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A B S T R A C T

Reconstruction of the exit wave function is an important route to interpreting high-resolution transmission
electron microscopy (HRTEM) images. Here we demonstrate that convolutional neural networks can be used to
reconstruct the exit wave from a short focal series of HRTEM images, with a fidelity comparable to conventional
exit wave reconstruction. We use a fully convolutional neural network based on the U-Net architecture, and
demonstrate that we can train it on simulated exit waves and simulated HRTEM images of graphene-supported
molybdenum disulphide (an industrial desulfurization catalyst). We then apply the trained network to analyse
experimentally obtained images from similar samples, and obtain exit waves that clearly show the atomically
resolved structure of both the MoS2 nanoparticles and the graphene support. We also show that it is possible to
successfully train the neural networks to reconstruct exit waves for 3400 different two-dimensional materials
taken from the Computational 2D Materials Database of known and proposed two-dimensional materials.
1. Introduction

Machine learning has become a powerful tool for analysing images.
In fact, machine learning is a nascent tool in electron microscopy that
is envisioned to have a large potential for quantitative image analysis
[1,2]. In electron microscopy, applications of machine learning have
up to now included segmentation of medical images [3], grain and
phase identification [4–6], noise filtering [7,8] and in-plane location of
atoms [9–11]. Moreover, Ede et al. showed recently that the imaginary
part of the exit wave function can be reconstructed from the real part
using a convolutional neural network [12] and Meyer showed that off-
axis holograms, where phase information is recorded directly into the
image, can be reconstructed using neural networks [13]. In this work
we suggest that neural networks could potentially solve the classical
phase problem and thus retrieve the entire electron wave function
exiting the specimen in a transmission electron microscopy experiment.

Aberration-corrected high-resolution transmission electron micro-
scopy (HRTEM) is one of the important experimental techniques to
study the structure of materials at the atomic scale. The maximal
amount of information about the sample is present in the exit wave,

∗ Corresponding author.
E-mail address: schiotz@fysik.dtu.dk (J. Schiøtz).

i.e. the wavefunction of the electrons exiting the sample. As the image
is formed, some of this information is blurred or lost, both due to
aberration in the lenses, and because the camera detects the intensity
of the wave, not its phase.

It is well established that the full exit wave can be reconstructed
from a focal series of images [14–17]. A series of typically around 20–
50 images with varying defocus is used to numerically reconstruct the
most likely wave function of the electron beam as it exits the sample.
This can then be used to further reconstruct information about the
chemical composition and 3D structure of the sample [18–20]. For
beam-sensitive samples [21], exit wave reconstruction has the advan-
tage of being averaging in nature such that information from many
images with very low signal-to-noise ratio is combined in a single exit
wave image of superior signal-to-noise ratio [20]. Several numerical
algorithms are available for reconstructing the exit wave [15–17].

Here we examine a Convolutional Neural Network (CNN) as an
alternative way to reconstruct the exit wave. This reconstruction is
possible from a low number of HRTEM images, and with the advan-
tage that the detailed knowledge of the aberration parameters of the
vailable online 4 November 2022
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microscope is not needed. We envision that this can be developed
into a tool for on-the-fly exit wave reconstruction while taking data
on the microscope, perhaps supplemented with more traditional exit
wave reconstruction as post processing. In the present case, the images
were convoluted with the effects of defocus, first order astigmatism,
coma, and blurring including focal spread. In this case a focal series of
two to three simulated HRTEM images were sufficient to reconstruct
the exit wave with sufficient accuracy in order to extract quantitative
information about the sample. In principle, it should be straightforward
to extend the present method to situations with low signal-to-noise ratio
and more unknown aberrations, in which case it is likely that a larger
focal series will be needed.

Recently, atomically thin two-dimensional (2D) materials have been
an active topic of research, with applications ranging from electronics
to energy storage and catalysis [22,23]. For example, molybdenum
disulphide (MoS2) is the preferred catalyst for removing sulphur from
rude oil destillates, and is one of the reasons that acid rain is no longer
ne of the most pressing environmental problems [24]. In this paper,
e focus on exit wave reconstruction for the rapidly growing class of
D materials, although the methods should be generally applicable.
e show that neural networks can reconstruct the exit wave both
hen trained to a single material, and to a database of thousands of
roposed 2D materials. The reconstruction is of sufficient quality to
ermit analysis of the image peaks associated with the atomic columns
.g. by using Argand plots to identify the type and number of elements
n the material [19].

