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ABSTRACT

The analysis of incompressible rubber-like materials is considered by a penalty function
approach. In particular the necessary compatibility conditions for developing penalty forms for
isotropic nonlinear elasticity are addressed, and the commonly used form of strain energy func-
tional leading to a penalty formulation of the incompressibility constraint extended. The
Mooney-Rivlin model is used to show how previous developments can lead to physically mean-
ingless situations. For a certain class of incompressible materials, which includes the important
Mooney-Riviin model, a new and particularly simple formulation is proposed. The finite ele-
ment implementation of this penalty formulation, is considered in the Appendices A. and B. of

this report.
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1. Introduction

The penalty function method, originally proposed by Courant [1], provides a simple and

effective procedure of reducing a constrained minimization problem, to one without constraints.

The method has a simple geometrical interpretation, when placed in the general context
of optimization theory in Banach spaces [2]. Furthermore, in contrast with most of duality
methods, it can be justified without invoking any convexity assumptions on the functional to be
minimized [2], [3]. This remarkable fact, makes the method particularly attractive in problems

in nonlinear elastostatics, where the total potential energy functional is rarely convex *.

In the context of nonlinear elastostatics, the penalty function method provides a pro-
cedure of enforcing the incompressibility constraint, without restraining the configuration space
to isochoric deformations. For this class of problems, the application of the method hinges on a
suitable extension to the compressible range, of the constitutive model for the given
incompressible material.

The most widely used extension [3]-[6], assumes as strain energy in the compressible
range, the sum of the strain energy potential of the incompressible material plus a penalty term
enforcing the incompressibility constraint.

The purpose of this paper is to discuss the form of this penalty term and moreover, show
that this form of strain energy is not the only possible one leading to a penalty formulation of
the incompressibility constraint.

For a certain class of incompressible materials, to which the Mooney-Rivlin model
belongs, an alternative form of the strain energy potential in the compressiblé range is pro-
posed, which leads to a simpler form of the elasticity tensor. This form is, therefore, particu-

larly useful in the context of a finite element formulation.

* As a matter of fact, convexity implies uniqueness and therefore preciudes buckling [12]. See also [8] and
references therein.



1. Isotropic non-linear elastostatics.

Consider a hyperelastic, isotropic body B , assumed to be identified with its reference
configuration BC R’ a bounded open set with smooth boundary §B. Let & : B — R be any
(finite) deformation, and 0B,CA3B the part of the boundary where ® is prescribed. Similarly
0B,C9B is that part of the boundary where the Kirchhoff stress vector PN=t is prescribed.

The configuration space C is then the set of diffeomorphisms defined by

C={@l%*R3I@KV®h>0md®b%=§} 1)
where B, () 0B~ and 8 B,| J 0 B,=3B

Denote by F = V& the deformation gradient and let C=F'F be the right Cauchy-Green

tensor, with principal invariant I;(i=1,2,3). If we let J=deA¥F) then p, and p=p7° are the den-

sities in the undeformed and deformed configurations respectively. Since the body is assumed

to be hyperelastic and isotropic the strain energy functional W: C — R exists and is given by:
® — WD) = WEFE = WO = WU, I, I, (2)

and the first Piola-Kirchhoff and Cauchy stress tensors, denoted by P and o respectively are

computed from the strain energy W according to

P= %_FI’K (3)
and
|
o= 7PF 4)

Since I1=t(C), Iy="4{1\’~{C?)}, and I;= det(C)=J2, application of the chain rule and the

Cayley-Hamilton theorem gives for the Cauchy stress tensor, the constitutive equation [9]

o=8,I+3;B+p3,B! (5)
where B = FF' is the left Cauchy-Green tensor, and the functions Bi(I, 1,13 (i=1,2,3) are

given by

2,8w )
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However, the response functions Bi, (i=1,2,3) are not independent. They are related by

the key compatibility conditions :

