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ARTICLE

Laboratory evolution of synthetic electron transport
system variants reveals a larger metabolic
respiratory system and its plasticity
Amitesh Anand1,2✉, Arjun Patel1, Ke Chen 1, Connor A. Olson1, Patrick V. Phaneuf 1, Cameron Lamoureux1,

Ying Hefner1, Richard Szubin1, Adam M. Feist 1,3 & Bernhard O. Palsson 1,3✉

The bacterial respiratory electron transport system (ETS) is branched to allow condition-

specific modulation of energy metabolism. There is a detailed understanding of the structural

and biochemical features of respiratory enzymes; however, a holistic examination of the

system and its plasticity is lacking. Here we generate four strains of Escherichia coli harboring

unbranched ETS that pump 1, 2, 3, or 4 proton(s) per electron and characterized them using a

combination of synergistic methods (adaptive laboratory evolution, multi-omic analyses, and

computation of proteome allocation). We report that: (a) all four ETS variants evolve to a

similar optimized growth rate, and (b) the laboratory evolutions generate specific rewiring of

major energy-generating pathways, coupled to the ETS, to optimize ATP production cap-

ability. We thus define an Aero-Type System (ATS), which is a generalization of the aerobic

bioenergetics and is a metabolic systems biology description of respiration and its inherent

plasticity.
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Respiration requires organisms to have an electron transport
system (ETS) for the generation of proton-motive force
across the membrane that drives ATP synthase. Although

the molecular details of the ETS are well-studied and constitute
textbook material, few studies have appeared to elucidate its
systems biology. The most thermodynamically efficient ETS
consists of two enzymes, an NADH: quinone oxidoreductase
(NqRED) and a dioxygen reductase (O2RED), which facilitate the
shuttling of electrons from NADH to oxygen. However, evolution
has produced variations within the ETS which modulate the
overall energy efficiency of the system even within the same
organism1–3. The systems level impact of these variations and
their individual physiological optimality remain poorly deter-
mined. To mimic varying ETS efficiency we generated four
Escherichia coli deletion strains (named ETS-1H, 2H, 3H, and
4H), each with one of the four unbranched ETS variants that
pump 1, 2, 3, or 4 proton(s) per electron, respectively. We then
performed systems level characterization of these ETS variants.
We observe that: (a) adaptive laboratory evolution (ALE) enables
all four ETS variants to evolve to a similar growth rate; (b) the
evolution of ETS variants is supported by specific rewiring of
major energy-generating pathways that couple to the ETS to
optimize their ATP production capability; (c) proteome allocation
per ATP generated is the same for all the variants, (d) the aero-
type, that designates the overall ATP generation strategy4 of a
variant, remain conserved during its laboratory evolution, with
the exception of the ETS-4H variant; and (e) integrated compu-
tational analysis of the data supports a proton-to-ATP ratio of 10
protons per 3 ATP for ATP synthase for all four ETS variants.

Results and discussion
E. coli has a highly flexible ETS consisting of 15 dehydrogenases
and 10 reductases to allow growth in both oxic and anoxic
environments5. The expression of these enzymes is regulated by a
variety of electron acceptors with a known hierarchy, such that
oxygen represses all anoxic respiratory pathways and nitrate
represses other anoxic pathways3,5. Despite this thermodynamic
hierarchy, co-expression of different respiratory chains was
reported in another γ-proteobacterium to expand the flexibility of
its electron transfer network3. We probed the condition-
dependent expression of all these dehydrogenases and reduc-
tases using a large RNA-seq compendium for E. coli6. We
observed a spectrum of expression values of these genes across the
experimental conditions showing the contribution of these
enzymes in generating plasticity in energy metabolism (Supple-
mentary Fig. 1).