We also show that it is possible to train the neural network purely on
imulated data, and apply it successfully to experimental images of non-
rivial complexity, in this case a model catalyst based on molybdenum
isulphide.

. Methods

The neural network architecture is a Unet [25] / FusionNet [3]
rchitecture, very close to the one used by Madsen et al. [9], with the
ain modification that concatenation is used instead of elementwise

ddition for the skip connections. A linear activation function is ap-
lied in the output layer, as exit wave reconstruction is a regression
roblem rather than a classification/segmentation problem. Details of
he architecture can be found in the Supplementary Online Information
SOI Sec. S1). The neural network is implemented and trained using
he Keras interface [26] to Tensorflow version 2.5 [27]. We train using
imulated images only. We computer-generate a training set and a
orresponding validation set of atomic structures, using the Atomic
imulation Environment (ASE) [28].

Three data sets of increasing complexity were created. The first con-
ists of nanoparticles (nanoflakes) of molybdenum disulphide (MoS2).

In this data set we ignore that the nanoparticles will typically be
supported on another material in the microscope. Nevertheless this data
set will be relevant for e.g. edges of MoS2 films on a TEM grid, where
no support is visible in the region of interest.

The second dataset is MoS2 supported on a graphene substrate. A
anoflake of graphene and one of MoS2 are generated in the computer,
nd are placed with a random distance between 3.3 and 7.0 Å. One
uarter of the cases are placed with the lattice vectors of the two layers
n the same directions, another quarter with a rotation of 15◦, one

quarter with a rotation of 30◦, and the rest with a random rotation.
n both of these datasets 1000 samples are created for training, and
000 for validation.

The third dataset consists of nanoflakes of materials from the Com-
utational 2D-materials Database (C2DB) [29] in the latest version
ated 2021/06/24. This version of the database contains 4056 known
r proposed 2D materials, but a significant number of these have
ery complex structures where the quasi-2D material contains a large
umber of atomic layers. We filtered the database so we only keep
tructures with at most eight atoms in the unit cell. That left us with
2

i

3393 materials. Two samples are created of each material. Materials are
randomly assigned to the training or validation set with a probability
of 2:1, but in such a way that all materials containing the same set of
elements are assigned to the same set.

For all three datasets, vacancies and holes are introduced in the
systems. A vacancy is introduced by selecting a random atom and
removing it; holes are made by selecting a random atom and then
removing the entire atomic column. In the case of MoS2, if a sulphur
atom is selected then a vacancy would be removing just that atom,
whereas creating a hole would be removing an S2 dimer. If a molyb-
denum atom is selected there will be no difference. We select 5% of
the atoms for vacancy creation, then 5% for hole creation. All atomic
positions are then perturbed by adding a Gaussian with mean of 0 and
spread of 0.01 Å to all atomic positions. Finally, all samples are tilted
by a random angle up to 10◦ in a random direction.

Exit waves are then calculated using the multislice algorithm [30,
31], using the abTEM software [32]. The lateral sampling of the wave
function is 0.05 Å, and the slice thickness is 0.2 Å, see the SOI Sec. S2.
As a simple model of atomic vibrations, the potential of the atoms is
smeared by a Gaussian with
⟨

𝑢2
⟩

= 3ℏ2
2 𝑚𝑘𝐵𝜃𝐷

⋅
(

1
4
+ 𝑇

𝜃𝐷

)

