
UCLA
UCLA Electronic Theses and Dissertations

Title
Generalizing Programmable Accelerators for Irregularity

Permalink
https://escholarship.org/uc/item/4kv90345

Author
Dadu, Vidushi

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kv90345
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Generalizing Programmable Accelerators for Irregularity

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Vidushi Dadu

2022

© Copyright by

Vidushi Dadu

2022

ABSTRACT OF THE DISSERTATION

Generalizing Programmable Accelerators for Irregularity

by

Vidushi Dadu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Tony Nowatzki, Chair

Specialized accelerators are increasingly attractive solutions to continue expected genera-

tional performance scaling with slowing technology scaling. Existing programmable acceler-

ators like GPUs are limited to regular algorithms; however, supporting irregularity becomes

necessary to accelerate more advanced algorithms or those from challenging domains. Ir-

regularity occurs when aspects of the execution depend on the data – these aspects can

be control, memory, parallelism, and reuse. An example of data-dependent execution is

joining two sparse lists where the branch outcome depends on data; this inherently couples

computation with memory and precludes efficient vectorization – defeating the traditional

mechanisms of programmable accelerators (e.g., GPUs). Data dependencies in computa-

tions like producer-consumer streaming dependencies require detrimental synchronization

overhead in shared memory systems.

We aim to develop a family of compatible dataflow accelerator mechanisms. Our critical

insight is that it is unnecessary to support arbitrary forms of irregularity because specializable

data dependence forms are sufficient for many workloads (despite being more restrictive). We

expose these data dependence forms as first-class citizens in the instruction set architecture

(ISA) so that the corresponding hardware is specialized for efficiency while remaining flexible

ii

to the requirements of applications.

This dissertation studies various applications from machine learning, graph processing,

databases, and signal processing. First, we identified specializable forms for instruction and

task-level irregularity (where a task is coarse-grained). These primitives are designed to

be composable and extensible to enable continual evolution. Then, we used these forms

to design a family of spatial architectures supporting irregularity with compatible features.

Leveraging hardware flexibility, we also studied different algorithmic implementations and

developed insights into the complex relationship between input, workload, and algorithmic

choices on performance.

We evaluate the architecture by integrating a custom accelerator simulator into the cycle-

level gem5 simulator. The input programs are written in a combination of C and intrinsics

of traditional dataflow and our data dependence forms. The hardware components are im-

plemented in Chisel with an industry 28-nm technology. Overall, our architectures achieve

order-of-magnitude speedups over a similarly provisioned GPU while remaining within 30%

of application-specific architectures. In graph processing, we achieved 5.7× speedup over the

best prior domain-specific accelerator, using the flexibility to choose the optimal algorithm

given the input workload and data characteristics. Our designed hardware can be a strong

alternative to GPUs; the main compute offload accelerators today. Besides, our proposed

features target irregular primitives and perform similarly to prior domain-specific architec-

tures. We believe our work can be the first step to unifying the rapidly evolving irregular

acceleration space.

iii

The dissertation of Vidushi Dadu is approved.

Jingsheng Jason Cong

Puneet Gupta

Daniel Sanchez

Harry Guoqing Xu

Tony Nowatzki, Committee Chair

University of California, Los Angeles

2022

iv

To Papa, Mummy, Shrey, and Anant

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background . 4

1.1.1 Irregular workloads . 4

1.1.2 Existing Architectures for Irregularity 7

1.1.3 Domain-specific Architectures . 12

1.1.4 Application-specific Architectures . 13

1.1.5 Our Focus . 14

1.2 Key Insight and Approach . 15

1.2.1 Insight: Irregularity Can be Specialized 15

1.2.2 Approach . 18

1.3 Contributions . 20

1.4 Organization . 21

2 Systematizing and Characterizing Irregularity Forms 23

2.1 Irregularities due to Control and Memory Dependencies 23

2.2 Task Irregularities . 25

2.2.1 Task Irregularity with Fine-grained Data Dependencies 26

2.2.2 Task Irregularity with Coarse-grained Data Dependencies 28

2.3 Other Irregularities . 30

2.4 Summary and our Solution Approach . 32

3 Decoupled Spatial ISA and Hardware . 33

3.1 Execution Model and ISA . 33

vi

3.1.1 Decoupled Spatial Execution Model 33

3.1.2 ISA Specification . 35

3.2 Decoupled Spatial Hardware Design . 36

3.2.1 Control Plane . 37

3.2.2 Data Plane . 37

4 Challenges to Design Domain-Agnostic Reconfigurable Accelerators . . 40

4.1 Pick Workload Benchmarks . 41

4.2 Pick Algorithms to Accelerate . 43

4.3 Designing Hardware-Software Interface . 44

4.4 Evaluation Methodology . 48

5 Accelerating Workloads with Data-Dependent Control and Memory . . 50

5.1 Specializable Data-Dependence Forms . 52

5.1.1 Stream-Join . 53

5.1.2 Alias-Free Indirection (AF-Indirect) 54

5.2 Specializing Data-Dependent Control . 56

5.2.1 Stream-join Control . 56

5.2.2 Stream-join Compute Fabric: DGRA 59

5.3 Specializing Data-Dependent Memory . 62

5.3.1 Sparse Memory Abstractions . 62

5.3.2 Data-Dependent Memory Microarchitecture 65

5.4 Sparse Processing Unit . 67

5.5 Methodology . 72

5.6 Evaluation . 76

vii

5.6.1 Performance on Machine Learning . 77

5.6.2 Performance on Graph and Databases 79

5.6.3 Sensitivity to Dataset Density . 81

5.6.4 Benefit of Decomposability . 83

5.6.5 Area and Power . 83

5.7 Related Work . 84

5.8 Discussion . 87

6 TaskStream: General Task Framework For Accelerators 89

6.1 TaskStream Execution Model . 91

6.1.1 TaskStream Program Representation 92

6.1.2 Limitations of TaskStream . 94

6.2 Fundamentals of the Approach . 95

7 Understanding Fine-Grain Task-Parallel Workloads Through Accelerating

Graph Processing . 97

7.1 Graph Acceleration Background . 100

7.1.1 Vertex-centric, Sliced Graph Execution Model 100

7.1.2 Key Workload/Graph Properties . 103

7.2 Graph Algorithm Taxonomy . 104

7.3 Unified Graph Processing Representation . 107

7.3.1 Data plane Representation: TaskStream 107

7.3.2 Slice Scheduling Interface and Operation 110

7.3.3 Scheduling of Algorithm Variants . 112

7.4 Polygraph Hardware Implementation . 115

viii

7.4.1 Task Hardware Details . 116

7.4.2 Memory Architecture . 118

7.5 Spatial Partitioning . 118

7.6 Methodology . 121

7.7 Evaluation . 122

7.7.1 Algorithm Variants Performance Comparison 123

7.7.2 Comparison to Prior Accelerators . 125

7.7.3 Algorithm Sensitivity . 127

7.7.4 Hardware Sensitivity . 130

7.8 Additional Related Work . 134

7.9 Discussion . 136

7.9.1 Limit Study . 137

7.9.2 Factors Impacting Convergence Rate 138

8 Accelerating Task-Parallel Workloads with Coarse-Grained Dependencies141

8.1 TaskStream Optimizations . 143

8.1.1 Opportunities for Structure Recovery 143

8.1.2 TaskStream Model . 145

8.2 TaskStream for Reconfigurable Accelerators 148

8.2.1 Hierarchical TaskStream Dataflow . 149

8.2.2 Programming . 151

8.2.3 Workload Mapping . 154

8.2.4 Discussion of Limitations and Extensions 156

8.3 Delta: A TaskStream Accelerator . 157

8.4 Methodology . 161

ix

8.5 Evaluation . 162

8.6 Related Work . 170

8.7 Discussion . 173

9 Discussion . 176

9.1 Case for Domain-Agnostic Programmable Accelerators 177

9.2 Systematizing Irregular Accelerator Research 178

9.3 Future Directions and Open Questions . 181

9.3.1 Programming language support for “Programmable Accelerators” . . 182

9.3.2 Acceleration at scale . 183

9.3.3 Accelerate Workloads with Dynamic Data 183

9.3.4 Generalizing Taskstream Abstraction 184

9.4 Conclusion . 187

A Abstract Graph Simulator . 189

A.1 GraphSim Implementation . 190

A.2 Limitations . 192

References . 194

x

LIST OF FIGURES

1.1 Generality vs Efficiency . 2

1.2 Example Regular and Irregular Programs . 5

1.3 Sources of Irregularity and Example Workloads 7

1.4 Fundamental Architecture Styles (Please note that we do not show hybrid archi-

tectures where application-specific modules are added in domain-agnostic archi-

tectures.) . 8

1.5 Insight: View Irregularity as a Set of Specializable Irregularity Primitives 16

2.1 Irregularities due to Control and Memory Dependencies 24

2.2 Task Irregularities with Fine-Grained Data Dependencies 26

2.3 Task Irregularities with Coarse-Grained Data Dependencies 27

2.4 Irregularities due to Time-Dependent Data Structures 30

3.1 Decoupled Spatial Execution Model . 34

3.2 Decoupled Spatial Accelerator Core . 37

4.1 Approaches to find commonalities across kernels 46

5.1 Example Stream-Join Algorithms . 52

5.2 Example Alias-Free Scatter/Gather Algorithms 53

5.3 Stream-Join Control Model . 55

5.4 Execution diagram for join of two sorted lists. 59

5.5 CLT integration . 60

5.6 DGRA Switch . 61

5.7 DGRA Processing Element . 61

xi

5.8 Scratchpad Controller . 64

5.9 Compute-enabled Banked Scratchpad . 64

5.10 Functioning of IROB. (bits<6..4> indicate bank number) 66

5.11 SPU Overview . 68

5.12 Example SPU Program Transformation: GBDT (Each core gets a subset of fea-

tures to process i.e. fid=tid) . 69

5.13 Overall Performance . 76

5.14 Performance on GBDT, KSVM, AC. (Computation density under benchmark

name) . 77

5.15 Performance on DNN. (Compute density under benchmark name) 78

5.16 SPU Bottleneck on Machine Learning/Graph Workloads. 79

5.17 Performance on PR, BFS. (Edges under benchmark name) 80

5.18 TPCH Performance comparison . 81

5.19 Performance Sensitivity (Matrix Multiply, dim: 9216×4096) 82

5.20 DGRA Area and Power Sensitivity . 85

6.1 Overview of optimizations in TaskStream. 91

6.2 Sparse Dot Product Example Written in TaskStream. 93

7.1 Algorithm Variant Dimensions & Prior Accelerators 98

7.2 Work-efficiency and Throughput Tradeoffs . 99

7.3 Algorithm (SSSP) and Mapping to Arch. Template 101

7.4 Graph Data Structures . 103

7.5 Key Variants of Graph Processing Algorithms 104

7.6 Shorthand for Algorithm Variants . 107

7.7 TaskStream Examples . 108

xii

7.8 T-Slicing for Large Graphs (N slices, K vertices each) 112

7.9 Potential of Dynamically Switching Variants (Effective GTEPS is the useful

throughput – “work-done-per-second”/“work-efficiency”. Here the work-efficiency

is normalized to AwN and thus, the area under the curve is “AwN-work”/“total-

execution time”.) . 113

7.10 Algorithm Variant Scheduling . 114

7.11 PolyGraph Modular Hardware Implementation 116

7.12 Cluster-based vs Novel Multi-level Spatial Partition 119

7.13 Algorithm Variant Performance Analysis . 122

7.14 Comparison of Algorithm Variants. 124

7.15 Overall Performance Comparison (Gunrock does not implement CC, CF; GCN

does not have pure asynchronous implementation.) 125

7.16 Cumulative Speedup of Novel Features . 126

7.17 Dynamic Switching and Threshold Sensitivity 127

7.18 Slice Switch Heuristics (C: cross-slice vert., E: edges/slice) 128

7.19 Sensitivity to Spatial Partitioning Cluster Size 129

7.20 Access Patterns in Algorithm Variants (for SP.lj) 130

7.21 Sensitivity to Hardware Resources . 132

7.22 Sensitivity to Memory Size . 133

7.23 Accelerator Performance vs Area . 135

7.24 Bottlenecks with More Cores . 138

7.25 Skewed Execution of Edges in SSSP . 139

7.26 Convergence Analysis of Synchronous and Asynchronous Algorithms (for BFS on

LiveJournal graph) . 140

xiii

8.1 Opportunities in Näıve Task Parallelism . 142

8.2 TaskStream Graph Abstractions . 146

8.3 TaskStream + Dataflow (T2 state changes omitted.) 148

8.4 Cholesky Implemented in TaskStream (for brevity, only two outer loop iters. run

in parallel in one program phase) . 151

8.5 TaskStream Graphs for Evaluated Workloads 155

8.6 Single Tile of Delta Accelerator . 158

8.7 Overall Performance Comparison . 163

8.8 Traffic-breakdown with Stream Recovery . 163

8.9 Utilization Comparison with Stream Recovery. 164

8.10 Utilization Comparison with Stream Recovery for Cholesky. 167

8.11 Utilization Comparison with Stream Recovery 168

8.12 Sensitivity to Load Balancing Strategies . 169

8.13 Potential Benefits of Dynamic Reconfiguration in GCN 174

9.1 Systematizing Irregular Accelerator Research . 179

9.2 Our vision for software stack of our programmable accelerator 182

9.3 Challenges and Proposed Solutions/Insights . 185

9.4 Modeling Heterogeneous Architectures and Multi-tenancy as Task Scheduling

Problem . 186

A.1 Vertex-Centric Graph Processing Pipeline Template Implemented in GraphSim . 190

A.2 Example Accelerators Implemented using GraphSim’s Template 191

xiv

LIST OF TABLES

1.1 Classifying Irregularity by Data-dependence Granularity 4

1.2 Algorithms and Specialized Accelerators Note we put the maximum speedup

numbers, so they should be considered as approximate speedup range. 14

1.3 Irregularity Categories, Supported Domains, and Irregularity Forms 17

1.4 Dissertation Outline (* represents background papers.) 22

3.1 Decoupled Spatial ISA [162] . 35

4.1 Benchmarks in Data-processing Domains (* specifies no standard exists.) 41

4.2 Workloads Classified by Data Dependence Forms 42

5.1 Data-Dependence Forms Across Algorithms . 51

5.2 Mapping of Algorithms on SPU . 71

5.3 Latency and Throughput of a Subset of Simulated Hardware Components. . . . 73

5.4 Architecture characteristics of GPU, SPU-inorder and SPU 73

5.5 Baseline workload implementations . 73

5.6 Datasets . 74

5.7 Performance Speedup With Adding Decomposability 83

5.8 Area and Power breakdown for SPU (28nm) . 84

5.9 Power Comparison between SPU and GPU . 84

5.10 Analysis of Related Works (roughly least to most general) 85

6.1 Dynamic Task Parallel Patterns Supported by Prior Works 94

7.1 Graph Workloads (Prop: vertex prop. size). 102

7.2 Algorithm Variant Tradeoffs . 106

xv

7.3 Architecture Characteristics of Baselines . 120

7.4 Input Graphs (Left column is the domain. PR requires double #T-slices; #T-

slices for CF/GCN depends on feature size.) . 120

7.5 Area and Power breakdown for PG-flex (28nm) 134

7.6 Prior Works in Taxonomy (*software frameworks) 136

8.1 Node properties in Task Graph . 152

8.2 Edge properties in Task Graph . 153

8.3 Datasets Used in this Work . 160

8.4 Architecture Parameters . 161

8.5 Speedup over 24-core SKL CPU . 162

8.6 Sensitivity to Dependence Chain Depth . 170

8.7 Area and Power breakdown for Delta (28nm) 170

8.8 Related Work Comparison (* uses traditional threads for parallelism; no hardware

support for tasks.) . 172

8.9 Speedups with Batch and Multicast Optimizations in kNN Normalized to Small

Cache and No Batch Case . 173

8.10 Speedups with Lazy Binding Normalized to TaskStream 175

A.1 Graph Accelerator Options Supported in GraphSim 192

xvi

ACKNOWLEDGMENTS

This dissertation is possible with the support and guidance of many people.

First among them is my advisor, Tony Nowatzki. I have been extremely fortunate to be

advised by Tony, who taught me to think about long-term vision, ask the right questions,

and present my ideas effectively and passionately. I admire his skill for quickly filtering out

bad ideas. He always motivated me to give my best and encouraged me even if things were

not going well. I will miss our brainstorming discussions and barging at his office at random

times. I hope I can continue doing impactful research the way he taught me.

My committee members have been instrumental in polishing my work. Thanks to Jason

for giving his valuable suggestions throughout my Ph.D.; I also learned a lot from the dis-

cussions in RTML meetings. Jason gave me the opportunity to present at CDSC, which was

a great platform to get feedback from a broader audience. Thanks to Harry and Puneet for

providing me with critical feedback on my work and pushing me to evaluate the practical

implications of my research. I really like Daniel’s work; his papers have indirectly taught me

a lot about graph processing, leading to one of my most rigorous work. Also, his feedback

on my dissertation helped me to be more concise on my definitions.

Thanks to all PolyArch lab members – our reading groups were fun. I want to thank Jian

for our collaborations and his life suggestions on the tragedies of having little kids. We never

collaborated directly, but Zhengrong helped me with his gem5 skills frequently. It is fun to

hang out with Sihao, Dylan, and Chris. I am grateful to my research collaborators: David

Ott and Pratap Subramanium, for giving their industrial perspective during our meetings.

I would like to thank Guy Van den Broeck and Arthur Choi for their insights and help with

machine learning workloads.

My friends at UCLA made my journey enjoyable: Atefeh Sohrabizadeh, Akshay Ut-

ture, Arjun Akula, Siva Kesava, Aayush Jain, Ashutosh Kumar, Aishwarya Sivaraman, and

Pradeep Dogga. I enjoyed my outings with Siva and Akshay. Arjun and Siva have always

been helpful in all kinds of queries I had during my Ph.D.

xvii

Finally, this dissertation is dedicated to my parents (Alok and Sapna) and my brothers

(Shrey and Anant). I am indebted to them for their love, support, and continuous encour-

agement throughout my years of study.

xviii

VITA

2015 Research Intern, Carnegie Mellon University, Pittsburgh, USA.

2016 Research Intern, Carnegie Mellon University, Pittsburgh, USA.

2017 B. Tech. in Electronics and Communication Engineering with Minors in

Computer Science, IIT Roorkee, Roorkee, India.

2018 Teaching Assistant (“Computer Systems Architecture” course), Computer

Science Department, UCLA.

2019 Research Intern, Intel, Hudson, MA.

2020 IEEE Micro Top Picks Award.

2020 HPCA 2021 Student Reviewer.

2021 Research Intern, Microsoft, Redmond, USA.

2021 IEEE Micro Honorable Mention Award.

2022 Software Engineering Intern, Google, Mountain View, USA.

2022 IEEE Micro Top Picks Award.

2022 Google Peer Bonus Award.

2022 CAL Reviewer.

2022 Outstanding Graduate Student Research Award.

xix

PUBLICATIONS

Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards General Purpose

Acceleration by Exploiting Common Data-Dependence Forms. In 2019 International Sym-

posium on Microarchitecture (MICRO ’52), ACM, New York, NY, USA, pages 924-939.

Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. “Towards General-Purpose

Acceleration: Finding Structure in Irregularity,” in IEEE Micro, 2020.

Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. A hybrid

systolic-dataflow architecture for inductive matrix algorithms. In 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 703-716.

Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony Nowatzki.

DSAGEN: synthesizing programmable spatial accelerators. In 2020 IEEE 47th International

Symposium on Computer Architecture (ISCA), pages 268-281.

Vidushi Dadu, Sihao Liu, and Tony Nowatzki. PolyGraph: Exposing the Value of Flex-

ibility for Graph Processing Accelerators. In 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA). pages 595-608.

Vidushi Dadu, Sihao Liu and Tony Nowatzki. “Systematically Understanding Graph Ac-

celerator Dimensions and the Value of Hardware Flexibility,” in IEEE Micro, 2022.

Vidushi Dadu and Tony Nowatzki. Taskstream: accelerating task-parallel workloads by

recovering program structure. In Proceedings of the 27th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, 2022.

xx

CHAPTER 1

Introduction

Hardware specialization is a promising solution to continue generational scaling of perfor-

mance. The idea is to tailor the underlying architecture according to the requirements of

the target applications, resulting in orders-of-magnitude performance gains.

Specialization has already seen a spur in the research community as well as significant

adoption in the industry. In research, examples pervade many domains, including graphs [94,

221, 274, 68, 15, 53, 209], AI/ML [265, 104, 17, 195, 210, 237, 114, 117, 142, 223, 242],

databases [122, 258, 259, 115], systems [282, 75, 76, 78], and genomics [233, 81, 234, 50, 121,

269]). The industry has examples for molecular dynamics [215], cryptography accelerators

in CPUs [108], digital signal processing (DSP) accelerators on mobile SoCs [21], and most

predominantly, deep learning accelerators. On the one hand, matrix-multiply acceleration

units have been integrated into existing programmable accelerators like CPUs/GPUs [31, 184,

190, 245, 159, 168]. On the other hand, there are several standalone accelerators, including

TPU [113], Groq [12], and Amazon Inferentia [19]. GraphCore [116], Cerebras [131], etc.

A common trend in academia and industry is focusing unwaveringly on application-specific

accelerators.

Designs which are performance-robust across algorithms and domains would be valuable

for economies of scale. For motivation, consider how drastically the deep learning domain has

evolved in recent years. During the deep learning boom in 2012, AlexNet was the primary tar-

get [18]. Then, deep compression algorithms were developed, leading to sparse networks [99],

newer layers like depth-wise separable convolution [55], and more recently, graph-based con-

volution networks [96] are popular. Besides, other evolving domains are equally important.

1

Efficiency (Energy or Performance)

General-
purpose

Accelerators

GPUs

CPU

Our goal

Supports only regular workloads.

Rigidly support
irregular workloads.

• Programmable accelerator for both
regular and irregular

• Efficiency close to Accelerators

FPGAs

Narrowly
useful

1x 10x 100x 1000x 10000x

B
re

ad
th

o
f

U
se

fu
ln

es
s

Figure 1.1: Generality vs Efficiency

For example, graph processing is used in pervasive google maps, SQL databases are critical

for the cloud, signal processing has new requirements with 5G, and video processing is vi-

tal for AR/VR revolution [28, 74, 240]. An accelerator that can quickly adapt to changing

workloads will reduce time-to-market and improve architecture longevity [93].

The success of the application-specific accelerators suggests that existing and prior general-

purpose data-processing hardware (e.g., GPGPUs [168], Intel MIC [72] & KNL [219]) are

orders-of-magnitude lower in performance and/or energy efficiency. The reason is irregular-

ity: GPUs rely heavily on vectorization, which limits support for irregularity; thus, their

efficiency is limited to regular programs. Similar is true for even more efficient spatial ac-

celerators, which get efficiency by exposing their network in the ISA. However, both GPUs

and academic architectures like Plasticine [188], LSSD [164], Vector-threads [125] and Soft-

brain [162] that are mostly limited to dense algebra. But why?

Irregularity is when the decision of which operation to perform or what value to op-

erate on is influenced by data read by the program – more simply, it is data-dependent

control flow or memory access. Conventional architecture mechanisms specialize in data

independence and, therefore, are often inefficient in the presence of irregularity. Consider

2

a data-dependent branch, e.g., if(a[i]<4), where a[i] is a random variable with uniform dis-

tribution. Here the branch outcome does not follow any pattern, making branch prediction

useless, leading to stalls in CPUs. In GPUs, a branch would cause SIMT lanes to diverge.

We believe that future workloads will use complex data structures and thus be irregular.

For example, newer deep learning models take more general graphs as input instead of reg-

ular images). Hence for accelerators to be future-proof, we must broaden the scope of

programmable accelerators to irregularity. Figure 1.1 pictorially represents our goal

to improve applicability of domain-agnostic accelerators to more workloads while achieving

the efficiency of application-specific accelerators.

This dissertation explores critical irregular workloads and ultimately suggests that it is

possible to accelerate broad irregular workloads without giving up efficiency. We identified

forms of data-dependencies that are specializable and cover a wide variety of data-dependent

kernels. We call these specializable irregularity forms. To this end, we designed a family

of reconfigurable hardware features that provide flexibility across data-processing domains,

and different algorithmic implementations of these domains (e.g., inner product or outer

product in matrix multiplication).

We studied machine learning, graph processing, databases, and signal processing domains;

however, our solutions may also apply to more domains. For example, the solution that we

designed for data-dependent control in databases and sparse linear algebra also apply to

the un-studied workload of graph mining (GM), and several subsequent works used this

insight to build GM accelerators [194, 227, 69]. We also performed design space explorations

that provided insights into the relationship between inputs, algorithms, and architecture

techniques.

The remainder of this chapter covers the background of irregular algorithms and how

different styles of architecture deal with irregularity (Section 1.1). Then, we will explain

how specializable irregularity forms are a powerful tool to systematize the specialization of

irregular workloads (Section 1.2). Finally, we describe our main contributions (Section 1.3)

and conclude with the organization of this dissertation (Section 1.4).

3

Program Segment Gran. Dependent Data Gran. Execution Dim.

Instruction Vector/Scalar Control, memory

Fine-grained Task Scalar Schedule, Mem. Footprint

Coarse-grained Task Vector Task size, Inter-task dep.

Table 1.1: Classifying Irregularity by Data-dependence Granularity

1.1 Background

Here we define irregular workloads, describe kinds of irregularities, and provide insights on

how irregularity occurs in practical workloads. Then, we provide background on existing

architectures and discuss how they deal with irregularity.

1.1.1 Irregular workloads

Definition Irregularity is when the decision of which operation to perform or what value

to operate on is influenced by data read by the program – more simply, it is data-dependent

control flow or memory access. Conventional architecture mechanisms in interactions with

computation, memory, and network, specialize for data-independent behaviors and, there-

fore, are often inefficient in the presence of irregularity. For example, the arbitrary branch

outcome may cause pipeline stalls, random memory access locations may prevent efficient

memory bandwidth/capacity utilization, and random remote traffic may cause congestion in

the network.

Kinds of Irregularity Our insight is that data dependencies cause irregularity, and the

key distinguishing factor for hardware design tradeoffs is the dependence granularity. For

example, we can resolve fine-grained data dependence by passing data as live operands

through on-chip queues, while coarse-grained data needs to be buffered in memory.

Thus, we classify irregularity by the granularity of the data and dependent program

4

Irregularity: Program Behavior that causes Inefficiency

Ld
A

<

Ld
B

+

+

St
C

Ld
C

>

Ld
D

+

+

St
E

Task 1 Task 2

b) Irregular Workload

Ld
A

+

Ld
B

+

+

St
C

Ld
C

+

Ld
D

+

+

St
E

Task 1 Task 2

a) Regular Workload

3. Task irregularity
(fine and coarse)

1. Control
irregularity

2. Memory irregularity

Figure 1.2: Example Regular and Irregular Programs

segments. Table 1.1 shows the dimensions: the data can be a scalar value or vector of

data. The program segment can be a fine-grained instruction (e.g., ld,st,add) or a coarse-

granularity task – a unit of work (involving several instructions) that can be scheduled in

time and space. Figure 1.2 demonstrates the classification visually. A regular program

has several independent tasks containing instructions with read-write dependence between

only memory-to-compute and compute-to-compute. An irregular program, however, can

have three additional dependence types: conditional operations, inter-task dependencies and

cases when the address operand of a memory operation is transitively dependent on another

memory load. Table 1.1 also lists the execution dimensions that may be impacted by each

kind of irregularity. For example, irregularity at instruction granularity can be caused due

to data-dependent control and memory. The scheduling order of fine-grained tasks and their

memory footprint is critical. For coarse-grained tasks, their size and inter-task dependencies

are more important factors.

One advantage of classifying by hardware requirements is that the resulting hardware

5

support is modular (i.e., specialization for data-dependence forms are in independent hard-

ware components). For example, the irregularities in instruction granularity are resolved by

enhancing the computation cores and on-chip memory for irregularity. While for tasks, the

solution is the task management unit that interfaces to the accelerator’s execution resources

and enables better coarse-grained communication across cores. We will expand on the types

of irregularity in Chapter 2.

Sources of Irregularity Irregularity may occur due to several reasons. We list four of

them below with example algorithms in Figure 1.3:

Dataset Sparsity: One source of irregularity is a sparse dataset. Sparsity is common in

machine learning: either due to practical data missing values during its collection or the

data having redundancy (e.g., compression in deep learning [99]). Typical sparse workloads

are deep neural networks, gradient boosting decision trees, and databases.

At instruction granularity, accessing only non-zero values may involve conditionals, and

indirect memory accesses to work on only the non-zero data. At task granularity, the total

number of non-zeros (hence required computations) may vary across tasks, causing load

imbalance.

Graph Data Structures: Graphs model sparse connections and represent several practical

scenarios like social media networks, road networks, drug models, etc. Two things differen-

tiate graphs from traditional dataset sparsity: large size (usually have billions of non-zero

values), and they are ultra-sparse (usually >99% sparsity). Thus, indirect memory access

and effective on-chip memory use are more critical factors than conditional operations1.

Data Reordering: When the purpose of an algorithm is to reorder data, random memory

reads and writes cause memory irregularity (at instruction granularity). Examples include

database algorithms like sorting and joins.

1The reason is that sparse computations require matching indices, and the more sparse a dataset is, lower
the relative cost of using a single indirect access to locate a match versus performing an iterative search over
many non-matching values.

6

d) Workload Convergence
(Graphs Processing)

a) Dataset Sparsity
(Machine Learning)

b) Data-structures Representing
Relationships (Graphs)

c) Data Reordering
(Databases)

4 2 3 6 5 1 7

1 2 3 4 5 6 7

Pruned Neural Network

Matrix decomposition

Bayesian Networks Sorting

A

B

C

F

B

D

F

G

B

F

Table X Table Y Table Z =
Inner Join (X, Y)

=

Database JoinTriangle Counting

Recommendation system

Figure 1.3: Sources of Irregularity and Example Workloads

Workload Convergence: One class of workloads is learning-based: they execute the next

iteration based on the outcome of a conditional (while loop). An iteration usually involves

a group of instructions and can be abstracted as a task; thus, a while loop would condition-

ally create a task, causing task irregularity. Examples include deep learning training and

traditional graph processing workloads like shortest path and page rank.

Even though the workloads in Figure 1.3 and their source of irregularity are different,

we show later that the data dependencies in these workloads manifest themselves in the

hardware in common forms. Also, note that applications often display one or more forms of

irregularity, therefore comprehensive support for data-dependence forms is beneficial.

1.1.2 Existing Architectures for Irregularity

Existing architectures do not perform well in the presence of irregularity: either they lose

performance or resort to expensive general-purpose mechanisms. Figure 1.4 classifies ar-

chitectures by their support for irregularity (higher “Efficiency” means better support) and

applicability to multiple domains (higher “Generality” means broad applicability). This sec-

tion will discuss how these architectures deal with different kinds of irregularities and give

insights into their approach’s pros and cons.

7

Architecture types

Domain-agnostic
Application-

specific

OOO CPU
Inorder SIMD/

MIMD
GPU

Von Neumann Spatial

Shared PEs Dedicated PEs

Flexibility across
workloads

Flexibility across
inputs

Domain-specific

EfficiencyEfficiency

GeneralityGenerality

Figure 1.4: Fundamental Architecture Styles (Please note that we do not show hybrid

architectures where application-specific modules are added in domain-agnostic architectures.)

1.1.2.1 Domain-agnostic Architectures

Domain-agnostic architectures have an ISA and can execute several workloads. Exist-

ing domain-agnostic architectures do not support irregularity well (either lose performance

or resort to expensive general-purpose mechanisms). We classify them into instruction-

based/vonNeumann and spatial architectures.

vonNeumann Architectures Here we discuss out-of-order, single-instruction multiple-

data (SIMD), in-order, and multiple-instruction multiple-data (MIMD) processors.

Out-of-order (OoO) Processors: provide a view of sequential instruction execution but

internally reorders the instructions for extracting parallelism. OoO mechanisms rely on

patterns; for example, the branch predictor assumes history behavior, memory prefetcher

can identify linear patterns, etc. However, data-dependent branches are unpredictable and

adding a large instruction window and reorder buffer to hide stalls are expensive. In the

case of unknown memory aliases, the number of concurrent memory accesses is limited by

the size of load-store queues.

8

General-purpose Computing on Graphics Processing Units (GPGPUs) use

the Single Instruction Multiple Threads (SIMT) execution model. The SIMT model exploits

data-level parallelism using vector instructions and hides memory latency using multiple

concurrent threads. In the presence of data dependencies in computation instructions, the

vector lanes associated with a group of threads (warp) may diverge. Across warps, the

threading model is fairly general and provides good performance for data-dependent memory

accesses. However, hiding memory latency requires maintaining many threads, which is

expensive: large register files are needed for the live state, and there is a burden on the

programmer to express more parallelism. Finally, CPU and GPU do not support efficient

communication among cores/streaming multiprocessors (SMs). In the case of dependencies

among thread groups, either excessive coherence traffic or synchronization barrier lead to

poor performance.

A large array of in-order cores is attractive for irregular algorithms, as it seems to

alleviate the control problem (each lane/core is independent), the memory problem (each

core reads a different memory item), and the computation problem (no vectors to pack). The

downside is that data-processing algorithms still exhibit high locality and massive parallelism

over data items, which cannot be exploited at low overhead in a general purpose in-order

core. Moreover, they do not have spatial abstractions for computation, means that scalar

multicores give up an extra dimension of efficient parallelism. Finally, there is no hardware

support for task irregularity, and software scheduling is often too slow to scale to large

amounts of parallelism.

Hybrid architectures like Vector-threads (VT) [125, 134, 198] propose a flexible SIMD/MIMD

execution model. GANAX [265] applies some of the same principles but is specialized for

ML. SIMD-mode has similar inefficiencies as GPU, while MIMD-mode also does not solve

the problem because of the lower compute density of in-order processors.

Summary: Even though vonNeumann execution provides maximum flexibility, it is lim-

ited due to low compute density and the reliance on expensive mechanisms. Moreover, all

the operand communication is done via centralized register files rather than an efficient

9

distributed communication approach. Thus, direct data forwarding is inefficient.

Spatial Architectures Here we discuss coarse-grained (e.g., Coarse-Grained Reconfig-

urable Architecture (CGRAs)) and fine-grained spatial architectures (e.g., Field Gate Pro-

grammable Array (FPGA)). The coarse-grained architectures use programmable ALUs in-

stead of fine-grained programmable elements like LUTs in FPGAs. Among coarse-grained

spatial architectures, we categorize them by traditional dataflow that can execute arbi-

trary codes and recent specialized CGRAs. Specialized CGRAs only support small dataflow

graphs using dedicated processing elements (PEs) instead of temporally shared PEs in the

traditional dataflow. Dedicated PEs allow static scheduling of work, resulting in improved

efficiency.

FPGA: is an array of programmable logic blocks that can be configured into many ap-

plication dataflows. The flexibility of FPGAs enables custom datapaths, thereby achieving

near-ASIC cycle count (given sufficient resources). However, the execution time is usually

higher due to the lower frequency because of the bit-level programming granularity of LUTs

and the high overhead of programmable interconnects.

FPGA’s mechanisms are helpful for fine-grained irregularities: e.g., arbitrary datatypes

within an instruction. The programmable logic blocks allow fine-grained datatypes while

the flexible network can model arbitrary-width datapaths. However, FPGA mechanisms for

instruction and task irregularity are generally expensive. For example, overlaying a crossbar

for routing indirect accesses over the FPGA network will consume many resources and incur

long latencies [169, 100].

Traditional Coarse-Grained Spatial Accelerators: These architectures use coarse-grained

programmable ALUs and hence achieve higher frequency than FPGAs. The traditional

coarse-grained or dataflow architecture retains the flexibility to execute arbitrary code by

using complex mechanisms for ensuring sequential program semantics, e.g., ordering mem-

ory access. Examples of traditional spatial-dataflow architectures include TRIPS [38] that

achieve “when-ready” semantics using large reservation stations at each PEs. InWaveScalar [225],

10

the results across PEs are communicated via network. In the presence of irregularity, the

latency of data communication can be on the critical path [37].

Triggered instructions [177] and Intel’s CSA [256] use a data-triggered execution at each

PE, with the capability of reordering instructions. Data-triggered execution enables them

to be tolerant to variable latencies, which is useful in the presence of data dependencies.

However, out-of-order execution at each processing element (PE) requires tag matching

hardware (>3× higher area [197]).

Specialized Coarse-Grained Spatial Accelerators: These spatial architectures optimize

over traditional coarse-grained spatial accelerators to improve area/power efficiency at the

cost of generality. Specifically, they have a systolic execution array with a set of process-

ing tiles forming a deep pipeline. Each tile executes a single logical instruction and only

communicates with its neighbors. PEs are not time-multiplexed; hence, only small dataflow

graphs can be mapped to this systolic execution array. Examples include LSSD [164], Plas-

ticine [188], Softbrain [162], CGRA-ME [60, 54], and SNAFU [84].

Plasticine [188, 186] is a tiled spatial architecture composed of SIMD compute and

scratchpad tiles. It uses a parallel pattern programming interface [187, 123]. SARA [277]

proposes a hierarchical dataflow graph mapping to scale to large Plasticine fabrics [277].

LSSD and Softbrain has a spatial compute array (systolic-CGRA) with simple control

cores [164, 162]. Compared to parallel patterns, Softbrain is lower-level ISA; however, the

control core’s ISA can more flexibly implement various computation/memory access pat-

terns. In contrast, Plasticine’s spatial distribution of both memory and compute enables

higher flexibility in communication across cores. These architectures specialize for regular

workloads and, as of today, do not work well for instruction and task irregularity. This

dissertation focuses on systolic-style CGRA architectures with a RISCV ISA control core

(similar to Softbrain), so that we extend the control core’s ISA with our data-dependence

dimensions and add corresponding support in the systolic-CGRA architecture.

Hybrid architectures propose a mix of static and dynamic scheduling. CHARM [58] com-

poses multiple pre-defined coarse-grained building blocks at compile time according to the

11

algorithm requirements, but the data movement and resource allocation are performed at

runtime. CAMEL [57] proposes to use reconfigurable FPGA fabrics for uncommon building

blocks. In STITCH [228], data is statically scheduled using a multi-hop bufferless network.

SEED [163] is a CPU-dataflow architecture that dynamically switches between specula-

tive and dataflow modes of execution according to code requirements. Dynamic scheduling

helps in better resource utilization for irregular workloads. Fifer [158] dynamically time-

multiplexes multiple pipeline stages onto the same CGRA. We gain inspiration from these

works and design a hierarchical architecture with static scheduling within cores and dynamic

scheduling across cores (Chapter 8. However, we support only specific types of dynamic

scheduling primitives to avoid expensive hardware mechanisms.

Summary: FPGAs and traditional coarse-grained spatial architectures use expensive

mechanisms to tolerate variable latencies, common in the presence of irregularity. While spe-

cialized coarse-grained architectures remove expensive mechanisms and achieve near-ASIC

efficiency, they do not support irregularity and are far less general. We want to broaden the

scope of specialized accelerators without losing their efficiency.

1.1.3 Domain-specific Architectures

These architectures specialize for workloads in a single domain – usually for the common

data structure and computation patterns. Efficiency is obtained by embedding memory

and computation dependencies in the accelerator’s datapath. These architectures typically

require flexibility for different input dimensions and computations. We will gain inspiration

from these architectures for acceleration techniques and will seek to design domain-agnostic

generalizations/alternatives.

Flexibility across Inputs In domains like machine learning, the input dimensions may

not match the architecture’s vector width, resulting in under-utilization, or certain param-

eters may change the memory-to-compute ratios, thereby shifting the bottleneck to either

side. An example of input flexibility is Maeri [129] which supports non-powers-of-two re-

12

duction using a flexible reduction tree. Hypar concurrently executes multiple DNN layers to

achieve a balanced execution [220]. Other examples include SparseAdapt for sparse tensor

algebra [175] and GCNAX for Graph Convolution Networks [138]. Many of these techniques

are applicable beyond their target domain – for example, database queries have kernels

with different bottlenecks, and running them together like HyPar, can result in balanced

execution.

Flexibility across Computations: Besides input variability, different algorithms may

impose additional flexibility requirements on the accelerator hardware. For example, Exten-

sor [103] optimizes for various sparse tensor algebra operations using hierarchical elimination

of computations in general intersection dataflow graphs. Master of None [145] proposes a

programmable and systolic-style homogeneous reconfigurable array that can execute various

operations in database queries (e.g., join, sort, etc.). Gorgon identified parallel patterns in

databases (e.g., partition, merge, sort, filter, etc.) and integrated them into Plasticine [239].

We are looking for domain-agnostic patterns – for example, “join” in Master of None and

“merge” in Gorgon require similar control operations. And we will show in Chapter 5 that

we can support both using the same stream-join irregularity form.

Summary: Domain-agnostic architectures are flexible along input and computation di-

mensions. We want to incorporate the ideas in a flexible execution model so that the hard-

ware features are not tied to a particular domain/data structure.

1.1.4 Application-specific Architectures

An ASIC (application-specific integrated chip) is a specialized integrated chip designed to

only run the targeted application at high performance and area efficiency. ASICs are on

the extreme end of the specialization spectrum and tend to be more specific to one data

structure or algorithm.

Table 1.2 shows accelerators for different algorithms, with each giving multiple orders-of-

magnitude performance gains over CPUs/GPUs. These accelerators inspire opportunities for

13

Algorithm Application-specific Accelerator Speedup Speedup

over CPU over GPU

Compression UDP [76] 20× N/A

Sparse inner product Sparten [85] 24.9× 4.7×

Sparse outer product EIE [98], SCNN [179] 7.9× 14×

Async graph Intel-asynch [173], GraphPulse [193] 74× N/A

Sync graph Graphicionado [94], GraphDyns [262] 6.5× 4.4×

Table 1.2: Algorithms and Specialized Accelerators Note we put the maximum speedup

numbers, so they should be considered as approximate speedup range.

software-hardware codesign where specific algorithms can be tweaked for hardware friendli-

ness.

Summary: In the specialized spectrum, application-specific accelerators are designed for

a fixed algorithm and data structure. Domain-specific accelerators only assume the data

structure but provide flexibility for different algorithms and input dimensions. Still, they

both suffer from the problem/challenges of over-specialization and often do so unnecessarily.

For example, Q100 [259] has an inner-joiner similar to the dot product unit in Extensor [103].

However, still, Q100 still cannot efficiently perform nested tensor computations, as it does

not reuse its output as a new input (necessary to chain tensor computations), and it will

require a long latency trip to memory.

1.1.5 Our Focus

To balance flexibility and efficiency, we focus on specialized spatial architectures and enhance

them for irregularity. We will use inspiration from domain-specific and application-specific

accelerators to design the features for our accelerators that are domain-agnostic and achieve

ASIC-like efficiency.

Also, once we identify how application-specific accelerators gain their efficiency, we can

14

map them into this programmable accelerator. Occassionally, challenging workloads emerge

that break the mold and require additional features for irregularity instead of a brand new

accelerator, helping to unify today’s fragmented irregular accelerator space.

We see the primary practical benefit our programmable accelerators as a potential re-

placement for highly restrictive accelerators that are popular in industry today. Looking at

industry designs, they use different architectural styles depending on the application. For

example, TPUs [113] are mainly designed for Google’s datacenters to run their TensorFlow-

based applications. Therefore, they are domain-specific accelerators and programmed using

TensorFlow operations. Other examples include Amazon Inferentia [19], Baidu Kunlun [171],

Cerebras [131], Graphcore [116], etc. For the cloud, Microsoft uses reconfigurable FPGAs

to accommodate more applications. Therefore, their design looks closer to an application-

specific accelerator: it does not have an ISA, uses a systolic-style fabric for convolution, and

a SIMD unit for scalar operations [79]. A domain-agnostic programmable accelerator will

be reusable in both datacenters and the cloud.

1.2 Key Insight and Approach

In this section, we explain our key insight to systematically target irregularity. Then, we

discuss our approach to taking this insight to the final architecture design (selecting target

workloads and integrating proposed features in flexible hardware).

1.2.1 Insight: Irregularity Can be Specialized

Our key observation is that it is unnecessary to handle arbitrary irregularity because data

dependence manifests in common forms across domains. This work suggests that specific

specializable forms of irregularity are easier to specialize for and sufficient for critical data-

processing workloads.

15

Control irreg

Memory irreg

Fine-grained
Task

Coarse-
grained task

Matrix-decomposition
Control irreg

Memory irreg

Fine-grained task
irreg

Coarse-grained task

Traditional Ours

Pure regular

Specializable
irregularity form

Fine-grained task
irreg.

Fine-grained task
irreg.

Control irreg

Memory irreg

Fine-grained
Task

Coarse-grained
task

Graph processing

Fine-grained task
irreg.

Control irreg

Memory irreg

Fine-grained
Task

Coarse-grained
task

Sparse ML

Fine-grained task
irreg.

Control irreg

Memory irreg

Fine-grained
Task

Coarse-grained
task

Database

Fine-grained task
irreg.

b) Example Irregular Domainsa) Our Classification of Programs

Coarse-grained
task

Figure 1.5: Insight: View Irregularity as a Set of Specializable Irregularity Primitives

Requirements Specializable irregularity form has three desirable properties: common,

specializable, and composable. We also give intuition about forms that do not qualify for

specializable irregularity forms.

• Common: implies that data-dependent behavior occurs in many big data processing

algorithms and does not assume any characteristics specific to an algorithm.

• Specializable: suggests that architecture designers should be able to exploit the

unique properties of the data-dependence behavior to achieve efficiency using hardware-

software codesign.

• Composable: refers to the property of a hardware feature being integrable into a

flexible execution model like SIMD, stream-dataflow [162], etc. Some forms may be a

more natural fit for one execution model or another.

Some program aspects are more domain-specific, making it less easy to see how they

can be composable and common. The more vague and broad a property is, the less spe-

cializable it is. Therefore, in some way, these are competing demands, and the choice of

specializable form has to balance these demands. Consider two examples: inner-join and ap-

proximate algorithms. An inner-joiner module [95] may be too domain-specific/uncommon

16

Workload Type Domains Covered Spec. Irregularity

Static Parallel (control, memory) ML, synch. GP, DB Stream-join, AF-indirect (Chapter 5)

Fine-grained Task (scalar data) Graph processing Priority order, Working set (Chapter 7)

Coarse-grained Task (vector data) kNN, Cholesky, GCN Streaming, Multicast (Chapter 8)

Table 1.3: Irregularity Categories, Supported Domains, and Irregularity Forms

to be assigned a special instruction; however, a single lookup table to enforce various control

operations in every PE is both common and composable. Another example is achieving

high memory parallelism by dropping conflicting indirect memory requests – this occurs in

point cloud [77] and compression. However, algorithm-specific tricks are necessary to ensure

minimal overhead of approximation; therefore, they may not always be easily specializable.

Vision With the concept of a specializable irregularity form defined, we can explain how a

comprehensive set of these forms can help to significantly broaden the scope of programmable

accelerators in a systematic way. Figure 1.5a) shows the space of programs categorized by

our specializable irregularity forms: control, memory, fine-grained, and coarse-grained task

irregularity. The regular workloads lie at the center and cover a few programs like dense linear

algebra. Using specializable irregularity forms, we can cover a larger subset of algorithms

(see the green diamond in Figure 1.5a)). Figure 1.5b) shows examples of domains that lie

within the specializable irregularity range: matrix decomposition, databases, graphs, and

sparse machine learning. We skip general irregular workloads like billiards simulation [101],

discrete event simulation [11], graph k-core [185], and others because either 1. they require

general purpose mechanisms, or 2. they do not require general purpose mechanisms, but we

have not figured out a specializable irregular form to express them yet.

We give examples of workloads with varying degrees of irregularities and discuss their

tradeoffs in detail in Chapter 2. Later chapters will cover our specializable irregularity forms

and our composable hardware features to accelerate those forms.

17

1.2.2 Approach

Here we discuss how we select target workloads to analyze for specializable irregularity forms

and the underlying execution model we enhance for irregularity.

Selecting Target Workloads In the rest of the dissertation, we study workloads in in-

creasing order of their complexity – this is beneficial as more challenging workloads tend to

demonstrate a superset of previously identified data dependence forms. From Table 7.1, we

first look at static-parallel applications: these can have control/memory irregularity, but at

task granularity, they are regular and have no dependencies. Second, dynamic task-parallel

applications can exhibit irregularity at both instruction and task granularity. Here tasks are

created at runtime and are dependent on other tasks by scalar or vector data. Table 7.1

shows the domains we studied for each category and the specializable irregularity forms that

we found.

Decoupled-Spatial Execution Model For our solutions to be composable, we could

build on the vector/scalar vonNeumann execution model, but we instead choose to use spa-

tial architectures, specifically the decoupled spatial model. Decoupled spatial architectures

have two key properties. They are decoupled in that the memory address generation and

computation is performed separately. By design, spatial architectures expose lower-level

hardware execution features, making it more natural to modify their ISAs to convey special-

izable properties. Here we list four characteristics of spatial architectures that make them

attractive:

1. No Total-order on Instructions: VonNeumann processors enforce a total order on

all instructions within a thread. This can cause “artificial” dependencies between con-

trol and memory operations if the control operation determines when the load would

have happened and not whether it will happen. Another example is ordering require-

ment among concurrent loads and stores even when they access mutually exclusive

18

memory locations and could be safely performed out-of-order. In a decoupled spa-

tial model, independence is implicitly assumed, and the programmer may altogether

avoid such dependence. Also, the hardware only enforces dependencies specified by

the compiler/programmer.

