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REVIEW

Inflammation, Immunity, Fibrosis, and Infection

Every breath you take: Impacts of environmental dust exposure on intestinal
barrier function—-from the gut-lung axis to COVID-19

Meli’sa S. Crawford, Tara M. Nordgren, and Declan F. McCole
Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California

Abstract

As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor
air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/
industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pul-
monary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gas-
trointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The
interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/myco-
biota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is
provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid
transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review,

we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.

air pollution; COVID-19; gut; intestinal barrier; lung

INTRODUCTION

Ambient air pollution poses a major threat to human health
with an estimated 4.2 million deaths per year due to the onset
of cardiovascular disease and chronic respiratory illnesses
linked to exposure to toxic air pollutants (1). Although there
are regulatory policies to reduce air pollution, especially in
urban areas where air quality levels exceed recommended
restrictions for particulate matter (PM), communities con-
tinue to breathe air containing high concentrations of air-
borne toxins (1). Moreover, health disparities in the United
States are seen among minorities and immigrants who
account for the majority of seasonal farm workers frequently
exposed to PM in agricultural dusts (2, 3). Strikingly, many
farm workers live below the poverty level with limited access
to healthcare services thus increasing their risk of developing
respiratory disorders from exposure to airborne pollutants (4—
7). Most air pollution is man-made and derived from fossil
fuels including toxins from car exhaust and industrial waste
(8-10). In addition, agricultural enterprises including concen-
trated animal feeding operations include a variety of dusts,
vapors, and fumes that can promote and exacerbate respira-
tory diseases including chronic obstructive pulmonary dis-
ease (COPD), hypersensitivity pneumonitis (11, 12), and
organic dust toxic syndrome (Fig. 1) (13, 14). More specifically,
farmers who are in daily contact with livestock (e.g., pigs) are
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exposed to dust composed of microorganisms (Tables 1 and 2)
originating from animal dander and fecal matter (31, 35).
Although the inhalation of dust and other airborne pollutants
are major factors in the development of cardiovascular and re-
spiratory complications (48), recent studies have also shown
that urban airborne particulate matter can have adverse
effects on the gastrointestinal (GI) tract (e.g., barrier function
and microbial composition) and immune system (Fig. 1) (18,
35, 56). In addition, the hazards of farming have been widely
acknowledged with the primary environmental threat being
exposure to pathogenic microbes and toxins generated during
agricultural and swine farm field operations (57). Therefore,
the purpose of this review is to examine the effects of airborne
pollution, including agricultural- and concentrated animal
feeding operation (CAFO)-associated particulate matter expo-
sures, on the progression of gastrointestinal diseases through
altered gut and lung bacterial and fungal communities.
Moreover, we will emphasize the role of these microorgan-
isms on immune responses through the gut-lung axis (GLA).

Swine Farm Building Environment and Clinical
Ramifications

Concentrated animal feeding operations.
Because of the increasing demand for animal products
worldwide, small livestock farms have been replaced with
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Lung Diseases from Dust Exposure |,

1.COPD (17)

2. Hypersensitivity Pneumonitis (94)
3. Organic Toxic Dust Syndrome (100)
4. Asthma (61, 134, 166)

Immune/Inflammatory Responses

1. Increase in immune cells
(e.g.neutrophils, macrophages,
lymphocytes and eosinophils)
(17,26, 19)

2. Increase in pro-inflammatory
cytokines (e.g. IL-1B, IL-6, IL-8,
TNF-a) (17,26, 19)

Reported Epithelial
Barrier Effects

1. Increase in MUC5AC expression in
human airway cells by downregulating
claudin-1 (23)

2. Reduced occludin at the plasma
membrane in alveolar epithelial cells ;
(25) ‘

3. Increase dissociation of occludin
from ZO-1 in alveolar epithelial cells
(25

4

"Uy \,\‘

~’| Gl Disorders/Impact From Dust
Exposure
1. Crohn's Disease (20)

2. Intestinal tuberculosis (20)

3. Gut dysbiosis (22)

Immune/Inflammatory Responses

1. Production of IL-6 and IL-17 (24)

2. Increase in FGFR4 in NCM460
cells (7)

3. ROS production (15,16,18)

Reported Epithelial
Barrier Effects

1. Increase intestinal permeability
(21)

s 2. Decrease in Z0-1 and claudin-1 at
% | tight junctions (21)

3. Decrease in desmocollin at
1 desmosomes (21)

Figure 1. Gut and lung diseases and the reported immune responses associated with agricultural and concentrated animal feeding operation (CAFO)

dust exposure.