To examine the contributions of individual oxic respiratory
pathways to bioenergetics, we sought to design unbranched
pathways through the ETS. The oxic component is contributed by
both proton pumping and non-pumping NqREDs (hereafter
referred to as NDH-I and NDH-II, respectively) along with three
types of O2REDs (Fig. 1a). Cytochrome bd O2REDs (CBDs) are
less electrogenic compared to Cytochrome bo3 O2REDs (CYO).
There are two CBDs, bd-I and bd-II, and both functions similarly
to generate proton-motive force (PMF) by a vectorial movement
of protons involving transmembrane charge separation. The
similar PMF generation strategies make bd-I and bd-II O2REDs
equivalent when choosing gene knockout strategies7,8.

Based on these characteristics, we designed four ETS variants
with unbranched electron flows representing all alternate oxic
respiratory routes translocating 1, 2, 3, or 4 proton(s) per electron
(designated as ETS-nH, with n= 1, 2, 3, 4). The designs of the
four ETS variants are illustrated in Fig. 1b.

Next, we analyzed their growth phenotype (Fig. 1c). Interest-
ingly, the unevolved variants (called uETS) showed different

growth rates that had no clear association with their H+/e− value.
While the loss of activity of NDH-I showed a lesser growth rate
retardation, the deletion of NDH-II significantly compromised
the growth rate of the deletion strains.

To allow the ETS variants to overcome the growth defects
resulting from gene deletions, we performed ALE with four
independent replicates of each variant in an oxic environment
(Supplementary Table 1) (evolved variants are named eETS-nHm
with the replicate evolutionary endpoints indexed as m=A, B, C,
D)9. We evolved all variants until their growth rate plateaued.
ETS-1H, 2H & 3H required evolution for approximately 400
generations, while ETS-4H required approximately 700 genera-
tions. In spite of the different number of protons pumped per
electron, all four ETS variants evolved to a similar optimized
growth rate in replicate evolutions (~0.85 h−1) (Fig. 1c).

Next, we sought to determine the acquired mutations that
enabled adaptation to a higher growth rate for all ETS variants.
We performed whole-genome sequencing of each strain and used
a comprehensive database of mutations from ALE experiments
(aledb.org10) to interpret the potential impact of the identified
mutations. The mutation calling revealed only a few genetic
changes in the evolved strains except for eETS-4HC which
acquired 15 genetic changes (Supplementary Data 1). The higher
number of mutations in eETS-4HC could be due to the mutated
DNA mismatch repair enzyme mutS in this strain11. Every ETS
variant acquired mutations responsible for enabling faster growth
on M9 minimal medium (Supplementary Table 2, Supplementary
Data 1)12–15. An intergenic mutation between pyrE and rph has
been reported to alleviate pyrimidine pseudo-auxotrophy result-
ing in a faster growth rate. RNA polymerase subunit mutations
are proposed to favor a higher growth rate by accelerating the
transcriptional processes. Another common mutation reported to
support a faster growth rate is in the intergenic region between
hns and tdk. This mutation is expected to downregulate several
stress response pathways and shift resources to support growth.
uETS-1H carried the pyrE-rph intergenic mutation, which
explains the relatively faster initial growth rate of this strain.

Besides mutations responsible for acclimatization to media,
uETS-3H and uETS-4H acquired a common gene-related muta-
tion in all four independently evolved lineages. This mutational
convergence simplified the otherwise difficult task of establishing
the genotype-phenotype relationship16–18.

All four evolved replicates of uETS-3H acquired point muta-
tions in sdhA, the catalytic subunit of succinate dehydrogenase
(Supplementary Table 2). eETS-3HB acquired a point mutation
that brings in a premature termination codon in the sdhA open
reading frame, suggesting a loss of functional enzyme (Supple-
mentary Data 1). We explored the potential impact of other
mutations by investigating whether the SNPs could affect the
protein’s function based on amino acid properties and sequence
homology (SIFT)19 or structural stability (ΔΔG)20. Almost all
mutations in sdhA were either in or near interface surfaces and
seem to be working to disrupt its functionality by either dis-
rupting a substrate-binding site or causing a structural-functional
perturbation (Fig. 1d, e). Notably, the deletion of another subunit
of this enzyme, sdhC, has been reported to increase the biomass
yield in an oxic environment21. uETS-3H appeared to adopt a
similar metabolic route to increase its growth rate.

