
UC Berkeley
UC Berkeley Previously Published Works

Title
VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems

Permalink
https://escholarship.org/uc/item/4ks729kf

Authors
Dreossi, Tommaso
Fremont, Daniel J
Ghosh, Shromona
et al.

Publication Date
2019

DOI
10.1007/978-3-030-25540-4_25
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ks729kf
https://escholarship.org/uc/item/4ks729kf#author
https://escholarship.org
http://www.cdlib.org/


C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

VERIFAI: A Toolkit for the Formal Design and Analysis
of Artificial Intelligence-Based Systems ?

Tommaso Dreossi ??, Daniel J. Fremont??, Shromona Ghosh??, Edward Kim,
Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia

University of California, Berkeley, USA

Abstract. We present VERIFAI, a software toolkit for the formal design and
analysis of systems that include artificial intelligence (AI) and machine learning
(ML) components. VERIFAI particularly addresses challenges with applying for-
mal methods to ML components such as perception systems based on deep neural
networks, as well as systems containing them, and to model and analyze system
behavior in the presence of environment uncertainty. We describe the initial ver-
sion of VERIFAI, which centers on simulation-based verification and synthesis,
guided by formal models and specifications. We give examples of several use
cases, including temporal-logic falsification, model-based systematic fuzz test-
ing, parameter synthesis, counterexample analysis, and data set augmentation.

Keywords: Formal Methods · Falsification · Simulation · Cyber-Physical Sys-
tems · Machine Learning · Artificial Intelligence · Autonomous Vehicles

1 Introduction

The increasing use of artificial intelligence (AI) and machine learning (ML) in systems,
including safety-critical systems, has brought with it a pressing need for formal meth-
ods and tools for their design and verification. However, AI/ML-based systems, such as
autonomous vehicles, have certain characteristics that make the application of formal
methods very challenging. We mention three key challenges here; see Seshia et al. [23]
for an in-depth discussion. First, several uses of AI/ML are for perception, the use of
computational systems to mimic human perceptual tasks such as object recognition and
classification, conversing in natural language, etc. For such perception components,
writing a formal specification is extremely difficult, if not impossible. Additionally, the
signals processed by such components can be very high-dimensional, such as streams
of images or LiDAR data. Second, machine learning being a dominant paradigm in
AI, formal tools must be compatible with the data-driven design flow for ML and also
be able to handle the complex, high-dimensional structures in ML components such as
deep neural networks. Third, the environments in which AI/ML-based systems oper-
ate can be very complex, with considerable uncertainty even about how many (which)

? This work was supported in part by NSF grants 1545126 (VeHICaL), 1646208, 1739816,
and 1837132, the DARPA BRASS program under agreement number FA8750-16-C0043, the
DARPA Assured Autonomy program, the iCyPhy center, and Berkeley Deep Drive. NVIDIA
Corporation donated the Titan Xp GPU used for this research.

?? These authors contributed equally to the paper.



2 Dreossi, Fremont, Ghosh, et al.

agents are in the environment (both human and robotic), let alone about their intentions
and behaviors. As an example, consider the difficulty in modeling urban traffic envi-
ronments in which an autonomous car must operate. Indeed, AI/ML is often introduced
into these systems precisely to deal with such complexity and uncertainty! From a for-
mal methods perspective, this makes it very hard to create realistic environment models
with respect to which one can perform verification or synthesis.

In this paper, we introduce the VERIFAI toolkit, our initial attempt to address the
three core challenges — perception, learning, and environments — that are outlined
above. VERIFAI takes the following approach:
• Perception: A perception component maps a concrete feature space (e.g. pixels) to an

output such as a classification, prediction, or state estimate. To deal with the lack of
specification for perception components, VERIFAI analyzes them in the context of a
closed-loop system using a system-level specification. Moreover, to scale to complex
high-dimensional feature spaces, VERIFAI operates on an abstract feature space (or
semantic feature space) [10] that describes semantic aspects of the environment being
perceived, not the raw features such as pixels.

• Learning: VERIFAI aims to not only analyze the behavior of ML components but
also use formal methods for their (re-)design. To this end, it provides features to
(i) design the data set for training and testing [9], (ii) analyze counterexamples to
gain insight into mistakes by the ML model, as well as (iii) synthesize parameters,
including hyper-parameters for training algorithms and ML model parameters.

