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ABSTRACT OF THE DISSERTATION

Customized Computing and Machine Learning

by

Atefeh Sohrabizadeh

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Jingsheng Jason Cong, Chair

Nowadays, abundant data across various domains necessitate high-performance computing

capabilities. While we used to be able to answer this need by scaling the frequency, the

breakdown of Dennard’s scaling has rendered this approach obsolete. On the other hand,

Domain-specific Accelerators (DSAs) have gained a growing interest since they can offer

high performance while being energy efficient. This stems from several factors, such as, 1)

they support utilizing special data types and operations, 2) they offer massive parallelism,

3) one can customize the memory access, 4) customizing the control/data path helps with

amortizing the overhead of fixed instructions, and 5) one has the option of co-designing the

algorithm with the hardware.

Unfortunately, despite the huge speedups that DSAs can deliver compared to general-

purpose processors, their programmability has not caught up. In the past few decades,

High-Level Synthesis (HLS) tools were introduced to raise the abstraction level and free de-

signers from delving into architecture details at the circuit level. While HLS can significantly

reduce the efforts involved in the hardware architecture design, not every HLS code yields

optimal performance, requiring designers to articulate the most suitable microarchitecture

for the target application. This can affect the design turnaround times as there are more

choices to explore at a higher level. Moreover, this limitation has confined the DSA com-

munity primarily to hardware designers, impeding widespread adoption. This dissertation

endeavors to alleviate this problem by combining customized computing and machine learn-
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ing. Consequently, this dissertation consists of two core parts: 1) customized computing

tailored for machine learning applications, and 2) machine learning employed to automate

the optimization process of customized computing. Our focus will be on FPGAs as their

cost-effective nature and rapid prototyping capabilities make them especially suitable for our

research.

The large amounts of data available in data centers have motivated researchers to develop

machine learning algorithms for processing them. Given that a significant portion of data

stored in these centers exists in the form of images or graphs, our attention is directed

towards two prominent algorithms designed for such tasks: Convolutional Neural Network

(CNN) and Graph Convolutional Network (GCN). In the first part of the dissertation, we

develop architecture templates for accelerating these applications. This approach facilitates

a reduction in the development cycle, allowing the instantiation of module templates with

customizable parameters based on the specific target application.

In the second part of the dissertation, we move our focus to general applications and

work on automating their optimization steps including design space exploration and perfor-

mance/area modeling. Therefore, we structure our problem in a way that can be fed into the

learning algorithms. We develop a highly efficient bottleneck optimizer to explore the search

space. We also explore different learning algorithms including multi-layer perceptron, graph

neural networks, attention networks, jumping knowledge networks, etc., aiming to create

a performance predictor that is both highly accurate and robust. Our studies show that

we can optimize the microarchitecture of general applications quickly using our automated

tools. This can open new doors to those without hardware knowledge to try customized

computing which in turn helps to broaden the FPGA community and further improve its

technology.
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CHAPTER 1

Introduction

According to Statista, in 2024, spending on data center systems is expected to amount

to 235 billion U.S. dollars [Dep24a] with the projected global data to be 147 zettabytes

(1021 bytes) [Dep24b]. Due to this rapid growth of datasets in recent years, the demand

for scalable high-performance computing continues to increase. However, the breakdown of

Dennard’s scaling [Den+74] has put an end to frequency scaling and made energy efficiency

an important concern in data centers. This has spawned exploration into using accelerators

such as Field-Programmable Gate Arrays (FPGAs) to alleviate power consumption while

achieving high performance with customized computing units and memory access. For ex-

ample, one of the biggest companies manufacturing general-purpose processors, AMD, has

acquired FPGA companies, Xilinx (for 50 billion U.S. dollars in 2021) [AMD22; Reu22].

Microsoft has adopted CPU-FPGA systems in its data center to help accelerate the Bing

search engine [Put+14]. Amazon introduced the F1 instance [Ama24], a compute instance

equipped with FPGA boards, in its commercial Elastic Compute Cloud (EC2). Samsung

offers SmartSSD which brings FPGA-based acceleration near storage [Sma24b]. Similarly,

Cisco has developed SmartNIC to offer an FPGA-based solution for low-latency network-

ing [Sma24a].

Although the interest in customized computing using FPGAs is growing, they are more

difficult to program compared to CPUs and GPUs. This is because the traditional Register-

Transfer Level (RTL) programming model is more like circuit design rather than software

implementation. To improve the programmability, High-Level Synthesis (HLS) [Con+11;

Zha+08] has attracted a large amount of attention over the past decades. Currently, most

FPGA vendors have their commercial HLS products e.g., AMD Xilinx Vitis [AMD24a] and
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Intel High-Level Synthesis Compiler [Int24a]. With the help of HLS, one can program the

FPGA more easily by controlling how the design should be synthesized from a high-level view.

The main enabler of this feature is the ability to iteratively reoptimize the microarchitecture

quickly just by inserting synthesis directives in the form of pragmas instead of rewriting the

low-level (circuit-level) description of the design. Because of the reduced code development

cycle and the shorter turnaround times, HLS has been rapidly adopted by both academia

and industry [Dua+18; Lai+19; ZPM18; And+17; WGC21].

Even though HLS is suitable for hardware experts to quickly implement an optimal de-

sign, it is not friendly for most of the general software designers who have limited FPGA

domain knowledge. Since the hardware architecture inferred from a syntactic C imple-

mentation could be ambiguous, current commercial HLS tools usually generate architecture

structures according to specific HLS C/C++ code patterns. As a result, even though it was

shown in [Con+11] that the HLS tool is capable of generating FPGA designs with a perfor-

mance as competitive as the one in RTL, not every C program gives a good performance.

The designers rather must manually reconstruct the HLS C/C++ kernel with specific code

patterns and hardware-specific pragmas to optimize the microarchitecture and achieve high

performance [Con+18b; Con+18a].

Mastering FPGA optimization techniques is challenging and time-consuming for general

software programmers, making them more likely to prefer other popular accelerators such

as power-hungry GPUs over FPGAs. This creates significant barriers to the adoption of

FPGAs in data centers, limits the expansion of the FPGA user community, and hinders the

advancement of FPGA technology. This issue has inspired us to work on making FPGAs

more accessible by automating their compilation and optimization processes, enabling pro-

grammers with reasonable expertise to develop customized accelerators with minimal effort.

Additionally, an automated compilation tool can help shorten design turnaround times

In parallel, a lot of the data stored in data centers are in the form of images or graphs.

To process these data, researchers have proposed to apply deep neural networks to auto-

matically extract their features. Convolutional Neural Network (CNN) is one of the most
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established algorithms in this domain with applications in computer vision such as image

classification (e.g., [KSH12; He+16]), object detection (e.g. [Cao+17; WSH20]), etc. Because

of their wide applications, there is a growing interest in accelerating CNN computation using

FPGAs due to their high energy efficiency and performance (e.g., [Aki+18; BZH18; Gua+17;

Li+16; NSW18; Sud+16; Wei+17; Zha+15; Zha+18a; Zha+18b; SFM17b]). However, the

irregularity and high variation of the CNN models have made this task challenging and there

is a need for an accelerator that can adapt to these variations. Inspired by the success of

CNNs, Graph Convolutional Networks (GCNs) [KW16] were developed to extract structured

low-dimensional features from the graphs which are mainly unstructured and have high di-

mensionality. Unfortunately, the differences between an image and a graph structure make

the countless CNN accelerators proposed in the literature incompatible with GCNs. Hence,

they require a separate accelerator.

1.1 Dissertation Overview

The growth of Machine Learning (ML) and the development of HLS has made us believe

they can benefit from each other by combining customized computing with ML. In this dis-

sertation, we focus on making FPGAs more accessible by improving their programmability.

As such, we divide our efforts into two parts as demonstrated in Fig. 1.1. First, we imple-

ment customized accelerators for common deep learning networks: CNN and GCN. Then,

we exploit ML techniques to develop frameworks that can learn to design accelerators and

reach the expert-level quality of design for general applications.

1.1.1 Customized Computing for Machine Learning Acceleration

The irregularity of recent CNN models such as lower data reuse and parallelism due to the

extensive network pruning and simplification creates new challenges for FPGA acceleration.

More specifically, different CNN models make use of different types of convolutional layers

that have disparate computation patterns. Furthermore, the same type of convolutional
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Figure 1.1: The overview of the dissertation.

layers in a network have diverse characteristics in terms of their input, output, and kernel

(filter) size. Thus, the Computation to Communication (CTC) ratio varies across differ-

ent layers which affects the attainable performance. To alleviate this problem, we propose

a flexible and composable architecture called FlexCNN which adopts techniques including

dynamic tiling and data layout to deliver high computation efficiency for different types

of convolutional layers. FlexCNN has the architecture template to support the common

CNN layers such as normal convolution, depthwise separable convolution, ReLU, pooling,

bilinear upsampling, and any combination of these layers (for example, residual bottleneck

block [San+18]). The FlexCNN compilation system starts with parsing TensorFlow’s pro-

tobuf file which contains the computation graph of the target CNN. After extracting the

required information, FlexCNN performs a Design Space Exploration (DSE), which uses two

analytical models that estimate the latency and resource consumption of each module, to

find the best hardware configurations for the architecture based on the target network. Once

the optimal hardware configuration is found, the network is run through an instruction gen-

erator to produce a (Very Long Instruction Word) VLIW-like instruction for processing each

of the layers. Each instruction consists of the information to run that layer which includes

the tiling factors associated with that layer, the DRAM locations for reading and writing

the data, and the enable signals for each of the modules.

Without proper optimization, there could be significant overheads when integrating

FPGAs into existing machine learning frameworks like TensorFlow which can lead to up

to 8.45× performance degradation according to our experiments. Such a problem is mostly
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overlooked by previous studies. As such, in FlexCNN, we employ a two-level pipelining

to let the FPGA computation be executed simultaneously with the rest of the overheads.

The first level of pipelining is for overlapping with the overheads that TensorFlow intro-

duces and the second one is to overlap FPGA computation with the DMA data movement

steps. Experimental results show that the FlexCNN architecture optimizations bring 2.3×

performance improvement when tested on the OpenPose [Cao+17] network. The pipelined

integration stack leads to a further 5× speedup. Hence, the SW/HW co-optimization pro-

duces a speedup of 11.5× proving the efficiency of FlexCNN. Details of the optimizations

can be found in Chapter 3.

GCNs follow the same behavior as CNNs in learning. They consist of multiple layers in

which the features of the nodes are propagated within them until rich information of the

input graph is derived. In each layer, the GCN updates the node features by gathering the

neighbors’ features and passing the result through a filter. Despite this similarity to CNNs,

they have different computation complexity and memory access patterns. This is because,

compared to an image, the neighbors of a node in a graph may be stored in any location

in memory. This will result in many irregular memory accesses to all levels of the memory

hierarchy. Furthermore, as their computation can be modeled as matrix multiplication, they

have much lower data reuse compared to CNNs. On the other hand, compared to the tra-

ditional graph algorithms such as Breadth First Search (BFS), Single-Source Shortest Path

(SSSP), PageRank (PR), etc., each node deals with a long vector rather than a scalar. As

a result, we can exploit intra-node parallelism. Furthermore, all the vectors associated with

different nodes share a weight matrix which brings in more data reuse opportunities. These

differences have created a new line of research to exploit the new acceleration opportunities

(e.g., [Yan+20a; Gen+20; ZP20; Lia+20; ZKP21]).

The previous works in this domain mainly target large graphs. While some graph data

tend to scale rapidly, many graph data are naturally limited in size, for example, chemical

compounds and molecules [NCI04; SI15; Bol+08; Che+19] which have a wide application

in different domains including drug development, quantum mechanics, physical chemistry,
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biophysics, etc [Wu+18; Che+19]. It turns out that the size of the graphs impacts the

scheduling technique we employ and brings in streaming opportunities throughout the whole

network. Furthermore, the node embeddings in a GCN create a sparse matrix that requires

in-situ sparsity support, but it is overlooked in the previous works. To fill in this void, we

present StreamGCN (Chapter 4) as an efficient and flexible GCN accelerator for streaming

small graphs - from the global memory and through the network - while exploiting all the

available sparsity. The experimental results demonstrate that our optimizations result in

2.3× speedup while requiring 1.7× less computation resources (DSP).

1.1.2 Machine learning for Designing Customized Accelerators

Although HLS can potentially help shorten the code development cycle by raising the ab-

straction level, there are many design choices (e.g., specified by the pipeline and unroll

pragmas) at a higher level that require more time to explore. This is because the solution

space grows exponentially by the number of candidate pragmas. To make matters worse, it

takes several minutes to hours to get feedback from the HLS tool on the Quality of Results

(QoR). As a result, it may take several weeks to optimize the microarchitecture for each

new application. As our first effort to improve the programmability of FPGAs for general

software programmers, we focus on automatically augmenting the behavioral description of

the program in C/C++ with the best HLS pragma configurations. To do so, we develop and

implement AutoDSE as an automated framework to explore the different pragma configura-

tions to systematically close in on high-quality design points.

Since the HLS tools are based on multiple heuristics which makes it hard to capture

its behavior with an analytical model [SW19], we treat the HLS tool as a black box and

invoke the tool each time we want to evaluate a design point. As mentioned above, not

only are we dealing with a huge design space, but it is also very time-consuming to assess

each design point since we rely on the HLS tool for it. As a result, we cannot afford

to spend many iterations to improve the design’s quality and must explore the solution

space intelligently. For that, AutoDSE adapts a bottleneck-guided coordinate optimizer
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to systematically search for better configurations by mimicking an expert’s approach in

design optimization. This means that at each iteration, AutoDSE gets to try the high-

impact parameters (pragmas) by recognizing and analyzing the design’s bottleneck. We have

extensively tested AutoDSE on 45 different kernels. The experimental results show that the

best design found by AutoDSE can achieve, on the geometric mean, 19.9× speedup over one

CPU core for MachSuite [Rea+14] and Rodinia [Che+09] benchmarks. Furthermore, it can

achieve the same or better performance compared to AMD Xilinx Vitis library [Xilb] while

reducing the required optimization pragmas by 26.38×, on the geometric mean. Chapter 5

explains the details of AutoDSE in more detail.

While AutoDSE has been shown to outperform its previous state-of-the-art approaches,

directly using the HLS tool can significantly slow down the optimization process. As a

result, we are forced to explore only a small portion of the solution space. The most effective

solution to this problem is to develop a model as a surrogate of the HLS tool to be used

instead of invoking the tool. Therefore, we can evaluate each design candidate in milliseconds

as opposed to several minutes to hours. However, it is not a trivial task due to the different

heuristics employed by the HLS tools. When developing a model, the first challenge we need

to address is deciding how we should represent each design (C/C++ program). For this

matter, we designed a heterogeneous graph representation of the program which includes

both program semantics (control, data, and call flows) and pragma flows. Then, we can

exploit a Graph Neural Network (GNN) to extract the required features of the graph for

predicting the design’s objectives. Current HLS tools optimize the design based on specific

code patterns. Although different applications have different domains, they may share the

same code structures for some parts. Thus, this approach can help with identifying the

different code patterns and learning their effect to be able to transfer the knowledge from one

application to another. As a result, we can develop a single model and utilize it across many

applications. Our results confirm that our proposed representation and model can indeed

achieve this goal with high accuracy and a resulting throughput of 22 inferences/second.

More details of our approach are explained in Chapter 6. As ML-based techniques require
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a large dataset, we compiled the HLSyn database in Chapter 7, consisting of 41 distinct

kernels with over 81,000 labeled designs.

While GNN-DSE exhibits promise, several challenges must be addressed to enhance the

effectiveness of HLS performance prediction. The initial challenge arises from lengthy de-

pendency chains in the program, where an element may depend on another one located far

away. In response, we introduce HARP, utilizing a hierarchical graph representation of HLS

designs to establish relationships at different levels. We augment our previous graph rep-

resentation with auxiliary nodes that provide high-level hierarchical information about the

design, resulting in a coarsened view of the design that facilitates coping with long-range

dependencies. This representation significantly reduces the average shortest path of our

benchmark by a factor of 5, enabling the GNN model to efficiently pass nodes’ messages

throughout the entire graph. Moreover, recognizing that design objectives are influenced by

both program context and pragmas, it is advantageous to develop a model capable of learn-

ing the effect of each component separately. To address this, HARP introduces a Neural

Pragma Transformer (NPT), modeling pragmas as learnable functions applied to the pro-

gram representation. This architectural design aligns more naturally with the transformative

nature of pragmas.

These optimizations to the representation and model architecture are not only crucial

for improving predictive model accuracy but also contribute to building more robust GNN

representations adaptable to environmental shifts. A significant source of this shift occurs due

to the updates to the HLS tool and subsequent changes in the heuristics utilized, thereby

influencing the objectives of the design. Considering the substantial cost associated with

regenerating the entire database (requiring the execution of the HLS tool) and retraining

the model, a preferable approach is to transfer the model to the new shift using a smaller

dataset. Experimental results illustrate that HARP yields a further 34% improvement in

prediction accuracy in the new environment. Consequently, it identifies designs with 1.31×

lower cycle counts compared to model-based DSE, on average. When compared to model-

free DSE, HARP identifies designs with 2.13× lower cycle counts on average for both the
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initial environment and after transferring the learned model to the new environments. For

a more in-depth exploration of HARP, detailed insights are provided in Chapter 8.