(1)

where 𝑚 is the atomic mass and 𝜃 is the Debye temperature [33,
upplementary online information]. As the same value must be used
or all atoms, we use the atomic mass of Sulphur. With 𝜃𝐷 = 580

for bulk MoS2 [33], this gives a value of
⟨

𝑢2
⟩

= 0.0030Å2 at 300
. Our own ab initio molecular dynamics simulations of MoS2 gives
somewhat larger value, which is expected as molecular dynamics

gnores the quantization of the phonons which is important below the
ebye temperature. As an approximation, we also use this value of
𝑢2
⟩

for the materials in the C2DB. If the reconstructed exit wave is
o be used to gain information about the vibrational amplitudes of
ifferent kinds of atoms, as is done in Ref. [20], the phonons need to be
odelled with a more sophisticated method, such as the frozen phonon
ethod, at a significant cost in computational burden (up to two orders

f magnitude).
After generating the exit waves, the abTEM software is used to

enerate typically three images of the sample by applying a Contrast
ransfer Function (CTF), Poisson noise in the detector, and a Modu-

ation Transfer Function (MTF) introducing correlations in the noise.
his is described in detail elsewhere [9]. The parameters of the CTF
nd the MTF (collectively referred to as the ‘‘microscope parameters’’)
re drawn from distributions given in Table 1. The three images have
he same microscopy parameters except that the defocus is changed by
±0.1 nm between the images. If a different number of images is used,

he total variation in defocus remains at 10 nm. The minimal value of
he focal spread is sufficient to ensure that the CTF has gone to zero well
elow the Nyquist frequency corresponding to the spatial resolution,
hus avoiding aliasing effects in the image simulations.

The expensive part of the image simulation is the multislice al-
orithm calculating the interaction between the electron beam and
he sample. The action of the CTF and the MTF are computationally
heap, and for that reason it is convenient to generate multiple images
f the same sample with varying microscope parameters. Depending
n the computational setup, it may be most convenient to generate
mages on-the-fly during training, such that the network sees different
mages of the same samples in each training epoch, or it is possible to
re-generate and store the images. In this work we pre-generated ten
pochs of images for the training set, and one for the validation set. We
hen cycled through the pre-generated epochs for the actual training,
hich were up to 200 epochs (leading to each image being reused 20

imes).
The neural network is trained using the mean square error (MSE) as

he loss function, with the RMSprop training algorithm as implemented
−4
n Keras, and a learning rate of 5 × 10 . We also tried using the
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Fig. 1. Reconstruction of the exit wave of a MoS2 nanoparticle by a network trained on unsupported MoS2 nanoparticles. The first two columns show the structure and the
three simulated HRTEM images. The third column shows the real and imaginary part of the actual wave function (the ground truth). The fourth column shows the exit wave
reconstructed by the neural network, and the last column shows the difference. The inset highlights the point with the largest deviation, an atom misplaced by 7 pm (0.6 pixels).
The Root Mean Square Error (RMSE) is 0.0062. The colourmap indicates the scale used for plotting the exit wave. The same scale is used in all the following figures.
Table 1
Microscope parameters. For each image series, a set of microscope pa-
rameters are drawn within the limits given here, except the acceleration
voltage which is kept constant. All distributions are uniform, except for
the dose which is exponential. The defocus of the first image is picked
so the defocus of all images are within the bound specified.
Parameter Lower bound Upper bound

Acceleration voltage 50 keV
Defocus (𝛥𝑓 ) −150 Å 150 Å
Spherical aberration (𝐶𝑠) −15 μm 15 μm
2-fold order astigmatism

Amplitude (𝐶12) 0 25 Å
Angle 0 2𝜋

Coma
Amplitude (𝐶21) 0 600 Å
Angle 0 2𝜋

Focal spread 5 Å 20 Å
Blur 0.5 Å 1.5 Å
Electron dose 102.5 Å−2 105.0 Å−2

Resolution 0.10 Å 0.11 Å
MTF 𝑐1 −0.6 0.2
MTF 𝑐2 0.1 0.2
MTF 𝑐3 0.6 1.8

Adam algorithm [34], and saw similar but slightly less stable results,
whereas Adam with the AMSgrad modification gave almost identical
results to RMSprop. Increasing the learning rate above 1 × 10−3 would
make the training unstable, and decreasing it below 5 × 10−4 was
detrimental to the learning. Training curves showing the loss function
of the training and validation set are shown in the SOI (Fig. S2). In
spite of the reuse of pre-generated images, the training curves do not
show signs of overfitting. We therefore did not use regularization in
the neural network. Training using mean absolute error (MAE) as loss
function lead to doubling the error in placement of the atomic columns
compared to MSE, and was therefore not used.

