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Path integral Monte Carlo approach 
to the structural properties 
and collective excitations of liquid 
3

He without fixed nodes
Tobias Dornheim1,2*, Zhandos A. Moldabekov1,2, Jan Vorberger2 & Burkhard Militzer3,4

Due to its nature as a strongly correlated quantum liquid, ultracold helium is characterized by the 
nontrivial interplay of different physical effects. Bosonic 4He exhibits superfluidity and Bose-Einstein 
condensation. Its physical properties have been accurately determined on the basis of ab initio path 
integral Monte Carlo (PIMC) simulations. In contrast, the corresponding theoretical description of 
fermionic 3He is severely hampered by the notorious fermion sign problem, and previous PIMC results 
have been derived by introducing the uncontrolled fixed-node approximation. In this work, we present 
extensive new PIMC simulations of normal liquid 3He without any nodal constraints. This allows us to 
to unambiguously quantify the impact of Fermi statistics and to study the effects of temperature on 
different physical properties like the static structure factor S(q) , the momentum distribution n(q) , and 
the static density response function χ(q) . In addition, the dynamic structure factor S(q,ω) is rigorously 
reconstructed from imaginary-time PIMC data. From simulations of 3He , we derived the familiar 
phonon–maxon–roton dispersion function that is well-known for 4He and has been reported previously 
for two-dimensional 3He films (Nature 483:576–579 (2012)). The comparison of our new results for 
both S(q) and S(q,ω) with neutron scattering measurements reveals an excellent agreement between 
theory and experiment.

Ultracold helium constitutes one of the most actively investigated quantum systems and has been of central 
relevance for our understanding of important physical concepts such as  superfluidity1 and Bose–Einstein 
 condensation2. Due to its nature as a strongly correlated quantum liquid, helium exhibits an intricate interplay 
of non-ideality effects, quantum statistics, and thermal excitations. Naturally, an accurate description of physical 
effects such as the lambda phase transition of 4He must capture all of these effects simultaneously—a challenging 
task beyond simple mean-field models and perturbative approaches.

This challenge was met by  Feynman3 in terms of the path integral formalism that exactly maps the interact-
ing quantum system of interest onto an effective classical system of ring  polymers4. Specifically, this quest for an 
accurate description of  helium5 has given rise to the widely used path integral Monte Carlo (PIMC) simulation 
 method6–8, one of the most successful tools in statistical physics, quantum chemistry, and related disciplines (We 
note that Monte Carlo methods in general are applied in a gamut of different contexts, like solid state  physics9,10 
or the investigation of magnetic  properties11–15). Recently the worm algorithm16,17 elegantly addressed the chal-
lenge of sampling the permutation space ergodically. This is required to take into account the effect of quantum 
statistics, which is nontrivial because of the strong short-range repulsion between two He atoms.

The PIMC method gives straightforward access to important physical observables like the superfluid 
 fraction18, the momentum  distribution1, and the static structure factor, which has resulted in excellent agreement 
between theory and experiments for 4He ; see the review by  Ceperley1 for details. In addition, PIMC simulations 
can be used as the starting point for an analytic  continuation19 that provides access to the dynamic structure fac-
tor S(q,ω)20–22—a key quantity in neutron scattering  experiments23–26. In particular, PIMC-based data for S(q,ω) 
have given important insights into the connection between superfluidity and roton-like quasi-particle excitations.

In stark contrast, PIMC simulations of 3He are substantially hampered by the notorious fermion sign 
 problem27–29, which leads to an exponential increase of the computation time with increasing the system size N 
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or decreasing the temperature T. Therefore, Ceperley has introduced the uncontrolled fixed-node approxima-
tion into fermionic PIMC  simulations27 and derived the first results for 3He . This investigation was restricted 
to the total energy, and the agreement to experimental  data30 was inconclusive. Few PIMC studies of 3He have 
been published  since31. To our knowledge, no data have been presented for either the structural properties or 
the spectrum of collective excitations.

