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ABSTRACT

Using modern C++ to improve CUDA programs

The classic style of writing and porting HPC applications to the GPU uses pointers to buffers

or data-structures as kernel parameters. This style discards type information, leading to “flatten-

ing” of CPU-side data-structures before using them as kernel parameters, followed by a need

to reconstruct them in GPU code to retain flexibility. In this thesis, we identify several ma-

jor problems during the porting process, including lack of vectors or views into a GPU buffer,

bounds checking, iterator support, macro-dependent function specialization on the GPU, and

GPU allocators for arbitrary types. These are all features that are already supported by CUDA

in kernel code, but programmers are generally unable to use them due to data-structures decay-

ing to pointers in kernel invocations. We demonstrate these problems and present techniques to

overcome them in an implementation in C++ and CUDA. We use modern C++ features to make

CPU-side features (such as iterators, ranged-for loops, and bounds checking) first-class citizens

in GPU kernel code while maintaining interoperability with existing libraries. The result is a

new ability to use CPU-style coding patterns in GPU kernel code. We demonstrate that our

abstractions generate equally good assembly as the classical implementations. As a case study,

we use the library to simplify the porting process of accelerating a shallow-water simulation

framework “HEC-RAS” to the GPU.
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Chapter 1

Introduction

Over the past few years, accelerators such as GPUs and ASICs have been developed to accel-

erate highly parallel workloads or specific applications such as matrix multiplication. These

workloads have historically been implemented in C, C++, and Fortran and run on the CPU.

Some parts of the data processing in these programs are parallel, and utilizing processors such

as GPUs for those computations can provide a considerable gain in performance.

1.1 The Problem
GPUs are highly parallel co-processors designed for parallel data processing. They are driven

by the CPU (the host) and are programmed using tools provided by the hardware vendor. GPUs

(the device) have thousands of cores, significantly more than a CPU, and have fast device-local

memory separate from the CPU. The GPU scheduler parallelizes GPU programs (kernels) by

executing the same program across all threads, whereas CPU programs must explicitly spawn

threads. Due to these architectural differences, we cannot use host-specific data-structures and

functions in kernels without modifications.

Hardware vendors provide tools, APIs, and constructs within the confines of the language

(or an extension of it) to let the user move data and specify the execution spaces in which a func-

tion may be used. The compiler uses this information to generate appropriate code for the host

and device. Applications running on the CPU can initiate work on the GPU by using these APIs.

Since host-local data is inaccessible from the GPU (under most circumstances [41]), we must

use these APIs to copy data. This can lead to code duplication when replicating data-structures
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across host and device, managing raw pointers, and manual copies to move data between exe-

cution spaces—all of which add to the maintenance cost of the application. Therefore, writing

applications that target the GPU is not as straightforward as writing CPU programs under most

circumstances due to the heterogeneity.

As a concrete example (which we further expand upon in chapter 3), when using CUDA with

C++, users are often required to flatten their data-structures and have them decay to pointers or

POD (“Plain Old Data”) types that can be trivially copied to the GPU. As a consequence, stan-

dard C++ features such as iterators and range-based for-loops—which are, in fact, supported

in host and device code by the compiler—cannot be used in device code. The fundamental

problem is that we often have to reconstruct these higher-order types from the simplified or

flattened-out types on the device to take advantage of these features.

All of these problems arise due to the existence of two different execution domains and their

respective data spaces that are bridged minimally by the tools offered. This clear separation is

in many ways an architectural decision by the manufacturer of the hardware that helps them

establish a precise and well-defined programming and memory-model, which would otherwise

be difficult and complicated to grasp if not for the “minimal bridge.” This limits how expressive

GPU programs can be. Our work focuses on improving the user experience when traversing

this bridge between fundamentally different pieces of hardware. As a consequence of being

driven by the CPU, we go through this “bridge” to interact with the GPU. This acts like a filter,

limiting and guiding application architecture.

1.2 Prior work
Hardware vendors such as AMD and NVIDIA expose their APIs through C or C++. Apple

exposes its hardware through the Metal API but uses Objective-C. We refer to these officially

released tools by hardware vendors as “native.” HPC applications are written in C, C++, and

Fortran (“native languages”), so it stands to reason that the major vendors expose their hardware

through APIs in these languages. These APIs are usually verbose, which allows the vendor

to simplify their implementation and ensure minimal overhead. While this offers maximum

control of the hardware, it is not user-friendly. Various tools have been developed to abstract
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common use cases and simplify writing kernels. We will now take a look at common approaches

for building such tools. We then present our reasoning as to why these tools do not entirely

address the problem we describe.

1.2.1 Compilers

Programming APIs such as Vulkan, OpenGL, and DirectX allow the user to target the GPU,

but programs (known as “shaders” in the computer graphics world) are written in a different

language1 (a domain-specific language—DSL) than the one used on the host. These shaders

require separate compilation tools than the ones used for host code, and generally cannot be

implemented in the same file as host code (the exception being the program is stored as string

literal and is compiled at runtime). Compiler support is required to let the user implement

shaders in the same language as the host implementation. For example, “Unified Shader Spe-

cialization” [46] taps into existing C++ features and adds custom attributes to the language by

modifying the Clang compiler to express shader specialization, which is used to generate host

and device code. CUDA takes a similar approach and extends the C++ language to support

heterogeneous compilation from the same source file.

Similarly, for languages not supported by the hardware vendor, an approach is to implement

a transpiler to the supported language (Hybridizer [1]) or a compiler (such as ILGPU [24] for

C#, Rust-CUDA2 for Rust) to generate GPU-native binaries. While in theory this allows them

to accept any data-structure as an argument to a kernel, they generally accept only a limited

subset offered by the language or the library itself (ArrayView in the case of ILGPU) to

simplify the transformation. These supported structures are generally flat buffers, aggregates,

or trivially-copyable value types. The compiler implementation limits the flexibility of this

approach. A compiler cannot cover all possible use-cases. With adequate compiler support, we

can implement libraries to overcome these limitations, which we discuss below.

1GLSL and HLSL are the most common ones, used by OpenGL and DirectX respectively.
2Rust-CUDA: https://github.com/Rust-GPU/Rust-CUDA
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1.2.2 Libraries

Libraries such as oneAPI [21], SYCL,3 and Thrust [4] allow the user to program the GPU in

C++. They expose a set of highly optimized GPU routines that can be composed by the user

to achieve the functionality they desire. If custom functionality is required, the user can pass a

functor or a lambda function encapsulating the desired behavior to the library, which is paral-

lelized and executed on the GPU. Essentially, these libraries approach the problem by hiding

the complexity behind their own APIs. The user writes code that expresses their intent at a high

level, and the library uses the most optimal implementation based on this information. While

this offers customization and safety—goals we also claim to achieve, it does not necessarily

offer complete control over both the GPU and CPU implementations. Thrust and stdgpu [47]

address some of the issues we present (iterators and vectors in kernels). stdgpu also provides

GPU counterparts for common CPU data-structures such as a stack, queue, vector, and maps;

one can use them in both host and device code.

These libraries are indispensable when writing GPU-accelerated code. They address some

of the issues we present, offer a large set of performant algorithms and data-structures that work

on the host and device, and should be used where appropriate. We present additional techniques

and tools that can be used alongside these libraries to provide similar flexibility to user-defined

types and make them easily accessible in kernels. We focus on constructs that allow the user

to control both the host and device implementations, and the structures that bridge them while

staying within the confines of tools offered by hardware vendors. We do not aim to replace

these libraries; quite the opposite—we aim to complement them by improving the experience

of traversing the “bridge” we previously mentioned.

1.3 Approach
We use language features such as compile-time processing, type introspection, macros, alloca-

tors, inheritance, and iterators to build functions that can be used in both host and device code.

This also allows us to build data-structures that work on both host and device code, overcoming

code duplication problems. These data-structures allow us to avoid the fragile and repetitive

3SYCL: https://www.khronos.org/sycl/. Strictly speaking, SYCL is both a library and a compiler solution.
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“glue code” that typically exists solely to chauffeur data between host and device code.

1.4 Goals
A primary goal of the techniques presented is to let users write GPU kernels with the same

expressiveness and feature set as CPU implementations without sacrificing performance. We

present abstractions and tools that can be utilized generally. We focus on users who intend to

write kernels, and aim to simplify their kernel programming experience. As such, we focus on

abstractions that allow users to utilize the same data-structures on the CPU and the GPU, with

the expectation that the user is aware of any potential disadvantages of not using GPU-specific

data-structures where appropriate.

We operate under the assumption that HPC applications spend a significant portion of their

execution time and compute resources in tight loops that implement their algorithms. Therefore,

we strive to ensure that the parts of our abstractions that implement tight loops generate optimal

code.

The traditional approach to measuring the performance of a new tool or an algorithm is to

run benchmarks with different datasets and compare the results against contemporary state-of-

the-art implementations. This approach does not offer insights into the overhead of the abstrac-

tion for all use-cases.

Our methodology will be to compare the machine code that is generated for device code

with and without using our implementation. If the generated machine code for the section that

implements the compute loop on device code is identical, we claim to have achieved our goal—

minimal overhead. We do not compare host code generation as the techniques we present are

already used by tools such as Thrust. Since we are interoperable with Thrust, it can be used for

host code if desired.

To that extent, we bring safety-oriented constructs such as spans and vectors to the GPU.

Additionally, we move runtime errors to compile-time ones where possible. We try to address

the gaps in features left (intentionally or otherwise) by existing libraries. We intend to comple-

ment existing libraries, not replace them.

We are not interested in building a new compiler or modifying existing ones to achieve our
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goals. We instead focus on taking advantage of features offered by the officially supported tools

(“native tools and languages”) to simplify kernel development.

1.5 Contributions
We identify problems one may face when porting CPU code to the GPU. In particular, we

address issues such as:

1. Function specialization for GPU and CPU leading to difficulties with code reuse.

2. Macro guards polluting the code—they textually eliminate code segments and are not

checked for syntactic validity.

3. Having to simplify and flatten CPU data-structures into pointers and their associated

metadata (such as buffer size) before passing them to kernels.

4. Lack of convenience features such as iterators and range-based for loops on the GPU as

a consequence of the previous issue.

5. Incorrect implementations of the “Grid-stride loop” [19] (see section 3.5) leading to in-

correct computations or runtime errors.

6. Mixing up of host and device pointers, and their sizes when using them as kernel param-

eters.

7. Trying to dereference GPU-only memory from the CPU.

To address these problems, we present a set of abstractions and techniques that allow users to

use features taken for granted in host code (such as iterators) in device code too. We present

a library that implements these techniques to exemplify the ideas discussed using CUDA and

C++. We then demonstrate how these techniques assisted us in porting a C#-based shallow-

water simulation framework to the GPU while giving examples with and without using these

abstractions.
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1.6 Benefits
These techniques allow one to write code that reads like CPU code, reducing cognitive load on

the programmer. We demonstrate that our techniques enable a user to:

1. Use spans, iterators, ranged for-loops in device code.

2. Pass a structure by reference or as a pointer into kernels.

3. Leverage the RAII (Resource Acquisition is Initialization) paradigm to enable automatic

allocation and cleanup of GPU memory.

4. Benefit from bounds-checking in debug mode on both host and device.

5. Share code between GPU and CPU implementations without macros, enabling compile

checks for all code paths.

6. Maintain interoperability with existing libraries such as Thrust.

These features improve the expressiveness, maintainability, and readability of code without

sacrificing performance or functionality. Some of the benefits mentioned above are brought

forth by libraries such as Thrust but leave some features to be desired (e.g., Thrust vectors

cannot be used in kernels, and stdgpu is focused on offering common CPU data-structures on

the GPU).

1.7 Outline
We begin with some background on GPUs and their programming-model in chapter 2. In chap-

ter 3, we describe the techniques being proposed. To begin with, we explain how compile-time

processing simplifies writing device code in section 3.1. This also ties in with concepts in

C++ (described in section 3.2), which enable us to enforce proper API usage at compile-time.

We then present a simplified allocator and custom new and delete operators in section 3.3,

which can be reused to simplify the implementation of user abstractions. Using this abstraction,

we present an example of a vector in section 3.4 over a collection of elements. The feature

that sets this apart from existing implementations is that it can be used in both host and device

7



code. We also demonstrate how iterators (section 3.5) can be added to improve user experi-

ence. Where appropriate, we show that our abstractions generate optimal code. In chapter 4,

we demonstrate how our utilities helped us port a C# CPU codebase to the GPU and share a few

examples on how it improves user experience.
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Chapter 2

Background

In this chapter, we describe the GPU, how it differs from the CPU, and look at existing program-

ming methods. We will then discuss CUDA, and give a high-level description of the problem.

2.1 The GPU
The GPU is designed with different goals in mind from that of a CPU—GPUs trade latency

for throughput. High throughput is achieved through multiple cores, many more than typically

found in CPUs. These cores are simpler compared to their CPU counterparts, which enable

more of them to be packed together. These cores are connected to device local memory (sep-

arate from the CPU RAM) with wide buses to keep the bandwidth and throughput high. On

a CPU, parallelism is explicit—a user is expected to create and launch threads explicitly to

utilize the parallelism offered on the CPU, if any. CPU threads are independent units of execu-

tion, relatively expensive to create, and can implement logic completely separate from the main

execution path of the program.

GPUs are SIMT machines (single instruction, multiple threads) [45]. Programs executed

on the GPU are implicitly parallel, and the user writes a piece of code, typically known as a

shader or a kernel, that is executed on all the cores at once. GPU threads are cheap to create

and typically operate on a single element of the data. Each thread independently executes the

kernel. The GPU assigns a unique identifier to each thread, which can be used to index into

the elements buffer and process them in parallel. Consequently, thousands of threads execute at

once on a GPU, processing items in parallel. Fundamentally, the GPU is a co-processor at heart
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and any programming-model designed for the GPU must interact with, be controlled from, and

be coordinated by the CPU. Therefore, it must, as a part of its design, support a heterogeneous

execution model.

In the following section, we describe the major programming models at a high-level in their

order of appearance, and their limitations at a high-level.

2.2 Programming model
GPUs and other application-specific hardware are driven by a CPU. The fundamental goal

of a programming-model that exposes co-processors to the CPU (and the user) is to support

constructs that submit commands to it and move data between the CPU and the co-processor.

The programming-model is supported through the tools, libraries and APIs provided by the

hardware vendor. Three common ways to program such hardware are:

1. Domain specific languages (DSLs), such as GLSL and HLSL, with their own compilers

that generate hardware-specific machine code,

2. Extension of an existing language (such as brcc which extends C, and CUDA which

extends C++), or

3. Through compiler transformations (or a new compiler “backend”) that generates hardware-

specific code from existing languages (such as OpenMP1).

2.2.1 Shaders

Well known examples of DSLs are shaders, which are extensively used in computer graphics.

In such scenarios, data-structures on the CPU cannot be used directly in shaders, as not only are

the execution spaces different, their languages are too. As such, a user must replicate their data

representations in shaders to match those on the CPU and call the appropriate API functions to

inform the driver to “bind” them together. The advantage of this approach is that the compilers

designed for such languages can be specifically designed and optimized for the hardware. They

are also small enough to embed in the programs themselves, affording the user the ability to

change and recompile shaders on the fly.
1OpenMP: The OpenMP API specification for parallel programming—https://www.openmp.org/specifications
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But this approach has a major disadvantage—there is no type checking for types that are

used across the host and device domains. The user is responsible for ensuring that the data types

in the shader program and the CPU program have identical binary representations; this is not

validated by the compiler. Incorrect binding of resources on either the shader or host code leads

to runtime errors or data corruption. Users are required to implement a lot of “boilerplate” code

on the host before running a kernel—initialize the rendering API, check for support for shader

features and enable them, set up “bindings” to expose resources to shaders, handle the render

loop, and compile shaders either ahead of time or on-time (depending on available features).