The sharp potential of the nucleus causes some amount of annular
structures to appear in the exit wave, in spite of the application of
Debye–Waller smearing. This fine structure contain little or no infor-
mation of value when analysing the exit waves. However, the neural
network will attempt to recover this structure, leading to an overall
small degradation of its ability to recover more important information
about the main peaks associated with the atomic columns. For simplic-
ity, we have filtered the exit waves prior to training by folding them
with a Gaussian with a spread of 15 pm, see SOI Fig. S4. This leads to
a significant improvement in the network performance, in particular
when it comes to extracting quantitative information from the peak
values.
3

3. Results and discussion

Fig. 1 shows the simplest situation, where the network is trained
and tested with unsupported MoS2 nanoparticles. The figure shows the
real and imaginary parts of the exit wave used to simulate the images
(the ‘‘ground truth’’), and the exit wave reconstructed by the neural
network (the ‘‘prediction’’). For thin samples, the interaction between
the electron wave and the sample mainly results in a phase shift of the
wave [20]. This is also the case for the data in the figure, where the
main part of the signal is in the imaginary part.

The difference plot in Fig. 1 shows that the network clearly re-
constructs the imaginary part of the exit wave both qualitatively and
quantitatively. We see that all peaks are reconstructed correctly, and
that the neural network both reconstructs the periodic lattice and the
deviations from periodicity such as vacancies, including single sulphur
vacancies where a single sulphur atom leaves a weaker peak than the
usual two atoms. The system shown in Fig. 1 was chosen as the median
of the validation set, half the systems in the validation set perform
worse, and half perform better. In the SOI Section S5 we show some of
the worst systems in the validation set, even the five percentile sample
is reconstructed quite well.

Fig. 2 shows the more complex situation, where the network is
trained on graphene-supported MoS2 nanoparticles. The way the train-
ing set is constructed does not guarantee that the full MoS2 nanoparticle
is overlapping with the support, so in this case the network needs to
learn to recognize both supported and unsupported MoS2.

The network is able to reconstruct both the part of the wave function
coming from the support and from the nanoparticle, in spite of the
signal from the support being much weaker than from the nanoparticle.
The network is even able to correctly find the carbon vacancies that
have been introduced in the support. It should be noted that if the
network is trained for a shorter time (50 epochs instead of 200), it
loses its ability to find the carbon atoms below the nanoparticle. The
largest deviation in the reconstructed exit wave comes from a slight
misplacement of the atoms in the MoS2 layer, the maximal error in the
placement of an atom is 9.7 pm, corresponding to a single pixel. This
system is again chosen as the median of the validation set.

Finally, the method was tested on the C2DB database of 3393
proposed two-dimensional materials [29]. Again we show the median
system, a nanoparticle of CoCl, (Fig. 3). We see how all atoms are
placed correctly, but the detailed shape of the peaks in the imaginary
part of the wave function is not well reproduced, the network predicts
somewhat smoother peaks. In addition, the network does not always
identify positions where single atoms are missing, leaving only one
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Fig. 2. Reconstruction of the exit wave of a MoS2 nanoparticle supported on graphene, by a network trained on graphene-supported MoS2 nanoparticles. The panels are the same
as in Fig. 1. It is seen that the network locates the atoms both in the MoS2 nanoparticle, and in the substrate. The worst spot in the prediction where an atom is misplaced by a
single pixel. It is worth noticing that the graphene support is also reconstructed correctly, including the vacancies in the graphene. The RMSE is 0.0122 and the colorbar is the
same as in Fig. 1.
Fig. 3. Reconstruction of the exit wave of a CoCl nanoparticle by a network trained on the C2DB (see text). The panels are the same as in Fig. 1. The network correctly determines
the positions of all the atoms (the maximal deviation is 8 pm or 0.77 pixel), but does not correctly reproduce the sharpness of the peaks in the wave function. The RMSE is
0.0263.
atom in the atomic column. Each position in the apparent hexagonal
lattice contain both a Co and a Cl atom, alternately oriented with the
Co or Cl on top, and staggered in the 𝑧 direction.