This is unfortunate, as ultracold 3He offers a potential wealth of interesting physical effects such as a superfluid 
phase transition at T � 2.5 mK32 that is triggered by the formation of Cooper pairs. Furthermore, it has been 
recently  demonstrated33,34 that two-dimensional 3He exhibits a rich phonon–maxon–roton dispersion relation 
that phenomenologically resembles the well-known dispersion of 4He . We also note that bulk 3He is notori-
ously difficult to study with laboratory  experiments35. A thorough theoretical approach is thus indispensable to 
understand the underlying physical mechanisms. Furthermore, progress has been made in characterizing 3He

–4He mixtures with PIMC  simulations36–38 but some disagreements regarding the kinetic energy remain between 
theoretical and experimental results.

In this work, we remedy this unsatisfactory situation by carrying out extensive direct PIMC simulations of 
normal liquid 3He without any nodal restrictions. Therefore, our simulations are free of uncontrolled approxima-
tions, but computationally extremely costly when the temperature is decreased, cf. the discussion of Fig. 1 below. 
This allows us to present highly accurate results for the temperature dependence of important properties such 
as the static structure factor S(q) , the momentum distribution function n(q) , and the static density response 
function χ(q) . Furthermore, we are able to unambiguously characterize the impact of Fermi statistics, which is 
comparably small for S(q) and χ(q) , but very pronounced on n(q) in the small-momentum range.

We compute the imaginary time density–density correlation function F(q, τ) for the same parameters, which 
gives us access to the dynamic structure factor S(q,ω) . First and foremost, we indeed find the familiar pho-
non–maxon–roton dispersion  relation33 in these spectra, which is qualitatively similar to normal liquid 4He22 at 
comparable conditions. Our new PIMC data for the spectrum of collective excitations are in excellent agreement 
with results from neutron scattering  experiments24. If they are available, experimental and theoretical results are 
found to be in excellent agreement.

To our knowledge, this constitutes the first comprehensive PIMC study of an ultracold atomic bulk system 
of fermions at finite temperature without the fixed-node  approximation27, thereby opening up new avenues for 
the investigation of other applications such as quantum-dipole  systems39,40, bilayer  structures41,42, or isotopic 
mixtures of  helium36–38.

Results
We consider spin-unpolarized 3He at a number density n = N/V = 0.016355 Å−3 . Convergence with the num-
ber of imaginary-time steps has been carefully checked; see the “Methods” section for additional details. We 
note that the spin-polarization has negligible effects on the properties of 3He at these conditions; see also the 
discussion of Fig. 3 below.

We begin our investigation by analyzing the fermion sign problem, which constitutes the main computa-
tional bottleneck. In Fig. 1, we show our PIMC results for the average sign S (see e.g. Ref.29) for N = 14 and 
N = 38 atoms interacting via the Aziz-2  potential43. S constitutes a measure for the amount of cancellation of 
positive and negative terms in the simulations. It monotonically decreases with T. In the high-temperature limit, 
S approaches 1 because the effects of quantum statistics vanish, whereas S → 0 as the system approaches the 
ground  state44. Furthermore, the error bar of an observable Â scales as �A/A ∼ 1/S , resulting in an increase 
in computational cost of C = 1/S229. This trend is shown in the right panel of Fig. 1 and can be interpreted as 
follows: For T = 5 K , which is close to the Fermi temperature of 3He , the effect of quantum statistics is negli-
gible and there is no increase in computational cost, i.e., C ∼ 1 . In contrast, we find C ∼ 103 for T = 2 K and 
N = 38 , which means we need 1000 times as much computer time for the fermionic calculations as we do for 

Figure 1.  Average sign, S, (left) and increase in computational cost, C = 1/S2 , (right) for N = 14 and N = 38 
3He atoms as a function of the inverse temperature, T−1.
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the bosonic case without a sign problem. While this is still feasible with O(105) CPU hours, it constitutes the 
limit of the present investigation.