large-scale farming productions known as concentrated ani-
mal feeding operations (58). These industrial agricultural
facilities that raise animals for the consumption of meat,
eggs, or milk release toxic gases (e.g., ammonia, hydrogen
sulfide) and particles that contribute to the development of
respiratory diseases in farm workers (59) and people living in
close proximity to CAFOs (60). Moreover, endotoxins found
in the dust collected from CAFOs act as the primary factor in
the onset of asthma and other respiratory conditions (61-63).
A considerable amount of research has shown that exposure
to endotoxins is especially prevalent in swine farm workers
(64-66). Raising swine is a lucrative agricultural enterprise
for US farmers with sales generating 26.3 billion dollars in
2017 (67). The success of swine farms depends on the large-
scale indoor confinement of pigs and the commitment
of full-time employees (68). Consequently, swine farm work-
ers are frequently exposed to particulate matter in dust
including microbial components (e.g., endotoxins, bacteria,
and mites) and plant- and animal-derived materials (e.g.,
pollen and ammonia, respectively). Interestingly, swine
farm laborers are reported to have a higher prevalence of
occupational respiratory symptoms in comparison with
other agricultural workers (11, 69). A clinical study reported

AJP-Gastrointest Liver Physiol - doi:10.1152/ajpgi.00423.2020 - www.ajpgi.org

that exposure to swine farm air for 2-5h resulted in the
thickening of nasal mucosa, lung function decline, an
increase in immune cell infiltrates [e.g., neutrophils, macro-
phages (M®), lymphocytes, and eosinophils], and proinflam-
matory cytokines [e.g., interleukin (IL)-1B, IL-6, tumor
necrosis factor o (TNF-a), and IL-8] in the bronchoalveolar la-
vage fluid of healthy participants (11, 19, 70). These findings
were also corroborated in animal studies by Charavaryamath
et al. (71) which demonstrated that swine farm dust (SFD) ex-
posure induced lung inflammation and the recruitment of
neutrophils in Sprague-Dawley rats. A more recent study by
Roque et al. assessed endotoxin levels in swine barn air. In
comparison with pigs raised in barns with low-bacterial en-
dotoxin levels, there was an increase of white blood cells in
pigs exposed to high-endotoxin levels. In addition, periph-
eral blood mononuclear cells (PBMC) collected from high-ex-
posure pigs had greater plasma immunoglobulin (Ig) G and
IgE levels but lower IgA levels than that produced by PBMCs
from low-exposure pigs (66). The inflammatory capabilities
of SFD have also been demonstrated in various in vitro
experiments using human bronchial epithelial cells and pul-
monary carcinoma cell lines (19, 72). Similar studies have
indicated that an increase in proinflammatory cytokines
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Table 1. Major bacterial composition of CAFO dust

Bacterial Class CAFO Disease(s)/Impact References
Staphylococcus spp. (S. aureus, S. Swine farm Pneumonia (27-31)
simulans, S. epidermidis, S. chro-
mogenes, S. pasteuri, S. hyicus,
S. haemolyticus, S. equorum)
Bacillus spp. (Bacillus cereus) Poultry farm, swine farm Respiratory infections, diarrhea, bacteremia (27-32)
Mycobacterium tuberculosis Swine farm Pneumonia, Intestinal tuberculosis, Crohn’s (33, 34)
disease
Methanobrevibacter, Pre-filtered SFD Linked to inflammatory bowel disease (35-37)
Methanothermobacter, and
Methanosphaera
Ruminococcus Swine farm Associated with respiratory allergies and (31, 35, 15)
Crohn’s disease
Lactobacillus Swine farm Pulmonary infections, Bacteremia, endocarditis (31, 35, 38)
Eubacterium spp. Swine farm Associated upper respiratory tract infections (31, 35, 39, 40)
and cystic fibrosis
Clostridium spp. (C. perfringens) Poultry farm, swine farm Can assist the expansion of regulatory T- (31,32, 35)
cellsPrevents growth of commensal bacteria
found in the gut
Betaproteobacteria Swine farm Low abundance associated with increase in se- (32,41, 42)
rum IL-6 in acute respiratory disease syn-
drome patients
Actinobacteria (genus: Swine farm Increase in gut associated with IBDPulmonary (32, 43, 44) (27-30, 45)
Micrococcus) hypertension
Aerococcus (Aerococcus viridans) Swine farm Endocarditis (27-31)
Enterococcus Swine farm Upper and lower airway infections (27-30, 46)

CAFO, concentrated animal feeding operation; IBD, inflammatory bowel disease; IL-6, interleukin-6; SFD, swine farm dust.

following SFD exposure promoted the adhesion of lympho-
cytes through the upregulation of intracellular adhesion
molecule-1 (73, 74), which contains five Ig superfamily
domains (75). Although respiratory immune responses of
SFD have been characterized in animal studies, the effects of
particulate matter in SFD on the intestinal immune system
continue to be an underdeveloped area of investigation.