All of this boilerplate code makes it cumbersome to quickly iterate and test new approaches and

techniques, not to mention the effort required to debug these programs and shaders. To simplify

programming, earliest GPGPU approaches used a custom compiler that transformed the user’s

code into shaders and a host program that launched the shader and retrieved the results.

For example, Ian Buck et al. in “Brook for GPUs: Stream Computing on Graphics Hard-

ware” [5] use a source-to-source compiler brcc that generates C++ code, which invokes the

shaders (either in DirectX or OpenGL). These are just some of the disadvantages [44] of us-

ing shaders and a graphics API to essentially trick the programming-model into performing

computations that—one can argue—are completely divorced from the goals of a graphics API

(rendering images to a framebuffer). Techniques such as using depth testing to discard work or

for efficient branches were employed to improve the performance of early GPGPU applications.

A user should not have to deal with the intricacies of a graphics API and shading language to

implement applications that just want to utilize the parallelism in the hardware.

These efforts eventually led to the development of CUDA—it addresses many of the prob-

lems that plagued GPGPU programming using shaders and a graphics API. We discuss the

advantages and disadvantages at a high-level in the next section (subsection 2.2.2), with some

examples in section 2.3.

2.2.2 CUDA

CUDA was released by NVIDIA in 2007 [28] to expose the parallelism of the GPU much more

readily to the programmer through a simpler programming-model [38]. It addresses many of

the challenges of GPGPU programming, offering a single-source model that allows the user to
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implement both host and device code in the same file, simple API calls to launch a kernel and

wait for its completion, and next to no boilerplate code (as opposed to using a graphics API and

shaders) to write an end-to-end saxpy application. CUDA is an API and programming-model

that is an extension of the C++ language [32], allowing one to write CPU and GPU code in C

and C++, within the same file—a massive simplification compared to the shader programming-

model. While it is simpler by orders of magnitude to implement GPGPU applications in CUDA

(when compared to using graphics APIs and shaders), it is still challenging to write a non-trivial

application, which we address in section 2.3.

CUDA is primarily exposed as a C API and provides parallelization and synchronization

primitives that expose the underlying hardware parallelism more readily to the programmer—

fine-grained and coarse-grained parallelism constructs establish a clear hierarchy that makes it

easy to reason about computations running in parallel. CUDA, being an extension of the C++

language, makes it easy to extend; new hardware and API features can just be exposed as part of

the software stack.2 This affords rapid evolution of the language and the programming-model,

making it easy to extend and respond to the needs to the broader community. Since it is not

based on a graphics API, it takes a simple API call to launch a kernel that is parallelized on

the GPU. Host and device code can use the same data types without modifications under most

circumstances—users no longer have to worry about ensuring that host and device data layouts

are identical, without assistance from the compiler.

2.3 Problem
CUDA has addressed many of the challenges of using shaders for GPGPU programs, but pro-

gramming in CUDA still presents a number of challenges, some of which we cover in this

section to motivate the problem (with details in chapter 3). This thesis focuses on using the

tools available in CUDA and C++ to simplify some of the common usage patterns and over-

come their pitfalls—we are not interested in building a new tool (such as a new compiler), but

wish to use existing language and API features to address these concerns.

CUDA is primarily exposed as a C API—all resources allocated must be explicitly managed

2While this is possible with shaders, they require an extension mechanism which requires the user to check for
and enable the feature in both host code and shader code.
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and freed appropriately. This pattern of allocating, using, and freeing resources is repetitive

and error prone and could lead to memory leaks and hard-to-diagnose out-of-bounds accesses,

some of which may lead to security issues [8]. Even when using Thrust (Listing 2.1) or similar

libraries, the abstractions do not carry over into kernel code.

For example, data-structures such as std::vector in C++ cannot be used in kernel code

due to various restrictions (enforced by the compiler—functions not explicitly annotated as

callable from device cannot be used in device code), in no small part due to the hardware

differences and device-local memory heaps. The code, driver, and the runtime environment that

exposes the hardware to the user cannot account for all possible use-cases to enable transparent

usage of CPU-native data-structures in device code.

This style of writing kernels leads to raw pointers and their sizes being passed around

within device code, which discards type-information. Therefore, abstractions that exist on

the CPU and are taken for granted—collections (std::vector, std::span), allocators

(std::allocator), and iterators—cannot be directly used on the GPU.

Consequently, CUDA kernel parameters take raw pointers and their associated sizes. For ex-

ample, if a kernel operates on two memory regions of different sizes, it takes four parameters—

two pointers, and size of the memory region for each of the respective pointers. This means that

convenience features such as iterators and ranged for-loops are not available in kernel code.

In this thesis, we present ways to implement similar abstractions that can be used across

CPU and GPU code. While we use C++ as the language of choice since it’s officially supported

by NVIDIA, similar constructs can be utilized in other programming languages that support

equivalent constructs, such as Rust.

1 __global__ void kernel(
2 Vertex* verts, int num_verts,
3 Edge* edges, int num_edges) {
4

5 while (/* process vertices and edges */) {
6 process(verts[i]); // no bounds checking
7 }
8

9 // no iterator support
10 for(auto& vert : verts) { }
11 }
12
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13 thrust::device_vector<Vertex> verts {};
14 thrust::device_vector<Edge> edges {};
15

16 kernel<<<b, t>>>(
17 thrust::raw_pointer_cast(verts.data()),
18 verts.size(),
19 thrust::raw_pointer_cast(edges.data()),
20 edges.size());
21

22 void load_data(/**/) {
23 // Load data into a CPU buffer
24 std::vector<data> cpu_data {...};
25 thrust::device_vector<data> gpu_data {};
26 // Then meticulously copy it to the GPU buffer
27 ...
28 }
29

30 __host__ __device__ auto func() {
31 #ifdef __CUDA_ARCH__
32 #if __CUDA_ARCH__ >= 700
33 // ARCH-specific code
34 #endif
35 /* generic device logic */
36 #else
37 /* host logic */
38 #endif
39 }

Listing 2.1: Motivating examples: Macro pollution, lack of iterators in device code, and the
inability to manipulate data in a thrust device_vector from the host in a performant way.

Since CUDA is an extension of the C++ language, it supports most modern C++ features,

even in kernel code. Despite this, a user cannot just pass in host data-structures into kernel code

due to the aforementioned issues, leading to fewer opportunities where they can utilize all the

features that C++ offers.

As a motivating example of the kinds of problems we seek to address, in Listing 2.1, the

compiler does not warn us about swapped and incorrectly passed in parameters, if we swap the

sizes. An equivalent C++ function would have accepted std::vector<T> as parameters for

the respective types.

We bring forth and discuss more examples in chapter 3, where we present various sections

that explain the problem and come up with ways to address the problem. In particular, we

• explain some modern C++ features that enable us to create a few building blocks that can

be used in a generic fashion to improve CUDA programming.
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• demonstrate how compile-time programming can be used to replace macros and simplify

writing host and device-specific code (see Listing 2.1, line 30).

• present a way to allocate objects on device-local and managed-memory with the new

keyword.

• show how a custom allocator backed by managed memory dramatically simplifies writing

and loading data into GPU-native data-structures.

• demonstrate the need for owning and non-owning container types that can be used both

on the host and in device code, and how it enables us to use iterators.

• explore coroutines and how they can be utilized to abstract concurrent kernel launches.

2.4 Prior work
There exist first-party (Thrust [4], libcu++ [29]) and third-party (cuda-api-wrappers [16]) li-

braries that simplify some of the resource management and also provide a set of highly opti-

mized routines for common operations such as reduce and scan. But none of these libraries ex-

tend functionality into kernel code, i.e., when the user finally starts to write a CUDA kernel, all

of the parameters decay into raw pointers and their associated sizes, and the kernel body drops

down to C-like abstractions. For example, it is not possible to use a thrust::device_vector

in kernel parameters. Programming forums such as StackOverflow3 cite examples that outline

a simple implementation of a vector that can be used in device code.

Libraries such as Thrust and RAJA [3, 23] typically follow a functional programming style,

where operations such as loops are written as either lambda functions or functors. When using

lambda functions, local variables have to be either copied or passed as references.

Our work takes a different approach, as described in section 1.3 and section 1.4. In the

following chapter, for each section, we address a specific problem, present a solution, and

conclude with considerations that users must be aware of.

3Stackoverflow: Using std::vector in device code: https://stackoverflow.com/a/45671310
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Chapter 3

Implementation

In this chapter, we will take a look at the specific techniques proposed, examples of their imple-

mentation, and their potential drawbacks. We first describe the technique and language feature

being used to assist with finding the appropriate equivalent in other languages. We then de-

scribe the problem being addressed and proceed to give an example implementation in C++ to

demonstrate its utility. Finally, we conclude with potential problems that one might face when

using these approaches, and potential alternatives where possible. In all of the examples that

follow, cup is used as the top-level namespace for the set of utilities we propose.

3.1 constexpr and consteval
Some programming languages (such as C++) provide the ability to evaluate the result of a func-

tion call or an expression at compile-time. This allows one to avoid the runtime overhead,

provided such an expression can be computed at compile-time. We can tap into this machinery

to specialize parts of a function’s implementation based on the compilation context—introspect

the types of function arguments and the compilation target (host or device), and specify spe-

cialized implementations. In this section, we will take a look at how C++ constexpr and

consteval can be used to our advantage to simplify code specialization and improve code

maintainability and readability, Listing 3.1 (a) vs. (b).

16



1 __host__ __device__
2 auto func(/**/) {
3 if constexpr ( cup::device_code() ) {
4 // GPU code
5 if constexpr ( cup::

compiling_architectures(500) ) {
6 // specialized code for compute_50
7 }
8 }
9 else {

10 // Host code
11 }
12 }

(a) if constexpr usage

1 __host__ __device__
2 auto func() {
3 #if defined(__CUDA_ARCH__)
4 // GPU code
5 # if __CUDA_ARCH__ > 860
6 // arch is compute_86 or newer, can use

those features
7 #endif
8 // fallback to common features
9 # else

10 // CPU code
11 #endif
12 }

(b) Using __CUDA_ARCH__ macros

Listing 3.1: Using if constexpr allows one to express the compile-time decisions using
constructs that are similar to classical control-flow statements, improving readability.

3.1.1 Introduction

There are instances when we would like to use the same function (when writing libraries con-

sumed by others, for example) across both host and device, but specialize the implementation—

a different codepath for host vs. device code—so that we take advantage of the hardware ef-

fectively. In other words, we want an abstracted function that does the right thing and takes

advantage of the hardware transparently on behalf of the user. For example, both the GPU and

CPU offer hardware-accelerated or highly-optimized math intrinsics for fused-multiply-add,

trigonometric, and logarithmic functions. Utilizing these could dramatically speed up programs

that are math-heavy in tight loops. A library author could then expose a single matrix-multiply

routine that uses the GPU if possible, or falls back to a CPU implementation, making the API

easy to use for the end user.

3.1.2 The problem

CUDA allows one to implement host and device code in the same source file. Since code

generation for device is opt-in, it offers a way to inform the compiler of sections (of source

code) where device code needs to be generated. In C++, the canonical way to achieve this is

to check for the __CUDA_ARCH__ macro [31] (Listing 3.1), or by using function decorators

(__host__ and __device__). In GPU code, the __CUDA_ARCH__ macro is set to the

current virtual architecture being compiled for and can be used to take advantage of modern
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CUDA hardware features. While this works, we claim that we can do better due to the various

issues that macros present. Macros textually eliminate sections of source code in the preproces-

sor stage, meaning that the eliminated section is not checked for syntactical correctness by the

compiler.

Essentially, we are making a decision at compile-time—whether a section of code is pro-

cessed by the compiler machinery responsible for host or device code generation—to implement

host and device-specific code-paths. C and C++ macros do not introduce variable scoping. If

the user does not explicitly introduce a new scope, all the variables in func are within the same

scope. Failure to implement the code common for all architectures, as shown in the example

below (Listing 3.1, line 7), can lead to hard-to-diagnose errors during runtime.

1 auto func() {
2 #if defined(__CUDA_ARCH__)
3 // GPU code
4 # if __CUDA_ARCH__ > 860
5 // arch is compute_86 or newer, can use those features
6 #endif
7 // fallback to common features
8 # else
9 // CPU code

10 #endif
11 }

Listing 3.1: Macros do not introduce a variable scope and the compiler is unable to check the
code for syntactic validity in the textually-eliminated branches.

We want to use C++ language constructs—if statements in place of macros—to detect

device and host code. This approach leads to code that reads like the rest of the code and clearly

expresses the intent of the programmer. Before we explain the usage of such constructs, we will

explain the language features that make this possible in subsection 3.1.3, an overview of how

the CUDA compiler processes source files in subsection 3.1.4, and finally, in subsection 3.1.5,

we use this understanding to implement constructs demonstrated in Listing 3.1.

3.1.3 Compile-time evaluation

constexpr and consteval are C++17 and C++20 features respectively that allow one

to hint and require computations be performed at compile-time, respectively, rather than at

runtime. To enable this feature on nvcc, use the command-line flag --expt-relaxed-
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constexpr [34].

Since these computations can be performed at compile-time rather than at runtime, the com-

piler can evaluate the result of this expression during the compilation process and just store the

computed value at each call-site.

1 template <typename T>
2 constexpr T square(T a) {
3 return a * a;
4 }
5

6 __global__ void kernel(float* f) {
7 *f = square(2.8);
8 }
9

10 int main() {
11 auto res = square(3.14);
12 printf("Res: %.3f", res);
13 }

Listing 3.2: Calls to square are usually eliminated in release mode, as the results of the call
are computed at compile-time.

In Listing 3.2, an optimizing compiler completely eliminates the call to square in both host

and device code.

3.1.4 NVCC compilation path

Both host and device code may be present in the same file, yet the compiler has to generate

different instructions for each of them. To achieve this, the CUDA compiler (nvcc) splits

host and device code into temporary files (since the functions are decorated with __host__,

__device__, __global__ attributes), and inserts code to facilitate the copy of function-

call parameters from host to device code—from CPU to GPU. During this code-splitting pro-

cess [33], the compiler defines __CUDA_ARCH__ macro in device files but not in host files.

This can be used to distinguish host and device compilation paths, as in Listing 3.1.

1 consteval bool device_code() {
2 #ifdef __CUDA_ARCH__
3 return true;
4 #else
5 return false;
6 #endif
7 }

19



8

9 __host__ __device__
10 void func() {
11 if constexpr (device_code()) {
12 // GPU-specific code
13 }
14 else {
15 // CPU-specific code
16 }
17 }

Listing 3.3: consteval functions are required to be evaluated at compile-time. We can
abstract the macros behind a helper function and use it instead.

3.1.5 Using constexpr

By wrapping this macro __CUDA_ARCH__ into a utility function, we can clean up and replace

most macro guards. This (Listing 3.3) allows one to use typical function-call syntax to write

host and device-specific code. The advantage of this approach is that both branches are verified

to be syntactically correct, since they are not eliminated by the preprocessor, leading to more

robust code. This also introduces appropriate variable scoping, as opposed to variables being in

the same scope when using macros.