~ 8B1 - aBZ aléo
1 It 1= 270
ABy+ 13&13 Ll 81, ol
. Y Y 88,
l/2,32 + 13-6‘% + Iz'éf;'j‘ = ‘—13-5—‘[;‘2- 7
881 9B,
13 812 + —al—l =0

which can be easily checked using (6).
Denote by A the fourth order elasticity tensor, defined in terms of the strain energy func-

tional by

—
_ W _ P ®)

with components A4, with respect to the standard basis {E,} and {e;} in the configurations B
and ®(B) respectively.
Let V be the space of kinematically admissible variations, that is, the tangent space to the

configuration space C. Thus V is defined by :

V={v:.B— R3] VIaBd=O} 9)

With this notation, the condition Vv.(A.Vw) = Vw.(A.Vv) for any v,w€ V is the neces-

sary and sufficient condition for the potential W: C — R to exist [8]-[9]. This condition is
equivalent to the symmetry of elasticity tensor; i.e

Aig = A (10)

It can be shown, that the symmetry condition (10) holds, provided the compatibility con-

ditions given by (7) hold. Therefore (7) are just the integrability conditions for P = JoF~' to

be derivable from the potential W.

1.1. Incompressibility. The Mooney-Rivlin model.

In the case of an incompressible hyperelastic material, the configurations ®: B — R? are

restricted by the constraint J = dedF) = 1. The constrained configuration space C;,,CC is



then defined by

Cne={®:B—R*| ®|yp=¢, andJ =1} (11)

and the constrained tangent space of admissible variations :
Vie ={v: B— R3| viagd=o, and div(v) =0} (12)
The strain energy functional, denoted now by W Cie — R, depends only on the first and
second invariant 7, and 7,. Then instead of equations (3) and (5), the appropriate expressions

for P and o are [9],[10]

- -t 4 AW

P=—pF '+ o5 (13)
and

o =—pl + BB +BB! (14)

where p: B ~— R is the hydrostatic pressure, a bounded function to be determined by the boun-
dary conditions. The response functions [30,, (a=1,2), depend only on the invariants I, and /,.

They are given now by:

B, =25~ B,=-22~ (15)

and the integrability conditions (7) for the response functions 8,, (e=1,2) reduce to

By _ % (16)

3, 8l
The Mooney-Rivlin model corresponds to the assumption /§1 = g and fiz = —q,, Where
a, and a, are given constants independent of I; and I,, a;>0 and a,>0 [10]. By redefining

the hydrostatic pressure to be p = p+B,+8,, equation (14) takes the form :

o=—|p+(a—a)|l + & (17.a2)
[ )

where the extra stress & is given by

G=aB—aB! (17.b)

The strain energy potential, for this model is

W= ‘/2[ a,(1=3) + a,)(I~3) ] (18)
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3. Penalty formulation for nonlinear elastostatics.

In elastostatics, the variational formulation of the incompressibility constraint by a penalty
function procedure involves the extension of the constitutive model for the incompressible
material, to the compressible range.

In the linearized theory, this extension is immediate, The constitutive equation
o = —pl + 2ue, where e is the deviatoric part of the infinitesimal strain tensor e, is extended
to the compressible range by considering instead o = Kdiv(u) + 2ue. This is the same as
adopting for the strain energy W in the compressible range a form W = W + %K {div(w)}?
where W = wir(e.e) is the distortional part. A penalty formulation makes use of this compressi-

ble model, with the bulk modulus K as a penalty parameter [11].

In the non linear theory however, the situation is quite different. A first formulation [3]-

[6] considers a strain energy potential of the form
W Ipdy) = WU LT + U (19)
in the compressible range. 404 1,42 is the strain energy of the given incompressible material,
and the term U(/3) has the structure of a penalty function enforcing the incompressibility con-

straint. A suitable form for this term will be discussed in 3.1.

The type of strain energy functional given by (19), is not the only possible one leading to
a penalty formulation. Alternative expressions to (19), more convenient for computational pur-
poses, will be considered in 3.2.

In the sequel, the following convention will be adopted: variables with a superimposed "™
will always be associated with the incompressible model, while those with a superimposed "™

will be associated with the constitutive model extended to the compressible range.

3.1. General formulation

Let us assume a relationship between the strain energies W (I 11 and W(I,,1515) of the

form (19). The associated response functions B,(/,,1) and B, (1,113 are related by

[31=%l . Ba=Bo (20)
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which follow from the definitions (6) and (15), and equation (19).