The remainder of this dissertation is structured as follows: Chapter 2 provides an overview

of HLS and the Merlin Compiler, along with a description of the computation of CNNs and

GNNs. This chapter also delves into related literature on accelerating CNNs and GCNs, as

well as performance models and DSE techniques for Electronic Design Automation (EDA)

and HLS. The first part of the dissertation starts with the introduction of FlexCNN, our CNN

accelerator in Chapter 3, followed by the presentation of StreamGCN, our GCN accelerator

in Chapter 4. The second part of the dissertation starts with the proposal of AutoDSE in

Chapter 5 as a push-button bottleneck-based optimizer for HLS programming. We introduce

GNN-DSE in Chapter 6 to demonstrate how one can develop a surrogate of the HLS tool.

We then explain the details of our HLSyn database in Chapter 7. In Chapter 8, we discuss

what optimizations are needed to make the model predictions more robust. The dissertation

concludes with Chapter 9, presenting the final remarks and summary of the research findings.
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CHAPTER 2

Background

2.1 High-Level Synthesis (HLS)

With the growing popularity of FPGAs, their design tools are improving as well. Nowadays,

FPGA vendors provide fully automated design tools that translate a high-level behavioral

description of the program all the way down to a bitstream that can be executed on the FPGA

as shown in Fig. 2.1. The first step, done by the HLS tool, is to generate the equivalent

of the input program in the RTL format. Then, the RTL code is passed through logic

synthesis which performs architecture-independent optimizations, technology mapping, and

architecture-dependent optimizations to generate a gate-level representation of the design.

Finally, the resulting netlist would go through placement and routing (physical design step)

to generate the bitstream. As pointed out by the previous works (e.g., [Con+11]), the quality

of the final design is highly impacted by the input HLS code and not every HLS code gives a

good performance. In this dissertation, our goal is to generate better (HLS) C/C++ codes to

produce a design with a higher quality. In the first part, we do it for two specific applications,

CNN and GCN; in the second part, our focus is to automatically generate better input codes

for general applications.

The HLS tools make use of two types of pragmas. Table 2.1 lists the common pragmas

that can be used with the AMD Xilinx HLS tool. The first type is the non-optimization

pragmas (e.g., how the I/O ports will be interfaced with the global memory) which are

relatively easy to learn and apply. The second type includes the optimization pragmas, such

as pipeline and unroll pragmas that define the microarchitecture of the resulting accelerator.

As a result, they can influence the achievable performance. In fact, the same programs
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Figure 2.1: High-level synthesis design flow.

with different pragma combinations can have several orders of magnitude differences in their

final performance. Unfortunately, these pragmas are usually much more challenging for an

average software programmer with no knowledge of hardware to learn and master. Therefore,

to expand the FPGA’s community, it is important to relieve the users from the burden of

this optimization step by eliminating the need to apply optimization pragmas manually and

instead automating their exploration process.

Table 2.1: Common AMD Xilinx HLS Pragmas.

Non-optimization Pragmas Optimization Pragmas

INTERFACE STREAM

ALIAS DATAFLOW

LATENCY LOOP_MERGE

LOOP_TRIPCOUNT LOOP_FLATTEN

TOP UNROLL

RESET DEPENDENCE

PIPELINE

ARRAY_PARTITION

ARRAY_RESHAPE

INLINE

11



2.1.1 The Merlin Compiler

The Merlin Compiler1 [Con+16b; Con+16a; Fal] was developed to raise the abstraction

level in FPGA programming by introducing a reduced set of high-level optimization direc-

tives and automatically generating the respective HLS code along with the required HLS

pragmas to enable the designated optimizations. It uses a simple programming model simi-

lar to OpenMP [DM98], which is commonly used for multi-core CPU programming. Like in

OpenMP, it defines a small set of compiler directives in the form of pragmas for optimizing

the design.

Table 2.2 lists the Merlin pragmas with architecture structures. Based on these user-

specified pragmas, the Merlin Compiler performs source-to-source code transformation and

automatically generates the related HLS pragmas to apply the corresponding architecture

optimizations. For example, array partitioning is required to increase the number of memory

access concurrency when parallel accesses to a buffer are needed. Based on the parallel factor

and the buffer’s access type, the Merlin Compiler decides the best way for partitioning the

buffers; thus, it does not require the ARRAY_PARTITION pragma. The fg option in the fine-

grained pipeline mode refers to the code transformation that tries to apply fine-grained

pipelining to a loop nest by fully unrolling all its sub-loops; whereas, the cg option in the

coarse-grained pipelining transforms the code to enable double buffering. The parallel and

tiling pragmas allow us to adjust the duplication factor of the processing elements (in the

case of cg parallelization) or the arithmetic operations (in the case of fg parallelization) as

well as the amount of cached data, respectively. Even though the Merlin Compiler only

takes three pragmas, it generates several HLS pragmas based on them, including PIPELINE,

UNROLL, ARRAY_PARTITION, INLINE, DEPENDENCE, and LOOP_FLATTEN. Furthermore, based

on these pragmas, it automatically employs code transformations to implement memory

coalescing, apply memory burst, and cache the required data for enabling architectural

optimizations.

1Open-sourced at https://github.com/Xilinx/merlin-compiler.
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Table 2.2: The Merlin pragmas with architecture structure.

Keyword Available Options Architecture Structure

parallel factor=<int> CG & FG parallelism

pipeline mode=<cg|fg|no> CG or FG or no pipeline

tiling factor=<int> Loop Tiling

CG: Coarse-grained; FG: Fine-grained

Code 2.1: Input code snippet in Merlin C.
1 void AddMatrix(const float a[N][M], const float b[N][M], float c[N][M]) {

2 #pragma ACCEL pipeline

3 for (int i = 0; i < N / 64; ++i){

4 for (int ii = 0; ii < 64; ++ii){

5 for (int j = 0; j < M; ++j){

6 c[i * 64 + ii][j] = a[i * 64 + ii][j] + b[i * 64 + ii][j];

7 }}}

8 }

To illustrate the key advantages of using the Merlin Compiler, we analyze the transfor-

mations applied to Code 2.1. The transformed version is shown in Code 2.2. The generated

code has more than 100 lines and utilizes 18 optimization pragmas alongside 7 interface

pragmas (#pragma HLS INTERFACE). However, for brevity, we only display the most impor-

tant sections of the code. The Merlin Compiler optimizes the code by employing memory

coalescing to fully utilize the available 512 bits of DRAM bandwidth. Additionally, it load-

s/stores bursts of data and creates on-chip buffers to cache them. Furthermore, to enable

coarse-grained pipelining as we requested in Line 2 of Code 2.1, the code is divided into three

stages: load, compute, and store, allowing for overlapping of computation and communica-

tion. As we will discuss in Chapter 5, the Merlin Compiler is highly effective at applying code

transformations involving repeated architectural optimizations that benefit a wide range of

applications. Consequently, we can optimize a forward path of a CNN code with only 4

Merlin pragmas, as shown in Code 5.2, and achieve a speedup of over 7000×. By contrast,

attempting the same improvements directly in Vitis HLS C would require extensive code

13



Code 2.2: Generated HLS code for Code 2.1 by the Merlin Compiler.
1 // Skip headers for brevity

2

3 void load(merlin_uint_512 *a, ...) {

4 #pragma HLS INLINE OFF

5 memcpy_wide_bus_read_float_2d_4096_512(

6 a_buf, 0, 0, (merlin_uint_512 *)a,

7 (i*64*M*4), sizeof(float) * ((unsigned long )(64*M)), 64*M);

8 ...

9 }

10

11 void compute(float* a_buf,float* b_buf,float* c_buf){

12 #pragma HLS INLINE OFF

13 for (int ii = 0; ii < 64; ++ii) {

14 for (int j = 0; j < M; ++j) {

15 #pragma HLS dependence variable=c_buf array inter false

16 #pragma HLS pipeline

17 c_buf[ii][j] = a_buf[ii][j] + b_buf[ii][j];

18 }}

19 }

20

21 void store(float *c_buf, ...) {

22 #pragma HLS INLINE OFF

23 memcpy_wide_bus_write_float_2d_4096_512(

24 (merlin_uint_512 *)c, c_buf, 0, 0,

25 (i*64*M*4), sizeof(float) * ((unsigned long )(64*M)), 64*M);

26 }

27

28 void AddMatrix(merlin_uint_512 *a, merlin_uint_512 *b, merlin_uint_512 *c){

29 // Skip interface pragmas

30 // Skip local buffer generations and array_partition pragmas

31 for (int i = 0; i < N / 64 + 2; ++i) {

32 if (i % 3 == 0) {

33 load(a, a_buf_0, ...);

34 compute(a_buf_1, ...);

35 store(c_buf_2, ...);}

36 else if (i % 3 == 1)

37 ...

38 // Skip the rest for brevity

39 }

40 }
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modifications, resulting in over 150 lines of code and the use of 28 optimization pragmas

(refer to Appendix A.1).

Therefore, to reduce the size of the solution space and leverage these code transforma-

tions, we chose to utilize the Merlin Compiler as the backend of our tools in the second

part of the dissertation. This means that the solution space consists of three types of prag-

mas: pipeline, parallel, and tiling. The Merlin Compiler requires fewer pragmas, as it

conducts source-level code reconstruction and generates the necessary HLS pragmas. This

characteristic results in a more concise design space, making it more suitable for developing

a DSE, as demonstrated in references [Con+18a; Yu+18].

2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a widely used deep learning model with appli-

cations in computer vision [Fan+20], speech processing [PMC19], and more. The success of

CNNs comes from their ability to automatically identify important input features without

human intervention [Gu+18]. A CNN includes multiple layers such as convolutional layers,

pooling layers, and activation layers like ReLU [NH10], with the convolutional layers being

the primary components for extracting the features of the input. The convolutional layers

take a 3-dimensional input of size N ×H ×W as the input with N , H, and W representing

the number of feature maps, height, and width of the input. They combine and filter the

N input feature maps to generate M output feature maps. A standard convolutional layer

employs weight filters of size M×N×K×K as shown in Fig. 2.2(a). Each input feature map

is filtered by a separate weight filter of size K ×K. Their result would be added together to

produce one output feature map and this process is repeated until M output feature maps

are generated. Therefore, the total computation cost for this layer is M×N×H×W×K×K.
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Figure 2.2: Structure of our targeted convolutional layers along with their respective weights.

2.2.1 Other Convolutional Layers

2.2.1.1 Depthwise Separable Convolution

Sifre et al. [SM14] introduced Depth-wise Separable Convolutions (DSC) to decrease the

computational workload of a convolutional layer. In a standard convolutional layer (conv),

the feature maps are filtered and combined in one step. The DSC, however, splits this step

into two phases as shown in Fig. 2.2(b). The first phase, depthwise convolution (DW), does

lightweight filtering, and the second phase, pointwise convolution (PW), merges the resulting

filtered feature maps through 1× 1 weight filters (linear combinations of the filtered feature

maps). As a result, a DSC uses N ×K ×K filters (weights) for DW and M × N × 1 × 1

filters for PW. By applying this change, the amount of computation is reduced by a factor

of 1
M

+ 1
K2 [How+17]:

(N ×H ×W ×K ×K) + (M ×N ×H ×W )

M ×N ×H ×W ×K ×K
=

1

M
+

1

K2
(2.1)

2.2.1.2 Residual Bottleneck Block

Residual Bottleneck Blocks (RBB) [San+18; He+16] can also be used to strike a balance

between the computational efficiency and expressive power of the CNN. Fig. 2.2(c) depicts

the architecture of this block. It consists of a 1 × 1 conv followed by a 3 × 3 DW and

then another 1 × 1 conv, each of which is followed by ReLU and a batch normalization
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layer. The 1 × 1 convolutions are used for dimension reduction or restoration. The nature

of this block allows us to adjust the number of feature maps by either increasing (as in

MobileNetV2 [San+18]) or decreasing (as in ResNet [He+16]) the number of intermediate

channels.

2.3 Graph Neural Networks

In recent years, there has been a growing volume of graph data, prompting researchers to

develop learning models specifically tailored for the efficient processing of such data. Among

various graph machine learning methods, Graph Neural Networks (GNN) [Wu+20] are gain-

ing popularity due to their effectiveness across diverse applications, e.g., social network

analysis [TLH19], biomedical tasks [Yue+20], traffic forecasting [JL21], etc.

The core idea of a GNN model is to extract the graph information by learning the features

(embeddings) of each node in the graph by aggregating information from its neighboring

nodes, commonly referred to as “message passing”. A GNN model, like a CNN, passes the

node embeddings through a series of layers until it derives a rich encoding of the graph. The

computation of one layer of a typical GNN, in its general form, can be formulated as follows:

h⃗′
i = σ

(
FT
(
AGG( { h⃗j | j ∈ N (i) } )

) )
(2.2)

where h⃗i ∈ RF and h⃗′
i ∈ RF ′ denote the initial and updated embeddings of node i in spaces

with dimensions F and F ′, respectively. The AGG function is the aggregation function,

responsible for collecting and combining the embeddings of neighboring nodes (N (i)). The

function FT performs feature transformation on the aggregated results for each node, while

the activation function σ introduces non-linearity into the model.
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2.3.1 Common Graph Convolutional Layers

2.3.1.1 Graph Convolutional Network

Graph Convolutional Network (GCN) [KW16] is a popular form of a GNN that adopts a sim-

ple aggregation function to perform a weighted summation of the embeddings of neighboring

nodes using the degree of the node, di, as shown in Fig. 2.3:

h⃗′
i = σ

W
∑

j∈N (i)∪{i}

1√
djdi

h⃗j

 (2.3)

where W is a trainable weight matrix for the FT step to act as a filter. Fig. 2.3 illustrates

this operation for a node. i.e., Node 1. It applies a weighted summation on the embeddings

of its neighbors (and itself) based on the edge weights, which are determined by the degree

of both the source and destination nodes. Then, the result is multiplied by the weight matrix

(W ) to calculate the output node embedding.
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W

Figure 2.3: The computation of a GCN layer on a sample node.

2.3.1.2 Graph Attention Network

One problem with the GCNs is that the aggregation of features of the nodes is based on

a fixed set of weights determined by the degree of the nodes. Therefore, the model has no

way of prioritizing any of the neighbors to learn better embeddings. To solve this problem,

another class of GNN models, Graph Attention Networks (GAT) [Vel+17], were introduced
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to learn the importance of the different neighbors of a node so that they can contribute in

updating the node embeddings based on their attention. The computation of a GAT layer

can be summarized as below:

h⃗′
i = σ

 ∑
j∈N (i)∪{i}

αi,jWh⃗j

 (2.4)

αi,js are the attention coefficients computed by multi-head dot-product attention. The com-

putation for each head is as follows:

LeakyReLU(y) = max(βy, y), 0 < β < 1

si,j = LeakyReLU
(
a⃗⊤[Wh⃗i ∥Wh⃗j]

)
αi,j =

exp (si,j)∑
k∈N (i)∪{i} exp (si,k)

(2.5)

where ∥ denotes the concatenation operation and a is a learnable vector controlling the

attention that node i receives from node j. Note that the FT step here is the same as in

GCN and only the AGG step is changed. Fig. 2.4 shows this computation on a toy graph.
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Figure 2.4: How the attention coefficient is calculated in a GAT layer.

2.4 Related Works

2.4.1 Convolutional Neural Network Accelerators

Due to the popularity of CNNs, countless previous works have focused on developing an

accelerator for it. Zhang et al. [Zha+15] explored the design space of a CNN accelerator
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and observed that the loop tiling factors can affect the Computation to Communication

(CTC) ratio of the convolutional layers. As such, they proposed an analytical design scheme

using the roofline model to pick the best tiling factors for a given CNN model based on its

computing throughput and the required memory bandwidth. This work is later extended

in [Zha+18a] to propose a uniformed accelerator to support both standard convolutional

layers and fully connected networks. Eyeriss [CES16] proposed a novel dataflow architecture

that enables the reuse of all types of data among PEs. This helped Eyeriss outperform the

previously proposed dataflow schemes. Yang et al. [Yan+18] further explored the different

dataflow techniques while changing the loop tiling scheme. They highlighted the importance

of the tiling factors by showing that with proper loop tiling, many different dataflows can

achieve similar and close-to-optimal energy efficiency.

In addition, Wei et al. [Wei+17] developed an automated compilation framework to

generate systolic arrays for convolutional layers. However, it uses a uniform tiling factor for

the whole design. This can lead to a sub-optimal solution as different layers have different

characteristics in terms of the input, output, and filter size which affect the CTC ratio. That

work is later on expanded in Wei et al. [Wei+18], which highlights the need for different

accelerator configurations for different layers. The authors propose to place three different

accelerators on-chip. Nonetheless, each of the accelerators still uses uniform tiling factors.

DNNBuilder [Zha+18b] places one accelerator for each layer on-chip. While this method

is useful for small networks, it limits the scalability of the design as the on-chip resources

are limited. For this reason, it can only support CNNs that have less than 15 convolutional

layers as stated in [WM19]. Furthermore, this work only enables one tiling factor, the width

of the image, to be dynamic, which shrinks the design space with the possibility of losing the

optimal design point. Wang et al. [CW18] developed PolySA as an automated framework

that can generate systolic arrays with various topologies and different tiling factors using the

Polyhedral transformations [Ben+10]. This can greatly help us in conducting a systematic

approach to study the impact of different architecture choices such as systolic array topology,

tiling factors, and buffer sizes. PolySA was later extended in AutoSA [WGC21] to increase
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the generality of the work by including systolic array generation for both imperfect nested

loops and multiple statements.