An alternative approach is to explicitly define two different functions with the same name

for host and device, but this feature is supported only on the clang compiler [6] (at the time of

writing).

This idea can be extended further, using if constexpr to conditionally compile device

code based on the architecture (Listing 3.4).

1 consteval bool compiling_architectures(int arch) {
2 constexpr std::array archs { __CUDA_ARCH_LIST__ };
3 return std::find(archs.begin(), archs.end(), arch)
4 != archs.end();
5 }
6

7 __device__
8 auto func() {
9 // ...

10 if constexpr (compiling_architectures(500)) {
11 // code for compute_50 virtual architecture
12 }
13 }
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Listing 3.4: We can check at compile-time if we are compiling for a specific architecture using
standard C++ code that isn’t polluted by macros.

An alternate approach is to template the functions on the architecture so that the right func-

tion is picked.

1 #ifdef __CUDA_ARCH__
2 constexpr int DEVICE_ARCH { __CUDA_ARCH__ };
3 #else
4 constexpr int DEVICE_ARCH { 0 }; // host
5 #endif
6

7 template <int arch = DEVICE_ARCH>
8 __device__
9 void func(); // define this to use as fallback

10

11 template <>
12 __device__
13 void func<860>() {
14 printf("Arch 860 specific code!\n");
15 }
16

17 __global__ void kernel(float* f) {
18 // default template parameter picks specialization for
19 // current architecture
20 func();
21 }

Listing 3.5: Template specialization can be used to implement architecture-specific code, and a
generic fallback can be implemented in the first definition.

We claim that these approaches are robust because given a list of device architectures to

compile for, if the user forgets to implement any architecture-specific specialization, the com-

pilation will fail. In Listing 3.5, a specialization for compute_60 has not been defined. When

attempting to compile for that architecture, we get a linker error due to an unresolved external

to a mangled name (for example, _Z4funcILi600EEvv). To get a more user-friendly diag-

nostic, a static_assert (example in Listing 3.6) dependent on the template parameter can

be used as the body of func (Listing 3.5, line 9). To use a fallback (features supported on all

devices), it is sufficient to define func in Listing 3.5, line 9.

1 template <int arch = DEVICE_ARCH>
2 __device__
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3 void func() {
4 static_assert(0 == arch, "Function not defined for this

architecture");
5 }

Listing 3.6: Unused template functions are not instantiated. Their body can contain a
static_assert to ensure architecture-specific code is always implemented.

Functions decorated with constexpr can be utilized in device code unmodified in most

cases. For example, the ratio and chrono headers can be used unmodified in device code.

3.1.6 Problems with this approach

A potential disadvantage of this approach is that some device-only functions (such as math in-

trinsics) cannot be called in the device codepath, as they are syntactically invalid in the host

codepath (Listing 3.7, line 4). A macro would textually eliminate these calls in the host code-

path, but with the if constexpr approach, the compiler terminates compilation due to miss-

ing definitions. C++ allows the false branch of if constexpr to be discarded under cer-

tain conditions [13]. The usual workaround is to wrap these intrinsics behind functions (which

internally use macros, limiting their scope), and use them instead in these code blocks.

1 __host__ __device__
2 float fma_round_down1(float x, float y, float z) {
3 if constexpr (cup::device_code()){
4 return ::__fmaf_rd(x, y, z);
5 }
6 else {
7 return x * y + z;
8 }
9 }

10

11 __host__ __device__
12 float fma_round_down2(float x, float y, float z) {
13 #ifdef __CUDA_ARCH__
14 return ::__fmaf_rd(x, y, z);
15 #else
16 return x * y + z;
17 #endif
18 }
19

20 // Error message from the compiler
21 main.cu: In function 'float fmamul_round_down1(float, float, float)':
22 main.cu:11:10: error: '::__fmaf_rd' has not been declared; did you

mean '__fmaf64x'?
23 11 | return ::__fmaf_rd(x, y, z);
24 | ˆ˜˜˜˜˜˜˜˜
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25 | __fmaf64x

Listing 3.7: if constexpr does not work with intrinsics since they are syntactically invalid
in host code.

Replacing instances of __CUDA_ARCH__ macro with compile-time checks is not always

viable, as some device functions textually exist in the files generated in codepath for host, and

vice-versa. In instances where replacement with this approach doesn’t work, one can try to

diagnose the issue by asking the compiler not to delete the intermediate generated files with the

--keep parameter and inspecting them.

3.1.7 Summary

In this section, we

• described the disadvantages of using macros, and problems they cause;

• explored compiler features constexpr and consteval that let us make decisions at

compile-time;

• described how this compiler machinery can be taken advantage of to replace most macro-

based (e.g., __CUDA_ARCH__) host and device code specialization;

• contrasted the advantages of our approach with classic macro-based implementations

(code is easier to read and maintain); and

• laid out the shortcomings of our approach (we may not be able to completely replace

macros), and potential workarounds.

3.2 concepts usage
The ability to inspect types and make decisions based on those types is a powerful feature, but

a library author cannot know all the types a user may define, making it restrictive. Specifically,

the library author can implement logic based on a closed set of types, and once distributed,

the set cannot be expanded by the user. An alternative approach is to specify the behaviors of

the types, rather than the types themselves. Specifying the behavior of a type or the properties
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allows one to operate on the behaviors offered by the types. For example, an integer is a type

whose members can be ordered, whereas a type that represents complex numbers cannot.

By decoupling these behaviors from the types themselves, it is possible to implement decision-

making on an open set of types. As such, a library author can specify that their implementation

requires certain behaviors (say, the members of the type can be ordered) of the types passed

in. The end user has to specify what behaviors their custom types affords. This allows any set

of libraries and their types to interoperate. C++ 20 and above provide this through a language

feature knows as concepts—a named set of requirements. Similar functionality is provided by

Rust with the trait system.

3.2.1 Introduction

C++20 introduces a new language feature called concepts. A concept is a way to specify

restrictions and requirements that are checked at compile-time. For example, Listing 3.9 is

an example of a concept that enforces that a type T must support hashing. Without concepts,

the compiler prints the full traceback that is often multiple pages long, earning C++ quite a

notoriety around templates and error messages. For example, Listing 3.8 generates a wall of

error messages during compilation that must be parsed through; sifting through them requires

some familiarity with C++ diagnostics to identify the root cause of the issue.

1 struct S {
2 int p;
3 bool operator==(const S&) const = default;
4 };
5

6 int main() {
7 std::unordered_map<S, int> maps {};
8 }

Listing 3.8: An example that generates a wall of error messages.

1 template<typename T>
2 concept hashable = requires(T a) {
3 { std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;
4 };
5

6 auto func(hashable auto obj) {}

Listing 3.9: Concept to check if a type supports hash.
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When an object that does not satisfy the hashable concept is passed as a parameter to

func in Listing 3.9, the error message is much more descriptive and easily actionable. Apart

from being more user-friendly, concepts also serve as an early-exit mechanism if a constraint is

not satisfied [11].

3.2.2 The problem

Issues such as,

• compile-time error messages that are often hard to read and take action against; and

• common and easy-to-repeat errors (e.g., passing host pointers to device function, double

free, leaking memory) that cause either undefined behavior or runtime crashes

reduce the developer’s productivity. Time spent diagnosing these issues is better spent optimiz-

ing and implementing the application.

Succinct but descriptive error messages by the compiler, and the ability to catch more errors

at compile-time improves the efficiency of the user. This can dramatically improve user expe-

rience as it allows them to stay in the tight test-implement iteration loop. Runtime errors must

be explicitly tested for with manual or automated tests. For example, one of the most common

issues that users face when porting or writing new kernels is passing in host pointers into kernel

code. This leads to crashes at runtime. Ideally, we want to be able to detect this at compile-time

where possible. We also want to improve compiler diagnostics to overcome the issue described

in Listing 3.8.

Concepts make it easier to identify and fix errors during compilation, and decouple behav-

iors from the types themselves, making it easier to use across libraries. This mechanism allows

us to convert some runtime errors (or the corresponding checks) to compile-time ones, which

we also explore in this section.

3.2.3 Constraints for kernels

We can implement concepts that require kernel parameters and buffers to point to valid GPU

memory, which prevents a user from launching a kernel with a buffer that points to CPU heap

during compilation.1 This implementation(e.g., Listing 3.11) requires that the allocators return

typed pointers—for example, dptr<float> instead of float*. This involves three steps:
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• Create a discriminator (typically an enum) to identify the memory type (host, device,

pinned, etc.)—Listing 3.10.

• Create a user-defined type templated on the type of the pointer (e.g., float, int) and

the discriminator.

• Wrap the native allocator in a function that returns the native pointer wrapped in the type

created in the previous step.

We demonstrate how this technique can be implemented in C++ to illustrate its utility.

1 enum class pointer_loc : uint8_t {
2 HOST,
3 DEVICE,
4 MANAGED,
5 // PINNED,
6 // other types
7 };

Listing 3.10: Discriminator using an enum

We can now tie these discriminators with the pointer types to create a new type that, in

its type information, includes the kind of allocation. This is useful for compile-time decision-

making. For example, we can use device_ptr<float> in place of float*—the latter

does not have information on the kind of memory (host vs. device) it points to (Listings 3.11,

3.12). We can use this type information to implement rich decision-making at compile-time, and

by implementing concepts that utilize this information, provide descriptive diagnostic messages

(Listing 3.13).

1 template <typename T, pointer_loc T1 = pointer_loc::HOST>
2 struct pointer_t {
3 static constexpr pointer_loc type { T1 };
4 T* value { nullptr };
5

6 [[nodiscard]]
7 constexpr T* operator*() noexcept {

1The initial design by Dr. Ian Buck et al. in “Brook for GPUs: Stream Computing on Graphics Hardware” [5]
exposes a way to use custom data types created from a superset of language-native primitives (such as float2
alongside float, but is still limited by what C and the shading language allowed). This approach is flexible and
allows a user to construct arbitrary types. We extend this approach by retaining additional metadata—source of a
memory allocation—by using the C++ type-system to afford additional type-safety at compile-time.
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8 return value;
9 }

10

11 [[nodiscard]]
12 constexpr T& operator[](size_t pos) noexcept {
13 return value[pos];
14 }
15 };
16

17 static_assert(sizeof(pointer_t<float>) == sizeof(float*));
18 static_assert(sizeof(pointer_t<int>) == sizeof(int*));

Listing 3.11: A new template type pointer_t that wraps the underlying pointer with a
discriminator allows us to track the allocation type, which can be inspected later to implement
custom routines.

Since this type info exists only at compile-time, this pointer-like type has zero runtime

overhead—it is the same size as the underlying pointer it encapsulates. We can create handy

aliases for commonly used types, such as host_ptr<T> (Listing 3.12, line 5). We now

implement a concept that inspects the types for the constraints we want. For example, for a

pointer to be addressable from the device, it must be one of device-local or managed (amongst

others, such as zero-copy, and mapped host-pinned), see Listing 3.12, line 11.

1 template <typename T>
2 using device_ptr = pointer_t<T, pointer_loc::DEVICE>;
3

4 template <typename T>
5 using host_ptr = pointer_t<T, pointer_loc::HOST>;
6

7 template <typename T>
8 using managed_ptr = pointer_t<T, pointer_loc::MANAGED>;
9

10 template <typename T>
11 concept device_addressable_ptr = requires {
12 T::type;
13 T::type == pointer_loc::DEVICE || T::type == pointer_loc::MANAGED;
14 };
15

16 // using the concept
17 __global__
18 void kernel(device_addressable_ptr auto ptr) {
19 //
20 }
21

22 // alternate way to check for concept
23 template <typename T>
24 auto foo() {
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25 if constexpr (device_addressable_ptr<T>) {
26 // T satisfies constraint
27 }
28 }

Listing 3.12: Aliases and Concepts that use the discriminator to enforce the requirement that
only device-accessible types are passed as kernel parameters.

If the constraint is not satisfied, the compiler gives us a descriptive error message (List-

ing 3.13). Not all compilers currently support all the features of concepts as a consequence of

it being a fairly new feature, but one can expect support in their compiler of choice in future

releases. We present our examples with the clang, compiler which supports concepts.

1 file:loc: error: no matching function for call to 'kernel'
2 kernel<<<1, 1>>>(cpu_mem);
3 ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
4 file:loc: note: candidate template ignored: constraints not satisfied

[with T = int *]
5 void kernel(T ptr) {
6 ˆ
7 file:loc: note: because 'int *' does not satisfy '

device_addressable_ptr'

Listing 3.13: A user-friendly error message that points the user to the constraint that failed.

This approach moves a runtime error to a compile-time one, and clearly points the user to

where and what the error is, making it more actionable. Concepts can also be used to ensure

that kernels that call lambda functions pass in the correct parameters. This is especially use-

ful for libraries such as Thrust that make use of functors and lambda functions to customize

the functionality of their algorithms (Listing 3.14). Concepts can be used in conjunction with

if constexpr to implement conditional checks in a more declarative way (Listing 3.12,

line 25).

1 template<typename LambdaFunc, typename... Args>
2 requires std::invocable<LambdaFunc, Args...>
3 __global__ void launch(LambdaFunc func, Args... args) {
4 func(std::forward<Args>(args)...);
5 }

Listing 3.14: concepts paired with lambda functions can be used to ensure that the argument
types are compatible.
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3.2.4 Problems with this approach

Concepts take template parameters as arguments. Therefore, all the disadvantages of using tem-

plates carry over. They must be defined and implemented in headers. There are workarounds,

such as forwarding the parameters to the implementation, to get the best of both worlds—

modern compilers are exceptionally good at stripping away layers of abstractions. There may

be an impact on compile times, but the “early-exit” mechanism, where the compiler terminates

compilation as soon as the constraint is not satisfied, could help too—this depends on the appli-

cation.

An alternate approach is to wrap kernel launches (just like the workaround above) and at run-

time, check if the pointers point to valid GPU memory with cudaPointerGetAttributes

when using the CUDA Unified Memory API. On some system configurations, it is legal to

dereference memory allocated on the host (with malloc, for example) in device-code [41].

On such systems, this approach might nevertheless be useful as there is a performance im-

pact when not using device-local memory—the memory is either “streamed” to the GPU incur-

ring large latency, or may stall the kernel on startup as the memory pages are migrated to the

GPU.

This approach requires that memory-allocation APIs and allocators return strongly-typed

pointers that include additional type information (such as the heap location). Therefore, CUDA

APIs cannot be used directly. One could argue that this approach isn’t as flexible as initially

claimed, as this implementation depends on a custom type (pointer with additional type infor-

mation) we introduced—the claimed advantage of concepts. This is completely accurate. But

first-party libraries (such as Thrust) are indispensable and used widely enough when writing

most CUDA programs that such concepts can be built over its types without sacrificing cross-

library portability. As we will demonstrate in section 3.3, a custom allocator that wraps CUDA

APIs can be written that ties into this system, which can be integrated into tools that Thrust

provides.

3.2.5 Summary

In this section, we
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• briefly explored what C++20 concepts are, and how they simplify existing C++ code;

• presented a problem—how do we ensure that the user passes pointers that are valid in

device code at compile-time instead of trying to validate them at runtime;

• described why this is useful—it saves time and allows the user to quickly iterate and

ensure correctness without having to run the app and deal with runtime crashes;

• combined concepts with constexpr, consteval, and templates to ensure correctness

at compile-time, with legible and easy-to-read error messages; and

• laid out the shortcomings and challenges that one may face when implementing or using

this approach—cross-library portability, compiler support, and having to reimplement

some of the internals to support this feature.