9__ 0 it is convenient for simplicity to regard U in (19) as a function of

Since 713573- YR

J rather than of /3. A suitable form for the term U(/3) in (19), is provided by

Ull) = WG} + cH () 2n
where G: (0,00) — R is a penalty function with the property that G(J) = 0 if and only if J = 1

and A > 0 is the penalty parameter. The constant ¢ and the function H(J) with the property
H({J) =0and H'(J) = 1 iff J =1, guarantee that the reference configuration ® = Identity is
stress free. The usual way in which this condition is enforced [6],[7], amounts to taking

H) =J.

From equation (21), and the definition of 8,(I,,1,,15) given by (6), it follows that

- dG (J)
B,=1G(J) T +

dH(J) 14

The response functions ,,(i=0,1,2) defined by equations (20) and (22) satisfy the com-
patibility equations (7), and completely characterize the constitutive equation (5) for the Cau-

chy stress tensor. The constant c is given by

¢ = {282 — B 1Ho=1dentiy (23)
for the reference configuration to be stress free. The corresponding expression for the first

Piola-Kirchhoff tensor follows from (4), and the elasticity tensor A can then be computed using
(8).

In order to discuss appropriate forms for the functions G (J) and H(J) in equation (21),
it is convenient to consider separately the effect of the penalty term A{G(J)}2 Thus, we

rewrite equation (19) in the form:

W(Il,lz,[:;) = VZ)\{G(J)}2+ W’ (243)
W'=cHU) + W (24.b)

3.1.1. The choice of the penalty term

In the context of any numerical procedure, like the finite element method, the condition
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A — oo can only be enforced in a relative sense.

It is therefore appropriate to view equation (24) in physical terms, as the strain energy
functional of a compressible material, which exhibits ‘incompressible behavior as the parameter
A —oo, Accordingly, equation (24) should remain physically meaningful, for the widest possi-
ble range of values of A.

The behavior of the strain energy given by (24), can be easily examined as A varies in
(0,00), by considering the simple problem of the extension of a cube with unit length sides.
We shall take the stretching ratio of its side, as the control variable. Thus, any possible defor-

mation ® € C has a deformation gradient

F =yl (25)

with determinant J = y°. The associated first Piola-Kirchhoff tensor (The force required to
perform the extension) is a hydrostatic pressure T

P=pl (26)

For a given value of A € (0,00), the following conditions are expected to hold:
c.1) The strain energy W — oo, as the stretching ratio v — 0 or y — oo,
c.2) p(y) is a monotone function in (0,00) with p(1) =0, p — —oo as y — 0, and p — +co as
y — oo,
We shall consider in the sequel, the special case of the Mooney-Rivlin model. For this
type of material, the strain energy and first Piola-Kirchhoff stresses for the extension problem
are

W =1m{GH)2+ W’
W = —Qayra) Hiy®) + %—[al('yz——l)-i-az(y“—l)J @7

P= {2a2[73—72H’(y3)] + aI[y——yzH'(y3)]]I

T Taking the stresses as control variables, leads to the classical example which shows lack of uniqueness in
nonlinear elasticity. Seven solutions for a simple Neo-Hookean material are possible [9].



-8
(a) For A = 0 we have the limiting case of no penalty term and W = W". The choice:

H({J) = In(J) (28)
produces the strain energy W and first Piola-Kirchhoff stresses P plotted in fig.1 and fig.2

respectively. (Curves A=0). Both W and P satisfying conditions c.1) and c.2).

(b) For A > 0, the response is affected by the penalty term. Two common forms of penalty
function are G(J) = (J—1) [3]-[6], and G(J) = In(J) [7]. The first one, together with
H({J) =J [6], produces the family of curves plotted in fig.3. Notice that an instability
appears around J=.5, and that P vanish when y=0. A similar instability phenomenon is
expected to happen for G(J)=In(J), although around the very large value of J=103,
However, the combined function

{GWH}= (In)?2+ (J-1)? (29)
is a suitable form of penalty function, and produces the family of curves plotted in fig.1
and fig.2 for different values of \. For each A € (0,0), W and P satisfy conditions c.1) and
c.2).