All four replicates of uETS-4H acquired mutations in an
inadequately characterized gene, yjjX (Supplementary Table 2,
Supplementary Data 1). The structural and biochemical evidence
suggests that YjjX, an inosine/xanthosine triphosphatase, may be
involved in the mitigation of the deleterious impact of oxidative
stress by preventing the accumulation of altered nucleotides22.
Also, the physical association of YjjX with the elongation factor
suggests a negative impact on the translational rate. The

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30877-5

2 NATURE COMMUNICATIONS |         (2022) 13:3682 | https://doi.org/10.1038/s41467-022-30877-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


103

65

354

203

377327

FAD binding site FAD binding domain FAD-dependent pyridine nucleotide reductaseSdhB interface Active site Catalytic domain Substrate binding site

Substrate binding region YjjX subunit interface Manganese or magnesium metal binding site

SN
P 

AA
 6

5

SN
P 

AA
 8

2

SN
P 

AA
 1

03

SN
P 

AA
 2

03

SN
P 

AA
 3

27

SN
P 

AA
 3

54

SN
P 

AA
 3

77 eETS-3H
ALEdb

Unknown effect
Deleterious (SIFT <0.05) and
structural disruption (∆∆G >2)

Truncation

SN
P 

AA
 1

SN
P 

AA
 3

0

SN
P 

AA
 3

8

Unknown effect

Truncation

eETS-4H

Structural disruption (∆∆G >2)

100 400 500300200

50 150100

38

30

d e

f

c

0.0

0.2

0.4

0.6

0.8

1.0

G
ro

w
th

 ra
te

 (h
r-1

)

uETS-3HuETS-1H uETS-2H uETS-4H
eETS-3HeETS-1H eETS-2H eETS-4H

WT

∆cyoB

∆cydB∆appC

uETS-1H

uETS-3H

uETS-2H

uETS-4H

cyoB KO

cydB &
appC KO

eETS-1HA-D

eETS-3HA-D

eETS-2HA-D

eETS-4HA-D

nuoB KO

ndh KO

ALE

ALE

ALE

ALE

SdhA

YjjX

g

b Operational oxic
ETS components

NDH-II to CBDs: 1H+/e-

NDH-I to CBDs: 3H+/e-

NDH-II to CYO: 2H+/e-

NDH-I to CYO: 4H+/e-

NDH-I NqRED
nuo genes

NDH-II NqRED
ndh gene

Cytochrome bo� O�RED
cyo genes

Cytochrome bd O2RED
cyd/app(cbd) genes

2 H+/e- 2 H+/e- 1 H+/e-1 H+/e-0 H+/e-

a

ETS variants generation sceme

nuoB KO

ndh KO

Fig. 1 Generation and evolution of unbranched ETS variants. a Schematic showing the respiratory enzymes involved in the flow of electrons from NADH
(donor) to oxygen (acceptor). NDH-I and NDH-II are the proton pumping and non-pumping NADH: quinone oxidoreductase, respectively. Dashed arrows
for CBDs represent the vectorial mode of PMF generation. b Scheme for generating ETS variants translocating 1, 2, 3, or 4 proton(s) per electron. uETS is
the unevolved strain and eETS is the evolved strain. A–D are the four independently evolved lineages of each strain. c Growth rates of ETS variants before
and after ALE. d, f Predictive mechanistic interpretation of the impact of mutations observed in the evolved strains of (d) ETS-3H (sdhA) and (f) ETS-4H
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STRING-based protein-protein interaction predicted the asso-
ciation of YjjX with glycolytic and ATP biosynthetic processes23.
Interestingly, eETS-4HA replaced the start codon, ATG, with
ATA (Supplementary Data 1). Apart from replacing methionine
with isoleucine, this substitution potentially diminishes the
expression of this protein24. A similar disruptive impact is
expected from other yjjX mutations (Fig. 1f, g). The cysteine to
tyrosine substitution at amino acid residue 30 was predicted to
destabilize the structure as it lies just beside a subunit interface
residue, and a charge reversion due to the glutamate to lysine
substitution at amino acid residue 38 targets the metal-binding
site. Thus, it appears that eETS-4H is attempting to prevent
translational halting to achieve a higher growth rate.