While the aforementioned works can generate high-performance accelerators for networks

with standard convolutional layers, none of them support DSCs and RBBs. These layers

pose new challenges such as poor data reuse and low degree of parallelism. The issue arises

because, even though the inputs to these layers have the same size, their computational

complexities vary. Consequently, this impacts the CTC ratio which requires further opti-

mizations to efficiently support them without reconfiguring the hardware. Bai et al. [BZH18]

implemented the MobileNetV2 [San+18], which includes all our target layers. However, the

architecture only supports a limited convolution size (3× 3) and achieves a low frequency of

133 MHz.

Moreover, the CNN computation is usually part of a larger pipeline which is the slowest

part before acceleration. However, our experiments show that after acceleration and when

the FPGA is integrated into a machine learning framework, its computation can take less

than 12% of the end-to-end latency, thereby reducing the significance of the accelerator’s

advantage. Unfortunately, this problem is overlooked by the previous works. While several

works [Gua+17; NSW18] have focused on accelerator generation from TensorFlow-described

networks, they did not address the challenges of integrating an accelerator into TensorFlow.

2.4.2 Graph Convolutional Network Accelerators

In the last few years, there has been a growing interest in developing an accelerator for

GCNs [ZP20; Yan+20a; Gen+20; ZKP21; Lia+20; Zha+23a]. HyGCN [Yan+20a] proposes

a hybrid architecture with customized engines for each step of GCN: Aggregation and Feature

Transformation (FT). To reduce the computation complexity, it samples the neighbors of a

node and applies the Aggregation stage only on that subset. It further uses parallel SIMD

cores to exploit feature-level parallelism along with edge-level (pipeline) parallelism for the

Aggregation step. For each partition of the graph, it applies window sliding and window

shrinking to reduce the zero elements of the adjacency matrix that need to be processed,
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which in turn helps with decreasing the number of vertices that need to be loaded. For the

FT step, it uses a systolic array to implement matrix (for the weight matrix) vector (for each

node embedding) multiplication. It utilizes inter-layer pipelining for computations within a

single layer, while the various layers of the GCN are processed sequentially and reuse the

same engines.

GraphACT [ZP20] proposes an architecture to accelerate the training of GCN. In each

training epoch, it samples a subgraph (small graph) from the full graph which can fit into

FPGA’s on-chip memory. Like HyGCN, it adopts a systolic array for the FT step and pro-

cesses the GCN layers sequentially on fixed hardware. For the Aggregation step, it exploits

feature-level parallelization and proposes a redundancy reduction technique to decrease the

number of operations by precomputing the repeated aggregations. Redundancy reduction

is possible only when the adjacency matrix is binary. However, not all GCNs can benefit

from this feature since they typically work with the normalized adjacency matrix meaning

that they need weighted additions in this step. GraphACT is later extended in Zhang et

al. [ZZP20] to support large graphs for accelerating the inference stage of GCN. It proposes

a partitioning technique by reordering the nodes to increase the data locality in process-

ing each of the partitions. BoostGCN [ZKP21] further extends Zhang et al. [ZZP20] by

introducing a new partitioning method that considers both the feature dimension and node

partitioning. It also enables efficient sparse computation during the FT step when sparsity

exceeds 90% by converting the sparse matrix (node embedding) to the COO format. While

sparsity support here is beneficial, transforming the matrix can be a potential overhead.

All the aforementioned works develop fixed hardware for all the layers of GCN and

process them sequentially. This is an undesirable feature particularly when we target small

graphs. This is because when dealing with small graphs, we are working on small matrices

which makes their communication to and from DRAM a serious burden. Furthermore, our

experiments show that the node embeddings for our target graphs have about 50% sparsity

which makes the sparsity support in BoostGCN inapplicable. Nevertheless, we have seen

that by pruning the zeros here, we can achieve considerable speedups. In fact, in Chapter 4,
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we first develop a baseline architecture that has the same design principles as these works.

Particularly, we reuse the same architecture for all the GCN layers, exploit only the sparsity

of the Aggregation step, treat the FT step as regular matrix multiplication, and employ a

2D computation unit for it. Our experimental results show that not only should we execute

the GCN layers in a pipelined fashion, but we should also exploit the sparsity of the node

embeddings to enhance both area and performance. In fact, these optimizations bring in

2.27× speedup in the performance and an overall improvement of 3.88× in both performance

and computation units’ area.

AWB-GCN [Gen+20] proposes an architecture that supports inter-layer pipelining and

considerations for the sparsity of the node embeddings for accelerating GCN. However, it

partitions the computation by parallelizing the nodes which complicates the design of the

task distributor since the node embeddings are sparse, and special consideration is needed

to prevent PEs from doing unnecessary operations on the zero elements. On the other hand,

feature-level parallelization is a more natural workload distribution here since once we get a

non-zero embedding, we can fill the SIMD PE completely. As AWB-GCN is developed for

large graphs, it adapts the inner-product matrix multiplication. For small graphs, this results

in many data dependencies since there are not enough nodes to fill in the pipeline before the

same node needs to be evaluated. Therefore, as we will explain further in Chapter 4, the

outer-product matrix multiplication is preferred here.

2.4.3 Machine Learning for Electronic Design Automation

Since most problems in Electronic Design Automation (EDA) are classified as NP-complete,

machine learning algorithms are gaining popularity in this domain due to their ability to

efficiently solve them and produce high-quality solutions [Hua+21]. Additionally, these algo-

rithms can aid in reducing manual effort and introducing greater automation into the design

process. Machine learning and deep learning models have demonstrated remarkable success

in various phases of the EDA flow, such as high-level synthesis [LC13; WXH22; Ust+20],

logic synthesis [Net+19; YXD18], placement and routing in physical design [Ala+20; Xie+18;
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Mir+21; LPL20; Kir+19; Kou+22], and design verification [Wan+18]. Huang et al. [Hua+21]

identify four primary tasks in this field: (1) decision-making in conventional approaches,

where an ML model substitutes for brute-force search or empirical configuration selection;

(2) performance prediction, in which a model is employed to rapidly estimate Quality of Re-

sults (QoR); (3) black-box optimization, where a surrogate model is constructed to explore

the solution space more efficiently for optimal design; and (4) automated design, where both

the predictor and policy are learned and continually adjusted online to significantly reduce

human effort in complex design tasks. In chapters 6 and 8 of this dissertation, we aim to

enhance performance prediction to facilitate HLS black-box design optimization.

When a larger dataset is available, deep learning algorithms have demonstrated signifi-

cant performance improvements in EDA. GNNs are one of the most widely used algorithms

for this purpose, as graphs provide an intuitive way to model programs, Boolean functions,

netlists, and layouts commonly used in many EDA problems [Kha+20; Ma+20b; Ren+22].

This is also true for the HLS problem, where analytical models cannot achieve acceptable ac-

curacy [SW19], but learning algorithms have demonstrated superior performance. However,

applying learning algorithms to the HLS problem, which constitutes an early stage of design

optimization, can pose considerable challenges due to the extensive and intricate optimiza-

tion procedures that a design must undergo before reaching its final microarchitecture.

2.4.4 HLS Performance and Resource Modeling

The most time-consuming step in exploring the solution space of HLS design to identify

Pareto-optimal points involves running the HLS tool to evaluate each point’s quality. This

is because each synthesis process can take anywhere from minutes to hours, and it becomes

even more time-consuming if post-implementation design metrics are required. To tackle

this challenge, several studies aim to create a predictive model that can estimate the quality

of an HLS design, serving as a surrogate for the HLS tool during the exploration process.

One set of studies in this domain focuses on constructing an analytical model to assess

the quality of an HLS design by estimating its performance and resource utilization. The
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authors in [WLZ17; Zha+17; Zho+16] build the dependence graph of the target application

and utilize traditional graph analysis techniques along with analytical predictive models to

search for the best design. Although this approach can quickly search through the design

space, using an analytical model is inaccurate and it is difficult to maintain the model and

port it to other HLS tools. This is because the HLS tools are constantly evolving, and

their optimization heuristics are changing either between the tools of the different vendors

or the same vendors [SW19]. Zhong et al. [Zho+14] develop a simple analytical model for

performance and area estimation. However, they assume that the performance/area changes

monotonically by modifying an individual design parameter, which is not a valid assumption

as pointed out by Nigam et al. [Nig+20]. To increase the accuracy of the estimation model,

a number of other studies restrict the target application to those that have a well-defined ac-

celerator microarchitecture template [Chi+18; CW18; Con+18a; Reg+19; Zac+19] (like our

modeling for FlexCNN architecture in Chapter 3), a specific application [Xu+20; Zhe+20],

or a particular computation pattern [CC18; Koe+16; Pra+16]; hence, they lose generality.

To the same end, there are other studies that take a data-driven approach and build the

predictive model using supervised learning algorithms. They train a model by iteratively

synthesizing a set of sample designs and updating the model until it gets to the desired

accuracy. Later on, they use the trained model for estimating the quality of the design

instead of invoking the HLS tool. To learn the behavior of the HLS tool, these works adopt

supervised learning algorithms such as random forest, decision tree, and linear regression

to better capture the behavior of the HLS tools [Koe+16; LC13; LLS19; SW12a; Xyd+14;

Zho+17]. While this technique increases the accuracy of the model, it is still time-consuming

to port the model to another HLS tool in a different vendor or version. Often by changing the

HLS tool or the target FPGA, new samples should be collected, which can be an expensive

step. After that, for each of them, a new model should be trained to include the new

dataset. Furthermore, these related works build a separate learning model per application

and the results from one are not transferred to another one. Kwon et al. [KC20] proposed

a model using a Multi-Layer Perceptron (MLP) network that can be used across multiple
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applications. However, as the input to the model, they only use pragma configurations.

As we shall show in Chapter 6, not taking the program semantics into account harms the

accuracy significantly.

Some recent studies suggest employing GNNs to predict the quality of a design, given

their demonstrated ability to substantially enhance accuracy [WXH22; Ust+20; Wu+22].

Moreover, using GNNs can help unify the model for several applications, as opposed to de-

veloping a separate model for each application. Ustun et al. [Ust+20] represent the HLS

design (without pragmas) as a Data Flow Graph (DFG) and build a GNN-based model to

predict the mapping of arithmetic operations to the DSPs and LUTs, which can improve the

accuracy of delay prediction. Similarly, IronMan [WXH22] converts the program (without

optimization pragmas) to DFG and predicts the critical path under different resource allo-

cations (DSP or LUT) to the computation nodes using GCNs. Wu et al.[Wu+22] also work

with HLS designs without pragmas and construct a hierarchical GNN that first performs

node-level classification to predict the resource type (DSP, LUT, or FF) for implementing

the node and then uses this information to estimate the critical path as the graph-level

prediction. Although optimization pragmas are the primary source for improving the re-

sulting microarchitecture [Chi+22], none of these works include the pragmas in their input

representation so their models cannot be used for finding the best design configuration. In

this dissertation, we aim to pinpoint the challenges associated with developing such a model

and propose solutions to address them. Our goal is to resolve these shortcomings by first

employing a graph representation that captures both the program semantics and the prag-

mas. Then, we develop a framework that is capable of learning from a set of applications,

building a single predictive model for all of them, and quickly adapting its knowledge to new

applications or new versions of the HLS tool.

2.4.5 Design Space Exploration for HLS

As outlined in [SW19], prior research either directly employs the HLS tool [Yu+18] or con-

structs a model to emulate the HLS tool [Zha+17; MS14] when assessing a design point.
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Since it takes several minutes to hours to get feedback from the HLS tool, relying on it for

evaluating a possible solution can increase the DSE time significantly. Utilizing a predic-

tive model as the surrogate of the HLS tool can speed up the process, which has made the

respective previous works conduct an exhaustive search through all the candidate designs.

Nevertheless, the exhaustive search is not a scalable solution for larger design spaces. For in-

stance, the gemver program from the Polybench benchmark [YP] has over 100 billion design

points, making an exhaustive search unfeasible even when evaluating candidates in millisec-

onds. Additionally, developing an accurate model for HLS, as discussed in Section 2.4.4,

poses a significant challenge.

To avoid dealing with the uncertainty of the HLS tools, another set of studies treats the

HLS tool as a black box. Instead of learning a predictive model, they invoke the HLS tool

every time to evaluate the quality of the design. To guide the search, they either exploit

general application-oblivious heuristics (e.g., simulated annealing [MS14] and genetic algo-

rithm [Sch17]) or they develop custom heuristics [FAP18a; FAP18b; SW12b]. For instance,

S2FA [Yu+18] employs multi-armed bandit [Fia+10] to combine a set of heuristic algorithms

including uniform greedy mutation, differential evolution genetic algorithm, particle swarm

optimization, and simulated annealing. However, as we will discuss in Chapter 5, general

hyper-heuristic approaches are unreliable for finding the high QoR design configurations.

The authors in [FAP18a; FAP18b] claim that Pareto-optimal design points cluster together.

They exploit an initial sampling to build the first approximation of the Pareto frontier and

require local searches to explore other candidates. However, the cost of initial sampling is

not scalable when the design space is tremendously large (e.g., the scale of 105 to 1030).

Even if it only samples 1% of the design space (the lowest sampling rate they use), it results

in evaluating 103 to 1028 design points which is not feasible. Sun et al. [Sun+21] adapt a

(Gaussian process) GP-based Bayesian Optimization (BO) algorithm to explore the solution

space. At each iteration, it improves a surrogate model to mimic the HLS tool, by sampling

the design space. Again, as the search space grows, it will require more samples to build

a good surrogate model which can limit the scalability. Moreover, the computation of a
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GP-based BO can be seen to be cubic in the total number of samples (in addition to the

time to evaluate the sampled point using the HLS tool), as it wants to calculate the inversion

of a dense covariance matrix at each step [Sno+15] which can further limit the scalability of

the approach.

Learning algorithms have also been employed to expedite the HLS DSE process in dis-

covering Pareto-optimal points [WXH22; WS20]. This research approach essentially utilizes

a data-driven method for the search. For example, IronMan uses a Reinforcement Learning

(RL) agent trained to identify optimal resource allocations between DSP and LUT based on

user-specified constraints, like minimizing resource consumption or optimizing the critical

path. Despite the considerable power of an RL agent, a potential obstacle in its training lies

in the need for a substantial dataset and/or a highly accurate predictive model [Mir+21]. In

Chapter 5, we propose a dedicated heuristic for swiftly converging to high-quality points in

a few iterations, offering an alternative to these existing approaches.

2.4.6 Code Transformation for High-Performance Computing

The organization and structure of the code play a critical role in shaping the final mi-

croarchitecture. This is because it impacts the reuse ratio, data dependency, parallelization

opportunities, efficient utilization of DRAM bandwidth, latency hiding, etc. HeteroRefac-

tor [Lau+20] and HeteroGen [Zha+22] apply pattern-oriented program edits to convert

C codes to synthesizable and performant HLS programs. These repairs involve replac-

ing malloc with array-based memory accesses, removing pointers, transforming recursive

functions, and optimizing integer and floating-point bitwidths to reduce resource consump-

tion. The generated code can then be further optimized with pragmas to enhance perfor-

mance. While various works have identified opportunities for optimizing HLS through code

transformations [Con+18b; Fin+20], the automation of all these transformations is yet to

be addressed and remains largely reliant on manual intervention from programmers. The

Merlin Compiler [Con+16b; Con+16a] serves as a successful example of a source-to-source

code transformer that automatically applies various code transformations, leading to higher-
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quality microarchitecture, as discussed in Section 2.1.1. However, it does not address all

necessary code transformations, such as loop transformations, which can affect compute

order, parallelization opportunities, etc.

Recent works have focused on optimizing machine learning compilers by integrating di-

verse code transformations into their search space and selecting the optimal transforma-

tions through search or polyhedral optimization [Che+18; Fen+23; Vas+18]. For instance,

TVM [Che+18] incorporates various code transformations such as operation fusion, data

layout transformation, and latency hiding within its search space and employs a machine

learning-based cost model for evaluating each choice. Similarly, TensorIR [Fen+23] utilizes

an evolutionary search process for tensor optimization through loop transformations, guided

by a learning-based cost model. Developing such models is more straightforward as they

target specialized applications rather than general ones and can assume a fixed hardware

platform when applying code transformations. This makes it possible to search for changes

in computation blocks, tiling, fusion, compute order, etc. As mentioned before, in HLS pro-

gramming, code transformations can additionally alter the underlying microarchitecture as

well. This adds complexity to the development of an accurate cost model, as it demands a

larger, more time-intensive database since it has to go through all stages of hardware genera-

tion, which can take several hours to complete. Additionally, more complex learning models

are needed. We believe that our model-based performance predictors can serve as an initial

step toward addressing this challenge and may pave the way for future progress in this field.
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Part I

Customized Computing for Machine

Learning Acceleration
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In this part of the dissertation, as described in Section 1, we use architecture-guided

optimizations to speed up the execution of CNNs and GCNs. Fig. P.1 provides an overview

of the work presented here. In Chapter 3, we introduce FlexCNN, a flexible and composable

architecture for processing CNNs. Then, in Chapter 4, we shift focus to GCNs and develop

StreamGCN, specialized for streaming the processing of many small graphs. Additionally,

in Chapter 3, we show how FlexCNN can be developed into an end-to-end framework that

automatically generates the most efficient accelerator for a CNN described in TensorFlow

(FlexCNN is extended in [Bas+23] to accept ONNX input and support additional convo-

lutional types). Moreover, we create a library that integrates FlexCNN into TensorFlow,

allowing the offloading of CNN processing to FPGA. Although the end-to-end development

process is demonstrated with FlexCNN, the same approach can be applied to StreamGCN.

FlexCNN 
architecture

StreamGCN 
architecture

CNN in DSL (TensorFlow, ONNX) GCN description

FlexCNN compiler

High-level synthesis

FlexCNN 
accelerator

StreamGCN 
accelerator

TensorFlow + 

FlexCNN integrator

Figure P.1: Overview of Part 1 – Architecture-guided Optimization.
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CHAPTER 3

FlexCNN: End-to-end Acceleration of Convolutional

Neural Networks

The reduced data reuse and parallelism resulting from extensive network pruning and sim-

plification in recent Convolutional Neural Network (CNN) models pose novel challenges for

FPGA acceleration. Additionally, the integration of FPGAs into existing machine learn-

ing frameworks like TensorFlow can incur substantial overheads without proper optimiza-

tions—an aspect often overlooked in previous studies. Our research reveals that a simplistic

FPGA integration into TensorFlow may lead to performance degradation of up to 8.45×.