3.3 Allocator
Applications typically have varying memory requirements at runtime, and acquire memory with

system calls. Operating systems expose these APIs through system headers. While these APIs

allow one to allocate memory, they do not necessarily help with managing it. Some languages

allow one to specify allocation behavior. We can tap into this functionality to allocate objects

on various heaps—on both host and device. Advanced allocation strategies (such as arena allo-

cation and memory pools) can also be implemented within these allocators to tune application

performance.

Strictly speaking, allocators are not necessarily a language feature, but a technique or an

abstraction that utilizes language features (destructors and constructors in C++, for example) to

simplify and assist with memory management. Their feature-set may differ across languages,

but the underlying idea is the same—a tool to assist the user with memory management without

the pitfalls that often accompany handling raw pointers and manual memory management.

3.3.1 Introduction

C++ programmers typically follow a paradigm known as RAII (resource acquisition is initial-

ization) [14] to manage memory allocations. RAII is a technique in which the initialization
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of a variable is not distinct from acquiring the resources it manages (as opposed to creating

a variable and then populating it with resources to manage). Initialization and acquisition of

resources happens at once, allowing for the destructor to clean those resources up when the

variable falls out of scope.

In this section, we describe how similar functionality can be implemented over CUDA mem-

ory management APIs. We can combine this with the “typed pointers” described in the previ-

ous section to allow for succinct code (Listing 3.15, and Listing 3.16 vs. Listing 3.17) that is

not littered with mallocs and their corresponding frees—which must be in the reverse or-

der of the allocations when dealing with nested data-structures to prevent leaks. For example,

std::unique_ptr and std::vector are automatically cleaned up at the end of their

scope. We want to use similar features and techniques to manage GPU memory, and improve

interoperation with host code (e.g., a std::vector of integers backed by GPU-addressable

memory). This could be ideal for porting legacy CPU-only applications to the GPU in steps.

In this section, we start by describing what allocators are, present a basic implementation

of an allocator to understand the features it offers, and then we augment it with the features

described in the previous section. We conclude with how they are useful to the user.

1 void load_data(const auto& file) {
2 // use device local memory (cudaMallocManaged)
3 std::vector<int, cup::managed_allocator<int>> gpu_ints {};
4 gpu_ints.reserve(...);
5

6 while(file.has_more_data()) {
7 // read data from file
8 // construct GPU-native data-structures directly in
9 // GPU memory instead of copying it over from the CPU

10 gpu_ints.emplace_back(data);
11 }
12

13 // process data
14 kernel<<<...>>>(gpu_ints.data(), gpu_ints.size(), ...);
15

16 // gpu_ints deallocated at end of scope
17 }

Listing 3.15: What we want to achieve. The memory for the vector’s elements is backed by
GPU memory and is cleaned up automatically. This abstraction is much simpler to follow than
using raw CUDA API calls.
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3.3.2 Allocators and containers

An allocator encapsulates strategies for access or addressing, allocation and deallocation, and

construction and destruction of objects [9]. One of the template parameters of a C++ con-

tainer is an allocator, which is used for allocating its members (for example, the items in a

std::vector).

By following a set of guidelines, we can implement our own allocator and container to

suit our needs [10]. In particular, an allocator must expose methods such as allocate and

deallocate. We want to use similar features to manage GPU memory.

A container library is a generic collection of class templates and algorithms. Prominent

examples of containers include std::vector and std::array [12]. Containers are not

unique to C++. Other languages offer similar equivalents. A typical container exposes methods

such as begin, end, and the indexing operator to access elements. They automatically handle

resizing and reallocation, using an allocator to allocate and deallocate memory.

Libraries such as Thrust provide a set of primitives that the user can use to construct the

functionality we demonstrate in this section. We add to it in that we use concepts (described

in the previous section) to enhance and augment these constructs and features. Before we do

so, we give an overview of how such abstractions work, to better understand the integration of

user-implemented and language-provided machinery.

3.3.3 The problem

CUDA applications primarily allocate memory on the GPU through a rich set of API functions,

of which cudaMalloc, cudaMallocManaged, and cudaFree are the most common.

Allocating memory for an object in CUDA follows a repetitive pattern that can be abstracted

away into a function. Consider the example in Listing 3.16—a mesh data-structure must be

copied onto the GPU. It is easy for the user to forget the factor sizeof(T).

Common errors that users run into include: forgetting to free memory and leaking it; calling

free twice on the same pointer; dereferencing a null pointer or a pointer that is invalid on the

GPU; and out-of-bounds access. We can wrap this allocation and deallocation into a type that

automates this for the user, preventing a whole class of errors. Existing libraries such as Thrust

offer such allocators. By combining them with the ideas demonstrated in the previous section,
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we can improve their utility. Let us take a look at an example to motivate and describe the fea-

tures we would like to have—automatic allocation and cleanup of GPU memory, restrict kernel

parameters to pointers that are valid on the GPU, automatic utilization of optimal routines to

copy memory between various heaps, and allocators that are compatible with the C++ container

paradigm.

1 struct point {
2 double x;
3 double y;
4 };
5

6 struct mesh {
7 std::vector<point> edge_points;
8 std::vector<point> face_points;
9 };

10

11 struct mesh_gpu {
12 point* edge_points;
13 point* face_points;
14 };
15

16 std::vector<mesh> meshes { ... };
17 mesh_gpu* d_mesh; // to store the device address
18

19 static_assert(sizeof(mesh) == sizeof(mesh_gpu));
20

21 CUDA_CHECK(cudaMallocManaged(
22 &d_mesh,
23 sizeof(point) * mesh.size()));
24

25 // allocate pointers in d_mesh
26 CUDA_CHECK(cudaMallocManaged(
27 &(d_mesh->edge_points),
28 sizeof(point) * mesh.edge_points.size()));
29

30 CUDA_CHECK(cudaMallocManaged(
31 &(d_mesh->face_points),
32 sizeof(point) * mesh.edge_points.size()));
33

34 // copy data to the GPU
35 for (int mesh = 0; mesh < meshes.size(); ++mesh) {
36 for (int j = 0; j = meshes.face_points.size(); ++j) {
37 d_mesh[i]->face_points[j] = meshes[i].face_points[j];
38 }
39 // same for edge points
40 }
41

42 kernel<<<>>>(d_mesh->face_points, meshes.size());
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Listing 3.16: Copying data from CPU to GPU—it is hard to figure out what is happening and
check for correctness

The code in Listing 3.16 looks correct at first glance, but there are a few errors.

• Listing 3.16, line 23 should be sizeof(mesh_gpu)

• Listing 3.16, line 32 should be mesh.face_points.size()

• Listing 3.16, line 37 is correct, but cudaMemcpy is faster

• Listing 3.16, line 42 should be meshes.face_points.size()

If a structure has many vectors, as in Listing 3.16, it is necessary to first allocate the root

object, and then recursively allocate and copy the containing elements. Had the root object

d_mesh been allocated using cudaMalloc, this program would crash, as the pointer should

not be dereferenced in host code. Consequently, all the assignments should be replaced with

cudaMemcpy. Each time any new member is added to this structure, one should not forget

to copy the appropriate elements to the GPU. This process is error-prone, distracts the user

from implementing the core of the algorithm, and is sometimes hard to debug, especially when

the memory is inaccessible from the host. One must remember to appropriately free these

regions too, starting with the innermost object. Freeing just the root object leaks memory of

all the contained objects. These problems can be avoided by abstracting all the allocation and

deallocation behavior into an allocator, and ensuring that the types follow the RAII paradigm.

1 struct mesh {
2 std::vector<point> edge_points;
3 std::vector<point> face_points;
4 };
5

6 struct mesh_gpu {
7 cup::vector<point> edge_points;
8 cup::vector<point> face_points;
9

10 mesh_gpu& operator=(const mesh& cpu_mesh) {
11 // uses cudaMemcpy
12 edge_points = cpu_mesh.edge_points;
13 face_points = cpu_mesh.face_points;
14 // or some other implementation that optimizes
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15 // memory layout for the GPU
16 }
17

18 // similar copy constructor
19 };
20

21 std::vector<mesh> cpu_meshes { ... };
22 cup::vector<mesh_gpu> gpu_meshes { ... };
23

24 mesh_gpu gpu_meshes = cpu_meshes;
25

26 kernel<<<>>>(gpu_meshes);

Listing 3.17: Convenient but performant memory management that also ensures code reuse,
thereby improving maintainability.

3.3.4 Allocator using CUDA APIs

Libraries (Thrust, CUDA API wrappers [16]) provide C++ abstractions over the plain CUDA C

API, but we will use the C API to demonstrate the ideas.

We template the allocator on the kind of the heap too, as it allows us to perform compile-

time introspection and implement optimized routines depending on the types of source and

destination for move and copy-construction and assignment, both in host and device code. In

Listing 3.18, we use template parameters, to determine, at compile-time, the type of allocator

to use. It also includes a codepath to allocate memory from device code.

1 namespace cup {
2 enum class memory_type : uint8_t {
3 managed,
4 device_local,
5 // pinned
6 };
7

8 template<typename T, memory_type MT>
9 class allocator {

10 public:
11 static constexpr memory_type memory_t { MT };
12

13 // type traits
14 using value_type = T;
15 // implement rebind
16

17 constexpr allocator() = default;
18

19 // other constructors
20

35



21 [[nodiscard]] __host__ __device__
22 T* allocate(size_t byte_count) {
23 T* ret = nullptr;
24

25 if constexpr ( MT == memory_type::managed ) {
26 # ifdef __CUDA_ARCH__
27 CUDA_CHECK(cudaMallocManaged(&ret, byte_count));
28 # else
29 assert(0&& "Cannot call cudaMallocManaged in device

code");
30 # endif
31 }
32 else if constexpr ( MT == memory_type::device_local ) {
33 CUDA_CHECK(cudaMalloc(&ret, byte_count));
34 }
35

36 return ret;
37 }
38

39 __host__ __device__
40 void deallocate(T* ptr) noexcept {
41 CUDA_CHECK(cudaFree(ptr));
42 }
43

44 __host__ __device__
45 void deallocate(T* ptr, size_t n) noexcept {
46 CUDA_CHECK(cudaFree(ptr));
47 }
48 };
49

50 // equality comparison operators
51

52 template<typename T>
53 using managed_allocator = allocator<T, memory_type::managed>;
54

55 template<typename T>
56 using device_allocator = allocator<T, memory_type::device_local>;
57 }
58

59 auto cells = std::vector<Cell, cup::managed_allocator<Cell>>{ /**/ };

Listing 3.18: A simple allocator using CUDA API

Calls to the default allocator std::allocator used by containers in the standard library

use the global new and delete, and place the object in an implementation-defined manner in

a heap accessible only by the CPU (usually—unified memory support may change this). This

simple allocator conforms to the requirements of the C++ language, meaning it can be used

instead of the default allocator in containers. For example, Listing 3.18, line 59 places all the
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cells in a CUDA-managed heap. They are accessible in both host and device memory.

This allocator makes use of neither the virtual memory APIs offered by the CUDA driver

API [43], nor the stream-ordered memory allocator [39] that provides asynchronous allocations,

and is completely stateless. Thrust exposes a set of higher-order memory allocation primitives,

which can be used to implement a production-ready allocator with all or some of the aforemen-

tioned features, as needed. A library author can combine the techniques presented here with the

allocators provided by Thrust (or extend them) to implement complex memory management

and reuse strategies in an expressive way without the mental overhead of working through the

complexity and verbosity of the C API.

On systems where it is supported, allocations from classic system allocators (such as plain

old malloc) are transparently available to the GPU [41]. On such systems, it is valid to derefer-

ence CPU-allocated pointers on the GPU, without having to invoke any of the cudaMalloc*

APIs.

An allocator as a template parameter can change the allocation behavior of a collection of

items but sometimes we might want to change it for a single object. In such cases, we can

override class-specific new and delete operators to use our allocator and place the objects in

CUDA heaps.

1 struct Cell {
2 /* members */
3 [[nodiscard]] __host__ __device__
4 static void* operator new(size_t byte_count) noexcept {
5 // use cuda allocator
6 }
7

8 // delete calls cudaFree
9 };

10

11 // cell_gpu is a pointer to GPU memory
12 auto cell_gpu = std::make_unique<Cell>(); // smart pointer
13 kernel<<<>>>(cell.get(), ...); // kernel can modify cell
14 cudaDeviceSynchronize();
15 // cell is automatically freed when it goes out of scope

Listing 3.19: Custom new and delete operators for custom user-defined types allow
allocation on the device-accessible heap.

This process of implementing new and delete for every such struct can become cumber-
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some. To alleviate this issue, an empty struct with the custom implementation can be written,

and any other struct requiring them can simply inherit from them, as in Listing 3.20.

1 template<typename T, typename allocator>
2 struct new_delete {
3 public:
4 [[nodiscard]] __host__ __device__
5 static void* operator new(size_t byte_count) noexcept {
6 allocator alloc {};
7 return alloc.allocate(byte_count);
8 }
9

10 __host__ __device__
11 static void operator delete(void* ptr) noexcept {
12 allocator alloc {};
13 alloc.deallocate((T*)ptr);
14 }
15 // other functions as needed
16 // https://en.cppreference.com/w/cpp/memory/new/operator_new
17 };
18

19 struct Cell :
20 public new_delete<Cell, cup::managed_allocator<Cell>> {
21

22 };
23 auto cell_gpu = std::make_unique<Cell>(); // smart pointer
24 kernel<<<>>>(cell.get(), ...); // kernel can modify cell

Listing 3.20: Generic new and delete operators that user-defined types can inherit from.

It is possible to implement an allocator to manage shared memory (__shared__ memory

within a compute unit), which can be used in conjunction with the vector class we describe in

section 3.4 to ensure data alignment requirements are met.

3.3.5 Potential disadvantages

While inheriting from new_delete helps with making CPU data-structures available on the

GPU, it does not allow one to call virtual functions on the GPU (CPU virtual function calls

work as usual). If virtual function call support is desired on the GPU as well [42], libraries such

as CHAI [2, 20] can be used. Calling cudaMalloc* APIs causes the GPU to synchronize

across all executing CUDA streams. This is undesirable when the application allocates and

frees memory at various points during runtime, not just at initialization. In such cases, stream-

ordered memory allocators [39] and virtual memory APIs [43] might be of interest, together
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with tools offered by Thrust.

3.3.6 Summary

In this section, we

• explored the common ways to allocate and manage host and device memory in CUDA

applications;

• described the difficulties, common mistakes, and pitfalls of using the C API directly to

manage memory;

• described language features in C++ that we can use to abstract away allocation and deal-

location of memory by wrapping the C API with C++ constructs;

• demonstrated how these abstractions can help us in writing expressive and maintainable

code without the disadvantages of using the C API directly; and

• laid out potential disadvantages and synchronization issues that may arise if one is not

careful in implementing and utilizing these abstractions.