Since the restoration of the evolved variants to the same growth
rate cannot be deciphered from genetic changes alone, we took a
broader systems view to understand the underlying metabolic
perturbations. We examined how the evolved variants rewired the
fluxes through the major metabolic pathways that couple to the
ETS. We generated RNA sequencing and metabolite profiling
data for all the strains and performed targeted and systems level
analyses. We observed a high transcriptional correlation among
the evolved replicates (Spearman’s rank correlation coefficient
>0.75) of each variant, but the correlation between pre-and post-
evolved variants was lower (Fig. 2a). Notably, consistent genetic

and transcriptomic changes supported a common evolutionary
trajectory for the replicates of each variant.

Bacterial physiology displays a remarkable compensatory
potential facilitated by altered metabolic flux states resulting from
genetic and transcriptomic changes21. Therefore, we examined if
the surrogate NqRED or O2RED compensated for the loss of
function resulting from deleted ETS enzymes (Fig. 2b). There was
no clear compensatory trend in the strains with unbranched ETS
except for ETS-4H. ETS-4H increased the expression of NDH-I
while increasing or maintaining the expression of CYO after
evolution. Surprisingly, the compensatory upregulation of ndh in
uETS-2H was lost after evolution to a higher growth rate.

Since RNA expression levels may not correlate with metabolic
fluxes due to differential translation efficiency and different
enzyme catalytic turnover rates, we performed a metabolic flux
distribution analysis. To obtain the metabolic flux map, we
measured the medium exchange rates of the major metabolites
related to respiratory metabolism (Supplementary Table 3). We
used both the metabolite exchange rates and transcriptomic data
as constraints to simulate the flux through the pathways of the
central carbon metabolism using a genome-scale model of
metabolism and protein expression (ME-model)25. We observed
a high correlation in the metabolic flux distributions of the four
evolved replicates of each strain, further supporting a similar
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evolutionary pathway followed by replicates of each variant
(Fig. 2a).

To more deeply understand the different metabolic states
exhibited by the evolved variants, we examined the variations in
their computed proteome allocation using the solutions from the
phenotypic and transcriptomic constrained ME-models. We
observed a clear distinction between strains with alternate
NqRED for the preferred glycolytic pathway (Fig. 2c). NDH-I has
approximately 10-times higher molecular mass as compared to
NDH-II26,27. Therefore, despite its PMF generation potential,
NDH-I is a less preferred dehydrogenase during oxic respiration
to achieve faster growth5. The non-proton pumping high turn-
over dehydrogenase, NDH-II, is better suited to relieve the
growth bottleneck that may arise due to excess built-up of PMF
while allowing the operation of oxic ETS5,28.

The finite resource carrying capacity of a cell creates meta-
bolic tradeoffs on how to partition the proteome to support
metabolic pathways best suited for a given growth condition.
With an approximately 3.5-fold higher protein cost, the
Embden–Meyerhoff–Parnass (EMP) pathway consumes a larger
proportion of proteome as compared to the Entner–Doudoroff
(ED) pathway29. However, the higher ATP yield of the EMP
pathway alludes to a potential tradeoff between the two glyco-
lytic pathways for optimizing ATP production while main-
taining a growth-supporting proteome30. The ETS-3H and ETS-
4H strains forced to respire using larger NqRED (NDH-I)
increased the flux through the proteome conservative ED
pathway. Thus, we observed a compensatory selection of the
preferred pathway to achieve a balanced proteome.