The functions H(J) and G(J) given by (28) and (29) do not introduce any special com-

putational effort. In fact, the corresponding response function [3 o IS

N U= +InS)+c—185) (30)

S

B,

3.2. Alternative formulation

Instead of considering a relationship of the type given by (19) between strain energy
potentials, attention will now be focussed in the constitutive equations (5) and (14) for the
Cauchy stresses, in the compressible and incompressible cases respectively.

We shall consider first, the case of the Mooney-Rivlin model. Extensions to more general
incompressible models will be examined later.

Let g: (0,00) — R be a smooth real valued function, such that g(x) = 0 if and only if

x = 1.
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Consider first the replacement of the term —pI in equation (17.a) by Ag(J), where A > 0

is a real constant. Now let A — oo; i.e consider a sequence {\,} such that lim\, =co. Since

00

p: B — R is a bounded function (say in the uniform norm) and g(J) = —f—, it follows that if

we let A —oo then g(J) — 0. By the assumptions on g(J), J — 1 as A — oo.

The described replacement of hydrostatic preassure —plI, shows that the incompressible
case can be viewed as the limit of a sequence of compressible cases. However, in contrast with
the linearized theory, this formulation requires the modification of the term & in (17.a). In
fact, if o remains unchanged one is led to the constitutive model

o={g()—(a—a)l +aB — aB! (31)

and substitution into the general integrability conditions (7) yields:

0, . 0B,
611-0,/za2—~ 6120

0

ha | =

Thus ¢=0, and we arrive to the remarkable conclusion that the only possible hyperelastic
compressible model, compatible with the assumption of constants response functions
8., (a=1,2) is the hydrostatic pressure o = g(J)I.

Since the response functions Bl and ,[22 can not be a pair of constants in the compressible
range, although they must reduce to the Mooney-Rivlin constants a; and @, whenever J = 1,
we are led to the assumption:

B1= B3, By= B (32)

Substitution into the integrability conditions (7) yields a pair of ordinary differential equa-

tions which have the simple solution

o fr 5 _ 9
31—1,32 7 (33)

Therefore, a consistent extrapolation of the Mooney-Rivlin model to the compressible range is
given by

o =gW)—(a—a)h (DN + —"J—‘B -~ EJEB—I (34)

where for more generality, the function A: (0,00) — R with the property h(x)=1 iff x=1, has
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been introduced.

If we take g(J)=1/z-f—]{G(J)]2 and h(J)=~§—]H(J), where the functions G(J) and H(J)

have the same meaning as in the previous section, equation (34) corresponds to a strain energy

potential of the form:
W09 = U + hlay(I=3) + Ll =3) (35)
where U (1) is again given by (21), with the constant ¢ = a—ay

This strain energy potential has a structure different from that considered in equation (19)
and discussed earlier. In contrast with the previous formulation, the resulting first Piola-
Kirchhoff tensor does not contain the invariant I,, and /5 only appears in Bo. Thus, it leads to

a simpler expression of the elasticity tensor A, more convenient for computational purposes.

The form of strain energy given by (35), also leads to a penalty formulation of the

incompressibility constraint. This point is examined next.

3.2.1. Penalty formulation for the Mooney-Rivlin model.

Let us rewrite equation (35) in a form analogous to (24.a), with W given now by

W.t == (612"'(1])H(J) + 1/2(11(11“3) + 1/202(]213_1—3) (36)

The total potential energy functional corresponding to the strain energy W' is, for any
configuration ® € C, given by
n'@ = [ wav- [bxav - [ixds 37
B B B,
where x is the vector from the origin to x = ®(X), and b the body forces per unit of mass in
the reference configuration .
With this notation, the variational formulation of the boundary value problem for an elas-

tic material with strain energy given by (36), is then

Find® € C such that
[1(®) = min {n*(A) +yf [G(J)]"'dV] (38)
A€EC B :
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For isochoric deformations ®€C;,. /1 and (36) reduces to the strain energy for the
Mooney-Rivlin model. By the assumptions on G (J), the condition ®€C,, is equivalent to
G (J(®)) = 0. Therefore, the variational formulation of the boundary value problem for the