3.4 Vector
CUDA programs typically have a buffer of some sort containing a collection of items to be

processed on the GPU. These buffers are allocated with memory-allocation functions provided

by the CUDA API. CUDA offers a few APIs to allocate memory based on a user’s needs,

with the most common ones being cudaMalloc and cudaMallocManaged. The usual

approach to allocating a buffer containing num_items of some type T could look like,

1 std::vector<T> cpu_items { /* */ };
2 T* gpu_items;
3 auto error_code = cudaMalloc(&gpu_items, sizeof(T) * num_items);
4

5 if (error_code != cudaSuccess) {
6 /* handle error, exit program */
7 }
8

9 // Copy items from CPU buffers into GPU memory
10 auto error_code = cudaMemcpy(gpu_items,
11 cpu_items.data(),
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12 cpu_items.size(),
13 cudaMemcpyHostToDevice);
14

15 /* launch kernel */
16 cudaDeviceSynchronize();
17 cudaFree(gpu_items);

Listing 3.21: Copying items using the CUDA C API is error-prone, and is often hard to follow
for nested types.

3.4.1 The problem

While Thrust offers thrust::device_vector and thrust::host_vector, the meth-

ods of the class aren’t decorated with __device__, and therefore cannot be used in kernel

code (Listing 3.22), and users resort to passing raw pointers into kernel functions. In this im-

plementation, we focus on dynamic arrays—those whose sizes are only determined at runtime.

While static arrays (int cells[100]) do have sizes associated with them in their type in-

formation, they decay to pointers when the full type is not specified (in function arguments, for

example), their size must be known at compile-time, and are not dynamic.

1 // This example will not compile
2 __global__ void kernel(thrust::device_vector<int> ints) {
3 for (int i = 0; i < ints.size(); ++i) { }
4 for (auto& i : ints) { }
5 }

Listing 3.22: Thrust vectors cannot be used in device code.

Our design of a vector aims to bring these crucial convenience features—indexing []

operator, iterators, ranged for-loops, convenience methods such as .size(), .front(),

.data()—we take for granted in host code into device code as well. We will also demonstrate

that iterators can be used in device code too, with automatic parallelization using grid-stride [19]

loops (see subsection 3.5.2). Our design mostly replicates the design of std::vector for

simplicity and compatibility. We will use the allocators discussed in section 3.3 to allocate

objects.

1 template<typename T,
2 typename allocator_t = managed_allocator<T>,
3 memory_type heap_t = memory_type::managed>
4 class vector {
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5 __restrict__ T* mem { nullptr };
6 int size { 0 };
7 int capacity; { 0 };
8

9 static constexpr auto heap_type { heap_t };
10 [[no_unique_address]] allocator_t alloc { };
11 // type traits
12 // constructors
13 // swap
14 // iterator methods
15

16 // Assignment from vector. Similar logic for copy-assignment
17 explicit vector(const std::vector<T>& vec) {
18 reserve(vec.size());
19 CUDA_CHECK(cudaMemcpy(mem,
20 vec.data(),
21 vec.size() * sizeof(T),
22 cudaMemcpyHostToDevice));
23 // set size to capacity, indicating buffer is full
24 m_size = m_capacity;
25 }
26

27 __host__ __device__ __forceinline__
28 T& operator[](const size_t inx) {
29 #ifdef __CUDACC_DEBUG__
30 assert(inx < size && "Out of bounds access");
31 #endif
32 return mem[inx];
33 }
34

35 __host__ __device__ __forceinline__
36 const T operator[](const size_t inx) const {
37 const T* __restrict__ l = mem;
38 #ifdef __CUDACC_DEBUG__
39 assert(inx < size && "Out of bounds access");
40 #endif
41 return l[inx];
42 }
43

44 // other members not illustrated here for brevity
45 };

Listing 3.23: Our vector abstraction that can be used both in host and device code.

3.4.2 Implementation considerations

Since our vector implementation is an “owning” type (i.e., it manages memory), the copy-

constructor and copy-assignment operators must implement a deep copy. Passing our vector “by

value” as a kernel parameter therefore results in a full copy being generated. This is undesirable

if the size of the buffer is large, and wastes PCIe bandwidth and system resources. In fact, it
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is dangerous when the data-type has a non-trivial destructor due to how the kernel invocation

syntax is implemented [35]. Excluding the copy-assignment and copy-constructors results in a

shallow copy, but this leads to double-free errors, and does not follow the RAII paradigm.

To prevent a deep copy, we could pass the vector to the kernel as a reference or as a pointer

to GPU-addressable memory, but this prevents the compiler from performing certain optimiza-

tions. The compiler cannot guarantee that the value pointed to, even if declared const, might

be changed by a different thread. const only indicates to the compiler that users of this refer-

ence must not modify the value, not that the value itself does not change. A copy offers stronger

guarantees than a value passed by reference. Care must be taken, however, as passing a local

stack variable by reference (or pointer) will lead to a runtime error. As a workaround, the vector

itself can be placed on the CUDA managed or pinned heap using overloaded new and delete

operators (section 3.3), and using std::unique_ptr<vector> for automatic cleanup.

To get the best of both worlds (compiler optimizations through pass by-value as kernel

parameters, and a vector-like API in device code), a non-owning container such as cup::span

can be used as a kernel parameter. Custom conversion operators from Thrust’s device vector

thrust::device_vector to cup::vector allow seamless interoperability. Thrust’s

algorithms are container-agnostic and operate on iterators into containers. Our vector exposes

iterators and can often be used as a drop-in replacement in place where Thrust’s vectors are

used. Codebases already using Thrust can continue utilizing Thrust on host code, and use a

non-owning view into it (with cup::span, for example) as kernel parameters for maximum

flexibility. The only difference between the vector and span is that the latter offers a non-

owning view into the former—i.e., it does not allocate or free memory— and must not outlive

the former.

Implementing a simple saxpy loop in both the C-style way and with our abstractions, we

can see (Listing 3.25 and Listing 3.26) that the PTX generated is identical, and are identical in

terms of resource usage.

1 // Assuming a non-owning span (a cup::vector without RAII)
2 __global__ void kern1(const cup::span<float> a, const cup::span<float

> b, cup::span<float> c) {
3 int maxsz = c.size();
4
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5 for(int i = blockIdx.x * blockDim.x + threadIdx.x; i < maxsz; i
+= blockDim.x * gridDim.x) {

6 c[i] = a[i] + b[i] * 3.2f;
7 }
8 }
9

10 __global__ void kern2(
11 float* __restrict__ a, int as, int ac,
12 float* __restrict__ b, int bs, int bc,
13 float* __restrict__ c, int cs, int cc) {
14

15 for(int i = blockIdx.x * blockDim.x + threadIdx.x; i < cs; i +=
blockDim.x * gridDim.x) {

16 c[i] = a[i] + b[i] * 3.2f;
17 }
18 }

Listing 3.24: Kernels implemented using abstractions and the typical way.

1 $L__BB11_2:
2 mul.wide.s32 %rd7, %r10, 4;
3 add.s64 %rd8, %rd1, %rd7;
4 add.s64 %rd9, %rd2, %rd7;
5 ld.global.nc.f32 %f1, [%rd9];
6 ld.global.nc.f32 %f2, [%rd8];
7 fma.rn.f32 %f3, %f1, 0f404CCCCD, %f2;
8 add.s64 %rd10, %rd3, %rd7;
9 st.global.f32 [%rd10], %f3;

10 add.s32 %r10, %r10, %r3;
11 setp.lt.s32 %p2, %r10, %r6;
12 @%p2 bra $L__BB11_2;

Listing 3.25: PTX for Listing 3.24 (line 6)

1 $L__BB8_
2 mul.wide.s32 %rd7, %r22, 4;
3 add.s64 %rd8, %rd3, %rd7;
4 add.s64 %rd9, %rd2, %rd7;
5 ld.global.nc.f32 %f1, [%rd9];
6 ld.global.nc.f32 %f2, [%rd8];
7 fma.rn.f32 %f3, %f1, 0f404CCCCD, %f2;
8 add.s64 %rd10, %rd1, %rd7;
9 st.global.f32 [%rd10], %f3;

10 add.s32 %r22, %r22, %r4;
11 setp.lt.s32 %p2, %r22, %r17;
12 @%p2 bra $L__BB8_2;

Listing 3.26: PTX for Listing 3.24 (line 16)

The Clang compiler2 allows a user to overload functions and methods based on the __host__

and __device__ attributes, and isn’t available in the nvcc official compiler. This feature

allows one to disambiguate functions with the same name and arguments based just on the

attributes, allowing one to implement host and device logic in separate functions. While this

doesn’t seem that significant at first glance, when combined with templates and concepts, it

can be used to restrict function usage. For example, it can be used to restrict the availability

of operator[] to only in contexts where the memory can be safely dereferenced. This is

extremely powerful as it moves a runtime error (dereferencing memory in the wrong execu-

tion space) to a compile-time one, dramatically improving user productivity and safety. An

equivalent with partial functionality can be implemented with nvcc (Listing 3.27).
2Clang: Compiling CUDA with clang: https://llvm.org/docs/CompileCudaWithLLVM.html
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1 auto func() {
2 cup::vector<int, cup::device_allocator<int>> ints_d {};
3 cup::vector<int, cup::managed_allocator<int>> ints_h {};
4 ints_d[19] += 100; // compile-time error in host code
5 }

Listing 3.27: Compile-time detection of incorrect access into buffers.

3.4.3 Potential disadvantages

As can be seen in Listing 3.23, the indexing operator had to be tweaked to coerce the compiler

into generating the most optimized version of PTX, identical to the simple implementation.

Abstractions are not free. They take up resources, either at runtime, or at compile-time (com-

pilation takes longer). The compiler can retain only so much of the program’s local context

to generate optimized code, and in extreme cases, it might miss out on some optimizations.

Strong attention to detail and deep understanding of C++ specification is required to ensure

these abstractions generate optimal code.

During profiling, all profiler data for a memory load through the operator[] in device

code is attributed to the location where it is defined (in vector.cuh), instead of the call-site.

This makes it hard to track down the actual location of calls that contribute to all the aggregated

metrics (which are typically one up the call-stack). Some debuggers offer a way to mark third-

party code as such, and prevent stepping into it during debugging (called “just-my-code” in

Visual Studio3). Similar functionality can perhaps be implemented and used in profilers to

attribute metrics to the call-site of such functions, rather than the functions themselves.

We demonstrated that there is potential for our abstractions to generate optimal code. But

depending on the specific circumstances under which they are used, it may not always be op-

timal, as can be seen in Listing 3.28. Tools such as godbolt.org make it easy to inspect the

assembly generated. We urge the reader to use such tools to assist with the decision-making

process.

Before we conclude, let us look at an example of missed optimizations that may happen

when one does not inspect or realize the semantics of the code.

3Visual Studio Documentation: Just my code debugging
https://learn.microsoft.com/en-us/visualstudio/debugger/just-my-code
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1 void foo(int* a, const int& b) {
2 for (int i=0; i<10; i++) {
3 a[i] += b;
4 }
5 }
6

7 // generates: https://godbolt.org/z/T7h4nK3G7
8 foo(int*, int const&): # @foo(int*, int

const&)
9 mov eax, dword ptr [rsi]

10 add dword ptr [rdi], eax
11 mov eax, dword ptr [rsi]
12 add dword ptr [rdi + 4], eax
13 mov eax, dword ptr [rsi]
14 add dword ptr [rdi + 8], eax
15 mov eax, dword ptr [rsi]
16 add dword ptr [rdi + 12], eax
17 mov eax, dword ptr [rsi]
18 add dword ptr [rdi + 16], eax
19 mov eax, dword ptr [rsi]
20 add dword ptr [rdi + 20], eax
21 mov eax, dword ptr [rsi]
22 add dword ptr [rdi + 24], eax
23 mov eax, dword ptr [rsi]
24 add dword ptr [rdi + 28], eax
25 mov eax, dword ptr [rsi]
26 add dword ptr [rdi + 32], eax
27 mov eax, dword ptr [rsi]
28 add dword ptr [rdi + 36], eax
29 ret

Listing 3.28: The compiler generates unnecessary reads from b at each iteration.

In Listing 3.28, the function foo increments each member of array a by b. Each mov

(Listing 3.28, line 9) loads b into a register, and each add (Listing 3.28, line 10) adds the

loaded b value to a[i] and then stores the result into a[i]. It could very well be that b is a

reference into one of the elements in a; this is called “aliasing.” To account for this possibility,

the compiler has to load b after each iteration.

To prevent this, the argument a could be decorated with __restrict__, which informs

the compiler that two pointers cannot point to overlapping memory regions. One would imme-

diately pose the question—and rightfully so—“Why would the compiler load b over and over

again, is it not const?” A const reference (const T&) only guarantees that the reference

cannot be modified using that “name” (we cannot use b to modify the value it exposes), not that

the reference itself does not change—another thread, which holds a mutable reference to the
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underlying value represented by b, could have modified b. We therefore must load b at every

iteration to ensure logical correctness, even if that was not the intent of the programmer (the

code expresses a different intent than what the programmer intended and expects). Passing our

vector as a kernel parameter by-reference could generate suboptimal code due to this reason.

Non-owning containers can be used to prevent this, as they can safely be passed by-value.

3.4.4 Summary

In this section, we

• demonstrated the need for and the convenience of a vector-like type that can be used in

both host and in device code;

• looked at Thrust’s vector, and realized that it cannot be used in device code (which may

be a design decision);

• proposed and constructed a vector type that utilizes the allocator types presented in pre-

vious section to simplify usage across both host and device code;

• stressed the non-standard semantics that CUDA uses for passing kernel arguments from

host to device code and how it impacts us and our implementation;

• proposed alternative implementations and design considerations to work around the prob-

lems it presents; and

• explained the disadvantages and shortcomings of this approach (missed optimization op-

portunities), ways to overcome them, and how additional language features or compiler

hints may address some of these concerns.

3.5 Iterators
An iterator enables one to traverse (i.e., iterate) over containers such as vectors and lists. This

allows one to iterate over the elements of a container without explicitly indexing into it (for ex-

ample, with the [] operator). Most programming languages offer various means to do so. Using

iterators prevents runtime errors such as out-of-bounds accesses, and simplifies implementation
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of higher-order primitives and algorithms that process a collection of items. By exposing a

common interface, algorithms can be implemented agnostic to the underlying container (List-

ing 3.29).

3.5.1 Introduction

Thrust offers iterators, but since the underlying container cannot be used in device code, iterators

on host code, when passed to kernels, must “decay” to the underlying pointer types. In this case,

iterators are usually type aliases to a pointer of the underlying type (float*, for example).

While this retains much of the iterator-like functionality, the associated metadata such as the

size, capacity, and bounds-checking of the container must be passed as separate arguments

to the kernel, due to the aforementioned reason. We want to be able to use iterators and the

associated containers as well in device code, along with the convenience language and library

features that they enable. Iterators enable succinct but expressive implementation of loops,

and we want to bring this to device code as well. Let us take a look at a few examples that

demonstrate the utility of iterators.

In Listing 3.29, the user need only define a single function that is flexible to the types of

arguments passed in. The function double_all is actually a template over its arguments—

the auto keyword is just syntactic sugar for writing the full template. Thrust offers similar

features that can be used on the host and device (for example, thrust::transform). With

access to iterators in device code too, we are able to complement the library’s feature set. For

better error messages during compilation, one could define a concept (Listing 3.29, line 8) that

ensures that the function arguments meet the requirements of a container (Listing 3.29, line 14).