Respiratory and Systemic Responses to Particulate Matter

Particulate matter, found in ambient and urban air pollu-
tion, is a key pollutant linked to chronic airway inflammation,
cardiovascular disease, and inflammatory bowel disease (9,
76-78). The components of particulate matter are defined by
their aerodynamic equivalent diameter (AED), which deter-
mines the particles’ potential to cause disease (79). Depending
on particle AED, different regions of the human respiratory
tract are penetrated by varying amounts of particulate matter
(79, 80). Particle penetration into respiratory regions can be
identified as either “inhalable fractions” or “respirable frac-
tions” (80). Inhalable fractions are defined as the mass frac-
tion of total airborne particles inhaled through the nose and
mouth whereas respirable fractions can penetrate the uncili-
ated airways (80). These categories recognize the important

Table 2. Major fungal/yeast composition of CAFO dust

role of particle deposition and AED in the induction of disease
in different regions of the respiratory tract. Ultrafine particles,
with an AED of O0.1um (PMg;), pose a major health risk
because of their size and their ability to absorb toxins. PMg is
formed by the coalescence of ions and gaseous molecules pro-
duced by combustion (e.g., vehicle and power plant emis-
sions) (81). These particles can easily penetrate the lungs and
translocate through alveolar epithelial cells. This allows for
the subsequent transport of toxic cellular fragments via the
surface of PMg; (82) that can enter the bloodstream and pro-
mote inflammation in distal organs (81, 83). Furthermore, the
coalescence of ultrafine particulate matter can form larger
particles such as PM, 5 (2.5 um). PM, 5 is an indicator of “fine
inhalable particles” which include combustion emissions, or-
ganic compounds, and metals (84, 85). “Inhalable particles,”
such as pollen, have a diameter of 10 um (PM,) or smaller and
can typically be seen without the assistance of an electron
microscope (86). Particles with an AED of 10um or larger
directly impact the nasopharyngeal membranes (81) and
can be swallowed following mucociliary clearance (87).
Respiratory studies show that particles with a smaller AED
may have the ability to infiltrate the terminal bronchioles and
alveoli that are typically inaccessible to larger particles (78,

Fungi/Yeast CAFO Disease(s)/Impact References
Aspergillus Swine farm Enterocolitis, appendicitis, colonic ulcers and Gl bleeding (16,17, 35, 47-50)
Acremonium Swine farm Colonize the lungs and Gl tract (35,17, 48, 49, 50, 51)
Penicillium spp. Swine farm Associate with the onset of pneumonia (35, 17, 48-50, 52)
Cladosporium Swine farm Respiratory infection; causes infection in immunocompromised (35, 17, 48-50, 53)

individuals
Filobasidium uniguttulatus (Yeast) Swine farm Meningitis (31, 54)
Cryptococcus Swine farm Acute or chronic infection of the lungs (31, 55)

CAFO, concentrated animal feeding operation; GI, gastrointestinal.
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88). Thus, evidence suggests that the pathogenicity of particu-
late matter depends on their size (80, 89). PM,s and PM;q
have distinctive detrimental effects on respiratory and gastro-
intestinal health (55, 78, 86, 90, 91). To understand the pulmo-
nary mechanisms involved in PM pathogenicity, Chan et al.
(92) exposed mice to traffic-related PM;o for 3wk and found
a significant increase in lymphocytes, macrophages, IL-1f
expression, and the apoptosis marker, caspase 3, in bron-
choalveolar lavage fluid. Because of its small diameter, PM, 5
can easily penetrate the lungs and activate inflammatory sig-
naling cascades, triggering inflammatory cytokine expression
and promoting systemic inflammation (93, 94). More specifi-
cally, when bronchial epithelial cells are exposed to extracts
of swine dust representing PM, ;5 and smaller fractions, there
is an increase in IL-6 and IL-8 release which is further depend-
ent on the activation of protein kinase-o (PKCo) and -¢ (PKCe)
isoforms (94, 95). Similarly, C57BL/6J mice chronically
exposed to different concentrations of PM,s show distinct
transcriptional profiles in the lungs associated with immune
and cardiovascular disease pathways (96). Although fewer in
number, there are studies that examined the mechanisms
underlying the harmful effects of PM exposure in the gastro-
intestinal system. Kish et al. exposed wild-type 129/SvEv mice
to PM,o for 7-14 days. This exposure altered immune gene
expression, increased proinflammatory cytokine secretion,
and barrier permeability in the small intestine (97). In addi-
tion, IL-10-deficient mice fed a chow diet supplemented
with PM,, exhibited microbial dysbiosis and altered short
chain fatty acid composition followed by elevated cytokine
expression in the colon (97). In 2011, Mutlu et al. performed
comparable in vitro studies in human epithelial colorectal ad-
enocarcinoma cell (Caco-2) monolayers exposed to PM. PM
exposure increased mitochondrially derived reactive oxygen
species (ROS), intestinal permeability, the activation of nu-
clear factor-xB (NF-«xB) and target gene IL-6, and Caco-2 cell
death (98). They validated these findings in vivo by demon-
strating that a single oral gavage treatment of PM (200 png)
decreased the colocalization and mRNA levels of zona occlu-
den protein 1 (ZO-1), increased the levels of IL-6 mRNA, and
induced apoptosis along the gastrointestinal tract of C57BL/6
mice (98). Overall, these data illustrate the disruptive effects of
particulate matter on the respiratory and gastrointestinal sys-
tems, respectively. However, additional experimental research
is needed to establish a well-defined gut-lung axis following
exposure to airborne pollutants (99, 100).

Particulate matter and intestinal permeability.

