn.

In summary, we can say that trimming has quite a strong effect on the power of Tn; indeed,
for several alternatives, power is not appreciable until γ reaches a value of at least 0.4 and
for several cases, but DFR, it increases nearly monotonically with γ . From the simulations,
it appears that a value of γ = 0.8 or 0.9 allows to match or overcome the power values of
KSn or Ln restricting considerably the values of γ to be considered in practical cases. Finally,
we note that for larger sample sizes, larger trimming is preferable, further substantiating the
recommendations made in Remark 2.

For a specific application of the test, we consider the classical data set given in table 3 [31]
which represents the survival times (in days) after diagnosis of 43 patients with a certain kind
of leukemia. For such a data set, IFR may be too restrictive. Hopefully the treatment, applied
after diagnosis, will (at least for a period) decrease the failure rate.

If the Hollander and Proschan [4] test against NBU alternatives is applied, a p-value of 0.07
is obtained. For the tests considered in our simulations, we have KS43 = 0.1617 with an esti-
mated p-value of 0.053 and L43 = 1.2742 with a p-value of 0.072. Del Castillo and Puig [22]
apply to this data set a likelihood ratio test against singly truncated normal alternatives which
are recommended for lifetime data whose nature suggests an IFR distribution with hazard rate
not vanishing at 0. Their statistics reject the hypothesis with a p-value of 0.033. In this case,
we may try to apply our test statistic with a large number of last residual means discarded.
Choosing γ = 0.9, we obtain T 0.9

43 = 0.2229 which rejects the hypothesis of exponentiality
with a p-value of 0.042.

Table 3. Survival times in days after diagnosis.

7 47 58 74 177 232 273 285 317 429 440 445
455 468 495 497 532 571 579 581 650 702 715 779
881 900 930 968 1077 1109 1314 1334 1367 1534 1712 1784

1877 1886 2045 2056 2260 2429 2509
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4. Summary and conclusion

We propose a new test statistic for exponentiality which exploits MRL. Although there are
other tests in the literature which use characterizations based on the MRL, our procedure
seems more natural in the way it removes the unknown scale-factor, relating the test to uniform
spacings.

As we have seen, practical applications require one to choose the amount of trimming
via the choice of γ in order to carry out the test. However, it is not uncommon to
find general and specialized test procedures which require the choice of some kind of
parameter [6, 15, 18, 25, 32, 33]. This may indeed work out to be an advantage, as the fine-
tuning involved in choosing such a parameter may allow the test procedure to be more sensitive
towards specific classes of alternatives under consideration.

We find through extensive simulations that value of γ = 0.8 or 0.9 is appropriate in most
cases, although the situation may be less certain for small samples. Indeed, for moderate
or large sample sizes, unless one suspects to be the case of DFR alternatives, we see that
there is a clear indication of using a value of γ = 0.9 or even higher, restricting considerably
the uncertainty over γ and obtaining very good performances of Tn which outperforms KSn

and Ln. In extensive simulations we ran for other common alternative distributions such as
the Gamma, the half-Normal, the half-Cauchy, the Pareto and the Uniform, we observed
similar results.

We find that Tn works well even in situations where traditional tests of exponentiality fail
to detect departures from the null hypothesis, as e.g. in particular for IFR. It is gratifying to
observe, in our extensive simulations, that our test performs well as some of the specialized
tests that have been proposed for general classes of alternatives to exponentiality.

Remark 4 The reasoning of section 2.1 lends itself to develop a test based on a ‘quadratic
distance’(similar to the Cramer–von Mises statistic) between the sample mean and the residual
sample means, so that one might consider a ‘trimmed’ quadratic test statistic viz.

∑
1≤k≤n−[nγ ]

[
X̄ − X̄>k

X̄

]2

(16)

The simulations we ran for this quadratic test show that one runs into similar problems at
the upper tail as those encountered for Tn, and indeed their power performances are nearly
identical with values which may be slightly higher or lower depending on the alternative
considered.

5. Proofs

Recall that U(k) is the kth order statistics from a uniform random sample of size n + 1 and
that as n → ∞, max1≤k≤n+1 |U(k) − k/(n + 1)| a.s.= 0.

Proof of Theorem 1 For t ∈ [X(k), X(k+1)), we write

X̄>t = 1

n − k + 1

n+1∑
k+1

(X(i) − t) = [
F̄n+1(t)

]−1
[
X̄ − Dn+1(t)

n + 1

]
(17)
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where Dn+1(t) has been defined in equation (11). Note that from Koul [7] we have that
Dn+1(t)/(n + 1)

a.s.−→ ∫ t

0 F̄ (x)dx and by the Glivenko–Cantelli theorem F̄n+1(t)
a.s.→ F̄ (t)

uniformly in t . Then, as n → ∞, we have

sup
0<t<∞

|X̄ − X̄>t | a.s.= sup
0<t<∞

|θ − m(t)|.