2. Explicit Memory Dependences: A spatial execution model makes all dependencies

explicit, meaning the programmer has control over optimizing the hardware for the

cases when a lack of dependence is known. Or for instances where dependencies follow

a known pattern (e.g., for producer-consumer dependence, the data can be directly

forwarded).

3. No Fixed Vector Width: A spatial model parallelizes across data items in space

and in time through dependent computations, rather than across a fixed number of

data items alone as with a vector model. In the presence of irregularity (e.g., control

flow), supporting heterogeneous data types with a fixed vector width is inefficient,

as the control is only applied at instruction granularity, and only a single operand in

subword-SIMD can be used. With a spatial model, programmers can schedule multiple

different granularity instructions to occur in a pipeline parallel fashion.

4. Spatial Locality across Tasks: Traditional SIMT execution is optimized for data

parallelism, which assumes that cores (streaming multiprocessor (SM) in GPU termi-

nology) work on independent data. Thus, they only communicate through a monolithic

shared cache. However, data is often shared across tasks (running on different cores),

exacerbating the overheads of task irregularity. Here, spatial communication across

cores may enable optimized network traffic distribution and other optimizations like

near-data scheduling.

Overall, decoupled spatial architectures are an attractive candidate for flexible accelera-

tion of irregular workloads.

19

1.3 Contributions

This section outlines the key contributions of this dissertation. We have designed reconfig-

urable accelerators, which can run regular and irregular workloads with ASIC-level perfor-

mance and competitive area and energy efficiency. We identified common program idioms

in essential and emerging applications, created novel execution models, and enhanced pro-

grammable accelerators. We also developed heuristic-based techniques to decide the optimal

algorithmic implementations of this hardware. Below we provide details of each of these

contributions:

Made a Case for Applying Reconfigurable Accelerators to Irregular Workloads

We dispel the conventional wisdom that irregular workloads are overly complex for special-

ization and demonstrate that common program idioms do exist in irregular domains like

sparse machine learning, graph processing, databases, and signal processing. We elucidated

how many applications can be composed of a subset of fundamental specializable irregular-

ity forms. We identify these forms for irregular memory access, irregular control flow [66],

fine [63] and coarse-grained irregular parallelism [65]. We used irregularity forms to design a

family of spatial architectures with features corresponding to each form. These features are

modular as the irregularity forms correspond to different execution dimensions and one-to-

one correspondence with hardware modules. Overall, our general-purpose accelerator can run

workloads from many domains efficiently while retaining modularity that allows optionally

removing costly hardware components that may not be required.

Unified Task-Dataflow Execution Model We propose a novel execution model that

unifies reconfigurable dataflow accelerators (RDAs) and specialization for task parallelism,

which has implications for the applicability of future programmable accelerators. Up to this

point, RDAs (e.g., [162, 66, 188]) were only suitable for workloads with static parallelism;

dynamic task parallelism on such architectures would have required centralized coordination

and pipeline fill/drain overheads that overwhelm short tasks.

20

We propose the TaskStream execution model that makes tasks a first-class primitive in

a dataflow model: task nodes introduce a breaking point in the pipelined dataflow to re-

order tasks in time (for work efficiency) or in space (to enable near-data processing) [63].

TaskStream provides a general framework to embrace irregularity in task granularity while

retaining efficiency at the instruction granularity. On top of this framework, we propose

optimizations for dynamic data streaming to recover inter-task communication structure

and dynamic task batching of reused inputs [65] to recover the temporal and spatial locality

structure. An approach similar to TaskStream will likely need to be adopted by future

reconfigurable accelerators to support broader workloads with dynamic parallelism.

This work also makes a significant contribution for graph-processing accelerators; our

proposed task-dataflow accelerator, Polygraph [63], out-performed prior state-of-the-art ar-

chitectures by several integer factors.

Insights into Optimal Algorithms for Input and Workload Types Data processing

workloads are becoming more complex due to algorithm advancement and the integration of

machine learning (e.g., GCN [96]). We observe that different algorithms work best for various

combinations of inputs and workloads. These algorithms arise due to different computation

orders, synchronization granularity, and the choice of data structures.

We use our flexible execution model to implement various algorithms and develop insights

into the relationship between different inputs, algorithms, and architecture techniques. Be-

sides comparing algorithms in a single framework, we can model and compare many prior

algorithm-specific accelerators without getting misled by specific implementation details.

1.4 Organization

This dissertation builds reconfigurable hardware optimized for different kinds of data depen-

dencies. In the next chapters, we will first give detailed examples of dimensions of irregularity

(Chapter 2) and then describe the underlying programmable hardware that we generalize for

21

Chap. Topic Author’s related prior work

2 Systematizing and Characterizing Irregularity Forms MICRO ‘19 [66, 67], ISCA ‘21 [63, 64],

ASPLOS ‘22 [65]

3 Decoupled Spatial ISA and Hardware ISCA ‘17* [162]

4 Challenges to Design Domain-agnostic Reconfig. Accel. MICRO ‘19 [66, 67], ISCA ‘21 [63, 64],

ASPLOS ‘22 [65]

5 Accelerating Workloads with Data-Dep. Control/Memory MICRO ‘19 [66]

6 TaskStream: General Task Framework for Accelerators ISCA ‘21 [63], ASPLOS ‘22 [65]

7 Understanding Fine-Grain Task-Parallel Workloads ISCA ‘21 [63]

8 Accel. Task-Parallel Workloads with Coarse-Grained Dep. ASPLOS ‘22 [65]

9 Discussion MICRO ‘19 [66, 67], ISCA ‘21 [63, 64]

ASPLOS ‘22 [65]

Table 1.4: Dissertation Outline (* represents background papers.)

irregularity (Chapter 3). Since CGRA-based programmable acceleration is not yet mature,

we will discuss the challenges that we faced during this research (Chapter 4). Then, we de-

scribe our accelerator for workloads with control and memory irregularity (Chapter 5). For

task parallel workloads, we first motivate our general TaskStream framework (Chapter 6)

and then describe our optimizations for fine (Chapter 7) and coarse-grained (Chapter 8)

dependencies in task parallel workloads. We conclude Chapters 5, 7, 8 with alternate de-

sign decisions and associated tradeoffs. Chapter 9 concludes the dissertation with discussion

of key insights from this research and pointers to future work. Table 1.4 summarizes the

chapters and associated publications.

22

CHAPTER 2

Systematizing and Characterizing Irregularity Forms

Irregularity is when the decision of which operation to perform or what value to operate

on is influenced by data read by the program – more simply, it is data-dependent control

flow or memory access. The data dependence can impact performance in different ways –

Figures 2.1, 2.2, 2.3 show pseudo-code examples, where inefficiency increases to the right.

We only target specializable forms and will use this chapter to define the scope of our pro-

grammable accelerator.

Specifically, this chapter discusses irregularity along three dimensions: within-instruction

dependencies and fine-grained and coarse-grained dependencies among tasks. For each cat-

egory, we give examples and explain the inefficiencies of existing CPUs (see the rightmost

column in figures). We conclude with the approach that we follow dealing with irregularity

in later chapters.

2.1 Irregularities due to Control and Memory Dependencies

Data-dependencies may occur within instructions in cases when whether to execute an in-

struction depends on the outcome of a branch (irregular control) or the operand/output of

a memory instruction depends on the data (irregular memory).

Irregular Control If the runtime outcome of a branch determines what computation

(Figure 2.1.1a), memory access (Figure 2.1.1b), or task (Figure 2.1.1a) should be performed

next, it is defined as control irregularity.

23

 while(i<N):
 if (in[i]%2==0):
 val+=in2[i]
 i++

(b) Control-Dependent
Memory Access

for i=0 to N:
 if (in[i]%2==0):
 val += in[i]

(a) Control-Dependent
Computation

(c) Control-Dependent
Recursion

for i=0 to N:
if(in[i]%2==0):
 f(in[i])
 else:
 g(in[i])

Irregularity increases to the right

Ex: RELU + re-sparsify Ex: inner-join Ex: Fibonacci

1
. Irre

gu
lar C

o
n

tro
l

Existing CPU
solutions

(b) Alias-free Affine-stream
dependent memory updates

(a) Affine-stream dependent
memory read

(c) Possibly-Aliased
memory access

for i=0 to N:
 val[index1[i]] += in[index2[i]]

for i=0 to N:
 val[index[i]]=1+in[index[i]]

for i=0 to N:
 in[index1[i]] +=
 in[index2[i]]

Ex: arithmetic circuits, spmm,
hash search

Ex: graph processing, outer
product

Ex: genomics, gtfold

2
. Irre

gu
lar M

e
m

o
ry

Branch Prediction

AVX scatter/gather

Irregularity
dimensions

Requires biased branch
outcome for better
prediction
B: Memory predication
is high overhead
C: Inefficient to
predicate large
segments of code

Requires low bank
conflicts
A: Bank conflicts are
unavoidable
B/C: Memory
dependence check
requires request vectors
to be serialized

Figure 2.1: Irregularities due to Control and Memory Dependencies

CPUs rely on branch prediction to hide branch resolution latency; however, a data-

dependent branch is hard to predict. In such cases, the execution of the branch and the

dependent instruction is serialized, causing stalls and pipeline flushes. These stalls can

significantly hurt performance, especially when the branch outcome impacts long latency

instructions like memory accesses.

CPUs also use “predication”; both branch directions speculatively start in parallel, and

results from either direction are discarded after branch resolution. Predication also does not

help in case of dependence on memory accesses, as sending more memory requests will put

unnecessary pressure on the memory hierarchy. The problem gets worse when the branch

outcome decides the execution of a task (see Figure 2.1.1c), where predication would put

unnecessary pressure on both memory and computation units.

While GPU’s SIMT makes vectorization easier, the branch divergence across lanes makes

it less efficient. Also, memory pattern divergence can reduce the effectiveness of coalescing

and multi-banking, causing cache/scratchpad bank conflicts.

24

Irregular memory When the memory access location (Figure 2.1.2a,b) or dependencies

(Figure 2.1.2c) are determined from input data, it is defined as memory irregularity.

Memory bandwidth utilization depends on the spatial locality in the memory access

pattern, which may be lost due to data dependence. Also, predicting access patterns is

complex, making prefetchers useless. Moreover, architectures must consider the possibility

of memory dependencies among subsequent requests, requiring expensive load-store queues.

CPUs have banked caches and support scatter/gather for indirect memory. However, the

throughput from scatter/gather is quite limited given the limited ports to read/write the

vector-length number of cache lines simultaneously. Intel AVX512 recently added support for

conflict detection instructions. These instructions do not improve the cache-port throughput

problem, only the instruction overhead – as still any conflicts within the vector are handled

serially with no reordering across vectors [108].

GPUs can use scratchpads to avoid the cache port problem, but they still do not reorder

requests across subsequent vector warp accesses to avoid costly dependence check [255].

Ultimately, we would like to make a point that if we could guarantee alias-freedom (i.e.,

consecutive elements of the array are independent), we could simplify the hardware. The

dependence check could be completely avoided; enabling aggressive reordering across vec-

tor requests is important. Figure 2.1.2b shows an example of alias-free indirect updates.

Figure 2.1.2c is much harder because it is not alias-free.

2.2 Task Irregularities

This section discusses the inefficiencies that occur when tasks are created at runtime. There-

fore, decisions like when and where to schedule this new task become critical for performance.

Here we discuss the challenges separately when the data dependencies are caused due to fine-

grained/scalar data or coarse-grained/vector data.

25

Irregularity increases to the right
Existing CPU

solutions

2
. Irre

gu
lar Sch

e
d

u
le

1
. Irre

gu
lar

W
o

rkin
g se

t

(b) Statically-known
Dependent Slices

(a) Independent Slices
(c) Cross-Dependent Slices

(Slicing not possible)

Ex: neural network Ex: dynamic programming Ex: graph processing

Caches

Slice 1

1

Task1 TaskN

M...
...

21

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

21

Task1 TaskN

M...
...

2

Slice 2

1

Task1 TaskN

M...
...

21

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

21

Task1 TaskN

M...
...

2

Slice 1 Slice 2

Requires cache-size
proportional working set to
avoid thrashing
C: Slicing not possible: no
schedule can handle arbitrary
fine-grain dependence
direction

Slice 1

1

Task1 TaskN

M...
...

21

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

21

Task1 TaskN

M...
...

2

Slice 2Slice 1

1

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

2

Slice 2

1
. Irre

gu
lar

W
o

rkin
g se

t

(b) Statically-known
Dependent Slices

(a) Independent Slices
(c) Cross-Dependent Slices

(Slicing not possible)

Ex: neural network Ex: dynamic programming Ex: graph processing

Caches

Slice 1

1

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

2

Slice 2

1

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

2

Slice 1 Slice 2

Requires cache-size
proportional working set to
avoid thrashing
C: Slicing not possible: no
schedule can handle arbitrary
fine-grain dependence
direction

Slice 1

1

Task1 TaskN

M...
...

2 1

Task1 TaskN

M...
...

2

Slice 2

(c) Data-Dependent
Schedule is Correct

(a) Schedule-independent
tasks

(b) Data-Dependent
Schedule is Perf. Efficient

Ex: discrete event simulation,
billiard balls

Ex: MM, kNN queries Ex: SSSP, PR

Priority_queue<int> pq;
while !pq.empty():
 I = pq.pop()
 for j: 0 to i:
 A[j] = min(A[j],1)
 pq.pop(2*i)
 if A[j] < 1:
 pq.insert(j)

Priority_queue<int> pq;
while !pq.empty():
 I = pq.pop()
 for j: 0 to i:
 A[j] = min(A[j],1)
 pq.pop(2*i)
 if A[j] < 1:
 pq.insert(j)

Priority_queue<int> pq;
while !pq.empty():
 I = pq.pop()
 for j: 0 to i:
 A[j] = min(A[j],1)
 if A[j] < 1:
 pq.insert(i)

Priority_queue<int> pq;
while !pq.empty():
 I = pq.pop()
 for j: 0 to i:
 A[j] = min(A[j],1)
 if A[j] < 1:
 pq.insert(i)

for i: 0 to N:
 M[i] = i*2;
 for j: 0 to 10:
 A[j] += M[i]

for i: 0 to N:
 M[i] = i*2;
 for j: 0 to 10:
 A[j] += M[i]

Software scheduling

Requires high task execution
time to hide latency
B/C: Any complex fine-
grained task scheduling
would increase critical path

Software scheduling

Requires high task execution
time to hide latency
B/C: Any complex fine-
grained task scheduling
would increase critical path

Figure 2.2: Task Irregularities with Fine-Grained Data Dependencies

2.2.1 Task Irregularity with Fine-grained Data Dependencies

The scalar data dependencies are usually satisfied by passing the dependent data as task

arguments. The irregularity mainly occurs in how the dynamic task execution order de-

termines the memory access pattern (irregular working set) and many times the algorithm

convergence rate (irregular scheduling).

Irregular Working Set Working set refers to the unique cache lines accessed during a

program phase. When the working set lacks a closed form representation, or a geometric

representation, as they typically do in dense linear algebra, it is defined as working set

irregularity. Here will use “slice” terminology – a slice is a cache-sized data partition. In

this context, tasks are often designed to operate over a slice, since that optimizes the reuse

capability of that program phase. Thus, the working set working set depends on which slice’s

task is being executed.

The working set may switch due to data dependencies across slices: these dependencies

may be in a single direction (e.g., Slice 1->Slice 2) in Figure 2.2.1b or arbitrary directions

26

1. Variable-
size Tasks

3. Coarse-grained
Read Reuse

2. Coarse-grained
Pipeline Reuse

(c) Data-dependent
Work Size

(b) Progressively Changing
Work Size(a) Constant Work

(c) Out-of-order Data
Dependence

(b) One-to-Many
Dependence in Order

(a) One-to-One
Dependence in Order

(c) No Reuse(b) Partially Shared Data(a) Fully Shared Data

Ex: neural network Ex: Cholesky, FFT Ex: Graphs

Greedy thread
scheduler

Requires coarse-grained
tasks to hide software
scheduling latency.
C: Tasks take less time
(esp. on accelerators).
Need fast scheduling.

Static scheduling of
compound tasks

Requires to pass via
shared memory.
A/B/C: Synchronization
barriers between
dependent tasks will be
on the critical path.

Caches
Requires small dataset
that fits in the cache to
exploit reuse.
A/B: Large datasets
would usually cause
cache thrashing.

Ex: Cholesky Ex: SparseNN Ex: Graphs

Ex: Cholesky Ex: Stencil, Conv Ex: Ray tracing

Irregularity increases to the right Existing CPU
solutions

for i: 0 to N:
 M[i] = i*2;
 for j: 0 to 10:
 A[j] += M[i]

for i: 0 to N:
 M[i] = i*2;
 for j: 0 to i:
 A[j] += M[i]

B[N] = {3,2,4,8,7,6}
for i: 0 to N:
 M[i] = i*2;
 for j: 0 to B[i]:
 A[j] += M[i]

for i: 0 to tiles:
 for j: tstart[i]
 to tend[j]:
 X = X + M[j]*A[j]

for i: 0 to tiles:
 for j: tstart[i]
 to tend[j]:
 A[b[j]] += 2*A[B[i]]

B[6] = {0,1,2,0,1,1}
for i: 1 to 6:
 for j: B[i] to B[i+N]:
 A[Bi] = M[Bi]+1

B[6] = {0,1,2,0,1,1}
for i: 1 to 6:
 for j: B[i] to B[2*i]:
 A[Bi] = M[Bi]+1

B[6] = {0,1,2,0,1,1}
for i: 1 to 6:
 for j: i*6 to 2*i*6:
 A[Bi] = M[i]+1

Load
imbalance

for i: 0 to tiles:
 for j: tstart[i]
 to tend[j]:
 X = X + M[j]*A[i]
 Y = X + M[j]*A[i]

Figure 2.3: Task Irregularities with Coarse-Grained Data Dependencies

(e.g., Figure 2.2.1c). Figure 2.2.1a can be easily made regular; as slices are independent, one

may batch tasks for a single slice to execute together. CPUs and GPGPUs only support the

independent-slice case using software (commonly known as tiling) to batch tasks. Caches

will incur high miss rates for the other two cases due to large working sets.

We will conclude with a point that when the slice dependence direction is fixed, it is

possible to schedule the slice’s tasks in an order such that the working set is limited for a

long time.

Irregular Scheduling Scheduling is deciding when and where a task should be executed.

If the preferred (for correctness/performance) schedule depends on the data (for example,

sorting tasks based on task argument), it is defined as scheduling irregularity. Scheduling may

be required across coarse-grained tasks (Figure 2.2.2a), fine-grained tasks where the priority

27

schedule is performance-efficient (Figure 2.2.2b) or required for correctness (Figure 2.2.2c).

For example, shortest path algorithm prefers distance-based priority for faster convergence,

thus better performance. For the example in Figure 2.2.2c, the execution of a task may

impact other pending tasks in the priority queue, thus the order of task execution impacts

the final result, and hence exact priority ordering is required for correctness.

CPUs usually rely on software data structures, and the latency of accessing these data

structures dominates the execution time for fine-grained tasks. GPUs support hardware

scheduling using threads, but switching among fine-grained tasks adds start-up overhead to

initializing the large register states. Overall, fast hardware scheduling with minimal context

switch overheads is desired.

2.2.2 Task Irregularity with Coarse-grained Data Dependencies

In the presence of coarse-grained dependencies, the parent writes data to shared memory,

followed by a synchronization barrier, and then the child reads the dependent data. Barrier

inserts long stalls, causing a significant bottleneck. In this section, we discuss irregularities

caused due to variable task size and coarse-grained inter-task communication (Figure 2.3).

Variable-sized Tasks A variety of task-parallel workloads have task types1 whose amount

of work is either constant (Figure 2.3.1a), progressively changing over its instances (Fig-

ure 2.3.1b), or data-dependent (Figure 2.3.1c). The last two cases exhibit variable size

irregularity.

Figure 2.3.1c shows an example where inner loop tasks have a data-dependent length

based on B[i]. A näıve CPU/GPU thread scheduler would assign the inner loop tasks irre-

spective of the work involved in a task. Work-stealing is possible but requires extra inter-core

communication latency and bandwidth.

The opportunity here is to distribute tasks with the knowledge of the work involved. In

1A “task type” is the static definition of a task, including computation and memory accesses, while the
dynamic instantiation of a task is a task instance.

28

the example, core 1 gets the smallest and second-largest task (i.e., with total work = 3+7 =

10), , so all cores get similar total work. This model is synergistic with accelerators, which

have quite predictable execution times. When task size distribution is arbitrary, knowledge

of work involved may not be enough and often optimizations like dynamically splitting tasks

is required.

Inter-task communication When concurrent tasks work on shared data, it is defined as

irregularity due to inter-task communication. The communication may be of three forms:

shared read-only data (read reuse), producer-consumer communication (pipeline reuse), and

shared update-only data. We will discuss each of them below.

Producer-consumer communication: In data processing algorithms, the dependencies be-

tween two tasks can be ordered (for example, where one task produces an array that the other

uses in the same order) or unordered (Figure 2.3.2c). The ordered dependence may exist

between two tasks (Figure 2.3.2a) or many tasks (purple and green tasks in Figure 2.3.2b).

CPUs and GPUs use a shared memory model, which forces strict ordering between depen-

dence tasks, e.g., using barriers in CPUs. For example, see Figure 2.3.2b that demonstrates

a global reduction example where each core gets a tile of data. In the näıve task paral-

lel implementation, all cores need to perform updates on the reduction variable through

memory.

The opportunity for examples in Figure 2.3.2a,b is to identify the ordered reuse and

pipeline or stream the data from a producer to one or more consumer tasks. Pipelining

transforms the memory traffic into direct network traffic, reduces shared-memory overhead

from coherence, and allows overlapping tasks execution for more concurrency. In the exam-

ple, the pipelined reduction can be performed without accessing memory (except for writing

the final value).

Coarse-grain Read Reuse: Another kind of inter-task communication occurs when differ-

ent subsets of tasks read the same data. Tasks may be reading only a part of the shared

data (Figure 2.3.3a) or the whole data structure (Figure 2.3.3b,c).

29

 Tim
e

-D
e

p
e

n
d

e
n

t
D

ata Stru
ctu

re
s

(b) Compute delta

Ex: incremental graph processing
of dynamic updates

(a) Recomputation

Ex: checkpoint-based re-
processing of dynamic graphs

(c) Meta-data indexing

Ex: Cycle detection on dynamic
graphs

Comp. replaced
by hash table

Requires high memory
bandwidth to meta-data-
structures
C: hash table will reduce
effective space for graph and
also include random accesses

Application-specific
incremental algorithmWhole data is

re-accessed
Whole data is
re-accessed

Compute only
impacted data
Compute only
impacted data

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6

Figure 2.4: Irregularities due to Time-Dependent Data Structures

If such tasks are not scheduled together in time or space, the opportunity to exploit

read reuse can be lost. Figure 2.33a demonstrates this with an algorithm that traverses and

modifies a compressed sparse row (CSR)-like data structure, and is representative of common

algorithms that rely on range-based indirection. Here the duplicates in B are expected to

create multiple tasks with shared read data, providing an opportunity for reuse. CPUs and

GPUs use cache only and cannot control the task scheduling order; thus, the data may be

evicted before it reused. Exposing no-reuse property in Figure 2.33c an avoid cache pollution

by bypassing caches for no-reuse data [247].

2.3 Other Irregularities

Earlier, we discussed the fine-grained and task irregularities we explored in this dissertation.

In this section, we will discuss examples of alternate kinds of irregularities that could be

plausibly useful in many domains and thus, lead to new opportunities for specialization.

Data-dependent Data Types Often the data-type size is chosen to meet the precision

requirements, which may be changing during different phases of the algorithm [139]. The

naive solution is to upcast new data types to hardware support, negating many potential

benefits of variable data types.

Irregular Iteration Space The iteration space refers to the iteration range of a loop.

Commonly, the loops are parallelized by splitting into iterations proportional to the hard-

30

ware vectorization width. Parallel loop execution is correct, given that there are no cross-

iteration dependencies. In CPUs, SIMD instructions can efficiently exploit the loop-level

parallelism [144].

Inefficiencies may be caused due to different reasons. For example, the loop bound is not

a multiple of the vectorization width, causing the SIMD array to remain underutilized in the

last iteration. A harder case is when the loop bound depends on the value of the outer loop

index. Therefore, most of the parallel iterations of the inner loop would not be multiple,

exacerbating the under-utilization (Figure 2.3.1.c) shows an example).

Time-Dependent Data Structures When data structures change with time, incremen-

tal algorithms are used only to update the impacted part of the computation. The extent of

irregularity depends on the type of incremental algorithm; figure 2.4 shows three examples.

We will explain these using an example of google maps, where the shortest path to the

destination has to be updated for every new traffic update. Figure 2.4a shows the most

straightforward approach where the algorithm is re-executed. Thus, the whole road graph

will be involved in the computation. This involves redundant computation for parts of

the graph that are not affected. In (b), however, only the input updates are applied to

the previous output. In our example, the traffic change will be considered only when it is

connected to the destination. Accessing arbitrary parts of the input data will introduce ran-

domness/irregularity in both the working set and reuse. Also, incrementally building upon

some previous computation means serializing execution across updates. Figure 2.4c shows

another common strategy to reduce redundancy. Here the results of common computations

are pre-stored (e.g., distances between hot edges for the shortest path algorithm), and this

data structure is indexed during incremental computation. For desirable performance, the

hardware should be able to index into such a structure with high efficiency.

31

2.4 Summary and our Solution Approach

From the above analysis, we conclude that existing general-purpose processors are limited

because they have to support arbitrary behaviors. Even though they provide limited support

for irregularity, they are ineffective due to vonNeumann and the shared memory model. In

this dissertation, we designed reconfigurable hardware for specializable irregularity forms that

cover many domains. Specifically, we proposed stream-join control and alias-free indirection

memory for machine learning and databases (Chapter 5). For graph processing and matrix

decomposition algorithms, we proposed a task-based execution model with specialized data-

dependent ordering (Chapter 7 and techniques to recover locality across tasks (Chapter 8).

32

CHAPTER 3

Decoupled Spatial ISA and Hardware

To design a flexible irregular accelerator, we base our proposals on a typical decoupled spatial

ISA and hardware architecture. The hardware and ISA are designed for efficient acceleration

of regular workloads. For ISA, we build upon the open-source stream dataflow ISA [162].

This ISA is sufficiently flexible for regular implementations. The hardware uses a systolic

CGRA for spatial computation and has a flexible address generation unit for decoupled

memory access.

3.1 Execution Model and ISA

3.1.1 Decoupled Spatial Execution Model

Here we first define preliminary terms and then explain the execution model and its corre-

sponding ISA support.

• Dataflow Graph (DFG) The DFG is an acyclic graph where nodes are instructions

while edges represent dependencies. Dataflow nodes maintain a single state item.

This enables them to be mapped to systolic like fabrics [60, 188, 89, 66, 162] for high

efficiency.

• Streams Streams are simply an ordered sequence of values, used as architecture prim-

itives in many prior designs [199, 56, 162, 259, 250, 106, 60]. Relevant to this work are

memory streams, which are sequences of loads or stores. Streams are similar to vector

accesses, but have no fixed length.

33

(a) Original C code (b) Decoupled-Spatial Stream Code (c)Decoupled-
Spatial Execution

1: def matrix_vector(uint64_t
mat[N][M], vec[M])
2: uint64_t out_vec[M]
3: for n = 0 to N:
4: sum=0
5: for m = 0 to M:
6: sum+=mat[n][m]*vec[m]
7: out_vec[n]=sum

1: def matrix_vector(uint64_t mat[N][M],
vec[M])
2: uint64_t out_vec[M]
3: Config(matrix_vector_dfg,
matrix_vector_size)
4: # Load vector from memory to scratchpad
5: Mem_Scratch(&vec[0], 8, 8, N, 0)
6: # Load matrix from memory
7: Mem_Port(&mat[0][0], 8, 8, N*M, port_A)
8: Barrier_Scr_Wr()
9: Scratch_Port(0, 0, 8*M, N, port_B)
10: Port_Mem(port_C, 8, 8, 8, &out_vec[0])
11: Barrier_All()

x
+

port_A [2] port_B [2]

x

port_C [1]

Scratch
pad

Main
memory

D
ataflow

G

raph
M

em
ory

Stream
s

To Memory

Figure 3.1: Decoupled Spatial Execution Model

Execution Model In a decoupled-spatial execution, the programs execute in phases, each

starting with a loading multiple memory streams, the loaded data items are input to the

dataflow graph and ending at a final barrier. Each phase consists of many computation

instances. Figure 3.1c) depicts the conceptual execution model: the data streams may

be read either from off-chip main memory or on-chip memory. Before communication to

dataflow graph, they may be optionally buffered. Using the dataflow execution, output will

be streamed to an output buffer while is then stored back using another data stream. For

the matrix-vector multiplication example, the matrix is read from memory while the reuse

vector is read from scratchpad. The computation involves accumulating the multiplication

of a row of the matrix and the vector. The output is written back to memory.

Comparison with vonNeumann Model The key difference with vonNeumann model

is that there is no total order on instructions in spatial dataflow. The programmer explicitly

defines the computation, memory accesses, and the dependencies among them. This en-

ables efficient pipeline parallelism without instruction scheduling overheads. The decoupled

execution also removes address generation from the critical path.

34

Command Name Parameters Description

Config Address, Size Set systolic-CGRA configuration

Config Address, Size from the given address

Mem Scratch Source Mem. Addr., Stride, Access Size Read from memory

Num Strides, Dest. Scratch Addr with pattern to scratchpad

Scratch Port Source Scratch. Addr., Stride, Access Size, Read from scratchpad

Scratch Port Num Strides, Input Port # with pattern to input port

Mem Port Source Mem. Addr., Stride, Access Size, Read from memory

Mem Port Strides, Input Port # with pattern to input port

Const Port Constant Value, Num Elements, Input Port # Read constant value to input port

Port Port Output Port #, Num Elements, Input Port # Issue recurrence between input/output ports

Port Mem Output Port #, Stride, Access Size, Strides, Write from port

Port Mem Destination Mem. Addr. with pattern to memory

Barrier Scratch Rd - Barrier for Scratch Reads

Barrier Scratch Wr - Barrier for Scratch Writes

Barrier All - Barriers for all commands

Table 3.1: Decoupled Spatial ISA [162]

3.1.2 ISA Specification

Table 3.1 summarizes the stream commands supported in the Stream-dataflow ISA [162].

These commands can be grouped into three types of specifications: dataflow graph, memory

streams and barriers. Here we explain each:

Dataflow Graph Specification The computation is expressed using the dataflow graph,

which can be expressed using any graph representation. The dataflow graph has these

components: 1. The number of ”vector ports” (input/output of the computation) 2. their

width (maximum data words transferable per cycle), 3. their depth (the associated buffer

size), and 4. their connections to the computation substrate. The Config instruction reads

the stored dataflow graph from memory and maps it to the computation fabric.

35

Stream Specification For efficient decoupled memory access, the ISA supports affine ad-

dress patterns to/from different memory types. The supported pattern is a two-dimensional

pattern defined by an access size (size of lowest level access), stride (size between consecu-

tive accesses), and number of strides. More formally, these are accesses of the form a[C*i+j],

where induction variables i and j increment from 0 to an upper bound.

Example Program Figure 3.1 shows how a matrix-vector multiply C code can be written

using the decoupled-spatial ISA. The computation is translated to the dataflow graph (shown

in Figure 3.1c) and the memory streams are defined using the decoupled-spatial stream code

(Figure 3.1b). The stream code first configures the dataflow graph (line 3), then defines

the streams, and end with barrier (line 11). To exploit reuse on the vector, vector is first

written to the scratchpad (line 5) and then after a scratchpad write barrier (line 8), it can

be read into the dataflow graph (line 9). Finally, an output stream writes the computed

output vector to memory (line 10).

In the next chapters, we will propose extensions to different parts of the ISA. For ex-

ample, dataflow specification can be modified to include specializable control irregularity

information, and specialized memory streams that can encode specializable memory irregu-

larity.

3.2 Decoupled Spatial Hardware Design

Figure 3.2 shows the typical accelerator core that implements decoupled spatial execution

model. It can be viewed as consisting of two planes: 1. A Control plane manages the

accelerator components and handles less frequent tasks, e.g., setup between phases, and 2.

A Data Plane executes the accelerator code. In our template, the control plane is a simple

inorder core while the dataplane include a systolic-style CGRA compute fabric (extremely

common, e.g., [113, 48, 51, 17, 237, 143]) with a streaming address generator. Many regular

algorithms can be supported with this hardware design like dense linear algebra and some

36

Systolic
CGRA

Control
Core

Input Vector Port Interface

Wide Scratchpad Memory Interface
Memory Stream

Engine
Scratchpad

Stream Engine

Output Vector Port Interface

Stream
Disp.

Cache/Memory Hierarchy

Data line
Control Data/
Commands

Control

State SRAM

Legend

I-Cache Req/Resp

D-Cache Req/Resp

...

Stream
 Table

Stream #1
Stream #2

Stream #N

Stream Command
Decoder

Ready
Check
Logic

Stream
Select Lofic

Affine Address
generation

Command from
Stream Dispatcher

Address, Mask

(b) Scratchpad Stream Engine(a) Decoupled-Spatial Accelerator

Figure 3.2: Decoupled Spatial Accelerator Core

deep learning workloads [162].

3.2.1 Control Plane

Each accelerator core has a simple inorder core that is responsible for managing the data

plane hardware components of the accelerator. The jobs include configuration of dataflow

graph and memory streams, and managing synchronization barriers. The control code is

also responsible for the execution of any scalar code (code which is inefficient on data plane)

in the program.

3.2.2 Data Plane

Data plane consists of a systolic-CGRA to implement dataflow graph and a stream controller

to generate memory requests corresponding to different stream patterns. It also contains on-

chip scratchpad memory for caching critical updates. Finally, the core may be connected to

37

a router for the scaled-up version of the accelerator. We detail the design of systolic CGRA

and stream controller below:

Systolic CGRA Computation In a systolic-CGRA, the processing elements configured

to repeatedly perform one operation, are fully pipelined to execute one operation per cycle,

and only communicate with neighbors. In our implementation, these processing elements

are connected by a circuit-switched mesh network where each router can transfer upto 64

bits data (the width of systolic CGRA). A component of the offline compiler is responsible

to schedule PEs at different locations in the mesh. It should ensure perfectly pipelined

communication among PEs. At a very high-level, our approach combines the principle of

stochastic scheduling [161].

Stream Controller Address Generation Figure 3.2b shows the microarchitecture of the

stream controller. This hardware has two responsibilities: 1. address generation according

to the stream type, 2. collecting data from memory/scratchpad and sending it to the control

fabric in the correct order. Since there can many memory streams, it has a stream table that

maintains information about all active streams (its parameters that determine the access

pattern and the number of elements that are left to be served). The address generator is

a simple finite state machine that takes in access size, num elements, stride to produce the

desired access pattern. Since the data from memory can arrive out-of-order, the data for

each stream is reordered using a single vectorized buffer.

Finally, the stream controller communicates with the control core to inform when any

barrier command can be revoked. For example, when waiting on a barrier for scratchpad

write streams, the stream controller would inform the core that all pending scratch write

streams are done.

System integration In this dissertation, we consider the accelerators to be “standalone”,

meaning that the accelerator has its own memory space. To integrate with the system, there

38

are several alternatives like PCIe, bus like NVIDIA’s SXM2 [83] or even a cache coherent

interconnect is possible as well.

39

CHAPTER 4

Challenges to Design Domain-Agnostic Reconfigurable

Accelerators

Specialized accelerators have been the subject of intense research for many decades, but

particularly in recent years; examples pervade domains, including graphs [94, 221, 274, 68,

15], AI/ML [265, 104, 17, 195, 210, 237, 114], databases [122, 258, 259, 115], systems [282, 75,

76, 78], and genomics [233, 81, 234, 50]). This trend is also true in industry [113, 190, 245,

159, 168]. This field is fairly mature; application-specific devices are in mobile SoCs [21, 20],

IoT devices [195] and CPU chips [31]. There are even tools like HLS to help generate

application-specific hardware.

On the other hand, our focus is on programmable accelerators that are robust to change,

shorten chip design cycles, and will be valuable for economies of scale. Unfortunately,

domain-agnostic reconfigurable acceleration space is not well understood, especially when

designing new programmable accelerators. Varying proposals come from adhoc assumptions:

for the degree of flexibility: e.g., FPGAs attempt flexibility across broad big data workloads

while recent CGRAs [164, 60, 54, 188, 162, 84] target mostly data-parallel workloads). And

the performance metrics may be different (e.g., FPGAs optimize for execution cycles while

CGRAs focus on performance with minimum hardware overhead). These assumptions result

in drastically different designs and tools. For example, FPGA uses LUT-level reconfigurabil-

ity, and its HLS-based compilers embed an application’s low-level dataflow graph onto FPGA

resources. Instead, Softbrain [162], a representative example for CGRAs, uses a vectorized-

dataflow model, where the compiler searches for supported patterns in computation (e.g.,

32-bit MACC) and memory (e.g., linear access) to map applications to hardware. Overall,

40

Domains Benchmarks

ML MLPerf [196], Fathom [14], CortexSuite [230]

Databases TPCH [232], TPCDS [183], TPC-C [137]

Bioinformatics BioBench [16]

Genomics GenomicsBench [222]

AR/VR Illixir [107]

Graphs* GAP [26], SympleGraph [284], RStream [244]

Matrix Decomposition* 5G [43, 253]

Point clouds* KD-tree-based [29, 261]

AI/DB* Gorgon [239]

Table 4.1: Benchmarks in Data-processing Domains (* specifies no standard exists.)

these are important design decisions and need more attention.

Our goals are reasonably broad: we would like to support regular and irregular workloads

and explore various performance vs. area tradeoffs. This chapter will systematically discuss

the challenges of designing domain-agnostic accelerator architectures at various stages. For

each challenge, we briefly describe our approach, which we follow in our designs in the

subsequent chapters. These challenges include: 1. Picking target workload benchmarks to

specialize for, 2. Selecting what algorithmic implementations of those workloads to target,

3. Developing hardware and software features to achieve efficiency for the target algorithms,

and 4. Model and evaluate the performance of the proposal.

4.1 Pick Workload Benchmarks

Traditional benchmark suites are designed to stress different hardware components with

minimum redundancy. For example, CPU SPEC’s mcf is bounded by front-end while xz is

bounded by DRAM bandwidth [176]. Domain-specific benchmark suites are also designed

on the same principle; for example, MLBench’s ResNet model requires higher throughput

while the GNMT model needs high memory capacity [196], TPC-H has both sort-heavy and

non-sort-heavy queries [232]. Table 4.1 summarizes the available benchmarks for different

41

Dimensions Workloads

Dense Dense conv/FC, Graph MM, stencil

Data-dependent control Sparse conv/FC inner, Sparse GBDT, KSVM, Database join

Graph pull, filter, Graph mining, Genomics

Data-dependent memory GBDT histo, Sparse conv/FC outer, Arithmetic ckt, Graph push

Fine-grained task parallelism Graphs, Tree traversal

Coarse-grained task parallelism matrix decomposition, Point clouds, GCN

Sparse-MM, AR/VR, Knapsack, K-queens

Table 4.2: Workloads Classified by Data Dependence Forms

domains being studied for acceleration.

No such benchmark exists for reconfigurable accelerators. CPU’s SPEC is unsuitable

because their instruction footprint is too high to configure all the resources statically. Others

are limited to a domain. One option is to pick a union of the benchmarks in Table 4.1;

however, it will result in a large benchmark suite with extreme redundancy. Besides, it does

not make sense to design an accelerator for an arbitrary combination of domains, as the

resulting hardware complexity can be exponentially high. Our insight is that we need to

identify benchmarks according to the hardware component they stress.

Our approach: The problem with the existing way is that it is not insightful to study

random applications. For the benchmarks to be meaningful, our idea is to embody workloads

in certain forms of irregularity. We need to profile and deeply understand kernels across

domains to do that. Table 4.2 shows the benchmarks we classified by their data-dependence

dimensions. Consider database joins and the sparse tensor dot product in deep learning:

they both demonstrate data-dependent control. Therefore, we specialize in only one of them

and hope it will be effective for the other. In our work, we constructed our benchmark

suites out of programs that have the irregularity types in Section 4.2, corresponding to the

remaining main chapters in the dissertation (Chapters 5, 7, 8).

Note that filtering workloads by data-dependence dimensions may miss out on some

42

workload-specific opportunities. For example, deep learning layers often involve a ReLU

post-processing step, and a separate pipeline would prevent sharing bandwidth with inputs.

Such requirement is not common in other domains, but in deep learning, an independent

pipeline can improve performance by 30%. Nevertheless, this number is relatively small

compared to 7× speedup over GPUs by just specializing in data-dependent control. Please

note that most workload-specific software optimizations are still applicable. For example,

Tigris [261], an accelerator for k-nearest neighbors, proposed to pick an optimal tree size to

balance the tree traversal and dense search kernels. Our flexible accelerator supports tree

traversal and dense search and can adapt to the proposed algorithm. In conclusion, new

benchmark suites need to be written for less redundant accelerators.

4.2 Pick Algorithms to Accelerate

After picking a benchmark suite, the workload may be implemented differently; we call

these “algorithms”. For example, sparse matrix-multiply can be implemented as an inner-

product or outer-product [174, 179]. Often, these algorithms have different requirements

from the hardware. Thus, accelerator designs pick a single algorithmic implementation

based on simplicity [94, 173, 174, 179] and specialize for it. Such an approach may not be

ideal – recent works have shown flexibility across algorithms [129, 175, 138] may improve

performance. This is expected: on the one hand, algorithms create tradeoffs in which data-

structure to optimize for reuse [128], whether to do more work but architecture-friendly or

vice-versa [94], and which order to execute to maximize sparsity benefits [138]. On the other

hand, these tradeoffs’ inclination may depend on the size of inputs (e.g., higher input channels

mean we should optimize for input reuse) and workload properties (e.g., convergence rate

may change with the algorithm). The key takeaway is that we must look at all different

algorithm options of every workload to study the workloads effectively.

Note that our advice to study all algorithms is almost contradictory to Section 4.1 because

we are saying that we need to go back and gather more implementations of each workload,

43

increasing the complexity of our benchmark suite. However, it is worth the complexity, partly

because of performance benefits as explained above, and also because we must consider the

possibility of choosing the wrong form of irregularity or the bad implementation of it to

specialize. The only way out is to at least in some way model the alternative forms through

exploration.

Our approach: We evaluate the cross-product of algorithm, input, and workload. The

analysis output is a subset of algorithms to support and insights of picking the optimal al-

gorithm for a given input and workload type. This analysis creates three challenges. First,

there can be 10s of algorithms, and manually analyzing each can be overwhelming. There-

fore, a systematic approach is required: e.g., we can have orthogonal algorithm dimensions

where a combination of choices represents an algorithm. Second, performance estimation

during the analysis will require modeling a hypothetical application-specific accelerator. We

believe a modular execution model and hardware (where modules correspond to the algo-

rithm dimensions) will minimize unnecessary redesign. Finally, we will need to estimate

the performance of the ASICs generated above quickly. Existing analysis approaches use

analytical models [178, 128] and, as such, are not sufficient for irregular workloads. The

reason is that the next step in irregular workloads depends on the data, and simple formulae

are insufficient. We propose abstract simulators to model only critical components at the

cycle-level (see our GraphSim simulator for graph processing (Appendix A)).

4.3 Designing Hardware-Software Interface

We analyze each selected algorithm’s bottlenecks in traditional reconfigurable architecture

and determine specialization opportunities. The solution can either be software-only (e.g.,

tiling), hardware-only (e.g., a dedicated path to preprocess data), or programmable hardware

solution (e.g., a dedicated path where the programmer may pick an arbitrary preprocessing

function). The third option usually involves updating the ISA. We focus on programmable

hardware solution as the hardware support is usually required for high-performance and

44

multiple domains creates the need for programmability.

Our key insight is that we must look past the domain to more fundamental application

properties to find commonality. To this end, we define three required properties for any

programmable hardware feature: 1. Common: applicable across a range of data-processing

workloads, 2. Specializable: they should fundamentally have parallelism, which can be

efficiently exploited using efficient software and hardware mechanisms1, and Composable:

meaning the solution is integrated into a flexible execution model, e.g., SIMD or dataflow. For

example, an inner-joiner module [95] may be too domain-specific/uncommon to be assigned

a special instruction; however, a single lookup table to enforce various control operations

in every PE is both common and composable. This dissertation looks for these forms in

irregular workloads.

These new hardware features often need to be exposed in the ISA for programmability.

One design choice is granularity; coarse-granularity minimizes hardware complexity, while

fine-granularity improves robustness to future algorithms. Examples include CPU’s x86,

which is extremely fine-grained (e.g., ld,st, add, etc.) and TPU, which has coarse-grained

instructions from TensorFlow (e.g., conv, depth-wise conv, etc.). We are looking for a middle

ground for domain-agnostic acceleration: where the ISA is coarse-grained for efficiency but

with smaller granularity than Tensorflow to cover more domains. An example of prior

work is Microsoft’s Brainwave which uses sparse-matrix-vector in the ISA instead of sparse-

matrix-multiply in TPU to allow flexibility to batch size of 1 [79]. Another example is

LUTs in FPGAs, which are too fine-grained; in contrast, CGRAs use ALU operations that

provide coarse granularity and are still flexible as most domains require a subset of common

operations.

Our approach: Our workload benchmark selection has classified the workloads by com-

mon data-dependence forms; now, we look for specialization opportunities. There are two

options: standard workload analysis [165, 133] and learning from prior accelerator works.

1Note that we define specializable for which we could find solutions, it does not mean that others are
impossible to specialize for

45

SCNN for Sparse ConvolutionSCNN for Sparse Convolution

1. Scratchpad memory of size
32 MB with rd/wr port

2. Computation: Adders or
Reduce (min, max, etc) and a

MUX to pick
3. Programmer explicitly does

double buffering

Xbar

Address calculation
(CSR access)

Possible combined accelerator

Computation
(16-bit mult, 16-bit

systolic array, 32-bit
SIMD adder/mult)

FIFO to multicast
data

1. Scratchpad memory of size
32 MB with rd/wr port

2. Computation: Adders or
Reduce (min, max, etc) and a

MUX to pick
3. Programmer explicitly does

double buffering

Xbar

Address calculation
(CSR access)

Possible combined accelerator

Computation
(16-bit mult, 16-bit

systolic array, 32-bit
SIMD adder/mult)

FIFO to multicast
dataGraphicionado for Graph ProcessingGraphicionado for Graph Processing

Efficient inference engine (EIE) for Fully Connected Layers

Possible Combined Accelerator

Figure 4.1: Approaches to find commonalities across kernels

Figure 4.1 demonstrates the opportunity to learn from other accelerator works. It shows

three domain-specific accelerators: SCNN for sparse convolution [179], EIE for fully con-

nected layers [98], and Graphicionado for graph processing [94]. Figure 4.1 also shows a

possible combined accelerator that executes all three domains: convolution, fully connected,

and graph processing. The box outline colors correspond to hardware components. Here

we present the opportunity by discussing the similarities in accelerators and caveats to our

approach.

Similarities in Accelerators Below we discuss the common hardware components.

• Decoupled Computation: All architectures have embedded spatial computation

modules with application datapath (black box in the figure). A flexible spatial fabric

will require switches between PEs for different datapaths, but it can use the common

area-consuming routers.

• Atomic Update Unit: All architectures support aggressive atomic update: vectors

of requests read data from scratchpad in parallel, perform computation (e.g., adders

46

in SCNN, min in Graphicionado), and write the updated data back to the scratchpad.

• Address Calculation: The green box represents the module that generates addresses

to prefetch a known pattern. The architecture is similar because they all generate access

patterns for the CSR data structure.

• Multicast Units: SCNN and EIE read data at a buffer (shown by the light blue box

in Figure 4.1, and multicast to all compute units. Even though Graphicionado does

not support multicast due to relying on a crossbar network, other works show that

data multicast is beneficial in graph processing as well [27]. Note that we will need

programmability for the multicast data source: SCNN is receiving data from memory

while EIE is receiving from the output of another core.

In conclusion, application-specific work is not useless for building programmable accel-

erators – on the contrary, it is essential. The process of building programmable accelerators

requires understanding specialization taken to the extreme. Then we are taking a step back

and trying to generalize without giving up efficiency.

Caveats for the Programmable Accelerators It is also critical to understand the

overheads if we combine these three accelerators. First, certain features cannot be helpful

everywhere; for example, SCNN and Graphicionado need a crossbar, while EIE does not need

it because of enough parallelism in SpMV to meet the target throughput. Second, the amount

of required resources may not be consistent across domains. For example, SCNN usually

requires higher scratchpad bandwidth due to involving three data structures (weights, input,

and output activation) for computation. Another example is scratchpad capacity: graph

datasets are usually much larger than machine learning. Finally, computation almost always

requires some flexibility; for example, SCNN and EIE use 16-bit adders and multipliers,

while Graphicionado needs 32-bit units. Despite these challenges, the commonality is still

powerful to save engineering effort to redesign and area compared to naively concatenating

the accelerators.

47

4.4 Evaluation Methodology

In the CPU world, cycle-accurate simulators like gem5 [32] have been extremely useful for

fast exploration and providing comparability against proposals. However, for accelerators,

there are not any accepted simulators. The reason is apparent: all accelerators look vastly

different and thus require a custom simulator. Developing custom simulators takes significant

time, and without a common framework, it is hard to compare accelerators [128, 63].