The intestinal epithelium acts as a selective permeable bar-
rier between luminal contents (e.g., intestinal microbiota)
and the immune system (82, 101, 102). The barrier is sup-
ported by three distinct structural components: tight junc-
tions that provide the first line of defense against toxins and
enteric pathogens and selectively regulate paracellular per-
meability; the adherens junctions, which are protein com-
plexes at cell-cell junctions that are linked to the actin
cytoskeleton and combine with tight junctions to form the
apical junctional complex; and desmosomes that form adhe-
sive bonds between cells and provide mechanical strength to
tissues (102, 103). Past studies have indicated that the gastro-
intestinal tract is exposed to high levels of pollutant particu-
late matter ostensibly from the inhalation of PM and the

AJP-Gastrointest Liver Physiol - doi:10.1152/ajpgi.00423.2020 - www.ajpgi.org

ingestion of contaminated food and water (9). As a result,
studies have shown that particulate matter can obtain access
to the gastrointestinal tract through several routes. After
mucociliary clearance, particulate matter can pass via the
esophagus, through the stomach, and enter the intestinal
lumen where it can directly affect epithelial cells and be
metabolized by commensal gut microbes causing the release
of toxic metabolites (9, 82, 104, 105). Prior research also sug-
gests that once deposited in the lungs, particulate matter
behaves similar to gas molecules, moving through the alveoli
via diffusion and translocating to the circulatory system (9,
106). Airborne microorganisms (bacteria, fungi, and viruses)
are primary components of PM, 5 (107, 108). When microor-
ganisms are inhaled and reach the alveolar space, they are
subsequently phagocytosed by alveolar macrophages that
further stimulate immune cell activity (9). However, there
are microbes that utilize alveolar macrophages to circum-
vent host defenses. For example, the airborne pathogen
Mycobacterium tuberculosis can reside in the phagosomes of
macrophages where it can gain access to the cytosol, control
host cell death (33, 34), and increase the risk of granuloma-
tous disorders such as intestinal tuberculosis and Crohn’s
disease (20). The bacteria and/or spores not destroyed by alve-
olar macrophages can move through the circulatory system to
the intestines. In addition to inhalation, particles and micro-
organisms released by industrial waste and vehicle exhaust
can contaminate food and water supplies, thereby suggesting
another route of oral/gastrointestinal exposure (109, 110).
Recent epidemiological studies have shown a direct link
between particulate matter exposure and intestinal defects
(111). Inflammation is a normative response to environmental
stressors, even being important for wound healing (111).
Commensal gut bacteria modulate the production of reactive
oxygen species and various growth factors responsible for in-
testinal epithelial migration and proliferation (112). Therefore,
dysbiosis of the gut microbiome induced by harmful pollu-
tants (113) may severely impair critical processes necessary for
intestinal epithelial wound healing (114-116). However, the
protective or detrimental role of PM-induced inflammation
on gut epithelial cells continues to be an active area of investi-
gation (111). Chronic PM exposure for 12mo in mice resulted
in epithelial lesions and the confluence of inflammatory cells
in murine colons (111). In addition, normal human colon epi-
thelial cells (NCM460) exposed to PM for 48-72h showed an
increased expression of fibroblast growth factor receptor 4
(FGFR4) (111), which is associated with the development of co-
lon cancer (117). In 2019, Li et al. (111) demonstrated that
FGFR4 activates the phosphatidylinositol-3-Kinase (PI3K)/Akt
pathway and the removal of FGFR4 prevented PM-induced
colorectal cancer in FGFR4 '~ mice. Moreover, PM exposure
has been suggested to increase the risk of inflammatory bowel
diseases and colorectal cancer (118) by altering gut epithelial
tight junctions via the production of reactive oxygen species
(9, 27, 77) generated by Fenton’s reaction of transition metals
commonly detected in PM (119). More recently, a study has
shown that levels of zona occluden protein 1 (ZO-1), claudin-1,
and the desmosome protein, desmocollin, were decreased in
enteroids following exposure to PM, s culminating in increased
intestinal permeability (21). Consequently, an increase in intes-
tinal permeability allows for pathogenic bacteria, viruses,
and fungi to migrate to the lamina propria and interact with
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Figure 2. Particulate matter (PM) toxicity and reactive oxygen species (ROS). PM toxicity may come from the generation of hydroxyl radicals and ROS
through Fenton’s reaction. Following inhalation, particulate matter can reach the gastrointestinal tract, undergo a catalytic process, and promote sys-
temic inflammation through the production of ROS and the subsequent release of proinflammatory cytokines/chemokines from macrophages (M®) and
dendritic cells (9, 123-125). In addition, PM exposure can promote mitochondrially derived ROS in intestinal epithelial cells (98), thereby altering the
expression of tight-junction proteins, intestinal barrier function, and increasing permeability which allows for the translocation and systemic migration of

bacteria/bacterial products and proinflammatory cytokines/chemokines (21).

intestinal immune cells and commensal microbes (120-122).
Ultimately, these interactions increase immune cell activity
evidenced by proinflammatory responses from macrophages
and dendritic cells, which worsen intestinal permeability and
furthers dysbiosis (Fig. 2) (9).