To tackle these challenges, we propose several software/hardware (SW/HW) co-design ap-

proaches for end-to-end optimization of CNNs. Introducing a flexible and composable ar-

chitecture named FlexCNN, our solution achieves high computation efficiency for various

convolutional layer types through dynamic tiling and data layout optimization. FlexCNN

is further integrated into the TensorFlow framework via a fully-pipelined SW/HW integra-

tion flow, mitigating the overheads associated with TensorFlow-FPGA communication and

other non-CNN processing stages. Using OpenPose, a widely-used CNN-based application

for human pose recognition, as a case study, our experimental results demonstrate a 2.3×

performance improvement with FlexCNN architecture optimizations. The pipelined inte-

gration stack further contributes to a 5× speedup. In total, the SW/HW co-optimization

yields an impressive 11.5× speedup, resulting in an end-to-end performance of 23.8FPS for

OpenPose with floating-point precision1.

1FlexCNN codes are available at https://github.com/UCLA-VAST/FlexCNN
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3.1 Introduction

CNNs are widely used in many Machine Learning (ML) applications and have evolved

quickly over the years. Consequently, the interest in using FPGAs to accelerate CNN

computation is on the rise, driven by their high energy efficiency and performance (e.g.,

[Aki+18; BZH18; Gua+17; Li+16; NSW18; Sud+16; Wei+17; Zha+15; Zha+18a; Zha+18b;

SFM17b]). However, the recent advancement in CNN models and FPGA-based CNN accel-

eration has brought several new challenges:

Challenge 1: Performance disparity of different CNN layers: Real-world deep

learning applications may employ complex network architectures. In addition, many state-

of-the-art efficient networks such as MobileNetV1 [How+17] incorporate Depth-wise Sepa-

rable Convolutions (DSC) (reviewed in Chapter 2.2.1.1) to decrease the computation cost.

Additionally, MobileNetV2 [San+18] utilizes inverted Residual Bottleneck Blocks (RBB)

(explored in Chapter 2.2.1.2) to further reduce the computation complexity. These layers

reduce the computation cost but keep the same feature map size; this can make the layer

more communication-bound and reduce the computation efficiency. Apart from this irreg-

ularity, different layers of a CNN have different characteristics in terms of their input and

output number of channels, feature map size, and filter size. All these differences result

in various Computation-to-Communication (CTC) ratios from layer to layer. Therefore, it

is important to handle these layers differently given the performance disparity across these

layers. We found that tiling factors can play an important role in the performance. Zhang et

al. [Zha+15] showed that the CTC ratio of a single convolutional layer varies with different

tiling factors. Yang et al. [Yan+18] highlighted the importance of choosing proper tiling

factors for data reuse in the near and faster memory (on-chip storage for FPGAs) for the

overall latency and energy efficiency. These studies lead us to consider using different tiling

factors across the network. Figure 3.1 depicts the influence of different tiling factors on the

attainable performance for each layer in a CNN network example shown in Figure 3.3 for

the first 24 convolutional layers (each RBB is divided into two layers). We compare the
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Figure 3.1: Performance comparison of hardware accelerators using uniform and dynamic

tiling factors for the first 24 convolutional layers in the CNN network of Figure 3.3.

performance of using a single set of tiling factors (uniform tiling) to using different tiling

factors for each layer (dynamic tiling). For the uniform tiling, we chose the tiling factor

that reduces the latency of the entire network. For the dynamic tiling, we focused on each

layer and selected the best tiling factor accordingly. Experimental results show that dynamic

tiling can speed up the performance of the whole network by 1.7×.

Challenge 2: Integration overheads of using FPGA in ML frameworks: When

processing a CNN application in modern ML frameworks such as TensorFlow [Aba+16], the

complete stack consists of reading the input, computing the CNN, processing the result,

and displaying and writing the result. Previous works have only focused on optimizing the

CNN kernel on FPGA (e.g., [Aki+18; BZH18; Gua+17; Li+16; Sud+16; Wei+17; Zha+15;

Zha+18b]). This is because the CNN computation is the most time-consuming step of the

whole stack. Hence the rest of the overheads are ignored. While several works [Gua+17;

NSW18] have focused on accelerator generation from TensorFlow-described networks, they

did not address the challenges of integrating an accelerator into TensorFlow. By integrat-

ing our accelerator with TensorFlow, we can directly run networks from TensorFlow on an
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Figure 3.2: Runtime breakdown of an FPGA-based CNN acceleration pipeline in TensorFlow.

FPGA. Integrating FPGA into TensorFlow introduces a new set of overheads: communi-

cation between TensorFlow and FPGA and the communication between the host and the

FPGA kernel itself. Figure 3.2 shows the breakdown of the end-to-end runtime for pro-

cessing a 384 × 384 RGB image using the network in Figure 3.3. These steps are listed

and described in Section 3.4. The CNN processing time with our accelerator (referred to

as the kernel) accounts for only 11.8% of the overall runtime. This underscores the need

for a comprehensive end-to-end SW/HW co-optimization. Our experiments show that such

optimization can further increase the end-to-end performance of this network from 4.8FPS

to 23.8FPS, leading to a 5× speedup.

To solve the challenges above, in this chapter, we propose an FPGA-based CNN accel-

erator named FlexCNN. It employs dynamic tiling and data layout transformation to adapt

to the performance disparity of different CNN layers. The accelerator is further integrated

into the TensorFlow framework. To mitigate the large integration overheads, we propose a

two-level pipeline to overlap the overheads with the computation.

We use OpenPose [Cao+17] as a driving application to test FlexCNN’s performance.

OpenPose is designed to jointly learn body part locations and their associations. Its high
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computation cost and irregular network architecture make it a challenging network to im-

plement on FPGA. To our knowledge, there is only one prior work [Aki+18] that has im-

plemented OpenPose on FPGA. Its CNN kernel processes an image in 42.6ms. Whereas,

FlexCNN can process an image in 24.7ms, leading to 1.7× speedup.

In summary, the key contributions of this chapter are:

• A flexible and composable accelerator architecture, named FlexCNN, supporting dy-

namic tiling and data layout transformation to improve computation efficiency for

running CNNs.

• A TensorFlow to FPGA runtime environment for running CNN on FPGA from Ten-

sorFlow and an optimized software/hardware pipeline to mitigate the integration over-

heads.

• A fully automated compilation system for the FlexCNN architecture.

• The fastest FPGA accelerator to run OpenPose. FlexCNN yields a 2.3× speedup from

supporting dynamic tiling and optimized data layout. Besides, our framework achieves

5× speedup from software/hardware pipelining, resulting in a final performance of

23.8FPS. In addition, FlexCNN is 3.8× more energy efficient than GPU.

3.2 Application Driver - OpenPose

OpenPose [Cao+17] is the winner of the COCO 2016 Keypoints Challenge that can detect

2D poses of multiple people in an image. OpenPose network first extracts the features of

the input image using the first 10 layers of VGG-19 [SZ14]. This is the backbone of the

network. These feature maps are the inputs to a two-branch network. The first branch

detects confidence maps, representing body part locations, and the second branch detects

part affinity fields, a set of 2D vectors showing the location and orientation of the limbs.

The results of these two branches are concatenated with the feature maps from the backbone

network and form the input for the next stage. After several iterations (stages), these
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branches would refine and produce the final predictions.

This network is interesting to us since it is a deep network and has an irregular archi-

tecture compared to modern CNN-based deep learning applications. Instead of just a linear

forward path where each layer consumes the result of its previous layer, it has concatenation

layers that need extra data movement. Moreover, to decrease the computational complexity

of the network, we adopt a customized version of OpenPose [Kim18]. This variant substi-

tutes the backbone with a modified version of MobileNetV2 [San+18], incorporating RBB,

and utilizes DSC for the rest of the network, following the trend in the ML community.

These variations further add to the complexity of the network which makes it suitable for

evaluating our accelerator. Figure 3.3 depicts the network topology of this version, we call

this network OpenPose-V2. Due to the space limitation, we only show the convolutional

layers. Each convolution is followed by ReLU and batch normalization layers.

Back-bone Stages 1-6

C Standard Convolution

D DSC

B RBB

U Up-sample
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Figure 3.3: OpenPose-V2 network topology.

3.3 The FlexCNN Architecture

The basic layers in different CNNs are standard convolution, depth-wise convolution, ReLU,

bias/batch normalization, downsampling/pooling, upsampling, and add. The rest of the

building blocks are usually a combination of these layers. Thus, the FlexCNN architecture

has these components as building blocks and uses them to compose different parts of the

network. This strategy can improve the hardware utilization on FPGA.

Figure 3.4 depicts the detailed architecture of FlexCNN. It implements the dataflow

architecture to process the network by fusing the operation of different layers of the network
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Figure 3.4: The FlexCNN architecture overview.

in one pass of the architecture. Hence, we can reduce the communication time between

them by avoiding redundant off-chip memory transactions. Each pass of the architecture

can load up to two sets of input feature maps, those from the current pass and a previous

pass. Loading the feature maps from a previous pass is required for supporting convolutional

layers like RBB where the results of the current and previous convolutional layers need to

be added together.

Since the convolutional operations are the most computation-intensive layers, we pack

and fuse as many operations as possible in one pass with them. As such, the loaded feature

maps will pass through modules including the depth-wise convolution module (Depth Conv),

ReLU(6)2 module, standard convolution module (Standard Conv), ReLU(6) module, add

module, max-pooling module (Pool), and bi-linear upsampling module (Upsample). The final

results will be written out to DRAM via Writer. The operations in the batch normalization

layer and bias layer are fused into ReLU(6) modules. Each of the convolutional operations

may be followed by any of the ReLU(6) or normalization layers. Hence, we put the ReLU(6)

module after both the Depth Conv and Standard Conv modules. In fact, this is an example

of how we can compose the architecture from the building blocks designed in FlexCNN.

For Standard Conv, the systolic array architecture is used. It is generated using the

systolic array compiler in Wang et al. [CW18]. It can compute a standard convolutional

layer with any given filter size. We implement line-buffer-based streaming architectures

2ReLU6 outputs the minimum of the value 6 and a normal ReLU.

38



Table 3.1: FlexCNN design parameters with their explanations.

Design Parameters Explanation

Th(k), Tw(k), Tn(k), Tm(k) Tiling factors for H, W , N , and M for layer k

SIMD SIMD lanes for all modules

SA_ROW,SA_COL Rows and columns of the systolic array kernel
H: height, W: width, N: input channels, M: output channels

for Depth Conv, ReLU(6), Add, Pool, and Upsample modules using a similar stencil-based

architecture as in [Chi+18]. All these modules are parameterized by the factors listed in

Table 3.1, which will be explored by the Design Space Exploration (DSE) engine covered in

section 3.3.1.1, for achieving the optimal performance.

Note that all the modules can be bypassed if they are not being used for a specific pass

of the architecture. We apply double buffering in both the Loader modules and the Writer

module. Furthermore, if the outputs of the whole pass can fit into the on-chip buffer, the

data will be pushed into on-chip buffers and directly fetched by the Loader to further save

the off-chip communication time.

3.3.1 Dynamic Tiling

Tiling is applied when processing the network to improve the data locality and minimize com-

munication. Table 3.1 summarizes the tiling factors employed in FlexCNN. When the tiling

factors are not sub-multiples of the tiled dimensions, redundant computation is introduced

which degrades the performance of the design. As explained in Section 3.1, in a normal

CNN network, the types and configurations of different layers vary from each other. There-

fore, the optimal tiling factors will be different from each other as well. We have observed

that using uniform tiling factors for the whole network will lead to up to 1.7× performance

slowdown compared to the ideal case of using different tiling factors across layers. Therefore,

in this work, we apply dynamic tiling by reconfiguring the tiling factors of the accelerators

on-the-fly for different layers to maximize the performance. This will bring some hardware

overheads to support the dynamic tiling. However, such overheads are negligible compared
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to the performance improvement. Section 3.6 evaluates the impacts of this technique in

detail.

Previous works such as [Wei+18; Zha+18b; SFM17b] have also emphasized the need for

different tiling factors across layers. Our architecture distinguishes from the previous work

by changing all the tiling factors across each layer dynamically, whereas previous work only

adjusted part of the tiling factors or used several accelerators, each with distinct uniform

tiling factors on-chip. Eq. 3.1 shows the restriction on the tiling factors.

Tw(k) = c1 × SA_COL

Tm(k) = c2 × SA_ROW

Tn(k) = c3 × SIMD

Tm(k) = Tn(k + 1)

(3.1)

In FlexCNN, the width and output channels of the feature maps are mapped to columns

and rows of the systolic array respectively. As a result, for each layer, Tw(k) and Tm(k)

should be multiples of their respective systolic array dimension. The reduction of multiple

input channels is computed in parallel inside each PE of the systolic array, which is defined

as the SIMD lane. This implies that Tn(k) should be a multiple of SIMD lane. Th(k) can

be any arbitrary value. As mentioned before, the computation in the depth conv module

can be seen as a stencil kernel. Figure 3.5 depicts the 3 × 3 stencil window connected by

line buffers. We realize dynamic tiling by connecting consecutive rows of the line buffer via

a MUX, enabling data feeding from different locations.

3.3.1.1 Design Space Exploration

Given the network, the accelerator architecture, and the FPGA’s resource information, we

will perform DSE to select the optimal design parameters that maximize the performance

on the target FPGA. Table 3.1 lists the design parameters to be determined.

Two analytical models resource_est() and latency_est() are built for estimating the

resource usage and latency of designs. Currently, the resource model estimates Block RAM
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Figure 3.5: Architecture support for dynamic tiling in the Depth Conv module for a 3 × 3

filter with Tw (tiling factors for width) of size 6/8/10.
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Figure 3.6: Data organization to apply the concatenation operation on the fly. Example is

taken from the OpenPose network.

(BRAM) and DSP usage which are usually the bottleneck of designs. The DSE process will

sweep through the design space with all feasible combinations of design parameters. For

each design parameter list, the resource usage is examined first. Designs that over-utilize

the resources will be pruned away. Then, we follow a greedy algorithm to select the optimal

tiling factors that minimize the latency layer by layer. The DSE process finishes within

minutes on a standard workstation. Moreover, the latency model can predict the runtime of

the network with a 6% error rate.

3.3.2 Data Layout Optimization

Data layout optimizations are applied to reduce the number of accesses to DRAM (off-chip

memory) and increase the effective DRAM bandwidth. The first optimization is on the
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concatenation layers. A CNN network may contain blocks that concatenate the results of

several layers. For example, as shown in Figure 3.3, after each stage in the OpenPose-V2

network, results from two branches will be concatenated with the outputs from the backbone

network. This then serves as the inputs for the following stages. We preprocess and adjust

the location that each output should be stored in to deal with the concatenation on-the-fly.

Figure 3.6 presents the optimized data organization of the network.

The outputs of the backbone (region B) and each stage (regions A, C ) are placed close to

each other as shown in Figure 3.6. To be more specific, the outputs of Stage 1 will be written

to region A. The regions A and B will serve as the inputs of Stage 2. In Stage 2, the outputs

will be written to region C. The regions B and C will then serve as the inputs of Stage 3.

The outputs of each stage are written to regions A and C in a round-robin fashion. With this

layout, the outputs of stage branches are concatenated on-the-fly, eliminating unnecessary

off-chip DRAM movements.

To further improve the effective DRAM bandwidth, we change the data layout of the

feature maps from N(k)×H(k)× W (k)
Tw(k)

× Tw(k) to N(k)
Tn(k)

×H(k)× W (k)
Tw(k)

× Tn(k)× Tw(k).

This allows us to increase the burst length from Tw(k) to Tn(k) × Tw(k). A DSC layer

can easily become communication-bound because of its low CTC ratio since it mostly uses

1 × 1 convolution filters. In this case, when the filter size of the next layer is 1 × 1, since

there is no overlapped region between different tiles, we further change the data layout to
N(k)
Tn(k)

× H(k)
Th(k)

× W (k)
Tw(k)

×Tn(k)×Th(k)×Tw(k). It further increases the burst length for these

layers to Tn(k)× Th(k)× Tw(k). For other filter sizes, padding is applied because a tile of

Tn(k) × Th(k) × Tw(k) does not have all the data needed for the computation. We need

to have (p − 1) and ((p − 1) × Th(k) + (p − 1)2) extra DRAM accesses with burst length

of Tn(k) × Tw(k) and Tn(k) respectively to fetch all the data (p denoting the filter size).

This increases the number of DRAM accesses with a burst length of Tn(k), which further

increases the communication time, making this data layout inefficient.
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3.4 TensorFlow Integration

We chose TensorFlow as our ML framework since it is being widely used for inference in

the ML community (e.g., [Mat+17; Ign+18]). To invoke the FPGA from TensorFlow, we

redefine the nodes in the original computation graph of the TensorFlow implementation. All

computation nodes of CNN are merged into one node that is executed by the FPGA. The

rest of the graph is still processed on the CPU.

When FPGA is connected to TensorFlow, the whole integration stack consists of the

following steps: 1) reading the inputs of CNN, 2) preprocessing the input which includes

stages like image resizing, 3) reorganizing the initial data layouts in CPU memory to match

the format required by the accelerator, 4) transferring data from CPU to FPGA device

memory, 5) computation on FPGA, 6) fetching the results back via PCIe, 7) reformatting and

passing the results to TensorFlow, 8) non-CNN computation stages on CPU, 9) processing

the results (e.g., estimating the human poses based on the attained results and drawing them

for the OpenPose network), and 10) writing out and displaying the results.