We can imagine a framework that captures common abstractions across accelerators, but

it needs to be fast – this requirement again comes from the fact that accelerators are designed

from scratch. Thus, there are high degrees of freedom in the choice of hardware parameters,

connections, algorithmic choices, etc. Therefore, many accelerator works perform cross-

product analysis across many design points to find the Pareto optimal [178, 128]. The

simulators need to be fast to evaluate design points in a reasonable time.

Our approach: This dissertation uses a combination of abstract and exact simulators.

First, we performed the cross-product analysis using the abstract simulator. Once the high-

level hardware features and parameter space are narrowed down, we used a cycle-accurate

simulator to capture practical issues. See the details below:

• Abstract Simulator for Fast cross-product analysis: Our abstract simulator

models accelerator architecture as a dataflow pipeline where each stage may perform

computation or memory/scratchpad access. The simulator implements a variety of

algorithm templates, which can be customized for each application. This is useful in

the graph domain as many workloads can be implemented with slight variation. It also

enables the accelerator control to be abstracted for efficient simulation. We developed

an abstract simulator for graph processing (see Appendix A for more details). We

used it to evaluate seven workloads and four dimensions of algorithm variants in graph

processing with low development and simulation time (around 10× lower time than

the detailed one).

48

• Detailed Simulator for Architecture Validation: We extended gem5 RISCV in-

order core with our ISA extensions and reused gem5’s memory and network model.

Our detailed simulator (implemented as part of the DSAGEN framework [251]) helped

capture practical issues; for example, our implementation created a deadlock by sharing

a single network for memory and task packets. We also realized the programming

complexity when writing programs for the detailed simulator.

Interestingly, another outcome of our programmable accelerator research is a reusable

simulator called DSAGEN [251]. Our simulator models an architecture description

graph (ADG) where nodes can be either processing elements, switches, memory, delay,

or synchronization element [251]. We find that by connecting these components in dif-

ferent fashions, we can model various accelerators. This framework is open-source [111]

and recent work on wearable processors used it for modeling the MAERI accelerator

using ADG graphs [33, 129]. We hope this framework provides a more accessible and

consistent way to evaluate accelerators.

49

CHAPTER 5

Accelerating Workloads with Data-Dependent Control

and Memory

Our baseline decoupled spatial hardware works well on regular workloads. This chapter

focuses on the most basic category of irregular workloads with control and memory data

dependencies, but the parallelism is known statically at a coarse granularity. Hence, the work

is scheduled spatially and temporally to ensure a high locality. We identify two specializable

forms of data dependence that are common and specializable: stream-join control and alias-

free indirect memory.

We study machine learning (ML) as our primary domain and graph processing and

databases to demonstrate generality. Chosen ML workloads cover the sparse and dense

versions of the top-5 ML algorithms used by Facebook in 2018 [102]. SVM and GBDT are

general workhorses of ML, with GBDT approaches often winning ML competitions (e.g.,

Kaggle). FC and CNN are the core kernels in state-of-the-art speech and image/video recog-

nition. Arithmetic Circuits are graphical model representations that can be used to answer

inference questions on probability distributions [216]. From graph processing, we study

page rank and BFS. From databases, we study a subset of TPC-H. Table 5.1 outlines the

algorithms from these workloads, which rely on data-dependent control or memory.

We evaluate our approach across three domains:

• AI/ML: SPU achieves 1.8-7× speedup over a similar GPU (NVIDIA P4000), using

24% power. Further, retaining the capability to express dense algorithms led to up to

4.5× speedup.

50

Kernel Stream Join (Ir-

reg. Control)

Indirect Memory (Ir-

reg. Memory)

Non-data-

dep. (Regular)
M

a
ch

in
e
L
e
a
rn

in
g
(M

L
)

Conv N/A Outer-prod. [179] (spar-

sity)

Dense

Conv [71]

FC/

KSVM

Inner-prod. [153] (Spar-

sity+better at skewed

dist.)

Outer-prod. [98] (Spar-

sity+better for large

datasets)

Dense MV

GBDT Sort-based [46] (Spar-

sity+accuracy on

weighted data)

Histo [275] (Spar-

sity+accuracy on un-

weighted)

Not Possible

Arith.

Circits.

N/A DAG Travers. (dag spar-

sity)

Chain of MM

D
a
ta

b
a
se

Join Sort [259] O(Nlog(N)) Hash join [122] O(N) Cartesian O(N2)

Sort Merge O(Nlog(N)) Radix O(N) Not Possible

Filter Gen filtered Col [259]

(sparsity)

Gen. Column Indices

(sparsity)

Maintain

Bitvector

G
ra

p
h

Page

Rank

Pull [5] (O(VE) + no

rd/wr dependency)

Push [94] (O(VE) + No

latency stalls)

Dense MM

(O(V2))

BFS Pull [7] (O(VE) + better

middle iters)

Push [94] (O(VE) + bet-

ter beg/end iters)

Dense MM

(O(V2))

Table 5.1: Data-Dependence Forms Across Algorithms

• Graph: For both ordered and unordered algorithms, we achieve 14.2× performance

over a 24-core SKL CPU, competitive with the scaled-up Graphicionado [94] accelera-

tor.

• Database: We achieve 10.3× over the CPU for database workloads, which is compet-

itive with the Q100 [259] accelerator.

In this chapter, we first define the specializable irregularity forms and describe how we

51

Indicative of
Stream-Join

class row:
 int idx[]
 float val[]
 int cnt

float sparse_dotp(row r1, r2)
 int i1=0, i2=0
 float total=0
 while(i1<r1.cnt && i2<r2.cnt)
 if (r1.idx[i1]==r2.idx[i2])
 total+=r1.val[i1]*r2.val[i2]
 i1++; i2++
 elif (r1.idx[i1]< r2.idx[i2])
 i1++
 else
 i2++
 ...

(a) Sparse Vec. Mult. (inner-prod) (b) Merge

float merge(int left, mid, right)
 ...
 int i1=0, i2=mid
 while(i1 < mid && i2 < right)
 if in_arr[i1] <= in_arr[i2]
 out_arr[iout]=in_arr[i1]
 i1++
 else
 out_arr[iout]=in_arr[i2]
 i2++
 iout++

float in_arr[N]
float out_arr[N]

Data
 structure

C
o
d
e

E
x
a
m
p
l
e

2, 5, 8, 12

5, 3, 4, 2

r1

r2

cnt: 4

0, 2, 4, 5, 9

2, 3, 2, 4, 1

cnt: 5

idx

idx

val

val

total=27
(5*3+3*4)

Output

Underlined
Indices Match

Output

1, 2, 5, 8, 13, 17, 20, 21out_array

2, 5, 13, 17, 1, 8, 20, 21in_array 2, 5, 13, 17, 1, 8, 20, 21in_array

Indicative of
Stream-Join

Figure 5.1: Example Stream-Join Algorithms

extend the decoupled spatial ISA to specialize for these forms (Section 5.1). Then, we dis-

cuss our enhancements to the baseline hardware to support stream-join and decomposable

data types in the systolic-CGRA and compute-enabled scratchpad with aggressive stream re-

ordering (Section 5.4). We discuss evaluation (Section 5.5, 5.6) and conclude with alternative

decisions and pointers to future work (Section 5.8).

5.1 Specializable Data-Dependence Forms

We observe that two specializable forms of data-dependence are sufficient to cover many

algorithms: stream-join and alias-free indirection. In this section, we first define these forms

and give some intuition on their performance challenges for existing architectures, then

explain how they guide our design.

52

class row:
 int idx[]
 float val[]
 int cnt

(a) Sparse Vec/Mat. Mult. (b) Histogram

histo(float in_arr[N])
 ...
 for i=0 to N, ++i
 b = compute_bin(in_arr[i])
 out_hist[b] += 1
 ...

float in_arr[N]
int out_hist[M]

Data
 structure

C
o
d
e

E
x
a
m
p
l
e

Output

1,2,2,2,1,1out_arr

1,2,5,3,2,4,3,5,1,0in_arr

float sparse_mv(row r1, m2)
 ...
 for i1=0 to r1.cnt, ++i1
 cid = r1.idx[i1]
 for i2=ptr[cid] to ptr[cid+1]
 out_vec[m2.idx[i2]] +=
 r1.val[i1]*m2.val[i2]
 i2++

(assume compute_bin is a cast to integer)

 (outer-prod)

Indirection

1, 3

2, 3

0, 1, 5, 3, 4, 0, 3, 5, 0, 3

1, 2, 2, 3, 2, 4, 3, 5, 1, 1

Output

r1
idx

val

idx

val

ptr

3, 0, 0, 9, 5, 0

m2

Underlined
indices match

(3*1, 0, 0, 2*3+3*1, 2*2, 0)

out_vec
cnt: 2

Indirection

Figure 5.2: Example Alias-Free Scatter/Gather Algorithms

5.1.1 Stream-Join

An interesting class of algorithms iterates over each input (each stream) in order, but the

total order of operations (and perhaps whether an output is produced) is data-dependent.

Two relevant kernels are shown in Figure 5.1. Sparse vector multiplication (a) iterates over

two sparse rows (in CSR format) where indices are stored in sorted order, and performs the

multiplication if there is a match. The core of the merge kernel (b) iterates over two sorted

lists, and at each step outputs the smaller item. Even though the data-structures, datatypes

and purpose are very different, their relationship to data-dependence is the same: they both

have stream access, but the relative ordering of stream consumption is data-dependent (they

reuse data from some stream multiple times).

Stream Join Definition A program region which is regular, except that the re-use of

stream data and production of outputs may depend on the data.

53

Problem for CPUs/GPUs Because of their data-dependent nature, Stream-joins intro-

duce branch-mispredictions for CPUs. For GPGPUs, control dependence makes vectoriza-

tion difficult due to control divergence of SIMT lanes; also the memory pattern can diverge

between lanes, causing L1 cache bank conflicts.

Our Goal for stream-join Create a dataflow control model which can execute stream-

join at full bandwidth and utilization.

5.1.2 Alias-Free Indirection (AF-Indirect)

Many algorithms rely on indirect read, write, and update to memory, often showing up as

a[f(b[i])]. Figure 5.2 shows two examples: The sparse-vector/sparse-matrix outer product

(a) works by performing all combinations of non-zero multiplications, and accumulating

in the correct location in a dense output vector. Histogram (b) is straightforward. The

similarities here are clear: both perform an access to an indirect location. This can be

viewed as two dependent streams. Another important observation is that there are no

unknown aliases between streams – the only dependence is between the load and store of

the indirect update.

Alias-Free Indirection Definition A program region which is regular (including no im-

plicit dependences), except that memory streams may be dependent on each other.

Problem for CPUs/GPUs On CPUs, indirect memory is possible with scatter/gather,

however the throughput is quite limited given the limited ports to read/write vector-length

number of cache lines simultaneously. As for indirect update, Intel AVX512 recently added

support for conflict detection instructions. These do not improve the above cache-port

throughput problem, only the instruction overhead – yet still any conflicts within the vector

are handled serially with no reordering across vectors [108]. Also, not leveraging alias-

freedom means a reliance on expensive load-store queues.

54

 x=ReLU(in[i])
 (x!=0)
 val[cnt] = x
 idx[cnt] = i

for i=0 to N

if

++cnt

 x=ReLU(in[i])
 (x!=0)
 val[cnt] = x
 idx[cnt] = i

for i=0 to N

if

++cnt

Tr
ad

it
io

n
al

 D
at

af
lo

w
St

re
am

-j
o

in

D
at

af
lo

w
C

 c
o

d
e

(d) Re-sparsify

Cmp

+

strm
idx1

strm
idx2

Streams
embed their
own iterators

×

strm
val1

strm
val2

reuse reuse reuse

acc

c c

<, ==, >

c

output

init

reuse

(a) Merge

 (list1[i1] <= list2[i2])
 out_list[iout] = list1[i1]

 out_list[iout] = list2[i2]

 ++iout

while(i1 < L1 && i2 < L2)

++i1

++i2

if

else

strm
list1

strm
list2

reuse reuse

Select

Cmp
c

strm st
out_list

++ ++
Select

ld
list1

Select

ld
list2

Cmp10 10

Control-
Dep.

Control-
Dep.

<=

++
Select

st

out_list

>

i1 i2

iout

(b) Sparse Vec. Mult. (inner)

 (r1.idx[i1]==r2.idx[i2])
 total+=r1.val[i1]*r2.val[i2]

 (r1.idx[i1] < r2.idx[i2])
 ++i1

else
 ++i2

++i1; ++i2;

while(i1<r1.cnt && i2<r2.cnt)
if

elif

++

+

++
Select

ld
idx1

ld
val1

Select

ld
val2

ld
idx2

Cmp

×

10 10

Control-
Dep.

Control-
Dep.

><

==

output

i1 i2

Control-
Dep.

Control-
Dep.

(c) Streaming Database join

 (tbl1.key[i1]==tbl2.key[i2])
 tbl_out.key[iout] =tbl1.key[i1]
 tbl_out.data1[iout]=tbl1.data[i1]
 tbl_out.data2[iout]=tbl2.data[i2]

 (tbl1.key[i1] < tbl2.key[i2])

++i1; ++i2; ++iout

while(i1 < N1 && i2 < N2)

 ++i1
else
 ++i2

if

elif

++ ++
Select

ld
key1

ld
data1

Select

ld
data2

ld
key2

Cmp10 10

Control-
Dep.

Control-
Dep.

Control-
Dep.

Control-
Dep.

><

==

st
data1

st
data2

++
Select

0
1

Select

0
1

st
key

i2i1

iout

Cmp

strm
key1

strm
key2

Con
cat

strm
data1

strm
data2

reuse reusec c

<, ==, >

strm st
tbl_out

Con
cat

c

st
ind

ld
in

ReLU

Cmp

++

++

Select

10

!=0

st
val

0

!=0

i

strm
in

ReLU

Cmp

strm st
ind

strm st
val

+
acc

c

cnt

init

cc

Stream
Loads

i

!=0

For simplicity, loop
exit conditions not

shown.

Note:
ReLU(x): max(x,0)

Stream
Store

Control-
Dep.

Control-
Dep.

Control

Compute

Memory

Data Dep.

Control Dep.

Legend

Control

Compute

Memory

Data Dep.

Control Dep.

Legend

cnt

Figure 5.3: Stream-Join Control Model

While GPUs have similar throughput issues for caches, their scratchpads are banked for

faster indirect access. However, they do not reorder requests across subsequent vector warp

accesses [255], which is important to get high indirect throughput. Doing so in a GPU would

require dependence-checking of in-flight accesses, as they cannot guarantee alias freedom.

Our Goal for AF-Indirect Create a stream-based hardware/software interface and mi-

croarchitecture enabling indirect access at full bandwidth through aggressive reordering.

Dependence Form Relationship Finally, note that dependence forms are not mutually

exclusive. An example is the histogram-based Sparse GBDT (Figure 5.12 on Page 69).

Alias-free indirection is used for updating the histogram count, while a stream-join is used

for iterating over the sparse feature values. Other examples include deep neural networks

(indirection for matrix-multiply and stream-join to subsequently resparsify the output vector)

and triangle counting in graphs (indirection to traverse the graph and stream-join to find

55

intersecting neighbors).

5.2 Specializing Data-Dependent Control

A conventional computational fabric which is proven to perform well for non-data-dependent

codes is a systolic-execution array [113, 48, 51, 143, 237], as they are quite simple. Note we

define a systolic-execution array as a set of processing tiles which together form a deep

pipeline, where each tile executes a single logical instruction and only communicates with its

neighbors. This definition is general enough that such designs can include a circuit-switched

network [218, 89, 151, 241, 164], so we refer to these as systolic CGRAs.

In this section, we propose a novel control model to enhance a conventional systolic

CGRA for stream-join. We also discuss supporting finer-grain datatypes at low overhead

and high hardware utilization through decomposability.

5.2.1 Stream-join Control

Existing systolic arrays are unable to make control decisions beyond simple predication, as

they do not account for data dependences in deciding when and how to produce or consume

data.

We discuss a number of examples in Figure 5.3, for which show the original code and a

traditional dataflow representation. Here, black arrows represent data dependence, and green

arrows indicate control. The dataflow representation is quite similar to what is executed on

an OOO core. These examples motivate the need for a new dataflow-control model; one which

can express the data-dependence without expensive throughput-limiting control dependence

loops; this figure also shows these codes represented in our stream-join dataflow model.

Merge Example Consider the pseudo-code in Figure 5.3(a), which shows a simple merge

kernel (only the part where both lists have data), for use in merge-sort for example. An item

is selected and stored based on which of two items is smaller. This dataflow can be mapped

56

to a systolic array, but only at low throughput.

To explain, note that there is a loop-carried dependence through the control-dependent

increment and memory access. This prevents perfect pipelining, and the throughput is

limited to one instance of this computation every n cycles, where n is the total latency of

these instructions. Note that the same problem exists for the out-of-order core, and it is

made even worse with the unpredictable data-dependent branch which would increase the

average latency due to mispredictions.

However, note that from the perspective of the memory, the control dependence is un-

necessary, as all loads will be performed anyways. Therefore, to break the dependence, we

need to separate the loads from computation (luckily, decoupled streams do this already),

then expose a mechanism for controlling the order of data consumption. Intuitively for this

example, if the model treats incoming values like a queue, it is possible to “pop” the values

as they are consumed. Essentially, what we require here within the computation fabric is

the ability to perform data-dependent reuse.

Sparse Inner-Product Example Figure 5.3(b) is a sparse-vector multiplication. Here,

two pointers are maintained based on the comparison of corresponding item indices. Com-

pared to merge, there is a similar control dependence and overhead. A similar approach

could work here as well, decouple the streams and conditionally reuse indices (and values).

The difference is that we only apply the multiply accumulate on matching indices, so we

should discard some of this data. Therefore, in addition to data-dependent reuse, we also

require data-dependent discard.

Database Join Example Figure 5.3(c) shows an inner equijoin. It iterates over sorted

keys, and concatenates equivalent keys and corresponding columns. It has a surprisingly

similar form and control dependence loop to the sparse multiplication, where the computation

is replaced with concatenation. A similar approach of decoupling streams and applying

data-dependent reuse and discard will break the control dependence loop and enable high

57

throughput.

Re-sparsification Example Re-sparsification (Figure 5.3(d)) produces a sparse row from

a dense stream. The dataflow version has a predicated increment and store, and can achieve

a pipelined schedule (so can the OOO core if it has predicated stores, otherwise it would

be serialized by mispredictions). This example demonstrates that the ability to discard (ie.

filter) is useful on its own. It is also an example where predication is enough, whereas

predication is insufficient in the other examples.

Our Stream-join Proposal We find the desired behavior can be accomplished with a

simple and novel control flow model for full-throughput systolic execution. The basic idea is

to allow each instruction to perform the following control operations: re-use inputs, discard

instructions or reset a register based on a dataflow input.

Figure 5.4 shows the execution flow of the sparse vector multiplication when expressed

as a stream-join, showing the fully-pipelined execution over several cycles. Dataflow values

are represented as circles, and for simplicity they take one cycle to flow along a dependence.

Sentinel values (infinity for indices and zero for values) are used to indicate the end of a

stream; these allow the other stream to drain on stream completion. Also, the subsequent

vector multiplications can begin without draining the pipeline.

Figure 5.3 shows all of the examples written in this model. Data-dependent operand re-

use is useful in (a,b,c) to iterate over input streams in correct relative order. Data-dependent

discard is also useful in (b,c,d) for ignoring data which is not needed. The data-dependent

reset is useful in (b,d) for resetting the accumulator. In both examples, adding stream-join

primitives to instruction execution either shrinks the throughput-limiting dependence chain

or eliminates it completely, enabling a fully-pipelined dataflow.

To enable flexible control interpretation, each instruction embeds a simple configurable

mapping function from the instruction output and control input to the control operations:

f(inst out, control in) → reuse1, reuse2, discard, reset

58

Cmp

+

×

acc

c c

c
init

INF 0 3

>

INF

12
Cmp

+

×

acc

c c

c

output

init

0 0

==

12

>== Cmp

+

×

acc

c c

c

output

init
0

12output

Cmp

+

×

acc

c c

c
init

42

0 2 5 2

Cmp

+

×

acc

c c

c
init

2 2 5 2

<

4INF

Cmp

+

×

acc

c c

c
init

4 6 2

==

INF

INF

306 3

<

6 3

output outputoutput

Cmp

+

×

acc

c c

c
init

42

0 2 5 2

Cmp

+

×

acc

c c

c
init

2 2 5 2

<

4INF

Cmp

+

×

acc

c c

c
init

4 6 2

==

INF

INF

306 3

<

6 3

output outputoutput

Cycle - 1 Cycle - 2 Cycle - 3

Cycle - 4 Cycle - 5
Cycle - 6

0

5, 6, 0

idx1

val1

0, 2, INF

5, 6, 0

idx1

val1

0, 2, INF

2, 4, INF

2, 3, 0
idx2

val2

2, 4, INF

2, 3, 0
idx2

val2

IN
P

U
T

LI
ST

S

==

Figure 5.4: Execution diagram for join of two sorted lists.

Stream-join Overheads In kernels where input data is discarded (eg. sparse-matrix mul-

tiply and database join), the transformation to stream-joins can cause additional loads. The-

oretically the worst case extra overhead compared to the original is (value size+key size)/(key size).

This can happen if there are extremely sparse matches, for example in databases. For such

cases, we could only load values for matching indices; this would increase the latency of

accessing values, but this can usually be hidden. For this, SPU provides efficient support for

indirect accesses (Section 5.3).

5.2.2 Stream-join Compute Fabric: DGRA

Here we explain how we augment a systolic CGRA to support stream-join control. Its

network is decomposable to support control semantics for smaller datatypes; thus we refer

to the design as the decomposable granularity reconfigurable architecture: DGRA.

Stream-join Processing Element (PE) Implementation The stream-join control model

enables an instruction to 1. treat its inputs as queues that it can conditionally reuse, 2. condi-

tionally discard its output value, and/or 3. conditionally reset its accumulator. Instructions

may use their output or a control input to specify the conditions (ie. the control info).

59

discard
Func. UnitACC CLT

FIFO0 FIFO1 FIFO2

From Network

reuse

reset

SEx

Stream-Join

Flow-Ctrl

Data-Flow

Figure 5.5: CLT

integration

To implement, we add a control lookup table (CLT) to each FU

(Figure 5.5), which determines a mapping between the control inputs

and possible control operations. For the inputs of this table, we use the

lower two bits of either the instruction output or the control input. For

the outputs, there are four possible control actions: reuse-first-input,

reuse-second-input, discard-operation, reset-accumulator. Therefore,

for a fully configurable mapping between the 2-bit input (four combi-

nations) and 4-bit outputs, we require a 16-bit table, and one extra bit to specify whether

the instruction output or control input should be used as input. This becomes additional

instruction configuration.

Supporting Decomposability To support stream-join semantics with arbitrary datatypes,

our approach is to support the principle of decomposability – the ability to use a coarse grain

resource as multiple finer grain resources. Therefore, the network of the DGRA is decompos-

able into multiple parallel finer-grain sub-networks. It provides limited connectivity between

these sub-networks. For this we require both a decomposable switch and PE.

DGRA Switch Figure 5.6 compares a CGRA switch to our DGRA switch. On the left

is an implementation of a coarse grain switch, which has one Mux per-output. The DGRA

switch decomposes inputs and outputs, and separately routes each 16-bit sub-network. Flow

control is maintained separately with a credit path (not shown) for each subnetwork. For

flexible routing, we add the ability for incoming values to change sub-networks. In the design

this is done by adding an additional input to each output Mux, which uses the latched output

of the previous Mux. This forms a ring, as shown by the “X” inputs.

DGRA PE The decomposable PE (Figure 5.7) follows the same principles as the switch.

Each coarse grain input of a FU can be decomposed into two finer-grain inputs which are

used to feed two separate lower-granularity FUs. We replicate the CLT for each subnetwork

so that each can have their own control semantics.

60

S0 S1 S2 S3

N0 E0 S0 W0 X1 N1 E1 S1 W1 X2 N2 E2 S2 W2 X3 N3 E3 S3 W3 X0

55.5
5

MUX

E

S

N E S W

S

W

N

W

W

N
E

S

CGRA
Switch

DGRA
Switch

S

E

N

64-bit

16-bit

MUX

(to/from Switches and Fus)

Figure 5.6: DGRA Switch

(to/from Switches)

55.5
5

NW

N
E

SE

SW

CGRA PE
SE

discard
Func. UnitACC

reuse
CLT

64-bit
32-bit
Control

CLT

ACC

NW

N
E

SE

SW

55.5
5

SE0 SE1

DGRA PE
SE

SW
0

SW
1

NW0 NW1

NE
1

NE
0

SE0 SE1

CLT

ACC

Figure 5.7: DGRA Processing Element

61

Mixed-precision Scheduling Mapping dataflow graphs onto reconfigurable architecture

is known as spatial scheduling (eg. [180, 166, 181, 276]). Adding decomposability increases

the complexity due to managing more routing decisions due to subnetworks. At a very

high-level, our approach combines the principle of stochastic-scheduling [161] and over-

provisioning (eg. within Pathfinder [150]). At each iteration, we attempt to map (or re-map)

a dataflow instruction and its dependences onto several different positions on the DGRA; the

algorithm will typically choose the position with the highest objective, but will occasionally

select a random position. To avoid getting stuck in local minima, we allow over-provisioning

compute and network resources and penalize over-provisioning in the objective function.

5.3 Specializing Data-Dependent Memory

The main challenge for specializing for alias-free indirection is creating a high-bandwidth

memory pipeline which aggressively reorders accesses. In order to explain our proposed

microarchitecture, we first discuss the set of stream abstractions that are expressed to the

hardware.

5.3.1 Sparse Memory Abstractions

As we explained earlier, we start with a simple non-data-dependent contiguous stream (List-

ing 5.1 shows an example). For specifying indirect loads or stores, we enable one streams’

addresses to be dependent on another streams’ values. Often, array-of-structs style data

structures require several lookups offset from the base address. We add this capability with

an “offset list”, shown in the example in Listing 5.2.

Indirect updates (as in histogramming) could hypothetically be supported by using an

indirect load stream as above, performing the reduction operation, and finally using an

indirect store stream to the same series of addresses. However, this requires dynamic alias

detection or eschewing pipeline parallelism to prevent aliasing read/write pairs from being

mis-ordered. Instead, we can leverage the alias-free property to add a specialized interface for

62

f o r i=0 to n

. . . = a [i]
→ load (a [0 : n])

Listing 5.1: Linear Stream

s t r u c t { i n t f1 , f 2 } a [n]

f o r i=0 to n

ind = index [i]

= a [ind] . f i e l d 1

= a [ind] . f i e l d 2

c [ind] = . . .

→

s t r 1 = load (index [0 : n])

i nd l oad (addr=str1 , o f f s e t l i s t ={0 ,4})

i n d s t o r e (addr=str1 , va lue = . . . ,

o f f s e t l i s t ={0})

Listing 5.2: Indirect Load and Store Streams

f o r i=0 to n

ind = index [i]

va l = value [i]

h i s t o [ind] += val

→

s t r i n d = load (index [0 : n])

s t r v a l = load (value [0 : n])

update (addr=s t r i nd , va l = s t r v a l ,

opcode=”add” , o f f s e t l i s t ={0})

Listing 5.3: Indirect Update Stream

f o r i=0 to n

s i z e = sub s i z e [i]

f o r j=0 to size

va l = value [j]

→ s t r s i z e = load (s ub s i z e [0 : n])

data dep load (value [0 : l en=s t r s i z e])

Listing 5.4: Data-dependent Load Stream

indirect update. In our implementation, indirect update may perform common operations

like add, sub, max, and min directly on the indirect-addressed data item. Listing 5.3 shows

an example.

Often, streams consist of sub-streams with data-dependent length. For example, indi-

rect matrix-vector multiplication requires access to columns with varying size (Figure 5.2,

page 53). We enable streams to specify a data-dependent length, as in Listing 5.4.

63

4

Arbiter

XBAR(eg.16x32)

Indirect
Address
Gener-
ation

Linear
Access
Stream
Table

L
i
n
e
a
r

A
d
d
r
e
s
s

G
e
n
e
r
a
t
i
o
n

M
U
X

Indirect
Rd/Wr/
Atomic
Stream
Table

rd-wr bank-queues

Control Logic

Composable

Banked Scratchpad

NoC

Linear Scratchpad

C
o
n
t
r
o
l

U
n
i
t

Sel

Indirect
ROB T

o

C
o
m
p
u
t
e

F
a
b
r
i
c

From Compute Fabric

Figure 5.8: Scratchpad Controller

5

Bank

0

Bank

1

Bank

n-1

A
d
d
r
.

D
e
c
o
d
e

A
d
d
r
.

D
e
c
o
d
e

A
d
d
r
.

D
e
c
o
d
e

Address Value

Row Buffer Row Buffer

Enable

Opcode0 Opcode1 Opcoden-1

Composable

Row Buffer

(for reordering)To SPAD Controller

From SPAD Controller

Figure 5.9: Compute-enabled Banked Scratchpad

64

5.3.2 Data-Dependent Memory Microarchitecture

Armed with expressive abstractions, we develop a high-bandwidth and flexible scratchpad

controller capable of high-bandwidth indirect access. Because our workloads often require

a mix of linear and indirect arrays simultaneously, for example streaming read of indices

(direct) and associated values (indirect), we begin our design with two logical scratchpad

memories, one highly banked and one linear. In this design, both exist within the same

address space.

The role of the scratchpad controller (eventual design in Figure 5.8) is to generate re-

quests for reads/writes to the linear scratchpad, and reads/writes/updates to the indirect

scratchpad. A control unit assigns the scratchpad streams, and their state is maintained

in either linear or indirect stream tables. The controller should then select between any

concurrent stream for address generation and send to the associated scratchpad to maxi-

mize expected bandwidth. The linear address generator’s operation is simple – create wide

scratchpad requests using the linear access pattern.

The indirect address generator creates a vector of requests by combining each element of

the stream of addresses (coming from the compute fabric, explained in Section 5.2) with each

element in the stream description’s offset list. This vector of requests is sent to an arbitrated

crossbar for distribution to banks, and a set of queues buffer requests for each SRAM bank

(Figure 5.9) until they can be serviced. Reads, writes and updates are explained as follows:

Indirect Writes Bank queues buffer both address and values. Importantly, because writes

are not ordered with respect to anything besides barriers, requests originating from within

the stream and across streams can be “mixed” within the bank queues without any addi-

tional hardware support. Mixing requests across multiple request-vectors helps to hide bank

contention, a critical feature enabling higher throughput than traditional memories.

Indirect Updates Indirect updates use the compute units within the scratchpad. To

explain, the bank queues buffer the address, operation type and the operand for the update.

65

0x8
0x18
0xA8
0xB8

0x58
0x68

0x118 0x98 0x218
0x28 0x228 0x328
0x38
0x48

0xD8

0x78

Scratch
 b

an
ks

0
1
2
3
4
5
6
7

0x8
0x18
0xA8
0xB8

0x58
0x68

0x118 0x98 0x218
0x28 0x228 0x328
0x38
0x48
0xD8

0x78

head

0x18 0x58 0x68 0x118 0xA8 0xB8 0xD8
0x28 0x48 0x8 0x38 0x78

Indexed by
req_id

Cycle count
1 2 3 4 5 6 1 2 3 4 5 6

Cycle count

(b) Benefit of reordering

IROB at cycle count 2

(c) SPU reordering

Crossbar

(addr, req_id, col)

0x18 0x58 0x68 0x118 0x98 0xA8 0xB8 0xD8

0x28 0x48 0x8 0x218 0x38 0x78 0x228 0x328

Vec req1

Vec req2

(a) Example request stream

Reorder within vector (typical for GPUs) Aggressive reordering through IROB

tail

Banks

Figure 5.10: Functioning of IROB. (bits<6..4> indicate bank number)

Within the banked scratchpad, after the value is read, the associated compute unit executes,

then writes the value back to the same location in the next cycle. We support only common

integer operations within this pipeline (add, sub, min, max). The pipeline stalls only if

subsequent updates are to the same address (max 2-cycle bubble).

Indirect Reads In contrast to the above, the order of reads must be preserved. For per-

formance, we would like to maintain the ability to mix requests from subsequent accesses

to hide bank contention. This actually goes beyond what even modern GPUs are capable

of, as they only reorder a single vector of requests at one time [255, 152, 9]. We believe the

reason for this limitation on GPUs is the challenge in handling potential memory depen-

dences. To explain, Figure 5.10(a) shows an example of two parallel indirect read requests.

Figure 5.10(b) shows the difference between how a typical GPU approach would schedule

transactions, and how an aggressive reordering approach would work. The ability to inter-

mingle parallel requests can significantly increase throughput.

To accomplish this, we maintain ordering in a structure called an indirect read reorder-

66

buffer (IROB), which maintains incomplete requests in a circular buffer. It is allocated an

entry whenever a request is generated from the indirect address generator. For indirect

reads, the bank queues maintain the address and row & column of the IROB. As results

return from the banked scratchpad, they use this row & column to update the IROB. IROB

entries are de-allocated in-order when a request’s data is sent to the compute unit. Overall,

our abstractions enable expression of the alias-free property of indirect reads in hardware,

which is what allows a simple hardware structure like the IROB to aggressively reorder across

multiple requests without memory dependence checking.

Decomposability The indirect scratchpad also requires decomposability to various datatypes.

Multiple contiguous lanes are used in lock-step to support larger datatypes. Consider indi-

rect store bandwidth for example: the 16×32 crossbar either supports 16 16-bit stores (to

32 logical banks), 8 32-bit stores (to 16 logical banks), or 4 64-bit stores (to 8 logical banks).

We use the same approach for accessing the SRAM banks of the indirect scratchpad.

5.4 Sparse Processing Unit

The sparse processing unit (SPU) is our overall proposed design. Each SPU core is com-

posed of the specialized memory and compute fabric (DGRA), together with a control core

for coordination among streams. In this section, we overview the primary aspects of the de-

sign, then discuss how we map our workloads to SPU’s computation, memory, and network

abstractions. Finally, we discuss the role of the compiler and possible framework integration.

SPU Organization Figure 5.11 shows how SPU cores would be integrated into a mesh

network-on-chip (NoC), along with the high-level block diagram of the core. The basic

operation of each core is that the control core will first configure the DGRA for a particular

dataflow computation, and then send stream commands to the scratchpad controller to read

data or write to the DGRA, which itself has an input and output ”port interface” to buffer

data.

67

Crossbar

Main Memory

Memory Stream Engine

Core1 Core8

Core9

Core57 Core64

NoC Router

Datapath
DGRA

Compute
Fabric

Input Port
Interface

Scratchpad
Controller

Linear
Scratchpad

Banked
Scratchpad

I
n
d
i
r
e
c
t

V
e
c
t
o
r

P
o
r
t
s

S
t
r
e
a
m

D
i
s
p
a
t
c
h
e
r

C
o
n
t
r
o
l

C
o
r
e

Output Port
InterfaceSPU-Core

A
r
i
b
t
e
r

t
o

N
o
C

Figure 5.11: SPU Overview

Memory Integration These workloads require shared access to a larger pool of on-chip

memory. To enable this, our approach was to rely on software support, rather than expensive

general purpose caches and coherence. In particular, SPU uses a partitioned global address

space for scratchpad. Data should be partitioned for locality if possible. Streams may access

remote memory over the NoC. We add remote versions of the indirect read, write, and

update streams. Indirect write and update are generally one-way communication operations,

but we provide support to synchronize on the last write/update of a stream for barrier

synchronization. Other synchronization is described next.

Communication/synchronization SPU provides two specialized mechanisms for com-

munication. First, we include multicast capability in the network. Data can be broadcast to

a subset of cores, using the same relative offset in scratchpad. As a specialization for loading

main memory, cores issue their load requests to a centralized memory stream engine, and

data can be multi-cast from there to relevant cores. For synchronizing on for data-readiness,

SPU uses a dataflow-tracker-like [237] mechanism to wait on a count of remote-scratchpad

writes.

68

Map stream-join
pattern to SPU
control model

update(addr=st_hist_addr,
val=st_grad_update, opcode=”add”,
offset_list={sp_addr[tid]})

Setup local linear scratchpad streams

multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
Setup main-memory streams

Setup local indirect scratchpad streams

wait_local_streams()
Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

Setup local linear scratchpad streams

multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
Setup main-memory streams

Setup local indirect scratchpad streams

wait_local_streams()
Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

Setup local linear scratchpad streams

multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
Setup main-memory streams

Setup local indirect scratchpad streams

wait_local_streams()
Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

strm_ind1 = ld(node_ind[p][0:n], scr=1)
strm_grad = ld(grad[0:n], scr=1)

strm_ind2 = ld(feat_ind[tid][0:n])
strm_hist_bin = ld(feat_val[tid][0:n])

Scratchpad Controller

feat_ind[tid][0:n]
feat_val[tid][0:n]

Control
Core

DGRA
(runs dataflow graph)

st
rm

h

is
t_

ad
d

r+
gr

ad
_u

p
d

at
e

Store
node_ind[0:n/C],

grad[0:n/C]

Linear Scratch

setup
streams

Banked Scratch

...
Store grad_hist[0..k]

while(id1 < len(node_ind[p]) &&
 id2 < len(feat_ind[fid])):
 ind1 =
 ind2 =

 hist_bin =

strm
ind1

strm
ind2

strm
hist_bin

reuse discard

node_ind[p][id1]
feat_ind[fid][id2]

if (ind1==ind2):

 ++id1; ++id2
elif (ind1<ind2):
 ++id1
else:
 ++id2

feat_val[fid][id2]

grad[ind1]

id1, id2 implicit using
stream-join control

grad_hist[hist_bin] +=

(a) C code (single core)

Execute
stream
code

(b) Stream-Join Dataflow Graph

(c) Parallel Stream Code(d) Hardware Mapping

Linear
streams

Addr.
Gen.

ALU array
Crossbar

Addr.
Gen.

ALU array
Crossbar

Cmp

+

Filter
reuse reusec c

<, ==, >

const =
 grad_hist[0]

hist_addr

Filter

strm
grad

hist_update

reuse

c

transform

Main Memory

setup
dataflow

strm
grad_hist

To/From Network

node_ind[p][0:n],

 grad[0:n]

Local
Memories

Indirect Update
Stream

Remote
Mem.&
Network

Figure 5.12: Example SPU Program Transformation: GBDT (Each core gets a subset

of features to process i.e. fid=tid)

Control ISA We leverage an open-source stream-dataflow ISA [160, 162] for the control

core’s implementation of streams, and add support for indirect reads/writes/updates, stream-

join dataflow model, and typed dataflow graph. The ISA contains stream instructions for

the data transfer, including reading/writing to main memory and scratchpad.

Programming Model Programming SPU involves the following tasks: 1. partitioning

work to multiple cores and data to the scratchpads to preserve locality, 2. extracting the

dataflow graph, and possibly re-writing data-dependent control as a stream-join, 3. extract-

ing streaming memory accesses, and 4. inserting communication/synchronization.

69

In terms of programming abstractions, an SPU’s program consists of a dataflow graph

language describing the computation (compiled to DGRA), along with a control program

which contains the commands for streams (similar to stream-dataflow [162]). When a control

program is instantiated, it is made aware of its spatial location, for efficient communication

with its neighbors.

Example Program To explain how to map programs to SPU abstractions, we use the

example of GBDT in Figure 5.12. We show the key kernel of this workload, which is a

histogram over sparse lists. Figure 5.12(a) shows the original kernel’s C code. Figure 5.12(b)

shows the extracted stream-join dataflow, and (c) shows the control program where memory

accesses are represented as streams, which is expressed as C + intrinsics. Each stream loads

(or stores) data to an input (or output) in the dataflow. Figure 5.12(d) shows how the SPU

program is mapped to hardware for this algorithm. In hardware, the stream code executes on

the control core, which creates streams to be executed on the scratchpad controller. In turn,

the controller will deliver/receive data to/from the DGRA compute unit, which executes the

dataflow.

The basic parallelization strategy is that each SPU core independently builds histograms

corresponding to its allotted subset of features. As for how memory is distributed, the

dataset is stored in main memory in sparse CSR format (feat ind and feat val). Accessing

these requires linear memory streams. The linear scratchpads store the subset of instances

which belong to the current working node. As node indices are common across all features,

the corresponding data is broadcast across all cores. This is done in synchronous phases: in

each phase, the stream is loaded from a predetermined core. Phases are not shown in the

figure for brevity.

As for the dataflow, stream-join is used to iterate sparse feature indices and the indices

generated due to subsetting the data at each decision tree node.

Indirection is used for histogramming: the histogram address and update values are

produced in the dataflow, which are then consumed by the indirect update stream. In

70

Mech./

Wkld

Indirect

memory

Stream join Work partition

across cores

Synchronization

M
a
ch

in
e
L
e
a
rn

in
g
(M

L
)

GBDT Create feature

histogram

Join train inst

subset

Split features Hierarch. reduce

+ broadcast

KSVM — Matrix-mult

for error calc

Split training

instances

Hierarch. reduce

+ broadcast

AC Read + update

child parame-

ters

— Split DAG levels Pipelined commu-

nication

FC Accumulate

activations

Resparsify Split weight ma-

trix rows

Broadcast of i/p

activations

CONV Accumulate

activations

Resparsify Split weight ma-

trix rows

Nearest neighbor

comm.

D
a
ta

b
a
se

Merge

Sort

— Merge of 2

sorted lists

Uniform partition Hierarchical

Merge

Hash Join Cuckoo hash

lookup

— Smaller col repli-

cated

Barrier until each

core completes

Sort Join — Join sorted

lists

Equal-range par-

tition

Same as above

G
ra

p
h Page

Rank

Accumulate

vert. rank

— All vertices Remote ind. ’add’

update

BFS Relax vert.

distance

— Active vertices Remote ind.

’min’ update

Table 5.2: Mapping of Algorithms on SPU

hardware, the stream is mapped to the indirect stream table in the scratchpad controller.

Workload Mapping Table 5.2 details how we map each algorithm to the SPU architecture

in terms of control, memory and communication ISA primitives, as well as the partitioning

strategy.

71

Framework Integration We envision that SPU can be targeted from frameworks like

TensorFlow [10], Tensor Comp. [236], TVM [47] for machine learning, or from a DBMS or

graph analytics framework [5, 224]. For integration, a simple library-based approach can be

used, where programmers manually write code for a given machine learning kernel. This

is the approach we take in this work. Automated compilation approaches, eg. XLA [4] or

RStream [189] are also possible if extended for data-dependent algorithms.

5.5 Methodology

SPU We implemented SPU’s DGRA in Chisel [24], and synthesized using Synopsys DC

with a 28nm UMC technology library. We use Cacti [156] for SRAMs and other components.

When comparing to GPU power, we omit memory and DMA controllers.

Simulator Methodology We built an SPU simulator in gem5 [32, 200, 226], using a

RISCV ISA [22] for the control core. The input to our simulator is a RISCV in-order core

binary, and the output is cycle count. The simulator implements the hardware components

and their connections according to the architecture diagram in Figure 5.11. We reused gem5’s

DRAM implementation that models the request scheduling and internal DRAM hierarchy

including channels, banks, subarrays and row buffers at cycle-level. The simulator ticks

each hardware component based on latency and throughput until termination to get the

cycle count. Table 5.3 lists the latency and throughput of some hardware modules that we

assumed based on our knowledge and prior work.

Architecture Comparison Points Table 7.3 shows the characteristics of the architec-

tures we compare against, including their on-chip memory sizes, FU composition, and mem-

ory bandwidth. As for SPU, we provisioned the size of the DGRA to match the combined

throughput of the scratchpads. We provisioned the total amount of memory on-chip for the

working-sets of ML workloads, as they were our primary focus; this has some impact on

workloads which have large working-sets and are expensive to tile.

72

Hardware Latency Throughput

Integer ALU 3 1

Float Div 12 1

Crossbar arbit 1 1

Spad latency 1 1

Addr. gen. 1 1

Table 5.3: Latency and Throughput of a Subset of Simulated Hardware Components.

Characteristics GPU [61] SPU-inorder SPU

Processor GP104 in-order SPU-core

Cache+Scratch 4064KB 2560KB 2560KB

Cores 1792 512 64 SPU cores

FP32 Unit 3584 2048 2432

FP64 Unit 112 512 160

Max Bw 243GB/s 256GB/s 256GB/s

Table 5.4: Architecture characteristics of GPU, SPU-inorder and SPU

Workloads CPU GPU

GBDT LightGBM [275] LightGBM [275]

Kernel-SVM LibSVM [42] hand-written [23]

AC hand-written [216] hand-written [216]

FC Intel MKL SPBLAS [2] cuSPARSE [157]

Conv layer Intel MKL-DNN [6] cuDNN [52]

Graph Alg. Graphmat [224] -

TPCH MonetDB [35] -

Table 5.5: Baseline workload implementations

73

Dataset Size Density Dataset Size Density

GBDT Cifar10-bn 50k,3k 1 Yahoo-bn 723k,136 0.05

#inst,#feat. Higgs-bn 10M,28 0.28 Ltrc-bn 34k,700 0.008

KSVM Higgs 10M,28 0.92 Connect 67k,700 0.33

#inst,#feat. Yahoo 723k,136 0.59 Ltrc 34k,700 0.24

CONV Vgg-3 802k,73k 0.47,0.4 Vgg-4 1.6M,147k 0.4,0.35

#act,#wgt Alex-2 46k,307k 0.68,0.17 Res-1 150k,9.4k 0.99,0.1

FC Res-fc 512,512k 0.26,0.84 Vgg-13 4K,16.8M 0.14,0.3

#act,#wgt Alex-6 9K,37.7M 0.29,0.09 Vgg-12 25k,103M 0.42,0.06

AC Pigs 622k NA Munin 3.1M NA

#nodes Andes 727k NA Mildew 3.7M NA

Graph Flickr 820K,9.8M 0.000015 NY-road 260K,730K 0.00005

#node,#edge Fb-artist 50K,1.63M 0.0064 LiveJournal 4.8M,68.9M 0.000003

Table 5.6: Datasets

As for comparison to real hardware, the GPU is the most relevant. We choose the

NVIDIA P4000, as it has a slightly larger total throughput and similar memory bandwidth

to SPU. We do not include CPU-GPU data-transfer time.

We also address whether an inorder processor is sufficient by comparing against ”SPU-

inorder”, where the DGRA is replaced by an array of 8 inorder cores (total of 512 cores).

For reference, we also compared against a dual socket Intel Skylake CPU (Xeon 4116), with

24 total cores.

Workload Implementations We implement SPU kernels for each workload, and use a

combination of libraries and hand-written code to compare against CPU/GPU versions. We

compared against the best implementation (that we were aware of) for each workload on real

hardware (Table 5.5). We implement kernels using both dense and sparse data-structures

wherever possible (shown as SPU-dense/sparse).

Our choice of modest on-chip memory affects the implementations of graph processing

and database workloads. For processing larger graphs, we follow a similar technique as

74

proposed in Graphicionado [94] to split the graph into ”slices” that fit in on-chip memory.

Edges with a corresponding vertex in another slice are instead connected to a copy of that

vertex; duplicates are kept consistent. An architecture with a larger on-chip memory (such

as Graphicionado [94], which has 32MB on-chip memory) means less duplicates, and less

overhead. The tradeoff is also relevant for database workloads. Hash-joins require the hash-

table to fit on-chip to perform well.

Benchmarks We used the datasets specified in Table 8.3. The uncompressed DNN model

is obtained from Pytorch model zoo and the compression is done as described in [99] using

distiller [8].

Domain-Specific Accelerator Modeling We model all domain-specific accelerators us-

ing optimistic models appropriate to the domain, always considering memory and throughput

limitations of actual data.

1. SCNN [179]: We use a compute-bound model of SCNN according to the dataset

density, assuming no pipeline overhead besides memory conflicts.

2. EIE [98]: Mechanistic model of EIE at maximum throughput. We compare against

the scaled version of EIE with 256 cores.

3. Graphicionado [94]: We modeled a cycle-level approximation of its pipeline stages.

We also compare against a version of this accelerator with the same peak-memory

bandwidth as SPU by scaling Graphicionado to 32-cores and 32x32 crossbar.

4. Q100 [259]: For fair comparison to Q100, we restrict SPU to 4 cores (approximately

the same area as Q100). We hand-coded query plans for Q100, specified as a directed

acyclic graph in which each node indicates a database operation (join, sort, etc.) sup-

ported by the Q100 hardware, and edges indicate producer-consumer dependencies.

Our model of Q100 is an optimistic execution of this query plan under memory and

compute bandwidth constraints, which we verified against baseline execution time and

75

PR BFSGM

Sync Graph

N-SHSH GM

Databases

UF PL Vec GM

Conv Graph

FC CONVKSVM AC GBDT GM1

101

102

103

Sp
ee

du
p

No
rm

al
ize

d
 to

 2
4-

co
re

 C
PU

Machine Learning
CPU GPU SPU ASIC

Figure 5.13: Overall Performance

speedups given by Q100’s authors. This query plan is used as a reference for the SPU

version, so SPU and Q100 implement the same algorithm as much as possible.

5.6 Evaluation

Our evaluation broadly addresses the question of whether data-dependencies exposed to an

ISA (and exploited in hardware) can help achieve general-purpose acceleration. Here are the

key takeaways, in part based on the overall performance results in Figure 5.13.