• Environment Modeling: Since it can be difficult, if not impossible, to exhaustively
model the environments of AI-based systems, VERIFAI aims to provide ways to cap-
ture a designer’s assumptions about the environment, including distribution assump-
tions made by ML components, and to describe the abstract feature space in an intu-
itive, declarative manner. To this end, VERIFAI provides users with SCENIC [12,13],
a probabilistic programming language for modeling environments. SCENIC, com-
bined with a renderer or simulator for generating sensor data, can produce semantically-
consistent input for perception components.

VERIFAI is currently focused on AI-based cyber-physical systems (CPS), although
its basic ideas can also be applied to other AI-based systems. As a pragmatic choice,
we focus on simulation-based verification, where the simulator is treated as a black-
box, so as to be broadly applicable to the range of simulators used in industry.1 The
input to VERIFAI is a “closed-loop” CPS model, comprising a composition of the AI-
based CPS system under verification with an environment model, and a property on
the closed-loop model. The AI-based CPS typically comprises a perception component
(not necessarily based on ML), a planner/controller, and the plant (i.e., the system un-
der control). Given these, VERIFAI offers the following use cases: (1) temporal-logic
falsification; (2) model-based fuzz testing; (3) counterexample-guided data augmen-
tation; (4) counterexample (error table) analysis; (5) hyper-parameter synthesis, and
(6) model parameter synthesis. The novelty of VERIFAI is that it is the first tool to
offer this suite of use cases in an integrated fashion, unified by a common representa-

1 Our work is complementary to the work on industrial-grade simulators for AI/ML-based CPS.
In particular, VERIFAI enhances such simulators by providing formal methods for modeling
(via the SCENIC language), analysis (via temporal logic falsification), and parameter synthesis
(via property-directed hyper/model-parameter synthesis).



VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 3

tion of an abstract feature space, with an accompanying modeling language and search
algorithms over this feature space, all provided in a modular implementation. The al-
gorithms and formalisms in VERIFAI are presented in papers published by the authors
in other venues (e.g., [7,8,9,10,22,12,15]). The problem of temporal-logic falsification
or simulation-based verification of CPS models is well studied and several tools exist
(e.g. [3,11]); our work was the first to extend these techniques to CPS models with ML
components [7,8]. Work on verification of ML components, especially neural networks
(e.g., [26,14]), is complementary to the system-level analysis performed by VERIFAI.
Fuzz testing based on formal models is common in software engineering (e.g. [16]) but
our work is unique in the CPS context. Similarly, property-directed parameter synthe-
sis has also been studied in the formal methods/CPS community, but our work is the
first to apply these ideas to the synthesis of hyper-parameters for ML training and ML
model parameters. Finally, to our knowledge, our work on augmenting training/test data
sets [9], implemented in VERIFAI, is the first use of formal techniques for this purpose.
In Sec. 2, we describe how the tool is structured so as to provide the above features.
Sec. 3 illustrates the use cases via examples from the domain of autonomous driving.

2 VERIFAI Structure and Operation

VERIFAI is currently focused on simulation-based analysis and design of AI compo-
nents for perception or control, potentially those using ML, in the context of a closed-
loop cyber-physical system. Fig. 1 depicts the structure and operation of the toolkit.

SIMULATOR

SEARCH 
(Sampling, etc.) MONITOR

ABSTRACT 
FEATURE 

SPACE

ERROR 
TABLE 

ANALYSIS

SCENIC

Controller

Perception 
Component

Environment 
Model

Property 
(temporal logic, 

obj. function, 
monitor 

program, …) 

INPUTS OUTPUTS/
USE CASES

FALSIFICATION

FUZZ TESTING

COUNTEREXAMPLE 
ANALYSIS

DATA AUGMENTATION

HYPER-PARAMETER 
SYNTHESIS

MODEL PARAMETER 
SYNTHESIS

counterexample(s)

traces

debug info.

data set

parameter values

parameter values

Plant Model

Fig. 1. Structure and operation of VERIFAI.