In order to obtain a more quantitative measure of the performance
of the networks, we have created histograms of the root-mean-square
error (RMSE) of all the images in the validation sets, see Fig. 4. In
general, the networks are better at reproducing the strong signal in the
imaginary part of the exit wave than the weaker real part. It is seen that
the performance of the network decreases somewhat as the complexity
of the data set is increased, going from unsupported MoS2 to supported
MoS2 to the C2DB dataset. It is not surprising that the network can be
trained for better performance on the simpler datasets. As a ‘‘baseline’’,
we also show the histogram produced from one of the datasets where
the predictions are compared with randomly chosen other exit waves
in the dataset (the Y-scramble method) rather than with the correct exit
wave. This shows the performance of a hypothetical network learning
the overall properties of exit waves but learning nothing about the
specific systems, i.e. it acts as a ‘‘null hypothesis’’.

It is also seen that the relative error is significantly larger for the
real part of the exit wave. This is because its magnitude is 3–4 times
smaller than the imaginary part (this can e.g. be seen by the position of
the peaks in the Argand plots in Fig. 5). It is only in the simplest case
(unsupported MoS ) that the network performs well on the real part.
4

2

We also test how networks trained on the C2DB dataset performs
on the supported MoS2 and vice versa. Unsurprisingly, the network
trained on supported MoS2 performs poorly on the C2DB dataset, as
the latter contains a far richer variety of structures. On the other hand,
the network trained on the C2DB generates a very broad distribution
of results when applied to the database of supported MoS2 structures
(the red curve in Fig. 4). Our interpretation is that this is because the
network correctly analyses the parts of the system where the MoS2
and graphene only overlap a little, but performs badly where they
overlap. While these systems are not inherently more complicated than
in the C2DB, they differ in a fundamental way, as there are two
different lattices in the system (the lattice of graphene and the one
of MoS2), whereas all systems in the C2DB training set only contain a
single (but often more complicated) crystal lattice. This illustrates the
importance of training the network on systems that are similar to the
final application.

The purpose of an exit wave reconstruction is usually to extract
quantitative information about the atomic columns. This is often done
in form of an Argand plot, where the peak values of the wave function
at the locations of the atoms are plotted in the complex plane [19].
It is therefore not enough that an exit wave reconstructed by neural
networks visually and statistically resemble the actual exit wave, it
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Fig. 4. Histograms of the root-mean-square error of the images in the validation sets for the various networks, showing their relative performance. Blue is the network trained and
tested on unsupported MoS2, orange is graphene supported MoS2, and green is the C2DB. It is seen that the performance of the network decreases somewhat as the complexity
of the data set is increased. The brown line is a baseline, this is the performance obtained if the network does not at all recognize the structure, obtained using the Y-scramble
method (see text). The red curve shows the supported MoS2 validation set with the network trained on the more diverse C2DB. As the samples contain two separate lattices, it is
outside the training set of the C2DB. Validating the C2DB test set with the network trained on MoS2 also gives bad results (purple curve), as the C2DB contains structures too far
from what is observed in MoS2.
Fig. 5. Argand plots of the complex value of the exit wave function at the local maxima of the change in wave function (|
|

𝛹exit − 1|
|

). Top row: unsupported MoS2 (the same system
as Fig. 1). Bottom row: supported MoS2 (same as Fig. 2). a+d: The imaginary part of the reconstructed wave function. The peaks are marked with blue plusses or green crosses,
depending on whether they correspond to a Mo or S atomic column position. b+e: The Argand plots of the reconstructed wave function. The separate points in the lower part of
the plot corresponds to columns with a single S atom instead of two. c+f: The similar Argand plots made from the ground truth exit wave function.
should also permit analysis in an Argand plot. This is shown in Fig. 5,
where we show Argand plots of both the unsupported and supported
nanoparticles from Figs. 1 and 2. For the unsupported nanoparticle, the
Argand plot is just able to distinguish between a single Mo atom (atomic
number 𝑍 = 42) and a sulphur dimer (sum of atomic numbers ∑

𝑍 =
32). The sulphur vacancies, where there is only a single sulphur atom
in the atomic column (𝑍 = 16) are clearly separated from the other
types. It is, however, not possible to determine if the missing atom was
above or below the plane of the Mo atoms, although that information
was present in the original wave function (shown as ‘‘ground truth’’,
where we see that the spots corresponding to single S atoms is split
into two nearby spots, as would be expected from atoms with different
𝑧 coordinate, see Chen et al. [19]).
5

For the case of supported MoS2 [Fig. 5(d–f)], the picture is less clear.
The Argand plot still clearly separates the sulphur vacancies from the
other atomic columns, but there is a larger spread on the column values,
and no longer a clear separation between columns containing two S
atoms or a single Mo atom. However, if the same analysis is done on
the ground truth exit waves (Fig. 5(f)), the situation is the same. This
is most likely due to interference from the substrate.