In Fig. 2, we study the temperature dependence of various structural properties of normal liquid 3He , for 
T = 20, 5, 4, 3, and 2 K. Panel (a) shows S(q) that exhibits a weak dependence on T for T ∈ [2, 5] . Here, the most 
pronounced temperature effect manifests in the long wavelength limit, which is determined by the isothermal 
 compressibility22. We note that the exact q → 0 limit cannot be accessed in our simulations due to the finite 
simulation  cell45,46. Apart from this momentum quantization  effect45, we find no finite-size effects in our PIMC 
results; see the “Methods” section for a corresponding analysis. Both the position and the shape of the peak are 
hardly affected by T in this regime, which is consistent with earlier findings for 4He22. The solid yellow line in 
panel (a) shows experimental data for S(q) at T = 0.41 K by  Hallock47, which is in excellent agreement with our 
PIMC results for the lowest temperature. Finally, the grey triangles depict results for a substantially larger tem-
perature of 20 K. These results are clearly distinct from the other curves, and we find temperature dependence 
in the small q regime and also around the peak, which decreases in magnitude and shifts to larger q.

Panel (b) shows the momentum distribution function n(q) that we have derived with the procedure described 
in Ref.48. For this property, the temperature plays an important role because the 3He atoms are propelled to larger 
momenta by thermal excitations. This can be seen particularly well for T = 20 K , where n(0) is reduced by more 
than a factor of four compared to 2 and 3 K results. Furthermore, n(q) does not resemble a step function even 
for the lowest depicted temperature ( T = 2 K ) for these reasons. The reduced temperature, � = kBT/EF ≈ 0.4 , 
is not quite low enough, which is exacerbated by the strong pair interaction.

Lastly, panel (c) shows the static density response  function49, which we derived from the  relation50,51,

with the definition of the imaginary-time correlation function

where n̂(q, τ) is the density operator in Fourier space evaluated at τ ∈ [0,β] ; see also Ref.50 for a generalization. 
We find that χ(q) exhibits an interesting, non-monotonous structure: (1) In the limits of large and small q, the 
response function only weakly depends on temperature for T ∈ [2, 5]K . Further, χ(q) does not approach zero 
in the long-wavelength limit, as there is no perfect  screening52,53 for helium because of the strong short-range 
 interactions43. (2) The density response function exhibits a pronounced peak around q ≈ 1.8 Å−1 , which corre-
sponds to q ≈ 2.25qF (where qF is the Fermi wave  number54). This feature closely resembles recent  results55,56 for 
the uniform electron gas at warm dense matter  conditions57 at similar values of the reduced temperature � and 
reduced wavenumber x = q/qF . Finally, the peak of the density response substantially depends on T. Specifically, 
the peak location is directly connected to the attractive minimum of the inter-atomic potential. Increasing the 
temperature reduces the correlation among the atoms, there is less of a collective behaviour, which manifests 
itself in a weaker density response. This trend is confirmed by T = 20 K results. χ(q) is substantially reduced 
compared to the other temperatures, especially for q � 3qF.

(1)χ(q) = −n

∫ β

0

dτ F(q, τ),

(2)F(q, τ) =
〈

n̂(q, 0)n̂(−q, τ)
〉

,

(a) (b)

(c)

Figure 2.  Static properties of 3He for different temperatures T: Shown are PIMC results for the static structure 
factor S(q) (a), momentum distribution function n(q) (b), and static density response function χ(q) (c), see 
Eq. (1). Solid yellow: experimental data for S(q) by  Hallock47.
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In Fig. 3, we study the impact of quantum statistics on the momentum distribution of 3He , n(q) . For T = 2 K , 
we compare the results from our fermionic PIMC simulations (red) with the corresponding results for distin-
guishable particles, so-called boltzmannons. Evidently, the most pronounced differences appear for the zero-
momentum state. Its occupation differs by approximately 50% because it is the momentum state with the highest 
occupation and therefore Pauli exclusion effects matter the most. Conversely, quantum statistical effect only 
change S(q) and χ(q) by little more than 1% at these conditions, which is consistent with previous findings for 
4He1.