Figure 3.2 shows the breakdown of these stages in the OpenPose application for a 384×384

RGB input. Among the whole pipeline, which takes 208.8ms, the FPGA computation (after

acceleration) in Step 5 only requires 11.8% of the total time. The results show that the

integration overheads have led to 8.45× performance slowdown. To reduce these overheads

we have applied an optimized SW/HW pipelining.

A two-level pipelining is applied on the whole integration stack that enables the simulta-

neous processing of the aforementioned steps. The first level overlaps TensorFlow’s overheads

(steps 1, 2, 9, 10) with the rest of the steps. The second one overlaps FPGA’s computation

(Step 5) with data movement steps (steps 3, 4, 6, 7).

Figure 3.7 illustrates the first level of this pipeline, which is applied at the TensorFlow

level. The numbers in the figure show the related step numbers. Steps 1, 2, 9, and 10 and the

rest of the steps are assigned to different processes connected by queue. Therefore, steps 1,

2, 9, and 10 are overlapped with FPGA-related steps. The overall performance is determined
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by the stage with the longest latency.
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Figure 3.7: First level of pipeline when integrating the FPGA to Tensorflow.

Reformat 

Input (3)
DMA Load 

(4)

Kernel 

Comp. (5)

DMA Read 

(6)

Reformat 

Output (7)

Reformat 

Input (3)
DMA Load 

(4)

Kernel 

Comp. (5)

DMA Read 

(6)

Reformat 

Output (7)

Reformat 

Input (3)
DMA Load 

(4)

Kernel 

Comp. (5)

DMA Read 

(6)

Reformat 

Output (7)…

FPGA 
Node… … Non-CNN 

Comp. (8)

Non-CNN 

Comp. (8)

Figure 3.8: The overview of the Process Graph stage in the first level of pipeline, creating

the second level of pipelining.

To further improve the performance, we fully pipeline the communication and computa-

tion of FPGA, which consists of steps 3 to 7. This creates the second level of the pipeline.

To allow pipelining, a batch of images is sent to FPGA. For a certain batch size, the addi-

tional latency incurred by batch processing is dissolved when the first level of the pipeline is

applied. After the FPGA finishes processing the batch, the results are passed back to Ten-

sorFlow, and the non-CNN computations are done in parallel for all the images. Figure 3.8

depicts the redefined graph that we use to achieve such a pipeline. With this optimization,

the data movement steps are overlapped with kernel computation, and the latency for non-

CNN computation (Step 8) is amortized for the whole batch. Note that such deep SW/HW

pipelining techniques were also used in [Che+16; CWY18] for integrating FPGA accelerators

to Spark-based applications.
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3.5 FlexCNN Compilation System
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Figure 3.9: FlexCNN compilation system overview.

Figure 3.9 depicts the overview of our compilation system, which is composed of three

components: design space exploration engine, instruction generator, and integrator.

• Design space exploration engine. The CNN network description file parsed from

TensorFlow and the available target FPGA resources are fed into the DSE engine to

search for the optimal hardware configuration parameters. Once found, these param-

eters are then used for generating the accelerator. The DSE process was explained in

Section 3.3.1.1

• Instruction generator. The instruction generator takes the CNN network descrip-

tion file and the accelerator hardware parameter file as the inputs and creates one

instruction for each CNN layer. The non-convolutional layers (e.g., bias, ReLU(6))

are fused with adjacent convolutional layers to improve the computation efficiency.

The instruction generator produces one VLIW-like instruction for each of these fused

layers. This instruction contains the enable signal for each of the modules, the layer

configurations, and tiling factors. An RBB (Section 2.2.1.2) contains two standard
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convolutional layers in one block. As we only have one standard convolution module

in the accelerator, we would divide this block into two passes. The first pass performs

the first convolution and the next one computes the rest of the block.

• Integrator. The integrator takes in the FPGA accelerator and integrates it into the

TensorFlow framework, performing the end-to-end processing task. The optimizations

on the integrator were covered in Section 3.4.

3.6 Experimental Results

3.6.1 Experiment Setup

The FlexCNN architecture is described using Vivado HLS C++ [Xila]. The target platform

is AMD Xilinx Virtex Ultrascale+ VCU1525. The design is synthesized and implemented

using AMD Xilinx SDAccel 2018.3. We use OpenPose-V2 network explained in Section 3.2

to test our work. The accelerator can get any input size. For this section, we are reporting

the results of when it takes RGB images of 384× 384 with floating-point precision as inputs.

3.6.2 Hardware Optimizations

The target FPGA platform comes with four DDR banks. In our implementation, we use two

DDR banks, assigning feature maps and weights (including bias) to two separate DDR banks.

All the architecture choices are parameterizable and can be adjusted based on the target

FPGA. As explained in Section 3.3.1.1, these parameters are tuned with our DSE engine

which uses analytical models to estimate latency along with BRAM and DSP utilization.

Our experiments with the OpenPose-V2 application on AMD Xilinx VCU1525 show that

our models have less than 6%, 11%, and 7% error in predicting latency, BRAM, and DSP,

respectively. We found that the following configurations work best for this application on

AMD Xilinx VCU1525. The systolic array for our standard conv module is organized as an

8 × 8 array with a SIMD factor of 8. For the rest of the modules, we use the same SIMD
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factor. The maximal tiling factors for Tn, Tm, Th, Tw are 64, 64, 12, and 96, respectively.

Table 3.2 shows the frequency and resource utilization under this configuration.

Table 3.2: Frequency and resource utilization of FlexCNN implementing OpenPose-V2 on

the AMD Xilinx VCU1525 board.

Precision Frequency LUT FF BRAM URAM DSP

float 32-bit 242.9MHz 43% 40% 60% 15% 50%

Table 3.3 shows the benefits of dynamic tiling and data layout transformation. We

can see that these optimizations increase the performance by 2.3×. Figure 3.1 depicts the

performance gain of using dynamic tiling in a layer-by-layer fashion for the first 24 con-

volutional layers. Table 3.4 shows how applying dynamic tiling and dynamic data layout

affects the tiling factors and the effective DRAM bandwidth for the first layer of the last

RBB in OpenPose-V2 compared to a design without these optimizations. The filter size for

this layer is 1 × 1 which means it can use the optimized data layout with burst length of

Tn(k)× Tw(k)× Th(k) as described in Section 3.3.2. This data layout, along with the best

tiling factor used for this layer increases the effective DRAM bandwidth and CTC ratio by

2.8×, leading to a performance improvement of 6.1×.

Table 3.3: Performance of FlexCNN under different settings tested on OpenPose-V2. All

Dynamic refers to the case where dynamic tiling and data layout reorganization are applied.

All Uniform maintains a uniform tiling factor and data layout across all layers, specifically

chosen for optimal performance within the uniform setting.

Model Precision Frequency Runtime (ms)

(MHz) (1) (2)

All Uniform float 32-bit 237 57.7 41.5

All Dynamic float 32-bit 242.9 35.6 24.7
(1): Without applying DRAM organization for concatenation layers

(2): With applying DRAM organization for concatenation layers

We further test the DSP efficiency of our design on a given convolutional layer. Of all
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Table 3.4: Performance impacts of dynamic tiling and data layout transformation for a given

layer in OpenPose-V2 with 1× 1 filter size.

Model Th Tw Tn Tm
Effective DRAM

Bandwidth (GB/s)
CTC

Performance

(GFLOPs)

All Uniform 12 48 32 32 4.31 14.9 24.4

All Dynamic 12 24 48 48 12.05 41.3 149.2 (6.1×)

the DSPs, 78.7% of them are used in the Standard Conv module and 11.2% in the Depth

Conv module. We measure DSP efficiency using two factors: the total number of DSPs in the

design and the number of DSPs of the main computation modules used by that layer. All the

tests are on a 256× 384× 384 input, producing 256 output channels. Table 3.5 summarizes

the results. DSC layers take K2× less computation, making them communication-bound as

shown in Figure 3.10. This figure depicts that DSC layers fall in the memory-bound region of

the roofline model since they have lower CTC ratio. Therefore, we achieve lower computation

efficiency in these layers. Additionally, it shows that the data layout optimization for the

DSC with the 1 × 1 filter increases the burst length. This helps to increase the effective

DRAM bandwidth, leading to a performance improvement over the 3× 3 DSC.

Table 3.5: Performance of FlexCNN across different convolutional layers on the AMD Xilinx

VCU1525 board.

Layer
Runtime

(ms)

Performance

(GFLOPs)
DSPtotal efficiency DSPused efficiency

Conv 3x3 709.3 245.2 73.8% 93%

Conv 1x1 80.2 240.9 72.6% 91.4%

DSC 3x3 113.4 176.3 53.1% 58.6%

DSC 1x1 84.1 230.8 69.5% 76.7%

3.6.3 Integration Optimizations

In this section, we evaluate the effect of our integration optimization. FlexCNN runs at

24.7ms, which translates to a peak performance of 40.5FPS. However, without proper opti-
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Figure 3.10: Layers in Table 3.5 under the roofline model.

mization, the direct integration into the TensorFlow framework only leads to the performance

of 4.8FPS, as shown in Table 3.6. Table 3.6 summarizes the impacts of two-level pipelining

on the overall performance. We are using a batch of 16 for the OpenPose-V2 network to en-

able pipelining of the FPGA computation with the host to FPGA memory transactions since

it produces the best performance and smoothest output when displaying the result. With

the two-level pipelining, we achieve up to 5× speedup, which leads to the final performance

of 23.8FPS.

Table 3.6: Performance impacts of the integration (FlexCNN to TensorFlow) optimizations.

The first level overlaps TensorFlow’s overheads with the FPGA-related steps. The second

one further overlaps FPGA’s computation with data movement steps.

Version
Runtime
frame

(ms)

Perf.

(FPS)
Speedup

Original 208.8 4.8 1

1st pipeline 97.1 10.3 2.1

2nd pipeline 42 23.8 5
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3.6.4 Comparative Studies

To the best of our knowledge, there is only one work [Aki+18] that has implemented a

variant of OpenPose on FPGA. However, they take a different approach. They reduce the

computation cost of the original network by making the weights sparse and using only two

stages after the backbone network. Furthermore, they quantized the data to a 16-bit fixed

point and stored all feature maps and weights on-chip. Although exploiting on-chip storage

for all the parameters and feature maps have been an attractive approach [Sud+16; Li+16], it

limits the scalability of the design. Besides, after these modifications, they neither reported

their network’s computation cost nor their architecture’s resource utilization. Thus, we

cannot compare our results to theirs directly. Instead, we have compared our results against

the network implementation using TensorFlow on CPU and GPU.

The target CPU is a 56-core Intel Xeon CPU E5-2680 v4 that operates at 2.40GHz. For

GPU, we use the NVIDIA Tesla V100 GPU and it uses cuDNN [Che+14] to run the network.

To have a fair comparison of the latency of running the network on different platforms, we

measure the runtime of a single image inference using OpenPose-V2 network. Table 3.7

summarizes the results. The runtime considers only the CNN inference time on RGB images

of size 384× 384. For both the FPGA and GPU, the time to transfer the data from host to

device and device to host is excluded from the measurement. We also measure the dynamic

power on each platform, which is calculated as the difference of the hardware power when

running and not running the application. Both GPU and FPGA suffer from the low data

reuse and degree of parallelism of this network (this is why FlexCNN’s performance on this

network is only 117GFLOPs). However, FlexCNN is 3.8× more energy efficient than GPU.

3.7 Conclusion

The rapid evolution of CNN networks has brought new challenges to FPGA acceleration.

In this chapter, we identify two major challenges including the performance disparity of dif-

ferent CNN layers and the high overheads of integrating the FPGA into an ML framework.
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Table 3.7: Performance comparison of different hardware platforms running OpenPose-V2.

Platform
Frequency

(GHz)

Runtime

(ms)

Dynamic Power

(W)

CPU 2.4 99.3 17

GPU 1.4 25.3 38

FPGA (FlexCNN) 0.243 24.7 10

To tackle these two challenges, we propose an accelerator named FlexCNN which employs

dynamic tiling and data layout optimization to improve the hardware efficiency across layers.

These two techniques achieve 2.3× speedup on the studied Openpose-V2 network. Further-

more, we propose a two-level integration pipeline to reduce the integration overheads. It adds

another 5× speedup of the overall performance. At last, we are able to meet the requirement

of real-time processing with 23.8FPS using these optimization techniques.
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CHAPTER 4

StreamGCN: Accelerating Graph Convolutional

Networks with Streaming Processing

In the previous chapter, we developed and implemented an efficient and composable archi-

tecture named FlexCNN to accelerate the most popular deep learning algorithm on images,

CNN. While there have been many studies on hardware acceleration for deep learning on

images, there has been a rather limited focus on accelerating deep learning applications in-

volving graphs. The unique characteristics of graphs, such as irregular memory access and

dynamic parallelism, impose several challenges when the algorithm is mapped to a CPU

or GPU. To address these challenges while exploiting all the available sparsity, we propose

a flexible architecture called StreamGCN for accelerating Graph Convolutional Networks

(GCN), the core computation unit in deep learning algorithms on graphs. The architecture

is specialized for streaming processing of many small graphs for graph search and similarity

computation. The experimental results demonstrate that StreamGCN can deliver a high

speedup compared to a multi-core CPU and a GPU implementation, showing the efficiency

of our design.

4.1 Introduction

Graphs serve as the foundational data structure within data centers and find extensive ap-

plications across diverse domains such as recommender systems, social networks, and the

World Wide Web. Despite their widespread use, graphs are mainly unstructured and have

high dimensionality, resulting in computational complexity during processing. Notably, nu-
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merous graph algorithms, such as Graph Edit Distance [SF83] and Maximum Common Sub-

graphs [BS98], are known to be NP-complete [Zen+09; Kan92]. This challenge has prompted

researchers to leverage deep learning techniques for graphs, aiming to extract structured low-

dimensional features. Within this context, GCNs [KW16] have gained widespread adoption.

GCNs assign feature vectors, termed "node embeddings", to graph nodes to represent their

roles. Similar to CNNs, GCNs employ multiple layers where node features propagate, ag-

gregating rich information about the input graph. In each layer, the GCN updates node

features by aggregating neighbors’ features and passing the result through a filter. GCNs

have demonstrated success across various domains, including but not limited to traffic pre-

diction [Zha+19], enabling web-scale recommender systems [Yin+18a], molecular footprint

calculation [Duv+15], and solving EDA tasks [Hua+21].

While some graph data tend to scale rapidly, many graph data are naturally limited in

size, for example, chemical compounds and molecules [NCI04; SI15; Bol+08; Che+19] that

have a wide application in different domains including drug development, quantum mechan-

ics, physical chemistry, biophysics [Wu+18; Che+19]; the GREC database, which represents

symbols from architectural and electronic drawings [DV05]; the Fingerprint database [WW92],

etc [Wu+18; RB08]. The average number of nodes for graphs within these databases typically

ranges from 5 to 50.

Because of the vast application of small graphs, numerous algorithms have been pro-

posed to obtain their information [Ish+21; Li+19; Ma+20a; QBS20; Bai+19]. In particular,

SimGNN [Bai+19] proposed a GCN-based approach to learn a similarity score for such

graphs. It demonstrates that a GCN-based approach can approximate the GED [SF83] with

high accuracy; hence, it expedites the graph similarity computation significantly for many ap-

plications. SimGNN targets graphs from real-world graph databases, such as AIDS [NCI04],

LINUX [Wan+12], and IMDB [YV15]. The target graphs are relatively small, with 10

nodes on average, but the database contains millions of graph pairs, creating a large number

of graph-matching queries. Although the CPU implementation can finish each SimGNN

query in milliseconds, processing millions of queries can take several hours; hence, it requires

53



customized acceleration. Such a workload of graph searching/mining is increasing in im-

portance. For example, searching for antivirus chemical compounds is an important step in

drug repurposing for COVID-19.

Despite the popularity and effectiveness of GNN approaches, there has been limited

research on developing an accelerator for them (e.g., [Yan+20a; Gen+20; ZP20]). This is

due to the inherent challenges posed by GNN in the design of accelerators, including:

• Irregular memory access and low data reuse: As opposed to images, the neigh-

bors of a node in a graph may be stored in any location in memory. This will result in

many irregular memory accesses to all levels of the memory hierarchy. Furthermore,

GNNs have much lower data reuse compared to CNNs. As such, the countless CNN

accelerators proposed in the literature (e.g., [Zha+18b; Wei+18; SFM17a; SWC20]) are

incompatible here. Compared to traditional graph algorithms such as Breadth-First

Search (BFS), the nodes have long feature vectors instead of a single scalar value.

Therefore, not only is the access pattern different, but we can also exploit new kinds

of parallelism and data reuse. As a result, most graph-based accelerators proposed in

the literature (e.g., [Dai+17; Ham+16; WHN19; Yan+20b; Li+17; Muk+18; Bas+19;

Dad+19; Wan+16; Als+16]) are ill-suited for GNNs.

• Computation pattern disparity: Different steps of the GCN deal with different

sparsity rates (see Section 4.3). Besides, a GNN may include other types of computa-

tion patterns, such as the neural tensor network in SimGNN (see Section 4.4) to make

an end-to-end application. Such variations call for a customized processing unit for

each step.

• Dynamic workload and parallelism: Since the number of neighbors varies across

different nodes, there will be a load imbalance between the graph’s nodes.

In addition to the challenges mentioned above, dealing with small graphs requires spe-

cial design considerations as we will explain in Section 4.3. To solve these challenges, we

present StreamGCN as an efficient and flexible GCN accelerator for streaming small graphs
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Table 4.1: Properties of StreamGCN compared to the state-of-the-art GCN accelerators.