In the Argand plot, the position along the imaginary axis is largely
indicative of the total atomic number of the atomic column in the
weak phase limit [20]. The positions of the Argand points are also
affected by the 𝑧-height of the column relative to the plane of the
exit wave. This is mainly due to the propagation in free space that
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Fig. 6. Test of how the number of input images affects the performance. A single input image (blue curve) clearly does not give a good reconstruction of the exit wave. Already
with two images (orange curve), good performance is obtained, at least for the imaginary part. Three images (green) as used in the rest of this work gives an improvement,
whereas four images (red) gives only a marginal further improvement.
Fig. 7. Reconstruction of the exit wave of a AgCuTe2 nanoparticle by a network trained on the C2DB. To save space we do not show the real part of the exit wave, and only the
first and the last of the three images. The network does not recognize that the copper atoms are systematically slightly offset from the high-symmetry positions.
further change phase linearly with the atomic column height 𝑧 [35].
This effect is clearly not reproduced by the neural network, as it cannot
distinguish between single sulphur vacancies on the two sides of the
nanoparticle [ Fig. 5(b+c)]. It is possible that a network could be
trained to distinguish these features by including training data where
they are more prominent, i.e. a larger concentration of single sulphur
vacancies and perhaps samples with higher tilt angles, producing height
differences.

As a significant amount of information about the exit wave is
encoded in how the image changes with defocus, it is our working
hypothesis that a number of images are necessary for a neural network
to be able to reconstruct the exit wave. This is verified in Fig. 6, show-
ing the performance of networks trained on the same C2DB training
sets but with a different number of input images. It is seen that some
information about the exit wave can be gained from even a single
image, but a dramatic improvement is seen going to two input images.
A small further improvement is seen when increasing the number of
images to three or four, and we decided to use three images in the rest
of this work. In the simulations with two, three or four images, the
total range of defocus from the first to the last image were in each case
10 nm.
6

4. When the network fails

No neural network is perfect, and it is important to be aware of the
kind of failures that can occur when analysing an image. We illustrate
this with two kinds of errors observed in the C2DB database.

The first case is silver copper telluride (AgCuTe2), shown in Fig. 7.
On one hand, the method reliably finds all the vacancies in the struc-
ture, a task that would be very difficult by visual inspection of the
three images. On the other hand, the network fails to discover a small
spontaneous breaking of the symmetry in the structure: the Cu atoms
are slightly displaced compared to the rectangular lattice formed by the
Ag and Te atoms. This is a highly unusual configuration, and the neural
network interprets it as the far more common symmetric configuration.

In the second case, the network is locally inserting extra atoms into
the structure, creating unphysical defects, see Fig. 8. This kind of errors
should be relatively easy to spot for the scientist.

The cases in Figs. 7 and 8 were chosen manually. In the SOI, we
give examples of some of the worst and best results of the networks,
selected solely from the RMSE of the prediction.

As the examples here show, it is difficult to train a single network
to 3400 different materials, even if they are two-dimensional. The
networks trained to a single material (MoS2), with or without support,
do not exhibit these failure modes. It is therefore recommended to
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Fig. 8. An example of the neural network inserting extra atoms in several places in the system. The system is PtSeCl.
Fig. 9. Applying the neural network to three experimental images (top row) results in the exit wave function depicted in the bottom row. The network is clearly able to identify
atomic positions in the MoS2 nanoflake, but is not able to distinguish between Mo and S2. The network also provides a best guess on the positions of carbon atoms in the
support, but as the support is graphite and the network was trained on single graphene layers as support, that cannot be considered reliable. The defocus values are as reported
by MacTempas (overfocus), which uses the opposite sign convention from abTEM and this work. The colours are the same as in Fig. 1.
train networks to smaller classes of materials matching the kinds of
systems being studied experimentally. Furthermore, the kinds of errors
shown here can be detected by training two or more different networks
to similar data sets, and detecting when the networks differ in their
prediction.