Finally we investigate is the dynamic structure factor S(q,ω) of 3He , which we obtain by numerically invert-
ing the  equation19,

We employ a genetic algorithm similar to the scheme presented in Ref.58, which simultaneously minimizes 
the χ2 measure of Eq. (3) as well as the first and inverse frequency moments; see the “Methods” section for more 
details. To our knowledge, no experimental measurements of S(q,ω) exist in the temperature range T ≥ 2K 
that is accessible to our direct PIMC simulations. However, Sköld et al.24 presented neutron scattering data for 
T = 1.2 K. Since our investigation of S(q) and χ(q) , both of which are closely related to S(q,ω) , revealed no 
significant impact of quantum statistics, we have carried out PIMC simulations of N = 100 3He atoms using 
Boltzmann statistics at this temperature.

The results of the numerical inversion of Eq. (3) are shown a heatmap in Fig. 4. All depicted datasets exhibit 
the phonon–maxon–roton dispersion relation that is well known for 4He . The blue circles are the experimental 
peak positions of S(q,ω) from Ref.24. The experimental data are in excellent agreement to our results. Since we 
used Boltzmann statistics in our simulations, this is a strong indication that S(q,ω) is predominantly shaped 
by the particle interactions rather than quantum statistical effects. Furthermore our results fully corroborate 
previous findings for 3He in two  dimensions33,34. The black diamonds show S(q,ω) from a theoretical investiga-
tion of 4He at the same T22 that differ substantially from our results for q � 1.3 Å−1 . The differences between 
the two helium isotopes are mainly caused by the different particle masses because the heavier 4He atoms are 
more strongly coupled than the 3He species. Furthermore, our new PIMC results for S(q,ω) clearly indicate 
the wave-number range for future neutron scattering experiments to resolve the precise location of the roton 
minimum in the spectrum.

Finally we investigate the ω dependence of S(q,ω) , which is shown in Fig. 4b,c for q = 1.62 and 2.01 Å−1 . A 
comparison of the full ω dependence is of high importance to assess the quality of a theoretical method because 
the peak positions alone provide only limited  information59. The yellow triangles depict the experimental meas-
urements while the solid purple line shows the theoretical prediction from the analytic continuation. The experi-
mental and theoretical dataset are in excellent agreement over the entire frequency range. This implies that the 
PIMC simulation and subsequent reconstruction are not only capable to reproduce the correct dispersion ωmax(q) 
but also gives access to the actual shape of S(q,ω) . From a physical perspective, we note that both considered 
wave numbers are located around the roton minimum (cf. Fig. 4), but do not exhibit the sharp quasi-particle 
excitation peak that is characteristic for the superfluid phase of 4He22.

(3)F(q, τ) =

∫ ∞

−∞

dω S(q,ω)e−τω .

Figure 3.  Impact of Fermi statistics on the momentum distribution n(q). Results from simulations of fermions 
and boltzmannons are compared for T = 2 K in the upper panel and their relative deviations are shown below.
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To elucidate the temperature dependence of the dynamic structure factor, we include results for T = 3 K 
(dotted green) and T = 20 K (dashed grey) into panels (b) and (c) of Fig. 4. We find the same qualitative trend 
for both wave numbers, i.e., a broadening of the spectra with increasing temperature, and a shift of the maximum 
towards higher frequencies ω for T = 20 K . In addition, there appears a small positive feature around ω = 0 
for T = 3 K , which is particularly pronounced for q = 1.62 Å−1 . We note that such a diffusive feature can be a 
consequence of the attractive minimum in the pair  interaction60–64. On the other hand, the ω = 0 peak could 
easily be an artifact due to the ill-posed nature of the reconstruction of S(q,ω) based on F(q, τ) . A more detailed 
investigation of this effect must include the combination of different methods and will be pursued in a future 
publication.

Discussion
We have presented an extensive set of new PIMC results for normal liquid 3He . Specifically, we have carried out 
direct PIMC calculations over the temperature range from 2 to 20 K, which are computationally challenging 
because of the fermion sign problem, but are numerically exact within the given error bars. We computed rigor-
ous theoretical results for different static properties of bulk 3He like the static structure factor S(q) , momentum 
distribution function n(q) , and static density response χ(q) . We found the correlation-induced peak of χ(q) to 
strongly depend on T, whereas S(q) remains almost unchanged over the 2–5 K temperature interval. The absence 
of nodal restrictions in our simulations allowed us unambiguously quantify the impact of Fermi statistics, which 
is pronounced for n(q) for small momenta, but practically negligible for S(q) and χ(q) at these temperature 
conditions.