Mooney-Rivlin model is given by
Sind ®€C,,. such that
I1°(®) = min [u’(A)] (39)
AeC |

Subjected to: G(J(A)) =

If we let A — oo, equation (38) is just the penalty formulation of the constrained problem

given by (39). [11-[3]

3.2.2. Extension to more general constitutive models.
Let us examine for what class of incompressible materials, a simple relationship between

response functions of the form:

B U101y =B L1d (), (@=1,2) (40)

and

B, 115 = B() (41)

analogous to that found for the Mooney-Rivlin model, is in general possible.

Substitution of (40) and (41) into the integrability conditions (7) and the use of condition

(12) yields, after some manipulation the system of equations:

'/z—[J¢1(J)]B1 = —¢ () [t g’j‘
-2 162D)B = =42 g2 3‘3 : (42)
P (D5 aﬁ‘ +¢(J) 2‘;12 =

The solution of the system of equations (42) together with equation (12) is given by

$1(J) ==, () = (43)

J2a 1

which corresponds to a strain energy potential of the form:
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W) =fU) + A%+ B (44)
where A and B are constants.

For this class of constitutive model, exactly the same formulation as that used for the
Mooney-Riviin model is applicable.

Equation (44) includes some forms of strain energy commonly used in rubber elasticity,
like

W= FU=3)+ (U3 (45)
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4. Final remarks.

The penalty formulation of the incompressibility constraint in finite elasticity, amounts to
considering an extended constitutive model which, although no longer incompressible, exhibits

incompressible behavior in the limit as the penalty parameter tends to infinity.

It has been shown in this report that consideration of the physical significance of this

extended model leads to a proper choice of the penalty term.

Finally, for a certain class of materials a simpler extension to the compressible range was
proposed as an alternative to the one commonly used [3]-[7]. This class of materials includes

some frequently used in rubber elasticity, in particular the important Mooney-Rivlin model.
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KU=R (A.T)

from which the incremental deformation is computed.

The iterative solution procedure outlined in the previous section, amounts to solving at
each intermediate configuration, say ® . the linear system of equations (A.7) for the incre-
mental displacements U. The norm ||R’|| of the residual is then compared with a pre-
established tolerance to assess convergence. This procedure is equivalent to the Newton-

Ralphson method.[A.1],[A.3].

a.3. Numerical implementation,

The structure of the tangent stiffness matrix and the residual force vector, for a typical

element (1, with n, nodes, is the following }

k. Kk ‘

K=1{|. ... . (A.8)
kn(I . k”e"e

and

r! ul

R=1]. U=1{. (A.9)
"(' "e
r u

The dimensions of any submatrix k*? («,8=1,n,) is (dxd), and (dx1) that of the vectors r%,
and u®, d being the spatial dimension of the problem. In addition, the following convention will
be used: the element (i,j) of the matrix k*? will be denoted by K$*, and by R the i com-
ponent of the vector r®

With this notation, the tangent stiffness and the residual force vector for a typical element

are given by

Kg# = [ 4N N, fav (A.10)
Q,

¥ The superindex e will be dropped in what follows.
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Re = [oiNwav + [ iN=av - [ PN, ;av (A1)
Q, 30 0,

¢

where a "." denotes partial differentiation with respect to material coordinates.

Equations (A.10) and (A.11) show that the elasticity tensor A and the first Piola-

Kirchhoff stress tensor P, is all that is required to carry out the analysis.
iet us consider the penalty formulation of the Mooney-Riviin model discussed in section
3.2. Introducing the notation

B(J) = rg()) — (a—a)h(J) (A.12)
the Cauchy stress tensor given by (34) takes the form

- Gip %15
o =81+ J,B JB (A.13)

and from equations (3) and (8) the components of P and A are given by

Py = (UBWINF;' + a\Fy — a,B;'Fj;! (A.14)

and

Ay = J-LUIBWDIFF' = UBWDIFI'F' + aid by
+ a)f C'B' + FiCitF' + FilCi'Fit (A.15)
Equations (A.14) and (A.15) completely define the tangent stiffness and the residual for
an arbitrary element. The assembly and solution of the global system of equations (A.7) can be

carried out with any standard finite element program.