Respiratory and Gastrointestinal Conditions Associated
with Microbial Products in Agricultural Dust

Effects of microbial and fungal communities found in
swine farm dust.

Agricultural workers are at extreme risk of developing chronic
airway inflammation and severe respiratory illnesses when
exposed to workplace dust (126, 127). These risks are further
inflated by the absence of face respirators (57). Farmers who

G590

maintain crops may develop a type of hypersensitivity pneu-
monitis referred to as “farmer’s lung” (128, 129). This severe re-
spiratory condition is triggered by the inhalation of mold
spores (e.g., Micropolyspora faeni and Aspergillus fumigatus;
~2-10 um) that grow in hay and grain (129, 130). Mold spores
have the capability of attaching to airborne dust particles
(129, 130) and preventing normal lung function (131) such as
gas exchange (132). Comparably, swine farm workers also
increase their risk of lung function decline and chronic bron-
chitis from long-term exposure to swine farm dust (133, 134).
“Feed particles” are the major component of agricultural dust
and SFD (35); however, it is likely that microbes found in
SFD provoke the proinflammatory responses linked to re-
spiratory and gastrointestinal diseases. Metagenomic

AJP-Gastrointest Liver Physiol « doi:10.1152/ajpgi.00423.2020 - www.ajpgi.org
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Figure 3. Particulate matter induction of inflammation along the gut-lung axis. (1) When inhaled or ingested dust can reach the alveolar space and pro-
mote immune responses. (2) Particulate matter in concentrated animal feeding operations (CAFO) dust, like swine farm dust (SFD), can bind to Toll-like
receptors (TLR) on respiratory epithelial cells and activate innate lymphoid cells (ILC). ILCs recruit neutrophils, responsible for killing pathogens. In addi-
tion, ILCs such as ILC3 can differentiate into T-helper cells (i.e. Th17) and release interleukin (IL)-17A,F and IL-22. Furthermore, alveolar macrophages
release IL-1B inducing pulmonary inflammation. (3) Particulate matter bypasses the respiratory epithelium and is phagocytosed by alveolar macrophages
which release proinflammatory cytokines, IL-6, and IL-8. (4) The components of particulate matter (e.g., bacteria and fungi) and proinflammatory cyto-
kines then travel through the circulatory and/or lymphatic system to the intestine. (5) Particulate matter can enter the gut via mucociliary clearance and/
or circulation from the lungs. (6) Bacteria, endotoxins, and fungi from CAFO dust induces intestinal dysbiosis, increases permeability, the paracellular
transport of pathogens, and promotes the activation of transcription factors such as nuclear factor-kB (NF-kB), which mediates the activation of macro-
phages in the intestine and releases IL-6, IL-8, and tumor necrosis factor o (TNF-a) (7). (8) Via the intestinal vasculature/mesenteric lymph nodes, proin-
flammatory cytokines, surviving bacteria, and bacterial products can reach the basolateral membrane of the respiratory epithelium (9) thus stimulating
dendritic cells (DC) to produce IL-23 thus promoting further epithelial damage (70).

analyses on settled dust collected from two different swine
confinement facilities have shown that “pre-filtered” SFD
contains archaeal DNA (Methanobrevibacter, Methano-
thermobacter, and Methanosphaera) (35). However, swine
farm dust is largely composed of Staphylococcus, Micro-
coccus, and Bacillus spp., all of which can metabolize
harmful environmental particles and promote bacteremia
and ROS production (27-30). In addition to bacteria, fun-
gal species ubiquitous to the environment have also been
identified in SFD (Acremonium, Aspergillus, Penicillium,
and Cladosporium) (Table 2) although they are less abun-
dant and understudied (17, 35, 48, 50, 135). Past reports
indicate infections caused by Acremonium species,
although rare, affect immunocompetent individuals by
colonizing the lungs and gastrointestinal tract (51).
Clinical case studies in immunosuppressed patients have

AJP-Gastrointest Liver Physiol « doi:10.1152/ajpgi.00423.2020 - www.ajpgi.org

reported the ability of Aspergillus infections to develop
into serious gastrointestinal complications including
enterocolitis, appendicitis, colonic ulcers, and gastrointes-
tinal bleeding (47, 136). Although the microbial compo-
sition of SFD has been characterized, the pathological fea-
tures and mechanisms of SFD that are responsible for in-
testinal barrier dysfunction during chronic exposure
remain an understudied area of investigation.