1. SPU achieves high speedup over CPUs (for ML:16.5×, Graph:14.2× and DB:10.3×),

and GPUs (ML:3.87×).

2. Performance is competitive with domain-accelerators.

3. Relying on inorder cores only for supporting data-dependence is insufficient.

4. Architectural generality provides the flexibility to choose algorithmic variants depend-

ing on the algorithm and dataset.

76

cif-b
1.0

hig-b
0.28

yahoo-b
0.05

ltrc-b
0.008

GM
1

101

No
rm

al
ize

d
Sp

ee
du

p
GBDT

pigs andes muninmildew GM

AC

higgs
0.85

yahoo
0.59

connect
0.33

ltrc
0.24

GM

KSVM

CPU GPU-dense GPU-sparse SPU-inorder SPU-dense SPU-sparse

Figure 5.14: Performance on GBDT, KSVM, AC. (Computation density under benchmark

name)

5.6.1 Performance on Machine Learning

Here we discuss the per-workload performance results on ML workloads, the breakdown for

GBDT/KSVM/AC is in Figure 5.14 and for DNN is in Figure 5.15. During our analysis, we

refer to Figure 5.16, which describes the utilization of compute, scratchpad, network, and

memory within SPU.

GBDT Both GPUs and SPUs use a histogram-based approach, but SPU’s aggressive re-

ordering of indirect updates in the compute-enabled scratchpad far outperforms the limited

reordering which GPUs can perform within a vector request. Further, SPU makes efficient

use of multicast for communication of gradients. SPU-dense outperforms GPU dense, be-

cause histogramming is still required even with dense datasets. On a highly dense dataset

like cifar, SPU-dense outperforms SPU sparse because of the extra bandwidth consumed by

sparse data structures, which is an example of the benefit of having a flexible architecture.

KSVM SPU’s network enables efficient broadcast and reduction. Since the dense version

of KSVM is quite regular and the datasets are not sufficiently sparse, SPU-dense is generally

better than its sparse version.

Arithmetic Circuits AC heavily uses indirect memory in the DAG traversal and data-

dependent control (actions depend on node type) that we support efficiently. SPU’s network

77

VGG-3
0.34

Alex-2
0.14

VGG-4
0.1

Res-1
0.05

GM

CONV

Res-1
0.22

Alex-6
0.16

VGG-13
0.09

VGG-12
0.04

GM

1

101

102

No
rm

al
ize

d
Sp

ee
du

p

FC
CPU
GPU-dense

GPU-sparse
SPU-inorder

SPU-dense
SPU-sparse

EIE-256/SCNN

Figure 5.15: Performance on DNN. (Compute density under benchmark name)

enables efficient communication for model parallelism, which would otherwise need to go

through global memory on a GPU.

Sparse Fully Connected Layers Figure 5.15 shows the per-workload performance for

DNN. Using the alias-free indirection approach, we achieve high hardware utilization of

the compute-enabled scratchpad. SPU outperforms GPU-sparse because it can also exploit

dynamic sparsity of activations using stream-join.

Domain-accelerator Comparison: Compared to the EIE accelerator, SPU devotes more

area to computation bandwidth and for providing high-throughput access to banked scratch-

pad, thus attaining similar performance at around half the area. Since the primary design

goal of EIE is energy, it stores all weights in SRAM to save DRAM access energy; SPU

trades-off lower area for higher energy.

Sparse Convolution The best GPU algorithm was a dense winograd-based CNN. SPU

is able to save computations by exploiting sparsity through the outer-product convolution

using indirect memory, and dynamic resparsification.

Domain-accelerator Comparison: The performance of SPU on average is 0.76× that

78

FC CONV GBDT KSVM AC PR BFS0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
so

ur
ce

 U
til

iza
tio

n comp_util spad_bw_util net_bw_util mem_bw_util

Figure 5.16: SPU Bottleneck on Machine Learning/Graph Workloads.

of SCNN. This is due to bandwidth sharing of the compute-enabled-memory scratchpad

between computation and re-sparsification, whereas SCNN uses a separate non-configurable

datapath. The performance difference increases for layers where re-sparsification is more

intense. While comparing area is difficult, a simple scaling of SCNN’s area suggests only

1.5× higher area for SPU (Section 5.6.5), a small price for significant generality.

SPU’s Performance Bottleneck Figure 5.16 shows the utilization for primary bottle-

necks in SPU. Bank conflicts are the bottleneck for DNN workloads, and the effect is reduced

for the fully-connected layer. GBDT is bottlenecked by scratchpad and memory bandwidth.

Since AC uses model parallelism, it is bottlenecked by the network.

5.6.2 Performance on Graph and Databases

Here we discuss the per-workload performance results on graph (Figure 5.17) and database

(Figure 5.18) domains.

Graph Workloads SPU specializes the alias-free indirect updates to the destination ver-

tices which would otherwise both be stalled due to load-store dependencies, and limited by

inefficient bandwidth utilization due to accessing whole cache line for single accesses. For

79

Flickr
9.8M

Fb-artist
1.64M

NY-road
0.73M

GM

BFS

Flickr
9.8M

Fb-artist
1.64M

LJ
69M

GM

1

101

102

No
rm

al
ize

d
Sp

ee
du

p

PR
CPU SPU Graphicionado Graphicionado-32

Figure 5.17: Performance on PR, BFS. (Edges under benchmark name)

SPU, the network experiences high traffic because of remote indirect updates (Figure 5.16).

Domain-accelerator Comparison: While the designs are quite different, SPU’s perfor-

mance is similar to Graphicionado (8-cores) as it is exploiting similar parallelism strategies:

both have a way to efficiently execute indirect memory access on a globally-addressed scratch-

pad. Even for the scaled-up version of Graphicionado (32-cores), it only exceeds SPU slightly

for road graph due to the network contention on SPU’s mesh. LiveJournal graph is an exam-

ple where the graph fits in on-chip memory of Graphicionado but needs to be broken in 10

slices to be able to run on SPU. Here, SPU is 57% slower than the scaled-up Graphicionado

due to both network contention and extra memory accesses for vertices which are duplicated

while slicing.

TPCH Queries Our primary goal in evaluating TPCH was to demonstrate generality.

Figure 5.18 shows the per-query speedups of a 4-core SPU versus Q100, with three versions.

SPU-dense allows only data-dependent discards (no joins or indirect memory on CGRA).

Here, Joins and Sorts are performed on the control core. SPU-sparse (Join only) adds

support for using the compute fabric for accelerating Sort (using merge-sort) and Join.

When indirect-memory support is added, we additionally support hash-join if the smaller

column fits within the scratchpad. With indirection enabled, we use a sort algorithm which

80

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
10

q
15

q
16

q
17

G
M

1

101

102
N

or
m

al
iz

ed
S

p
ee

du
p

CPU

SPU Dense

SPU Sparse (Join Only)

SPU Sparse (Join + Ind.)

Q100

Figure 5.18: TPCH Performance comparison

applies radix-sort locally within local scratchpads, then use a merge-sort to aggregate across

cores. Compared to CPU, SPU is significantly faster (10×), which is sensible given the

significant data-dependence in queries, which serializes CPU execution.

Domain-accelerator Comparison: In queries which are non-sort heavy (Q1,Q2,Q6), the

dense version of SPU performs adequately, and similar to the accelerator. On sort-heavy

queries, stream-join within DGRA significantly reduces computation overhead, allowing SPU

to catch up to Q100. Indirect access support helps to slightly improve sort’s performance.

Hash joins are significantly faster, but do not contribute much to speedup due to limited

applicability (because of limited scratchpad size).

5.6.3 Sensitivity to Dataset Density

We demonstrate that it is useful to have both non-data-dependent and data-dependent

support by studying performance sensitivity of a FC layer (Alex-6). Specifically we vary

the dataset density with synthetic data, assuming uniform distribution of non-zero values.

Figure 5.19 shows the performance comparison of different architectures executing matrix-

vector multiply using dense and sparse data structures. At densities lower than 0.5, sparse

81

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Density

10-1

100

101

102

103

No
rm

al
ize

d
sp

ee
du

p

CPU-dense
CPU-sparse
GPU-dense

GPU-sparse
SPU-dense

SPU-sparse-SJ
SPU-sparse-AF-Ind

Figure 5.19: Performance Sensitivity (Matrix Multiply, dim: 9216×4096)

versions perform better as they avoid superfluous computation and memory access. However,

for densities greater than 0.5, extra memory accesses due to using sparse data-structures

reduces the benefit.

As for the different sparse implementations for SPU, alias-free indirection outperforms

stream-join at low densities, because it can avoid unnecessary index loads. Their performance

converges at higher densities when this overhead is relatively less important. We observe

that for the problems which can be expressed using indirection or stream-join, it is often

the case that indirection works better. We believe this is the reason why recent accelerators

which exploit sparsity use alias-free indirection [179, 98]. However, there are kernels which

might have an algorithmic advantage when expressed as a stream-join (examples in Table 5.1,

Page 51). Indirection can also be inferior if there is not enough on-chip memory to hold the

working-set, especially if the data is difficult to tile effectively.

82

5.6.4 Benefit of Decomposability

The speedup from decomposability is given below in Table 5.7.

Alg. GBDT Conv. FC KSVM AC BFS PR

Speedup 2.27 2.67 2.67 2 3 2 1

Table 5.7: Performance Speedup With Adding Decomposability

To explain, GBDT uses 16-bit datatypes and gets 2.27× speedup, because although we

can increase the compute throughput by 4, memory bandwidth becomes a bottleneck. Conv,

and FC use 16-bit datatypes, but only see a 2.6× improvement: although the multiplications

could be done using subword-SIMD alone, decoding run-length encoding of indices involves

control serializing computation, which needs decomposability. AC involves various bitwidths

(ranging from 1-bit boolean to 32-bit fixed point) coupled with control flow. As DGRA allows

bitwidths as small as 8-bit, we can merge instructions with smaller bitwidths even if their

control flow is different, to achieve 3× throughput. As BFS and KSVM use 32-bit datatypes,

they can be fully combined using DGRA, for 2× improvement.

5.6.5 Area and Power

Sources of area and power Table 8.7 shows the sources of area and power for SPU

at 28nm. The two major sources of area are the scratchpad banks and DGRA, together

occupying more than 2/3 of the total; DGRA is the major contributor to power (assuming

all PEs are active).

Overhead with decomposability Figure 5.20 shows the power and area cost of imple-

menting the stream-join control and decomposability (simplest design is a standard 64-bit

systolic CGRA). The stream-join control model costs about 1.7× area and power, and this

is mostly due the complexity of dynamic flow control (rather than the control table). On

top of this, decomposability costs around 1.2× area and power. Overall these are reasonable

overheads given the performance benefits.

83

Area

(mm2)

Power

(mW)

Control Core 0.041 10.1

SRAM (banked+linear) 0.196 21.2

Data Vector ports 0.012 1.4

Scratchpad Controller 0.094 18.1

Network 0.107 130.2

DGRA FUs (4x5) 0.124 115.9

Total DGRA 0.230 246.1

1 SPU Total 0.573 297.0

Table 5.8: Area and Power breakdown for SPU (28nm)

SPU’s power and area comparison to the GPU Estimates below show SPU has 4×

lower power.

Alg. GBDT Conv. FC KSVM AC

SPU (W) 21.16 20.73 21.18 21.43 16.48

GPU (W) 84.87 84.02 84.92 85.42 75.60

Table 5.9: Power Comparison between SPU and GPU

5.7 Related Work

Table 5.10 gives a high-level overview of how we position SPU relative to select related work.

In general, domain-specific accelerators target up to one form of data-dependence, while

SPU has efficient support for both, and a domain-agnostic interface.

Domain-specific Accelerators Pudiannao [143] is an accelerator for multiple dense ML

kernels. Several designs specialize sparse-matrix computations, including many for FP-

84

64 bits
Trad.

32bits
Trad.

16bits
Trad.

8bits
Trad.

64 bits
Meta-R

32bits
Meta-R

16bits
Meta-R

8bits
Meta-R

0k

30k

60k

90k

120k

Ar
ea

 (u
m
2
)

0

40

80

120

160

Po
we

r C
on

su
m

pt
io

n
(m

W
)Area (¹m2)

Power (mW)

Figure 5.20: DGRA Area and Power Sensitivity

Architecture Domain Stream-Join Alias-free Ind. Non-data-

dependent

Scnn/EIE[179, 98] Sparse-NN - Very-High -

Q100 [259] DB Very-High - -

Graphicion. [94] Graph Alg. - Very-High -

Sparse ML [153] Sparse-MM Very-High - -

PuDianNao [143] NN - - Very-High

Outersp [174] Sparse-MM - Very-High -

LSSD [164] Agnostic Low Low Very-high

Plasticine [188] Agnostic - High Very-high

SPU (ours) Agnostic Very-High Very-High Very-High

VT [125, 134] Agnostic High High High

Dataflow [225, 38] Agnostic Medium Medium High

GPU Agnostic Low Medium High

CPU Agnostic Low Medium Medium

Table 5.10: Analysis of Related Works (roughly least to most general)

85

GAs [283, 80, 90]. Nurvitadhi et al. propose a sparse-matrix accelerator specialized for

SVM [167]. Mishra et al. develop an in-core accelerator for sparse matrices, and demon-

strate generality to many ML workloads [153].

From the database accelerator domain, we draw inspiration from Q100’s ability to perform

pipelined join and filtering [259] to create our general purpose stream-join model. DB-

Mesh [40] is a systolic-style homogeneous array for executing nested-loop joins. WIDX [122]

is database index accelerator focusing on indirect memory access. UDP [76] targets encoding

and compression workloads, which both express data-dependence.

Domain-agnostic Vector Accelerators Vector-threads (VT) architectures [125, 134, 198]

have a flexible SIMD/MIMD execution model, where vector lanes can be decomposed into

independent lanes to enable parallel execution for data-dependent codes. (GANAX [265]

applies some of the same principles, but is specialized to ML). VT does not have spatial

abstractions for computation, which SPU uses to expose an extra dimension of parallelism:

pipeline parallelism. For example on VT, stream-joins would not execute at one item per cy-

cle due to instruction overhead, but these computations can be pipelined on SPU. There are

other less fundamental differences like SPU’s support for programmer-controlled scratchpads

with global address space.

Domain-agnostic Spatial Architectures LSSD is a domain-agnostic multi-tile accelera-

tor with CGRAs and simple control cores [164]. However, it lacks support for data-dependent

control or memory, so is far less general.

General spatial-dataflow architectures (eg. WaveScalar [225], TRIPS [38]) can perform

stream joins, but at much lower throughput (due to control dependence loop, see Figure 5.3).

Triggered instructions [177] and Intel’s CSA [256] can perform pipelined stream-joins, but

require much more complex non-systolic PEs (>3× higher area [197]), and are also not

capable of decomposability. They are also not specialized for alias-free indirection, and

require parallel dependence checking. In concurrent work, Master of None [145] proposes

86

a programmable systolic-style homogeneous reconfigurable array that can execute general

database queries, as well as pipelined stream-join through a dedicated control network.

Plasticine [186, 188] is a tiled spatial architecture, composed of SIMD compute tiles and

scratchpad tiles. Plasticine does not support stream-join dataflow, so would not be able

to efficiently execute algorithms with this form of control-dependence. Plasticine also does

not have compute-enabled globally-addressed scratchpads for high-bandwidth atomic update

and flexible data sharing. Plasticine uses a parallel pattern programming interface [187, 123],

while SPU provides a general purpose dataflow ISA, based on stream-dataflow [162]. While

lower-level, SPU’s ISA can more flexibly implement various computation/communication

patterns. Recent work demonstrates efficient hash-joins for Plasticine [170]; such techniques

could improve the performance and applicability of hash-joins in SPU.

Finally, lower precision control divergence is not supported in these architectures; SPU

has the strongest support for arbitrary datatypes through its decomposable CGRA and

memory. Note that while decomposability has been applied in other contexts, e.g. supporting

multiple datatypes on a domain-specific CGRA [113, 214], we believe we are the first to apply

decomposability to preserve independent flow-control.

General Purpose Processor Specialization The decoupled-stream ISA [247] allows

expression of decoupled indirect streams for general-purpose ISAs. It also enables decoupling

of memory from control flow in stream-joins. However, it does not specialize for the stream-

join computation or high-bandwidth indirect access.

5.8 Discussion

In this section, we will discuss the alternate decisions that we could have made issues with

the current design and the future work to address those issues.

87

Exploration of Algorithms on SPU SPU’s flexible design allows us to explore vari-

ous algorithm alternatives. For example, we studied three variants of sparse-matrix multi-

plication in Figure 5.19: dense, inner product (stream-join), and outer-product (alias-free

indirection). Another interesting algorithm would be to perform stream-join on the indices

and access the matched values using alias-free indirection. On a matrix of 9216x4096 size,

we found that for densities lower than 0.2, the new algorithm gives 1.27× speedup over

just stream-join by avoiding unnecessary memory accesses to values. For higher densities,

stream-join on both indices and values performs better because streaming memory access

is a more critical factor than avoiding unnecessary loads. Our new algorithm consistently

performs close to the outer product implementation. At the same time, the new algorithm

significantly reduces area requirements – LUT for stream-join consumes much less area than

the on-chip crossbar for indirect updates. A future extension can perform a more systematic

and aggressive analysis of novel algorithms enabled by SPU’s design.

Vectorized Stream-join One of the limitations of stream-join is that it cannot parallelize

within the joined lists. Therefore, parallelism must exist across the number of parallel joins,

which may often be infeasible. Future works after SPU’s publication studied bitvector-based

comparison to achieve parallel stream-join (e.g., Capstan [202], Sparten [85]). The challenge

will be to integrate bitvector-based comparison into the flexible execution model.

88

CHAPTER 6

TaskStream: General Task Framework For

Accelerators

SPU, developed in the previous chapter, shows relatively broad applicability by improving

flexibility for data-dependent control and memory. Yet many essential data processing work-

loads cannot be described (or are not efficient) because of the limitations of static scheduling.

In the following three chapters, we will focus on irregular parallelism, commonly known as

task parallelism: this occurs when a program’s work is created and scheduled to “execution

resources” dynamically, based on runtime computations. Task parallelism has applications

at all scales: across cores within architecture and distributing work across accelerators.

The existing solution is compilation-based – the tasks are statically assigned to resources,

and inter-task dependencies are satisfied using explicit synchronization barriers. The prob-

lem with this solution is that static data orchestration provides limited benefits because of

a lack of runtime information like amount of work, time of creation, etc. Also, the synchro-

nization barriers are especially problematic in an accelerator system where tasks are short.

Finally, these compilers are often proprietary and do adhoc application-specific analysis.

For example, REVEL supports primitive for transferring data to the right neighbor [253],

FAST provides model parallelism in DNNs [270], and network multicast in SCNN [179] and

EIE [98]. We observe that task scheduling primitives occur broadly in applications, and a

shared interface will be handy to systematize the work.

Insight Our insight is that task abstractions will be helpful first-class aspects of the ISA.

A task is the smallest unit of work that can be dynamically scheduled in space or time.

89

The annotations about relationships between tasks can encode communication patterns that

appear in many workloads (and are supported in accelerators), providing broad applicability

while improving performance using specialized hardware.

Besides systematizing task scheduling, handling tasks dynamically in the hardware can

help in at least three additional scenarios. First, many workloads have inherent data de-

pendencies in forming parallel work (e.g., creating tasks for all outgoing edges of a graph’s

vertex), enabling broader applicability. Second, sometimes the amount of work per task

can only be determined at runtime (e.g., number of elements matched in a join), so dy-

namic assignment can balance the load. Third, many irregular workloads have multiple task

types. Each type stresses the system differs in terms of compute, memory, or network (e.g.,

memory-bound graph aggregation and compute-bound multiplication in Graph Convolution

Networks - GCNs). One could dynamically overlap the execution of different task types to

balance shared resource usage.

Requirements from Task Interface Using this task framework, we would like to enable

optimizations along three dimensions below (Figure 6.1b pictorially represents these):

• Inter-task reordering The flexibility to reorder tasks can allow controlling the mem-

ory access/reuse pattern and convergence rate of learning algorithms. We find that

“priority scheduling” is suitable for fine-grained tasks as it enables faster convergence,

while for coarse-grained tasks, we exploit reuse by batching tasks that read the same

data.

• Resource assignment It determines the spatial location where a task is executed.

A flexible framework can optimize locality by scheduling near-data (critical for fine-

grained tasks due to scalar random accesses) or load balance by uniformly distributing

work (critical for coarse-grained tasks due to fewer tasks).

• Inter-task communication Dynamic distribution of work precludes several locality

optimizations. For example, a programmer could place data in the local scratchpad

90

Ta
sk

 O
p

ti
m

iz
at

io
n

s

HW Spec-
-ialization

Optimized for coarse-
grained tasks

Optimized for fine-
grained tasks

Specialized
Scheduling?

Load Balance Near-data
Resource
assignment

Multi-levelLoad Balance Near-data
Resource
assignment

Multi-level

Specialized
Reordering?Batching

Inter-task
reordering

Round-robin PriorityBatching
Inter-task
reordering

Round-robin Priority

Specialized
Network?

Inter-task
communication

Streami
ng

Shared
memory

Inter-task
communication

Streami
ng

Shared
memory

Task1

Task2

Edge: Inter-task
communication.

Node: Task-type.
For reordering/

scheduling.

TaskStream Graph

Figure 6.1: Overview of optimizations in TaskStream.

bank, but the access may still be remote since tasks are moving around. However, the

hardware can dynamically coordinate tasks for specific inter-task communication pat-

terns. Specifically, we find data streaming and multicast are essential for the locality.

In this chapter, we first describe the TaskStream framework and then discuss the require-

ments from the execution model and hardware.

6.1 TaskStream Execution Model

Challenges The critical challenge in designing a flexible task-parallel framework is to do

so without losing accelerator-level efficiency. Reflecting on SPU, it uses two fundamental

principles for efficiency: 1. Infrequent reconfiguration: CGRAs need long computation

phases to avoid stalls during frequent reconfiguration. With tasks, resources will need to be

configured repeatedly for each new task, so the hardware performs correct computation. 2.

Spatial abstractions: Accelerators support data multicast to exploit spatial reuse on data

that does not fit in on-chip memory. Multicast requires all tasks to be scheduled concurrently.

When tasks are moving at runtime, dynamic coordination is required in the hardware.

Existing task parallel frameworks are not suitable for reconfigurable architectures. For

example, Cilk dynamically generates task graphs, where new tasks may execute arbitrary

functions (and may not necessarily be already known/configured). Thus, they cannot be

immediately applied to reconfigurable accelerators. Moreover, Cilk’s runtime scheduling

91

techniques fundamentally rely on non-accelerator-friendly features. For example, they do

not support data multicast; instead, they rely on cache coherence for the locality. Coherence

transparently moves data close to where the task is executed (i.e., brings the data to the

private cache). Accelerators usually have scratchpads or shared caches.

6.1.1 TaskStream Program Representation

Two major requirements drive TaskStream’s design: no need for frequent reconfiguration

and flexibility to expose inter-task reordering, resource assignment, and inter-task commu-

nication primitives. Here we define the TaskStream graph, describe a task’s lifetime written

in this program, show an example program, and conclude with the limitation of TaskStream

program representation.

TaskStream Definition A program in TaskStream is represented as a set of nodes, one

for each task type and edges for inter-task dependencies (see Figure 6.1a). A task type cor-

responds to a specific dataflow graph that can be configured on a reconfigurable accelerator.

We use a type rather than a function because data processing workloads typically only re-

quire 3 or 4 tasks types, and this makes supporting reconfigurable hardware straightforward

(one can configure 3-4 unique dataflows). Internally, task types may be implemented using

arbitrary execution models. Figure 6.1 shows an hypothetical example – here, Task1 uses

dataflow (e.g., [88, 162]), and Task2 uses SIMD (e.g., [110, 62]).

Nodes and edges are typed – node type indicates inter-task reordering and resource assign-

ment, and edge type means the inter-task communication optimization. Tasks are created

when they receive values for all incoming edges. In the case of inter-task communication

edges, the new task may wait for the producer task that will supply data. Ready tasks are

scheduled using node-type information. The hardware implicitly handles any contention for

task execution resources (using flow control protocol or overflowing extra tasks to memory).

One phase of the program completes when all tasks are completed. A programmay consist

of multiple phases. An example of a TaskStream program phase is shown in Figure 6.2, where

92

Core 0 Core 1

Core 3 Core 2

Index-match

MACC

IM
Copy-1

IM
Copy-2

IM
Copy-3

MACC
Copy-1

coreMask =
1110

coreMask =
0001

Cores

Cycles

[2, 4]

[3, 4]

[2, 4]

[3, 4]

[1, 2]

[2, 3]

[1, 2]

[2, 3]

[2, 4]

[1, 5]

[2, 4]

[1, 5]

(4, 4)(2, 2)

(2, 3)

(1, 2)

(2, 1)

(2, 3)

(1, 2)

(2, 1)

(4, 3)

(2, 2)

(2, 5)

(4, 3)

(2, 2)

(2, 5)

(4, 4)

(2, 3)

(4, 5)

(4, 4)

(2, 3)

(4, 5)

68.75% util

a) Dot product
TaskStream Graph

b) TaskStream-based
Mapping on Multi-core

c) Cycle-wise Computation
for each Core

Figure 6.2: Sparse Dot Product Example Written in TaskStream.

task types are distinguished by color (and shading). We will provide details of how we port

a C/C++ workload to the TaskStream programming model in Section 8.2.2.

Example Program in TaskStream Figure 6.2 shows the sparse dot product written

in TaskStream. It has two task types: Index-match and MACC operations. Tasks are

annotated with coreMask, a bitset where a set bit indicates the legal locations where a task

can be scheduled (Chapter 8). For this example, Index-match tasks can be scheduled at

three cores (Core 0,1,2), while the MACC operations are required only for matched indices;

hence MACC tasks will always be executed on Core 3. During execution, three comparisons

can keep a single MACC core busy, achieving better utilization than static-parallel SPU

implementation (where each index-match is assigned its MACC operation). Figure 6.2c)

shows an execution timeline where each of the Cores 0,1,2 are joining two lists. Core 3 works

on the matched indices from either of Cores 0,1,2.

Since the TaskStream graph is exposed as a first-class citizen in the ISA, it enables

us to use specialized hardware support for task management (scheduling and inter-task

communication). We believe TaskStream opens the door for efficient task parallelism in

accelerators.

93

Fork Dep-chain Fork-join May-alias

Aurochs [238] ✓

Fifer [158] ✓

PolyGraph [63] ✓

TaskStream [65] ✓ ✓

ParallelXL [45] ✓ ✓ ✓

Swarm [110] ✓ ✓ ✓ ✓

Table 6.1: Dynamic Task Parallel Patterns Supported by Prior Works

6.1.2 Limitations of TaskStream

Task parallelism can cover a broad space. Table 6.1 broadly classifies existing work by

supporting four task dependence patterns: 1. Fork, i.e., Asynchronous Tasks: The

parent task forks/spawns an asynchronous task but the child task’s completion is not tracked,

2. Fork-join Patterns: The parent task may spawn multiple child tasks and can choose to

wait on their completion, 3. Linear Dependence Chain: It is a particular case of fork-join

where the parent only spawns a single child task. When the spawned task in dependence

chain receives and/or produces a single sequence of values, we call it streaming across tasks,

4. Implicitly Dependent Tasks: The tasks are assigned a timestamp order. These tasks

do not require explicit synchronization, but they may have memory dependencies. The

hardware must ensure sequential view of execution for correctness. TaskStream supports a

subset of critical patterns (fork and linear dependence chain) to minimize the overhead while

improving applicability. Below we list the required properties for efficiency on TaskStream:

1. Explicit Dependencies: Our streaming memory model assumes explicit dependen-

cies. Thus, the hardware only enforces known dependencies and does not need to track

them using expensive load-store queues [110, 101]. Consequently, we cannot support

workloads like billiard simulation [101], where tasks are implicitly dependent due to

shared data.

94

2. Sufficient Parallelism within a TaskStream Phase: If any data dependence is

not supported in TaskStream edges (i.e., not dependence chain/streaming), it will

be enforced by a synchronization barrier. Between barriers, there should be enough

parallelism to achieve high utilization. An example is discrete event simulation: here,

the parallelism between independent events are insufficient, and an architecture like

Swarm that supports speculation will be required [110].

Overall, TaskStream provides a flexible program representation with broad applicability

while retaining accelerator-like efficiency.

6.2 Fundamentals of the Approach

This section describes the fundamental requirements for the ISA/runtime and their implica-

tions for the hardware.

1. Task Type and Resource Allocation: The ISA should expose the task types, their

functionality, and dependencies. In our implementation using coreMask (Chapter 8),

we assigned physically different cores/architectures to different task types. Thus, our

ISA also exposed the resource distribution information. The coreMask allows the pro-

grammers to specify the number of computation resources for each task type; hardware

must be reconfigurable to support coreMask. An alternative method to perform load

balance is to time-multiplex each core across different task types, as in Fifer [158] but

we leave this to future work.

2. Data Mapping: The ISA should expose information on data mapping to support

near-data scheduling. The hardware will require a unit for spatial task assignment

that utilizes data mapping information to determine where a task should be scheduled.

One could expose this information at either distributed (Chapter 7) or centralized task

queues.

95

3. Inter-task Communication: Applications often share data between threads at a

fine grain; therefore, the ISA should expose the index to the shared data structure

for communicating tasks. The hardware would need a reordering unit to co-schedule

communicating tasks. For exploiting reuse, either a network multicast support for

spatial locality (Chapter 8) or on-chip cache storage for temporal locality is required.

4. Globally Unique TaskID and Message Passing: The hardware must assign glob-

ally unique TaskIDs for dynamically coordination among tasks (Chapter 8). The run-

time identifies these communicating tasks and exchanges handshaking messages (e.g.,

for resource availability). Note that the runtimes of standard distributed frameworks

already support message passing in software. For example, Apache Spark keeps a

master node coordinating work/tasks to other “slave” nodes [268].

Our Implementation Applying TaskStream to our reconfigurable accelerator naturally

creates a hierarchical-dataflow representation: one higher-level dataflow of task management

and communication and one lower-level dataflow of instruction execution. In the following

two chapters, we will discuss our implementation of TaskStream and its optimizations. We

discuss the performance implications on workloads with fine-grained tasks in Chapter 7 and

on coarse-grained tasks in Chapter 8.

96

CHAPTER 7

Understanding Fine-Grain Task-Parallel Workloads

Through Accelerating Graph Processing

In this chapter, we explore the applicability of the TaskStream framework on task parallel

workloads with fine-grained data dependencies1. We use graph processing as the representa-

tive domain because of its importance and complexity. Because SPU is limited to irregular

data parallelism, we had to implement graph processing kernels using the synchronous al-

gorithm. While synchronous algorithm requires lower hardware support, this leaves perfor-

mance potential from flexibility on the table and complicates understanding the relationship

between graph types, workloads, algorithms, and specialization. Our goal is to accelerate

dynamic task parallel graph algorithms (i.e., asynchronous) and do so in a manner that we

can study the value of flexibility in graph processing accelerators.

We identify a taxonomy of key algorithm variants for graph processing that dramatically

affect performance (determined from the tradeoff between throughput and work-efficiency2).

Below we list these variants along with their specific requirements from the hardware:

1. Update Visibility: It is granularity when graph updates become visible.

2. Vertex Scheduling: The scheduling policy for vertex updates – should be high

throughput to hide the short latency vertex tasks.

1TaskStream was originally called TaskFlow, but we unified it with the TaskStream representation for
presentation in this dissertation.

2Work-efficiency is the work required by the optimized sequential execution (in terms of edges processed)
over the work performed in parallel execution.

97

A
lg

o
ri

th
m

V
ar

ia
n

ts

Optimized for Throughput Optimized for Work Efficiency

P
ri

o
r

G
ra

p
h

A

cc
el

. Grapicionado: Synchronous / Locality / Sliced(robin) / Push
Ozdal: Asynchronous / Creation / Non-sliced / Pull

Asynchronous / Priority / Non-sliced / PullChronos:
Asynchronous / Locality / Sliced(locality) / PushGraphPulse:

Creation Ord. Priority Ord.Vertex Scheduling Locality
(by vertex ID)

SynchronousUpdate Visibility Slice-Sync. Asynchronous

Slice Scheduling Non-Sliced
(whole graph)

Sliced
(Work Eff.)

Sliced
(locality)

Sliced
(rnd robin)

PullUpdate Direction Push

Figure 7.1: Algorithm Variant Dimensions & Prior Accelerators

3. Slice Scheduling: It determines whether the graph is sliced and the scheduling order

of graph slices.

4. Update Direction: It determines whether vertices update their or neighbors’ prop-

erties (pull/push). Push variants require support for efficient atomic updates.

Each variant has profoundly different implications on hardware, which can vary by graph

and workload type.

Most prior graph-accelerators have each focused on one algorithm variant (see Figure 7.1).

Because each algorithm variant causes different tradeoffs in work efficiency, locality/memory

efficiency, and load balance, different accelerators perform well for different workloads and

input graphs. Figure 7.2 shows the throughput (in giga-traversed edges per second - GTEPS)

versus work efficiency measured by our model of these accelerators. Performance is a product

of work efficiency and throughput, so we also show equi-performance curves in this figure.

Our insight is that we can optimize performance by having the flexibility to use the correct

algorithm variant for the right graph and workload (or even workload phase).

Selecting the correct variant is simple; the challenge is to design an architecture with

sufficient algorithm/architecture flexibility and little performance, area, and power overhead.

This flexibility requires supporting different granularity tasks (synchronous vs. asynchronous

98

Ideal
unordered.low_dia

100

101

102

GT
EP

S

Ideal
ordered.high_dia

Ideal
unordered.high_dia

0.0 0.2 0.4 0.6 0.8 1.0
Work-eff

100

101

102

GT
EP

S

Ideal
ordered_densFront.low_dia

0.0 0.2 0.4 0.6 0.8 1.0
Work-eff

Ideal
ordered_vector.low_dia

100

101

102
GT

EP
S

Ideal
ordered_spFront.low_dia

Ozdal
Chronos

GraphPulse
Graphicionado

PolyGraph-SingleAlg
PolyGraph-MultiAlg

Figure 7.2: Work-efficiency and Throughput Tradeoffs

updates), fine-grain task scheduling, flexibly controlling the working set, and flexibility for

different data structures.

TaskStream framework already supports fully-pipelined execution of tasks and condi-

tional creation of new tasks at runtime. Supporting algorithm variants involved more chal-

lenges. First, integrating asynchronous variants with sliced execution required new mecha-

nisms for deciding when to switch slices and how to orchestrate data during slice transition.

Next, because tasks can be short-lived due to pipelined dataflow execution, we needed to

develop a high-throughput task scheduler. Also, because we relied on a mesh interconnect

(for scalability and high local bandwidth), a new multi-level spatial partitioning scheme was

critical to ensure locality and a balanced load. Subsequently, we enhanced SPU to design

a template architecture, PolyGraph, that is flexible across these variants (using task and

scheduling primitives) while modularly integrating specialization features for each.

Evaluation and Results We evaluated PolyGraph with cycle-level simulation, supporting

the design space of architectures with features encompassing many prior works [11, 173, 262].

99

We evaluated traditional and ML-based graph workloads (Table 7.1) on graphs with up to

1.5 billion edges. The best algorithm-specific PolyGraph design (PG-singleAlg) is 16.79×

(up to 275× for high diameter graphs) faster than a Titan V GPU. More importantly, we

find that flexibility is critical. By statically choosing the best algorithm variant, we gain

2.71× speedup. Dynamic flexibility provides 1.09× further speedup.

In this chapter, we first give background on key workload/graph properties (Section 7.1).

We then discuss a taxonomy of algorithm variants (Section 7.2). We develop the TaskStream

optimizations for these variants (Section 7.3) and describe the support within PolyGraph (Sec-

tion 7.4), as well as our novel spatial partitioning (Section 7.5). Finally, we evaluate and

discuss related work (Section 8.4,8.5,8.6). We will conclude with the discussion of Poly-

Graph’s scalability and pointers to future work (Section 7.9).

7.1 Graph Acceleration Background

Here we describe our computational paradigm, mapping to a template architecture, and key

graph/workload properties.

7.1.1 Vertex-centric, Sliced Graph Execution Model

In vertex-centric graph execution [147, 146, 97, 5, 260, 243], a user-defined function is exe-

cuted over vertices. This function accesses properties from adjacent vertices and/or edges,

and execution continues until these properties have converged.

Preprocessing the graph can offer better spatial and/or temporal locality. Commonly,

the graph is divided into temporal slices (or T-slices) which fit into on-chip memory. Further

preprocessing may divide the graph among cores for load-balance or locality; these are spatial

slices (S-slices).

Example: Shortest Path (SSSP) Figure 7.3(a) shows an example code (SSSP) written

in this model. An active list is maintained for each temporal and spatial slice. After initial-

100

(b) Accelerator Tile Template

v1

v2

v3

v4

v1

v2

v3

v4

v7v7

v5 v6

v8

v7v7

v5 v6

v8

T-Slice 1 T-Slice 2

v9

v11v10

v12

v9

v11v10

v12

v15

v14

v13

v16

v15

v14

v13

v16

Spatial
S-Slice 1

Spatial
S-Slice 2

...

...

v1

v2

v3

v4

v1

v2

v3

v4

v7v7

v5 v6

v8

v7v7

v5 v6

v8

T-Slice 1 T-Slice 2

v9

v11v10

v12

v9

v11v10

v12

v15

v14

v13

v16

v15

v14

v13

v16

... ...

...

(c) Logical execution of slices over time

Memory
hierarchy

On-chip
network

Conflict
detection

Task
scheduler

Compute
unit

Address generator

Memory
hierarchy

On-chip
network

Conflict
detection

Task
scheduler

Compute
unit

Address generator

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Temporal Slice
Scheduler

Memory
hierarchy

On-chip
network

Conflict
detection

Task
scheduler

Compute
unit

Address generator

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Accel
Tile

Temporal Slice
Scheduler

(a) SSSP Algorithm (temporally sliced algorithm variant)

Time

9: Chose vertex v

11: new_prop = vert_prop[v]+edge_wgt[v->w]

13: if vert_prop[w]-new_prop[w] > 0 then
14: vert_prop[w] = new_prop[w]
15: add w to active_set

10: for all outgoing vertices w: do

7: for all spatial slices s in t: do in parallel

8: while any active vertex active_set[t][s]

2: vert_prop[V_init] = 0 # initialize vertex prop
3: active_set[T][S] = {} # initialize active sets
4: add V_init to active_set
5: while any active slice left
6: Choose temporal slice t

1: procedure CALC_SHORTEST_PATH(GRAPH=(V,E,
 T:Temporal Slices (optional); S:Spatial Slices))

9: Chose vertex v

11: new_prop = vert_prop[v]+edge_wgt[v->w]

13: if vert_prop[w]-new_prop[w] > 0 then
14: vert_prop[w] = new_prop[w]
15: add w to active_set

10: for all outgoing vertices w: do

7: for all spatial slices s in t: do in parallel

8: while any active vertex active_set[t][s]

2: vert_prop[V_init] = 0 # initialize vertex prop
3: active_set[T][S] = {} # initialize active sets
4: add V_init to active_set
5: while any active slice left
6: Choose temporal slice t

1: procedure CALC_SHORTEST_PATH(GRAPH=(V,E,
 T:Temporal Slices (optional); S:Spatial Slices))

Figure 7.3: Algorithm (SSSP) and Mapping to Arch. Template

101

Priority Vertex comp. Vertex update Prop(B)

SSSP [224] dist src dist+edge wgt min(dist,dst dist) 4B

BFS [224] depth src depth+1 min(depth,dst depth) 4B

CC [224] comp. ID - min(src id,dst id) 4B

PR [254] res/deg src res*α/src deg new res+dst res 2x4B

CF [280] grad f(src prop.dst prop) new vec+dst vec 32x4B

GCN-Inf [120] - matrix-mult src vec+dst vec 128x4B

Table 7.1: Graph Workloads (Prop: vertex prop. size).

ization, the algorithm iterates over all active temporal slices until no vertex is active. Within

each temporal slice, the corresponding spatial slices execute concurrently (see Figure 7.3(c)).

Within each spatial slice, the vertices are scheduled iteratively. Each vertex execution up-

dates its neighbor’s vertex properties. If the destination’s vertex property is changed, it is

activated3.

Different graph workloads can be implemented by changing: 1. initial active vertices, 2.

the function computed for each vertex, 3. the update function for the destination vertex. An

optional characteristic is a priority hint for vertex scheduling (see Figure 7.3(c), Line 11).

Examples are shown in Table 7.1.

Figure 7.3(b) shows a high-level decoupled-spatial template architecture, colored to in-

dicate the relationship between algorithm and accelerator. The temporal-slice scheduler

chooses a T-slice in each coarse graph phase. The spatial slices (S-slices) are executed in

parallel across all cores. A task scheduler picks a vertex to execute at each step, and the

per-vertex computation (lines 10-15) is mapped to the Atomic updates to vertex properties

(lines 13-14) are enforced using conflict detection and stalling.

Graph Data-structures Figure 7.4 overviews the essential data structures. A vertex-list

stores the first edge index for each vertex. Edges are stored contiguously in the edge list,

containing a destination vertex id (and optional edge weight). Each vertex has a property

3This describes the push-based update direction. For pull, the incoming edges are used to update the
vertex’s own property.

102

a

b

cd

e

Active Set

a b c d eVertex List

Vertex Prop
(current)

pa pb pc pd pe

Sequential or Irregular Read
(depends on vertex scheduling)

Vertex Prop
(next)

pa pb pc pd pe

Irregular Write/Atomic

Separate or Combined
(if synch update) (if async update)

b c d b d e a e aEdge List Sequential Read

Figure 7.4: Graph Data Structures

which the algorithm computes. The active list data structure, and whether we double buffer

the vertex properties, depends on the algorithm variant (Section 7.2).

7.1.2 Key Workload/Graph Properties

Graph Property: Diameter is the largest distance between two vertices. Uniform-

degree graphs (eg. roads) have a similar/low number of edges-per-vertex, and thus a high

diameter. Oppositely, power-law graphs (eg. social networks) have low diameter, as some

vertices are highly connected.

Workload Property: Order Sensitivity Many graph workloads are iterative and con-

verging. This converging nature tends to make such workloads functionally resilient to the

order in which computation occurs. However, some of these workloads may require a differ-

ent amount of work depending on the order tasks are performed; ie. their work-efficiency is

order-sensitive. For example, in a shortest path algorithm, exploring a farther away vertex

before a near vertex can lead to redundant work, because the distance of the farther vertices

may be updated if a shorter path is found. Sensitivity varies with workload. Breadth-first

search (BFS), is less sensitive as many paths are of equal depth, making it less likely to find

a wrong path. Non-converging workload like GCN is order insensitive.

Workload Property: Frontier Density Dense frontier workloads like PR, CF usually

have more than 50% active vertices while sparse frontier workloads (eg. SSSP, BFS) require

103

(a) Update visibility (b) Vertex scheduling (c) T-Slice scheduling

Graph-Synchronous (Sg)

Slice-Synchronous (Ss)

Asynchronous (A)

Time Time

v1
v4

v2v3

Input graph (shortest path) Not temporal-sliced (N)
iter. i sync

iter.
i

1 2 n...

iter.
i

1 2 n...

sync sync

iter. i+1

slice switch

slice switch

v5 v6

Locality/Vertex Order (Al)

v4v3v2v1 v6v5 v1...v4v3v2v1 v6v5 v1...

Locality/Vertex Order (Al)

v4v3v2v1 v6v5 v1...
Creation order (Ac)

v3 v2 v4v5 v1v6v3 v2 v4v5 v1v6

Creation order (Ac)

v3 v2 v4v5 v1v6

Work-eff. priority order (Aw)

v1v4v2v3

T-Slice locality (Tl)

Slice 1

v2v1 v2v1

Repeat 1

v2v1 v2v1

Slice 2

v4v3 v4v3 v4v3

...

Slice 1

T-Slice Round-robin (Tr)

v2v1 v2v1 v6v5 v6v5

...Slice 2 Slice 3

v4v3 v4v3 v4v3

T-Slice work-efficiency (Tw)

Slice 2

v2v1 v2v1

Slice 1

v4v3 v4v3 v4v3

v3 v2 v4v5 v1v6v3 v2 v4v5 v1v6

Time

t-slice

1 n...1 n... 1 n...1 n... 1 2 1

7 4 5

edge length

Distance: 0 1 3 4

...

Distance: 0 1

Figure 7.5: Key Variants of Graph Processing Algorithms

much fewer. In general, sparse frontier workloads require fewer passes through the graph

until convergence.

7.2 Graph Algorithm Taxonomy

To systematically study the value of flexibility, we create a taxonomy of four key dimensions

and discuss tradeoffs.

Update Visibility defines when writes become visible to other computations, and hence

this affects the granularity at which new tasks are created. Writes may become visible

after one pass through the graph (graph-synchronous), after each slice (slice-synchronous)4,

or immediately (asynchronous). Barriers are used to synchronize update propagation in

4Graph/slice synchronous are bulk-synchronous [224] at different granularity.

104

synchronous variants. Figure 7.5(a) visualizes dependences in a slice-based execution of

graph processing (blue boxes are graph slices which fit in on-chip memory). The figure shows

how the dependence distance shrinks (red arrows) moving from synchronous to asynchronous.

Tradeoffs: While synchronous algorithms naturally provide sequential consistency of ver-

tex updates, fast implementations of asynchronous variants do not lock neighboring vertices,

and hence do not provide sequential consistency of tasks. While many converging work-

loads do not require this, some workloads may not be expressible or converge slower (eg.

ALS [146]). Also, barriers in synchronous variants can be a high overhead when the work

between them is low (eg. due to few active vertices).

Vertex Scheduling defines the processing order for active vertices, relevant for asyn-

chronous variants. Figure 7.5(b) depicts the variants for shortest path: Locality order: To

improve the vertex access locality, schedule by vertex-id. Creation order: Schedule vertices

in the order they are activated (breadth-first in the figure). Work-efficiency order: Schedule

vertices in an order which reduces redundant work (by distance in the figure). Section 7.1.2

explains the intuition. Table 7.1 lists the priority metric for each workload.

Tradeoffs: When active vertices are accessed in their storage order, spatial locality enables

high memory bandwidth; However, this costs work-efficiency, as it requires critical updates to

be delayed. Creation order requires simple FIFO logic, while Work-efficiency order requires

dynamic sorting. Note that distributed ordering is sufficient [254].

Temporal Slicing defines whether the working set may be limited to a predefined slice

of all graph vertices. Slices are determined during offline partitioning and are generally

sized to fit on-chip memory. Updates to data outside the current slice are deferred, and an

explicit phase is required to switch slices (combined with barriers in synchronous variant).

Slices can be scheduled in different orders, forming new variants. Figure 7.5(c) depicts each:

Round-robin: iterate through all slices. Locality: similar, but repeatedly process each slice.

Work-efficiency: prioritize slices whose properties change most [264]. In the example, slice

105

Throughput benefit| Work-eff. benefit| Inputs optimized for

No

Sync

Mem

b/w

Latency Prio. Order

Sens.

Graph Active Tasks

U
p
d
a
te
-V

is
. Sg ✓ Low dia More active

Ss ✓ ✓ ✓ Low dia More active

Ac ✓ ✓ ✓ High dia Less active

Al ✓ ✓ ✓ High dia Less active

Aw ✓ ✓ ✓ ✓ High dia Less active

T
-S
li
ci
n
g

N ✓ ✓ ✓ High dia Less active

Tr ✓ Low dia More active

Tl ✓ Low dia More active

Tw ✓ ✓ ✓ Low dia More active

Table 7.2: Algorithm Variant Tradeoffs

1 is chosen second, as its properties changed most (v1 and v2).

Tradeoffs: Non-sliced avoids barriers and slice-switching data movement, which is costly

if there are few active vertices. Slicing can also harm the optimal ordering by restricting

the scheduling scope. The key benefit of temporal-slicing is more effective on-chip memory

use. Locality scheduling improves intra-slice reuse but may delay cross-slice updates. Sliced-

work-efficiency ordering optimizes for work-efficiency without requiring hardware support

for fine-grained scheduling.

Update Direction defines whether a task updates its own property (pull/remote read),

or whether a task updates its neighbor’s properties (push/remote atomic update).

Tradeoffs: Push reduces communication bandwidth by using one-way communications

(push updates to neighbors) and efficient multicast [27], rather than the remote memory

requests in pull. The request latency is hidden due to the access reordering potential of

push. Finally, pull often requires more work while reading all incoming edges of each active

vertex. However, there are techniques that optimize pull by eliminating edge accesses based

on vertex convergence [25, 284]: their effectiveness depends on prefetching capability.

106

Sg,Ss, Ac,Al,Aw N, Tr,Tl,Tw

Update Visibility
S: Synchronous, A: Asynchronous

Temporal Slicing
N: Non T-sliced, T: Temporal Sliced

×
Sync. Granularity

G: Graph, S: Slice

Vertex Order
C: Creation, L: Local, W: Work Eff.

Temporal-Slice Order
R: Rnd-Robin, L: Local, W: Work Eff.

Figure 7.6: Shorthand for Algorithm Variants

Notation We use a two-letter shorthand (sometimes expanded) to denote each variant

combination (Figure 7.6). By default we assume push; we notate pull with an explicit suffix.

Summary Table 7.2 summarizes the throughput (lacks synchronization or improves local-

ity) or work-efficiency benefit (reduces update latency or has priority ordering); it also shows

which graph type and #active-vertices it is best suited for.