Inputs and Outputs: Using VERIFAI requires setting up a simulator for the domain of
interest. As we explain in Sec. 3, we have experimented with multiple robotics simula-
tors and provide an easy interface to connect a new simulator. The user then constructs
the inputs to VERIFAI, including (i) a simulatable model of the system, including code
for one or more controllers and perception components, and a dynamical model of the



4 Dreossi, Fremont, Ghosh, et al.

system being controlled; (ii) a probabilistic model of the environment, specifying con-
straints on the workspace, the locations of agents and objects, and the dynamical behav-
ior of agents, and (iii) a property over the composition of the system and its environ-
ment. VERIFAI is implemented in Python for interoperability with ML/AI libraries and
simulators across platforms. The code for the controller and perception component can
be arbitrary executable code, invoked by the simulator. The environment model typi-
cally comprises a definition in the simulator of the different types of agents, plus a de-
scription of their initial conditions and other parameters using the SCENIC probabilistic
programming language [12]. Finally, the property to be checked can be expressed using
Metric Temporal Logic (MTL) [2,24], objective functions, or arbitrary code monitoring
the property. The output of VERIFAI depends on the feature being invoked. For fal-
sification, VERIFAI returns one or more counterexamples, simulation traces violating
the property [7]. For fuzz testing, VERIFAI produces traces sampled from the distri-
bution of behaviors induced by the probabilistic environment model [12]. Error table
analysis involves collecting counterexamples generated by the falsifier into a table, on
which we perform analysis to identify features that are correlated with property failures.
Data augmentation uses falsification and error table analysis to generate additional data
for training and testing an ML component [9]. Finally, the property-driven synthesis of
model parameters or hyper-parameters generates as output a parameter evaluation that
satisfies the specified property.
Tool Structure: VERIFAI is composed of four main modules, as described below:
• Abstract Feature Space and SCENIC Modeling Language: The abstract feature space

is a compact representation of the possible configurations of the simulation. Abstract
features can represent parameters of the environment, controllers, or of ML compo-
nents. For example, when analyzing a visual perception system for an autonomous
car, an abstract feature space could consist of the initial poses and types of all vehi-
cles on the road. Note that this abstract space, compared to the concrete feature space
of pixels used as input to the controller, is better suited to the analysis of the overall
closed-loop system (e.g. finding conditions under which the car might crash).
VERIFAI provides two ways to construct abstract feature spaces. They can be con-
structed hierarchically, combining basic domains such as hyperboxes and finite sets
into structures and arrays. For example, we could define a space for a car as a structure
combining a 2D box for position with a 1D box for heading, and then create an array
of these to get a space for several cars. Alternatively, VERIFAI allows a feature space
to be defined using a program in the SCENIC language [12]. SCENIC provides con-
venient syntax for describing geometric configurations and agent parameters, and, as
a probabilistic programming language, allows placing a distribution over the feature
space which can be conditioned by declarative constraints.

• Searching the Feature Space: Once the abstract feature space is defined, the next step
is to search that space to find simulations that violate the property or produce other
interesting behaviors. Currently, VERIFAI uses a suite of sampling methods (both ac-
tive and passive) for this purpose, but in the future we expect to also integrate directed
or exhaustive search methods including those from the adversarial machine learn-
ing literature (e.g., see [10]). Passive samplers, which do not use any feedback from
the simulation, include uniform random sampling, simulated annealing, and Halton
sequences [18] (quasi-random deterministic sequences with low-discrepancy guar-
antees we found effective for falsification [7]). Distributions defined using SCENIC



VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 5

are also passive in this sense. Active samplers, whose selection of samples is in-
formed by feedback from previous simulations, include cross-entropy sampling and
Bayesian optimization. The former selects samples and updates the prior distribution
by minimizing cross-entropy; the latter updates the prior from the posterior over a
user-provided objective function, e.g. the satisfaction level of a specification or the
loss of an analyzed model.

• Property Monitor: Trajectories generated by the simulator are evaluated by the moni-
tor, which produces a score for a given property or objective function. VERIFAI sup-
ports monitoring MTL properties using the py-metric-temporal-logic [24]
package, including both the Boolean and quantitative semantics of MTL. As men-
tioned above, the user can also specify a custom monitor as a Python function. The
result of the monitor can be used to output falsifying traces and also as feedback to
the search procedure to direct the sampling (search) towards falsifying scenarios.

• Error Table Analysis: Counterexamples are stored in a data structure called the error
table, whose rows are counterexamples and columns are abstract features. The error
table can be used offline to debug (explain) the generated counterexamples or online
to drive the sampler towards particular areas of the abstract feature space. VERIFAI
provides different techniques for error table analysis depending on the end use (e.g.,
counter-example analysis or data set augmentation), including principal component
analysis (PCA) for ordered feature domains and subsets of the most recurrent values
for unordered domains (see [9] for further details).