Gut-Lung Axis and Microbial Interactions

The gut-lung axis (GLA) describes a two-way interchange
between the microbiota and immune system of the gut and
lungs (137). In a healthy individual, the microbiomes of the re-
spiratory tract and gastrointestinal system are comprised of
distinctive genomes (archaea, eukaryotes, viruses, bacteria,
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and fungi) that live symbiotically to maintain homeostasis in
their respective organs (138). In 2019, Lee et al. (139) indicated
that the lung microbiota, as assessed via sputum samples, is
primarily composed of microbes from the phyla Firmicutes,
Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacte-
ria. Further examination also revealed similarities between
healthy sputum and saliva samples. However, in comparison
with saliva, sputum is more abundant in the genera
Granulicatella (phyla: Firmicutes) (139). A recent study exam-
ining the pharyngeal microbiota of outdoor farmers’ market
workers chronically exposed to smog with PM,s and PM;q
reported an increase in Granulicatella (140) that is directly
linked to the onset of lung cancer and endocarditis (141).
Interestingly, the lungs, once considered a sterile environment
(142), have low-colony density but high-microbial diversity
(16). Comparably, murine lung microbiome studies show a
similar composition (143). Although the lung microbial com-
munity differs from the intestinal microbiota, similar phyla are
found (e.g., Bacteroidetes, Firmicutes, and Proteobacteria) and
play an important role in establishing the immune system (56).
Previous studies have shown that the lung and gut microbiota
are essential to the interactions between both mucosal sites
and the development of disease. A recent study indicated that
lung microbial dysbiosis and dysfunction was associated with
the development of inflammatory bowel disease in patients
who reported no history of smoking. However, no definitive
pathogenic mechanism has been identified (144). In addition,
respiratory diseases induced by environmental pollution pro-
mote dysbiosis of the pulmonary and intestinal microbiota
indicated by an outgrowth of Proteobacteria and Firmicutes
(39). It is well documented that changes in the pulmonary flora
are directly associated with the onset of respiratory infections
including pneumonia and influenza (106). Pulmonary research
suggests PM, s pathobionts can invade deeply into the lungs
and release toxins that damage airway epithelial cells and
selectively destroy pulmonary microbes (144, 145). Conse--
quently, pathogenic bacteria and their toxins can translocate
through endothelial cells and circulate in the blood to distal
organs and tissues (93) including the intestines, culminating in
altered gut flora, intestinal barrier dysfunction, and incitement
of an immune response. Yet, alterations in the intestinal micro-
biota have been linked to changes in pulmonary immune
responses, inflammation, and disease progression (Fig. 3) (137,
146). For example, the development of asthma, notably in chil-
dren, has been associated with the reduced abundance of
Bifidobacteria and an increase in Clostridia in the intestine
(147). In addition, Arrieta et al. (148) have also shown that the
over-representation of gut fungal species, specifically Pichia
kudriavzevii, is associated with the development of atopic
wheeze in children. Moreover, in human and murine models,
modulation of the gut microbiota due to antibiotic intake
increases the risk of lung diseases and allergic inflammation
(149-152). Although the exact mechanisms continue to be
examined, studies have shown that gut bacteria interact with
the mucosal immune system via metabolites, including proin-
flammatory and regulatory signals (22, 137, 153, 154).

Immune cell contributions to the gut-lung axis.

It has been suggested that the respiratory microbiome acts
as a “gatekeeper,” providing colonization resistance against
environmental pathogens (119) and metabolizing pollutants
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(142). These preventative measures, along with the respira-
tory mucosa (e.g., mucus production) (119) and ciliary clear-
ance (155), block pathogens and particulate matter from
reaching the airway epithelium (70, 144, 156, 157). However,
if bacteria or foreign materials invade this barrier, airway
epithelial cells express pattern recognition receptors, secrete
antimicrobial peptides, and incite an inflammatory response
through the activation of mitogen-activated protein kinases
(155), thereby serving as the primary line of defense (135).
Together, interactions between the respiratory microbiota
and the epithelial barrier influence pulmonary immune
responses. Of note, prior studies have shown that long-term
exposure to urban particulate matter can have severe effects
on lung microbial composition and immunity (158, 159). In
murine models, Li et al. (89) demonstrated T-helper (Th) 2
cell-mediated immune responses and acute inflammation
are linked to toll-like receptor (TLR) 2 and TLR4 activation
following exposure to PM, s. More specifically, urban partic-
ulate matter-activated dendritic cells (UPM-DC) are respon-
sible for Thl, Th2, and Thi7 differentiation through major
histocompatibility class II availability (93). Thi, Th2, and
Thi7 effector phenotypes are directly implicated in the exac-
erbation of asthma and chronic lung inflammation (158, 160,
161). In addition, particulate matter also activates dendritic
cells to release the proinflammatory cytokine, interleukin-23
(123, 124). IL-23 incites T-cell immunity and stimulates
innate lymphoid cell (ILC) (100, 162) production of cytokines
responsible for the defense against extracellular bacteria and
fungi (23, 163, 164). Moreover, Thi7 cells play a significant
role in host defense against extracellular pathogens by
recruiting neutrophils and macrophages to infected tissues
and provide compensatory support in response to epithelial
barrier defects (165, 166). In addition, there is evidence that
suggests respiratory infections not only alter the lung micro-
biome but are also responsible for directing signals of infec-
tion from the lungs to the gut causing alterations in gut
microbiome dynamics (137, 167). This interaction is seen in
Balb/c mice infected with aerosolized M. tuberculosis where
they exhibit a rapid shift in gut microbial diversity which
may indicate these alterations are as a result of M. tuber-
culosis infection and immune signaling from the lungs
(167). During a respiratory infection, bacteria and immune
cells can translocate across lung epithelial cells and reach
the gastrointestinal tract via lymphatic or blood circula-
tion to activate local intestinal immunity (65, 137, 168).
Prior studies have reported that swine farm dust is primar-
ily composed of Ruminococcus, Lactobacillus, Eubacterium,
and Clostridium species (31, 35). Clostridium species have
been reported to assist in the expansion of regulatory T-cells,
which are linked to the suppression of immune responses in
the colon of germ-free mice (169). Likewise, spore-forming
Clostridium perfringens (C. perfringens) demonstrate rapid
proliferation while secreting membrane and cytoskeleton dis-
rupting, pore-forming, and tight-junction disintegrating tox-
ins that prevent the growth of commensal bacteria found in
the gut (31). Enterotoxin is linked to food poisoning and non-
foodborne diarrhea through the disruption of claudin tight-
junction proteins in gut epithelial cells (31). The disruption of
tight-junction proteins in response to environmental patho-
gens has a direct impact on commensal gut microbes and the
pulmonary immune system (170). An increase in intestinal
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permeability allows for the systemic migration of gut bacteria
and their metabolites (short-chain fatty acids; SCFA) to the
lungs (168, 171, 172). More specifically, gut-derived metabolites
can pass systemically to the bone marrow and promote hema-
topoiesis (137, 173). Under inflammatory conditions, hemato-
poietic stem cells can differentiate and give rise to dendritic
cell precursors that disseminate to the lungs and mature into
CD11b " dendritic cells (21, 136, 172) that have been shown to
be responsible for inducing allergic airway hypersensitivity
(174). SCFAs can also affect lung immunity by enhancing
CD8* T-cell activity (22), promoting forkhead box P3 (FOXP3)
expression (175) and regulating the production of proinflam-
matory cytokines (TNF-q, IL-2, IL-6, IL-10) through the activa-
tion of free fatty acid receptor 3 (122, 176). Together, these
findings demonstrate the level of communication between
the gut and lungs in response to alterations of the gut micro-
biota and intestinal permeability. The gut-lung axis is a two-
way system that involves the interactions between their
respective microbiota and immune cells. There has been
increasing evidence of host-microbe and microbe-microbe
interactions shaping immune responses in respiratory dis-
eases and the development of subsequent effects in the gut
(177-179). Nevertheless, further investigation is needed to
explore the potential pathogenic effects of the gut-lung inter-
action following agriculture and CAFO exposure.