Work
Graph

Size

Layer

Customization

Sparse Engine

for Feature

Transformation

On-the-fly

Sparsity

Pruning

Read Each

Element

Only Once

Parallelization

Inter-

layer

Feature-level

(Sparse Part)

Node-level

(Sparse Part)

HyGCN

[Yan+20a]
Large ✗ ✗ ✗ ✗ ✗ ✓ ✓

GraphACT

[ZP20]
Small ✗ ✗ ✗ ✗ ✗ ✓ ✗

BoostGCN

[ZKP21]
Large ✗ ✓ ✗ ✗ ✗ ✓ ✓

AWB-GCN

[Gen+20]
Large ✓ ✓ ✓ ✗ ✓ ✗ ✓

Ours

(StreamGCN)
Small ✓ ✓ ✓ ✓ ✓ ✓ ✓

- from the different levels of memory and even through the network - and exploiting all the

available sparsity. Then, we apply it to accelerate the entire pipeline of SimGNN as an

end-to-end application. Since we are facing a memory-bounded application, we reduce the

global memory transactions to the least amount. To deal with the irregular memory access,

we utilize a scratchpad memory to store the matrices that need random access. Because of

the computation pattern disparity, we analyze the requirements of all the steps of the com-

putation pipeline and, accordingly, develop a dedicated architecture for each of them. We

further propose an efficient workload distribution mechanism to alleviate the load-imbalance

problem.

Concisely, we fuse all the stages together and employ a very deep pipeline with three

different levels of nested customizable parallelization as listed in Table 4.1. We compared

our approach to the previous GCN accelerators in detail in Section 2.4.2 which is summarized

in Table 4.1. While we use SimGNN for illustrating our approach, the same optimizations can

be applied to other GCN-based networks dealing with small graphs (e.g., [QBS20; Ish+21;

Bai+20]) as well. We implement StreamGCN on three different FPGAs showing its flexibility

and adaptivity to different platforms with different global memory bandwidth.

In summary, the key contributions of this chapter are:
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• We design and develop StreamGCN, a flexible architecture for accelerating GCN spe-

cialized for streaming processing of small graphs and exploiting all the available spar-

sity.

• We adopt StreamGCN to accelerate SimGNN as an end-to-end application, resulting

in an efficient architecture with a very deep pipeline and three levels of parallelization.

• We demonstrate the flexibility of our architecture by mapping and customizing it to

three different FPGAs with different capacities and memory systems.

• Experimental results suggest that our accelerator can outperform multi-core CPU by

18.2× and GPU by 26.9×, demonstrating the efficiency of our design.

4.2 Background

4.2.1 Graph Convolutional Network Computation Details

We described a high-level view of the GCN computation in Section 2.3.1.1. More specifically,

layer l of a GCN [KW16] takes an undirected graph G(V,E,H l) as the input, where V (E )

denotes the nodes (edges) of the graph. H l ∈ R|V |×fl is the matrix of the input node

embeddings for this layer, with each row containing the embedding of one of the nodes where

fl indicates the number of features of each node at layer l. The core computation of a GCN

layer to produce the output node embeddings is as follows:

Ã = A+ IN , D̃ii =
∑
j

Ãij, A′ = D̃− 1
2 · Ã · D̃− 1

2

H l+1 = σact

(
A′ ·H l ·W l

)
, H l+1 ∈ R|V |×fl+1

(4.1)

where σact(·) is an activation function which typically is a ReLU and W l is a layer-specific

trainable weight matrix. A′ is the normalized adjacency matrix with added self-connections

that is calculated using A and IN which are the adjacency and the identity matrix, respec-

tively. D̃ is a diagonal matrix where D̃ii is the degree of node i plus one.
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As Eq. 4.1 suggests, the first step in the computation (A′ · H l) gathers the neighbors’

information for each of the nodes. As A′ is a normalized matrix, the computation here is

a weighted aggregation. After the Aggregation step, the node embeddings are transformed

by applying a pretrained set of weights and finally passed through a ReLU unit. The time

complexity of layer l can be seen to be O(|E|flfl+1), where |E| denotes the number of edges

including the self-connection ones [KW16].

4.3 StreamGCN Architecture

We can compute Eq. 4.1 either as (A′ × H l) × W l or A′ × (H l × W l). We have chosen

the latter since it results in a fewer number of operations. Intuitively, this is because both

matrices A′ and H l are sparse, but their multiplication creates a dense matrix. As a result,

in the former, we end up doing a dense-dense multiplication for the second multiplication.

However, if we go with the latter, both multiplications are sparse-dense that as shown in

AWB-GCN [Gen+20], reduces the number of operations. Figure 4.3 illustrates the high-

level view of the GCN architecture in StreamGCN. In this section, we employ a bottom-up

approach to highlight the optimization opportunities when GCN is applied to small graphs

and how we used them to build the GCN accelerator as demonstrated in Figure 4.3.

4.3.1 StreamGCN Design Principles

StreamGCN is designed:

• To exploit all the available sparsity.

• To reduce the number of times we access the global memory to the least amount

possible. In our final architecture, each input element is read only once and there is

no need to store any of the intermediate results in the global memory.

• To employ a deep pipeline with varying levels and degrees of parallelization for match-

ing the workload of different stages and maximizing the overall performance.
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• To efficiently handle and stream small graphs.

4.3.2 Baseline Architecture

In this section, we describe a baseline architecture to accelerate the processing of GCNs

inspired by the previous GCN accelerators [ZP20; Yan+20a; Lia+20]. Although these opti-

mizations are necessary, they are not enough when dealing with many small graphs. Hence,

we propose to apply further optimizations in the subsequent sections.

4.3.2.1 Feature Transformation (FT)

In this step, one must multiply matrices H l ∈ R|V |×fin and W l ∈ Rfin×fout , where fin

and fout denote the number of input and output features, respectively. Here, adopting an

inner-product-based matrix multiplication results in updating the same output feature in

the consecutive iterations which introduces Read-After-Write (RAW) dependency between

them. Since the floating-point addition cannot finish in one cycle, our pipeline cannot achieve

an Initiation Interval (II) of one, meaning that we cannot schedule new operations in each

clock cycle which degrades the efficiency of our design.

Optimized Scheduling: Read the Weight Matrix Row-wise; Stream the Embeddings

Matrix Column-wise. To alleviate the RAW dependency problem, we perform Cartesian

product as in [Par+17]. This means that we design a Processing Element (PE) consisting

of SIMD Multiplication and Accumulation (MAC) units. At each cycle, we update different

output locations by taking an element from H l (read as a stream) and broadcasting that

to parallel MAC units while each MAC unit reads different elements of the W l matrix. To

read each element only once and increase data reuse, for each fetched element of H l, (i.e.,

h00), we schedule all the operations it is involved with, before its eviction. We add a second

level of parallelization by duplicating the SIMD PE by a Duplication Factor (DF) which

parallelizes the node dimension. To avoid RAW dependencies between the PEs, we read H l

in column order. Note that if we read it rather in row order, we update the same location

every fout
SIMD

iterations instead of every |V |
DF
× fout

SIMD
iterations. Reading in column order also
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lets us cache and reuse the corresponding row of the weight matrix. Fig. 4.1 illustrates the

final execution order of this step. The arrows denote the high-level ordering of traversing

different dimensions, and the numbers show the elements that are accessed at their respective

cycles. It is important to traverse the input feature dimension (fin) last (arrow III) since

it is the dimension causing the dependencies.
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Figure 4.1: The optimized computation order to reduce II for the Feature Transformation

step in GCN.

4.3.2.2 Aggregation

In this step, we must multiply matrices A′ ∈ R|V |×|V | and X l ∈ R|V |×fout where X l is the

result of the FT step. Due to the highly irregular access to the matrix X l to aggregate

features of the neighbors, we cache it in a scratchpad memory. Matrix A′, is often ultra

sparse [Gen+20]. To reduce the number of both transferred elements and operations, we

prune this matrix and only pass its non-zero elements, which represent edges, to the FPGA.

Instead of dedicating an on-chip memory for storing the edges, we read them as a stream

and update all the features of the destination node, before retiring the edge. It helps us

with freeing up the storage for caching X l which is the same matrix that needs to be cached

for the FT step. We further rearrange the edges, as a step of preprocessing, before sending

them to the FPGA, so that the ones with the same destination node are at least L (the

latency of the functional unit causing the dependency) locations apart to make sure there is

not more than one update to the same node within the window of L cycles. As edge-level

parallelism can result in bank conflicts since they update random nodes, we only make use
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of feature-level parallelism to distribute the workload here. Nevertheless, one can include

that by adding another level of preprocessing by further reordering the edges.
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Figure 4.2: Baseline architecture for accelerating GCN: intra-layer pipelining between MULT

module (multiplication unit for Feature Transformation step) and ACG Module (accumula-

tion unit for Feature Transformation step + Aggregation step)

4.3.2.3 Intra-layer Pipelining

To further boost the performance, we add intra-layer pipelining by connecting the modules

as a dataflow architecture. As a result, the overall latency will be close to the latency

of the slowest module. In addition, we can avoid off-chip memory accesses in between

these modules. The MULT module, depicted in Fig. 4.2, is responsible for doing all the

multiplications of the FT step. It has a local buffer to store the weights and streams the

elements of H l from input FIFO. Each entry of this FIFO is a concatenation of DF elements.

Once the multiplication results are ready, they are packed and sent in a FIFO to the ACG

module (Fig. 4.2). In this module, we merge the ACC unit of the FT step and the Aggregation

step to save memory resources since they share the matrix X l. After fetching the output of

the MULT module, the ACG module unpacks the data based on the same DF and dispatches

SIMD elements to each SIMD ACC Unit with the same SIMD factor. Once the additions are

done, it will store the partial results in the local buffer features buffer. After all the updates

are committed to the features buffer, the matrix X l is computed and the Aggregation step

can start. The SIMD factor of this step is higher than the one in the FT step since we only

exploit feature-level parallelization here. After this step is finished, the elements of the out

features buffer are added with a bias, passed through a ReLU unit (max(0, ·)), and stored
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in the global memory. Note that in the baseline architecture, we reuse the same modules for

all the GCN layers.
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Figure 4.3: High-level overview of GCN accelerator architecture in StreamGCN.

4.3.3 Extension 1: Multi-layer Support and Inter-layer Pipelining

As it is commonly practiced ([Yan+20a; ZP20; Lia+20]), in the baseline architecture, we

only exploit intra-layer pipelining and reuse the modules for all the GCN layers. However,

this is not sufficient when we are dealing with small graphs. The off-chip communication

is a serious burden for this application since it deals with small-sized inputs. To alleviate

this problem, we intend to reduce the number of accesses to the off-chip (global) memory as

much as possible. The baseline architecture is inefficient in this regard since, at the end of

each layer, the output should be stored in the global memory and read back again for the

next layer. To avoid these redundant accesses, we extend the dataflow architecture described

in Section 4.3.2.3 to all the layers of GCN. To realize this, we instantiate new modules for

each layer and connect them with FIFOs as depicted in Fig. 4.3. Fusing the computation for

all the layers by enabling dataflow architecture has several benefits such as: 1) we can avoid

writing the intermediate results to the global memory by forwarding them to the next layer

through FIFOs. 2) The operations will be dynamically scheduled since each module can

perform its operation whenever it has data available. 3) Since we are instantiating different

modules for each layer, we can customize the parallelization factors of each module based
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on the workload of their respective GCN layer. 4) As the adjacency matrix of a graph does

not change across different layers, we can read the edges from the global memory only once

for the first layer and reuse them for the subsequent ones by transferring them through the

on-chip FIFOs.

4.3.4 Extension 2: In Situ Sparsity Support in FT Step

The input node embedding to the first layer of GCN usually contains many zero elements

since it often uses one-hot encoding for assigning initial vectors to the nodes. Furthermore,

since there is a ReLU unit at the end of each GCN layer, the matrix generated by each layer,

which is the input to the next layer, is sparse. In fact, we saw 52% and 47% sparsity on

average for the input to the second and the third layers of GCN in SimGNN for randomly

drawn graphs from our target dataset. Therefore, the FT step also needs to have support for

sparse computation. To reduce the number of operations, we prune the zero elements and

only pass the non-zero ones to the next layer. As a result, the updates to the output buffer

may come in random cycles; thus, it is necessary to store the buffer containing the partial

results on-chip to enable random access. For the same reason, we pack the node features

with their address which includes their row and column ID. Packing the elements with their

address helps to make the dispatch unit simpler since each SIMD PE is free to work with

any data and knows which partial result should be updated; hence, there is no need to take

special considerations to navigate the data to the correct PE. We only need to make sure

that at all times each SIMD PE is working with a different memory bank. We employ an

arbiter for this matter, as explained below.

As mentioned in Section 4.3.2, to reduce the number of RAW dependencies, we chose

to stream the node embedding matrix and broadcast it to different Computation Units

(CU) which read the weight matrix as a batch. Since the node embedding is a sparse

matrix, reading it as a stream facilitates the pruning mechanism we employ and enables us

to distribute the workload more efficiently. Fig. 4.4 demonstrates a toy example illustrating

this. The colored squares show the non-zero elements of the node embedding matrix. By
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mapping the weights, which are non-zero, to the SIMD dimension, all the CUs in the PE

would execute useful operations and we can skip all the operations involving a zero node

embedding.
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Figure 4.4: The benefit of streaming the node embeddings and mapping the weights to the

SIMD dimension when processing the Feature Transformation step of a GCN layer. CU

stands for computation unit. Colored cells in the matrix show non-zero values and white

cells show zero values.

When skipping the zero node embeddings, the dependency distance for output elements

may change dynamically since the number of non-zero inputs between the updates to the

same location can be different. Even though the scheduling discussed in Section 4.3.2 in-

creases the dependency distance as much as possible by doing all the operations when a

non-zero input is encountered (each non-zero element would fill fout
SIMDFT

cycles of the depen-

dency window), there still may be some cases where the dependency distance is less than L

after this optimization. Instead of setting the II to L to ensure correctness, we first insert L

registers to store the partial results of CU at the end of each of its pipeline stages; hence,

we can schedule a new set of operations at each clock cycle (II=1). There may be cases

where the new scheduled operations want to update a location whose old value is still in the

registers and have not updated the buffer. To ensure the correctness, we added a control

unit that keeps track of the last cycle that each of the output locations was updated. If the

number of cycles between two updates to the same location is less than L, the control unit
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will insert bubbles into the pipeline until the previous update is committed.

We insert a unit for pruning zeros at the end of the ACG module. As Fig. 4.5 demon-

strates, at each cycle, we evaluate P elements of the node embeddings and pass each to a

FIFO if it is not zero. The MULT module of the next layer takes the P FIFOs as the input

and uses an arbiter to fetch, at most, DF of them (DF <= P ) for passing to DF SIMD

PEs. An arbiter keeps track of the FIFO whose turn it is to be read first in the next cycle.

It then uses a round-robin ordering for dispatching the elements from the non-empty FIFOs.

After dispatching the inputs, it checks for the RAW dependency by scanning the prev iter

buffer which contains the last cycle when each element was seen as the input. If the distance

is less than L, it will insert bubbles in the pipeline until the previous input has committed

its update. If there is no dependency, for each memory bank at most one element from the

dispatched inputs will be issued to a SIMD PE and the current cycle number will be stored

in prev iter buffer for that input.
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Figure 4.5: StreamGCN architecture support for sparse computation in the Feature Trans-

formation step of GCN.

The StreamGCN architecture provides flexibility in choosing the parallelization factors.

Table 4.2 lists the parameters that can be tuned for each GCN layer based on its workload.

The SIMD factors correspond to feature-level parallelization, while DF and P map to node

dimension.
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Table 4.2: Summary of architecture parameters for the accelerator of each GCN layer in

StreamGCN.

Design Parameter Explanation

SIMDFT SIMD factor of the FT step

SIMDAgg SIMD factor of the Aggregation step

DF Duplication factor of the PEs in FT step

P Number of input FIFOs to the arbiter
FT: Feature Transformation

4.4 StreamGCN Application to Graph Matching

In Section 4.3, we proposed an architecture for GCN specialized for small graphs. In this

section, we extend our architecture to accelerate an end-to-end application, SimGNN, which

introduces new computation patterns beyond GCN.

4.4.1 SimGNN

Bai et al. [Bai+19] proposed a neural-network-based approach to assign a similarity score

to two graphs. Its computation pipeline consists of four major stages. The first stage has

three layers of GCN to extract the node embeddings H ∈ R|V |×F where F is the number

of features of the last layer. In the second stage, it uses a Global Context-Aware Attention

layer (Att) to combine the node embeddings and generate a single embedding per graph

hG ∈ RF . For this matter, it adapts an attention mechanism to find out the importance of

each of the nodes. The graph embedding, then, can be calculated by taking a weighted sum

of the node embeddings using the attention weights. The following formula summarizes the

computation in this stage:

hG =

|V |∑
n=1

σ(hT
n · tanh(

1

|V |
WAttΣ

|V |
n=1hn)) · hn (4.2)

where σ(·) denotes the sigmoid function to produce the attention weights and WAtt ∈ RF×F

is a learnable weight. The time complexity of this stage can be seen to be O(|V |F ). The
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third stage is a Neural Tensor Network (NTN) that calculates a vector of similarity scores

between the two graphs:

s(hG1 , hG2) = σ(hT
G1
W

[1:K]
NTNhG2 + V · concat(hG1 , hG2) + b) (4.3)

where W [1:K]
NTN ∈ RF×F×K , V ∈ RK×2F , and b ∈ RK are learnable weight tensor, weight matrix,

and bias vector, respectively. K is a hyper-parameter that controls the number of similarity

scores. The time complexity of this stage is O(F 2K). The last stage uses a Fully Connected

Network (FCN) to gradually reduce the similarity vector to only one score.