7.3 Unified Graph Processing Representation

To support variants efficiently on a unified hardware, we need a program representation that

is flexible, fast, and is specialized for graph workloads. Because of their different needs, we

develop separate approaches for the data-plane (pipelined task execution) and the control

plane (slice scheduling).

7.3.1 Data plane Representation: TaskStream

There are three major requirements from the execution model: 1. Need for fully pipelined

execution of per-vertex computation. 2. Need to support data-dependent creation of new

tasks, including programmatically specifying and updating the priority ordering. 3. Need

for streaming/memory reuse. Fortunately, TaskStream already provides a fully pipelined

execution of tasks. The dynamic task creation can be implemented by hierarchically in-

tegrating TaskStream with the dataflow model and encoding task creation in the dataflow

107

Id1
=vid

Prio1
= dist

edge[]

index L

edge[]

index L

+

-

Id2
=vid

cur_feat[]

index FL

wgt[]

index FL2

X

Acc

Acc

Const= 1

Store Stream

-

FL: Feature Length
(eg. 128/256)

(b) Single-source Shortest Path
Version: Asyncwork-effT-slicelocality (AwTl)

(c) Graph Convolution Network
Versions: Sync aggregation + Async mat-vec multiply)

Task: Update distance of all
outgoing neighbors

Task type 2: Matrix-vector
multiply

Task type 1: Aggregate feature vectors of
source to all outgoing neighbors

prev edge
idx

edge idx

Vector
multiply

prev edge
idx

edge idx

+

curFeat[]

index FL

index FL
min

dest vid

prev dist

Vector
sum

!=

filter

Id1
=vid

Prio1
= dist

filter

New task
(for dest

node)

==0

Id2
=vid

filter

curDist[]

index 1index 1

curDist[]

index 1

New task
type 2

(for dest
node)

node_done node_done

True if reqd
updates done

-1

dest vid

vertList[]

index 2

vertList[]

index 2 allVert []

0 #totVert0 #totVert

(a) Memory Node Definitions

Memory
ld/st stream

+1

Acc. updates
for slice-switch

shMem

0 1

shMem

0 1
nextFeat[]

indexFL

while indices_left():
 idx = pop_index()
 len = pop_length()
 for i = idx to idx + len:
 access array[i]

array base
addr.

index length
array base

addr.

index length
array base

addr.

index length

while indices_left():
 idx = pop_index()
 len = pop_length()
 for i = idx to idx + len:
 atomic:
 array[i]=f(array[i])

Behavior

Note: index& length can be fixed to a constant

Executed
On Remote

Core

nextDist[]

index 1

nextDist[]

index 1

dist
diff?

num
edges

Atomic RMW
stream

array base
addr.

index length
array base

addr.

index length
array base

addr.

index length

f()

Legend

nextFeat [.]

edge[]

index L

edge[]

index L

vertList[]

index 2

vertList[]

index 2

feature vec

Task nodes

Memory nodes

Compute nodes

Dependence

Atomic access

Remote Compute

Executed
On Remote

Core

Figure 7.7: TaskStream Examples

graphs for task types. Finally, we augment node annotations to specify hints for priority

ordering and near-data scheduling. Since TaskStream nodes are exposed in the ISA, we can

add specialized hardware for priority ordering.

TaskStream Implementation In our implementation of TaskStream, each task type is

defined by a graph of compute, memory, and task nodes which extend the previous definition

of dataflow graphs (Section 3.1):

• Compute nodes: are passive and may maintain a single state item. This enables

them to be mapped to systolic-like fabrics [60, 188, 89, 66, 162] for high efficiency.

• Memory nodes: represent decoupled patterns of memory access, called streams [119,

56, 162, 66, 247, 249]. Stream parameters can either be constant (set at stream cre-

ation) or dynamic (consumed from another node with a FIFO interface). Figure 7.7(a)

defines stream parameters and behaviors.

• Task nodes: represent arguments and are ingress and egress points of the graph. A

task is started by delivering arguments to the dependent compute and memory nodes,

and a new task is created when values arrive at the complete set of egress task nodes.

108

An instance of a task type (i.e., task) is started by providing a value to each ingress task

node. And a task is created when values arrive at all egress task nodes.

Atomics Shared-memory atomics are critical due to the need for correct handling of mem-

ory conflicts on vertex updates. In taskstream, a memory stream can be marked as “read-

modify-write” (RMW) and will be atomic. See example in Figure 7.7(a).

Priority Scheduling and Coalescing One task argument may be designated at compile

time as the task’s priority. The parent task computes the priority prior to task creation, and

this serves as a hint to schedule tasks with higher priority first.

Another task argument indicates the ID, which is unique for all active tasks. The ID

generally is the vertex id, and may be used for task coalescing and sliced execution. When

two tasks with the same ID are created, this is treated as an update to the priority of the

original task, and the two tasks are “coalesced” into one higher priority task. The upper

bits of the ID indicate the task’s T-slice and S-slice. Tasks are deferred until their T-slice is

active and are scheduled at their S-slice core.

GraphWorkloadsWritten in TaskStream Figure 7.7(b) shows an example TaskStream

graph for SSSP, implemented as Asyncwork−eff . This workload has two tasks, each associ-

ated with different vertex data: Task type 1 iterates over outgoing edges of a source vertex

to compute distances, and creates a type 2 task for each destination vertex to carry out

distance updates. The ID of task 1 and 2 is the vertex-ID of source and destination vertices

respectively, and they execute on the core corresponding to the ID. Type 1 tasks are pri-

oritized by vertex distance for work-efficiency. Type 2 tasks also check if the vertex should

become active, and if so, a new type 1 task will be created. The number of task 1 invocations

is accumulated in a shared memory location to identify slice-switching (see Section 7.3.2).

In GCN, graph aggregation is synchronous, while matrix-vector multiply is asynchronous

– this enables overlapping the memory-intense aggregation tasks with compute-intensive

109

matrix multiply. Here, task 1 is coarse-grained, and iterates over all vertices (in a slice),

and a single task node trigger creates many cycles of work. It pushes source vector fea-

tures to task 2 to aggregate them together for incoming edges of each vertex. Aggregation

(task 2) asynchronously triggers a matrix-vector multiply (task 3) when aggregation is com-

plete (identified using node done). Note that this overlap splits matrix-matrix into multiple

matrix-vector computations: this prevents the broadcast of weight matrix. To localize the

traffic for weight responses, we duplicate weight matrix at each core (this is low overhead:

only consumes 3% of scratch space).

TaskStream Flexibility Summary Synchronous variants (Sgraph,Sslice) use coarse grain

tasks that pass through the (per graph/per slice) active list. Asynchrony is supported with

explicit fine-grain tasks, optionally with priority hint argument.

7.3.2 Slice Scheduling Interface and Operation

The responsibility of the temporal slice scheduler is to configure on-chip memory, decide

which slice to execute next, and manage data/task orchestration. The slice scheduler is

invoked infrequently, and can be executed on a simple control core with limited extensions

for data pinning operations. The slice scheduler also has a mechanism for creating initial

tasks.

Data Pinning Depending on the algorithm variant, we may know which data we want to

most reuse. For eg. for synchronous non-sliced (SgN), edges have large reuse distance, but

vertices with high-degree are reused many times. In sliced-locality variants, edges are also

reused, to a lesser extent. To help the slice-scheduler optimize for reuse, we provide the slice

scheduler an interface to pin a range of data to the on-chip memory at a particular offset,

essentially reserving a portion of the cache (eg. pin the region of vertex properties that have

high reuse). Non-pinned data is treated like normal cache access.

110

Slice Switching for Asynchronous Variants The decision of when to switch slices for

asynchronous variants is a tradeoff between work-efficiency (switch sooner) and reuse (switch

later). To explain, information at the slice’s boundary becomes “stale” over time, as it may

depend on an inactive slice’s execution, thus hurting work-efficiency. It is impossible to

calculate “staleness”, as it depends on the future execution. Therefore, we approximate it

by counting the number of vertex updates, and switch slices when these exceed a threshold.

When switching slices, the slice scheduler gives all cores a highest priority stop task, which

disallows any new tasks to be issued and it may also perform the slice transition as explained

below.

Slice Preprocessing Slices are preprocessed to keep all edges (and hence updates) within

each slice. This is accomplished by creating a mirror vertex for any cross-slice edge in

the destination slice, and removing the original cross-slice edge from the source slice. For

example, if edge A→B crosses a slice, then a mirror vertex for A would be created in B’s

slice. Mirror A retains the edge A→B, while this is removed in the original vertex A (in A’s

slice). The mirror vertices properties are only updated during slice transition, as explained

next.

Slice Transition Figure 7.8 shows how data is orchestrated during slice transition. Two

slices are shown, and only one may reside in on-chip memory at a time. Main memory

contains the graph vertex properties, pending tasks for each slice, and a copy of each mirror

vertex. Transition works as follows:

Step 1. Stream in cross-slice vertex properties (eg. vertex 10, K), and scatter to their S-slice

core; compare old and new properties to see which vertices changed. If such a property

changed, a new task is created in the destination slice by pushing the task’s arguments to

that slice’s pending tasks list (10, K to slice 2).

Step 2. Meanwhile, the updated cross-slice vertex properties are stored in the copy of mirror

vertex properties. Also, the current slice’s pending tasks and updated vertex properties are

111

Slice 1 (Current working slice)

Slice 1→2
Slice 2→1

Slice N→1 Main
MemorySt

ep
 1

:
Lo

a
d

 c
ro

ss
-s

lic
e

ve
rt

ex
 p

ro
p

er
ti

es
(t

o
 c

re
at

e
ta

sk
s

fo
r

m
ir

ro
r

ve
rt

ic
es

)

Step 2: Copy slice 1
updated vertex prop

and pending tasks

Step 3: Load
slice 2 vertex

properties

...
Slice 1→3
Slice 2→3

Slice N→2

Slice 2 (Next working slice)

* Note that main memory also stores other data-structures of the graph (neighbor and vertex list array).

Pend. task Slice 1 Pend. task Slice 2 ...

Step 4: Load
slice 2 pending

tasks

Current tasks slice 2

1

5
K

10

12

2

K+1 K+5

2KK+9K+2

Mirror Vertices

On-chip memory

Task queueTask queue

K

10

Cross-slice Vertices

On-chip memory

Slice 3→1Slice 3→1

Slice-N...Slice-1 Slice-2 Slice-N...Slice-1 Slice-2

Pending Tasks

Vertex Properties

Copy of Mirror Vertex Properties
(source slice→dest slice)

Current tasks slice 1

Figure 7.8: T-Slicing for Large Graphs (N slices, K vertices each)

streamed to memory.

Step 3. In parallel with step 2, using double buffering, vertex properties in the next slice are

streamed to pinned memory.

Step 4. Stream next slice’s pending tasks from main memory.

7.3.3 Scheduling of Algorithm Variants

Quantitative Motivation Figure 7.9 shows the fine-grained effective throughput (nor-

malized to work-efficiency) over time for several algorithm variants. Time on the x-axis is

normalized to the percentage of total execution time, as time-scales vary significantly be-

tween variants. Notice that the highest performance variant changes during the execution:

Low Diameter Graph (lj): For order-sensitive SSSP (SP in figures), Asyncwork-eff domi-

nates due to work-efficiency gains, while for less order-sensitive BFS, both Asyncwork-eff and

Syncgraph are similar. The sliced versions improve on-chip hit rate, however switching to

112

0
50

100
Ef

f.
GT

EP
S sp.lj

AwTl SgTr AwN SgN

bfs.lj
AwTl SgTr AwN SgN

0
50

100

Ef
f.

GT
EP

S sp.USW
AwTl SgTr AwN SgN

bfs.USW
AwTl SgTr AwN SgN

0 0.25 0.50 0.75 1
Percentage time

0
50

100

Ef
f.

GT
EP

S pr.lj
AwTl SgTr AwN SsTr

0 0.25 0.50 0.75 1
Percentage time

cf.big_mlens
AwTl SgTr AwN SsTr

Figure 7.9: Potential of Dynamically Switching Variants (Effective GTEPS is the useful

throughput – “work-done-per-second”/“work-efficiency”. Here the work-efficiency is normalized to

AwN and thus, the area under the curve is “AwN-work”/“total-execution time”.)

non-sliced at beginning/ending iterations has significant potential.

High Diameter Graph (USW): Since high diameter graphs have only a few vertices active in

each iteration, synchronization overhead is critical. Therefore, Asyncwork-effNo-slice consis-

tently dominates.

Dense frontier workloads (pr,cf): For PageRank, there is a tension between memory effi-

ciency due to high active vertices and work-efficiency due to order sensitivity. Therefore,

Slicesync balances tradeoffs and is optimal. For CF, Asyncwork-effTlocality is optimal in ini-

tial iterations, however Asyncwork-effNo-slice dominates in the later iterations when #active

vertices are low.

We found that switching between synchronous/asynchronous hurts work-efficiency, as

they proceed differently: asynchronous leaves many vertices active because it focuses on

high priority vertices, while synchronous conservatively tries to complete the work for all

active vertices in every iteration.

113

Sliced (Tr) No-Slice (N)
Active

vertices < 10k

Sync (Sg)
Order-sensitive
(dense frontier)

Slice-Sync (Ss)

Async-wf (Aw)

Locality-
optimized

(cluster=16k)

Load-balance
optimal

(cluster=128)

Low comp.
intensity
High dia
graphs

Order-sensitive
(sparse frontier)

a) T-slice
scheduling

b) Update
visibility

c) Multi-level
spatial

Partitioning

Algorithm
Dimension

Heuristics to decide
algorithm-variants

Figure 7.10: Algorithm Variant Scheduling

Heuristics for Algorithm Variant Scheduling Figure 7.10 shows how we decide the

algorithm variant. For slicing, the effective throughput depends on whether the work during

phase is sufficient to hide barrier overhead. This work can be approximated from active

vertices – for example, non-sliced outperforms at the beginning and end of the algorithm, as

active vertices are fewer (Figure 7.10, lj). For uniform graph (rdUSE), non-sliced consistently

outperforms as active vertices are low due to their high diameter. Therefore, our algorithm

switches to non-sliced when number of active vertices are below a threshold. In the update

visibility dimension, the decision depends on the workload characteristics. Asynchronous

versions are preferred for order-sensitive workloads (See Figure 7.10, sp). Dense frontier

algorithms (those with usually >50% active vertices) have high inherent spatial locality, so

Slicesync is preferred, as it is memory efficient while maintaining moderate work-efficiency.

We also propose a flexible multi-level spatial partitioning that can optimize for load and

locality depending on the workload and graph type (details explained in Section 7.5). Note

that the scheduling decisions may change depending on hardware parameters, as we discuss

in Section 8.5E.

114

Variant Transition Variant selection is performed after a single round of graph/slice in

Sg/Ss, or after every 100k cycles for asynchronous variants (long enough to amortize the

latency of switching). To transition, given the algorithm variant, the control core will: 1.

initialize data-structures and configure TaskStream graph, and 2. perform pinning opera-

tions. If a dynamic switch is invoked, on-chip memories are flushed, and TaskStream may

require reconfiguration. The pending tasks are managed as during slice transition data

orchestration.

7.4 Polygraph Hardware Implementation

PolyGraph is a multicore decoupled-spatial accelerator connected by 2D triple mesh net-

works5, overviewed in Figure 8.6.

The data plane is comprised of all modules besides the control core, and is responsible

for executing taskstream graphs. The decoupled execution of memory/compute is similar

to prior decoupled-spatial accelerators: memory nodes are maintained on stream address

generators, and accesses are decoupled to hide memory latency. A Softbrain-like CGRA [162]

executes compute nodes in pipelined fashion. Between the stream controller and CGRA are

several “ports” or FIFOs, providing latency insensitive communication. The novel aspect is

task management: A priority-ordered task queue holds waiting tasks. Task nodes define how

incoming task arguments from the queue are consumed by the stream controller to perform

memory requests for new tasks.

The basic operation is as follows: If the stream controller can accept a new task, the task

queue will issue the highest-priority task. The stream controller will issue memory requests

from memory nodes of any active task. The CGRA will pipeline the computation of any

compute nodes. The CGRA can also create new tasks by forwarding data to output ports

designated for task creation, and these are consumed by the task management hardware.

Tasks may be triggered remotely to perform processing near data. Initial tasks may be

5Multiple networks enable efficient scalar remote accesses.

115

On-chip Memory Banks

Task
Coalescer

Task
Queues

&Prio. Sched

Task computation
Atomic
Inter-
face

Task Creation Interface

Conflict check

R
o

u
ter

Control Core
(config. & t-slice

scheduling)

Ex
p

lic
it

 t
as

k
e
n
q
u
e
u
e

Implicit
task enqueue

Mem. Ctrl.Mem. Ctrl. Mem. Ctrl.Mem. Ctrl.

M
em

. C
trl.

M
em

. C
trl.

M
em

. C
trl.

M
em

. C
trl.

Mem. Ctrl.Mem. Ctrl. Mem. Ctrl.Mem. Ctrl.

M
e

m
.

C
tr

l.
M

em
. C

tr
l.

M
e

m
.

C
tr

l.
M

em
. C

tr
l.

Polygraph

Example Config:
16 Cores + Mesh

Reconfig. Dataflow Unit (CGRA)

8x8 crossbar

Task
Mgmt
Unit

NoC
Module

Region Translation

Stream-based Address Generation

O
ve

rf
lo

w
to

 m
em

o
ry

To TQ
mgmt unit

Figure 7.11: PolyGraph Modular Hardware Implementation

created by the control core, by explicitly pushing task arguments to the task creation ports.

The task management unit enables high-throughput priority-ordered task dispatch.

This is critical, as many tasks are short-lived. Therefore, the requests of multiple tasks

should be pipelined. The task unit also coalesces superfluous tasks at high throughput (for

priority update), by maintaining a bitvector of in-flight tasks IDs. Tasks can overflow the

task queue, which is handled by an overflow protocol.

Finally, slice scheduling is implemented on core 0’s control core (a simple inorder core).

The PolyGraph cores communicate with the slice scheduler through shared memory atomics

to coordinate at phase completion. The slice scheduler orchestrates data when switching

slices and may initiate a stop task on remote cores to prevent any new tasks to be issued.

7.4.1 Task Hardware Details

Task Queue and Priority Scheduling A task argument buffer maintains the arguments

of each task instance before their execution. Statically, it is split into the number of task

116

types and each partition is configured to the size of its corresponding task type arguments.

The task argument pointers to ready tasks (ie. whose all arguments are available) are stored

in the task scheduler. Note that we use the priority task scheduler (described next) only for

graph access tasks and FIFO scheduling for others (eg. vertex update).

Our task scheduler uses a pipelined hardware-based heap [30], where each memory bank

represents a level in the priority heap. Push/pop operations move nodes across levels, locking

in a hand-over-hand fashion. This delivers a throughput of one enqueue-dequeue operation

every two cycles. For low degree graphs, this throughput is insufficient. Therefore, we

use multiple priority-heaps per core, and alternate between them. This implies imperfect

ordering, because two consecutive highest-priority elements could be in the same queue. In

practice this does not significantly hurt work efficiency.

Overflow and Reserved Entries If the task queue is full, new tasks will overflow into a

buffer in main memory (32kB is sufficient). This buffer is drained to the queue as entries are

freed, and the priority then is re-calculated by using the updated vertex prop. Re-calculation

is required as the priority might have been updated due to coalescing.

Overflow unfortunately disrupts the priority order, and can hurt work-efficiency due to

delaying a high priority task. To mitigate, we reserve some task queue entries for latent

high-priority tasks (eg. 32 for 256 sized queue). During overflow, a new task is allocated a

reserved entry if it is equal/higher priority than the current highest-priority task.

Task Coalescing To reduce active tasks, we allow coalescing of tasks with the same ID.

We implement this with an SRAM bitvector, where each bit corresponds to a task ID. A set

bit means the corresponding task is present in the overflow buffer, and this will prevent task

insertion for that ID.

For graph processing, task ID corresponds to vertex id. We size the bitvector to be 32 kB,

as this covers the maximum vertices in temporally sliced variants. For non-sliced, PolyGraph

only coalesces the first 32K vertex id. This is sufficient in practice, as the partitioner can

117

simply move critical high-degree vertices to the beginning of the vertex list.

7.4.2 Memory Architecture

Shared Memory Our on-chip memory is a shared address-partitioned cache, with multi-

ple banks per PolyGraph core. Each cache bank has a region translation unit that maintains

the mapping of virtual address ranges to the pinned addresses.

Data-structure pinning is supported similar to prior buffer-in-NUCA techniques [59].

When the slice-scheduler in core 0 pins a memory region, the region translation unit in all

cores are sent the base/bound of the region, along with an offset. This causes some of the

sets of the cache to be set aside for pinned data. The core will generate requests for that

region and send an acknowledgment when complete. Subsequent memory requests check the

range registers to determine if they are to be mapped to the cache or pinned region. Pinning

a new data-structure flushes all cache regions in the newly pinned addresses. Re-pinning is

only required during transition between variants: this happens at most twice (when active

vertices go above or below a threshold), thus the overhead is low compared to the 10s/100s

of slice switchings.

Atomic Updates When update requests are received from the local core or the network,

they are pushed to the pending atomic requests queue at its corresponding bank. The conflict

check logic uses a small CAM (8 entries, to cover atomic latency) to detect and delay aliasing

requests.

7.5 Spatial Partitioning

While offline partitioning is common for creating temporal-slices, we find that spatial parti-

tioning makes the mesh-based network highly effective, as we describe next.

Spatial partitioning introduces a tradeoff between locality and load balance. Naively

clustering connected vertices will reduce network traffic, but may hurt load balance, espe-

118

...
Active vertex

frontier

A C E G

B D F H

K I M N

L J P O

A C

B D

K I

L J

A C E G

B D F H

a) Cluster-based Partitioning

Itn 1

Itn 2

Itn 3

A C E G

B D F H

K I M N

L J P O

A C

B D

K I

L J

A C E G

B D F H

b) Multi-level partitioning

Itn 1

Itn 2

Itn 3

...

Legend Core 1 Core 2 Core 3Core 1 Core 2 Core 3Legend Core 1 Core 2 Core 3

Figure 7.12: Cluster-based vs Novel Multi-level Spatial Partition

cially for sparse frontier workloads. We explain with a simple grid-graph6 in Figure 7.12,

but observations apply more broadly. In Figure 7.12(a), we use clustering-only for creating

S-slices; the dotted red lines show the progression of a sparse frontier workload like BFS.

What we can observe is that the frontier in several iterations is limited to a single slice

(allocated in one core); hence, this strategy has extremely poor load balance.

Multi-level Scheme Figure 7.12(b) visually shows our proposed ”multi-level” slicing

scheme that respects both load balance and locality. First, the graph is split into many small

clusters of fixed size to preserve locality, then these clusters are distributed equally among

cores for balanced load. To implement, we use a simple bounded-depth first search (with

depth=8) to find small clusters (of a parameterizable size), then distribute these round-robin

to different S-slices. It requires O(V) time.

Note the effect is proportional to the number of active vertices, hence high diameter

graphs prefer load balanced multi-level as active vertices is usually low across iterations. For

low diameter, larger clusters are helpful for locality.

6Grid-graphs are somewhat representative of common road networks.

119

GPU Graphcnd. GraphPls Ozdal Chronos PG

[61] SgTr[94] AwTl[193] AcN[173] AwN[11] (ours)

Compute GP104 SIMT-16 ASIC D-flow ASIC CGRA

$+Spad 14.5MB 32MB 32MB 32MB 32MB 32MB

FP Unit 5120 1024 1024 1024 1024 1024

Mem GB/s 652 512 512 512 512 512

Net. type Bus XBAR XBAR XBAR 3 mesh

Net. radix - 128 128 5 core/8 mem

Table 7.3: Architecture Characteristics of Baselines

Graphs Vertices Edges Dia Structure #T-Slices

A
ll

orkut 3M 106.3M 9 Power-law 1/2

LiveJournal 4.8M 68.9M 16 Power-law 2/4

twitter 41.6M 1.4B 9 Power-law 5/10

S
ea
rc
h indoChina 7.4M 194M 200 Random 2

rdUSE 3.5M 8.7M 2897 Uniform 1

rdUSW 6.3M 15.2M 10206 Uniform 2

cf

big-mlens 0.2M 2.5M 5 Power-law 2

mlens 82k 10M 5 Power-law 1

gc
n pubmed 0.02M 0.09M 9 Power-law 2

cora 2.7k 10k 20 Power-law 1

Table 7.4: Input Graphs (Left column is the domain. PR requires double #T-slices; #T-slices

for CF/GCN depends on feature size.)

120

7.6 Methodology

PolyGraph Power/Area We prototyped PolyGraph by extending DSAGEN [251] with

task scheduling hardware, and extended the stream-dataflow [162] ISA as described. We

synthesized PolyGraph cores and NoC at 1GHz, with a 28nm UMC library. We used Cacti

7.0 [156] for modeling eDRAM.

Baseline Architectures For reference, we use a 24-core SKL CPU and GAP bench-

marks [26]. For CF and GCN (unavailable in GAP), we used Graphmat [224] and Gun-

rock [246] respectively. We evaluated Gunrock [246] graph processing library on a Titan

V GPU. Gunrock does not implement CC/CF, so we calculate GPU means without these

workloads.

For performance modeling across variants, we developed a custom cycle-level modular

simulator (see Appendix A for details). Main memory is modeled using DRAMSim2 [201].

Accelerator configurations are in Table 7.3, and have similar memory capacity, bandwidth,

and max throughput. We assume preprocessing is done offline and reused across queries.

Note that both temporal partitioning (chunk-based Gemini [281]) and spatial partitioning

are O(V).

For fairness and consistency with our simulation framework, we make the following pro-

visions for prior accelerators: For Graphicionado [94], we did not implement capacity opti-

mizations like extended graph slicing and coarsened edge table. For Ozdal [173], we bypassed

the sequential consistency module; it is not required on our workloads. For Chronos [11],

we modeled priority-order speculative execution with their no-rollback optimization. Since

SLOT requires a single read-write object per task, we implemented the pull variant; this al-

lows vertex granularity tasks instead of fine-grained edge tasks in push. We used PolyGraph’s

NoC, as Chronos is FPGA-based. For GraphPulse [193], we model their task coalescing, but

for consistency with our simulator, we used distributed scheduling.

For Polygraph (PG) we evaluate: 1. PG-singleAlg: fixed-variant configuration that

121

sp
.U

SE

sp
.in

do

bf
s.U

SE

bf
s.i

nd
o

cc
.U

SE

cc
.in

do GM

10 1

100

101

102

Sp
ee

du
p

ov
er

 S
gT

r
High Diameter Graphs

sp
.o

kt

sp
.lj

bf
s.o

kt

bf
s.l

j

cc
.o

kt

cc
.lj

pr
.o

kt

pr
.lj

GM

Low Diameter Graphs

cf
.b

m
le

ns
cf

.m
le

ns
gc

n.
pm

ed
gc

n.
co

ra GM

Vector Workload

0
0.5
1
1.5
2

W
or

k-
ef

fic
ie

nc
ySgTr SsTr AwTl AwN SgTrPull AcTl AlTl AwTw Static-opt Work-Efficiency

Figure 7.13: Algorithm Variant Performance Analysis

provides the best geomean speedup. 2. PG-multiAlg: Here flexibility is incrementally added

for per-workload (static) and per-phase (dynamic).

Datasets Table 8.3 summarizes input graphs. For SSSP on unweighted graphs, random

weights are assigned from [1:256). Due to prohibitive simulation times of exploration, we

evaluate large graphs (twitter, rdUSW) only for overall performance.

Workloads Table 7.1 lists the evaluated workloads. For graph-based machine learning

workloads, PR and CF, we optimize for convergence by choosing a different learning rate

for each algorithm variant (higher for asynchronous variants). For GCN inference, we only

implement the graph synchronous variant, as asynchronous benefits are minimal due to

GCN’s non-converging behavior.

7.7 Evaluation

Our objective is to evaluate how much and which kinds of flexibility are useful, across graph

and workload types. First, we analyze algorithm variants (Section 7.7.1) and compare against

prior accelerators (Section 7.7.2). Then, we discuss sensitivity to algorithm and hardware

parameters (Section 7.7.3,7.7.4).

122

7.7.1 Algorithm Variants Performance Comparison

Figure 7.14 compares strong algorithm variants – those which perform well on at least one

workload/graph type. Overall, we find that asynchronous-sliced, AsyncworkSlicedloc, is the

optimal variant (2.91× geomean speedup over typical SyncgraphSlicedrndrbn), while static

flexibility can further improve speedup by 3×. We explain the trends below, grouped by

their choice of the best algorithm variant:

1. High Diameter Graphs: Here the synchronization overheads of synchronous/sliced

variants (eg. Syncgraph, Syncslice, AsyncworkSliced) are the critical bottleneck. There-

fore, AsyncworkNon-Sliced performs best/similar for all workloads.

2. Low Diameter Graphs: The power-law degree distribution makes random accesses

more critical than synchronization. Sliced variants improve reuse, and thus perform

better. For order-sensitive workloads (e.g. SSSP), faster updates in asynchronous

variants lead to faster convergence. Among vertex-scheduling schemes, Asyncwork per-

forms best while Asynccreation/Asynclocality provides only modest work-efficiency. Over-

all AsyncworkSlicedrndrbn is sufficient.

3. Dense Frontier workloads: For PageRank, which has a dense frontier, SyncsliceSlicedrndrbn

provides speedups through memory efficiency while retaining some work-efficiency ben-

efits of asynchronous updates within a graph slice.

4. Vector Workloads: With asynchrony, vector workload, CF sees high gains, how-

ever priority scheduling is not required. Non-sliced is similar to sliced as large vertex

properties have high spatial locality that reduces cache miss overhead.

Less Competitive Variants: We generally find that with sufficient hardware for asynchronous

priority scheduling, sliced-work-efficiency does not help as asynchronous variants require less

iterations due to dynamic task creation.

123

ord.highDia
unord.highDia

ord_spFront.lowDia
unord.lowDia

ord_densFront.lowDia

ord_vector.lowDia
Geomean0.1

100

101

102

No
rm

al
ize

d
Sp

ee
du

p

SyncgraphSlicedrndrbn

SyncsliceSlicedrndrbn

AsyncworkSlicedloc

AsyncworkNonSliced
SyncgraphSlicedrndrbnPull
AsynccreateSlicedloc

AsynclocSlicedloc

AsyncworkSlicedwork

Static-opt

Ideal
unordered.low_dia

0
50

100

GT
EP

S Ideal
ordered.high_dia

Ideal
unordered.high_dia

0.00 0.25 0.50 0.75 1.00
Work-eff

0
50

100

GT
EP

S Ideal
ordered_densFront.low_dia

0.00 0.25 0.50 0.75 1.00
Work-eff

Ideal
ordered_vector.low_dia

0
50

100

GT
EP

S Ideal
ordered_spFront.low_dia

SgTr

SsTr

AwTl
AwN

AlTl

AcTl

SgTlPull
AwTw

Figure 7.14: Comparison of Algorithm Variants.

124

sp
.U

SE

sp
.U

SW

sp
.in

do

bf
s.U

SE

bf
s.U

SW

bf
s.i

nd
o

cc
.U

SE

cc
.U

SW

cc
.in

do GM

100

101

102

103

104
Sp

ee
du

p
ov

er
 2

4-
co

re
 C

PU
High Diameter Graphs

sp
.o

kt

sp
.lj

sp
.tw

bf
s.o

kt

bf
s.l

j

bf
s.t

w

cc
.o

kt

cc
.lj

cc
.tw

pr
.o

kt

pr
.lj

pr
.tw GM

Low Diameter Graphs

cf
.b

m
le

ns

cf
.m

le
ns

gc
n.

pm
ed

gc
n.

co
ra GM

Vector Workloads

0

0.5

1

1.5

2

W
or

k-
ef

fic
ie

nc
y

GPU
Ozdal (AcNPull)

Chronos (AwNPull)
Graphicionado (SgTr)

GraphPulse (AlTl)
PG-singleAlg (AwTl)

PG-statMultiAlg
PG-dynMultiAlg

Work-Eff

Figure 7.15: Overall Performance Comparison (Gunrock does not implement CC, CF; GCN

does not have pure asynchronous implementation.)

Finally, the best pull variant, SyncgraphSlicedrndrbnPull consistently performs worse due to

pipeline stalls waiting on random reads and work-efficiency loss from accessing all incoming

edges irrespective of whether they are active.

Work-efficiency vs Throughput for Algorithm-Variants Figure 7.14 further explains

the workload and graph type tradeoffs. Slicing improves memory efficiency for low diameter

graphs, while Asyncwork improves work-efficiency for order-sensitive workloads. Since high

diameter graphs are regular, Non-sliced is superior as it achieves high hit rate while avoiding

barrier overheads. For dense frontier workloads, slice synchronous balances memory and

work-efficiency. For the vector workload, CF, memory efficiency is implicitly high, thus

asynchronous variants dominate due to faster convergence.

7.7.2 Comparison to Prior Accelerators

Figure 7.15 shows the overall comparison. PG-statMultiAlg allows variant flexibility at the

workload level, and PG-dynMultiAlg enables dynamic switching. Overall, PolyGraph out-

performs CPU by 105.7× and GPU by 49.4×. Over the fastest prior accelerator, GraphPulse,

it achieves 5.7× speedup.

High Diameter Graphs: PolyGraph achieves work-efficiency-proportional gains over Gun-

125

sp
.o

kt
sp

.U
SE sp
.lj

sp
.in

do
bf

s.o
kt

bf
s.U

SE
bf

s.l
j

bf
s.i

nd
o

cc
.o

kt
cc

.U
SE cc
.lj

cc
.in

do
pr

.o
kt

pr
.lj

cf
.b

m
le

ns
cf

.m
le

ns GM

0.1
5.0

10.0
15.0
20.0

Sp
ee

du
p

ov
er

 B
as

e-
as

yn
c

0
0.5
1
1.5
2
2.5

W
or

k-
ef

fic
ie

nc
yBase-async

Slicing
TQ opt
Multi-level

Work-Eff

Figure 7.16: Cumulative Speedup of Novel Features

rock’s Syncgraph GPU version. Even through Chronos and Ozdal use non-sliced implementa-

tions, they also use the inefficient pull variant. For the USW graph that does not fit in on-chip

memory, GraphPulse and PG-singleAlg lose due to slicing overheads of switching time and

work-efficiency loss due to delayed cross-slice vertices. A non-sliced variant can avoid these

overheads.

Low Diameter Graphs: For order-sensitive SSSP and PR, PG-singleAlg gains work-efficiency

due to vertex scheduling and slicing significantly improving hit rate. Since BFS and CC

are less order-sensitive, PG-singleAlg behaves similar to Graphicionado. However, dynamic

switching improves performance (eg. bfs.lj,bfs.tw).

Vector Workloads: For GCN, accelerators provide high speedup, as they support efficient

broadcast of weight matrices, while GPU is bottlenecked by the unified cache bandwidth [246].

PolyGraph gets about 25% speedup by overlapping the communication-intensive aggregation

and computation-intensive multiplication tasks. CF gains work-efficiency with synchrony

and throughput with switching to the non-sliced variant in later iterations.

126

sp
.o

kt
sp

.U
SE sp
.lj

sp
.in

do
bf

s.o
kt

bf
s.U

SE
bf

s.l
j

bf
s.i

nd
o

cc
.o

kt
cc

.U
SE cc
.lj

cc
.in

do
pr

.o
kt

pr
.lj

cf
.b

m
le

ns
cf

.m
le

ns GM

10 1

100

101

102

103
Sp

ee
du

p
ov

er

PG
-s

in
gl

eA
lg

PG-singleAlg
thres=0

thres=1k
thres=10k

thres=100k
thres=200k

Figure 7.17: Dynamic Switching and Threshold Sensitivity

Novel Features Figure 7.16 shows the cumulative speedup of each novel features over an

asynchronous-push accelerator. In general, slicing significantly improves memory efficiency

on low diameter graphs (okt,lj), while it causes slowdown in high diameter graphs due to

work-efficiency loss (bfs.indo). Task coalescing particularly benefits low diameter graphs by

eliminating superfluous updates to high degree vertices. The locality optimized multi-level

partitioning with a fixed cluster size provides 20% benefit. For BFS.USE, multi-level is worse

than naive partitioning because load is the primary bottleneck when locality is available.

Thus, optimal cluster size depends on the input.

7.7.3 Algorithm Sensitivity

Dynamic Switching Heuristic Figure 7.17 shows the results of dynamic switching, with

the heuristic described in Section 7.3.3.

Here, we compare performance as we sweep the switching threshold of active vertices. The

initial variant is the single-variant-optimal (AwTl). For low diameter graphs (lj,okt,mlens),

performance improves to some point due to avoiding slice-switch overheads (up to 28%

127

sp
.o

kt
sp

.U
SE sp
.lj

sp
.in

do
bf

s.o
kt

bf
s.U

SE
bf

s.l
j

bf
s.i

nd
o

cc
.o

kt
cc

.U
SE cc
.lj

cc
.in

do
pr

.o
kt

pr
.lj

cf
.b

m
le

ns
cf

.m
le

ns GM

0.1

1.0

2.0

3.0
Sp

ee
du

p
ov

er
 c

op
y>

0.
2C

0
0.5
1
1.5
2

W
or

k-
ef

f

copy>0.2C
copy>1C

edge>0.2E
edge>1E

No tasks
Work-Eff

Figure 7.18: Slice Switch Heuristics (C: cross-slice vert., E: edges/slice)

here); after this point performance reduces due to low memory efficiency of non-sliced. The

effect is more dominant on non-computation intensive workloads like BFS. For high diameter

graphs, the speedup plateaus, as non-sliced can achieve similar memory efficiency; thus, static

flexibility is sufficient for them. Overall, dynamic switching helps primarily low diameter

graphs.

Slice Switching Heuristic Figure 7.18 compares slice switching heuristics on order-

sensitive workloads7. “No tasks” represents switching when no outstanding tasks are left; it

is either worse performance (sp.indo,bfs.indo) or does not converge (sp.use,sp.lj). Low

diameter graphs (okt,lj, mlens) prefer a larger threshold because their clustered structure

allows higher ratio of intra-slice vs inter-slice updates. High diameter graphs (use,indo) are

highly sensitive to delayed updates and prefer to switch earlier. Note that for larger high

diameter graphs, the work-efficiency loss still dominates, and no-slicing wins if flexibility is

available. We chose the edge-based heuristic, with a slicing threshold of 0.25*E for high

7Note that since okt,USE fits in PolyGraph’s on-chip memory, we reduced the on-chip memory size to
half to make this experiment interesting.

128

sp
.o

kt
sp

.U
SE sp
.lj

sp
.in

do
bf

s.o
kt

bf
s.U

SE
bf

s.l
j

bf
s.i

nd
o

cc
.o

kt
cc

.U
SE cc
.lj

cc
.in

do
pr

.o
kt

pr
.lj

GM

0.5

1

2

5

10
Sp

ee
du

p
ov

er
 c

lu
s=

12
8

0

0.5

1

1.5

2

W
or

k-
Ef

f

clus=128
clus=1k

clus=16k
clus=64k

clus=128k
Work-Eff

Figure 7.19: Sensitivity to Spatial Partitioning Cluster Size

diameter graphs and 1*E for low diameter graphs.

Spatial Partitioning Figure 7.19 evaluates the multi-level spatial partitioning policy for

different cluster sizes (on AwTl variant)
8. The results suggest small clusters optimize for

dynamic load balance, while larger clusters improve locality. SSSP has higher computation

intensity, and is thus more bottlenecked by locality than load balance; hence larger cluster

sizes are better. BFS prefers smaller cluster sizes as memory level parallelism is more critical

due to its low computation intensity. The default cluster size is 128; we use 16k for low

diameter graphs (except BFS). Overall, flexible multi-level spatial partitioning provides 40%

performance gain over conventional clustering.

Per Data-structure Reuse Figure 7.20 shows the per-phase access frequency of edge and

vertex data-structures for a subset of interesting variants. The access counts are averaged

for a single phase for synchronous or 100k cycles for asynchronous. In general, vertices

8We do not evaluate this for CF, GCN because, due to their large vertex properties, their maximum
cluster size is too small.

129

100

102

104
Ac

ce
ss

 fr
eq

SyncgraphTrnd robin

edge vertices
SyncgraphTlocality

edge vertices

101 103 105 107
Edge/vertex indices

100

102

104

Ac
ce

ss
 fr

eq

AsyncworkeffN noslice
edge vertices

101 103 105 107
Edge/vertex indices

AsyncworkeffTlocality

edge vertices

Figure 7.20: Access Patterns in Algorithm Variants (for SP.lj)

are more critical to cache on-chip because they have higher reuse and also require finer-

grained random accesses. Although edge reuse is also significant because of iterating over a

single slice multiple times (T-slicelocality variants), we found that caching edges is not always

beneficial. This is because it reduces vertex slice size too much, which hurts work-efficiency.

Finally, the vertex list data-structure has similar access behavior as vertex prop, therefore

we pin vertex prop and vertex list on-chip for sliced variants.

7.7.4 Hardware Sensitivity

In this section, we discuss the performance sensitivity of graph algorithm variants to hard-

ware resources. Note ordered workloads are geomean of SSSP, PR and CF and unordered

include BFS and CC. We discuss GCN separately.

PolyGraph Scaling With 2x cores (and 2x memory bandwidth), the performance scales

well (limited by available parallelism) as shown in Figure 7.21(a). Even though low diameter

graphs are highly sensitive to memory bandwidth, scaling on unordered workloads is limited

130

by parallelism while ordered workloads suffer due to loss in work-efficiency with larger net-

work latency. Since high diameter graphs are easy-to-partition, they ensure high hit rate and

thus reduced dependence on memory bandwidth. AwN high dia case shows performance

loss with more cores: this is because larger working set means higher sensitivity to factors

affecting work-efficiency, like larger network latency for 32 cores.

Network bandwidth Figure 7.21(b) sweeps over scalar network bandwidth. The sliced

variants of low diameter graphs have good on-chip memory locality, and are bottlenecked by

network bandwidth. For high diameter graphs, both sliced/non-sliced variants achieve high

hit rate and memory locality. Therefore, sliced variants are bottlenecked by load imbalance

due to frequent synchronization, while for non-sliced, work-efficiency is proportional to the

network bandwidth.

On-chip memory size Figure 7.22 shows the performance sensitivity to on-chip memory

size: this is a proxy for scaling up graph-size (more slices required and more cache pressure),

while using a consistent input. The data is presented for specific input graphs as the satura-

tion point depends on the ratio of graph and on-chip memory size. For ordered workloads,

a larger memory size improves work-efficiency with lesser cross-slice edges while reducing

the required number of barriers. The latter is a small factor, as can be seen for unordered

cases. Ordered.rdUSW AwN is an exception where performance degrades with larger on-chip

memory; this happens because a larger working set may cause cores to become too unsyn-

chronized, hurting working efficiency.

GCN Sensitivity When doubling core count, GCN’s performance scales by 1.9×, with

little loss due to load imbalance in aggregation phase. For scaling network bandwidth, GCN

improves linearly up to 64-byte bandwidth, after which computation becomes the bottleneck.

For scaling down on-chip memory, only if we scale down to 4MB does the memory bandwidth

become the bottleneck; this happens with 7 slices, since our GCN’s graphs require maximum

28 MB.

131

unordered.low_dia

16c-512GB/s 32c-1024GB/s
Number of cores

100

101

102

Sp
ee

du
p

ov
er

 S
gT

r ordered.high_dia

16c-512GB/s 32c-1024GB/s
Number of cores

unordered.high_dia0.0
2.5
5.0
7.5

10.0

Sp
ee

du
p

ov
er

 S
gT

r ordered.low_dia
SgTr SsTr AwN AcTl AlTl AwTl

(a) Cores and Memory-bandwidth

unordered.low_dia

1 2 4
Scalar networks

100

101

102

Sp
ee

du
p

ov
er

 S
gT

r ordered.high_dia

1 2 4
Scalar networks

unordered.high_dia0

5

10

Sp
ee

du
p

ov
er

 S
gT

r ordered.low_dia
SgTr SsTr AwN AcTl AlTl AwTl

(b) Number of 8-byte Networks

Figure 7.21: Sensitivity to Hardware Resources

132

unordered.lj

4M 8M 16M 32M
On-chip memory size

10 2

100

102

Sp
ee

du
p

ov
er

 S
gT

r ordered.rdUSW

4M 8M 16M 32M
On-chip memory size

unordered.rdUSW
0.0
2.5
5.0
7.5

10.0
Sp

ee
du

p
ov

er
 S

gT
r ordered.lj

SgTr SsTr AwN AcTl AlTl AwTl

Figure 7.22: Sensitivity to Memory Size

Area Tradeoffs Table 8.7 shows PolyGraph’s area breakdown. It occupies 72.56mm2,

with eDRAM consuming 91.1% of the total area. Compared to Graphicionado, PolyGraph

is similar area with 84% power due to using a mesh instead of a crossbar.

Figure 7.23 compares accelerator speedup and area. Overall, PolyGraph has similar

area as Graphicionado while achieving 7.2× speedup due to its optimizations and flexibility.

We also examine area tradeoffs for PolyGraph by removing the components that consume

significant area (eliminating certain variant options). Without caches, memory flexibility is

not available, hurting high diameter graphs. Without a priority queue, the gains on order-

sensitive workloads is reduced. With no dynamic tasks, SsTr is the best variant, as it provides

some work-efficiency by conveying updates sooner, with high memory efficiency of locality

scheduling.

133

Area

(mm2)

Power

(mW)

Control Cores 0.053 11.5

Priority Task Queue 0.05 15.86

Task Coalescer 0.05 3.4

On-chip mem+ctrl 4.15 25.64

CGRA (4x5) 0.21 80

8x8 8-byte crossbar 0.002 1.92

1 PG-Core 4.51 138.3

4x4 32 byte mesh (1) 0.2 44.7

4x4 8 byte mesh (3) 0.2 34.22

PG Total 72.56 2292.12

Table 7.5: Area and Power breakdown for PG-flex (28nm)

7.8 Additional Related Work

Table 7.6 categorizes prior work by variant. All variant combinations are supported by

PolyGraph.

Graph Frameworks with Flexibility While some software graph frameworks focus on

a single algorithm variant (eg. GraphMat [224]: SgN), several others allow certain amount of

flexibility in their programming model. For example, Galois [182] provides optional support

for scheduling vertex buckets by a data-dependent priority (Minnow [271] provides hardware

support for CPUs). Salvador et. al. [203] studies the interaction of update direction and

memory coherence/consistency models for GPUs, and demonstrates the usefulness of flex-

ibility. We further show the usefulness of flexibility across dimensions of update visibility

and vertex/slice scheduling.

Powergraph [87] supports both synchronous and asynchronous variants. Powerswitch [260]

adds heuristics to switch between sync/async dynamically, which we find is not effective for

accelerators. X-Stream is “edge-centric”, where edges are streamed without sparse access

through vertex indices. Even though edge-centric can be supported by PolyGraph, we did

134

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized Area

0

1

2

3

4

5

6
No

rm
al

ize
d

Sp
ee

du
p

graphdyns
(fifo,scratch,xbar)

ozdal
(fifo,cache,xbar)chronos

(prio,cache,xbar)

PG-opt
(prio,scratch,mesh)

PG-sched-flex PG-mem-flex
PG-net-flex

PG-mesh-dyn-flex PG-xbar-dyn-flex

Figure 7.23: Accelerator Performance vs Area

not consider it as it is incompatible with key optimizations like priority ordering and vertex-

based dynamic tasks.

Graph Taxonomies McCune et al. classified distributed graph frameworks [149]. Lenharth’s

taxonomy [135] identifies factors that impact graph execution: (topology, synchronicity, re-

ordering, graph operators). These works do not consider hardware specialization or slicing.

Hardware Accelerators Graphicionado [94] accelerates push-based synchronous variant.

GraphDyns [262] adds dynamic work-distribution. Ozdal et. al. supports sequential consis-

tency in its asynchronous graph processing ASIC template [173]. Our evaluated workloads

do not require sequential consistency guarantees for correctness; only CF may converge faster

with consistency [146].

Digraph [278] is a multi-GPU system for asynchronous graph processing. Chronos [11]

is the only prior asynchronous accelerator that supports fine-grained priority scheduling.

Several designs exploit multiple HMC nodes (eg. Tesseract [15]). GraphP [274] extends

Tesseract with a two-phase programming model enabling efficient partitioning. GraphQ [285]

135

Non-sliced(N) Temporally-sliced (T)

Syncgraph(Sg) Tesseract [15] Graphicionado [94] (Trobin)

GraphMat* [224] GraphDyns [262] (Trobin)

Syncslice(Ss) GraphQ* [285] (Trobin)

GraphABCD* [264] (Twork−eff)

Asynclocal(Al) Ozdal [173] GraphPulse [193] (Tlocality)

Giraph* [97]

Asynccreat.(Ac) Graphlab* [146]

AsyncWork(Aw) Chronos [11] Digraph* [278] (Twork−eff)

Galois* [182]

Minnow [271]

Table 7.6: Prior Works in Taxonomy (*software frameworks)

has a hybrid execution model; asynchronous within each HMC.

DepGraph [279] combines updates across frequently accessed paths, reducing re-execution

overhead. This is an alternative way of improving work-efficiency.

Graph Spatial Locality Techniques Graph preprocessing is employed to improve spa-

tial locality [118, 70, 235], which is especially useful if graphs are executed in locality/vertex

order. HATS [155] is a CPU offload accelerator which dynamically discovers graph locality.