Air Pollution and COVID-19

An additional and highly topical example of a pathogenic
influence on the lung also manifesting symptoms in the gas-
trointestinal tract is the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection. The outbreak of coro-
navirus disease 2019 (COVID-19) in December 2019 has led to
a global pandemic affecting over 90 million individuals and
leading to more than 1.9 million deaths (as of January 14,
2021) (www.who.int) with most patients suffering from respi-
ratory symptoms. It has been reported that SARS coronavi-
ruses infect immune cells and the lung epithelium thereby
enhancing proinflammatory cytokine and chemokine pro-
duction and leading to severe acute respiratory syndrome
(180). However, there is increasing awareness of the high
prevalence of extrapulmonary symptoms, in particular,
those arising from the gastrointestinal tract. Viral infections,
such as influenza, can promote dysbiosis in the gut micro-
biota and increase gut permeability (181). Indeed, studies
identified that 46% of patients had GI symptoms, diarrhea
(29.3%) being the most frequent (114, 127, 182). More specifi-
cally, SARS-CoV-2 activates angiotensin-converting enzyme
2 (ACE2) and promotes enteritis and the risk of diarrhea (183,
184). SARS-CoV-2 uses transmembrane protease serine 2
receptors (TMRPSS2) and TMPRSS4 to gain entry into small
intestinal epithelial cells and has been shown to promote
enterocyte dysfunction and increase intestinal permeability
(185-188). In a manuscript recently deposited in medRxiv,
preliminary evidence, generated using multiomics screening
approaches on serum samples, suggests that severe COVID-
19 may be associated with increased intestinal permeability
to microbial products (e.g., lipopolysaccharides/lipopolysac-
charide binding protein, B-glucan), altered amino acid me-
tabolism, and compromised gut enterocyte function (189).
Moreover, hospitalized patients diagnosed with severe
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COVID-19 displayed higher levels of plasma zonulin. In the
gut, elevated levels of zonulin increase intestinal permeabil-
ity, microbial-mediated myeloid inflammation, and allow
for the translocation of microbes and their products (e.g.,
lipopolysaccharides/lipopolysaccharide binding protein,
B-glucan) from the gut into the systemic circulation (189).
Although these data are not yet published, they do begin
to identify a mechanism by which GI symptoms and
effects of COVID-19 on gastrointestinal function contrib-
ute to more severe COVID-19 outcomes.