The integrations involved in the computation of the stiffness matrix and the residual, are
performed numerically using Gauss quadrature formulae. In order to avoid the well known
"locking" phenomenon [A.1],{A.4] that appears for high values of the penalty parameter A\, use

of reduce integration techniques must be made [A.1].

In the case of plane strain, the Mooney-Rivlin model reduces to a Neo-Hookean material
and equations (A.13) to (A.15) take a particularly simple form. The constant a, is replaced by
u=Y{(a+a-), and the terms containing a, can be eliminated.. This case has been implemented

in the FORTRAN subroutine listed at the end of this report, designed for the general purpose
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computer program FEAP listed in chap.24 of reference [A.1].

a.4. Numerical examples.

The performance of the element is illustrated in the following two examples for which
exacl solutions are available. The results obtained for the problem of a cube subjected to an
homogeneous extension are plotted in Fig.A.1, and those corresponding to a case of pure shear
in Fig.A.2. In both examples 2 4-node isoparametric element was the the type of element used.
A 1x1 Gauss quadrature for the volumetric part of the stiffness a’nd the residual, the terms con-
taining the penalty parameter A\, and a 2x2 Gauss quadrature for the deformational part, was
the reduced integration procedure adopted. The agreement between the finite element solu-

tion, and the exact solution is evident.
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APPENDIX B.

Mooney-Rivlin plane strain element for FEAP.

b.1. Input of material properties.
The first card of the material data set is as described in reference [A.1] pp. 694. The ele-
ment type number to be input in column 10, is 15. The second card containing the material

property data is prepared according to

column  description

1 to 10 A penalty parameter
11 to 20  u generalized shear modulus
21 t0 30  blank
31to 35 k1 # integration points for bulk part

35to 40 k2 # integration points for shear part

b.2. List of the element
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330 i = 1 + ndaf
nn = O

do 360 jj = 1lsii

do 340 i = l.ndim
340 st{i} = shpli,jj)

1 =0

do 3%% i = l.ndim

do 350 j = l,ndin

do 350 k = lendim

350 estiflitnn, j+wm) = estifl(i+nn, j¥mm} + stilk)¥bi(k+isj)
355 1 = 1 + ndim
360 nn = an + ndf
370 mm = mm ¥ ndf
380 continue
Cesse cONStruct symmetric part
do 390 i = lsnstf
do 390 j = ienstf
390 estifljsi) = estifli,j)

return
C
Cesss coOmpute the stress/strains and rehsSe
4 ki=d{6)

ifliswseges) ki=1
do 495 kk=1,ki
xlam=d(kk )}
xnu =dlikk+Z)
igs = dikkts)
ifligs¥?ndim.ne.lint) call pgauss{iqsslintssgstgewg)
iflisweeqs4) xnu = d{&)
do 490 11 = l,lint
call shapelsg(llil,tglil)sxlsshpsxjacsndimenel,ixscfalses)
call conl4( jenegsulsshpexjacsndfondimenelsnsi)
if{jcneg) return
iflisw.eg.6) go to 420
do 40% § = 1.ndim
xx{i) = Q.
do 40% j = 1lsnel

405 xx (i) = xxCi} + xilisjlashp(3,])
mct = mct - 1
ifimct.gt.0) go to 410
writelitp6,2001) oshead,time
writelitp6s2C02) Hshed(i,jhrstwjﬂ,ndim),i=1'ndim)
mct = 10Q

410 write{itp6,2G03) dmsnsmasixxl{ilsi=londim)
write{itp6,200¢) ptsl{tlisjls j=lsndimlei=lendim)
writel(itp6,2004) ppellplisjle j=lendim)lsi=lsndim}
writelitpb,2004) pselis{isjls j=londiml,i=lendim)
writelitp6,2004) pestlelisjly j=lendimlsi=lsndim)
write(itp6,2004) pcotflclisjle j=londimdsi=tondim)
writelitp6,2C04) pfol(flisjls j=lendimlsi=lendim}
writelitp6,2005) detf
g0 to 490