Polymer [273] explores spatial placement and replication of vertices in a distributed system.

7.9 Discussion

In this work, we proposed a flexible graph processing accelerator. PolyGraph demonstrated

promising performance on a wide range of graph inputs and workloads. However, for practical

adoption, it must scale to large graphs gracefully. In this section, we first discuss our limit

study that demonstrates the potential of PolyGraph’s techniques and the challenges we will

136

need to overcome for large systems. We will also discuss preliminary ideas to mitigate the

bottlenecks. Finally, we will discuss additional scheduling policies and their interplay with

work efficiency for asynchronous variants.

7.9.1 Limit Study

Figure 7.24 shows the results for PolyGraph’s scalability on three graph workloads: BFS

(on Orkut graph (Table 8.3)), and Triangle Counting (TC) on Flickr graph, which has 820K

vertices and 9.8M edges). We included Triangle Counting (TC) and Jaccard Coefficients

(JC) because they represent workloads with better reuse and will produce different tradeoffs

with scaling. We implemented TC and JC using our specialization for edge-list intersection

(i.e., stream-join from Chapter 5) as well as symmetry-breaking optimizations. Several

increasingly realistic designs were evaluated, as follows:

• Ideal: Ideal architecture with instantaneous communication and load-rebalance among

cores, infinite memory bandwidth, and infinite network bandwidth.

• +Distributed processing: work split across cores corresponding to the static as-

signment of vertices/edges using multi-level spatial partitioning policy.

• +Constrained memory bandwidth: Memory bandwidth restricted to 1 TB/s for

16 cores.

• Constrained network bandwidth (128 GB/s): Link bandwidth restricted to

2x64B/cycle@1GHz (double mesh).

• Constrained network bandwidth (512 GB/s): Bandwidth increased by 4×.

Figure 7.24 shows performance scaling from 1 to 256 cores. The high performance of the

Ideal (i.e., unrealistic) system indicates that PolyGraph’s asynchronous algorithm exposes

sufficient and scalable parallelism, even with the modest graph sizes used in this experi-

ment. Adding Distributed processing reveals that load imbalance can be a critical overhead

137

0 100 200
#Cores

0

2

4

6

8

GT
EP

S/
co

re
Async BFS

0 100 200
#Cores

0

100

200

300

400

500

M
illi

on
 T

ria
ng

le
s/

se
co

nd
/c

or
e

Triangle Counting

0 100 200
#Cores

0

50

100

150

200

250

M
illi

on
 C

oe
ffi

cie
nt

s/
se

co
nd

/c
or

e

Jaccard Coefficient

Fully Ideal + Distributed Processing + Constrained Memory
+ Constrained Network (512 GB/s) + Constrained Network (128 GB/s)

Figure 7.24: Bottlenecks with More Cores

for vector workloads like TC and JC. Next, adding a Constrained memory bandwidth of 1

TB/s for 16 cores does not lower performance. Even though the memory bandwidth uti-

lization problem does not worsen with scaling, it is unsolved even for lesser cores. For BFS,

it only achieves 25% utilization. Reducing the network bandwidth (Constrained network

bandwidth) will greatly reduce the performance of BFS, which indicates that scalar vertices

in BFS put pressure on the network.

Unsurprisingly, the biggest challenge is communication. The network is used to send

update task arguments across spatial graph partitions, so more cores mean the graph is

cut into more slices (more inter-core edges), and the network is more utilized due to more

hops/message on average. To keep the resource requirements practical, the utilization needs

to be improved using better spatial partitioning policies or nodel techniques for optimized

traffic.

7.9.2 Factors Impacting Convergence Rate

Here we give pointers to improved scheduling policies and discuss the convergence unpre-

dictability with the asynchronous variant. Finally, we will hint toward the applicability of

138

Cycle count

A
cc

e
ss

 t
im

es

Figure 7.25: Skewed Execution of Edges in SSSP

insights for broader learning-based workloads.

Alternate Priority Scheduling Techniques PolyGraph explores various scheduling

strategies that tradeoff between locality and work efficiency. We used a standard priority

order for work efficiency: completely runtime-based and with priority ordering by distance

or error). One can improve the priority metric according to architectural support. See the

experiment in Figure 7.25, the x-axis represents edge ID, and the y-axis represents the num-

ber of times each edge is executed. The brown histogram shows the first-in-first-out ordering

where specific edges are executed an exponentially higher number of times – this is expected

as high-degree vertices will propagate data more often. If we could de-prioritize these high-

degree vertices (blue histogram in Figure 7.25), more tasks for high-degree vertices can be

coalesced, resulting in improved work efficiency. The challenge will be to devise a combined

scheduling metric that considers the original priority metric and vertex degree.

Implications on Deep Learning Training In our experience, asynchronous algorithms

can be unstable and hard to reason about, especially at scale. In PolyGraph, we had to pick

139

Cycle count

Tr
ai

n
in

g
er

ro
r

Figure 7.26: Convergence Analysis of Synchronous and Asynchronous Algorithms (for

BFS on LiveJournal graph)

a larger learning rate for asynchronous variants to ensure they converge. Figure 7.26 plots

how the error reduces with time for synchronous (Sg) and asynchronous (Aw) variants when

running BFS on a Flickr graph, which has 820K vertices and 9.8M edges. The synchronous

variant shows slow convergence initially because it has not yet seen the whole graph. How-

ever, asynchronous shows a more consistent drop in error due to covering a larger footprint.

The larger footprint may also cause the asynchronous algorithm to deviate. Thus, we used

a larger learning rate to make the algorithm closer to the converging point faster.

Our algorithm variants may apply to deep learning (DL) training algorithms that use

gradient-based techniques similar to Collaborative Filtering [146]. However, further research

will be required when analyzing large feature vectors in DL compared to graph processing.

140

CHAPTER 8

Accelerating Task-Parallel Workloads with

Coarse-Grained Dependencies

This chapter focuses on accelerating task parallel workloads with coarse-grained data de-

pendencies. There are two critical differences compared to graph processing: 1. tasks are

coarse-grained: hence, careful distribution of computation resources is required, 2. depen-

dencies are also coarse-grained: thus, dependencies can no longer be resolved using live

operands, and they will need to be buffered in memory.

PolyGraph hardware, developed in the previous chapter, is inefficient for coarse-grained

tasks as writing and reading dependent data from shared memory requires a synchronization

barrier. The barrier limits the available concurrency and slows the execution. On the other

hand, using static scheduling (as in SPU), one could co-schedule dependent tasks and directly

stream data between them. However, SPU is only applicable when task information is known

offline. Our goal is to retain the dynamic scheduling benefits of tasks while recovering the

lost locality structure.

Our insight is that if we expose the tasks’ potential for communication structure are first-

class primitives in TaskStream, it is possible to recover program structure with extremely low

overhead. Specifically, we augment TaskStream (and PolyGraph) with three optimizations:

work-aware load balancing, recovery of pipelined inter-task dependencies, and inter-task read

sharing through data multicast.

We chose five challenging task-parallel workloads with unique opportunities for special-

izable communication: K-nearest neighbor (kNN) using kd-tree traversal, an ML-oriented

141

B[N] = {3,2,4,8,7,6}
for i: 0 to N:

a. Variable-size Tasks

 M[i] = i*2;
 for j: 0 to B[i]:
 A[j] += M[i]

Ex
am

p
le

c. Coarse-grained
Read Reuse

Multiple accesses to the
same memory -- traffic

Core 0 Core 1

Core 2 Core 3

C
ach

e
(d

ata: M
[1

])

B[4]B[1]

B[5]

Core 0 Core 1

Core 2 Core 3

C
ach

e
(d

ata: M
[1

])

B[4]B[1]

B[5]

Core 2

Core 1Core 0

Core 3

C
ach

e
(d

ata: M
[1

])Core 2

Core 1Core 0

Core 3

C
ach

e
(d

ata: M
[1

])

Batching of duplicate requests
– redundant loads to multicast

b. Coarse-grained
Pipeline Reuse

Multiple memory reads/
writes to X[i]

C
ach

e
(d

ata: X
)

Pipeline reuse of X
– eliminate memory access

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

C
ach

e
(d

ata: X
)

Core 0 Core 1

Core 2 Core 3

C
ach

e
(d

ata: X
)

 for j: tstart[i]
 to tend[j]:
 X += M[j]*A[j]

for i: 0 to tiles:
 for j: tstart[i]
 to tend[j]:
 X += M[j]*A[j]

for i: 0 to tiles:

B[4]B[1]

B[5]

Core 0 Core 1

Core 2 Core 3

 A[Bi] = M[Bi]+1

B[6] = {0,1,2,0,1,1}
for i: 1 to 6:
 for j: B[i] to B[i+N]:

B[6] = {0,1,2,0,1,1}
for i: 1 to 6:
 for j: B[i] to B[i+N]:

 A[Bi] = M[Bi]+1

B[6] = {0,1,2,0,1,1}
for i: 1 to 6:
 for j: B[i] to B[i+N]:

C
o

n
ve

n
ti

o
n

al
 T

as
k

P
ar

al
le

l I
m

p
l.

M[i] uniformly distributes
tasks – load imbalance.

Ex
p

lo
it

in
g

o
r

re
co

ve
ri

n
g

st
ru

ct
u

re

C
ach

e
C

ach
e

Size-aware task schedule
– better load balance.

Core 0
Core 1
(i=0,3)

Core 2
(i=1,4)

Core 3
(i=2,5)

Work=11

Work=9 Work=10

Core 0
Core 1
(i=0,3)

Core 2
(i=1,4)

Core 3
(i=2,5)

Work=11

Work=9 Work=10

Core 0
Core 1
(i=0,4)

Core 2
(i=1,3)

Core 3
(i=2,5)

Core 0
Core 1
(i=0,4)

Core 2
(i=1,3)

Core 3
(i=2,5)

Work=10

Work=10 Work=10

Core 0
Core 1
(i=0,4)

Core 2
(i=1,3)

Core 3
(i=2,5)

Work=10

Work=10 Work=10

Figure 8.1: Opportunities in Näıve Task Parallelism

database query, sparse matrix-multiply, Cholesky decomposition, and Graph Convolution

Networks (GCN).

Overall, we achieve 81.3× speedup over multicore CPUs. Over an efficient static-parallel

CGRA baseline (without TaskStream), we achieve 2.2× speedup, with load-balancing opti-

mizations yielding only 1.3× performance.

In this chapter, we first motivate and describe the key optimizations to TaskStream in

Section 8.1. In Section 8.2, we discuss the execution model, describe the mapping of our

evaluated workloads, and discuss limitations and possible extensions. Section 8.3 describes

the accelerator hardware implementation, and then Sections 8.4 and 8.5 provide methodol-

ogy and evaluation. Then, Section 8.6 describes the relationship to existing software and

hardware systems that optimize for task locality. Finally, Section 8.7 discusses alternate

decisions and pointers to future work.

142

8.1 TaskStream Optimizations

We first motivate the optimizations in TaskStream by discussing opportunities to exploit

certain forms of program structure. Then, we will present our proposed TaskStream model,

abstract from any particular architecture implementation.

8.1.1 Opportunities for Structure Recovery

The context for our proposed system is a tiled multicore architecture, in which a task sched-

uler assigns tasks to cores. We assume a mesh-based network on chip (NoC), but optimiza-

tions apply to other topologies. To elaborate our optimizations, we discuss three program

idioms from Figure 8.1, where locality structure is lost due to exploiting task parallelism.

Variable-sized Tasks A variety of task-parallel workloads have task types1 whose amount

of work is either data-dependent or progressively changing over its instances. Figure 8.1a

shows an example where inner loop tasks have a data-dependent length, based on B[i]. A

naive task parallel model would assign the inner loop tasks irrespective of the work involved

in a task. Work-stealing is possible, but requires extra inter-core communication latency and

bandwidth.

The opportunity here is to distribute tasks with the knowledge of the work involved. In

the example, core 1 gets the smallest and second-largest task (i.e. with total work = 3+7

= 10), so that all cores get similar total work. This model is synergistic with accelerators,

which have quite predictable execution times.

Coarse-grain Pipeline Reuse A common behavior in data processing algorithms is or-

dered dependences between one task and another, for example where one task produces an

array which the other uses in the same order. Figure 8.1b demonstrates a global reduction

1A “task type” is the static definition of a task, including computation and memory accesses, while the
dynamic instantiation of a task is a task instance.

143

example where each core gets a tile of data. In the NSAı̈ve task parallel implementation, all

cores need to perform updates on the reduction variable through memory.

The opportunity here is to identify the ordered reuse, and pipeline or stream the data

from a producer to one or more consumer tasks. This transforms the memory traffic into

direct network traffic, reduces shared-memory overhead from coherence, and also allows

overlapped execution of tasks for more concurrency. In the example, the pipelined reduction

can be performed without accessing memory (except for writing the final value).

Coarse-grain Read Reuse Another common idiom is when different subsets of tasks read

the same data. If such tasks are not scheduled together in time or space, the opportunity

to exploit this form of reuse can be lost. Figure 8.1c demonstrates this with an algorithm

that traverses and modifies a compressed sparse row (CSR)-like data structure, and is rep-

resentative of common algorithms that rely on range-based indirection. Here the duplicates

in B are expected to create multiple tasks with shared read data, providing an opportunity

for reuse. A näıve task parallel model schedules tasks without respecting locality, so tasks

that access the same data may not be scheduled on the same core or at the same time. The

reuse cannot be exploited to save network traffic and cache/memory bandwidth.

Such coarse-grain reuse can be exploited by identifying tasks that access the same data,

and reordering them to execute at the same time on different cores; the responses can then

be multicast to significantly reduce network traffic and memory bandwidth usage. We call

this optimization task batching.

An alternate opportunity, used in a variety of other contexts [41, 105, 109, 266, 11, 63],

is to use a “spatial hint” to assign tasks that access the same data to the same cores. While

this reduces memory access for data that fits in private cache, it also restricts the allowed

scheduling locations, which could restrict load balancing optimizations. We compare against

spatialhint in evaluation.

144

8.1.2 TaskStream Model

An appropriate task-parallel execution model should exploit memory locality within coarse-

grained tasks and programmatically specify structure-recovery opportunities. Reconfigurable

accelerators already exploit memory locality and prefetching using streams [162]. Therefore,

we can reuse and augment the support that already exists in the TaskSTream framework.

the TaskStream framework that naturally integrates with reconfigurable accelerators due to

its load balance approach is an attractive choice. It is also easy – specifically, we augment

TaskStream to expose structure-recovery optimizations by introducing new inter-task edge

types. Here, we first discuss the basics and then cover how each optimization is applied.

TaskStream Basics We augment TaskStream edge types to indicate the potential for

structure-recovery: creation (standard), streaming (for pipeline reuse), and batching (read

reuse). Tasks can be in one of three states: 1. Created: the arguments for a task instance are

constructed on the originating core; 2. Scheduled: the task is bound to execution resources,

3. Executing: task computation is in progress.

Tasks are created when they receive values for all incoming creation (standard) edges.

Next, a task is scheduled to storage/execution resources (e.g., buffer/core), after which it is

assigned a TaskID that represents this location; the TaskID may be returned to the parent

if a streaming communication will be established. Tasks may only be scheduled to a core

configured for its task type. To convey the configuration information, each task node is

annotated with a coreMask: a bitmap that describes the legal mapping locations. Some

task types can be co-located on the same core, provided sufficient resources exist. Tasks

that are not yet ready to execute may be waiting on streaming or batched data, and we call

these tasks pending.

One phase of the program completes when all tasks are completed. A programmay consist

of multiple phases. Examples of a TaskStream program phase are shown in Figure 8.2, where

task types are distinguished by color (and shading), and we will discuss next.

145

a. Task Creation b. Task Streaming
1

. E
xa

m
p

le

 for j: tstart[i]
 to tend[j]:
 X += M[j]*A[j]

B[N] = {3,2,9,8}

 M[i] = i*2;
 for j: 0 to B[i]:

A[j] += M[i]

c. Task Batching

6,8
4,9
2,2
0,3

6,8
4,9
2,2
0,3

M=
110

M[i],B[i]

2
. T

as
kS

tr
e

am
 G

ra
p

h

Sizehint
 = B[i]

X
2
7
3
1

2
7
3
1

Stream Edge Args:
child TaskID,

stream Bytes,
depDistance = 1

X
2
7
3
1

2
7
3
1

M=
111

T2
T1
T0

T4 T5
T3

T2
T1
T0

T4 T5
T3

B[i] Multicast
locations

Unique
reqs

Batch Edge Args:
child TaskID,

DataID = B[i],
Bytes = N

Stream

(contains MBi)

2,N
1,N
0,N

2,N
1,N
0,N

for i: 0 to tiles:
for i: 0 to N:

Batch+
Stream

coreMask
M

 A[Bi] = MBi+1
 MBi = M[Bi]

B[6] = {0,1,2,0,1,1}

for i: 1 to 6:
 for Bi: B[i] to B[i+N]:

B[6] = {0,1,2,0,1,1}

for i: 1 to 6:
 for Bi: B[i] to B[i+N]:

 A[Bi] = MBi+1
 MBi = M[Bi]

B[6] = {0,1,2,0,1,1}

for i: 1 to 6:
 for Bi: B[i] to B[i+N]:

6,8
0,3
6,8
0,3

core 1
6,8
0,3

core 1
4,9
2,2
4,9
2,2

core 2
4,9
2,2

core 2

Output from parent task-instance

Input to child
task-instance

Input to parent task-instance

T4
T3
T4
T3

T1
T0
T1
T0

core1

T5
T2
T5
T2

core2 core3
Tasks assigned to:

T4
T3

T1
T0

core1

T5
T2

core2 core3
Tasks assigned to:

0
2
1
0

0
2
1
0

1
1

0
2
1
0

1
1

M=
001

M=
111

M=
111

Figure 8.2: TaskStream Graph Abstractions

Task Creation & Work-aware Load Balance Figure 8.2a demonstrates the basics, as

well as annotations for load balancing. A single task creation edge connects the outer-loop

multiplication task, and inner-loop accumulation. When two task nodes are connected by

a task creation edge, it means that some outputs from the source node task are used to

activate the creation edge and will be inputs to the destination node task. In Figure 8.2,

the interface for activations is represented by task buffers, and the data order indicates the

order of producing and receiving tasks. The outer-loop task gets core 1 (coreMask:001)

while accumulation gets the remaining 2 cores (coreMask:110) because it has a ratio of

B[i] times more work compared to the outer-loop.

TaskStream provides annotations to aid load balancing at task scheduling time. Task

creation edges may be annotated with a sizehint, which is a task argument that describes

the relative amount of work for the task. This enables a simple size-aware scheduling policy,

where a new task is assigned to the core with the least cumulative work. In the example,

B[i] is the number of iterations of the inner loop, and is therefore used for that task’s

sizehint. The scheduler could then assign tasks of size 3, 8 to core 1 and tasks of size 2, 9

146

to core 2, resulting in a balanced load.

Task Streaming To facilitate dynamic pipelining between tasks, edges may be of task

streaming type. When two nodes are connected by such an edge, the output at the source

node task triggers a streaming communication with the assigned children (stored as child

TaskID). For a streaming edge, the programmer can specify a dependence distance (depDistance),

which allows developing a streaming relationship between task-instances separated by a fixed

number of tasks. In the example, the depDistance is 1. To close the communication, an end-

of-stream message is sent when the required number of bytes have been streamed in, this

parameter must be specified by the producer. To set up the communication, start-of-stream

handshaking messages are exchanged to ensure that the children are ready, and producers

have their scheduling information. The data is streamed in between these messages.

Figure 8.2b demonstrates the task streaming edge: here the dependent instances of the

reduction task type are scheduled in mutually exclusive locations – this is required to ensure

that tasks involved in streaming are concurrently scheduled. When data is available at the

parent task, the start-of-stream message is sent to the destination node and data will be

streamed in. When finished, end-of-stream messages will free resources.

Task Batching To enable multicasting of shared reads, we implement a task batching

edge. This edge requires three parameters when it is activated: DataID indicates whether

the reads are to the same data, TaskID indicates the dependent dynamic task, and bytes

indicates the length of these reads. The task scheduler can use this information to record

which tasks are dependent on the same reads, and reorder them to schedule them together.

The advantage is that data can be multicast to all co-scheduled tasks.

Figure 8.2c demonstrates the task batching edge: here we split the program into a CSR-

traversal task and an addition task type. The outputs from B[i] are batched, resulting in

only 3 unique requests instead of 6. For each unique request, the TaskIDs of the correspond-

ing batched tasks are shown in the “Multicast locations” table. We are able to perform

147

B[i:i+N]

TaskStream
Graph

Dataflow Graphs

Producer
ports

Pseudo code

1. Creation

Origin Core (T1)

T2

5. Ack resp.

7. Data

Core for T2 Core(s) for T3

Consumer
ports

Task protocol

++

Compute
Node

Memory
streams

St A[Bi:Bi+N]

M[Bi:Bi+N]

Task state changes in blue4. Scheduled & ReadyControl Messages in Red

Batched
tasks

T3

T2

T3

T1

 A[Bi] = MBi+1
 MBi = M[Bi]

for i: 1 to 6:
 for Bi: B[i] to
 B[i+N]: Bi MBi

Bi

Bi

MBi

Task
Edges

8. Close

Bi

Bi

MBi

6. Execution

T2

T3

Figure 8.3: TaskStream + Dataflow (T2 state changes omitted.)

this reordering by exploiting the fact that the addition tasks are commutative and can be

executed in any order without affecting correctness.

8.2 TaskStream for Reconfigurable Accelerators

Applying TaskStream to a reconfigurable accelerator naturally creates a hierarchical-dataflow

representation: one higher-level dataflow of task management and communication, and one

lower-level dataflow of instruction execution. We developed this hierarchical representa-

tion already in Chapter 7. Here we describe the integrated abstractions on TaskStream,

the process of programming, and mapping of evaluated workloads. Finally, we discuss the

limitations and possible extensions of our programming model.

148

8.2.1 Hierarchical TaskStream Dataflow

Figure 8.3 depicts an example program written using hierarchical taskstream dataflow pro-

gram representation. In our updated task protocol, we add optimizations for sizehint-aware

schedule, streaming and batching reuse. We first discuss these optimizations and then de-

scribe the techniques to overcome the possible bottlenecks.

Task Protocol Figure 8.3 also shows the task protocol for the example, demonstrating

all three task operations: scheduling, streaming and batching. We refer to the figure as we

detail the protocol.

Task Protocol – Scheduling: After a task is created, it is scheduled both spatially and

temporally (step 1 and 2 in Figure 8.3). For spatial scheduling, TaskStream checks whether

any task argument is annotated with sizehint, and the task is sent to the core with the least

cumulative work until now, and this value is incremented. If no argument is annotated as

sizehint, round-robin ordering is used. To minimize the response traffic, tasks which only

access memory (e.g. T2 in Figure 8.3) are scheduled differently; they are instead scheduled

where the data is located (e.g. by determining the shared cache bank of the start address).

Task instances (identified by their arguments) may either be held in a ready state if all

arguments are available, or in a pending state otherwise. For example, in Figure 8.3, the

T2 task is ready after receiving B[i], however the T3 task will be in the pending state,

as it is still waiting on M[j]. In the pending case, the producer must provide an explicit

“acknowledgment” (ack) of data readiness to trigger the task.

Task Protocol – Streaming: Whenever there is data at the producer port of a task stream-

ing edge, an ack is sent to the child tasks along with the producer port information (Fig-

ure 8.3, step 3). This ack should trigger a check as to whether the child task can be concur-

rently scheduled; this requires that the current task has finished and the consumer port is

free. When both conditions are met: the child task is set ready and scheduled (Figure 8.3,

step 4), the consumer port is set busy (i.e. it is acquired), and the ack response is sent back

149

to start streaming (Figure 8.3, step 4, 5). After the last data is sent, the producer sends

another ack to close the communication and free the remote port (Figure 8.3, step 8).

Task Protocol – Batching: Batched tasks will be held temporarily, and those identified to

have the same DataID will be scheduled simultaneously across multiple cores; the responses

of batched requests are multicast to all co-scheduled tasks. Batched requests also supply a

bytes argument that indicates the length of the data to be streamed. In Figure 8.3, step 3,

ready acks are sent to all batched tasks, which will then be scheduled on different cores (step

4). Then, after the ack response is received from all cores and the tasks are set for execution

(step 5, 6), data will be multicast in step 7, before the communication is closed (step 8).

Deadlock Prevention During streaming inter-task communication, the ports involved

must be acquired before data is sent, and held until the stream is complete. This ensures

that data for multiple streams is not interleaved. Port acquisition has deadlock hazards,

which we describe, along with solutions, as follows:

Self-loop in the TaskStream Graph: Consider the scenario when the parent and child

tasks, setup for streaming communication, are scheduled for execution on the same core.

The child task may never be able to lock the consumer port if the parent is already using it,

and the parent cannot release the producer port until the streaming data is sent to the child,

as it is waiting for the child to get lock of the consumer port. Our solution is to allocate a

mutually exclusive set of resources/cores to the parent and child tasks. More specifically, in

the case that streaming exists within tasks of the same type, tasks can form a dependence

chain. We create virtual partitions of the cores to divide the cores into a number of sets

equal to a maximum dependence-chain length. A child is always scheduled to a different

virtual partition than any of its parents.

Capturing multiple ports for multicast: For multicast, the parent task needs to acquire

multiple ports, one for each core. Here we break the possibility of cyclic deadlock by ensuring

the ports are acquired in the order of core ID (a unique ID assigned to each core).

150

a. Original source code

(val,
k)

Point

Vect
or

Creation Creation

Creation

Mat-tile

(val, k,
tile_info,
dep_info)

mask=
0001

mask=
0001

mask = 1110
Sizehint = is_rect

Stream

(val,
new_k)

Barrier

X

X

inv
(producer)

inv
(producer)

invsqrt
(producer)
invsqrt
(producer)

b. TaskStream
Graph

c. Dataflow Graphs

A[k,k]

/

/

sqrt

(cons-
umer) A[k,k:n] invsqrt

(consumer)
invsqrt

(consumer)

L[k:n,k]

X

inv
(consumer)

inv
(consumer)

A[k,k:n]

-

A[k,k:n]A[k,k:n]

A[k:n,j:n]A[k:n,j:n]

A[k,k]
(point producer)

A[k,k]
(point producer)

A[k+1:n,j:n]
(streaming producer)

A[k+1:n,j:n]
(streaming producer)

Virtual
partition
to avoid
deadlock

during
streaming

Point task Vector task

Matrix
task

for (k=0; k<n; ++k)

inv = 1/a[k,k]
invsqr = 1/sqrt(a[k,k])

 for (j=k; j<n; ++j)
l[j,i] = a[i,j]*invsqr
for (j=k+1; j<n; ++j)

for (i=j; i<n; ++i)
a[j,i] -=

a[k,i]*a[k,j]*inv

for (k=0; k<n; ++k)

inv = 1/a[k,k]
invsqr = 1/sqrt(a[k,k])

 for (j=k; j<n; ++j)
l[j,i] = a[i,j]*invsqr
for (j=k+1; j<n; ++j)

for (i=j; i<n; ++i)
a[j,i] -=

a[k,i]*a[k,j]*inv

Task:
TxT square
TxT triag.

Task:
1xT tiles

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Delta
core

Memory Controller

Memory Controller

M
em

o
ry

 C
o

n
tr

o
lle

r M
em

o
ry C

o
n

tro
ller

d. Mapping to Delta

coreTask:
1x1 data

(depDist=
#tilesInK)

Figure 8.4: Cholesky Implemented in TaskStream (for brevity, only two outer loop iters.

run in parallel in one program phase)

8.2.2 Programming

One of the key advantages of programming in TaskStream is that it manages task scheduling

at high performance, with only modest programmer help. The process to port a C/C++

workload to TaskStream programming model involves three steps: 1. Defining task types and

their functionality, 2. Determining the dependencies among task types to form a taskstream

graph, and 3. Managing the start and stop of a program phase. We will discuss each of

these in detail below, using Cholesky as an example, as depicted in Figure 8.4.

Defining Task Types When porting a program, a code region should be assigned to a new

task type if it performs different computations, the same computations at a different rate,

or has different locality behavior. For example, two computations may either be combined

into a single task so that the task granularity is higher or may be split if the data associated

with two computations are not expected to have similar locality behavior.

For each task type, the programmer first defines the instruction-level dataflow graphs.

151

Description of Node Property

coreMask Bitmask indicating cores a task may be assigned to.

sizehint Task argument that indicates relative task length.

spatialhint Task argument indicating a preferred core (for locality)

Table 8.1: Node properties in Task Graph

The programmer assigns certain cores to that task type using the coreMask, and may also

define a task argument as a sizehint or spatialhint. The node characteristics are as

defined in Table 8.1.

For the example in Figure 8.4a, Cholesky has three task types, one for each loop nesting

degree: 1. Point: performs only one inverse and square root for every outer loop iteration.

2. Vector: performs O(n) multiplication operations. 3. Matrix: performs O(n×n) multipli-

cation and subtraction operations. Since the work required for Point and Vector is much

smaller than Matrix, the coreMask is set to assign one core to both Point and Vector, while

all other cores are assigned to the matrix task. Figure 8.4d shows the mapping of Cholesky

to our accelerator, called Delta, which will be explained in the next section.

Task granularity is also a significant choice. Smaller tasks may suffer task management

overheads, while larger ones are more difficult to load balance. If the task-size distribution

is too wide, even the size-hint optimization may not be sufficient. Cholesky is challenging

to tile into tasks, because the iteration domain is triangular. Therefore, we split the task

into square and triangle tiles (along the diagonal); these are still of relatively different sizes.

The new task types are Point, Vector-tile, and Matrix-tile. The tile information is passed as

arguments on the Point-to-Matrix edge.

Defining the TaskStream Graph Next, the programmer uses algorithmic knowledge to

identify edges among task type nodes. These include determining whether any task compu-

tation is triggering another computation (task creation), whether the tasks have pipelined

reuse among them, and whether there is shared read-data among tasks. Another important

152

Table 8.2: Edge properties in Task Graph

Description of Edge Property

P
ro

g
ra

m

E
x
p
o
se
d Edge type Either Creation, Streaming, or Batching

Producer & con-

sumer ports

Interfaces for TaskStream I/O

P
ro

g
ra

m

H
in
ts

depDistance By comparing the distance (port), it identifies a task as parent/child.

DataID ID used to batch shared-read data/requests

Bytes Either used as size for streaming or meta-data for batching

H
a
rd

w
a
re

M
a
n
a
g
e
d

TaskID Stores location where a task is buffered

Ack Ack buffer maintains TaskIDs of tasks whose ready signal is waiting to

be served

Sched Stores TaskIDs of child tasks, as identified using depDistance

SchedParent Stores TaskIDs of parent tasks, as identified using depDistance

component is to decide the task arguments for a type and then create an edge interface from

producer ports at the source task to consumer ports at the destination task. The list of

supported edge characteristics is defined in Table 8.2; we list hardware managed aspects as

well, to make it clear what the programmer needs to reason about.

In the Cholesky example in Figure 8.4c, there is a creation edge from Point to Vector

and Matrix-tile. There exists data dependencies among multiple matrix tasks, hence there is

a streaming edge from the Matrix-tile task to itself. The dependence distance is the number

of matrix-tiles in the kth iteration of the outermost loop.

Finally, we need to limit the number of recursive tasks created by the self-loop in Matrix-

tile task – this is done by setting the maximum dependence-chain length, determined based

on hardware resource limitations (the sensitivity to this length is studied in Section 8.5).

The program phase will end, shown as “barrier” in the figure, after all dynamic tasks are

153

complete.

Managing a Program Phase A program phase starts when the programmer pushes an

explicit task of any type. The phase is complete when all tasks have finished execution.

Cholesky is initiated by creating a task for the outer-loop point task.

8.2.3 Workload Mapping

Here we discuss how we implemented each of the four additional evaluated workloads. Fig-

ure 8.5 shows examples (with only a coreMask for 4 cores, for simplicity).

k-nearest neighbors Figure 8.5a shows the TaskStream graph for kNN search. For every

query, a binary kd-tree is searched. When the leaf node is reached, data associated with

the leaf is accessed to perform linear search (similar to Tigris [261]). We define two task

types: 1. Tree node: A tree traversal. Since each traversal will incur long latencies to access

pointers, we split it into small tasks that compares with the current node and outputs the

next tree node. 2. Leaf search: Here the query is searched linearly in a long vector associated

with the leaf. Many queries may search in the same leaf, generating coarse-grained reuse.

Hence, we separate the leaf load task and add a Batch+streaming edge to the leaf search

task.

Graph Convolution Network (GCN) Figure 8.5b shows the TaskStream graph for

GCN. Every vertex accumulates its feature vectors into its outgoing neighbors, and when

all the incoming feature vectors are received, the accumulated vector is multiplied with a

weight matrix. To enable flexible load distribution, we define three task types: graph access,

feature vector updates (together performing aggregation) and matrix-vector multiplication.

As updates involve irregular accesses, we use spatialhint based scheduling for atomic updates

to ensure that remote accesses are minimized. For accesses to the vertices with varying

degrees, we use sizehint based scheduling. For matrix-vector multiplication, different graph

154

Sort Join

Kmeans/
Groupby

Creation

Barrier

(match)

c. Database + Machine Learning

mask = 1111

mask = 0011

mask = 1100

mask = 0001

Tree-
node

Creation

Creation

(new_node,
query)

(leaf_id,
bytes,
ptr)

a. k-nearest Neighbors

(leaf_id,
query)

mask = 1110

(vid)Ld
leaf

Creation

Batch+
Stream

mask = 1111

Acce
ss

Ld
wgt

Creation

Creation

(vid)

b. Graph Convolutional Networks

mask = 0001

Mult

Upda
te

Batch+
Stream

Creation
(wgt_addr,

N)

mask = 0001
Sizehint = deg(vid)

mask = 1111
Spatial = dst_id

mask = 1110

(dst_id)Acce
ss

Ld
wgt

Creation

Creation

(vid)

b. Graph Convolutional Networks

mask = 0001

Mult

Upda
te

Batch+
Stream

Creation
(wgt_addr,

N)

mask = 0001
Sizehint = deg(vid)

mask = 1111
Spatial = dst_id

mask = 1110

(dst_id)

M1col*M2row-tile

Dum
my

(col_id,
bytes, ptr)

d. Sparse Matrix-matrix Multiply

mask = 1110
Sizehint =

len(M2row-tile)

mask = 0001

Creation

Ld
M1

Creation

Batch+
Stream

mask = 1111

M1col*M2row-tile

Dum
my

(col_id,
bytes, ptr)

d. Sparse Matrix-matrix Multiply

mask = 1110
Sizehint =

len(M2row-tile)

mask = 0001

Creation

Ld
M1

Creation

Batch+
Stream

mask = 1111

Search

Figure 8.5: TaskStream Graphs for Evaluated Workloads

vertices access the common weight matrix, creating an opportunity for batching reuse (shown

by the weight load task and the Batch+Streaming edge). We store the weight matrix in the

private scratchpad, and multicast from there.

Database + Machine Learning Figure 8.5c shows the TaskStream for a Database/Ma-

chine Learning kernel from Gorgon [239], specifically query 2. We define three task types: 1.

Sort: Sort requires sufficient work to utilize all resources. Moreover, it reuses its outputs as

inputs to the next iteration of sort, and therefore, its output cannot form pipelined commu-

nication with other dependent task types. Hence, we treat the subsequent computation as

another phase, executed after a task barrier. 2. Join: requires O(n) comparison operations.

3. kmeans-groupby: requires O(#matched-rows*d) operations to find the minimum distance.

Since the work required among Join and kmeans-groupby may be highly different depending

on the number of matched rows and the number of dimensions, we assign 2 cores to Join

and the rest to the kmeans-groupby task type. These tasks are connected by the creation

edge.

155

Sparse matrix multiply Figure 8.5d shows the TaskStream for sparse matrix-sparse

matrix multiply. Here we use a tiled outer product implementation (similar to SCNN [179]).

We define a task type as the product of a column of matrix 1 and a tile of matrix 2’s

corresponding row. Since different tiles of matrix 2’s row access a common column, there

is an opportunity of batching reuse (shown by “Ld M1” and the Batch+Streaming edge).

Moreover, we store copies of matrix 2’s row and partial sums in the private scratchpad, and

use spatialhint based scheduling to ensure that a task is scheduled where its data is stored.

8.2.4 Discussion of Limitations and Extensions

Our Programming Experience After identifying tasks and dependences, writing TaskStream

code is not overly complex. For programming TaskStream, we use a unified graph domain-

specific language for both the TaskStream and dataflow graphs. For reference, tiled-Cholesky

on a static-parallel accelerator (REVEL [253]) is 163 lines of code, and the TaskStream ver-

sion is 210 lines.

Adapting Task-parallel Programs While we focus on specialized implementations, it

is somewhat straightforward to adapt programs from languages with fork-join parallelism

like Cilk [34]. The essential idea is that whenever a child synchronizes with a parent task

using backward dependence in Cilk, in TaskStream, the parent-task can create a successor

task, and the child tasks will now have a forward dependence to the successor task. This

is possible because TaskStream allows pending tasks, where tasks are waiting on arguments

from dependent tasks. The child tasks can communicate with the successor task using

TaskID. Because this is implemented in hardware, it puts a limit on the number of in-flight

tasks. In addition, various dataflow-inspired programming models [229, 207, 257, 124, 92]

also rely on static inter-task dependencies. These could be a natural fit for expressing

TaskStream programs.

156

A Hypothetical Compiler It is future work to automate the intuition above to construct

a high-level-language compiler. In addition to the above, such a compiler would need to

identify some program structure to apply the optimizations we consider: The sizehint

could be determined by estimating loop trip counts and instruction counts. The coreMask

can be determined by balancing load, based on the relative ratio of average per-task work,

and this could be calculated similarly. For structure-recovery edges with simple nested-loop

programs, loop dependence analysis could be sufficient (e.g. Cholesky). Workloads with

dynamic dependencies, like sparse-matrix-multiply and kNN, may require programmer help

(e.g. a loop annotation indicating dependencies).

8.3 Delta: A TaskStream Accelerator

Delta is our proposed multicore accelerator, which implements the TaskStream execution

model. Delta tiles are interconnected with a mesh-based NoC, and Figure 8.6 overviews a

single tile.

The computation unit is a coarse-grained reconfigurable array, connected via hardware

ports (vector ports). The stream controller generates memory requests from stream access

patterns, and the responses are sent to the port interface for further communication.

The novel aspect of the hardware is for task management, particularly the task-creation

unit (used for storing arguments for ready and pending tasks), and the task-batching unit

(used for detecting and scheduling tasks that read the same data). We next describe the

design and operation of these components.

Memory Hierarchy Each core has a small private scratchpad, and all cores share access

to a shared, distributed on-chip cache. To explain the rationale for this design, we consider

the three predominant forms of reuse for memory access: 1. Small, read-only data shared

among tasks: This data should be cached on-chip during the entire algorithm. Therefore,

each core has a small private scratchpad. 2. Shared data across a subset of tasks: Here

157

Coarse-grained
Reconfigurable array

(CGRA)

Banked
scratchpad

Shared cache
bank

Memory Stream controller

To input port
interface

Reordering
circular queue

Memory
streams

table

Address
generator

Input Vector Port Interface

Output Vector Port
Interface

Ctrl coreRouter

FIFO
sched
uler

Ack
port

Free
list

FIFO
sched
uler

Ack
port

Free
list

DataID Arg1 Arg2 Arg3

0

1

2

DataID Arg1 Arg2 Arg3

0

1

2

DataID Arg1 Arg2 Arg3

0

1

2

DataID Byte1 TaskID Byte2

5

0

7

DataID Byte1 TaskID Byte2

5

0

7

DataID Byte1 TaskID Byte2

5

0

7

FIFO
sched
uler

CAM
search

Free
list

Task creationTask batching

DRAM

Task controller

 Queues Queues Compute Compute Storage Storage Network Network

Task stream table

Figure 8.6: Single Tile of Delta Accelerator

the use of scratchpad would require software coherence, and would be difficult to manage.

Therefore, Delta has a shared cache, and the reuse across tasks is exploited using task

batching. 3. Streaming data with no reuse: This data can bypass the cache hierarchy and

will be directly streamed from memory.

Memory Stream Controller The memory stream controller is designed to generate mem-

ory addresses using the access patterns and size determined by task type and arguments.

Along with an address generator, the memory stream controller also has a stream table that

holds their running state. For each stream in the task dataflow program, we reserve some

number of entries in this stream table so that forward progress can always be guaranteed

(otherwise streams for a single port could fully occupy the table, and streams for another

port could not be scheduled).

Task Creation Unit This unit holds tasks until all of their arguments have been received.

This unit includes a free list, task argument buffer, dedicated acknowledgment buffer, and

158

a FIFO scheduler (see Figure 8.6). The task argument buffer is a simple SRAM memory

that stores task arguments sequentially, and the free list queue maintains free entries in this

buffer.

When data at producer ports is available, if the free list has space, the arguments are

pushed in the task creation buffer, and a unique TaskID is assigned (using current core and

task buffer location information). When a task is ready (i.e. does not require an explicit

acknowledgment or already has one), the address location of the current task (TaskID) is

pushed to the FIFO scheduler. When all consumer ports have sufficient space, the FIFO

scheduler will release the task arguments to the input ports in the given order. At that time,

the resulting entry will be pushed into the free list.

Task Batch Buffer This unit enables dynamic batching of tasks. Similarly to the creation

unit, this unit also has a free list, batching buffer, a small CAM and a FIFO scheduler. The

batching buffer is a banked SRAM memory; the difference here is that the free list maintains

TaskIDs of a “batch” of task arguments instead of just one, as in the task creation unit.

Also, here all the task arguments are annotated, which includes bytes and TaskID of the

dependent tasks, as shown in Figure 8.6. When the data at the producer ports is ready, the

CAM is searched for the current DataID entry. If the entry is found, the new task arguments

are stored at this DataID’s next empty entry. Otherwise, a new entry is popped from the

free list for this purpose. The CAM is filled whenever a new entry is assigned to the task

batching buffer, and is cleared whenever a task batch is full or served by the data response.

The usage of free list and FIFO scheduler is similar to the task creation unit.

Task Stream Table This table maintains the streams associated with TaskStream edges.

These include the streams that transfer data: 1. from producer ports to the correspond-

ing task creation/batching buffer, 2. from task creation/batching buffer to corresponding

consumer ports, 3. Any streams for streaming data to remote cores.

159

Workload Dataset-size Workload Parameters

kNN

Queries=512

Queries=1024

Queries=2048

kd-tree-depth=8

leaf-size=2048

SpMM

M1=M2=512x512

M1=M2=1k*1k

M1=M2=4k*4k

density=0.10

DB-ML
T1=T2=10M

T1=T2=15M
join=0.10

Cholesky
N=128

N=256
tile-size=32

GCN
cora (V=2708, E=10556)

citeseer (V=3243, E=4536)
feat-len=64

Table 8.3: Datasets Used in this Work

Communication Protocol For managing streaming communication with low network

overhead, we use a coarse-grained credit-based flow control. The consumer core sends credits

to the producer core when some number of entries become free in the consumer port (we

find 8 keeps traffic low).

Also, during streaming communication, handshaking messages are exchanged to schedule

the parent and child tasks. Here, we need to reorder messages so that the correct parents

are matched to the correct children, which we accomplish using the “reordering circular

queue”. Space in this queue is allocated when a message is sent. At responses, the router

messages are passed via this queue, then finally pushed to the vector port interface in order.

Finally, we use a separate virtual channel for inter-accelerator messages to avoid deadlock.

Round-robin scheduling is used for fairness.

160

Characteristics Value

Cores 16

FP Units 1024

Task buffer entries 16 64-byte

Memory bndwidth 256 GB/s

Shared Cache 2 MB

Private Scratch 256 kB

Network 64-byte mesh

Table 8.4: Architecture Parameters

8.4 Methodology

Delta Power/Area We implemented Delta’s CGRA by extending the Chisel-based DSAGEN [251,

161] framework. Components were synthesized using a 28nm UMC library. We use Cacti

7.0 [156] for estimating the overhead of the SRAM buffers and CAM within the task creation

and batching units.

Baseline Architectures For reference, we compare against a 24-core SKL CPU running

optimized libraries: MKL [2] for Cholesky and SpMSpM, and MADLib [1] for DB-ML. For

kNN, we use the popular FLANN [154] library. For GCN, we use the PyG library [3].

We developed a simulator for Delta and integrated it with gem5 [32, 200, 226], using a

RISCV ISA [22] for the control core. For accelerator comparison points, we evaluated three

designs:

• Static Parallel: Work is partitioned statically to each core by the programmer, and

data is tiled into each core’s scratchpad.

• Delta+OnlyTasks: In this version, Delta tasks are scheduled dynamically in hard-

ware using size-hint scheduling policy.

161

Wkld Knn Cholesky DB-ML Spmspm GCN GM

Speedup 43.2 6.9 1729.2 65.3 105.4 81.3

Table 8.5: Speedup over 24-core SKL CPU

• Delta-TaskStream: This includes both load balance and locality/structure-recovery

optimizations within TaskStream.

Datasets We use synthetic datasets with varying sizes and natural skewness; GCN uses

popular real-world graphs. Table 8.3 shows the dataset sizes and workload parameters.

Parameters Table 8.4 shows the common hardware parameters of Delta and baselines.

8.5 Evaluation

Broadly, the goal of our evaluation is to analyze whether our Delta proposal is able to recover

locality structure while retaining the benefits of task parallelism. First we compare against a

CPU and an equivalent static parallel design. Then we give insight into performance benefits

with stream recovery (i.e. inter-task streaming/batching) by examining network traffic and

core utilization over time. Then, we explore sensitivity to the task scheduling strategy and

pipelining depth. We conclude by discussing area overheads.

Overall Performance First, we validate that Delta provides accelerator-like performance

over existing multicore CPUs. Table 8.5 below shows the speedup over a 24-core baseline

CPU. Cholesky has the least speedup, as Delta exhausts all the parallelism in this workload

at the evaluated array size. The other workloads have more data-parallelism: kNN during

linear search, DB-ML for performing kmeans search on many data points, spmspm and GCN

for matrix multiply. Thus, they achieve higher speedup, as the data-parallel resources of the

accelerator can be fully realized.

162

kn
n5

12
kn

n1
k
kn

n2
k

spm
m51

2

spm
m1k

spm
m2k

db
-m

l.5
M

db
-m

l.1
0M

db
-m

l.1
5M

cho
.12

8

cho
.25

6

gcn
.co

ra

gcn
.cs

r
GM

10−1

100

101

No
rm

 S
pe

ed
up

StaticParallel
Delta-OnlyTasks

Delta-TaskStream

Figure 8.7: Overall Performance Comparison

kn
n5

12
kn

n1
k

kn
n2

k

spm
m51

2

spm
m1k

spm
m2k

db
-m

l.5
M

db
-m

l.1
0M

db
-m

l.1
5M

cho
.12

8

cho
.25

6

gcn
.co

ra

gcn
.cs

r AM
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Ratio of unoptimized memory traffic converted to network traffic
Ratio of unoptimized memory traffic remaining

Figure 8.8: Traffic-breakdown with Stream Recovery

163

0.00

0.25

0.50

0.75

1.00
Ut

iliz
at

io
n

kNN Delta-OnlyTasks (avg. util: 0.09)
Core0-tree Core1-search Core2-search Core3-search

0 5 10 15 20 25 30
Time (1 unit = 10k cycles)

0.00

0.25

0.50

0.75

1.00

Ut
iliz

at
io

n

kNN Delta-TaskStream (avg. util: 0.23)

0.0

0.5

1.0

Ut
iliz

at
io

n

DB-ML Static-parallel (avg. util: 0.05)
Core0-join Core1-kmeans Core2-kmeans Core3-kmeans

0 20 40 60 80 100
Time (1 unit = 10k cycles)

0.0

0.5

1.0

Ut
iliz

at
io

n

DB-ML Delta-TaskStream (avg. util: 0.43)

Figure 8.9: Utilization Comparison with Stream Recovery.

164

Benefit of Tasks Figure 8.7 shows that Delta-OnlyTasks achieves 1.3× speedup against

the static reconfigurable accelerator that represents the state-of-the-art. Delta-OnlyTasks

improve speedup for kNN and DB-ML by enabling better distribution of work irrespective of

where the kmean’s input (or leaf in kNN) is mapped statically, while it would matter in the

static parallel implementation. For SpMSpM, the speedup comes from increased parallelism

from overlapping execution of task types as data becomes available. Cholesky does not

benefit due to low parallelism in both static-parallel and OnlyTasks without the stream-

recovery optimization. GCN is an exception where there is a slowdown, as consecutive

requests to access the weight matrix will create a hotspot in the network.

Benefit of Structure Recovery Figure 8.7 also shows that with stream-recovery opti-

mizations, the speedup increases to 2.2× over the static-parallel accelerator. SpMSpM does

not benefit from stream-recovery, as it is not bottlenecked by communication; in the outer-

product implementation, the batched column of the first matrix has high reuse – each element

in the column is multiplied with each of the elements in the second matrix’s corresponding

row. However, kNN and GCN have less reuse, and batching tasks can reduce memory traffic

by nearly an order of magnitude. Cholesky benefits from explicit communication among

dependent tasks, which alleviates the overheads of shared memory synchronization. DB-ML

does not have opportunity for stream recovery.

Memory Traffic Reduction To explain the source of performance improvement using

stream recovery, Figure 8.8 demonstrates what percentage of memory traffic is converted into

network traffic in Delta-TaskStream. In most cases, more than 50% of the memory traffic is

converted, with even fewer packets due to multicast.