Since quantum statistical effects change the latter quantities, we carried out PIMC simulations of 3He using 
Boltzmann statistics at a lower temperature of 1.2 K because direct fermionic PIMC simulations would have 
been unfeasible due to the sign problem. This has allowed us to compare the dynamic structure factor S(q,ω) 
to experimental measurements. The two sets of results were found to be in excellent agreement when the peak 
position ωmax(q) and the actual shape of the entire spectra are compared. We have found the familiar pho-
non–maxon–roton dispersion relation that is well known for 4He . This substantiates the previous findings for 
3He in two  dimensions33,34, where it has been reported that the shape of the dispersion is predominantly shaped 
by the interaction and not by quantum statistical effects. In addition, we analyzed the temperature dependence 
of S(q,ω) . Primarily the spectra broaden with increasing temperature and we have found a possible diffusive 
feature at T = 3 K that will be investigated in more detail in future works.

Overall, our new results considerably extend the current understanding of one of the most important and 
widely studied quantum systems in the literature, which is important in its own right. Our highly accurate 
results for different properties constitute a benchmark for other methods such as the fixed-node approxima-
tion, and may guide the development of new, computationally less expensive approximations. In addition, we 
have predicted the behaviour of 3He at a number of temperatures, which can be checked in future experimental 
investigations. Possible extensions of our work might include simulations of quantum dipole systems and other 
types of fermionic ultracold atoms. This might provide additional insights into important physical effects like 
the formation of composite bosons in bilayer systems and indirect  excitons42, and help to explicitly resolve the 
impact of quantum statistics on collective  excitations39,65.

Figure 4.  (a) Heatmap of reconstructed dispersion S(q,ω) of 3He at T = 1.2 K . Good agreement is found with 
the experimental data from Ref.24 (blue circles). Because of the higher mass, the roton minimum is shifted to 
higher q for 4He as the theoretical results from Ref.22 show (black diamonds). (b, c) Dynamic structure factor 
S(q,ω) for q = 1.62 Å−1 and q = 2.01 Å−1, solid purple: reconstructed PIMC data; yellow triangles: experimental 
data by Sköld et al.24.
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In principle, it is possible to study 3He based on direct PIMC simulations in the grand-canonical  ensemble66, 
which would give access to additional physical properties such as the compressibility and the single-particle 
spectrum A(q,ω)65.

Finally, we note that the direct PIMC simulation of 3He along the superfluid phase  transition32,67 is presently 
not feasible because the fermion sign problem is too severe at the required temperatures but simulations of this 
transition remain an import open question for future investigations.

Methods
Verification of our PIMC implementation of helium. Accurate data for bulk 3He at the conditions 
that we consider in the present work are sparse in the literature, which makes the verification of our numerical 
implementation with experimental data difficult. On the other hand, a gamut of theoretical works have been 
devoted to the bosonic simulation of 4He , which is typically simulated with the same pair potential. In addition, 
direct PIMC simulations of fermions may actually be derived from a reference systems of bosons. The (exact) 
information about the fermionic system is then extracted by taking into account the cancellation of positive and 
negative contributions due to the fermionic antisymmetry; see Refs.29,68 for details. Therefore, if we are able to 
obtain the correct permutation structure for 4He , we can verify the predictions of our direct PIMC simulations 
of fermionic 3He.

Therefore we have simulated N = 64 spin-polarized 4He atoms at T = 2 K. The probability to find an indi-
vidual particle involved in a permutation cycle of length l, P(l)l, is plotted in Fig. 5. The red circles show results 
from  Boninsegni69 and the blue diamonds display the present work. First and foremost, we find excellent agree-
ment between the two independent data sets over several orders of magnitude in the probability. In addition, 
we note that the curve from the present work is smoother compared to Ref.69 and includes results for longer 
permutation cycles, probably because we invested more computer time.