Risk factors for infection and more severe disease include
age, with the elderly (>65yr old) being most vulnerable, and
individuals with underlying medical conditions including
respiratory disease, cardiovascular disease, and chronic
inflammatory conditions such as obesity and diabetes (190).
Obesity, the most common metabolic disease and global epi-
demic characterized by chronic low-grade inflammation, is
implicated in COVID-19 severity in patients with a body
mass greater than 40-45 kg/m? (191-193). Obesity can signifi-
cantly influence the respiratory system by reducing lung vol-
ume and capacity via mechanical changes (e.g., patterns of
fat distribution particularly along the chest wall, abdomen,
and upper airway). Nevertheless, there is also risk of sys-
temic inflammation through the production of inflammatory
cytokines (e.g., TNF-a, IL-1B, IL-6) by excess adipose tissue.
In addition, metabolic dysregulation in obese patients pro-
motes intestinal barrier dysfunction (194-197). Reports also
state that adipose tissue has higher expression of ACE2 in
comparison with the lungs, therefore, serving as a reservoir
for viral infections. Increased ACE2 mRNA expression in the
ileum of patients with inflammatory bowel disease (IBD) and
non-IBD subjects was associated with a higher body mass
index (BMI), whereas obesity is also associated with a higher
risk of infections that can underlie or exacerbate many con-
ditions that have more severe outcomes in obese subjects
(198). Moreover, ACE2 is upregulated in visceral and subcu-
taneous adipose tissue in obese patients, thereby increasing
the risk of ACE2 shedding and the redistribution of the re-
ceptor to other tissues (199) via transcriptional upregulation
and activation of a disintegrin and metalloproteinase do-
main 17 (ADAM17) (200, 201).

An additional vulnerability appears to be the association
between increased deaths from COVID-19 in areas with high
levels of air pollution, more specifically, elevated exposure to
the toxic component nitrogen dioxide (NO,). Anthropogenic
activity, such as fossil fuel combustion, releases NO, into the
atmosphere and exposure has been linked to metabolic dis-
orders (96), COPD (202), and lung injury (203). Moreover,
NO, promotes the production of proinflammatory cytokines
and lung epithelial cell death (204). In 2020, Ogen (205)
assessed long-term exposure to NO, in European countries
and found a strong correlation between high levels of
NO, (>100 pmol/m?) and COVID-19 fatalities. Nitrogen diox-
ide can also react with other chemicals and produce second-
ary pollutants such as ozone and PM (206). A recent
nationwide cross-sectional study revealed that an increase of
just 1 pg/m? of PM corresponded to an 8% increase in COVID-
19 deaths (207). Although the mechanisms by which air pol-
lution modifies severity of COVID-19 responses have yet to
be determined, very little is known about the host factors
that determine mild or even asymptomatic responses
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compared with life-threatening or fatal outcomes. As with
many inflammatory diseases, it is the combination of specific
host and environmental factors in certain individuals that
provokes more severe disease outcomes. What does appear to
be emerging from evidence generated thus far is that environ-
mental air pollutants have a positive correlation with overall
COVID-19 severity (207). Furthermore, members of racial and
ethnic minority groups are at a greater risk of contracting
COVID-19 because of social inequalities and health disparities
(208). This increased vulnerability is also seen among sea-
sonal agricultural workers in COVID-19 high-risk rural coun-
ties in the US (209) because of factors including confined
group housing conditions as well as limited access to health-
care and personal protective equipment (44, 209, 210).
Moreover, although the specific influences of aerosolized agri-
cultural dust on COVID-19 are unknown, it is not unreason-
able to suggest that given its causal role in many respiratory
conditions, agricultural dust may represent a potential addi-
tional risk factor for COVID-19 infection, or more severe out-
comes, in agricultural workers. This may be particularly
relevant to the high levels of COVID-19 in Imperial County,
California (149). This rural and agriculture-intense inland
county has a number of disadvantages as it battles the pan-
demic including limited access to healthcare, high levels of
poverty, obesity, and asthma hospitalizations (209, 211), as
well as poor air quality with higher levels of particulate matter
exposure than the state or national averages (24, 119, 212).

CONCLUSIONS

Farmers and farm workers are regularly exposed to agri-
culture dust (57). Adverse respiratory health effects includ-
ing reduced lung function and shortness of breath (213, 214)
are directly linked to the components of agriculture particu-
late matter such as chemicals, bacteria, fungi, and viruses
(35, 76). Interestingly, chronic lung disorders and respiratory
infections as a result of particulate matter exposure are often
accompanied by gastrointestinal diseases (appendicitis,
bowel infections, and irritable bowel disease) (47, 215, 216).
The source of these GI disorders has been linked to lung mi-
crobial alterations followed by a robust immune response of
the respiratory system. In parallel, gastrointestinal diseases
have also been shown to be a comorbidity for respiratory dis-
orders. Although the respiratory effects of air pollution and
agriculture dust have been well investigated, there is a lack
of studies that examine the consequences of inhaled particu-
late matter from agriculture and CAFO dust on intestinal
barrier function and immunity. Further investigation is
especially important for minority populations who are gen-
erally employed as seasonal farm workers with limited
healthcare access. Thus, identifying the mechanistic proper-
ties of the interactions seen between both mucosal sites is an
important area of exploration and imperative to understand-
ing the physiological consequences of chronic exposure to
harmful environmental pollutants while also promoting
awareness of the health disparities in minority and immi-
grant populations.
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