Fine-grained Core-wise Throughput Comparison TaskStream optimizations improve

the core utilization2 by alleviating communication bottlenecks, while providing load balance.

2Utilization is defined as the percentage of functional units (FUs) fired in each cycle.

165

We give insight into its capabilities by showing the per-workload utilization over time in Fig-

ures 8.9/8.11 and discuss below. Note that we only plot for a subset of cores for clarity;

also, core 0 is used for lower-rate (or less compute intensive) tasks, therefore is generally

under-utilized. The title shows the average utilization across all cores.

• kNN: Tasks enable overlap of the tree search tasks, improving utilization of Core 0,

which is executing tree tasks. With stream batching optimization, the accesses to the

leaf data are batched and multicast to co-scheduled tasks. This increases effective

bandwidth and improves utilization (see Core 1, 2, 3).

• DB-ML: Also in Figure 8.9, the legend lists the task-to-core mapping in our imple-

mentation. Sort is performed in a separate phase for both implementations, hence we

omit from this figure. Stream recovery opportunities do not exist in DB-ML, hence we

compare static parallel and Delta-OnlyTasks. The Delta implementation dynamically

distributes the “kmeans” tasks that are created by “join” and hence is able to balance

load much better (see how static-parallel Core 1 and 2 are heavily under-utilized in

some phases).

• Cholesky: For Cholesky in Figure 8.10, we show 12 outer-loop iterations (1 phase in

TaskStream). In Delta-OnlyTasks, only one outer-loop iteration can be performed at

a time due to inter-loop dependencies. This both reduces the available parallelism and

introduces barrier overheads. Delta allows many more parallel tasks with the support

for chained streaming. It further ensures balanced execution by distributing load based

on sizehint.

• Sparse matrix-multiply: Now referring to Figure 8.11, due to the outer-product

implementation of sparse matrix-multiply, there is high reuse available. Therefore, the

utilization of task-parallel versions are nearly ideal, and there is not much potential

left for task batching.

• Graph Convolution Networks: Stream-recovery significantly improves the through-

166

0.0

0.5

1.0

1.5

Ut
iliz

at
io

n

Cholesky Delta-OnlyTasks (avg. util: 0.06)
Core0-pnt/vec Core1-matrix Core2-matrix Core3-matrix

0 5 10 15 20 25 30 35 40
Time (1 unit = 10k cycles)

0.0

0.5

1.0

1.5

Ut
iliz

at
io

n

Cholesky Delta-TaskStream (avg. util: 0.32)

Figure 8.10: Utilization Comparison with Stream Recovery for Cholesky.

put of the matrix-multiply cores, as batched reads of the shared weight matrix enables

higher effective network bandwidth. Since 13/16 cores work on the matrix-multiply,

this improves the average utilization by 6.6×.

Comparing Task Scheduling Strategies Figure 8.12 compares four scheduling poli-

cies on Delta: round-robin, random, spatialhint, and sizehint. For kNN, spatialhint

schedules tasks with the same leaf id to the same core, so multicasting becomes irrelevant.

For Cholesky, sizehint gains 1.63× performance over the baseline round-robin due to dis-

tributing square and triangular tiles better. For DB-ML, kmeans on all data items takes a

similar amount of time, so load balance is less important, except that spatialhint restricts

scheduling, thereby aggravating load imbalance. For SpMSpM, only spatialhint applies,

as we are using an outer product, where partial sums are maintained in scratchpads, and we

only allow tiles to be scheduled near their partial sums. This is because scheduling elsewhere

would introduce excess remote fine-grained atomic update traffic, hurting performance. In

GCN, the scheduling policy affects the vertex-access ordering. sizehint can balance load

167

0.0

0.5

1.0

1.5
Ut

iliz
at

io
n

Spmspm Delta-OnlyTasks (avg. util: 0.86)
Core0-dummy/mm Core1-mm Core2-mm Core3-mm

0 10 20 30 40 50
Time (1 unit = 10k cycles)

0.0

0.5

1.0

1.5

Ut
iliz

at
io

n

Spmspm Delta-TaskStream (avg. util: 0.85)

0.00

0.25

0.50

0.75

1.00

Ut
iliz

at
io

n

GCN Delta-OnlyTasks (avg. util: 0.06)
Core0-agg Core1-agg Core2-matrix Core3-matrix

0 10 20 30 40 50 60
Time (1 unit = 10k cycles)

0.00

0.25

0.50

0.75

1.00

Ut
iliz

at
io

n

GCN Delta-TaskStream (avg. util: 0.40)

Figure 8.11: Utilization Comparison with Stream Recovery

168

kn
n5

12
kn

n1
k
kn

n2
k

spm
m51

2

spm
m1k

spm
m2k

db
-m

l.5
M

db
-m

l.1
0M

db
-m

l.1
5M

cho
.12

8

cho
.25

6

gcn
.co

ra

gcn
.cs

r
GM

0

1

2

3

No
rm

 S
pe

ed
up

Round-robin
Random

Spatial-hint
Size-hint

Figure 8.12: Sensitivity to Load Balancing Strategies

better by intelligently distributing vertices with varying degree. In conclusion, sizehint

consistently outperforms the simpler random and round-robin policies. Spatialhint does

not benefit much, as it restricts scheduling for load balancing without surpassing the locality

benefits of stream recovery.

Sensitivity to the Depth of Pipeline Parallelism TaskStream gives control to pro-

grammers on how to expand different facets of parallelism. We elucidate with an experiment

on Cholesky, by varying the depth of streaming dependence chain (i.e. how many tasks are

allowed to chain), and the results are below in Table 8.6. Higher depth improves available

parallelism at the cost of extra streaming network traffic, and the optimal point for these

array sizes occurs at a depth of 12. At higher depths, latency stalls to set up the pipeline

streaming communication are more compared to the benefits of improved concurrency. One

interesting finding is the pathological case at a depth of 10; performance drops because on

our 16-core 4x4 mesh, around half of the cores are sending data to the next half, causing

much of the communication to be on a few bisecting links. Detecting and mitigating this is

future work.

169

Table 8.6: Sensitivity to Dependence Chain Depth

depth 1 2 6 8 10 12 14

Cholesky-256 1 1.8 3.1 5.6 3.6 7.7 7.5

Cholesky-128 1 2.0 2.4 2.6 3.1 3.6 3.4

Area Overhead Table 8.7 shows the area breakdown of Delta, within and across cores.

The only additional components required over the static architecture are the task manage-

ment units, which consume 3.6% of the total on chip area.

Table 8.7: Area and Power breakdown for Delta (28nm)

Area

(mm2)

Power

(mW)

Control Cores 0.053 11.5

Task Creation 0.01 4.76

Task Batching 0.033 10

scratchpad+ctrl 0.08 11.2

CGRA (4x5) 0.21 80

1 Delta-Core 0.386 117.46

4x4 64 byte mesh (1) 0.2 44.7

Shared cache 12.39 2280

Delta Total 18.77 4203.7

8.6 Related Work

Table 8.8 compares Delta and prior works based on three critical factors: 1. Sched-flex :

Flexibility to schedule work spatially across cores, which can help balance locality and load.

2. Mem-sched : Ability to exploit shared read-reuse among tasks. 3. Inter-task-comm:

Write-read dependencies among tasks may be resolved via shared memory synchronization

170

or explicit communication. No prior work simultaneously supports hardware task scheduling

flexibility and memory scheduling, and none supports read-reuse with task-based parallelism.

The remainder of this section discusses in further detail.

Locality in Task-Runtimes An inspiration for our work is the study of locality-enhancing

techniques for software-only threading and task-parallel systems [44, 13, 217, 267, 91, 141]. A

prevailing mechanism is work-stealing [13, 91, 267, 141, 204], which lends itself to locality by

keeping parent and child tasks together. This is effective in divide-and-conquer algorithms,

but does not guarantee locality in general, and task stealing may incur non-negligible latency

on the critical path (especially when ported to accelerated systems).

Of particular note are techniques which recover program structure. One approach is to

annotate tasks with the dataset they may access, and use this to schedule tasks near-data.

This has been explored in task-parallel languages [41], speculative parallel models [109,

266], and partitioned global address space (PGAS) systems [105]. Another approach is

Splicing [140], which is a compiler optimization for recursive task-parallel programs that

interleaves tasks with locality to optimize for locality.

Accelerating Task Parallel Codes Task management is a significant overhead that

has been mitigated by hardware based [126, 271], or hardware assisted schedulers [206].

Anton2 [215] uses a hardware-assisted task runtime for geometry processing.

Prior work has also explored accelerating task parallel workloads in reconfigurable hard-

ware. TAPAS [148] is a high level synthesis (HLS) toolchain that leverages the Tapir IR [208]

to create application-specific hardware for task-parallel workloads. µIR [212] is a hardware

design IR, also useful in the context of HLS, that supports task-parallel constructs. Par-

allelXL [45] is a framework that enables building custom hardware accelerators using task-

parallel execution and work stealing. Chronos [11] is a framework to build task-parallel

accelerators for applications with speculative parallelism. Three recent works address flex-

ible parallelism for reconfigurable accelerators: Aurochs [238] proposes a threading model

171

Sched-flex Mem-sched Inter-task-

comm
S
/
w Splicing* [140] High Read-reuse Memory

Gramps* [205] High Memory

A
c
c
e
l-
a
ss
is
te
d

C
P
U

Stream-floating* [249] High Read-reuse Memory

Carbon [126] High Memory

ADM [206] High Memory

Minnow [271] High Memory

Spatial-Hints [109] Low Near-data Memory

R
e
c
o
n
fi
g
u
ra

b
le

A
c
-

c
e
le
ra

to
rs

ParallelXL [45] High Memory

Centaur [172] High Explicit

Plasticine* [188] Restricted Read-reuse Explicit

PolyGraph [63] Restricted Near-data Memory

Aurochs [238] High Memory

Fifer [158] Restricted Near-data Memory

Delta (ours) Medium Read-reuse Explicit

Table 8.8: Related Work Comparison (* uses traditional threads for parallelism; no hardware

support for tasks.)

for reconfigurable dataflow architectures. PolyGraph [63] similarly adds an integrated task/-

dataflow model for a reconfigurable accelerator. Fifer [158] temporally reorders fine-grained

tasks for load balancing. TaskStream’s structure-recovery optimizations can be applied to

any of the above systems.

Exploiting & Recovering Streaming Structure In the context of general-purpose

processing, stream floating [249] has a “confluence” optimization that dynamically combines

prefetching streams from different cores (confluence). Near-stream computing [248] can

pipeline data between tasks offloaded to the last-level cache. Several prior reconfigurable

accelerators [253, 66, 276] have primitives for multicast, but they are suitable for only for

regular programs.

Prior domain-specific accelerators can exploit batching and pipelining in irregular pro-

172

No batch Batch + no multicast Batch + multicast

Small cache 1× 1.5× 6×

Large cache 3× 6.5× 6×

Table 8.9: Speedups with Batch and Multicast Optimizations in kNN Normalized to

Small Cache and No Batch Case

grams, but the expected structure is baked into the hardware. One example is multicasting in

sparse matrix/DNN accelerators [98, 179, 49, 191, 263, 136, 272]. Other specialized architec-

tures perform load balance optimizations while exploiting various forms of reuse in hardware,

like SparTen [85], BARISTA [86] and GraphDynS [262]. MTP [36] hides memory latency

for database selections by using concurrent fine-grained accelerator threads. Centaur [172]

exploits streaming locality in databases by combining multiple pipelined SQL operators.

In summary, our work is the first to demonstrate techniques for exploiting specializable

communication in general task-parallel accelerators.

8.7 Discussion

In Delta, we exploited inter-task communication primitives to recover the lost locality in

task-parallel workloads. These optimizations are highly effective on a broad set of workloads.

However, they present tradeoffs for specific input and workload properties. Below we discuss

three such scenarios:

Flexibility for Spatial Multicast and Temporal Cache Reuse Delta exploits coarse-

grained reuse using two steps: It reorders tasks such that tasks accessing the same data are

together (i.e., batched) and simultaneously schedules these tasks to exploit spatial reuse by

multicasting data. The choice of spatial multicast negates the need to buffer data while in-

troducing the setup latency to coordinate tasks for multicast. To explain, see the experiment

in Table 8.9 for kNN: large private caches with coherence outperform the multicast optimiza-

173

Figure 8.13: Potential Benefits of Dynamic Reconfiguration in GCN

tion by avoiding setup latency and exploiting reuse using on-chip buffers and replication. In

conclusion, temporal reuse performs better for data that fits in the on-chip memory.

Dynamic Update of Task Type Distribution Our current implementation of TaskStream

needs programmers to specify the task type distribution statically, using simple complex-

ity analysis. However, in some algorithms, the ratio of work required among task types

may change during the execution of a program. Figure 8.13 plots the FLOPS/cycle for

GCN phases on Delta. We assume that 50% of the cores are assigned to graph aggrega-

tion (Agg-throughput shows their average throughput) and the rest 50% work on matrix-

multiplication (shown by Mult-throughput). In initial phases, aggregation and multipli-

cation cores require similar throughput, but matrix multiply becomes dominant when all

vertices are aggregated. If we could assign all cores to matrix-multiply in later program

phases, we can achieve up to 50% performance gains. The challenge would be to minimize

switching overheads (e.g., reconfiguration and task redistribution). Future work should also

explore switching heuristics that are broadly applicable.

174

knn spmm DB.ML Cho GCN

Lazy-binding 0.72 0.8 1.00 0.61 1.25

Table 8.10: Speedups with Lazy Binding Normalized to TaskStream

Lazily Binding Tasks to Resources TaskStream currently binds a task to the execution

core (and the task argument buffer) as soon as the task’s initial arguments are available.

However, the task’s preferred execution order may change later according to when other

arguments arrive. Consider a pathological case: there are ten tasks and two cores (all equal-

sized). Sizehint schedules Tasks 1,3,5,7,9 to core 1 and Tasks 2,4,6,8,10 to core 2. Task

batching may later find that Tasks 1,3,5,7,9 all share the same data; however, it will be

unable to exploit spatial reuse as tasks are already scheduled at the same Core 1. A solution

could be to rebind tasks to other cores, which we call lazy binding. Moreover, to ensure a

balanced load at all times during execution, we require tasks to be scheduled when they use

resources.

Table 8.10 shows our preliminary results. GCN achieves up to 30% performance gains

because it has high degrees of spatial reuse (all vertices access weight matrix) and lazy bind-

ing distributes vertices more evenly, resulting in better multicast opportunity. For other

workloads, lazy binding incurs latency on the critical path, causing little performance degra-

dation.

175

CHAPTER 9

Discussion

In this dissertation, we developed a programmable accelerator that can run both regular

and irregular workloads efficiently. We start with a baseline accelerator with a systolic-

CGRA-based computation substrate that allows configuring the datapath with ASIC-like

efficiency and a scratchpad memory for ASIC-like data placement. We support irregular-

ity in this accelerator by enhancing hardware modules for specializable data-dependence

forms - in particular, stream-join control, compute-enabled banked memory, and a new task

management unit for task distribution and coordinating for inter-task dependencies.

The efficiency and generality of this system raise an interesting question: could this make

a better general-purpose processing unit than a GPU? Recent mobile SoCs have a sea of ac-

celerators on their chips [20, 21]. We envision that an irregularity-optimized programmable

accelerator can replace most of the occasionally used application-specific accelerators. Lesser

accelerators will help maintain fewer software stacks and enable adaptability to future algo-

rithms. Moreover, we may be able to accelerate applications that are currently only suited

only to CPUs, like gradient boosting decision trees.

We contribute to the research community by unifying the fragmented irregular accelera-

tion space. Today, accelerators for each irregular workload are designed from scratch; thus,

no comparison is possible. However, once we realize how they specialize for irregularity, we

can model these in a common framework and integrate features that help with irregular-

ity. These features may be good for the target and other similar domains. In this common

framework, it is easier to compare features, and also, one can transfer innovations across

domains.

176

This chapter presents our case for the practical adoption of domain-agnostic programmable

accelerators. Then, we discuss how our work contributes to the “sea of accelerators” prob-

lem – several accelerators available but no understanding of their fundamental capabilities.

Finally, we will give pointers to the future directions and conclude.

9.1 Case for Domain-Agnostic Programmable Accelerators

Today, GPUs and FPGAs provide tradeoffs between the flexibility of CPUs and the efficiency

of application-specific accelerators. This dissertation makes a case for our CGRA-based

programmable accelerator as a promising alternative as it has performance close to ASICs

while providing decent flexibility. Four factors largely determine the efficiency:

1. Performance: This dissertation demonstrated that our spatial accelerator remains

within 30% of ASIC’s performance for deep learning, databases, and graph processing;

GPGPUs may be up to 16.7× slower for these workloads. FPGAs lose 3.2× perfor-

mance due to slower frequency [127].

2. Area/Power: The flexibility costs include flexible operand routing in CGRAs and

resource over-provisioning for supporting multiple domains. SPU is 1.5× more area

compared to SCNN accelerator for sparse convolution networks. SNAFU shows 2-3×

energy overheads of programmability [84]. On the other hand, GPUs often consume

more than 100× energy than accelerators due to large register files [143].

3. Programming Ease: While ASICs typically have simple domain-specific interfaces,

programmable accelerators need a more expressive programming interface. Existing

CUDA for GPUs and HLS are closer to C, where data chunks are assigned to computa-

tions. For example, in CUDA, data is assigned to each threadID, and in HLS, the loop

iterations are parallelized across processing elements. While the direct comparison is

somewhat subjective, we present a different programming model that is a lower-level

and closer to assembly, but there is a path to compiler [252] and programming lan-

177

guage support [123]. Overall, the performance and area are competitive with ASICs

(much better than existing designs), and programmability is good enough to consider

replacing some ASICs.

4. Adaptability: The right amount of flexibility maximizes the utilization and longevity

of an accelerator. However, it is hard to predict the desired amount of flexibility at

design time as it depends on how applications and market will evolve [270, 112]. This

dissertation presents techniques showing that the programmability costs are reasonable

and that the potential longevity benefits can be safe to invest in. Moreover, the features

are modular, requiring low efforts to remove/update future generations.

Overall, carefully designed programmable accelerators are an attractive alternative to

application-specific accelerators due to minimal overheads and modular features, allowing

cherry-picking based on the application. We hope our results encourage the industry to look

into programmable accelerators and enable acceleration of more domains, which was not

possible earlier due to the high costs of a new accelerator.

9.2 Systematizing Irregular Accelerator Research

Recently, there has been a surge of accelerators for every new application [85, 95, 122],

and even for every new algorithmic implementation of these application [94, 173, 11]. Even

though looking deep into the applications can lead to exciting innovation, it will be infeasible

as the number of applications grows. Therefore, it is high time to systematize the accelerator

design research and minimize redundancy. Below discuss the three dimensions of accelerator

design we contributed to in this dissertation (Figure 9.1):

Systematically Dealing With Data-Dependencies Irregularity is usually thought of

as random/unpredictable, making it hard to specialize. Recent accelerators achieve efficiency

by hard coding dependencies in the datapath. Our specializable forms of data dependence

178

b) Task Scheduling Structure

HW Specialization

Order Sensitivity
(Work-efficiency)

Connectedness
(Diameter)

Comp. Intensity

c) Inter-task Communication Structure

Ta
sk

 O
p

ti
m

iz
at

io
n

s

HW Specialization
Optimized for coarse-
grained tasks

Optimized for fine-
grained tasks

Specialized
Scheduling?

Load
Balance

Near-data Resource
assignment

Multi-level
Load

Balance
Near-data Resource

assignment
Multi-level

Specialized
Reordering?

Batching Inter-task
reordering

Round-
robin

PriorityBatching Inter-task
reordering

Round-
robin

Priority

Specialized
Network?

Inter-task
communication

Streaming Shared
memory

Inter-task
communication

Streaming Shared
memory

Ta
sk

 O
p

ti
m

iz
at

io
n

s

HW Specialization
Optimized for coarse-
grained tasks

Optimized for fine-
grained tasks

Specialized
Scheduling?

Load
Balance

Near-data Resource
assignment

Multi-level

Specialized
Reordering?

Batching Inter-task
reordering

Round-
robin

Priority

Specialized
Network?

Inter-task
communication

Streaming Shared
memory

A
lg

o
ri

th
m

 V
ar

ia
n

ts

Uniform
Graphs

Power-Law
GraphsGraphs

Work-
loads

Graph
Search

Graph
Conv.

Page
Rank

Connect
Comp.

In
p

u
ts

Optimized for throughput Optimized for work-efficiency

Sensitive to work-efficiency Sensitive to throughput

Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord. Vertex
Scheduling

Creation Ord.
Locality (by
vertex ID)

Priority Ord. Vertex
Scheduling

Creation Ord.
Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord. Vertex
Scheduling

Creation Ord.

Specialized
Compute?

Synchronous Update
Visibility

Slice-Sync. AsynchronousSynchronous Update
Visibility

Slice-Sync. Asynchronous
Specialized
Compute?

Synchronous Update
Visibility

Slice-Sync. Asynchronous

Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord. Vertex
Scheduling

Creation Ord.

Specialized
Compute?

Synchronous Update
Visibility

Slice-Sync. Asynchronous

Specialized
Memory Sys.?Slice Scheduling

Sliced
(rnd)

Non-Sliced
(graph)

Sliced
(Work)

Sliced
(loc.) Slice Scheduling

Sliced
(rnd)

Non-Sliced
(graph)

Sliced
(Work)

Sliced
(loc.)

Specialized
Memory Sys.?Slice Scheduling

Sliced
(rnd)

Non-Sliced
(graph)

Sliced
(Work)

Sliced
(loc.)

Specialized
Network?

Pull Push Pull vs pushPull Push Pull vs push
Specialized
Network?

Pull Push Pull vs push

Specialized
Memory Sys.?Slice Scheduling

Sliced
(rnd)

Non-Sliced
(graph)

Sliced
(Work)

Sliced
(loc.)

Specialized
Network?

Pull Push Pull vs push

A
lg

o
ri

th
m

 V
ar

ia
n

ts

Uniform
Graphs

Power-Law
GraphsGraphs

Work-
loads

Graph
Search

Graph
Conv.

Page
Rank

Connect
Comp.

In
p

u
ts

Optimized for throughput Optimized for work-efficiency

Sensitive to work-efficiency Sensitive to throughput

Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord. Vertex
Scheduling

Creation Ord.

Specialized
Compute?

Synchronous Update
Visibility

Slice-Sync. Asynchronous

Specialized
Memory Sys.?Slice Scheduling

Sliced
(rnd)

Non-Sliced
(graph)

Sliced
(Work)

Sliced
(loc.)

Specialized
Network?

Pull Push Pull vs push

a) Instruction Irregularity Space
Sp

ec
ia

liz
ab

le
 ir

re
gu

la
ri

ty
 f

o
rm

s

HW Spec--
ialization

Optimized for regular
workloads

Optimized for fine-
grained data
dependencies

Specialized
memory?

Wide SRAM AF-indirect Irregular
memory

Wide SRAM AF-indirect Irregular
memory

Specialized
CGRA?

Vector Irregular
control

Round-
robin

Stream-joinVector Irregular
control

Round-
robin

Stream-join

Specialized
CGRA

network?

Smaller
datatypes

Subword
SIMD

Decomp.
CGRA

Smaller
datatypes

Subword
SIMD

Decomp.
CGRA

Input density
(density)

Model approx.
(datawidth)

Dense
Graph

sparsity
Activat

ions
DNN weight

sparsity
Dense

Graph
sparsity

Activat
ions

DNN weight
sparsity

DenseBNN
SpNN/

DB DenseBNN
SpNN/

DB

Input density
(density)

Model approx.
(datawidth)

Dense
Graph

sparsity
Activat

ions
DNN weight

sparsity

DenseBNN
SpNN/

DB

Dependence
granularity

Task granularity
Graphs

Dependence
granularity

Task granularity
Graphs

Sensitive to load Sensitive to locality

In
p

u
ts

In
p

u
ts SpMMCholesky kNN

Sensitive to excessive
loads

Sensitive to memory
efficiency

Figure 9.1: Systematizing Irregular Accelerator Research

can be used to classify and understand the fundamental capabilities of domain-specific ac-

celerators [66, 67]. Figure 9.1 shows the data-dependence dimensions and the potential

hardware support that may be required for input types (dense/sparse) and workloads (can

have data-dependence in multiple dimensions).

Beyond simply understanding the space, this way of viewing the algorithm’s interaction

with architecture can improve the portability of techniques across domains. Consider the

context of accelerators for sparse linear algebra. SPU’s design can join sparse lists at one

element per cycle (per PE). An idea proposed for a sparse ML accelerator is to vectorize the

join [153], so N elements can be joined at once from each list (requiring N×N comparisons).

The ExTensor accelerator [103], designed for multidimensional sparse tensor ops, goes fur-

ther. It demonstrates that hierarchical list-intersection (a form of stream-join) can be more

work-efficient by skipping a variable number of unmatched items of the other list in a single

step. To further reduce the memory bandwidth overhead of sparsity, Sparten [85] proposed

179

a bit-vector representation of indices. Thus, the matched indices can be found using efficient

bit-level operations. These optimizations can apply to SPU. More importantly, finding spe-

cializable opportunities and commonality in the dependence forms across domains makes it

clear how to apply these for other superficially different problems. For example, a subsequent

work, Sparsecore [194] used our insight that graph pattern mining (GPM) algorithms can

be formulated as stream-join and accelerated them using a similar stream-based ISA.

Secondly, we observed that our insight of data-dependence forms can open directions of

more general accelerators. For example, we extended our idea of data-dependent control

and memory in SPU to look at data-dependent parallelism in PolyGraph and TaskStream.

The follow-up works, Capstan [202] and Aurochs [238] also enhanced the Plasticine [188]

spatial architecture for data-dependent parallelism. At the other end of the spectrum could

be data-dependent datatypes, where at a fine grain, the datatype size is chosen to meet the

precision requirements. One could imagine exposing these forms as first-class primitives in

the hardware/software interface, and each could be plausibly useful in many domains.

Finally, our data dependence forms are modular and have a one-to-one correspondence

to hardware modules. A follow-up work, DSAGEN [251], used these forms as primitives to

perform design space exploration for programmable accelerators.

Clearly Understanding the Hardware-Software Codesign Space Accelerator de-

signs make strong assumptions about certain aspects of a domain for simplicity, like input

type (e.g., high vs. low diameter graph), workload property (e.g., order resilience, frontier

density), and algorithms. Different algorithmic choices result in different accelerators mak-

ing it challenging to compare accelerators with common denominators [63, 64]. Moreover,

many algorithms are left unexplored because it is infeasible to track the large space without

systematic understanding.

Our work shows the value of systematizing the codesign process using algorithm variants –

Figure 9.1b) shows variants for graph processing. An algorithm is a combination of algorithm

variant choices. We created a modular execution model and accelerator which can optionally

180

support hardware features leading to the efficient execution of specific algorithm variants

(e.g., caches for non-sliced execution, remote tasks/atomics for push-based algorithms, etc.).

This framework enabled us to make strong statements about the effectiveness of various

algorithm variants and the value of flexibility across these codesign dimensions without

being hampered by differences in evaluation (e.g., simulator & preprocessing assumptions).

We show it for graph processing, but fundamental algorithm variants also exist for other

workloads, as demonstrated by Maeri [129] and SparseAdapt [175].

Decoupled Abstractions for Coarse-grained Scheduling The network is a critical re-

source and the scheduling between coarse-grained tasks to optimize for locality are essential.

Today, custom compilers are being built that analyze and identify scheduling optimizations

specific to their target workloads [132]. We find that there is a standard set of these opti-

mizations (shown in Figure 9.1c)), and the process can be systematized.

Along with workloads with different task types (fine/coarse-grained), our taxonomy is

more useful because it can apply to various systems, e.g., AMD’s HSA [130], NVIDIA’s

multi-GPU systems [211]. We achieve this using our TaskStream program representation

that makes assumptions only of the communication interface and is neutral to the underlying

architecture.

9.3 Future Directions and Open Questions

So far, we have described the architecture of our programmable accelerator; however, more

research is required to mature the idea. First, the accelerator should be easier to program.

Second, it would be essential that the accelerator applies to practical use cases. For example,

real-world graphs may be large and dynamic; thus, the architecture must be scalable and

work for dynamic graphs. Future SoCs will likely be heterogeneous; therefore, the inter-task

communication support should be broad enough and make minimal assumptions about the

internal implementation.

181

Compiler analysis
to find data-

dependence forms

Compiler analysis
to convert to ISA

CLT: inp<->ctrl

Read/update

Prio type and ds

Data mapping

Allotted
resources

Maximum batch
size

Intermediate
representation

for the compiler

Programming
language

abstractions

Stream-join

Alias-free
indirection

Priority
scheduling

Near-data
scheduling

Streaming
comm.

Multicast
comm.

Stream-join

Alias-free
indirection

Priority
scheduling

Near-data
scheduling

Streaming
comm.

Multicast
comm.

inst-level
comp. graph

Tensor-level
graph

Operator-
level graph?

...

Alias-
freedom

Comm., cvg,
front. dens.

Task
granularity

Dependence
granularity

Constant task
inputs

...

Alias-
freedom

Comm., cvg,
front. dens.

Task
granularity

Dependence
granularity

Constant task
inputs

E.g. Galois

E.g. Chapel
locales

E.g. CUDA
coop. threads

E.g. C++
restrict

E.g. MLIR
tensor

inst-level
mem. graph

Figure 9.2: Our vision for software stack of our programmable accelerator

9.3.1 Programming language support for “Programmable Accelerators”

For an accelerator to be widely adopted, a non-ninja programmer should be able to extract

the most performance by providing minimal information about program properties, e.g., pri-

oritizing shorter distances accelerates convergence in the shortest path algorithm. However,

our existing abstraction of specializable data-dependence forms may require non-trivial al-

gorithmic transformation for the programmer to see easily. The natural solution would be

that a compiler enumerates all legal transformations and identify patterns through approxi-

mate subgraph isomorphism techniques. However, for irregular workloads, enumerating legal

transformations often requires programmer hints. For example, alias-freedom information is

necessary to reorder updates. Overall, our software stack should expose properties in both

programming language and compiler.

Figure 9.2 demonstrates our vision. The programming language would consider asyn-

chronous tasks and mathematical properties (e.g., alias-freedom) as first-class program ob-

jects. The compiler will use the programmer information to identify and analyze valid

schedules for specializable data-dependence forms. When multiple forms apply, a perfor-

mance model will be required to pick the optimization. Fortunately, significant prior art

182

already exists: e.g., for streaming communication, CUDA’s cooperative groups [73] allow

specifying tasks as a group that will enable communicating via shared scratchpad memory.

The compiler can then check for resources to co-schedule these groups of tasks. The challenge

would be to explore the ample space of available options and develop a unified intermediate

representation for irregular workloads.

9.3.2 Acceleration at scale

The dataset sizes are increasing at an alarming rate, making it critical to scale to large

distributed systems. Memory bandwidth is usually the bottleneck for sparse workloads at a

single accelerator level. However, using our bottleneck analysis in Chapter 7, we find that

network comes on the critical path. For graph workloads with reuse (e.g., triangle counting),

load imbalance is critical.

Our insight that parameterizable solutions that can adapt to different tradeoffs will be

valuable. For example, our multi-level spatial partitioning policy in PolyGraph (Chapter 7)

can optimize for locality/load by varying cluster size. With more cores, communication

is the bottleneck; thus, larger cluster size improves performance (due to better locality).

The challenge is to reuse our existing algorithm variants taxonomy and analysis to adapt to

tradeoffs at scale. This will also require augmenting the taxonomy to at-scale algorithmic

optimizations.

9.3.3 Accelerate Workloads with Dynamic Data

Data changes with time in many critical applications, and every new update often needs a

real-time response. For example, fraud detection in online transactions should be performed

in less than a second [192]). Along with low latency, the system also demands high through-

put to cope with the high incoming update rate; for example, the average number of tweets

per second is 10k, and we would require updating ”trending news” for each of them [213]).

Below are the challenges and requirements introduced by dynamically changing data (we

183

present these in the context of graph processing): 1: Dynamic Memory Allocation: When

the real-time response to fine-grained updates is required, allocating/deallocating memory

for updates may become a significant bottleneck. For example, inserting in CSR will require

shuffling to maintain sorting order. The updates should be fast while ensuring that the

accesses to the graph are still sufficiently regular (e.g., linked list insertion is O(1), but it

requires pointer chasing to access). Therefore, a hybrid solution is required (see example

in Figure 9.3a)). 2. Dynamic Re-partitioning: Several graph frameworks rely on offline

partitioning to alleviate the communication bottleneck. Re-partitioning overhead may be

too high with changing graph structure, and hardware support for dynamically modifying

partitions is required (see Figure 9.3b)). 3. Incremental Computation: Since the updates

introduce minor changes to the large graph, the typical approach to minimize redundant

work is only to compute only part of the output impacted by the input graph update. The

decision of whether to compute incrementally for each update sequentially, as a batch or

in parallel creates the throughput and latency tradeoffs (Figure 9.3c)). The challenge with

fewer updates is lower parallelism within the computation, while for batched updates, higher

parallelism may causes a larger memory footprint. There is an opportunity to explore the

potential benefits of dynamically managed structures like caches.

Our TaskStream framework is a good fit to express an extra dimension of parallelism

across time and dynamically manage reuse. One could imagine considering graph updates

as a new task type that creates incremental computation tasks. The challenge would be

ensuring that different graph update instances appear serially in the memory hierarchy.

9.3.4 Generalizing Taskstream Abstraction

We proposed TaskStream for reconfigurable architectures, where different cores are con-

figured to do varying work, and TaskStream optimizations enable balanced load and high

locality. However, TaskStream is general, and the scheduling abstractions can also benefit

large SoCs. We discuss three examples: 1. Work scheduling across heterogeneous

architectures [107] for balanced load and locality, 2. Multi-tenancy to concurrently run

184

a) Dynamic
data structure

b) Dynamic
repartition

c) Incremental
computation

Challenges Potential Solutions

3 NULL3 NULL

1 NULL1 NULL

Static edges 1

Slice 1

Slice 2
1 3 ptr2 ptr31 3 ptr2 ptr3

1 2 3ptr0 ptr11 2 3ptr0 ptr1

Dynamic edges 1

Dynamic edges 2

Static edges 2

3 NULL

1 NULL

Static edges 1

Slice 1

Slice 2
1 3 ptr2 ptr3

1 2 3ptr0 ptr1

Dynamic edges 1

Dynamic edges 2

Static edges 2 Working set
during execution

of slice

Block
ptr

Repartition reqd
due to dyn edges

in cross-slice
 chunks

Chu
nk 2Chunk 1 Chu

nk 3

Slice 1

Chu
nk 2Chunk 1 Chu

nk 3

Slice 1

Chu
nk 5 Chunk 4Chu

nk 6

Slice 2

Chu
nk 7

Chu
nk 2Chunk 1 Chu

nk 3

Slice 1

Chu
nk 5 Chunk 4Chu

nk 6

Slice 2

Chu
nk 7

Chu
nk 2Chunk 1 Chu

nk 7

Slice 1

Chu
nk 2Chunk 1 Chu

nk 7

Slice 1

Chu
nk 5 Chunk 4Chu

nk 6
Chu
nk 3

22

11

3300

Static edge

Inserted edge

1

30

Static edge

Inserted edge

Input Graph

Graph update

Computation

Option 1:
Sequential

Option 2:
Batched

High throughput,
high latency

Low throughput,
low latency

Option 1:
Sequential

Option 2:
Batched

High throughput,
high latency

Low throughput,
low latency

Option 3: Parallel

High throughput,
low latency

Option 3: Parallel

High throughput,
low latency

TimeTime TimeTime

Figure 9.3: Challenges and Proposed Solutions/Insights

multiple applications on a single hardware [112], and 3. Fault tolerance when some hard-

ware fails at runtime [39].

Heterogeneous Architectures In Taskstream, programmers can annotate task types

with coreMask that specifies legal locations where a task can be scheduled to. For our

reconfigurable architecture, these were cores, but one can imagine these to be different hard-

ware in a heterogeneous system (see Figure 9.4a). Practical examples include autonomous

vehicle applications that span machine learning and a fast Fourier transform accelerator.

A point cloud application may use a tree traversal hardware along with a matrix-multiply

accelerator [77]. We should be able to reuse TaskStream’s general message-passing protocol

to apply producer-consumer and multicast optimizations transparently. The challenge would

be that implementation should balance network bandwidth tradeoffs in a larger system.

Multi-tenancy Here, multiple concurrent applications work on separate data, and the goal

is to maximize throughput while enforcing the latency constraints of each application. The

challenge is to make context switching faster. One can imagine exposing context switching,

185

a) Multi-accelerator
TaskStream Graph

coreMask is fixed according
to number of resources in

heterogeneous system

Task1

Task2

Task1

Task2

Dataflow

SIMD

Memory node

Compute
node

a) Multi-accelerator
TaskStream Graph

coreMask is fixed according
to number of resources in

heterogeneous system

Task1

Task2

Dataflow

SIMD

Memory node

Compute
node

b) Multi-tenancy
TaskStream Graph

Task1

Task2

Task3

Task1

Task2

Task3

Task1

Task2

Task3

Task1

Task2

Task3

Ctx
Switc

h

1. Custom context switch task: it moves all
pending tasks and data to memory.
2. It may switch to satisfy latency req.

App 1 App 2

Task3

coreMask
=1100

coreMask
=0011

coreMask
=1100

coreMask
=0011

coreMask
=0011
=0001

c) Faulty System
TaskStream Graph

Task1

Task2

Task1

Task2

Task 1 Task 1

Task 2 Task 2

coreMask
=1100

coreMask may be updated
dynamically when it

identifies a faulty system

c) Faulty System
TaskStream Graph

Task1

Task2

Task 1 Task 1

Task 2 Task 2

coreMask
=1100

coreMask may be updated
dynamically when it

identifies a faulty system

coreMask
=0011
=0001

c) Faulty System
TaskStream Graph

Task1

Task2

Task 1 Task 1

Task 2 Task 2

coreMask
=1100

coreMask may be updated
dynamically when it

identifies a faulty system

Figure 9.4: Modeling Heterogeneous Architectures and Multi-tenancy as Task

Scheduling Problem

at the coarse granularity, in the hardware-software interface. Thus, we can now add special

hardware for context switching: it can potentially track latency using time counters to switch

at the right time and efficiently overlap communication and computation during switching.

Figure 9.4b) shows an example: the applications are divided into phases (shown by Task

1,2,3) and are connected by a “context-switch” task. The applications may also be spatially

distributed across cores, the challenge will be determine the optimal distribution for balanced

resource utilization.

Fault Tolerance For large-scale distributed systems, machines may be faulty, and thus,

the work distribution should be dynamic. In CPUs, virtual machines enable dynamic allo-

cation. However, accelerators are fast and often have stringent switching constraints, e.g., in

the order of ms. Therefore, hardware tasks as in TaskStream are attractive. A faulty machine

in TaskStream would imply resetting a bit in coreMask (see example in Figure 9.4c)).

186

9.4 Conclusion

This dissertation showed that it is possible to specialize for irregular workloads using special-

izable data-dependence forms systematically. We used these forms to design a programmable

accelerator that efficiently executes both regular and irregular workloads.

We believe this is the right time to think of architectures that are fundamentally built for

ASIC-class efficiency and are programmable (e.g., reconfigurable architectures). To explain,

consider how other general-purpose architectures are adding accelerator modules to cope with

the AI wave: matrix-multiply assists in IBM CPUs [231], tensor cores in NVIDIA GPUs [184],

and AI accelerator in Versal FPGAs [82]. Even though these specialized modules significantly

improve performance, they are far from standalone application-specific accelerators due to

the traditional memory hierarchy in CPUs/GPUs and LUT-level reconfigurability in FPGAs.

Despite the apparent fundamental differences in these architectural approaches, the re-

search directions of accelerator modules in CPUs/GPUs and our specializable irregularity

forms (in reconfigurable accelerators) can heavily inspire each other. For example, we were

inspired by CPU’s thread scheduling techniques to optimize for the locality. To explain,

we annotated tasks with the dataset they may access and use this information to schedule

tasks near data – this has been explored in task-parallel languages [41], speculative parallel

models [109, 266], and partitioned global address space (PGAS) systems [105]. Another

approach is Splicing [140], a compiler optimization for recursive task-parallel programs that

interleaves tasks with the locality to optimize for the locality. Thread scheduling techniques

like splicing can transparently improve cache hit rate.

Some of our insights can improve CPU and GPU performance as well. Like SIMD

(e.g., Intel AVX512), a CPU could support stream-join control. An approach could be

to add specialized instructions which allow treating registers as FIFOs, and the branch

instructions may control the order of data consumption (using simple FSM at FIFOs). A

possible extension to a GPU ISA could enable the annotation of a program region as being

alias-free indirect. Such an extension would allow GPU scratchpads to achieve the same

187

benefits as SPU: they would not require expensive memory dependence checking. They

could more effectively reorder requests, reducing bank conflicts’ impact and achieve higher

throughput. NVIDIA’s tensor core is historical precedence that such dramatic specialization

is feasible.

Irregularity fundamentally affects the efficiency of the lowest level hardware primitives,

thus justifying specialization’s importance. This dissertation makes progress toward a uni-

fied set of primitives for irregularity. Yet, a complete taxonomy, if one exists, will require

studying increasingly challenging workloads in the context of compilers and programming

languages and iteratively refining hardware/software interfaces and execution models. In

other words, many remaining research questions must be answered before we can create a

universal architecture for irregularity.

188

APPENDIX A

Abstract Graph Simulator

PolyGraph proposes four dimensions of algorithm variants (10 algorithms altogether) for

seven workloads and various graphs. Thus, we need to run seventy simulations for graphs of

large sizes – a fast and reasonably accurate simulator is required for practicality. Existing

simulators model all hardware components in a cycle-accurate fashion and are slow for our

purpose. The modeled steps involve simulating data transfer from file system to accelerator

memory, an in-order control core that recognizes accelerator ISA and talks to accelerator

components, and other hardware modules that tick each cycle for work. Moreover, the

detailed simulator requires figuring out the ISA and programming support before evaluating

an architecture, which may not always be needed for proof-of-concept analysis.

Existing fast simulators use analytical modeling to quickly estimate performance [128,

178]. These techniques work well for dense linear algebra but fail for graph processing where

the reuse/memory access pattern is unknown statically. For example, MAESTRO’s [128]

analytical model for deep learning takes the spatial and temporal reuse information as input.

However, in graph processing, the available reuse changes according to the vertices activated

at runtime and cannot be determined statically.

We build an abstract simulator, GraphSim, which models accelerator architecture as a

dataflow graph [66, 63, 65] where each stage may perform computation, memory/scratchpad

access, network access, or reordering. The simulator implements a variety of algorithm

templates, which can be customized for each application. The template approach is helpful

in the graph domain as many workloads can be implemented with slight variation. It also

enables the accelerator control to be abstracted for efficient simulation. Thus, the simulator

189

Task
Queue

On-chip
interconnect

New tasks
FIFO

Optionally send data for sync/async

On-chip memoryMain memory

Tasks compl? Barrier (eg. sync impl.)

Edge access/
compute

Atomically update
destination ID

Figure A.1: Vertex-Centric Graph Processing Pipeline Template Implemented in

GraphSim

takes more than 100× lower time than the detailed one.

Besides fast simulation, the dataflow graph modeling is general enough to represent vari-

ous application-specific accelerators that essentially embed the application’s datapath in the

hardware. Finally, since the datapath node types are sufficiently common across applications,

new algorithms can reuse node types and implement new dataflow graph connections.

A.1 GraphSim Implementation

GraphSim is a multi-core simulator where a set of mesh networks connects multiple cores.

Each core implements the template dataflow graph for vertex-centric graph processing (see

Figure A.1). The nodes of the dataflow graph may be doing one of the four things: 1.

accessing memory or scratchpad, 2. sending network requests, 3. performing computation,

or 4. reordering a task-packet. The edges represent data transfer – each node receives data

from the previous stage, buffers them locally, and executes when execution resources are

free. Figure A.2 shows two example accelerators implemented using the vertex-processing

template: Graphicionado [94] uses the synchronous algorithm with on-chip scratchpads for

sliced execution. Figure A.2b) demonstrates PolyGraph’s pipeline when it is running the

asynchronous priority and sliced execution mode.

We allow flexibility in several useful architectural features. The prominent ones include

spatial data distribution techniques that may be random, may optimize for locality (linear)

190

Priority
Queue

Mesh
interconnect

New tasks
FIFO

Main memory

Switching
cond?

Asynchronous barrier
orchestration

Edge access/
compute

Atomically update
destination ID

FIFO
Queue

Crossbar
interconnect

Main memory

No pending
tasks?

Synchronous
barrier

Edge access/
compute

Atomically update
destination ID

a) Graphicionado [95]: Synchronous, FIFO-order, Sliced

b) PolyGraph [63]: Asynchronous, Priority-order, Sliced mode

Figure A.2: Example Accelerators Implemented using GraphSim’s Template

or load balance (modulo), or allow parametrically balancing between them (multi-level). The

workload distribution can be near-data or use dynamic work stealing. The network traffic can

be optimized using standard multicast and path-based multicast [27]. Along with optional

optimizations, we support idealized dimensions of each. For network and memory, the ideal

case corresponds to 0-cycle latency and infinite bandwidth, and for distributed processing,

the idealized scenario assumes a giant core with an infinitely-sized task scheduler.

The latency of the computation and task scheduler are constants and configurable by the

programmer. DRAMSim2 is used for DRAM simulation [201]. For mesh network simulation,

we developed a detailed in-house simulator.

GraphSim Usage Our simulator is available here: https://github.com/PolyArch/graphsim-

simulator. It depends on standard packages and uses MACROS to define architecture,

input graphs, and workload properties. We model three categories of accelerators: prior

application-specific, our TaskStream-based PolyGraph accelerator, and idealized architec-

tures with ideal network/memory/task-scheduler. README provides details for running

191

Feature Supported Input Dimensions

Graph structure Low, high diameter, dynamically changing

Graph slices No-slice, slice count

Workload order sensitivity Order sens (sp, pr, cf, astar) or not (bfs, cc, gcn)

Workload frontier-size Sparse frontier (sssp, bfs, cc), Dense frontier (pr, , cf, gcn)

Feature Supported Architecture Dimensions

Network topology Mesh, crossbar, hierarchical-mesh-crossbar, Ideal: crossbar with inf-sized queues

Network traffic Std. multicast, Path multicast, Ideal: 0 latency, Inf. bandwidth

Cache replacement LRU, Ideal: allhits, allmiss

Main memory DRAM, Ideal: 0 latency, Inf. bandwidth

Spatial work distribution Near-data, Work-stealing, Ideal: Single giant core

Temporal work distribution Priority order, Creation order, Ideal: Inf. sized queue

Feature Supported Programming Dimensions

Update visibility Synch, Slice-sync, Asynch

Vertex scheduling Locality, Creation, Data-dependent priority

Slice scheduling No-slice, Round-robin, Locality, priority

Update direction Pull, Push

Spatial data distribution Random, Locality, Load, Multi-level

Dynamic algorithm Recomputation, Incremental

Table A.1: Graph Accelerator Options Supported in GraphSim

these experiments, and Table A.1 shows the options currently supported by GraphSim.

A.2 Limitations

GraphSim gains its speed by limiting its simulation accuracy for things we believe are not

first-order concerns during the initial exploration stages. The first is that we do not need

to design the programmer interface as programmers directly express their applications in

dataflow-graph form. Thus, the difficulty of programming cannot be estimated. We also

do not model the configuration time of accelerator components (usually small). We assume

192

backpressure-based flow control in the networks and do not consider/evaluate coarse-grained

credit-based flow control techniques that may be useful to prevent network congestion. Fi-

nally, we limit bandwidth only from memories but do not model bandwidth internal to

the core, under the assumption that core-local networks (e.g. a CGRA network) can be

provisioned not to be the limiting factor in these workloads. Nevertheless, we believe the

GraphSim simulator will help perform extensive experiments to analyze the broad accelerator

space practically.

193

REFERENCES

[1] Apache MADlib: big data machine learning in sql. https://madlib.apache.org/.

[2] Intel math kernel library. http://software.intel.com/en-us/intel-mkl.

[3] Pytorch geometric. https://www.pyg.org/.

[4] XLA: domain-specific compiler for linear algebra to optimizes tensorflow computations.

[5] Ligra: A lightweight graph processing framework for shared memory. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’13, pages 135–146, New York, NY, USA, 2013. ACM.

[6] Intel(r) math kernel library for deep neural networks., 2016.
”https://github.com/01org/mkl-dnn”.

[7] Everything you always wanted to know about multicore graph processing but were
afraid to ask. In Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, pages 631–643, Berkeley, CA, USA, 2017.
USENIX Association.

[8] Neural network distiller by intel ai lab., 2017.
”https://github.com/NervanaSystems/distiller”.

[9] T. M. Aamodt, W. W. L. Fung, T. G. Rogers, and M. Martonosi. General-Purpose
Graphics Processor Architecture. Morgan & Claypool, 2018.

[10] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
pages 265–283, Berkeley, CA, USA, 2016. USENIX Association.

[11] Maleen Abeydeera and Daniel Sanchez. Chronos: Efficient speculative parallelism for
accelerators. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’20, pages
1247–1262, New York, NY, USA, 2020. Association for Computing Machinery.