Finite-size effects. The direct PIMC simulations that we employ throughout this work are capable to give 
exact expectation values for a given combination of temperature T, volume V, and particle number N. On the 
other hand, we are interested in the properties of bulk 3He in the thermodynamic limit ( N → ∞ where the 
number density n = N/V  is being kept constant.) While the comparison of PIMC results to experimental meas-
urements for both S(q) and S(q,ω) presented in the main text is convincing, we feel that an additional analysis of 
finite-size effects in our PIMC data is pertinent. To this end, we show PIMC results for different properties and 
different numbers of particles in Fig. 6. The top left panel shows results for the static density response function 
χ(q) . The red circles, black stars, and green crosses have been obtained for N = 38 , N = 20 , and N = 14 3He 
atoms, respectively. For completeness, we note that we take into account the pair interaction between atoms both 
within the original simulation cell, and the NI = 33 − 1 nearest images, which has a noticeable impact for the 
simulations with N = 14 particles despite the relatively short-range nature of the employed Aziz  potential43. Still 
all three datasets are in remarkably good agreement. No dependence on the system size can be resolved both for 
small and large q, and the small deviations between the black stars and green crosses around the peak in χ(q) 
do not exceed a few per cent.

The top right panel of Fig. 6 shows the corresponding results for the static structure factor S(q) . The finite-size 
effects are found to be even smaller. Finally, the bottom row shows results for the momentum distribution func-
tion n(q) both on a linear (left) and logarithmic (right) scale. The linear scale allows us to analyse the behaviour 
at small momenta, whereas the logarithmic plot is well suited to resolve effects at large q. Yet, no significant 
deviations can be resolved between the three datasets in either panel.

Figure 5.  Comparing permutation-cycle probabilities for 4He at T = 2 K to previous results by  Boninsegni69.
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Convergence with the number of imaginary-time slices. An additional practical issue in PIMC sim-
ulations of either fermions, bosons, or boltzmannons is the convergence with the number of steps in imaginary 
time, P. In real space, the matrix elements of the density operator, ρ̂ = e−βĤ , are given by,

where R = (r1, . . . , rN )
T contains the coordinates of all N 3He atoms. These matrix elements are not exactly 

known because the kinetic ( K̂  ) and potential ( ̂V  ) contributions to the full Hamiltonian Ĥ do not commute, 
e−βĤ �= e−βK̂ e−βV̂ . As a practical workaround, we employ the exact semi-group property of the density operator

where ǫ = β/P is the time step of the path integral. Ultimately, Eq. (5) implies that we have to evaluate P density 
matrices of a temperature that is P times higher than the original one. This allows one to introduce a suitable 
high-temperature approximation, which becomes exact in the limit of large P.

In practice, we employ the primitive approximation

and the associated factorization error decays as P−2 ; see Refs.70,71 for more detailed information on this point.
As a practical example for the convergence with time step number P, we show results for the static struc-

ture factor S(q) for N = 14 and T = 2.5 K in Fig. 7. This observable constitutes a representative example, as it 
is directly connected to the dynamic structure factor S(q,ω) [cf. Eq. (10)], to the imaginary-time correlation 
function F(q, τ) by the relation S(q) = F(q, 0) , and indirectly also to the static density response function χ(q) , 
cf. Eq. (1). Evidently, a pronounced factorization error can only be resolved for P = 50 , while the results that were 
obtained with the higher P values are in very good agreement. P = 50 is clearly not sufficient for the description 

(4)ρ(R,R′,β) =
〈

R|e−βĤ |R′
〉

,

(5)e−βĤ =

P−1
∏

α=0

e−ǫĤ ,

(6)e−ǫĤ ≈ e−ǫK̂ e−ǫV̂ ,

Figure 6.  Finite-size effects in PIMC simulations of 3He at T = 2 K for the static density response function 
χ(q) (top left), the static structure factor S(q) (top right), and the momentum distribution function n(q) (bottom 
row).
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of a strongly correlated quantum liquid. We used P = 1000 throughout this work. Therefore, any residual fac-
torization error are much smaller than the Monte Carlo error bars, and our results are thus well converged.