The communication between VERIFAI and the simulator is implemented in a client-
server fashion using IPv4 sockets, where VERIFAI sends configurations to the simulator
which then returns trajectories (traces). This architecture allows easy interfacing to a
simulator and even with multiple simulators at the same time.

3 Features and Case Studies

This section illustrates the main features of VERIFAI through case studies demonstrat-
ing its various use cases and simulator interfaces. Specifically, we demonstrate model
falsification and fuzz testing of an autonomous vehicle (AV) controller, data augmenta-
tion and error table analysis for a convolutional neural network, and model and hyper-
parameter tuning for a reinforcement learning-based controller.

3.1 Falsification and Fuzz Testing

VERIFAI offers a convenient way to debug systems through systematic testing. Given
a model and a specification, the tool can use active sampling to automatically search
for inputs driving the model towards a violation of the specification. VERIFAI can also
perform model-based fuzz testing, exploring random variations of a scenario guided
by formal constraints. To demonstrate falsification and fuzz testing, we consider two
scenarios involving AVs simulated with the robotics simulator Webots [25]. For the
experiments reported here, we used Webots 2018 which is commercial software.

In the first example, we falsify the controller of an AV which is responsible for
safely maneuvering around a disabled car and traffic cones which are blocking the
road. We implemented a hybrid controller which relies on perception modules for



6 Dreossi, Fremont, Ghosh, et al.

Fig. 2. A falsifying scene automatically discovered by VERIFAI. The neural network misclassifies
the traffic cones because of the orange vehicle in the background, leading to a crash. Left: bird’s-
eye view. Right: dash-cam view, as processed by the neural network.

state estimation. Initially, the car follows its lane using standard computer vision (non-
ML) techniques for line detection [20]. At the same time, a neural network (based on
squeezeDet [27]) estimates the distance to the cones. When the distance drops below
15 meters, the car performs a lane change, afterward switching back to lane-following.

The correctness of the AV is characterized by an MTL formula requiring the vehi-
cle to maintain a minimum distance from the traffic cones and avoid overshoot while
changing lanes. The task of the falsifier is to find small perturbations of the initial scene
(generated by SCENIC) which cause the vehicle to violate this specification. We al-
lowed perturbations of the initial positions and orientations of all objects, the color of
the disabled car, and the cruising speed and reaction time of the ego car.

Our experiments showed that active samplers driven by the robustness of the MTL
specification can efficiently discover scenes that confuse the controller and yield faulty
behavior. Figure 2 shows an example, where the neural network detected the orange car
instead of the traffic cones, causing the lane change to be initiated too early. As a result,
the controller performed only an incomplete lane change, leading to a crash.

In our second experiment, we used VERIFAI to simulate variations on an actual
accident involving an AV [5]. The AV, proceeding straight through an intersection, was
hit by a human turning left. Neither car was able to see the other because of two lanes of
stopped traffic. Fig. 3 shows a (simplified) SCENIC program we wrote to reproduce the
accident, allowing variation in the initial positions of the cars. We then ran simulations
from random initial conditions sampled from the program, with the turning car using a
controller trying to follow the ideal left-turn trajectory computed from OpenStreetMap
data using the Intelligent Intersections Toolbox [17]. The car going straight used a con-
troller which either maintained a constant velocity or began emergency breaking in
response to a message from a simulated “smart intersection” warning about the turning
car. By sampling variations on the initial conditions, we could determine how much
advance notice is necessary for such a system to robustly avoid an accident.

3.2 Data Augmentation and Error Table Analysis
Data augmentation is the process of supplementing training sets with the goal of im-
proving the performance of ML models. Typically, datasets are augmented with trans-
formed versions of preexisting training examples. In [9], we showed that augmentation
with counterexamples is also an effective method for model improvement.



VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 7

Fig. 3. Left: Partial SCENIC program for the crash scenario. Car is an object class defined in the
Webots world model (not shown), on is a SCENIC specifier positioning the object uniformly at
random in the given region (e.g. the median line of a lane), (-0.5, 0.5) indicates a uniform
distribution over that interval, and X @ Y creates a vector with the given coordinates (see [12]
for a complete description of SCENIC syntax). Right: 1) initial scene sampled from the program;
2) the red car begins its turn, unable to see the green car; 3) the resulting collision.