1 void double_all(auto& items) {
2 for(auto& item : items) {
3 item = item * 2;
4 }
5 }
6

7 template <typename container_t>
8 concept container = requires(container_t& a, container_t& b) {
9 // provides a .begin function

10 { a.begin() } -> std::same_as<typename container_t::iterator>;
11 // and so on
12 };
13
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14 void double_all(container auto& items) {
15 for(auto& item : items) {
16 item = item * 2;
17 }
18 }
19

20

21 void foo() {
22 std::vector<int> a{ 1, 2, 3 /*...*/ };
23 std::vector<float> b{ 1.1, 2.2, 3.3 /*...*/ };
24 std::list<double> c{ 1.2, 2.3, 3.4 /*...*/ };
25

26 double_all2( a );
27 double_all2( b );
28 double_all2( c );
29 thrust::transform(items.begin(), items.end(), /**/);
30 // and so on
31 }

Listing 3.29: Example of an iterator. We don’t need to explicitly specify the start and end
index—they are inferred.

A classic iterator goes over elements one at a time. We should not use the same iteration

mechanism in the GPU, as this would cause all threads to iterate over all the elements in the

container, starting at index zero. Instead, we use a form of parallelization (discussed in the next

section) where we use the current thread’s index to process different pieces of data with the

same instructions.

Without iterators, both host and device code may be more verbose than preferred. Assuming

that mesh’s cellmember is a type that provides the appropriate iterators, one could implement

mesh processing as follows,

1 __device_
2 void process_mesh_a(mesh& gpu_mesh) {
3 for (auto& cell : to_gpu_iterator(gpu_mesh.cells)) {
4 process_cell(cell);
5 }
6 }
7

8 __device_
9 void process_mesh_b(mesh& gpu_mesh) {

10 int tid = blockIdx.x * blockDim.x + threadIdx.x;
11 int stride = blockDim.x * gridDim.x;
12

13 for (int inx = tid; inx < gpu_mesh.cells.size(); i += stride) {
14 process_cell(gpu_mesh.cells[inx]);
15 }
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16 }

Listing 3.30: GPU code that is as expressive and readable as CPU code using custom iterators—
we can use ranged for-loops in GPU code.

Let us look at how we can implement to_gpu_iterator.

3.5.2 Grid-Stride loop

CUDA exposes threads in a hierarchy of grids, blocks, and threads [18]. A grid is made up of

multiple blocks, and a block consists of multiple threads. For best performance, neighboring

threads from within a compute unit must access elements from neighboring memory locations.

A common iteration strategy to maintain coalesced accesses while processing each item exactly

once is called the “Grid-Stride loop” [19]—note the initialization and increment of the loop

variable i (Listing 3.31). This ensures that neighboring threads access neighboring elements

and process all items in sets of warp-size.4 Consequently, each thread index is incremented by

the total number of threads that were launched in parallel (block size times the grid size).

1 __global__ void kernel(cup::vector<int>& items) {
2 const auto tid { threadIdx.x + blockIdx.x * blockDim.x };
3 const auto stride { blockDim.x * gridDim.x };
4

5 for (int inx = tid; inx < n; inx += stride) {
6 // ...
7 }
8 }

Listing 3.31: CUDA Grid-Stride loop to parallelize processing of items on the GPU

3.5.3 The problem

In subsection 3.4.1, we saw that abstractions such as Thrust’s vector cannot be used in device

code. A vector is just one half of the solution. The other half is providing iterators to help

implement convenient parallelization strategies in kernel code. One of the most common issues

encountered is incorrect work parallelization using grid-stride loops. For example, it is good

exercise to try and find the errors in Listing 3.32.

1 __global__ void kernel1(int* mem, int size) {

4The smallest executable unit of parallelism on a CUDA device comprises 32 threads (termed a warp of
threads) [37].
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2 const int tid { threadIdx.x + blockIdx.x * blockDim.x };
3 const int stride { blockDim.x * gridDim.x };
4

5 for (int i = 0; i < size; ++i) { }
6 }
7

8 __global__ void kernel2(int* mem, int size) {
9 const int tid { threadIdx.x + blockIdx.x * gridDim.x };

10 const int stride { blockDim.x * gridDim.x };
11

12 for (int i = threadIdx.x; i < size; i += stride) { }
13 }
14

15 __global__ void kernel3(int* mem, int size) {
16 const int tid { threadIdx.x + blockIdx.x * gridDim.x };
17 const int stride { blockIdx.x * gridDim.x };
18

19 for (int i = tid; i < size; i += stride) { }
20 }
21

22 __global__ void kernel4(int* mem, int size) {
23 const int tid { threadIdx.x + blockIdx.x * gridDim.x };
24 const int stride { blockDim.x * gridDim.x };
25

26 for (int i = tid; i < size; i += stride) { }
27 }

Listing 3.32: Incorrect grid-stride implementations.

3.5.4 Prior work

Hemi [25] exposes in-kernel iterators that automatically implement the grid-stride loop, allow-

ing one to write Listing 3.33. Alternatively, CUDA offers cooperative groups, which provide

a higher-order abstraction over grids and blocks. They also offer higher-order synchronization

primitives to synchronize between threads, blocks, or across the whole system.

1 void saxpy(int n, float a, const float *x, float *y) {
2 hemi::parallel_for(0, n, [=] HEMI_LAMBDA (int i) {
3 y[i] = a * x[i] + y[i];
4 });
5 }
6

7 // alternatively,
8 __global__
9 void saxpy(int n, float a, float *x, float *y) {

10 for (auto i : hemi::grid_stride_range(0, n)) {
11 y[i] = a * x[i] + y[i];
12 }
13 }
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Listing 3.33: Hemi example that implements a grid-stride loop.

3.5.5 Grid-stride loop using iterators

We need to construct an iterator that emulates the grid-stride loop. An iterator following the

same approach with initialization and increment of the iterating variable fulfills our criteria—

each thread initializes the iterator with its global thread ID, and increments it by stride, and

uses a sentinel value to terminate the loop. The adaptor in Listing 3.35 changes the start and

end iterators, and returns new iterators that implement the grid-stride iteration strategy.

Before we implement our iterator, we need to understand how ranged for-loops [15] work.

For our current implementation, a rough mental-model of what the compiler generates could

look like Listing 3.34,

1 for (auto& i : items) {
2 // user's code
3 }
4

5 // can be visualized as,
6 {
7 auto begin = items.begin();
8 auto end = items.end();
9 for (auto ptr = begin; ptr != end; ++ptr) {

10 auto& i = *ptr;
11 {
12 // user's code
13 }
14 }
15 }

Listing 3.34: Range based for loop—compiler approximation.

Since the exit criteria is not based on a less-than-or-equal (≤ ) comparison, but rather a strict

equality comparison (Listing 3.34, line 9), we should explicitly set the end iterator one stride

away from the last valid element per-thread. This is acceptable, as the last element is never

dereferenced. In the code listing below (Listing 3.35), we present constructs that encapsulate:

• the construction of a special range-view into a collection called grid_stride_adaptor,

whose iterators implement the grid-stride loop. This object takes in any container that ex-

poses a contiguous iterator and uses its begin() and end() methods to generate the
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corresponding iterator objects that bound the ranged-for loop; and

• the logic for the grid-stride iterator itself (grid_stride_iterator), that implements

the grid-stride loop. It simply initializes the iterator based on the thread index, and im-

plements a method that increments the iterator by the stride value.

1 template<typename T>
2 struct grid_stride_iterator {
3 __device__
4 grid_stride_iterator(T pos)
5 : m_pos { std::to_address(pos) +
6 threadIdx.x + (blockIdx.x * blockDim.x) } {}
7

8 constexpr grid_stride_iterator& operator++() {
9 m_pos += blockDim.x * gridDim.x;

10 return *this;
11 }
12

13 // other methods
14 private:
15 pointer m_pos {};
16 };
17

18 template <typename T>
19 struct grid_stride_adaptor {
20 using underlying_iterator = T::iterator;
21 using iterator = grid_stride_iterator<underlying_iterator>;
22

23 underlying_iterator pstart {};
24 underlying_iterator pend {};
25

26 __device__
27 grid_stride_adaptor(T& ctr)
28 : pstart { ctr.begin() } {
29 const size_t sz = ctr.size();
30 const size_t stride = blockDim.x * gridDim.x;
31 const size_t remd = sz % stride;
32 const size_t tid = threadIdx.x + (blockIdx.x * blockDim.x);
33

34 pend = pstart + sz - remd;
35 if (remd != 0 && tid < remd)
36 pend += stride;
37 }
38

39 constexpr iterator begin() {
40 return { pstart };
41 }
42

43 constexpr iterator end() {
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44 return { pend };
45 }
46 };
47

48

49 __global__ void kernel(std::span<int> items) {
50 for (auto& i : grid_stride_adaptor(items)) { ... }
51 }

Listing 3.35: A minimal example of a grid-stride iterator and adaptor that enables efficient
grid-stride iteration over any iterable (Listing 3.35, line 50).

We can see that the loop in Listing 3.36 not only states the intent of the programmer—

modifying (or adapting) the iterator to optimize access patterns for the GPU—but also prevents

errors in implementing the grid-stride loop. It is arguably more readable and intuitive to under-

stand than the classic implementation. Our approach follows the DRY (do not repeat yourself)

principle, and prevents one of the most common errors that a user can make—incorrect imple-

mentation of the grid-stride loop, a common source of frustration and confusion.

1 __device_
2 void process_mesh(mesh& gpu_mesh) {
3 for (auto& cell : grid_stride_adaptor(gpu_mesh.cells)) {
4 process_cell(cell);
5 }
6 }

Listing 3.36: Using the CUDA grid-stride adaptor. Each cell is processed in parallel, allowing
for generic and error-free implementation. Only one implementation of grid-stride technique
needs to be maintained.

In some cases, we want an index sequence rather than a reference to the elements them-

selves. To support such a case, the iterator can be initialized with just the indices rather than

the pointers. Using iterators helps us prevent the most common class of errors when trying to

index into buffers on the GPU—out-of-bounds accesses and incorrect implementation of the

grid-stride loop.

3.5.6 Potential disadvantages

While the PTX for the loop is nearly identical, in release mode, this implementation uses 16

registers, whereas the simple equivalent implementation uses 12 registers. When compared to

the simple implementation, we perform extra work initially to compute the exact end iterator
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and store it in a local variable, which explains the extra register overhead. For applications that

suffer from register pressure, this increase in register usage might reduce occupancy, which may

lead to a decrease in performance. This extra register pressure may be completely unacceptable

for some users, and in cases where it is not, we urge the user to measure (among other things,

register usage) and benchmark their code to precisely determine if the tradeoff is acceptable.

We can see (below) that the PTX that implements the loop of our examples is almost iden-

tical. The iterator example has one fewer instruction, and the load-multiply-store sequence of

instructions appear earlier in the loop.5 The extra add instruction (on line 7) is for indexing

into the buffer a—we increment the iterating variable i which is then used to update the current

pointer into the buffer a.

1 __global__
2 void kern_normal(int* __restrict__ a, int sz) {
3
4 const auto tid {
5 threadIdx.x + (blockIdx.x * blockDim.x)};
6 const auto stride{
7 blockDim.x * gridDim.x};
8
9 for (size_t i = tid; i < sz; i += stride) {

10 a[i] *= 3;
11 }
12 }

Listing 3.37: Grid-stride loop without iterator.

1 __global__
2 void kern_span(std::span<int> a) {
3 // A span is equivalent to
4 // struct {
5 // int* memory;
6 // size_t size;
7 // } + other methods;
8
9 for (auto& i : cup::grid_stride_adaptor(a)) {

10 i *= 3;
11 }
12 }

Listing 3.38: Grid-stride loop with iterator.

1 $L__BB0_2:
2 shl.b64 %rd8, %rd10, 2;
3 add.s64 %rd9, %rd4, %rd8;
4 ld.global.u32 %r7, [%rd9];
5 mul.lo.s32 %r8, %r7, 3;
6 st.global.u32 [%rd9], %r8;
7 add.s64 %rd10, %rd10, %rd3;
8 setp.lt.u64 %p2, %rd10, %rd2;
9 @%p2 bra $L__BB0_2;

Listing 3.39: PTX for Listing 3.37 (line 10)

1 $L__BB1_5:
2 ld.global.u32 %r11, [%rd27];
3 mul.lo.s32 %r12, %r11, 3;
4 st.global.u32 [%rd27], %r12;
5 shl.b64 %rd25, %rd1, 2;
6 add.s64 %rd27, %rd27, %rd25;
7 setp.ne.s64 %p4, %rd27, %rd9;
8 @%p4 bra $L__BB1_5;

Listing 3.40: PTX for Listing 3.38 (line 10)

3.5.7 Summary

In this section, we
5A godbolt.org example is available to test at https://godbolt.org/z/efj34nM1r
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• explored the advantages of being able to use a type that exposes an interface similar to

std::vector in both host and device code;

• demonstrated the need for an abstraction for iterating over a range of elements;

• expanded upon the vector described in the previous section and how iterators offer flexi-

bility;

• explored the advantages and disadvantages of using iterators over implementing them us-

ing raw loops—this may introduce additional register pressure, which may be completely

unacceptable in certain cases, but makes the code easier to read and maintain; and

• presented resources and ways to inspect generated code to fine-tune the performance-

maintainability trade off.

3.6 Coroutines
A coroutine is a function that can suspend execution to be resumed later. This makes them

ideal for implementing lazy generators, infinite lists, cooperative scheduling, and event loops.

In this section, we will take a look at how coroutines can be used by a library author to wrap

common CUDA programming patterns in more familiar user-friendly C++ ones, simplifying

consumption by end users.

3.6.1 Introduction

The main difference between a function and a coroutine is that the latter can persist its state

across subsequent invocations. The state—usually collectively referred to as an “activation

frame”—includes information such as function arguments, local variables, and return addresses,

to name a few. The activation frame is essentially a block of memory that holds all this state.

As function invocations are strictly nested, their activation frames can be stored and manip-

ulated using efficient data-structures such as a stack (usually referred to as the “call-stack” or

“stack frame”). In contrast, coroutine activation frames may not be strictly nested, and therefore

are usually stored on the heap. It is important to note that coroutines do not require multiple

threads. Coroutines and multithreading impart concurrency and parallelism respectively to a
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process. This implies that a single-threaded program can have concurrent blocks of code. For

example, single-core machines of the past supported concurrency by time-slicing between run-

ning processes.

3.6.2 Why coroutines

Before we delve further, let us try and understand why coroutines may be useful. CUDA pro-

grams, from the point of view of the CPU, involve running some host code, preparing work

for the GPU, launching the kernel, perhaps executing more host code, and then waiting for the

GPU work to complete. If the work is still pending, the program can resume processing more

host code before checking if GPU work is complete. This in essence, from the point of view of

the CPU, is concurrency—similar to how a single-threaded program can periodically check on

a file descriptor with non-blocking system calls such as poll or epoll. Coroutines therefore

offer a natural abstraction over scheduling GPU work.