Analytic continuation. The goal for the analytic  continuation19 is to find a suitable trial solution for the 
dynamic structure factor Strial(q,ω) that, when it is being inserted into Eq. (3) of the main text, reproduces the 
PIMC data for the imaginary-time correlation function F(q, τ) for all τ ∈ [0,β] . Yet, these constraints are typi-
cally not sufficient to fully constrain the space of possible solutions of S(q,ω) , and additional information are 
 needed39,72. For this purpose, we consider the frequency moments of the dynamic structure factor, which are 
defined as

Two moments are known from the corresponding sum rules: (1) the first moment is determined by the well-
known f-sum  rule54

and the inverse moment is given  by73

In addition, the zero-moment is automatically satisfied, since it holds

The final exact property of S(q,ω) that we consider in this work is the detailed balance relation between 
positive and negative  frequencies74,

which is automatically fulfilled by our trial solutions Strial(q,ω).
Many practical approaches have been suggested to accomplish goals of the analytic continuation. One family 

of methods is based on Bayes’ theorem, and is capable of producing smooth solutions without any unphysical 
sawtooth  instabilities19. Yet, such maximum entropy methods21 might introduce an artificial a-priori bias into 
the solutions, although notable progress is continually being made in this  area20,75. A second paradigm for the 
analytic continuation is based on the averaging over NS ∼ 103–104 noisy, independent trial solutions to compose 
a smooth  result22,58,65. While computationally more demanding, this method has the advantage that unexpected 
physical features of S(q,ω) might still be recovered because no explicit bias is introduced into the solution.

(7)
〈

ων
〉

=

∫ ∞

−∞

dω S(q,ω)ων .

(8)
〈

ω1
〉

=
�q2

2m
,

(9)
〈

ω−1
〉

= −
χ(q)

2n
.

(10)F(q, 0) = S(q) =

∫ ∞

−∞

dω S(q,ω) =
〈

ω0
〉

.

(11)S(q,−ω) = e−βωS(q,ω),

Figure 7.  Convergence with the number of imaginary-time slices P. Shown are PIMC data for the static 
structure factor S(q) for N = 14 3He atoms at T = 2.5 K.
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In the present work, we pursue the latter strategy and employ a genetic algorithm that maximizes the fitness 
function,

We note that F(q, τ) is symmetric around β/2 so that we only have to consider the interval τ ∈ [0,β/2] . 
Furthermore, the weights aχ and a1 control the respective influence of the individual constraints and are cho-
sen empirically. We find that a reasonable choice is given by aχ = a1 = 1/2 , which means that the frequency 
moments are of the same importance as F(q, τ) . The f-sum rule, Eq. (8), is actually known exactly, and we 
empirically set �

〈

ω1
〉

=
〈

ω1
〉

× 10−3.
A practical example for the analytical continuation is shown in the left panel of Fig. 8 for the case considered 

in Fig. 4b of the main text. The red (blue) curve has been composed by averaging over Ns ∼ 102 ( Ns ∼ 104 ) indi-
vidual noisy trial solutions Strial,i(q,ω) . A frequency grid with δω ≈ 0.6 K and Nω = 400 points was employed.

To conclude this discussion, we consider the main input of the analytic continuation method: the τ-depend-
ence of the imaginary-time correlation function F(q, τ) for a specific wave number. This is shown for the present 
example in the right panel of Fig. 8, with the black stars and red line corresponding to the original PIMC results 
and the reconstructed solution, respectively. Evidently, the latter curve perfectly agrees with the PIMC data within 
the given Monte Carlo error bars that are on the order of �F ∼ 10−3.

All S(q,ω) results in this work have been obtained with the procedure that we just described but a note of 
caution is warranted. Despite being defined as an average value, it is not straightforward to estimate the true 
uncertainty in the final result for the reconstructed solution for S(q,ω) . Rather, the space of possible trial solu-
tions remains a property of a specific optimization method (genetic algorithm, simulated annealing, etc.) and 
might, or might not, include the true, physical curve with finite probability. Therefore, we abstain from using the 
variance of the trial solutions as an error bar, as they might underestimate the true uncertainties.
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