Fig. 4. This image generated by our renderer was
misclassified by the NN. The network reported
detecting only one car when there were two.

VERIFAI implements a counterexample-
guided augmentation scheme, where a
falsifier (see Sec. 3.1) generates misclas-
sified data points that are then used to
augment the original training set. The
user can choose among different sam-
pling methods, with passive samplers
suited to generating diverse sets of data
points while active samplers can ef-
ficiently generate similar counterexam-
ples. In addition to the counterexamples
themselves, VERIFAI also returns an error table aggregating information on the mis-
classifications that can be used to drive the retraining process. Fig. 4 shows the render-
ing of a misclassified sample generated by our falsifier.

For our experiments, we implemented a renderer that generates images of road sce-
narios and tested the quality of our augmentation scheme on the squeezeDet convo-
lutional neural network [27], trained for classification. We adopted three techniques to
select augmentation images: 1) randomly sampling from the error table, 2) selecting the
top k-closest (similar) samples from the error table, and 3) using PCA analysis to gen-
erate new samples. For details on the renderer and the results of counterexample-driven
augmentation, see [9]. We show that incorporating the generated counterexamples dur-
ing re-training improves the accuracy of the network.

3.3 Model Robustness and Hyperparameter Tuning
In this final section, we demonstrate how VERIFAI can be used to tune test parameters
and hyperparameters of AI systems. For the following case studies, we use OpenAI
Gym [4], a framework for experimenting with reinforcement learning algorithms.

First, we consider the problem of testing the robustness of a learned controller for a
cart-pole, i.e., a cart that balances an inverted pendulum. We trained a neural network
to control the cart-pole using Proximal Policy Optimization algorithms [21] with 100k
training episodes. We then used VERIFAI to test the robustness of the learned controller,



8 Dreossi, Fremont, Ghosh, et al.

varying the initial lateral position and rotation of the cart as well as the mass and length
of the pole. Even for apparently robust controllers, VERIFAI was able to discover con-
figurations for which the cart-pole failed to self-balance. Fig. 5 shows 1000 iterations
of the falsifier, where sampling was guided by the reward function used by OpenAI to
train the controller. This function provides a negative reward if the cart moves more
than 2.4 m or if at any time the angle maintained by the pole is greater than 12 degrees.
For testing, we slightly modified these thresholds.

Fig. 5. The green dots represent model pa-
rameters for which the cart-pole controller
behaved correctly, while the red dots indi-
cate specification violations. Out of 1000
randomly-sampled model parameters, the
controller failed to satisfy the specification
38 times.

Finally, we used VERIFAI to study the effects of hyperparameters when training a
neural network controller for a mountain car. In this case, the controller must learn to
exploit momentum in order to climb a steep hill. Here, rather than searching for coun-
terexamples, we look for a set of hyperparameters under which the network correctly
learns to control the car. Specifically, we explored the effects of using different training
algorithms (from a discrete set of choices) and the size of the training set. We used the
VERIFAI falsifier to search the hyperparameter space, guided again by the reward func-
tion provided by OpenAI Gym (here the distance from the goal position), but negated
so that falsification implied finding a controller which successfully climbs the hill. In
this way VERIFAI built a table of safe hyperparameters. PCA analysis then revealed
which hyperparameters the training process is most sensitive or robust to.

4 Conclusion
We presented VERIFAI, a toolkit for the formal design and analysis of AI/ML-based
systems. Our implementation, plus the examples described in Sec. 3, are available in
the tool distribution [1], including detailed instructions and expected output.

In future work, we plan to explore additional applications of VERIFAI, and to ex-
pand its functionality with new algorithms. Towards the former, we have already in-
terfaced VERIFAI to the CARLA driving simulator [6], for more sophisticated experi-
ments with autonomous cars, as well as to the X-Plane flight simulator [19], for testing
an ML-based aircraft navigation system. More broadly, although our focus has been
on CPS, we note that VERIFAI’s architecture is applicable to other types of systems.
Finally, for extending VERIFAI itself, we plan to move beyond directed simulation by
incorporating symbolic methods, such as those used in finding adversarial examples.



VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 9

References

1. VerifAI: a toolkit for the design and analysis of artificial intelligence-based systems. https:
//github.com/BerkeleyLearnVerify/VerifAI

2. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: de Bakker, J.W.,
Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) Real-Time: Theory in Practice. Springer
Berlin Heidelberg (1992)

3. Annpureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-taliro: A tool for temporal
logic falsification for hybrid systems. In: Tools and Algorithms for the Construction and
Analysis of Systems, TACAS (2011)

4. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,
W.: OpenAI Gym. arXiv:1606.01540 (2016)

5. Butler, M.: Uber’s Tempe accident raises questions of self-driving
safety. East Valley Tribune (2017), http://www.eastvalleytribune.com/local/
tempe/uber-s-tempe-accident-raises-questions-of-self-driving-safety/article
30b99e74-189d-11e7-bc1d-07f943301a72.html

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban driv-
ing simulator. In: Conference on Robot Learning, CoRL. pp. 1–16 (2017)

7. Dreossi, T., Donze, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. In: Proceedings of the NASA Formal Methods Confer-
ence (NFM) (2017)

8. Dreossi, T., Donze, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. Journal of Automated Reasoning (JAR) (2019)

9. Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A., Seshia, S.A.:
Counterexample-guided data augmentation. In: 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI) (2018)

10. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: 30th International
Conference on Computer Aided Verification (CAV) (2018)

11. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for state-
flow models. In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer (2015)

12. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: A language for scenario specification and scene generation. In: 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) (2019), to ap-
pear.

13. Fremont, D.J., Yue, X., Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: Language-based scene generation. CoRR (2018), http://arxiv.org/abs/1809.09310

14. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2:
Safety and robustness certification of neural networks with abstract interpretation. In: Secu-
rity and Privacy (SP), 2018 IEEE Symposium on (2018)

15. Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S., Kapoor, A.: Verifying controllers against
adversarial examples with Bayesian optimization. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA) (2018)

16. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: ACM SIG-
PLAN Notices. ACM (2008)

17. Grembek, O., Kurzhanskiy, A.A., Medury, A., Varaiya, P., Yu, M.: Making intersections
safer with I2V communication (2019), http://arxiv.org/abs/1803.00471, to appear in Trans-
portation Research, Part C.

18. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik (1960)

19. Laminar Research: X-Plane 11 (2019), https://www.x-plane.com/

https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/VerifAI
http://www.eastvalleytribune.com/local/tempe/uber-s-tempe-accident-raises-questions-of-self-driving-safety/article_30b99e74-189d-11e7-bc1d-07f943301a72.html
http://www.eastvalleytribune.com/local/tempe/uber-s-tempe-accident-raises-questions-of-self-driving-safety/article_30b99e74-189d-11e7-bc1d-07f943301a72.html
http://www.eastvalleytribune.com/local/tempe/uber-s-tempe-accident-raises-questions-of-self-driving-safety/article_30b99e74-189d-11e7-bc1d-07f943301a72.html
http://arxiv.org/abs/1809.09310
http://arxiv.org/abs/1803.00471
https://www.x-plane.com/


10 Dreossi, Fremont, Ghosh, et al.

20. Palazzi, A.: Finding lane lines on the road (2018), https://github.com/ndrplz/self-driving-car/
tree/master/project 1 lane finding basic

21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimiza-
tion algorithms. CoRR (2017), http://arxiv.org/abs/1707.06347

22. Seshia, S.A., Desai, A., Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Shivakumar, S.,
Vazquez-Chanlatte, M., Yue, X.: Formal specification for deep neural networks. In: 16th
International Symposium on Automated Technology for Verification and Analysis (ATVA).
pp. 20–34. Springer (2018)

23. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards Verified Artificial Intelligence. CoRR (2016),
http://arxiv.org/abs/1606.08514

24. Vazquez-Chanlatte, M.: mvcisback/py-metric-temporal-logic: v0.1.1 (2019), https://doi.org/
10.5281/zenodo.2548862

25. Webots: Commercial mobile robot simulation software, http://www.cyberbotics.com
26. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep

neural networks. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer (2018)

27. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: Unified, small, low power fully con-
volutional neural networks for real-time object detection for autonomous driving (2016)

https://github.com/ndrplz/self-driving-car/tree/master/project_1_lane_finding_basic
https://github.com/ndrplz/self-driving-car/tree/master/project_1_lane_finding_basic
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1606.08514
https://doi.org/10.5281/zenodo.2548862
https://doi.org/10.5281/zenodo.2548862
http://www.cyberbotics.com

	VerifAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems 