The non-GCN stages make use of exp and tanh functions which are expensive to have

on FPGA that can limit their parallelism rate. Furthermore, the computation complexity of

the different stages shows that the GCN step is the most computation-intensive one; hence,

when pipelining all the stages together, the accelerator will be bottlenecked by the GCN

step. Therefore, we do not aggressively parallelize the rest of the steps and rather focus on

reducing their resource utilization.

4.4.2 Att Architecture

The SimGNN pipeline applies the GCN stage to two graphs for each comparison query.

Instead of duplicating the architecture in Fig. 4.3, we process the graphs serially and reuse

the GCN module for the two input graphs in the query. Reusing the GCN module enables

us to map the design to small FPGAs as well. We improve the performance of processing

one query by overlapping the GCN computation of one graph with the Att computation of

the other one. Thus, the total performance will be bottlenecked with the performance of

GCN and we can focus on reducing the area and reusing the resources for Att. In computing

v = WAttΣ
|V |
n=1hn, we first must add hn vectors and then do a Matrix-Vector Multiplication

(MVM). Instead of instantiating separate adders for the first additions and the ones in MVM,

we rewrite the equation as follows to reuse the adders:

v = WAttΣ
|V |
n=1hn = Σ

|V |
n=1WAtthn = sum(H ·W T

Att, 2) (4.4)
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where H ·W T
Att shows the matrix multiplication between the weight matrix and the matrix of

node embeddings, sum(H ·W T
Att, 2) denotes the reduction of the resulting matrix across its

second dimension (columns), meaning that all the multiplications associated with a column

of H should be added together. Fig. 4.6 demonstrates an overview of the Att module. As in

the GCN stage, we divide the matrix multiplication to two different modules, one responsible

for multiplications and the other for additions. Again, we use SIMD PEs to implement these

modules. However, the SIMD factor here can be set to a different value compared to the GCN

stage since they have different computation complexities. The Repack module is responsible

for adjusting the output of GCN with the SIMD factor of this stage. For tanh and exp

functions, we adopt their implementation in the AMD Xilinx HLS Math library. Note that

the last summation in Eq. 4.2 can be seen as HT · a where a ∈ R|V | contains the sigmoid

results. Hence, we use an MVM unit at the end.

MULT module

Repack module

Att Comp. module

SIMD Acc Unit Tanh Unit

Dot Product 
Unit

Sigmoid 
Unit

MVM 
Unit

GCN results

Att weights
Att results

SimGNN – Att module

Figure 4.6: Architecture overview of the second stage of SimGNN in StreamGCN: Att

module implementing the global context-aware attention layer.

4.4.3 NTN + Fully-connected Network Architecture

The computation in the NTN stage is rather simple since it is a series of fixed-size MVMs

followed by a bias addition and an activation function. Furthermore, the layers of the FCN

in the last stage either need an MVM unit or a reduction tree to lower a vector to a scalar.

Like the previous stages, we implement all the sub-modules of these two stages in a dataflow

manner. Fig. 4.7 depicts the architecture of these two steps.
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Figure 4.7: Architecture overview of the last two stages of SimGNN in StreamGCN: NTN

and FCN module implementing the neural tensor network and fully connected network.

4.4.4 Putting It All Together

The whole computation pipeline of SimGNN is implemented as a three-level dataflow ar-

chitecture. The first two levels resemble an inter-stage pipelining while the last one is for

intra-stage pipelining. The first level enables a task-level parallelization by grouping the

graph-related steps, the GCN (Section 4.3) and Att (Section 4.4.2) modules, and overlap-

ping them with the rest, NTN_FCN module (Section 4.4.3). The second level of dataflow

architecture overlaps the GCN stage with the Att. Finally, the last level applies dataflow

architecture to each of the GCN, Att, and NTN_FCN modules as shown in Fig. 4.3, 4.6,

and 4.7, respectively. We apply three optimizations for reducing the off-chip communication

latency: 1) each input buffer can be mapped to a different DRAM bank or HBM channel to

enable parallel access to them. 2) The available global memory bandwidth is fully utilized

by applying memory coalescing. Memory burst is also applied to amortize the initialization

overhead, 3) The computation modules overlap with the modules accessing global memory

by implementing the accelerator as a dataflow architecture.
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4.5 Experimental Results

4.5.1 Benchmark

We consider a real-life graph dataset, AIDS [NCI04], for benchmarking our design. AIDS

contains 42,687 antivirus chemical compounds gathered by the Developmental Therapeutics

Program at NCI/NIH. The graphs in AIDS have 25.6 (27.6) nodes (edges) on average. We

randomly form 10,000 queries of them for testing. The kernel time and end-to-end (E2E)

time reported in this section are the average of all queries.

4.5.2 Experimental Setup

The StreamGCN architecture is described using Vivado HLS C++ [Xila]. The design is syn-

thesized and implemented using AMD Xilinx Vitis 2019.2 on three different target platforms:

AMD Xilinx Alveo U50, AMD Xilinx Alveo U280, and AMD Xilinx Kintex UltraScale+

KU15P. The first two are equipped with HBM2 and, ideally, can achieve a bandwidth of

316 GB/s (460 GB/s) with a TDP of 75W (225W); while the last one utilizes DDR4 as

the global memory. Table 4.3 compares the hardware resources of these boards. For com-

parison to CPU and GPU, the PyTorch-based implementation of SimGNN from [Roz18] is

used that is built using the state-of-the-art PyTorch Geometric (PyG) library [FL19] which

is commonly used as a baseline by previous works [Yan+20a; Gen+20; Lia+20]. For the

Aggregation step, PyG exploits sparsity and edge-level parallelism by adapting the PyTorch

Scatter library [Fey24]. For the Feature Transformation step, it uses Intel MKL [Int24b] and

NVIDIA cuBLAS library [NVI24] for CPU and GPU respectively, making it a reasonable and

optimized baseline. The target CPU in our experiments is Intel(R) Xeon(R) CPU E5-2699

v4 running at 2.2 GHz. For testing on GPU, we use an AWS p3.2xlarge instance which has

an NVIDIA V100 GPU.
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Table 4.3: Properties of the FPGAs used to implement StreamGCN.

Platform
BRAM

(Mb)

LUT

(K)

FF

(K)
DSP

URAM

(Mb)

Max BW

(GB/s)

AMD Xilinx Kintex UltraScale+ KU15P 34.6 523 1045 1968 36 19.2

AMD Xilinx Alveo U50 47.3 872 1743 5952 180 316

AMD Xilinx Alveo U280 70.9 1304 2607 9024 270 420

4.5.3 Impact of GCN Architecture Optimizations

4.5.3.1 Inter-Layer Pipelining

Table 4.4: Impact of the GCN architecture optimizations tested on AMD Xilinx Alveo U280

board. The meaning of design parameters is summarized in Table 4.2. Baseline design shows

a single set of design parameters because it uses the same hardware for all the layers.

Architecture
Design Parameters (L1 / L2 / L3) LUT / FF / DSP / Freq.

Kernel (ms) Kernel × DSP
SIMDFT SIMDAgg DF P BRAM / URAM (%) (MHz)

Baseline 16 32 8 - 9.8 / 7.7 / 7.4 / 6.8 / 0 265 0.599 (1×) 4.46 (1×)

+Inter-Layer Pipeline 32/16/16 32/32/16 8/8/8 - 14 / 12 / 18 / 3.6 / 2.5 271 0.383 (1.56×) 6.74 (0.66×)

+Extended Sparsity 32/32/16 32/32/16 2/1/1 8/2/2 4.8 / 6.0 / 4.4 / 4.8 / 3.1 300 0.264 (2.27×) 1.15 (3.88×)

Table 4.4 shows the resource usage and performance of the StreamGCN architecture when

accelerating three GCN layers of SimGNN on the U280 FPGA. The baseline uses the same

hardware for all the GCN layers. With inter-layer pipelining added, all 3 GCN layers run in

parallel as a coarse-grained pipeline. Since each layer utilizes different pieces of hardware, we

can customize the design parameters to match the throughput of each layer. As a result, the

3 layers require 2.4× more DSPs compared with the baseline. We distribute the storage units

needed between BRAM, URAM, and LUT to obtain a better frequency. The GCN kernel

time is reduced by 36% with inter-layer pipelining added to the baseline. However, if we

look at the latency-area product metric, i.e., Kernel×DSP, we can see that the performance

improvement does not catch up with the computation units (DSP) increment, suggesting

potential for further optimizations.
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4.5.3.2 In Situ Sparsity for the Feature Transformation Step

Although using P queues (Section 4.3.4) help the arbiter fetch non-zero elements more fre-

quently, it may still not be enough to dispatch data to all the DF PEs. Furthermore, by

increasing the DF, we may need to insert more bubbles in the pipeline to avoid RAW depen-

dency since it reduces the number of cycles between the updates to the same location. As a

result, there is a trade-off in choosing the right DF for each layer. The best parallelization

factors are summarized in Table 4.4. When DF is set to 1, we no longer need to have separate

banks in the row dimension of the buffers which can lessen the number of needed memory

blocks. This makes it more efficient to use dense memory blocks (BRAM and URAM) as

opposed to LUTs for the buffers. As Table 4.4 shows, extending sparsity to feature trans-

formation over the inter-layer pipeline has further reduced the kernel time by 31%, while

decreasing the DSP usage by 4.09×. The results clearly suggest that, since this is a memory-

bounded application, throwing more resources into the architecture is not helpful. Instead,

the memory access latency should be reduced and the computation units shall be used more

efficiently. Since a large number of zero elements and required DSPs are excluded, there

is a 2.27× speedup over the baseline and the latency-area metric (Kernel×DSP) is greatly

improved by 3.88×.

4.5.4 End-to-end Acceleration of SimGNN

4.5.4.1 Flexibility of Mapping to Different FPGAs

We implement the whole pipeline of SimGNN on 2 HBM FPGAs and KU15P that uses DDR

memory. Fig. 4.8 compares the resource breakdown of the modules at the top hierarchy of

our design when mapped to U280. We allocate most of the resources to the GCN stage as

it is the computation-intensive part of the network. Table 4.5 shows the resource usage and

performance for the three FPGA platforms. We can see that the kernel runs faster on HBM

FPGAs compared to KU15P. This is mainly because HBM FPGAs can achieve a better

frequency as they have more resources and the Vitis tool has more freedom in placement
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and routing (PnR) of the design to optimize the timing. In fact, the cycle counts of the same

kernel running on a common FPGA but using different types and numbers of banks for global

memory are almost the same. This suggests that after our optimizations the bottleneck is

no longer at the memory level.

Table 4.5: Performance and resource utilization of a StreamGCN design accelerating

SimGNN on different target FPGAs.

FPGA
LUT / FF / DSP /

BRAM / URAM (%)

Freq.

(MHz)

Kernel

(ms)

E2E

(ms)

E2E

(query/s)

KU15P 34 / 29 / 35 / 30 / 23 201 0.786 1.135 881

U50 17 / 16 / 12 / 16 / 4.7 279 0.423 0.538 1858

U280 11 / 10 / 7.7 / 10 / 3.1 290 0.327 0.509 1965
E2E: End-to-End

0%
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50%

75%

100%

BRAM DSP FF LUT URAM

NTN + FCN Att GCN

Figure 4.8: Resource breakdown of SimGNN accelerator on AMD Xilinx Alveo U280 board.

4.5.4.2 StreamGCN vs CPU and GPU

We test the performance of the whole pipeline of SimGNN on the CPU and GPU described in

Section 4.5.2. In this section, we assume that the inputs are already stored in the host mem-

ory, and we want to offload the graph comparison queries to either of the target platforms.

The goal is to compare the performance of these platforms for processing a graph-matching

query. Table 4.6 summarizes the average runtime per query. The queries are started se-

quentially, and the end-to-end time of all the platforms is the time interval between two
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consecutive queries being started. This includes the runtime for any preprocessing steps as

well. For FPGA and GPU, it also involves the host-kernel communication via the PCIe

link, writing data to FPGA/GPU’s global memory, reading the results from that, and the

overheads for using the APIs (OpenCL for FPGA and PyTorch for CPU/GPU). We use the

end-to-end time for comparison since these overheads are inevitable and should be accounted

for. The kernel time on CPU/GPU is measured with the PyTorch profiler.

Table 4.6: Performance comparison of running SimGNN on different hardware platforms.

Platform
Max BW

(GB/s)

Kernel

(ms)

E2E

(ms)

Speedup

(vs. CPU)

Speedup

(vs. GPU)

KU15P (StreamGCN) 19.2 0.786 1.135 8.2 12.1

U50 (StreamGCN) 316 0.423 0.538 17.2 25.5

U280 (StreamGCN) 460 0.327 0.509 18.2 26.9

PyG-CPU 76.8 5.85 9.27 1 1.5

PyG-GPU 900 9.68 13.7 0.68 1
BW: Bandwidth, E2E: End-to-End

The results demonstrate that our FPGA solution can outperform both CPU and GPU

significantly. As discussed in Section 4.1, this is partly because of the dynamic load balance

and the irregular memory access of the graph structure. Furthermore, since we target small

graphs, it results in extreme under-utilization of GPU. In fact, the profiling results indicate

that the GPU utilization does not go higher than 6% and, for the most part, the PyG-GPU

only uses 1 Streaming Multiprocessor (SM) since the matrices are small. Because of this

and the fact that the GPU runs at a lower frequency (1.3GHz) compared to the CPU (2.2

GHz), the GPU version of this application is even slower than the CPU. The nvprof profiling

results show that PyG-GPU runs 225 kernels for accelerating this application that on average

have 4.6 KFLOPs. With this low computation intensity, the overhead of running the kernel

(such as cudaLaunchKernel) is larger than the actual kernel runtime which greatly impacts

the GPU performance. Designing the GPU kernel manually can alleviate some of these

shortcomings, but the underlying problem still exists due to the coarse-grained execution

model of GPU. In contrast, our FPGA solution suffers from kernel initialization overheads
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only once since we develop a deep pipeline across all stages of the computation by fusing

them in one kernel. This pipelining has several other benefits as explained in Section 4.3.3.

Note that both FPGA and GPU have enough resources left for batch processing, so it is

meaningful to compare their single query execution.

4.5.4.3 Discussion on Scalability

Table 4.5 illustrates that the available resources allow us to instantiate 6 StreamGCN archi-

tectures with U280 before hitting the 80% resource usage upper-bound. 80% is an empirical

threshold that beyond that the AMD Xilinx tool would have a hard time mapping the design

to the FPGA. Since U280 is equipped with HBM which makes use of pseudo channels that

can be accessed independently, this batch processing can be done completely in parallel. This

does not change the latency of each graph query, but it would increase the throughput by

6×. In addition, although the graphs in our target benchmark have 25.6 nodes on average

and we designed our accelerator for them, we can use the unused resources for increasing

the target graph size or processing more GCN layers. Obviously, increasing either the batch

number, graph size, or number of GCN layers limits the other values. If all the other op-

tions are fixed, we can increase these three parameters by 6, 150, and 20, respectively, when

targeting the U280 board for SimGNN.

4.6 Other Related Works

In Section 2.3.1.1, we reviewed prior studies presenting GCN accelerators and compared the

key components across representative works, as outlined in Table 4.1. In this section, we

delve into additional research that emphasizes harnessing the sparsity of the application.

SpMM and SCNN Accelerators: Apart from the works focusing on GCN, there

has been a lot of research on sparse MM either for pruned CNNs or normal MM [Sri+20a;

Han+16; KMZ19; Par+17; Sri+20b]. They all rely on the fact that the sparse matrix is

known offline, and they can preprocess it. For example, EIE [Han+16] proposes a sparse
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matrix-vector multiplier for the fully-connected layers. It reorganizes the sparse matrix

in Compressed Sparse Column (CSC) format and preloads that into on-chip memory. As

another example, Kung et al. [KMZ19] pre-process the data by merging multiple sparse

columns of the weight matrix into one and pruning all the weights except for the most

significant ones, resulting in some accuracy loss. These approaches are not feasible for

GCN in which the sparse matrix (i.e., the node embeddings) is generated while running the

algorithm; whereas we proposed a technique to prune the zeros on-the-fly.

4.7 Conclusion

In this chapter, we analyzed and examined the optimization opportunities when GCN is

applied to small graphs. We presented an efficient architecture, StreamGCN, and developed

an accelerator for SimGNN based on that as an end-to-end application, which demonstrated

significant speedup over the CPU and GPU results. StreamGCN is ideal for real-time or

near real-time graph search and similarity computation for many biological, chemical, or

pharmaceutical applications.
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Part II

Machine Learning for Designing

Customized Accelerators
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In the previous part, we focused on creating specialized accelerators for specific applica-

tions. While efficient, this approach is not scalable. Here, we turn our attention to automat-

ing microarchitecture optimization for general applications as summarized in Fig. P.2. Chap-

ter 5 introduces AutoDSE, a model-free optimizer that uses a bottleneck-guided heuristic to

identify high-quality designs. In Chapter 6, we present GNN-DSE, which uses a surrogate for

the HLS tool to evaluate design candidates quickly in milliseconds. In Chapter 7, we create

the HLSyn database to provide the large training data required. Model-based techniques

can speed up optimization but may lose accuracy in estimating design quality. To mitigate

this, Chapter 8 introduces HARP for more robust representation learning.