Uniform convergence of |X̄ − X̄>k| can now be shown by using standard arguments if we first
note that the difference X̄>t − X̄>k can be made arbitrarily small for all t > 0 in the interval
[X(k), X(k+1)). To this end, note that, for t ∈ [X(k), X(k+1)),

X̄>t − X̄>k = t − X(k).

From continuity of F , this difference can be made as small as desired; in fact, we have

|F(t) − F(X(k))| ≤ |F(X(k+1)) − F(X(k))| ≤
∣∣∣∣U(k+1) − k + 1

n + 1

∣∣∣∣ +
∣∣∣∣U(k) − k

n + 1

∣∣∣∣ + 1

n + 1

and the right-hand side of the above expression converges to 0 a.s. �

The proof of Theorem 2 relies on the representation of Tn in terms of a uniform quan-
tile process in a weighted metric. Note, in fact, that by using the same representation as in
equation (12) and after some manipulation, we have

X̄ − X̄>k

X̄

D= i/(n + 1) − U(i)

i/(n + 1)

for k = 1, . . . , n, i = n − k + 1. The relevant asymptotic theory can be obtained by exploiting
results on uniform empirical processes in weighted metrics. To this end, we define

Un(t) =



U(i)

i

n + 2
< t ≤ i + 1

n + 2
, i = 1, . . . , n,

0 otherwise

qn(t) =



i

n + 1

i

n + 2
< t ≤ i + 1

n + 2
, i = 1, . . . , n

0 otherwise.

The function [qn(t) − Un(t)]/qn(t) is a step function with jump points in i/(n + 2),
i = 1, . . . , n; hence, if we define a process

ũn(t) = √
n[qn(t) − Un(t)]

then it holds that
√

n Tn
D= sup

nγ /(n+2)<t≤(n+1)/(n+2)

∣∣∣∣ ũn(t)

qn(t)

∣∣∣∣ .
Next, we define a continuous version of the uniform quantile process as

un(t) = √
n[t − Un(t)].

It is clear from the definition that un(i/n + 1) = ũn(t), i/(n + 2) < t ≤ (i + 1)/(n + 2),
i = 1, . . . , n. The asymptotic distributions of Tn will then be obtained by those of the corre-
sponding functionals of the weighted uniform quantile process un(t)/t . We will adapt the
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methods discussed in Csörgő and Horváth [34] by providing suitable approximations by
Gaussian processes. As the weak convergence of un(t) in weighted metric does not imply
the convergence in distribution of supremum functionals for the weight function q(t) = t ,
we will study the distributional properties of Tn on its own. Before doing so, we need some
preliminary results that, for convenience, we recall here in the form of lemmas.

LEMMA 1 We can define a sequence of Brownian bridges {Bn(t), 0 ≤ t ≤ 1} such that

sup
0≤t≤1

|ũn(t) − Bn(t)| a.s.= O(n−1/2 log n) (18)

and

n1/2−v sup
λ/n≤t≤1

|ũn(t) − Bn(t)|
tv

= Op(1) (19)

for all 0 < v ≤ 1/2 and 0 < λ < ∞.

This lemma is just a straightforward modification of Theorem 4.4.2 in Csörgő and
Horváth [34] which can be obtained by noting that sup0<t<1 |un(t) − ũn(t)| ≤ √

n/(n + 2).

LEMMA 2 [34, p.302, Theorem 2.3, iv] Let a(n) → 0, na(n) → ∞ as n → ∞. Then

a(n)1/2 sup
a(n)≤t≤1−a(n)

|un(t)|
t

D−→ sup
0≤t≤1

|W(t)|. (20)

Proof of Theorem 2 We will first show that

sup
nγ /(n+2)<t≤(n+1)/(n+2)

∣∣∣∣nγ/2Tn(t) − nγ/2−1/2 un(t)

t

∣∣∣∣ = op(1). (21)

Note that by the definition of ũn(t) and un(t), we can rewrite the above expression as

nγ/2 sup
nγ /(n+2)<t≤(n+1)/(n+2)

∣∣∣∣Un(t)

t
− Un(t)

qn(t)

∣∣∣∣
= nγ/2 max

nγ <i≤n
U(i) sup

i/(n+2)<t≤(i+1)/(n+2)

∣∣∣∣1

t
− n + 1

i

∣∣∣∣
= nγ/2 max

nγ <i≤n
U(i)

[
max

(
n − i + 1

i(i + 1)
,

1

i

)]

= nγ/2 max

[
max

nγ <i≤n/2
U(i)

n − i + 1

i(i + 1)
, max

n/2<i≤n
U(i)

1

i

]

and the above expression can be seen to be nγ/2Op(n−γ ) = op(1). Next, from the fact that
sup0≤t≤1 |un(t)| is bounded in probability, we easily see that

nγ/2−1/2 sup
1−nγ /n≤t≤1

|un(t)|
t

= op(1),

and hence result (15) follows from applying Lemma 2 with a(n) = nγ /n. �
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