5. Application to experimental data

We apply the method to experimental data, a focal series of a
MoS2 model catalyst recorded on the TEAM 0.5 transmission electron
microscope at 50 keV beam energy. The data analysed here is similar
to what was published recently by Chen et al. [20], and we refer to that
publications for details regarding the experimental setup.

In their publication, Chen et al. used focal series of 20–44 images
to reconstruct the wave functions. Here, we have selected three images
from their focal series for analysis by the neural network.
7

As the resolution of this image series is significantly lower than what
we have otherwise been using in this work (0.227 Å/pixel instead of
0.105 Å/pixel) we retrained a network for this resolution, based on the
same data set of supported MoS2, but resampled to resolutions in the
interval from 0.215 to 0.235 Å/pixel. The lower resolution had only
a small detrimental effect on the network performance when tested
on the validation set. We then selected three experimental images
with a difference in defocus of 50 Å, to match the defocus difference
between the three images used to train the network. The images and
the resulting exit wave are shown in Fig. 9. As can be seen, a clear exit
wave is reconstructed, showing the honeycomb lattice of the supported
MoS2 nanoflake, and of the supporting graphite lattice (few layers of
graphene). However, an Argand plot is not able to distinguish the
lattice points of the Mo and S sublattice (not shown), consistent with
what we saw in simulated images (see Fig. 5, panel e and f). In both
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cases, the reason is the same. Some peaks in the wave function of the
MoS2 coincide with peaks from the graphite, some do not, and that
leads to greater variation between peaks than the difference between a
Mo atom and two S atoms.

In their publication, Chen et al. [20] were able to distinguish
between peaks from Mo and S atomic columns, but their analysis
of the exit wave is also more elaborate. First, they Fourier filtered
their images, removing spatial frequencies coming from the graphene
support from the exit wave. Second, even if a clear distinction of the
peak imaginary values of the Mo and two S atomic columns were made,
it is worth noticing that the chemical interpretation of the relative
intensities calls for caution. As reported by Chen et al., the peak values
can be severely reduced and the imaginary parts be broadened across
a nanocrystal due to heterogeneous vibrations response of the sample
under illumination. Chen et al. offers a framework for an interpretation
of the exit wave function. This interpretation is independent of the way
in which the exit wave function is reconstructed, which is the prime
objective for the present analysis.

With even just a few images, the network can already capture the
main arrangement of the atomic columns based on an experimental
focal series of low-dose HRTEM images. Further inclusion of images
from the focal series might help in better account for the column
intensities and role of high order aberrations on the contrast blurring
in the experimental image. For a full qualitative analysis of the exper-
imental data, networks would have to be trained to specifically take
into account a more realistic model for the vibrations of the atoms, as
well as the more complicated multilayer support in the experimental
data. In addition, the network should be trained to handle carbon
contamination of the sample.

6. Comparison to traditional exit wave reconstruction

To be able to compare this method with more traditional methods
for exit wave reconstructions, we have applied the algorithm of Gerch-
berg and Saxton [36], as implemented in MacTempas version 2.4.50, to
three simulated image series of graphene supported MoS2. The systems
were selected according to how well they had been reconstructed by the
neural network, we chose the 25, the 50 and the 75 percentile images
(Figures S10, 2 and S11, respectively).

The generated data sets contain eleven images with a 1 nm change
in defocus between each of them, leading to a total defocus range of
10 nm, the same that was used for the neural networks. All eleven
images are used for the Gerchberg–Saxton(GS) exit wave reconstruc-
tion, whereas only three (the first, middle and last) were used for
reconstructions with the neural network.

The GS exit wave reconstruction algorithm was given the actual
values of the defocus, the spherical aberration (𝐶𝑠) and the focal
spread, instead of determining them through an optimization process
as is usually done. No coma or 2-fold astigmatism was assumed in
the reconstruction process, although both coma and astigmatism were
present in the images.