Interestingly, while strains with nuoB deletion (ETS-1H and
ETS-2H) increased metabolic flux through complex II of ETS,
ETS-3H appeared to minimize the flux through complex II
(Supplementary Data 2). Notably, eETS-3H lacks ndh and
acquired a mutation in the gene sdhA which codes for a complex
II subunit. However, ETS-4H, which also lacks the ndh gene,
increased the flux through complex II, albeit at a lower level
compared to ETS-1H and ETS-2H.

Thus, metabolic plasticity (reflected in metabolic rewiring and
associated proteome allocation) allows for redundancy in the
eETS variants while supporting the same growth rate. Knowledge
of this metabolic plasticity motivated the examination of the
overall bioenergetics-state of the evolved ETS variants to fully
understand the basis for the evolution to the same growth rate.
We have earlier defined an approach to classify the E. coli phe-
notypes into aero-types, which is a quantitative fitness descriptor
based on cellular respiratory behavior and proteome allocation4.
The stratification of aero-types is based on the multimodal dis-
tribution of the fraction of total ATP produced through ATP
synthase which is modulated through the discrete usage of ETS
enzymes. We have reported a non-uniform distribution of phe-
notypic growth data in the rate-yield plane that can be approxi-
mately segregated in different aero-types based on sampling
simulations. Here we used aero-types to examine the fitness
distribution of ETS variants.

We observed that ETS-1H, ETS-2H, and ETS-3H did not show
a major shift in their biomass yield during evolution and thus
preserved their respective aero-types (Fig. 3a). The evolutionary
optimization of growth rate appears to be largely driven by
rewiring central carbon metabolism while oxidative energy
metabolism is conserved. ETS-4H jumped from a lower to a
higher aero-type after evolution, suggesting an increase in oxic
metabolism. The ETS-4H variant has the highest PMF generation
capacity. Its aero-type shift to higher classes occurred only after
adaptive evolution.

The clustering of each evolved ETS variant along the same
growth rate isocline (Fig. 3a) indicated global remodeling of the

energy metabolic network to produce similar growth-supporting
bioenergetics. We thus defined a larger respiratory system, called
the Aero-Type System (ATS), consisting of oxidative phosphor-
ylation, glycolysis, pyruvate metabolism, the TCA cycle, and the
Pentose Phosphate pathway, that together define the overall state
of oxic energy metabolism (Supplementary Fig. 3). The total
proteome allocated to the ATS was very similar in each eETS
variant, and the total ATP output of each proteome expressed was
almost constant (Fig. 3b). Thus, the composition of the ATS was
malleable and able to provide the same supply of ATP, allowing
similar growth rates for all eETS variants. We also observed a
trend in the metabolic location of ATP production across the
variants, where the relative contribution of oxidative phosphor-
ylation was highest for eETS-4H and lowest for eETS-1H
(Fig. 3c). Accordingly, an inverse trend was observed for glyco-
lytic and fermentative ATP production.

We next examined the transcriptome to identify the tradeoffs
in gene expression that enabled the different metabolic states. We
applied a blind source signal separation algorithm, called inde-
pendent component analysis (ICA)31, to examine differential
partitioning of the transcriptome of the 209 ATS genes. ICA
decomposed the ATS transcriptome into independently modu-
lated sets of genes (called iModulons) (Supplementary Data 3).
The activities of several iModulons showed a clear association
with the aero-type of the ETS variants (Supplementary Fig. 4).
iModulons consisting of genes associated with oxic respiration
showed a positive correlation with aero-type status (iModulons 8,
13, and b2287), and those constituted by anoxic and/or metabolic
genes showed a negative correlation (iModulons 7, 9, 10, 16, and
b3366) (Supplementary Fig. 2). Thus, an oxic-anoxic tran-
scriptomic tradeoff enabled the four ETS variants to maintain
similar ATP production capacity (Fig. 3d).