[12] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max Baker,
Tom Hawkins, Andrew Bell, John Thompson, Temesghen Kahsai, Garrin Kimmell,
et al. Think fast: a tensor streaming processor (TSP) for accelerating deep learning
workloads. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 145–158. IEEE, 2020.

194

https://madlib.apache.org/
http://software.intel.com/en-us/intel-mkl
https://www.pyg.org/

[13] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work
stealing. In Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’00, page 1–12, New York, NY, USA, 2000. Association for
Computing Machinery.

[14] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
Fathom: Reference workloads for modern deep learning methods. In 2016 IEEE In-
ternational Symposium on Workload Characterization (IISWC), pages 1–10. IEEE,
2016.

[15] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scal-
able processing-in-memory accelerator for parallel graph processing. ACM SIGARCH
Computer Architecture News, 43(3):105–117, 2016.

[16] Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce Jacob, Chau-
Wen Tseng, and Donald Yeung. Biobench: A benchmark suite of bioinformatics appli-
cations. In IEEE International Symposium on Performance Analysis of Systems and
Software, 2005. ISPASS 2005., pages 2–9. IEEE, 2005.

[17] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos.
Cnvlutin: Ineffectual-neuron-free deep neural network computing. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pages 1–13,
June 2016.

[18] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding
Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K
Asari. The history began from alexnet: A comprehensive survey on deep learning
approaches. arXiv preprint arXiv:1803.01164, 2018.

[19] Amazon. Amazon inferentia ml chip. URL: https://aws.amazon.com/machine-
learning/inferentia/, 2020.

[20] Apple. Apple a12 chip. URL: https://en.wikipedia.org/wiki/Apple A12.

[21] Apple. Apple m1 chip. URL: https://www.apple.com/uk/mac/m1/.

[22] Krste Asanović and David A Patterson. Instruction sets should be free: The case for
risc-v. UC Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.

[23] Andreas Athanasopoulos, Anastasios Dimou, Vasileios Mezaris, and Ioannis Kompat-
siaris. GPU acceleration for support vector machines. In Procs. 12th Inter. Workshop
on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, Nether-
lands, 2011.

[24] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in
a scala embedded language. In Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pages 1216–1225, New York, NY, USA, 2012. ACM.

195

[25] Scott Beamer, Krste Asanovic, and David Patterson. Direction-optimizing breadth-
first search. SC’12, pages 1–10. IEEE, 2012.

[26] Scott Beamer, Krste Asanović, and David Patterson. The GAP benchmark suite.
arXiv preprint arXiv:1508.03619, 2015.

[27] Leul Belayneh and Valeria Bertacco. GraphVine: exploiting multicast for scalable
graph analytics. In DATE, pages 762–767. IEEE, 2020.

[28] Imogen H Bell, Jennifer Nicholas, Mario Alvarez-Jimenez, Andrew Thompson, and Lu-
cia Valmaggia. Virtual reality as a clinical tool in mental health research and practice.
Dialogues in clinical neuroscience, 2022.

[29] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[30] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for high-speed
network switches. In Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), volume 2, pages 538–547 vol.2, 2000.

[31] Puneeth Bhat, Jose Moreira, and Satish Kumar Sadasivam. Matrix-multiply assist
(mma) best practices guide. IBM Corporation, 2021.

[32] Nathan Binkert et al. The gem5 simulator. SIGARCH Comput. Archit. News, 2011.

[33] Nathaniel Bleier, Muhammad Husnain Mubarik, Srijan Chakraborty, Shreyas Kishore,
and Rakesh Kumar. Rethinking programmable earable processors. In Proceedings of
the 49th Annual International Symposium on Computer Architecture, pages 454–467,
2022.

[34] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of parallel and distributed computing, 1996.

[35] Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: hyper-pipelining
query execution. In Cidr, volume 5, pages 225–237, 2005.

[36] Prerna Budhkar, Ildar Absalyamov, Vasileios Zois, Skyler Windh, Walid A Najjar, and
Vassilis J Tsotras. Accelerating in-memory database selections using latency mask-
ing hardware threads. ACM Transactions on Architecture and Code Optimization
(TACO), 16(2):1–28, 2019.

[37] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein.

[38] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John,
Calvin Lin, Charles R. Moore, James Burrill, Robert G. McDonald, William Yoder,
and the TRIPS Team. Scaling to the end of silicon with edge architectures. Computer,
37(7):44–55, July 2004.

196

[39] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stewart, Jitendra Padhye, Ratul
Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. Odin:{Microsoft’s}
scalable {Fault-Tolerant}{CDN} measurement system. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages 501–517, 2018.

[40] Bingyi Cao, Kenneth A. Ross, Stephen A. Edwards, and Martha A. Kim. Deadlock-
free joins in db-mesh, an asynchronous systolic array accelerator. In Proceedings of the
13th International Workshop on Data Management on New Hardware, DaMoN 2017,
Chicago, IL, USA, May 15, 2017, pages 5:1–5:8, 2017.

[41] Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load balancing
in cool. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP ’93, page 249–259, New York, NY, USA,
1993. Association for Computing Machinery.

[42] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

[43] Shanzhi Chen and Jian Zhao. The requirements, challenges, and technologies for 5g of
terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5):36–43,
2014.

[44] Shimin Chen, Phillip B Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia Ail-
amaki, Guy E Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C Mowry,
et al. Scheduling threads for constructive cache sharing on CMPs. In Proceedings of
the nineteenth annual ACM symposium on Parallel algorithms and architectures, pages
105–115, 2007.

[45] Tao Chen, Shreesha Srinath, Christopher Batten, and G. Edward Suh. An architec-
tural framework for accelerating dynamic parallel algorithms on reconfigurable hard-
ware. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-51, pages 55–67, Piscataway, NJ, USA, 2018. IEEE Press.

[46] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794. ACM, 2016.

[47] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Yan, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: end-to-end
optimization stack for deep learning. arXiv preprint arXiv:1802.04799, 2018.

[48] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and
Olivier Temam. Diannao: A small-footprint high-throughput accelerator for ubiqui-
tous machine-learning. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’14,
pages 269–284, New York, NY, USA, 2014. ACM.

197

[49] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(2):292–308, 2019.

[50] Yu-Ting Chen, Jason Cong, Jie Lei, and Peng Wei. A novel high-throughput acceler-
ation engine for read alignment. In 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines, pages 199–202. IEEE, 2015.

[51] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi
Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning
supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-47, pages 609–622, Washington, DC, USA, 2014.
IEEE Computer Society.

[52] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cuDNN: efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014.

[53] Yuze Chi, Licheng Guo, and Jason Cong. Accelerating SSSP for power-law
graphs. In Proceedings of the 2022 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 190–200, 2022.

[54] S. Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim, Yuko Hara-
Azumi, and Jason Anderson. CGRA-ME: a unified framework for cgra modelling
and exploration. In 2017 IEEE 28th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 184–189, 2017.

[55] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[56] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Norris, Michael
Schuette, and Ali Saidi. The reconfigurable streaming vector processor (RSVP). In
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 36, pages 141–, Washington, DC, USA, 2003. IEEE Computer Society.

[57] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Hui Huang, and
Glenn Reinman. Composable accelerator-rich microprocessor enhanced for adaptivity
and longevity. In ISLPED, 2013.

[58] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn
Reinman. CHARM: a composable heterogeneous accelerator-rich microprocessor. In
ISPLED, 2012.

[59] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Chunyue Liu, and Glenn Reinman.
BiN: a buffer-in-nuca scheme for accelerator-rich cmps. In Proceedings of the 2012
ACM/IEEE international symposium on Low power electronics and design, pages 225–
230, 2012.

198

[60] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. A fully
pipelined and dynamically composable architecture of CGRA. In 2014 IEEE 22nd An-
nual International Symposium on Field-Programmable Custom Computing Machines,
pages 9–16. IEEE, 2014.

[61] NVIDIA Corp. GeForce GTX 1080 Whitepaper.

[62] NVIDIA Corp. NVIDIA GPU programming guide, v2.2.1, November, 2004.

[63] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. Polygraph: Exposing the value of flexi-
bility for graph processing accelerators. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 595–608, 2021.

[64] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. Systematically understanding graph
accelerator dimensions and the value of hardware flexibility. IEEE Micro, 42(4):87–96,
2022.

[65] Vidushi Dadu and Tony Nowatzki. Taskstream: accelerating task-parallel workloads
by recovering program structure. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 1–13, 2022.

[66] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general purpose
acceleration by exploiting common data-dependence forms. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 924–939,
2019.

[67] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general-purpose
acceleration: Finding structure in irregularity. IEEE Micro, 40(3):37–46, 2020.

[68] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang.
GraphH: a processing-in-memory architecture for large-scale graph processing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(4):640–
653, April 2019.

[69] Guohao Dai, Zhenhua Zhu, Tianyu Fu, Chiyue Wei, Bangyan Wang, Xiangyu Li, Yuan
Xie, Huazhong Yang, and Yu Wang. Dimmining: pruning-efficient and parallel graph
mining on near-memory-computing. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pages 130–145, 2022.

[70] TIMOTHY A Davis, WILLIAM W Hager, SCOTT P Kolodziej, and S NURI Yeralan.
Algorithm XXX: mongoose, a graph coarsening and partitioning library. ACM Trans.
Math. Software, 2019.

[71] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam. Shidiannao: Shifting vision processing closer to the sensor. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA),
pages 92–104, June 2015.

199

[72] A. Duran and M. Klemm. The Intel many integrated core architecture. In High
Performance Computing and Simulation (HPCS), 2012 International Conference on,
2012.

[73] Anne C Elster and Tor A Haugdahl. Nvidia Hopper GPU and Grace CPU highlights.
Computing in Science & Engineering, 24(2):95–100, 2022.

[74] Xiaojun Fan, Xinyu Jiang, and Nianqi Deng. Immersive technology: A meta-analysis
of augmented/virtual reality applications and their impact on tourism experience.
Tourism Management, 91:104534, 2022.

[75] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. Fast support
for unstructured data processing: The unified automata processor. In Proceedings of
the 48th International Symposium on Microarchitecture, MICRO-48, pages 533–545,
New York, NY, USA, 2015. ACM.

[76] Yuanwei Fang, Chen Zou, Aaron Elmore, and Andrew Chien. UDP: a programmable
accelerator for extract-transform-load workloads and more. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

[77] Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. Crescent: taming
memory irregularities for accelerating deep point cloud analytics. arXiv preprint
arXiv:2204.10707, 2022.

[78] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck. A scalable high-bandwidth archi-
tecture for lossless compression on FPGAs. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 52–59, May
2015.

[79] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu,
Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, et al. A
configurable cloud-scale dnn processor for real-time AI. In 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA), pages 1–14. IEEE,
2018.

[80] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg Stitt. A
high memory bandwidth fpga accelerator for sparse matrix-vector multiplication. In
Field-Programmable Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual
International Symposium on, pages 36–43. IEEE, 2014.

[81] Daichi Fujiki, Aran Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das, David
Blaauw, and Satish Narayanasamy. GenAx: a genome sequencing accelerator. In
Proceedings of the 45th Annual International Symposium on Computer Architecture,
pages 69–82. IEEE Press, 2018.

[82] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. Xilinx adaptive
compute acceleration platform: Versaltm architecture. In Proceedings of the 2019

200

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
84–93, 2019.

[83] Nitin A Gawande, Jeff A Daily, Charles Siegel, Nathan R Tallent, and Abhinav Vishnu.
Scaling deep learning workloads: Nvidia dgx-1/pascal and intel knights landing. Future
Generation Computer Systems, 108:1162–1172, 2020.

[84] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and Nathan Beck-
mann. Snafu: an ultra-low-power, energy-minimal cgra-generation framework and ar-
chitecture. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 1027–1040. IEEE, 2021.

[85] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.
Sparten: A sparse tensor accelerator for convolutional neural networks. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
151–165, 2019.

[86] Ashish Gondimalla, Sree Charan Gundabolu, T. N. Vijaykumar, and Mithuna Thot-
tethodi. Barrier-free large-scale sparse tensor accelerator (BARISTA) for convolutional
neural networks. CoRR, abs/2104.08734, 2021.

[87] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Presented
as part of the 10th {USENIX} Symposium on {OSDI} 12), 2012.

[88] V. Govindaraju, Chen-Han Ho, and K. Sankaralingam. Dynamically specialized dat-
apaths for energy efficient computing. In HPCA, 2011.

[89] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur
Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying func-
tionality and parallelism specialization for energy-efficient computing. IEEE Micro,
32(5):38–51, September 2012.

[90] Paul Grigoraş, Pavel Burovskiy, Wayne Luk, and Spencer Sherwin. Optimising sparse
matrix vector multiplication for large scale FEM problems on FPGA. In Field Pro-
grammable Logic and Applications (FPL), 2016 26th International Conference on,
pages 1–9. IEEE, 2016.

[91] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. SLAW: a scalable locality-
aware adaptive work-stealing scheduler. In 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS), pages 1–12, 2010.

[92] Gagan Gupta and Gurindar S Sohi. Dataflow execution of sequential imperative pro-
grams on multicore architectures. In 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 59–70. IEEE, 2011.

201

[93] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S Lee, David
Brooks, and Carole-Jean Wu. ACT: designing sustainable computer systems with an
architectural carbon modeling tool. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pages 784–799, 2022.

[94] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–13, Oct 2016.

[95] Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee, Seong Hoon Seo,
U Gyeong Song, Young H Oh, Krste Asanovic, Jae W Lee, and Lisa WuWills. Genesis:
a hardware acceleration framework for genomic data analysis. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages 254–
267. IEEE, 2020.

[96] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[97] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph processing systems. Proc. VLDB Endow.,
8(9):950–961, May 2015.

[98] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and
William J. Dally. EIE: efficient inference engine on compressed deep neural network.
SIGARCH Comput. Archit. News, 44(3):243–254, June 2016.

[99] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[100] Masanori Hashimoto, Xu Bai, Naoki Banno, Munehiro Tada, Toshitsugu Sakamoto,
Jaehoon Yu, Ryutaro Doi, Yusuke Araki, Hidetoshi Onodera, Takashi Imagawa, et al.
33.3 via-switch fpga: 65nm cmos implementation and architecture extension for al
applications. In 2020 IEEE International Solid-State Circuits Conference-(ISSCC),
pages 502–504. IEEE, 2020.

[101] Muhammad Amber Hassaan, Donald D Nguyen, and Keshav K Pingali. Kinetic de-
pendence graphs. ACM SIGPLAN Notices, 50(4):457–471, 2015.

[102] Kim Hazelwood et al. Applied machine learning at facebook: A datacenter infrastruc-
ture perspective. In HPCA, 2018. IEEE, 2018.

[103] Kartik Hegde et al. Extensor: An accelerator for sparse tensor algebra. In MICRO’52,
2019.

202

[104] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christo-
pher W. Fletcher. UCNN: exploiting computational reuse in deep neural networks via
weight repetition. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, ISCA ’18, pages 674–687, Piscataway, NJ, USA, 2018. IEEE
Press.

[105] Brandon Holt, Preston Briggs, Luis Ceze, and Mark Oskin. Alembic: Automatic
locality extraction via migration. In Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages & Applications, OOPSLA
’14, page 879–894, New York, NY, USA, 2014. Association for Computing Machinery.

[106] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. Ayguadé, and M. Valero. Advanced
pattern based memory controller for fpga based hpc applications. In 2014 International
Conference on High Performance Computing Simulation (HPCS), pages 287–294, July
2014.

[107] Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee,
Fang Lu, Yihan Pang, Joseph Ravichandran, Finn Sinclair, et al. ILLIXR: enabling
end-to-end extended reality research. In 2021 IEEE International Symposium on
Workload Characterization (IISWC), pages 24–38. IEEE, 2021.

[108] James Jeffers, James Reinders, and Avinash Sodani. Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition. Morgan Kaufmann, 2016.

[109] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez. Data-centric
execution of speculative parallel programs. In 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[110] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. A scalable ar-
chitecture for ordered parallelism. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 228–241, Dec 2015.

[111] Vidushi Dadu JianWeng, Sihao Liu and Tony Nowatzki. DSAGEN: democratizing spa-
tial accelerator research. URL: http://www.seas.ucla.edu/ jianw/dsagen/tutorial.html,
2020.

[112] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten
lessons from three generations shaped google’s TPUv4i: industrial product. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),
pages 1–14. IEEE, 2021.

[113] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,

203

Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gor-
don MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, pages 1–12,
New York, NY, USA, 2017. ACM.

[114] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos. Stripes: Bit-
serial deep neural network computing. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12, Oct 2016.

[115] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, et al. Bluedbm: An appliance for big data analytics. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), pages 1–13.
IEEE, 2015.

[116] Ilyes Kacher, Maxime Portaz, Hicham Randrianarivo, and Sylvain Peyronnet. Graph-
core c2 card performance for image-based deep learning application: A report. arXiv
preprint arXiv:2002.11670, 2020.

[117] Shinhaeng Kang, Sukhan Lee, Byeongho Kim, Hweesoo Kim, Kyomin Sohn, Nam Sung
Kim, and Eojin Lee. An FPGA-based rnn-t inference accelerator with pim-
hbm. In Proceedings of the 2022 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 146–152, 2022.

[118] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998.

[119] Brucek Khailany, William J Dally, Ujval J Kapasi, Peter Mattson, Jinyung Namkoong,
John D Owens, Brian Towles, Andrew Chang, and Scott Rixner. Imagine: Media
processing with streams. IEEE micro, 21(2):35–46, 2001.

[120] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[121] Marius Knaust, Enrico Seiler, Knut Reinert, and Thomas Steinke. Co-design for energy
efficient and fast genomic search: Interleaved bloom filter on fpga. In Proceedings of
the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 180–189, 2022.

204

[122] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. Meet the walkers: Accelerating index traversals for in-
memory databases. In MICRO, 2013.

[123] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
Spatial: A language and compiler for application accelerators. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 296–311, 2018.

[124] Maria Kotsifakou, Prakalp Srivastava, Matthew D Sinclair, Rakesh Komuravelli,
Vikram Adve, and Sarita Adve. Hpvm: Heterogeneous parallel virtual machine. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 68–80, 2018.

[125] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian Pharris,
Jared Casper, and Krste Asanovic. The vector-thread architecture. In Proceedings of
the 31st Annual International Symposium on Computer Architecture, ISCA ’04, pages
52–, Washington, DC, USA, 2004. IEEE Computer Society.

[126] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: Architec-
tural support for fine-grained parallelism on chip multiprocessors. SIGARCH Comput.
Archit. News, 35(2):162–173, June 2007.

[127] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. IEEE
Transactions on computer-aided design of integrated circuits and systems, 26(2):203–
215, 2007.

[128] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer,
and Angshuman Parashar. Maestro: A data-centric approach to understand reuse,
performance, and hardware cost of dnn mappings. IEEE micro, 40(3):20–29, 2020.

[129] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: enabling flexible
dataflow mapping over dnn accelerators via reconfigurable interconnects. ASPLOS
’18.

[130] George Kyriazis. Heterogeneous system architecture: A technical review. AMD Fusion
Developer Summit, page 21, 2012.

[131] Mandy La and Andrew Chien. Cerebras systems: Journey to the wafer-scale engine.
2020.

[132] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. MLIR: a compiler infrastructure for the end of moore’s law. arXiv preprint
arXiv:2002.11054, 2020.

205

[133] Michael A Laurenzano, Ananta Tiwari, Allyson Cauble-Chantrenne, Adam Jundt,
William A Ward, Roy Campbell, and Laura Carrington. Characterization and bottle-
neck analysis of a 64-bit ARMv8 platform. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 36–45. IEEE, 2016.

[134] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher
Batten, and Krste Asanović. Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, pages 129–140, New York, NY, USA,
2011. ACM.

[135] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Parallel graph analytics.
Communications of the ACM, 59(5):78–87, 2016.

[136] Jure Leskovec and Andrej Krevl. SNAP datasets: Stanford large network dataset
collection, 2014.

[137] Scott T Leutenegger and Daniel Dias. A modeling study of the tpc-c benchmark.
ACM Sigmod Record, 22(2):22–31, 1993.

[138] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. Gcnax: A flexible
and energy-efficient accelerator for graph convolutional neural networks. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pages
775–788. IEEE, 2021.

[139] Cedric Lichtenau, Alper Buyuktosunoglu, Ramon Bertran, Peter Figuli, Christian Ja-
cobi, Nikolaos Papandreou, Haris Pozidis, Anthony Saporito, Andrew Sica, and Elpida
Tzortzatos. AI accelerator on IBM telum processor: industrial product. In Proceed-
ings of the 49th Annual International Symposium on Computer Architecture, pages
1012–1028, 2022.

[140] Jonathan Lifflander and Sriram Krishnamoorthy. Cache locality optimization for recur-
sive programs. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–16, 2017.

[141] Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant V. Kale. Optimizing
data locality for fork/join programs using constrained work stealing. In SC’14: Pro-
ceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 857–868, 2014.

[142] Yi-Chien Lin, Bingyi Zhang, and Viktor Prasanna. HP-GNN: generating high through-
put gnn training implementation on cpu-fpga heterogeneous platform. In Proceedings
of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pages 123–133, 2022.

[143] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Teman,
Xiaobing Feng, Xuehai Zhou, and Yunji Chen. PuDianNao: A polyvalent machine
learning accelerator. In ASPLOS, 2015.

206

[144] Chris Lomont. Introduction to intel advanced vector extensions. Intel white paper, 23,
2011.

[145] Andrea Lottarini, João P Cerqueira, Thomas J Repetti, Stephen A Edwards, Ken-
neth A Ross, Mingoo Seok, and Martha A Kim. Master of none acceleration: a
comparison of accelerator architectures for analytical query processing. In Proceedings
of the 46th International Symposium on Computer Architecture, pages 762–773, 2019.

[146] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed GraphLab: a framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April 2012.

[147] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’10, page 135–146, New York, NY, USA, 2010. Association
for Computing Machinery.

[148] S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam. TAPAS: gener-
ating parallel accelerators from parallel programs. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 245–257, Oct 2018.

[149] Robert Ryan McCune, Tim Weninger, and Gregory R. Madey. Thinking like a ver-
tex: a survey of vertex-centric frameworks for distributed graph processing. CoRR,
abs/1507.04405, 2015.

[150] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based performance-driven
router for fpgas. In Third International ACM Symposium on Field-Programmable Gate
Arrays, pages 111–117, Feb 1995.

[151] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwere-
ins. ADRES: an architecture with tightly coupled VLIW processor and coarse-grained
reconfigurable matrix. In International Conference on Field Programmable Logic and
Applications, pages 61–70. Springer, 2003.

[152] X. Mei and X. Chu. Dissecting GPU memory hierarchy through microbenchmarking.
IEEE Transactions on Parallel and Distributed Systems, 28(1):72–86, Jan 2017.

[153] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr. Fine-grained
accelerators for sparse machine learning workloads. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 635–640, Jan 2017.

[154] Marius Muja and David G Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[155] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and Daniel
Sanchez. Exploiting locality in graph analytics through hardware-accelerated traversal

207

scheduling. In 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–14. IEEE, 2018.

[156] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0:
A tool to model large caches. HP Laboratories, pages 22–31, 2009.

[157] M Naumov, LS Chien, P Vandermersch, and U Kapasi. Cusparse library. In GPU
Technology Conference, 2010.

[158] Quan M Nguyen and Daniel Sanchez. Fifer: Practical acceleration of irregular ap-
plications on reconfigurable architectures. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 1064–1077, 2021.

[159] Chris Nicol. A coarse grain reconfigurable array (CGRA) for statically scheduled data
flow computing. WaveComputing WhitePaper, 2017.

[160] Tony Nowatzki. Stream-dataflow public release. URL:
https://github.com/PolyArch/stream-dataflow, 2017.

[161] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng. Hy-
brid optimization/heuristic instruction scheduling for programmable accelerator code-
sign. In 27th PACT, 2018.

[162] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam.
Stream-dataflow acceleration. ISCA ’17.

[163] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. Exploring the
potential of heterogeneous von neumann/dataflow execution models. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture, ISCA ’15, pages
298–310, New York, NY, USA, 2015. ACM.

[164] Tony Nowatzki, Vinay Gangadhar, Karthikeyan Sankaralingam, and Greg Wright.
Pushing the limits of accelerator efficiency while retaining programmability. In 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 27–39, March 2016.

[165] Tony Nowatzki, Venkatraman Govindaraju, and Karthikeyan Sankaralingam. A graph-
based program representation for analyzing hardware specialization approaches. IEEE
Computer Architecture Letters, 14(2):94–98, 2015.

[166] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankaralingam,
Cristian Estan, and Behnam Robatmili. A general constraint-centric scheduling frame-
work for spatial architectures. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, pages 495–506, New
York, NY, USA, 2013. ACM.

208

[167] E. Nurvitadhi, A. Mishra, and D. Marr. A sparse matrix vector multiply accelerator for
support vector machine. In 2015 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pages 109–116, Oct 2015.

[168] NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE: THE WORLD’S MOST
ADVANCED DATA CENTER GPU. NVIDIA WhitePaper, 2017.

[169] Hiroyuki Ochi, Kosei Yamaguchi, Tetsuaki Fujimoto, Junshi Hotate, Takashi Kishi-
moto, Toshiki Higashi, Takashi Imagawa, Ryutaro Doi, Munehiro Tada, Tadahiko
Sugibayashi, et al. Via-switch FPGA: Highly dense mixed-grained reconfigurable ar-
chitecture with overlay via-switch crossbars. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(12):2723–2736, 2018.

[170] Kunle Olukotun, Raghu Prabhakar, Rekha Singhal, Jeffrey D Ullman, and Yaqi
Zhang. Efficient multiway hash join on reconfigurable hardware. arXiv preprint
arXiv:1905.13376, 2019.

[171] Jian Ouyang, Mijung Noh, Yong Wang, Wei Qi, Yin Ma, Canghai Gu, SoonGon Kim,
Ki-il Hong, Wang-Keun Bae, Zhibiao Zhao, et al. Baidu Kunlun an AI processor for
diversified workloads. In Hot Chips Symposium, pages 1–18, 2020.

[172] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A frame-
work for hybrid CPU-FPGA databases. In 2017 IEEE 25th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), pages 211–218.
IEEE, 2017.

[173] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk. Energy
efficient architecture for graph analytics accelerators. In ISCA, pages 166–177, June
2016.

[174] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim,
D. Blaauw, T. Mudge, and R. Dreslinski. Outerspace: An outer product based sparse
matrix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 724–736, Feb 2018.

[175] Subhankar Pal, Aporva Amarnath, Siying Feng, Michael O’Boyle, Ronald Dreslinski,
and Christophe Dubach. Sparseadapt: Runtime control for sparse linear algebra on
a reconfigurable accelerator. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1005–1021, 2021.

[176] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. Wait of a decade: Did spec
cpu 2017 broaden the performance horizon? In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 271–282. IEEE, 2018.

[177] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel, Randy
Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. Triggered instructions: A

209

control paradigm for spatially-programmed architectures. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA ’13, pages 142–153,
New York, NY, USA, 2013. ACM.

[178] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A
Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W Keck-
ler, and Joel Emer. Timeloop: A systematic approach to dnn accelerator evaluation.
In 2019 ISPASS.

[179] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally.
SCNN: an accelerator for compressed-sparse convolutional neural networks. ISCA ’17.

[180] Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh, Heeseok Kim, and Hong-
seok Kim. Edge-centric modulo scheduling for coarse-grained reconfigurable architec-
tures. In Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, PACT ’08, pages 166–176, 2008.

[181] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah
Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided compiler for low-power
spatial architectures. In Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, pages 396–407, New York,
NY, USA, 2014. ACM.

[182] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, et al. The tao of
parallelism in algorithms. PLDI ’11.

[183] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. Tpc-ds, taking decision
support benchmarking to the next level. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 582–587, 2002.

[184] Jeff Pool. Accelerating sparsity in the nvidia ampere architecture. GTC 2020, 2020.

[185] Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C Jeffrey. A scalable architecture
for reprioritizing ordered parallelism. In ISCA, pages 437–453, 2022.

[186] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun. Plasticine: A reconfigurable accelerator for parallel
patterns. IEEE Micro, 2018.

[187] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christopher
De Sa, Christos Kozyrakis, and Kunle Olukotun. Generating configurable hardware
from parallel patterns. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’16, pages 651–665, New York, NY, USA, 2016. ACM.

210

[188] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan
Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Plasticine: A
reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), pages 389–402. IEEE,
2017.

[189] Benoıt Pradelle, Benoıt Meister, Muthu Baskaran, Jonathan Springer, and Richard
Lethin. Polyhedral optimization of tensorflow computation graphs.

[190] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal,
et al. A reconfigurable fabric for accelerating large-scale datacenter services. ISCA
’14.

[191] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan,
Dipankar Das, Bharat Kaul, and Tushar Krishna. Sigma: A sparse and irregular gemm
accelerator with flexible interconnects for dnn training. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 58–70. IEEE,
2020.

[192] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and Jin-
gren Zhou. Real-time constrained cycle detection in large dynamic graphs. Proceedings
of the VLDB Endowment, 2018.

[193] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. GraphPulse: an event-driven
hardware accelerator for asynchronous graph processing. In MICRO, pages 908–921.
IEEE, 2020.

[194] Gengyu Rao, Jingji Chen, Jason Yik, and Xuehai Qian. Sparsecore: stream isa and
processor specialization for sparse computation. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for Programming Languages and Op-
erating Systems, pages 186–199, 2022.

[195] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G. Y. Wei, and D. Brooks. Minerva: Enabling low-power, highly-accurate
deep neural network accelerators. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 267–278, June 2016.

[196] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 446–459. IEEE,
2020.

[197] Thomas J. Repetti, João P. Cerqueira, Martha A. Kim, and Mingoo Seok. Pipelining
a triggered processing element. In Proceedings of the 50th Annual IEEE/ACM Inter-

211

national Symposium on Microarchitecture, MICRO-50 ’17, pages 96–108, New York,
NY, USA, 2017. ACM.

[198] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis. Vector lane threading. In 2006
International Conference on Parallel Processing (ICPP’06), pages 55–64, Aug 2006.

[199] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo López-
Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient architecture
for media processing. In Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 31, pages 3–13, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[200] Alec Roelke and Mircea R. Stan. RISC5: Implementing the RISC-V ISA in gem5. In
Workshop on Computer Architecture Research with RISC-V (CARRV), 2017.

[201] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: a cycle accurate
memory system simulator. IEEE computer architecture letters, 10(1):16–19, 2011.

[202] Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu Prabhakar, and
Kunle Olukotun. Capstan: A vector rda for sparsity, 2021.

[203] Giordano Salvador, Wesley H Darvin, Muhammad Huzaifa, Johnathan Alsop,
Matthew D Sinclair, and Sarita V Adve. Specializing coherence, consistency, and
push/pull for gpu graph analytics. In ISPASS, pages 123–125. IEEE, 2020.

[204] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In 2011 International Confer-
ence on Parallel Architectures and Compilation Techniques, pages 22–32, 2011.

[205] Daniel Sanchez, David Lo, Richard M Yoo, Jeremy Sugerman, and Christos Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In 2011 International Confer-
ence on Parallel Architectures and Compilation Techniques, pages 22–32. IEEE, 2011.

[206] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. Flexible architectural sup-
port for fine-grain scheduling. SIGPLAN Not., 45(3):311–322, March 2010.

[207] Alina Sb̂ırlea, Yi Zou, Zoran Budimlic, Jason Cong, and Vivek Sarkar. Mapping a
data-flow programming model onto heterogeneous platforms. ACM SIGPLAN Notices,
47(5):61–70, 2012.

[208] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding fork-
join parallelism into LLVM’s intermediate representation. PPoPP ’17, page 249–265,
New York, NY, USA, 2017. Association for Computing Machinery.

[209] Francesco Sgherzi, Alberto Parravicini, Marco Siracusa, and Marco D Santambrogio.
Solving large top-k graph eigenproblems with a memory and compute-optimized fpga
design. In 2021 IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 78–87. IEEE, 2021.

212

[210] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ analog arithmetic in crossbars.
ACM SIGARCH Computer Architecture News, 44(3):14–26, 2016.

[211] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. Simba: Scaling deep-learning inference with multi-chip-module-
based architecture. In Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 14–27, 2019.

[212] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony
Nowatzki, and Arrvindh Shriraman. µir -an intermediate representation for trans-
forming and optimizing the microarchitecture of application accelerators. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-52, pages 940–953, New York, NY, USA, 2019. Association for Computing
Machinery.

[213] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy Lin.
Graphjet: real-time content recommendations at twitter. Proceedings of the VLDB
Endowment.

[214] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chan-
dra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018.

[215] David E Shaw, JP Grossman, Joseph A Bank, Brannon Batson, J Adam Butts, Jack C
Chao, Martin M Deneroff, Ron O Dror, Amos Even, Christopher H Fenton, et al.
Anton 2: raising the bar for performance and programmability in a special-purpose
molecular dynamics supercomputer. In SC’14: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pages
41–53. IEEE, 2014.

[216] Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic
circuits of probabilistic models. In Advances in Neural Information Processing Systems
29 (NIPS), 2016.

[217] Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons,
and Aapo Kyrola. Experimental analysis of space-bounded schedulers. In Proceedings
of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’14, page 30–41, New York, NY, USA, 2014. Association for Computing Machinery.

[218] Hartej Singh, Ming-Hau Lee, Guangming Lu, Nader Bagherzadeh, Fadi J. Kurdahi,
and Eliseu M. Chaves Filho. Morphosys: An integrated reconfigurable system for data-
parallel and computation-intensive applications. IEEE Trans. Comput., 49(5):465–481,
May 2000.

213

[219] Avinash Sodani. Knights landing (knl): 2nd generation intel® xeon phi processor. In
2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–24. IEEE, 2015.

[220] Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
Hypar: Towards hybrid parallelism for deep learning accelerator array. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
56–68. IEEE, 2019.

[221] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. GraphR: acceler-
ating graph processing using reram. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 531–543. IEEE, 2018.

[222] Arun Subramaniyan, Yufeng Gu, Timothy Dunn, Somnath Paul, Md Vasimuddin,
Sanchit Misra, David Blaauw, Satish Narayanasamy, and Reetuparna Das. Genomics-
bench: A benchmark suite for genomics. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 1–12. IEEE, 2021.

[223] Mengshu Sun, Zhengang Li, Alec Lu, Yanyu Li, Sung-En Chang, Xiaolong Ma, Xue
Lin, and Zhenman Fang. FILM-QNN: efficient FPGA acceleration of deep neural
networks with intra-layer, mixed-precision quantization. In Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
134–145, 2022.

[224] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. Graphmat: High performance graph analytics made productive. Proceedings
of the VLDB Endowment, 8(11):1214–1225, 2015.

[225] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. Wavescalar. In
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 36, pages 291–, Washington, DC, USA, 2003. IEEE Computer Society.

[226] Tuan Ta, Lin Cheng, and Christopher Batten. Simulating multi-core RISC-V systems
in gem5. 2018.

[227] Nishil Talati, Haojie Ye, Yichen Yang, Leul Belayneh, Kuan-Yu Chen, David T Blaauw,
Trevor N Mudge, and Ronald G Dreslinski. NDMiner: accelerating graph pattern
mining using near data processing. In ISCA, pages 146–159, 2022.

[228] Cheng Tan, Manupa Karunaratne, Tulika Mitra, and Li-Shiuan Peh. Stitch: Fusible
heterogeneous accelerators enmeshed with many-core architecture for wearables. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pages 575–587. IEEE, 2018.

[229] Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Álvarez, Daniel Jiménez-González,
Eduard Ayguadé, and Mateo Valero. General purpose task-dependence management
hardware for task-based dataflow programming models. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 244–253. IEEE, 2017.

214

[230] Shelby Thomas, Chetan Gohkale, Enrico Tanuwidjaja, Tony Chong, David Lau, Sat-
urnino Garcia, and Michael Bedford Taylor. Cortexsuite: A synthetic brain benchmark
suite. In 2014 IEEE International Symposium on Workload Characterization (IISWC),
pages 76–79. IEEE, 2014.

[231] Brian W Thompto, Dung Q Nguyen, José E Moreira, Ramon Bertran, Hans Jacobson,
Richard J Eickemeyer, Rahul M Rao, Michael Goulet, Marcy Byers, Christopher J
Gonzalez, et al. Energy efficiency boost in the ai-infused power10 processor. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),
pages 29–42. IEEE, 2021.

[232] Transaction Processing Performance Council. TPC-H benchmark specification. Pub-
lished at http://www. tcp. org/hspec. html, 2008.

[233] Yatish Turakhia, Gill Bejerano, and William J Dally. Darwin: A genomics co-processor
provides up to 15,000 x acceleration on long read assembly. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 199–213. ACM, 2018.

[234] Yatish Turakhia, Sneha D Goenka, Gill Bejerano, and William J Dally. Darwin-WGA:
a co-processor provides increased sensitivity in whole genome alignments with high
speedup.

[235] Johan Ugander and Lars Backstrom. Balanced label propagation for partitioning mas-
sive graphs. In Proceedings of the Sixth ACM International Conference on Web Search
and Data Mining, WSDM ’13, page 507–516, New York, NY, USA, 2013. Association
for Computing Machinery.

[236] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Ten-
sor comprehensions: Framework-agnostic high-performance machine learning abstrac-
tions. arXiv preprint arXiv:1802.04730, 2018.

[237] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das, Sasikanth
Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat Kaul,
Pradeep Dubey, and Anand Raghunathan. Scaledeep: A scalable compute architecture
for learning and evaluating deep networks. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’17, pages 13–26, New York, NY,
USA, 2017. ACM.

[238] Matthew Vilim, Alexander Rucker, and Kunle Olukotun. Aurochs: An architecture
for dataflow threads. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 402–415, 2021.

[239] Matthew Vilim, Alexander Rucker, Yaqi Zhang, Sophia Liu, and Kunle Olukotun.
Gorgon: Accelerating machine learning from relational data. In 2020 ACM/IEEE

215

47th Annual International Symposium on Computer Architecture (ISCA), pages 309–
321, 2020.

[240] Rafael Villena Taranilla, Ramón Cózar-Gutiérrez, José Antonio González-Calero, and
Isabel López Cirugeda. Strolling through a city of the roman empire: an analysis of the
potential of virtual reality to teach history in primary education. Interactive Learning
Environments, 30(4):608–618, 2022.

[241] Dani Voitsechov and Yoav Etsion. Single-graph multiple flows: Energy efficient design
alternative for GPGPUs. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ISCA ’14, pages 205–216, Piscataway, NJ, USA, 2014.
IEEE Press.

[242] Erwei Wang, James J Davis, Georgios-Ilias Stavrou, Peter YK Cheung, George A
Constantinides, and Mohamed Abdelfattah. Logic shrinkage: Learned fpga netlist
sparsity for efficient neural network inference. In Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 101–111, 2022.

[243] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. Asynchronous
large-scale graph processing made easy. In CIDR, 2013.

[244] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. {RStream}: Marrying relational algebra with streaming for efficient graph mining
on a single machine. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 763–782, 2018.

[245] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini, Tommy
Tracy, Jack Wadden, Mircea Stan, and Kevin Skadron. An overview of micron’s au-
tomata processor. In 2016 international conference on hardware/software codesign and
system synthesis (CODES+ ISSS), pages 1–3. IEEE, 2016.

[246] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. Gunrock: A high-performance graph processing library on the gpu.
In ACM SIGPLAN Notices, volume 51, page 11. ACM, 2016.

[247] Zhengrong Wang and Tony Nowatzki. Stream-based memory access specialization for
general purpose processors. In Proceedings of the 46th International Symposium on
Computer Architecture, ISCA ’19, pages 736–749, New York, NY, USA, 2019. ACM.

[248] ZhengrongWang, JianWeng, Sihao Liu, and Tony Nowatzki. Near-Stream Computing:
general and transparent near-cache acceleration. In HPCA, 2022.

[249] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and Tony Nowatzki.
Stream Floating: enabling proactive and decentralized cache optimizations. In HPCA,
2021.

216

[250] Gabriel Weisz and James C Hoe. Coram++: Supporting data-structure-specific mem-
ory interfaces for fpga computing. In 25th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8, Sept 2015.

[251] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. DSAGEN: synthesizing programmable spatial accelerators. In ISCA, pages
268–281. IEEE, 2020.

[252] Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. Unifying spatial accelerator
compilation with idiomatic and modular transformations. IEEE Micro, 2022.

[253] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. A hy-
brid systolic-dataflow architecture for inductive matrix algorithms. In 2020 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
703–716, 2020.

[254] Joyce Jiyoung Whang, Andrew Lenharth, Inderjit S Dhillon, and Keshav Pingali.
Scalable data-driven pagerank: Algorithms, system issues, and lessons learned. In
European Conference on Parallel Processing, pages 438–450. Springer, 2015.

[255] NVIDIA Whitepaper. Cuda C best practices guide, May 2019.
https://docs.nvidia.com/cuda/pdf/CUDA C Best Practices Guide.pdf.

[256] WikiChip. Configurable spatial accelerator, 2019.
https://en.wikichip.org/wiki/intel/configurable spatial accelerator.

[257] Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing
Lusk, and Ian T Foster. Swift/t: Large-scale application composition via distributed-
memory dataflow processing. In 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pages 95–102. IEEE, 2013.

[258] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. Navigating big
data with high-throughput, energy-efficient data partitioning. In ISCA, 2013.

[259] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross.
Q100: The architecture and design of a database processing unit. ASPLOS ’14.

[260] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. Sync or
async: Time to fuse for distributed graph-parallel computation. ACM SIGPLAN
Notices, 50(8):194–204, 2015.

[261] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. Tigris: Architecture and algorithms
for 3d perception in point clouds. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 629–642, 2019.

[262] Mingyu Yan, Xing Hu, Shuangchen Li, Abanti Basak, Han Li, et al. Alleviating irreg-
ularity in graph analytics acceleration: A hardware/software co-design approach. In

217

Proceedings of the 52Nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 615–628, New York, NY, USA, 2019. ACM.

[263] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy Lemieux,
and Mieszko Lis. Procrustes: a dataflow and accelerator for sparse deep neural network
training. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 711–724. IEEE, 2020.

[264] Yifan Yang, Zhaoshi Li, Yangdong Deng, Zhiwei Liu, Shouyi Yin, Shaojun Wei, and
Leibo Liu. GraphABCD: scaling out graph analytics with asynchronous block coordi-
nate descent. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 419–432. IEEE, 2020.

[265] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh.
Ganax: A unified mimd-simd acceleration for generative adversarial networks. In
Proceedings of the 45th Annual International Symposium on Computer Architecture,
pages 650–661. IEEE Press, 2018.

[266] Victor A Ying, Mark C Jeffrey, and Daniel Sanchez. T4: Compiling sequential code
for effective speculative parallelization in hardware. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 159–172. IEEE,
2020.

[267] Richard M. Yoo, Christopher J. Hughes, Changkyu Kim, Yen-Kuang Chen, and Chris-
tos Kozyrakis. Locality-aware task management for unstructured parallelism: A quan-
titative limit study. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’13, page 315–325, New York, NY,
USA, 2013. Association for Computing Machinery.

[268] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin,
et al. Apache spark: a unified engine for big data processing. Communications of the
ACM, 59(11):56–65, 2016.

[269] Alberto Zeni, GuidoWalter Di Donato, Lorenzo Di Tucci, Marco Rabozzi, and Marco D
Santambrogio. The importance of being X-Drop: high performance genome alignment
on reconfigurable hardware. In 2021 IEEE 29th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 133–141. IEEE,
2021.

[270] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie,
and Azalia Mirhoseini. A full-stack search technique for domain optimized deep learn-
ing accelerators. In Proceedings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 27–42,
2022.

218

[271] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. Minnow: Lightweight
offload engines for worklist management and worklist-directed prefetching. In Pro-
ceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’18, pages 593–607, New
York, NY, USA, 2018. ACM.

[272] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. Gamma: Leverag-
ing gustavson’s algorithm to accelerate sparse matrix multiplication. ASPLOS 2021,
New York, NY, USA, 2021. Association for Computing Machinery.

[273] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-structured analyt-
ics. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 183–193, 2015.

[274] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen,
Christos Kozyrakis, and Xuehai Qian. GraphP: reducing communication for pim-based
graph processing with efficient data partition. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 544–557. IEEE, 2018.

[275] Si; Hsieh Cho-Jui Zhang, Huan; Si. GPU-acceleration for large-scale tree boosting.
arXiv eprint arXiv:1706.08359, 2017, 2017.

[276] Yaqi Zhang, Alexander Rucker, Matthew Vilim, Raghu Prabhakar, William Hwang,
and Kunle Olukotun. Scalable interconnects for reconfigurable spatial architectures.
In Proceedings of the 46th International Symposium on Computer Architecture, ISCA
2019, Phoenix, AZ, USA, June 22-26, 2019, pages 615–628, 2019.

[277] Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, and Kunle
Olukotun. Sara: Scaling a reconfigurable dataflow accelerator. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA), pages 1041–
1054. IEEE, 2021.

[278] Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. DiGraph: an
efficient path-based iterative directed graph processing system on multiple GPUs. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, pages 601–614, New
York, NY, USA, 2019. ACM.

[279] Yu Zhang, Xiaofei Liao, Hai Jin, Ligang He, Bingsheng He, Haikun Liu, and Lin Gu.
DepGraph: a dependency-driven accelerator for efficient iterative graph processing. In
HPCA. IEEE, 2021.

[280] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale par-
allel collaborative filtering for the netflix prize. In International conference on algo-
rithmic applications in management, pages 337–348. Springer, 2008.

219

[281] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 16), pages 301–316,
2016.

[282] Yuhao Zhu and Vijay Janapa Reddi. Webcore: architectural support for mobileweb
browsing. ACM SIGARCH Computer Architecture News, 42(3):541–552, 2014.

[283] Ling Zhuo and Viktor K Prasanna. Sparse matrix-vector multiplication on FPGAs.
In Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 63–74. ACM, 2005.

[284] Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, and
Xuehai Qian. SympleGraph: distributed graph processing with precise loop-carried
dependency guarantee. In PLDI, page 592–607, New York, NY, USA, 2020. Association
for Computing Machinery.

[285] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. GraphQ: scalable pim-based graph processing. In Proceedings of
the 52Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’52, pages 712–725, New York, NY, USA, 2019. ACM.

220

	Introduction
	Background
	Irregular workloads
	Existing Architectures for Irregularity
	Domain-specific Architectures
	Application-specific Architectures
	Our Focus

	Key Insight and Approach
	Insight: Irregularity Can be Specialized
	Approach

	Contributions
	Organization

	Systematizing and Characterizing Irregularity Forms
	Irregularities due to Control and Memory Dependencies
	Task Irregularities
	Task Irregularity with Fine-grained Data Dependencies
	Task Irregularity with Coarse-grained Data Dependencies

	Other Irregularities
	Summary and our Solution Approach

	Decoupled Spatial ISA and Hardware
	Execution Model and ISA
	Decoupled Spatial Execution Model
	ISA Specification

	Decoupled Spatial Hardware Design
	Control Plane
	Data Plane

	Challenges to Design Domain-Agnostic Reconfigurable Accelerators
	Pick Workload Benchmarks
	Pick Algorithms to Accelerate
	Designing Hardware-Software Interface
	Evaluation Methodology

	Accelerating Workloads with Data-Dependent Control and Memory
	Specializable Data-Dependence Forms
	Stream-Join
	Alias-Free Indirection (AF-Indirect)

	Specializing Data-Dependent Control
	Stream-join Control
	Stream-join Compute Fabric: DGRA

	Specializing Data-Dependent Memory
	Sparse Memory Abstractions
	Data-Dependent Memory Microarchitecture

	Sparse Processing Unit
	Methodology
	Evaluation
	Performance on Machine Learning
	Performance on Graph and Databases
	Sensitivity to Dataset Density
	Benefit of Decomposability
	Area and Power

	Related Work
	Discussion

	TaskStream: General Task Framework For Accelerators
	TaskStream Execution Model
	TaskStream Program Representation
	Limitations of TaskStream

	Fundamentals of the Approach

	Understanding Fine-Grain Task-Parallel Workloads Through Accelerating Graph Processing
	Graph Acceleration Background
	Vertex-centric, Sliced Graph Execution Model
	Key Workload/Graph Properties

	Graph Algorithm Taxonomy
	Unified Graph Processing Representation
	Data plane Representation: TaskStream
	Slice Scheduling Interface and Operation
	Scheduling of Algorithm Variants

	Polygraph Hardware Implementation
	Task Hardware Details
	Memory Architecture

	Spatial Partitioning
	Methodology
	Evaluation
	Algorithm Variants Performance Comparison
	Comparison to Prior Accelerators
	Algorithm Sensitivity
	Hardware Sensitivity

	Additional Related Work
	Discussion
	Limit Study
	Factors Impacting Convergence Rate

	Accelerating Task-Parallel Workloads with Coarse-Grained Dependencies
	TaskStream Optimizations
	Opportunities for Structure Recovery
	TaskStream Model

	TaskStream for Reconfigurable Accelerators
	Hierarchical TaskStream Dataflow
	Programming
	Workload Mapping
	Discussion of Limitations and Extensions

	Delta: A TaskStream Accelerator
	Methodology
	Evaluation
	Related Work
	Discussion

	Discussion
	Case for Domain-Agnostic Programmable Accelerators
	Systematizing Irregular Accelerator Research
	Future Directions and Open Questions
	Programming language support for ``Programmable Accelerators''
	Acceleration at scale
	Accelerate Workloads with Dynamic Data
	Generalizing Taskstream Abstraction

	Conclusion

	Abstract Graph Simulator
	GraphSim Implementation
	Limitations

	References