In contrast, the neural network does not require any of this infor-
mation, it is trained to reconstruct the wave function a few Ångström
below the lowest atom in the sample without further knowledge of
neither the exact values of the defocus, nor of the aberrations of the
microscope, except that they are within the intervals used to train the
neural network (Table 1).

A comparison between the neural network and the more traditional
exit wave reconstruction is shown in Fig. 10. At first sight, it looks like
the neural network strongly outperforms the traditional reconstruction,
the difference between the reconstructed image and the original ground
truth wave function is much smaller for the neural network recon-
struction. However, this is mainly because the longest wavelengths in
the exit wave have not been reconstructed by the Gerchberg–Saxton
algorithm, leading to the phase of the wave function locally being
averaged to zero. It is thus more fair to compare the reconstructed
8

Fig. 10. Comparing the neural network with a traditional algorithm for exit wave
reconstruction. (a) and (b) The first and last images in the image series. (c) The exit
wave reconstructed by the network. (d) The ground truth (correct) exit wave. (e) The
exit wave reconstructed by the Gerchberg–Saxton algorithm. The large deviations are
due to the long wavelength part of the exit wave not being reconstructed. (f) The
ground truth wave function with the longest wavelengths removed. The colourmap for
the exit wave is identical to the one in Fig. 1.

wave in Fig. 10(e) with a ground truth wave function where the longest
wavelengths have been filtered out (panel f), using a Gaussian filter
with a width of eight pixels (0.9 Å). In this case, visual inspection
indicate that the error of the two models are of similar magnitude,
although the neural network appears to be performing best. This is
confirmed by calculating the Root Mean Square Error for the CNN
reconstruction (i.e. for the difference between panel c and d) and for
the Gerchberg–Saxton(panels e and f). The RMSE is 0.013 and 0.061,
respectively.

The system shown in Fig. 10 is the 25-percentile system. Similar
plots for the 50 and the 75-percentile systems are shown in the SOI
(Figures S13 and S14). It should be noted that the Gerchberg–Saxton
reconstruction of the 50-percentile image is of significantly lower qual-
ity than the two others, although the neural network did not have
problems with this image series. This could be due to those images
having both 2-fold astigmatism and coma in the upper end of the range
shown in Table 1.

Inclusion of more aberrations than the ones in Table 1 might change
these conclusions, and might require using more images for the neural
network reconstruction to be reliable. It does, however, appear that a
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neural network is able to quickly give a reconstructed exit wave of a
quality at least comparable to a traditional exit wave reconstruction
from only a few images.

7. Conclusions

Convolutional Neural Networks are a promising alternative to tra-
ditional exit wave reconstruction, with the obvious advantage that
they only require a few images instead of a long image sequence,
that the data processing is fast enough to be done in real time at the
microscope, and that detailed knowledge of the aberration parameters
of the microscope is not needed. It does, however, require that the
networks are optimized for the systems at hand.

As expected, the method works best for simpler systems, illustrated
here with unsupported and graphene-supported MoS2 nanoparticles,

here the exit waves are reproduced with a fidelity that allows for
oth qualitative and quantitative analysis. For significantly more com-
licated structures, illustrated here with the relatively diverse C2DB
ataset, the network overall performs well, but fails to reconstruct some
etails in some of the more complex materials. Nevertheless, even in the
ore complicated materials, the majority of the structure including the
ositions of point defects is recovered by the neural network.

One could hope that the neural network had learned to generally in-
ert the Contrast Transfer Function of the microscope. That is, however,
ot the case. The network utilizes knowledge about ‘‘likely’’ structures
ased on the kind of structures it has seen in the training set, and must
e trained on structures similar to the ones it will be used to analyse. On
he other hand, this use of prior knowledge of the systems is probably
hat enables the network to reconstruct the exit wave based on only

hree input images, and without knowledge of the actual parameters
f the CTF. It should be pointed out that including further aberrations
han the ones used in this work (Table 1) may require using more than
hree images as input to the neural network.

In summary, we have demonstrated that neural networks can be
rained to reconstruct the exit wave function of a varied class of two-
imensional materials, with only three HRTEM images with different
efocus as input to the network. We can train and validate the network
n simulated data, and then apply it to analyse experimentally obtained
ata, demonstrated here with the case of MoS2 supported on graphene.
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