The direct measurement of the number of protons translocated
through ATP synthase to produce one molecule of ATP
(H+/ATP) is technically challenging and, therefore, it is still an
area of active research32. The rotational catalysis-based calcula-
tion suggests the H+/ATP value to be 3.3, due to the symmetry
mismatch between the Fo and F1 complexes of ATP synthase:
threefold symmetry of α3β3 in F1 and tenfold symmetry of the
c-ring in Fo33,34. The proton-to-ATP ratio may vary depending
upon any change in the number of c-subunits and this modula-
tion allows tailoring to meet the bioenergetic demand of various
organisms35. The H+/ATP value derived using a synthetically
reconstituted membrane system was found to be 436. With our
comprehensive definition of the state of the ATS amongst the
variants, we could address the issue of ATP synthase proton-to-
ATP ratio. We used data generated on the variants to computa-
tionally estimate the most likely proton-to-ATP ratio for E. coli
ATP synthase32. We constrained the ME-model using the
observed metabolic exchange rates and gene expression data and
optimized for the H+/ATP value of ATP synthase that produces
the experimentally estimated growth rates of the variants. The
ME-model calculates the median value of the H+/ATP to be 3.25,
a value close to 3.3 supporting the rotational catalysis hypothesis
(Fig. 3e). Notably, while 10 is the preferred number of c subunits
in the E. coli Fo motor of ATP synthase, the number of subunits
can vary, which will change the H+/ATP value37–40.

Taken together, our results lead to an expanded definition of
oxic respiration beyond the conventional ETS, which involves an
electron transport chain to create PMF, that then drives the ATP
synthase. Here, we define the Aero-Type System that encom-
passes the ETS and coupled metabolic pathways (Supplementary
Fig. 3). The ATS is composed of 209 genes (Supplementary
Data 3). The ATS represents about 38% proteome allocation in all
evolved variants. A decrease in the ETS energetic efficiency (often
measured in terms of the P/O ratio) can be balanced by increased
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flux through the coupled metabolic pathways. This balance is
governed by the cost of protein synthesis.

Remarkably, the overall proteome allocation to the ATS is
similar in the evolved variants and generates the same amount of
ATP, enabling them to achieve the same growth rate. The dif-
ferent ways in which the ATS is balanced underlies its plasticity
and represents a demonstration of the key systems biology con-
cept of alternate optimal states. These alternate states have a
different combination of proton pumping efficiency, com-
plementary metabolic rewiring achieved through tradeoffs in the
composition of the transcriptome, and concomitant efficiency of
proteome allocation, but enable the same overall cellular function.
The cytoplasmic-periplasmic adaptive nexus that the ATS
represents thus illustrates the deep plasticity inherent in achieving
balanced energetic systems to match metabolic needs in different
environmental niches.

Methods
Examining PRECISE 2.0 for expression levels of respiratory enzymes. PRE-
CISE 2.0 is a compendium of high-quality RNA-seq for E. coli K-126. It contains
815 RNA-seq datasets of samples with different genetic changes or varied growth
conditions. We examined the expression of respiratory dehydrogenases and
reductases in the entire dataset. For intelligible purposes, we plotted the expression
levels in samples that are directly or indirectly associated with energy metabolism.
The expression levels shown are the median value across replicates for a sample.

Strain generation and adaptive laboratory evolution. E. coli K-12 MG1655
(ATCC 700926) was used as the wild-type strain. P1 phage transduction method
was used to generate the knockout strains41, and strains from the Keio collection
were used as a donor for the gene knockout cassettes42. uETS-1H and uETS-3H

were generated and used for validation purposes in an earlier study4. uETS-2H and
uETS-4H were generated here and all four ETS variants were evolved for this study.