3.6.3 Coroutines in C++

Coroutines were introduced to the C++ language in the C++20 standard. C++20 coroutines—as

a language feature—offer the basic building blocks and compiler support necessary to build and

implement user-facing coroutines. Implementing a coroutine without a helper library (such as

cppcoro [22]) entails a fair bit of boilerplate code, which some examples exclude for the sake

of brevity. A coroutine consists of three fundamental building blocks that offer points where

the user can customize functionality—a task that encapsulates the work to run; a handle to the

coroutine to suspend, resume, and complete execution; and a way to retrieve a result at various

points in the coroutine’s lifetime. A coroutine is associated with

• a promise type to store and retrieve the result, modified from within the coroutine;

• a handle to the coroutine to suspend, resume, and complete the execution of coroutine by

destroying its activation frame; and

• the coroutine state, which contains the local variables, coroutine arguments, storage for

the promise type, and an implementation-defined piece of data that represents the suspen-

sion and continuation point.
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Before we delve further, let us take a look at a simple coroutine that showcases the boilerplate

to better understand the details of these building blocks.

1 struct promise_type {
2 T value{};
3

4 generator<T> get_return_object() {
5 return {handle_type::from_promise(*this)};
6 }
7 std::suspend_always initial_suspend() noexcept { return {}; }
8 std::suspend_always final_suspend() noexcept { return {}; }
9 // void return_void() {}

10

11 T return_value() { return value; }
12 std::suspend_always yield_value(T &&v) {
13 value = std::move(v);
14 return {};
15 }
16 std::suspend_always yield_value(const T &v) {
17 value = v;
18 return {};
19 }
20 std::suspend_always return_value(const T &v) {
21 value = v;
22 return {};
23 }
24 T await_transform() {}
25 void unhandled_exception() {}
26 };
27

Listing 3.41: Promise type of the generator that stores and gets the value.

The promise type (Listing 3.41) is required to expose a few functions that the compiler uses

to generate an internal state-machine for the coroutine. Of particular interest are the ones that

set and return the value which correspond to co_yield and co_return in the coroutine

respectively. We can use these to implement a lazy generator that, for example, generates the

sequence of Collatz6 numbers for a given initial value.

1 generator<uint64_t> collatz_sequence(uint64_t val) {
2 while (val != 1) {
3 co_yield val;
4 if (val % 2 == 0)
5 val /= 2;
6 else

6Collatz conjecture—wikipedia.org/wiki/Collatz conjecture
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7 val = (3 * val) + 1;
8 }
9 co_return val; // value is 1

10 }
11

12 int main() {
13

14 auto seq = collatz_sequence(120);
15 int c = 0;
16

17 while (seq) {
18 printf("Iter[%5d]: %5lu\n", c++, seq());
19 }
20 }

Listing 3.42: A coroutine that lazily generates the Collatz sequence for a given input.

3.6.4 Coroutines and CUDA

The customization points from Listing 3.41 can be used to launch and wait on kernels, which

allows us to write,

1 auto func() {
2 // ...
3 auto work = compute_gpu(/* ... */);
4

5 // perform some other tasks as GPU task runs
6

7 co_await work(); // proceed only after GPU work returns
8 // If work is not yet complete, control flow is returned
9 // to caller of 'func'

10

11 // rest of the function
12 }

Listing 3.43: A potential example of CUDA kernel launch and how coroutines fit into the
programming paradigm.

This may seem inconsequential, but this allows a completely new and succinct way to ex-

press complex CUDA features and kernel-launch dependency chains of both CPU and GPU

work.

Kernel launches are not free—they take up CPU time. When quite a few kernels are

launched to do some intermediate work before launching the large compute kernel, the de-

lay due to the submission of work (kernel launch) starts to add up and may even dominate the

time taken to run the kernel itself. CUDA graphs were introduced to alleviate this issue. In-
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stead of the CPU submitting each kernel individually, CUDA exposes an API that allows us to

instantiate a graph, record all the kernels we want to launch, and submit all of them to the GPU

at once. CUDA graphs can be created in one of two ways—stream capture, and explicit graph

creation. An example used on the CUDA documentation7 is given below,

1 auto func(/* */) {
2 // A
3 // / \
4 // B C
5 // \ /
6 // D
7 cudaStreamBeginCapture(stream1);
8

9 kernel_A<<< ..., stream1 >>>(...);
10

11 // Fork into stream2
12 cudaEventRecord(event1, stream1);
13 cudaStreamWaitEvent(stream2, event1);
14

15 kernel_B<<< ..., stream1 >>>(...);
16 kernel_C<<< ..., stream2 >>>(...);
17

18 // Join stream2 back to origin stream (stream1)
19 cudaEventRecord(event2, stream2);
20 cudaStreamWaitEvent(stream1, event2);
21

22 kernel_D<<< ..., stream1 >>>(...);
23

24 // End capture in the origin stream
25 cudaStreamEndCapture(stream1, &graph);
26 }

Listing 3.44: CUDA graph using the C API

The dependency chain in the example is difficult to parse and reason about. With coroutines,

we can rewrite the example above as follows,

1 auto func() {
2 // Launch A and wait
3 co_await launch_kernel_A(...);
4

5 // Launch B and C when A is done
6 auto kern_B = launch_kernel_B(...);
7 auto kern_C = launch_kernel_C(...);

7CUDA Graphs—Cross-stream Dependencies and Events:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=graph#creating-a-graph-using-
graph-apis
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8

9 // Wait for B and C to finish before launching D
10 co_await wait(B, C); // or co_await B; co_await C;
11 // Launch D, wait, and return
12 co_await launch_kernel_D(...);
13 }

Listing 3.45: The same graph as above (Listing 3.44), but using coroutines

Listing 3.45 is arguably significantly easier to build a mental model of and reason about. A

lot of the complexity is implemented in the awaitables and the coroutine object. In particular,

one must implement a scheduler that launches these kernels on a stream and wakes them up

after checking that the kernel has finished executing.

The implementation we just described faces the same issue the CUDA graphs solve—

launching kernels takes time, and launching many can cause a lot of latency. Coroutines are

flexible enough in that we can take advantage of CUDA graphs for launching kernels too. In-

stead of actually launching the kernel, the coroutine implementation could just as well capture

the launches with stream capture and lazily submit all the work at the end of the capture, just as

seen in Listing 3.44.

A coroutine’s allocator can be overloaded to specify a custom allocator. This allows one to

use the CUDA managed-heap for allocating the coroutine frame. This allows one to allocate

all the local variables in the coroutine frame on the CUDA managed heap, allowing them to

be freely passed by-reference (either through a reference, or as a pointer with the address-of

operator &value) to kernel parameters. This could be useful for prototyping implementations

before implementing the final API.

3.6.5 Potential disadvantages

As of writing, the coroutine support library is still in development, and is expected to ship with

C++23 or C++26 which includes commonly used abstractions over the raw-coroutine compiler-

interface. This should help simplify writing custom coroutines that integrate and interoperate

with CUDA.

When using CUDA managed memory for allocating a coroutine frame, care must be taken.

Managed memory works through a mechanism known as paging [40]. Assume a case where

two variables are present in the same page of memory and are initially resident on the CPU.
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When the GPU tries to access a variable, a page fault is generated and is migrated to the GPU.

At the same time, if the CPU tries to access it (since kernel launches are asynchronous, or from

a different thread), the program will be terminated with a platform-dependent runtime-error. A

workaround is to explicitly synchronize with the CPU or to use pinned memory.

3.6.6 Summary

In this section, we

• looked at a new C++ feature—coroutines—and how they can be used to expose and ab-

stract asynchronous operations, including CUDA kernel launches;

• described how the native API for parallel kernel launches may be cumbersome to use;

• proposed how coroutines can tap into this API machinery and be used to launch kernels

and asynchronously wait for the results;

• described the alternatives that exist (CUDA graphs) and how they solve the issue of kernel

launch latency, and how this abstraction also fits nicely into coroutines; and

• explained the shortcomings of this approach, and potential issues that one might encounter—

memory consistency and synchronization issues that might arise if one is not careful with

memory access patterns in the application.
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Chapter 4

Case study

Now that we have described various techniques, we bring them to bear on a widely used critical

piece of software. In this chapter, we present a case study through which we demonstrate the

advantages and disadvantages of the techniques we presented so far. We will first introduce

the software under study, describe its various characteristics to understand and reason about the

constraints we are bound by, and then proceed to describe how our tools helped the development

of this piece of software.

4.1 Introduction
The Hydrologic Engineering Center of the US Army Corps of Engineers has been developing

computer software for hydrologic engineering and planning analysis procedures since its incep-

tion in 1964. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) is a

piece of software that allows the user to perform one-dimensional steady flow simulation, one

and two-dimensional unsteady flow calculations, sediment transport/mobile bed computations,

and water temperature/water quality modeling [49]. HEC-RAS is used to simulate disasters

such as flooding and visualize the scale and extent of its impact. Due to the extensive insight

it offers into the behavior of water over large land masses (e.g., cities near a river), it plays a

key role in planning of hydrological projects, prevention and preparation for disasters such as

floods and dam bursts.

Due to the nature of the software—improper use could potentially cost lives—concerns

such as the ability to audit and inspect the codebase and its dependencies, maintainability of the

62



codebase, documentation, and testing are paramount. They help ensure that the team developing

the code can, at all times, reason about the behavior of the implementation and minimize human

errors and errors introduced into computations.

In this chapter, we will cover two different aspects of the implementation.

• Implementation of the solver in C++

• Exposing this solver to C# though an API

Before we describe the internal details, we first describe the project being ported, and why

it is a good case study to field-test our ideas.

4.2 Background
HEC-RAS can be described in simple terms as a shallow-water simulation framework. Shallow-

water simulation typically concerns itself with the behavior of large bodies of water where

the horizontal scale is much larger than the vertical scale (depth)—shorelines, rivers, lakes,

for example. We can make the assumption that the vertical velocities are small and that the

pressure gradient is hydrostatic [48]. The general mathematical models are therefore based on

depth-averaged version of classic three-dimensional conservation laws [17]. Consequently, this

problem can be approximated with a one or two-dimensional model (depending on the setting)

that may store additional data to better approximate a full three-dimensional simulation. Such

approximation relies on unstructured grids to cover large areas of land as the simulation domain,

with higher-resolution meshes used around key areas of interest such as dams and levees. This

also allows computational flexibility—different timesteps (or adaptive timesteps) can be used at

different parts of the mesh to tune the tradeoff between accuracy of the solution and time taken.

The current iteration of the software suite is built using C#. This is part of an ongoing

effort to modernize the codebase and migrate it away from Fortran. C# is a garbage-collected

language by Microsoft, and is often compared to Java due to the similarities they share. Both are

garbage-collected languages and allow a user to write a program once and run them anywhere

(WORA). It uses the .NET Core runtime to execute users’ programs. This makes it easier to

develop (once) and run the non performance-critical parts of the application (such as the UI) on

any system.
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Water simulation frameworks are often excellent candidates for extensive parallelization due

to the nature of the computations involved. The simulation domain containing land and water

is divided into cells separated by faces. Fundamentally, the state of water level in a cell is a

function of the water level and velocity of water in neighboring cells. This computation pattern

is ripe for parallelization. Computations for a given cell can often be performed independent

of computations in any other—an ideal candidate to offload onto the GPU. There are various

mathematical methods that describe the steps to take to achieve a realistic simulation, and are

collectively known as “solvers.”

4.3 Design decisions
While C# can be used to write performant code that takes advantage of the hardware, it is mostly

limited to the CPU. It does not officially provide support for offloading computations onto the

GPU. The garbage collector (GC) is a piece of the problem. While there are various techniques

to minimize the impact of a garbage collector, its behavior cannot be precisely controlled. At

some point, the garbage collector must pause all executing threads and clean up unreachable

memory, or risk leaking it. This may introduce unacceptable latency into the time-critical areas

of the application. Techniques such as memory pools which reuse memory preventing repeated

allocations and deallocations, and pinning memory which informs the GC that it should not

clean up the referenced memory, can be used to lower the impact. In fact, these approaches are

used in the CPU implementation of the solvers.

A few potential approaches exist to offload computations onto the GPU, which we describe

below, to establish the context and reasoning for our implementation choices.

• Use an existing C#1 library that compiles C# functions into GPU kernels.

• Use CUDA directly in C# by using wrapper libraries that expose the C API of CUDA as

a C# library. These are libraries typically known as “native bindings.”

• Implement the core computational logic in C++, a language officially supported by CUDA,

and expose only the computational interface to the C# codebase.

1Altimesh-Hybridizer [1], ILGPU [24], ManagedCUDA [26], to name a few
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4.3.1 Existing libraries

Typically, it is recommended that one use existing libraries to implement missing functionality.

In the case of HEC-RAS, this may be a potential liability. For such an important piece of

software that has real-life consequences, minimizing dependencies not only ensures that the

development team does not need to depend on the library author for bugs, features, and support,

but also makes it simpler to audit the software. It also maximizes licensing options for the

software and the source code, and minimizes licensing liability. Another major consideration

is that there are no officially supported libraries published by NVIDIA for C#, meaning that

one has to rely on third party libraries. This also implies that official support channels from

NVIDIA generally cannot be used.

4.3.2 Native bindings

In this approach, the C API of a library is exposed through a wrapper in the guest language. The

wrapper library forwards all API calls to and from the library and essentially provides a trans-

lation layer for incompatible types. For example, since the string representations in C++ and

C# are different, the library, in the wrapper function, can transform to and from these represen-

tation formats to allow seamless interoperability. The wrapper library usually loads the native

library (.dll or .so on Windows and Linux, respectively) at runtime through system calls such

as LoadLibrary and dlopen. When using such techniques, one must be extremely careful

with memory management and ensure that memory managed by one (language or library) isn’t

freed by the other. This approach is flexible, as it offers the same API as the underlying native

library offered by the vendor, but each API call has to go through this “marshalling” process,

which may introduce expensive bottlenecks.

4.3.3 Native solver libraries

The approaches described above have their own sets of advantages and disadvantages. We can

instead take an approach that is a compromise between the two extremes. The solver is imple-

mented in native C++, and only the parts of the solver that require external input or configuration

and calls to exchange data are exposed as a C API to C#. HEC-RAS can then load the native

library at runtime when a GPU is detected on the system and configure the solver with the

65



appropriate runtime parameters. The advantage of this approach is that we marshal data only

when crossing API boundaries, which happens only during configuration and exchange of data.

This approach also does not require manual GC intervention, as only the marshalling interface

uses manually-managed memory and pointers. Overall, we only pin the pointers that point to

structures that are long-lived and generally do not change through the lifetime of the simulation,

completely eliminating the concerns of manual GC configurations. Since much of the simula-

tion data is managed by the library, the driver application can simply read and write to that

memory through the interface it exposes. This is exponentially easier than the inverse—using

memory managed by C# in a native environment such as C++ requires manual intervention

to prevent the GC from relocating memory in use by native code (which would invalidate the

pointer). In simulation loops, pinning and unpinning various memory locations can introduce

significant performance bottlenecks.

4.4 Internals
HEC-RAS operates on unstructured grids of cells—the cells and faces of the grid are not identi-

cal in dimension and can vary depending on the resolution and precision required. For example,

a high resolution and fine grid may be used around non-uniform and rapidly changing terrain el-

evations and near dams. Due to the nature of the data involved, storing cells and faces separately

is often the best approach, and cell-face relationships are stored as indices to the corresponding

data—a cell stores the indices of the faces (in the faces array) that define the cell.

At runtime, HEC-RAS loads the solver library if a CUDA-capable GPU is found, and passes

the configuration parameters to it through the marshalling interface [27] offered by C#. Solver

methods to run a single iteration or a variable number of iterations are exposed through the C

API, which allows the user to configure the solver and inspect its state at different points of

the simulation, improving user experience. This is especially useful for visualization of water

movement over time. All CUDA memory is allocated by the CUDA library and is exposed as

a pointer and size pair to the driver application, which allows it to safely read the contents of

memory. The allocators we describe play a crucial role in making this as frictionless as possible.