Ceoes compute forces

420 dv = wq{ll}%xjac
mm = O
do 460 k = lynel
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do 430 i

sti{i} = s

do 450 i

temf = 0.0

dJOo 440 j z lendim

temf = temf *+ p{j,il=sti])

forced{i+mm) = Forcefl{i+mm) - tenf

mm = om * nof

continue

continhue

return

call plot9({ixexlsndimenel)

return

return

format{(3f10.0,21%)

format{ /Sx,40nfinite deformat ion 2d/3d elastic element//10x,
9hlamda =g 15 .5/7/10x,Phuu =]15%.5/

lendim
plisk Jrdv
i sNd P

[T 1]

2 10x,9hdensity =el5.5/

3

1

1

10x,%bulk pt = ,i15,/10x,10hshear pt = ,i4s/1x }
format{al,20a4/5x,’time’,e13.5/5x,16he lement stressessd/Sxe
l7he lement material;”’ 1 coorde. 2 coorde.”®}
format{13x,6htensor 3%y 18ab)
format{/2xsaveibsifs3IXe3Ff12.%21)
formattlox,ab,ipYel2. 3]
format{léx,6hdet(f} 1lpeil.3)
end
subrout ine conlédl jcneg,ul,shp.x jacsndfsndsnesnn,ipl
implicit double precision (a=hso=2z)
dimension ulindf,1)sshp(3,1)sfi{2s2)sb(2:2)
logical jcney
common Jconstl/xlamexnuefl2,2)seldoldlocl2:2)s5(2,2)epils2)et(2,2),

dalés%)ydetf
Cesse compute deformation gradient f
4o B i = 1,3
do § J = 1'3
flisg) = 0.
do 20 § = lsnd
flisi) = 1.
do 20 j = l,nd
4o 20 k = line

20

c.'.‘

500

Ceos o

Flisjd = Flisj) ¥ ullisk)¥Fshpljok)
compute determinant of f
tt = fUlp1)3F0242) = FL1,23%F(2,1)
ifltt.gt.0,0d0) go to 500

jcneg = strues
writeld 2000) nn,tt
return

tt = dioyftt)

compute f inverse
Fills1) = F¢2,2)/1t
filzs2) = flilsl)/tt
fi(lpZ) = "f(lvzj/tt
Fil2,1) = =fF(2,1)0/1¢
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Cases COmMpuUte bDsCe

do 40 1 = 1.nd

do 40 j = lend

b(igj) = Qe

clisjl = Qo

do 3% k = lend

blisj) = blisjr + Flisk)=f{jsk)
35 clisjl = clisj) ¥ Flikgi)¥fiks j)
40 elbsjl = «5%Fclisj)

do 45 i = lsnd
45 efisi} = ©liasi) = &5

iflip} 690.6004700

Ceene COmpuUte tangent tensor a
600 <0 = xnu ~ ARilam={ti+ers{gt=-1.1}}
cl = xlamFl{l vl 2%t ~10 )5LL)

m O

do 80 § = l.nd

do 80 j = 1l.nd

m = m + 1

n = 0

do 80 k = }]e¢nd

do 8L | = lsnd

n = n 4+ 1

tf = cl#Fi(jeid=fillok) + cORFi{jok)I¥Filloi)d
80 almen) = tf

im = nd *nd

do 100 & = 1l,im
100 atlisi) = atisi) + xnu

Feturn

Ceess cOmpute p and t
700 <O xlam={titee={tt=1.1)
cl cO/tt
cl xnu/tt
do 200 i = lend
do 200 = 1snd
plisj) cO¥Filisj) + xnus(f(joi) = Filionj))
200 tlisj) c2%blis j)
do 210 = 1,nd
210 tiiei) tlisi) + ¢l - c2
Csesoe COmMpute s

i

fHoH

LI LI T B L

300 do 340 3 = lsnd
do 340 | = lend
S(i,_j) = Qe
do 340 k = l.,nd
340 s(isj) = s(isj) + pliok)?Fi(]ek)
detf=tt

return

2000 format(Sxs39hs=local volume in nonlinear element no. 515
1 16h is negative = sel4.7)
end