ALE was performed using 4 independent replicates of each ETS variant.
Cultures were serially propagated on M9 minimal medium with 4 g/L glucose at
37 °C and well-mixed for proper aeration using an automated system that passed
the cultures to fresh flasks once they had reached an A600 of 0.3 (Tecan Sunrise
plate reader, equivalent to an A600 of ~1 on a traditional spectrophotometer with a
1 cm path length). Cultures were always maintained in excess nutrient conditions
assessed by non-tapering exponential growth. The evolution was performed for a
sufficient time interval to allow the cells to reach their fitness plateau.

Prediction of the effect of amino acid substitutions. The ALE mutation datasets
supporting the conclusions of this article is available in the following open-access
archive repository: https://doi.org/10.5281/zenodo.5431595. These datasets are also
available in the ALEdb database10.

Mutated DNA sequence data processing was performed using Python 3. The
mutations from ALEdb are described according to their experiment, evolution
replicate, sample, and technical replicate. Some evolutions include midpoint
samples that could inflate the frequency a mutation is observed. Unique ALE
mutations were therefore only considered once per ALE. Starting strain mutations
and hypermutator samples were filtered out of the ALE experiment mutation
datasets according to their publications. Mutation needle plots were generated
using the trackViewer R software package43. The visualizations for the 3D protein
structures were generated using the NGL software package44. The software
implementation of these actions is available in the following open-access archive
repository: https://doi.org/10.5281/zenodo.5431595.

Mutation effects were predicted according to multiple methods. Truncations
were predicted according to the potential effect of mutations on the function of
start codons and their potential to introduce a premature stop codon. The
predicted deleterious effects of SNPs were assumed according to significant SIFT
(sorting intolerant from tolerant) scores (SIFT score < 0.05)19. The predicted
structural destabilization effects of SNPs were assumed according to predicted
significant ΔΔG scores (ΔΔG > 2)20. SIFT and ΔΔG scores were acquired from
Mutfunc45. Functional annotations were acquired from UniProt46 and Mutfunc.
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DNA sequencing and RNA sequencing. A clone from the endpoints of evolved
strains was picked for DNA sequencing and RNA sequencing. The strains were
grown in an M9 minimal medium supplemented with 4 g/l glucose. Total DNA
was sampled from an overnight grown culture and total RNA was sampled from a
culture at an A600 ~0.6. Nucleic acid isolation, library preparation, and subsequent
analysis were performed as previously described47. Briefly, genomic DNA was
isolated using a Nucleospin Tissue kit including treatment with RNase A. Rese-
quencing libraries were prepared following the manufacturer’s protocol using
Nextera XT kit. RNA was isolated using the Qiagen RNeasy Mini Kit following
suggested protocol. Ribosomal RNA was removed using Illumina Ribo-zero kit and
a KAPA Stranded RNA-Seq Kit (Kapa Biosystems KK8401) was used to prepare
sequencing libraries. Sequencing was performed on an Illumina HiSeq and/or
NextSeq.

Phenotype characterization. Phenotype characterization was performed using
two independent biological replicates. Samples for the substrate uptake and
secretion rate were collected at regular intervals and filtered using a 0.22 μm filter
(PVDF, Millipore). The measurements were performed using refractive index
detection by HPLC (Agilent 12600 Infinity) with a Bio-Rad Aminex HPX87-H ion
exclusion column. The HPLC method was the following: injection volume of 10 μL
and 5mM H2SO4 mobile phase set to a flow rate and temperature of 0.5 mL/min
and 45 °C, respectively. The phenotype dataset was used for the aero-type classi-
fication of the strains as described previously4.

Metabolic flux mapping and estimation of H+/ATP value for ATP synthase.
Flux mapping was done as previously described using a genome-scale model of
metabolism and protein expression48. The same FoldME model was used for
estimating the H+/ATP value for ATP synthase within each ETS variant and
replicates. The model was constrained with phenotypic data (glucose uptake rate,
acetate production rate) and expression data was layered on using the same
methods used for the flux mapping48. In addition to these constraints, the neces-
sary ETS genes for each variant were knocked out. Proton pumping ratios from 2.5
to 4.5 were sampled by changing the stoichiometry of the ATPS4rpp reaction in the
ME-model, and then the proton pumping ratio was optimized so that the model
produced a biomass dilution rate that matched the experimentally determined
growth rate.