For the initial proof of concept, we implemented a native library to demonstrate the potential
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performance gains a GPU can bring forth. The tools we developed enabled quick iteration

of ideas, minimized the lost productivity due to common CUDA programming mistakes, and

allowed us to focus on application and implementation considerations, while being reasonably

performant.

4.5 Implementation details
We will take a look at some of the data-structures representative of their HEC-RAS counterparts,

and demonstrate how our abstractions improve maintainability, readability, and expressiveness

of the code.

As previously mentioned, HEC-RAS operates on unstructured grids which makes using

matrix-based methods to arrive at solutions difficult due to the the organization of data. It

operates on buffers that represent the grid and current water state (Listing 4.1). These buffers

are populated by the C# code through the API exposed by the C++ shared object.

1 namespace cpu {
2 struct mesh {
3 std::vector<cell> cells {};
4 std::vector<face> faces {};
5 std::vector<point> facepoints {};
6 // other vectors
7 };
8

9 struct sim_state {
10 std::vector<double> cell_area {};
11 std::vector<double> cell_inflow {};
12 // other vectors
13 };
14

15 struct solver {
16 mesh m_mesh {};
17 sim_state m_state {};
18 // other vectors
19 }
20 }

Listing 4.1: Simulation data-structures

Without our abstractions, a simple implementation would use raw pointers and store their

corresponding sizes with paired-up variables. Manually implementing a loop to copy data from

the vectors to the GPU structures is repetitive and error-prone (Listing 4.1). This also requires
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implementing a copy back to the host after processing is complete.

We can use our vector replacement (Listing 4.2) in place of std::vector, and have

solver inherit from new_delete (Listing 4.3). We can then use std::unique_ptr to

store our solver object. Copying these vectors onto the GPU is a simple case of assignment,

since we have implemented these operators in our custom vector. For other types, such as

Thrust’s vectors, equivalent operators can be defined by the user once and then reused every-

where.

1 namespace gpu {
2 struct mesh {
3 cup::vector<cell> cells {};
4 cup::vector<face> faces {};
5 cup::vector<point> facepoints {};
6 // other items
7

8 mesh& operator=(const cpu::mesh& cpu_mesh) {
9 this->cells = cpu_mesh.cells;

10 // and so on!
11 return *this;
12 }
13 };
14

15 struct solver {
16 mesh m_mesh {};
17 // other items
18

19 solver(const cpu::solver& cpu_solver) {
20 this->m_mesh = cpu_solver.m_mesh;
21 // copy-assign other members too
22 }
23 };
24 }

Listing 4.2: Copying data to GPU

1 struct solver;
2 using managed_allocator = cup::managed_allocator<solver>;
3

4 struct solver
5 : public cup::new_delete<solver, managed_allocator> {
6 mesh m_mesh {};
7 sim_state m_state {};
8 // other vectors
9 }

10

11 auto gpu_solver = std::make_unique<solver>(/* args */);
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12 kernel<<<>>>(gpu_solver.get());

Listing 4.3: RAII solver initialization

Ideally, we want a kernel that can just accept this object and access the various vectors

to process the simulation. CUDA allows __device__ methods to be class members, but not

__global__ kernel functions. This allows the solver object to be passed as-is to the GPU, and

methods to be invoked on it. To iterate over all the cells, we can use our adaptor that implements

the grid-stride technique, and we now have code that reads like code on the CPU, and clearly

expresses our intent. We have bounds checking, convenient iteration over all items, and we were

trivially able to pass in our solver object into the GPU kernel. If users prefer customization of

allocation strategies, they only need to implement an allocator and reuse it everywhere. To

implement a different iteration strategy, they only need to implement an adaptor and reuse

it where needed. This leads to robust, self-documenting code that improves maintainability

(Listing 4.4).

1 __global__ void update_velocity(solver* solver) {
2 // we have access to all the state here
3 auto& cells = solver->m_mesh.cells;
4

5 // robust parallelization
6 for(auto& cell : cup::grid_stride_adaptor(cells)) {
7 // process cell
8 auto faces = cell.faces;
9 cell.update_velocity();

10 }
11 }

Listing 4.4: Kernel to update velocity

By implementing kernel logic as methods of a class, users can use all of the state of the

class object if needed, which drastically simplifies writing kernels. This minimizes the need for

kernels that take multiple parameters, and offers one ground-truth where the workings of the

solver can be inspected. Kernels, then, simply parallelize this over all items to be processed.

4.6 Implementation results
We implemented a successful port of one of the solvers in HEC-RAS, and preliminary tests

show performance gains over using the CPU. It is important to note that the comparisons here
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are between CPU code using C#, and GPU code with C++ and CUDA. This does not offer

insight into the overhead of the abstractions, but does offer some insight into the advantages of

using the GPU.

We tested on a system with an Intel Xeon W-2265 CPU and an RTX 5000 GPU. The sim-

ulation advances in timesteps; we tested with adaptive and fixed timesteps on the GPU, and

with adaptive timesteps on the CPU. CPU simulation with fixed timesteps take significantly

longer to complete, and are hence not compared here. When adaptive timesteps are used, the

simulation computes the time-delta to use for the next timestep based on the current state (e.g.,

velocity of water in all the cells). The adaptive timestep approach takes fewer steps overall to

complete the simulation, but there is some cost associated with evaluating the prior timestep to

compute the time-delta for the next adaptive step. Since the CPU and the GPU use identical

mathematical models, the average timestep (“avg. TS” in the figure) is identical when adaptive

timesteps are used. We tested both implementations with a synthetic dataset (not fully repre-

sentative of real-world models) containing 20,000 and 110,000 cells with regularities that are

naturally advantageous for the GPU implementation, and noticed a 3x and 12x improvement

respectively (Figure 4.12) in end-to-end execution-time of the simulation, which also demon-

strates performance scaling with problem size.

(a) Synthetic dataset, 20,000 Cells (b) Synthetic dataset, 110,000 Cells

Figure 4.1: CPU vs. GPU performance

2“Reduced tables” is a technique that stores fewer data-points in the metadata for the unstructured grid, sacri-
ficing some accuracy for reduced memory usage.
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4.7 Summary of implementation
To conclude, let us summarize the implementation which added GPU acceleration to HEC-RAS,

from a high-level overview to how the techniques were used.

We exposed the solver as a C API—symbols are exported from a shared object, which

are then imported into C# using its marshalling interface. Though exposed as a C API, the

underlying state is managed in a C++ structure. A pointer to the class (or structure) instance is

returned to the C# code as a handle, which must be passed as a function argument to the C API.

To simplify memory management, we allocate and free all memory within the shared library.

C# code uses the solver API to allocate (and free) memory, which is freed at the end of the

application. This also overcomes the challenges of memory management across shared-object

boundaries and ensures binary compatibility across versions.

In C++, we manage the state of the solver through a structure that contains data required

by the solver. This uses the custom allocator (see Listing 3.20) to ensure that all of its member

objects are allocated on the CUDA managed heap.

Conditional compilation (or code-generation) to implement optimized routines for specific

GPU architectures can be enforced (or a fallback implementation can be used) without macros

(see section 3.1), making the code that much more easier to reason about. Our technique does

not use macros in the codepath, ensuring that the compiler can verify syntactic validity of all

branches.

Vectors that are referenced both on the host and the GPU use the vector abstraction descried

in section 3.4. This allows the host code to construct and initialize data directly on GPU-

addressable memory, simplifying the implementation. Where applicable, we use the grid-stride

adaptor (see section 3.5) to parallelize processing of items in GPU kernels. This enables us to

enforce strict application-driven bounds checking when necessary. Our vector also conforms

to the requirements of a C++ random-access container, ensuring interoperability with libraries

such as Thrust.

While not explicitly presented here, a non-owning container can be implemented with the

same techniques presented in section 3.4, allowing one to use iterators in kernels while ensuring

performance; discussed in subsection 3.4.2 and subsection 3.4.3.
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Since the entire state of the solver is available on the GPU, we can use advanced tech-

niques such as GPU-driven kernel-launches, affording performant conditional kernel schedul-

ing. In particular, we can use adaptive time-steps—kernels can be launched again with a smaller

timestep if the computation is deemed unstable.
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Chapter 5

Future work

In this chapter, we discuss future work that we planned to implement in the abstraction library

and in HEC-RAS.

5.1 Future work in abstractions
Our work has been implemented as a library1 and can be integrated into any project that uses

CMake2 as its build system. While the library currently implements simplified examples of the

techniques presented that can be used in any project, a few implementation details were left

out, in the effort to make a viable proof-of-concept and demonstrate the utility by using it in a

real-world project.

The C++ standard is the reference against which compilers and the “standard library” are

built upon and is designed by experts. The vector, iterator, and allocator do implement the

minimum required components to interoperate with abstractions that use the interface, and

further work is required to implement the remaining subset of features. The iterator, as im-

plemented, requires that the it be convertible to a pointer-like type. This is not strictly neces-

sary and any iterator satisfying the std::random_access_iterator concept will work

but may come with performance overhead when not convertible to a pointer. Similarly, our

vector implementation does not currently offer a constructor to facilitate aggregate initializa-

tion, and convenience-methods to insert, emplace, or push_back items. Implementing

1Available on GitHub: github.com/mythreyak/cup
2CMake: CMake is an open source, cross-platform family of tools designed to build, test, and package software.

cmake.org
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push_back in a performant way requires picking one of many different approaches, each

with different performance characteristics; when a vector is backed by device-local memory, a

push_back operation from the CPU could either cache the values in an intermediate buffer

on the CPU and then append all values at once, or copy them immediately to the GPU. We do

not support resizing the vector from kernel code. While CUDA does offer cudaMalloc and

malloc in device code, the memory allocations are not inter-compatible [36]—memory allo-

cated from one cannot be freed by the other. Moreover, memory allocated with cudaMalloc

on the device must not be freed with cudaFree on the host and vice-versa [30]. This implies

that resizing a vector allocated with CPU-side CUDA APIs due to an operation in a kernel is

not possible, unless host code is invoked alongside a retry mechanism in the kernel. For users

looking for a more feature-complete implementation, stdgpu [47] might be of interest.

As discussed in section 3.3, our allocator is synchronous—it does not utilize asynchronous

allocation strategies, and does not incorporate techniques to reuse memory allocations across

kernel launches. Many HPC applications use memory pools to improve memory reuse, prevent

systems calls and their associated performance penalties, and improve issues related to memory

fragmentation. While we do not implement such techniques, our allocator can be used as the

underlying allocator that allocates memory managed by these higher-order techniques. Stream-

ordered memory-allocators [39] and the virtual-memory-management API [43] can be used to

implement more advanced memory-management strategies.

The Clang compiler allows users to implement overloads based just on the execution space

of the function declaration. For example, a variation of this technique using the CUDA nvcc

compiler allows us to prevent users from using the indexing operator on the host with our custom

vector when it is backed by device-local memory. Further work is required to explore how this

technique can be leveraged to solve other common problems that CUDA users face.

Coroutines were not implemented as it was not required for porting HEC-RAS. Using corou-

tines to launch and retrieve the results of a kernel requires further investigation. This approach

could be used to either launch kernels eagerly or construct a CUDA graph that is executed for

maximum performance.
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5.2 Future work in HEC-RAS
While the port was successful and demonstrated the advantages and brought forth clear benefits

of using the GPU, there definitely are improvements that can be made to make it suitable long-

term.

We currently do not have an implementation that uses the classical approach of writing

kernels. Since our abstractions themselves do not impose any requirements on the kinds of

algorithms or data-layouts to use, they can be freely changed. Our abstractions make it easier

to build these data-structures—e.g., our vector can be used in any part of the data-structure that

requires a contiguous buffer, simplifying implementation.

To adequately test the runtime and compiler performance overhead of our abstractions, a

full implementation using the classical approach may be required, even though we have shown

that the abstractions generate identical assembly in simple test cases. The current CPU imple-

mentation uses C#, so the performance comparisons we presented do not offer insight into the

overhead of the abstraction themselves. Nevertheless, our GPU port does offer a significant

speedup over the parallelized CPU implementation.

The port currently does not use GPU-optimized data-structures in all hot-paths of the simu-

lation and therefore has many opportunities for improvement. In particular, indexing the faces

of the cell does not follow the coalesced access-pattern—completely antithetical to the pro-

gramming principles of writing applications for the GPU. Future work includes optimizing the

access-patterns of the data by improving spatial locality, moving to a GPU-first data-structure,

and perhaps using it on the CPU as well to prevent expensive data-format changes during data-

exchange.

We have successfully used the library in HEC-RAS to port the application and expose

an interface to C#, simplifying maintenance. We currently synchronize the application (with

cudaDeviceSynchronize) after every “frame” of the simulation, or every few frames for

metrics reporting and visualization. This has major performance implications, as we are essen-

tially waiting for the GPU to idle before scheduling more work. Furthermore, HEC-RAS can

use the data present on the GPU to render the visualization to prevent the synchronization step.

Graphics APIs such as Vulkan offer interoperation capabilities with CUDA that allow them to
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reference CUDA buffers in traditional graphics pipelines.
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Chapter 6

Conclusion

In this thesis, we demonstrated a few techniques that make use of the CUDA C++ language fea-

tures to simplify CUDA programming. We evaluated the advantages and disadvantages of each

approach by discussing the nature of the code generated, which offers insight into hardware-

limits and efficiency. While high-level performance benchmarks are extremely useful (which

we expect to conduct in future work), we wanted to acknowledge the finer details such as reg-

ister pressure and assembly overhead that are immediately relevant to the porting process—one

that empowers the user to make decisions on implementation details.

We saw how modern C++ can be utilized to make a good and worthwhile attempt at solving

and addressing some of the major sharp-edges of a language built upon C++—a language known

for its nuances. We saw how tools such as godbolt.org can be used to inspect the generated

assembly and make an informed decision on whether an abstraction is capable of generating

optimized assembly. These tools can be used to regularly inspect the generated assembly as

the codebase evolves and ensure that any code changes or addition of abstractions that reduce

code-generation quality can be caught and addressed.

C++ has evolved over the years to include features requested by the community to improve

productivity and maintainability of code. The CUDA programming-model introduces more op-

portunities for programmers to make mistakes, on top of the C++ language, which already has

notoriety for having a lot of edge-cases that one must be careful about. We explored how ex-

isting C++ language and library features, along with the changes CUDA makes to the language

can be utilized to improve user experience.
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In addition to the CUDA compiler nvcc, the Clang compiler also supports compiling

CUDA applications, though it often lags behind in the version of the CUDA toolkit it offi-

cially supports. Clang has introduced additional features (such as overloads based on execution

space) that may be incompatible with CUDA libraries, but since the driver framework can uti-

lize PTX for kernel objects, interoperability is feasible (depending on the compiler options).

The Clang compiler also offers a set of tools based on the llvm framework that might be of

great interest to users—especially their support for “optimization remarks” [7] which gives de-

scriptive diagnostics on why certain optimizations were not performed. The ability to use two

different compilers offers interesting insight into the language (and compiler) evolution—one

driven by an organization and another driven by the community, already diverging slightly in

the features they offer. We may see more features being offered in both compilers, perhaps

convergent in some aspects and divergent in others, which opens up interesting opportunities

for implementations using CUDA.
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