ATS proteome allocation calculation. The same FoldME model was used for the
proteome allocation calculation as the flux mapping and ATP synthase estimation
calculations. The model was constrained with phenotypic data (glucose uptake rate,
acetate production rate, growth rate) and expression data was layered on using the
same methods used for the flux mapping. Solutions from the fully constrained ME-
models were then used for calculating proteome allocation. Total proteome allo-
cation for each strain was calculated as follows:

Total Proteome Allocation ¼ ∑
i
mwi � Vtranslation

i

Where mwi and Vtranslation
i represents the molecular weight and translation flux of

the ith protein in the model. Total proteome allocated to the ATS was calculated as

follows:

Proteome Allocated to ATS ¼ ∑
i
mwi � Vtranslation

i

where mwi and Vtranslation
i represents the molecular weight and translation flux of

the ith protein in the ATS (209 genes total). The list of 209 ATS genes was
generated based on Clusters of Orthologous Groups (COG) and Gene Ontology
(GO) categories to include as many relevant genes as possible to represent path-
ways involved in ATP production, then filtered to remove genes that are never
expressed in the multiple model simulations. Mass fraction of proteome allocation
to the ATS was calculated as a ratio of the two values for each strain.

Calculation of the total ATP produced by the ATS used the same fully
constrained ME-model. A list of all metabolic reactions associated with ATS genes
was curated. Reactions that consumed or produced ATP were noted and the
stoichiometric coefficient associated with ATP was used as a modifier for
calculating the total ATP production as follows (Table 1):

Total ATP Production ¼ ∑
i
ci � Vmetabolic

i

where ci and Vmetabolic
i represents the ATP stoichiometric coefficient and the

metabolic flux of the ith ATS associated reaction in the table below.
Total ATP Production/Total Proteome Allocated was calculated as a ratio of the

total ATP production to the mass fraction of proteome allocated to the ATS for
each strain.

ATS transcriptome ICA decomposition. Independent component analysis was
performed on an RNA-seq dataset with steps described in6. The only genes
included in the dataset were those contained in the list of 209 ATS genes. The
dataset consisted of all unevolved strains, uETS-1H through 4H, and all evolved
replicates eETS-1HA through eETS-4HD. Additionally, the unevolved and evolved
wild-type strains were included with the former being used as a reference to center
the data. The final and resulting dataset that was used for ICA contained 209 genes
by 22 conditions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Resequencing and expression profiling data that support the findings of this study can be
accessed from NCBI Sequence Read Archive accession number PRJNA835443 and Gene
Expression Omnibus accession number GSE202144 respectively. The PRECISE
compendium and all associated data files can be found at https://github.com/SBRG/
precise2. Source data for the figures can be found in Supplementary Tables 2, 3 as well as
in the uploaded RNA-seq data.

Code availability
The software scripts supporting the prediction of mutation effects to the encoding of
genes described in this article are available in the following open-access archive
repository: https://doi.org/10.5281/zenodo.5431595. All the simulations performed in
this manuscript can be reproduced using the FoldME model, which is constructed using
the COBRApy toolbox version 0.5.11 for constraint-based modeling and its extension for
ME-models, COBRAme version 0.0.9, ECOLIme version 0.0.9, and solveME, all publicly
available on Github (https://github.com/SBRG/ME-script, https://github.com/SBRG/
ecolime, https://github.com/SBRG/solvemepy). Custom code for constraining and
solving ME-models can be found at https://github.com/SBRG/ME-script. GraphPad
Prism version 9.2.0 was used for generating the plots.
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