AutoDSE: Model-free optimizer

GNN-DSE & HARP: Model-based optimizer
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Figure P.2: Overview of Part 2 – General Microarchitecture Optimization.
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CHAPTER 5

AutoDSE: Enabling Software Programmers to Design

Efficient FPGA Accelerators

In the first part of the dissertation, we designed architecture templates for accelerating two

well-known deep learning algorithms, CNN and GCN. While it is a promising approach for

accelerating popular programs, we cannot afford to do it for every program. The complexity

involved in programming FPGAs creates a serious burden for general software programmers

in adopting them in their applications. Even with the help of HLS, accelerator designers

still have to manually perform code reconstruction and cumbersome parameter tuning to

achieve optimal performance. To address this problem, we propose an automated design

space exploration framework named AutoDSE that leverages a bottleneck-guided coordinate

optimizer to systematically find a better design point. In other words, AutoDSE detects

the bottleneck of the design in each step of the optimization and focuses on high-impact

parameters to overcome it. The experimental results show that AutoDSE can identify the

design point that achieves, on the geometric mean, 19.9× speedup over one CPU core for

MachSuite and Rodinia benchmarks. Compared to the manually optimized HLS vision

kernels in the Xilinx Vitis libraries, AutoDSE can reduce their optimization pragmas by

26.38× while achieving similar performance. With less than one optimization pragma per

design on average, we are making progress towards democratizing customizable computing

by enabling software programmers to design efficient FPGA accelerators1.

1AutoDSE codes are available at https://github.com/UCLA-VAST/AutoDSE
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5.1 Introduction

As we explained in chapters 1 and 2, HLS [Con+11; Zha+08] can help improve the pro-

grammability of the FPGAs by raising the abstraction level. Code 5.1 shows an intuitive

HLS C implementation of one forward path of a CNN. AMD Xilinx Vitis generates about

5800 lines of RTL code from Code 5.1 with the same functionality. As a result, it is much

more convenient and productive for designers to evaluate and improve their designs in HLS

C/C++.

While HLS is well-suited for hardware experts to quickly implement an optimal design,

it poses challenges for most general software designers with limited FPGA expertise. The

hardware architecture inferred from a syntactic C implementation might be ambiguous,

leading current commercial HLS tools to typically generate architecture structures based

on specific HLS C/C++ code patterns. Consequently, not every C program results in an

optimal microarchitecture, and designers must manually reconstruct the HLS C/C++ kernel

with specific code patterns and hardware-specific pragmas to achieve high performance. In

fact, the generated FPGA accelerator from Code 5.1 is 80× slower than a single-thread

CPU. However, the optimized code (shown in Code A.1 in Appendix A.1) can achieve more

than 7,000× speedup (88× speedup over single-threaded CPU) after we analyze and resolve

several performance bottlenecks listed in Table 5.1 by applying code transformations and

inserting 28 pragmas.

It turns out that the bottlenecks listed in Table 5.1 occur for most C/C++ programs

developed by software programmers, and similar optimizations have to be repeated for each

new application, which makes HLS C/C++ design not scalable. In general, there are three

levels of optimization that one needs to employ to get to a high-performance FPGA design.

The first level is for increasing the data reuse or reducing/removing the data dependency

by loop transformations, which is common in CPU performance optimizations as well (e.g.,

for cache locality); therefore, it is well accepted by software programmers and we expect

them to apply such transformations manually without any problems. The second level
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is required to enable repetitive architectural optimizations that most of the designs benefit

from, such as memory burst and memory coalescing, as mentioned in reasons 1-2 in Table 5.1.

Fortunately, the recently developed Merlin Compiler 2 [Con+16b; Con+16a; Fal] (reviewed

in Section 2.1.1) from Falcon Computing Solutions [Fal], which was acquired by Xilinx in

late 2020 [Bus20], can automatically take care of these kinds of code transformations.

Code 5.1: CNN HLS C code snippet.
1 // Skip const variable initialization and macro definitions for brevity

2 void CnnKernel(const float* input 1 , const float* weight 1 ,

3 const float* bias 1 , float* output 1 ) {

4

5 float C[ParallelOut][ImSize][ImSize];

6 for (int i = 0; i < NumOut / ParallelOut; ++i) { 4
7 // Initialization

8 for (int h = 0; h < ImSize; ++h) {

9 for (int w = 0; w < ImSize; ++w) {

10 for (int po = 0; po < ParallelOut; ++po)

11 C[po][h][w] = bias[(i << shift) + po]; 2
12 } }

13 // Convolution

14 for (int j = 0; j < NumIn; ++j) { 5
15 for (int h = 0; h < ImSize; ++h) { 5
16 for (int w = 0; w < ImSize; ++w) { 5
17 for (int po = 0; po < ParallelOut; ++po) { 5
18 for (int p = 0; p < kKernel; ++p) { 5
19 for (int q = 0; q < kKernel; ++q) 5
20 C[po][h][w] += weight(i, po, j, p, q) * input(j, h + p, w + q); 2 3
21 } } } } }

22 // ReLU + Max pooling

23 for (int h = 0; h < OutImSize; ++h) { 5
24 for (int w = 0; w < OutImSize; ++w) { 5
25 for (int po = 0; po < ParallelOut; ++po) { 5
26 output(i, po, h, w) = max(0.f, C, po, h, w);

27 } } }

28 }

29 }

The final and the most critical level deals with FPGA-specific architectural optimizations,

detailed in reasons 3-5 in Table 5.1, that vary from application to application. Although

2The Merlin Compiler is open-sourced at https://github.com/Xilinx/merlin-compiler
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Table 5.1: Analysis of poor performance in Code 5.1.

Reason Required Code Changes for Higher Performance

1 Low bandwidth utiliza-

tion

Manually apply memory coalescing using HLS built-in

type ap_int.

2 High access latency to

global memory

Manually allocate local buffers and use memcpy to enable

memory burst.

3 Does not hide communi-

cation latency

Manually create load/compute/store functions and double

buffering.

4 Lack of parallelism Manually create parallel coarse-grained processing ele-

ments by wrapping the inner loops as a function and set-

ting proper array partition factors.

5 Sequential execution Apply #pragma HLS pipeline and #pragma HLS unroll

with proper array partition factors for each processing el-

ement.

the Merlin Compiler also helps alleviate this problem to some extent by introducing a few

high-level optimization pragmas and applying source-to-source code transformation to enable

them (as explained in Section 2.1.1), these optimizations are much more difficult for software

programmers to learn and apply effectively. More specifically, choosing the right part of the

program to optimize, deciding the type of optimization and the pragmas to apply for enabling

it, and tuning the pragma to get to the design with the highest quality complicate this level.

The requirement of mastering all three levels of optimizations makes the bar for general

software programmers to use FPGA extremely high. Hence, general software programmers

will lean towards other popular accelerators such as power-consuming GPUs with less con-

sideration over FPGAs. These obstacles consequently result in huge barriers to the adoption

of FPGA in data centers, the expansion of the FPGA user community, and the advances

of FPGA technology. One possible solution is to apply an automated microarchitecture

optimization. Thus, everyone with decent knowledge of programming can try customized
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computing with minimum effort. To free accelerator designers from the iterations of HLS

design improvement, automated Design Space Exploration (DSE) for HLS attracts more and

more attention. However, existing DSE methods face the following challenges:

Challenge 1: The large solution space: The solution space grows exponentially by

the number of candidate pragmas. In fact, only applying pipeline, unroll, and array partition

pragmas to Code 5.1 produces 1020 design points. This huge number of combinations creates

a serious impediment to exploring the whole design space.

Challenge 2: Non-monotonic impact of design parameters on performance

and/or area: As pointed out by Nigam et al. [Nig+20], we cannot assume that an individual

design parameter will affect the performance/area in a smooth and/or monotonic way.

Challenge 3: Correlation of different characteristics of a design: When different

pragmas are employed together in a design, they do not affect only one characteristic of

a design. We will use the convolution part of the Code 5.1 as an example. If we apply

fine-grained (fg) pipeline to w loop and parallelize the loop with a factor of 2, it results

in a loop with initiation interval (II) of 2 synthesized by Vivado HLS 2018.3 [AMD24b].

However, when we change the parallel factor to 4, the HLS tool increases the II to 3 to

optimize resource consumption by reusing some of the logic units instead of doubling the

resource utilization. The analytical models usually fail to capture these cases. Furthermore,

pipelining the j loop is part of the best design configuration. However, it does not improve

the performance until after the fg pipelining is applied on the w loop. It suggests that the

order of applying the pragmas is crucial in designing the explorer.

Challenge 4: Implementation disparity of HLS tools: The HLS tools from differ-

ent vendors employ different implementation strategies. Even within the same vendor, the

optimization and implementation rules keep changing across different versions. For example,

the past Xilinx SDAccel versions consistently utilize registers to implement array partitions

with small sizes to save BRAMs. However, the latest ones use dual-port BRAMs for imple-

mentation to support two reads in one cycle for achieving full pipelining, or II = 1, even if

the array size is small. Such implementation details are hard to capture and maintain in
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analytical models and make it difficult to port an analytical model built on a specific tool

to the other.

Challenge 5: Long synthesis time of HLS tools: HLS tools usually take 5-30

minutes to generate RTL and estimate the performance—and even longer if the design has

a high performance. This emphasizes the need for a DSE that can find the Pareto-optimal

design points in fewer iterations.

In this chapter, as our first step to lowering the bar for general software programmers to

make FPGA programming universally accessible, we focus on automating the final level of

optimization. To solve challenges 2 to 4 mentioned above, instead of developing an analytical

model, we treat the HLS tool as a black box. Challenges 1 and 5 imply that we need to

explore the solution space intelligently. For that, we first apply the coordinate descent

with the finite difference method to guide the explorer. However, we show that the general

application-oblivious approaches fail to perform well for the HLS DSE problem. As a result,

we present the AutoDSE framework that adapts a bottleneck-guided coordinate optimizer to

systematically search for better configurations. Bottleneck-guided optimization approaches

have been used successfully for CPU and GPU compilation optimization [Par+04; Hon+18],

however the runtime for evaluation of the optimized code on CPUs and GPUs is much

shorter. To speed up the process, we incorporate a flexible list-comprehension syntax to

represent a grid design space with all invalid points marked which can help us prune the

design space. In addition, we also partition the design space systematically to address the

local optimum problem caused by Challenge 2.

In summary, this chapter makes the following contributions:

• We propose two strategies to guide DSE. One adapts the commonly used coordinate

descent with the finite difference method and the other exploits a bottleneck-guided

coordinate optimizer.

• We incorporate list-comprehension syntax to represent a smooth, grid design space

with all invalid points marked.
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• We develop the AutoDSE framework on top of the Merlin Compiler to automatically

perform DSE using the bottleneck optimizer, enabling a systematic approach to pin-

point high-QoR design points.

• To the best of our knowledge, we are the first ones to evaluate our tool using the

Xilinx optimized vision library [Xilb]. Evaluation results indicate that AutoDSE can

achieve the same performance, yet with 26.38× reduction of their optimization pragmas

resulting in less than one required optimization pragma per kernel, on the geometric

mean.

• We evaluate AutoDSE on 11 computational kernels from MachsSuite [Rea+14] and

Rodinia [Che+09] benchmarks and one convolution layer of AlexNet [KSH12], showing

that we can achieve, on the geometric mean, 19.9× speedup over a single-thread CPU—

only a 7% performance gap compared to manual designs.

5.2 Problem Formulation

Our goal is to expedite the hardware design by automating its exploration process. In

general, there are two types of pragmas (using Vivado HLS as an example) that are applied

to a program. One type is the non-optimization pragmas, which are relatively easy for

software programmers to learn and apply. The other type is optimization pragmas, including

PIPELINE and UNROLL pragmas. These pragmas require knowledge of FPGA devices and

microarchitecture optimization experience, which are usually much more challenging for a

software programmer to learn and master as explained in Section 5.1. The goal of this

research is to minimize or eliminate the need to apply optimization pragmas manually and

let AutoDSE insert them automatically. More formally, we formulate the HLS DSE problem

as the following:

Problem 1: Identify the Design Space. Given a C program P as the FPGA accelerator

kernel, construct a design space RK
P with K parameters that contains possible combinations

of HLS pragmas for P as design configurations.
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Problem 2: Find the Optimal Configuration. Given a C program P , we would like

to insert a minimal number of optimization pragmas manually to get a new program P ′

as the FPGA accelerator kernel along with its design space set RK
P ′ which is identified in

Problem 1, and we let the DSE tool insert the rest of the pragmas automatically. More

specifically, having a vendor HLS tool H that estimates the execution cycle Cycle(H,P ′)

and the resource utilization Util(H,P ′) of the given P ′ as a black-box evaluation function,

the DSE must find a configuration θ ∈ RK
P ′ in a given search time limit so that the generated

design P ′(θ) with θ can fit in the FPGA and the execution cycle is minimized. Formally,

our objective is:

min
θ

Cycle(H,P ′(θ)) (5.1)

subject to

θ ∈ RK
P ′

∀u ∈ Util(H,P ′(θ)), u < Tu

(5.2)

where u is the utilization of one of the FPGA on-chip resources and Tu is a user-available

resource threshold on FPGAs. We set all Tu to 0.8, an empirical threshold, in our experi-

ments. Beyond 0.8, the design will suffer from high clock frequency degradation due to the

difficulty in placement and routing. In addition, the rest of the resources are left for the

interface logic of the vendor HLS tool.

Note that we introduce two optimization objectives; one minimizes the optimization

pragmas that have to be inserted manually to obtain P ′, and the other maximizes the

performance of P ′ using AutoDSE by applying pragmas automatically. Obviously, there is a

trade-off between the two. An expert designer can always get an optimized microarchitecture

to achieve the best performance by inserting enough HLS optimization pragmas. However,

it is time-consuming and not feasible for software programmers with little or no FPGA

design experience. In our evaluation, our goal is to match the performance of well-designed

HLS library code (typically written by experts) yet insert much fewer optimization pragmas

manually. Indeed, our experimental results in Section 5.5 show that we can achieve this with
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26.38× pragma reduction on the geometric mean, requiring less than 1 optimization pragma

per kernel.

5.3 The AutoDSE Framework

To reduce the size of the design space, we build our DSE on top of the Merlin Com-

piler [Con+16b; Con+16a; Fal]. We reviewed the Merlin Compiler in Section 2.1.1 and

discussed how it can facilitate the accelerator design. We will provide more detail on how it

can help our DSE and present the solution for Problem 1 in Section 5.3.1. Then, we give an

overview of AutoDSE in Section 5.3.2.

5.3.1 Merlin Compiler and Design Space Definition

As elaborated in Section 2.1.1, the Merlin Compiler [Con+16b; Con+16a; Fal] was developed

to make FPGA programming easier by requiring a reduced set of high-level optimization

directives and automatically generating the respective HLS code with the necessary HLS

pragmas and code transformations. Since the number of pragmas required by the Merlin

Compiler is much smaller, it defines a more compact design space, which makes it a better fit

for developing a DSE as shown in [Con+18a; Yu+18]. For instance, Code 5.2 shows the CNN

kernel with Merlin pragmas. With inserting only four lines of pragmas and no further manual

code transformation, the Merlin Compiler can transform Code 5.2 to a high-performance HLS

kernel with the same performance as the manually optimized design written in HLS C which

has 28 pragmas and 150 lines of code (Section A.1).

The Merlin Compiler, by default, applies code transformations to address the bottlenecks

1 and 2 listed in Table 5.1 and provides high-level optimization pragmas for the rest of them.

For example, instead of rewriting Code 5.1 to test whether double buffering would help the

performance as described in reason 3 in Table 5.1, we just need to use the cg pipeline

pragma and the Merlin Compiler will rewrite the code to satisfy it. As a result, our focus

in this work is on finding the best location of each of these high-level pragmas and tuning
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Code 5.2: Optimized CNN code snippet in Merlin C.
1 void CnnKernel(const float input[NumIn][InImSize][InImSize],

2 const float weight[NumOut][NumIn][kKernel][kKernel],

3 const float bias[NumOut], float output[NumOut][OutImSize][OutImSize]) {

4 float C[ParallelOut][ImSize][ImSize];

5 for (int i = 0; i < NumOut/ParallelOut; i++) {

6 // Initialization

7 for (int h = 0; h < ImSize; ++h) {

8 #pragma ACCEL parallel factor=4

9 for (int w = 0; w < ImSize; ++w){

10 for (int po = 0; po < ParallelOut; po++)

11 C[po][h][w] = 0.f;

12 } }

13 // Convolution

14 #pragma ACCEL pipeline

15 for (int j = 0; j < NumIn; ++j) {

16 for (int h = 0; h < ImSize; ++h) {

17 #pragma ACCEL parallel factor=4

18 #pragma ACCEL pipeline FLATTEN

19 for (int w = 0; w < ImSize; ++w) {

20 for (int po = 0; po < ParallelOut; po++){

21 float tmp = 0;

22 for (int p = 0; p < kKernel; ++p) {

23 for (int q = 0; q < kKernel; ++q){

24 tmp += ... } }

25 C[po][h][w] += tmp;

26 } } } }

27 // Skip ReLU + Max Pooling for brevity

28 } }

them, automatically; hence, we can address reasons 3-5 in Table 5.1 as well by enabling

the architectural optimizations along with the best pipelining and parallelization attributes.

Consequently, our solution to Problem 1 is defined as in Table 5.2. We identify the design

space for each kernel by analyzing the kernel Abstract Syntax Tree (AST) to gather loop

trip counts, available bit widths, etc. The rules we enforce in building this design space are

listed in Section 5.4.3.

Now that we have defined the design space in Table 5.2 for Problem 1, we focus on

Problem 2 in the remainder of this chapter. Although to some extent, Merlin pragmas
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alleviate the manual code reconstruction overhead, a designer still has to manually search

for the best option for each pragma, including position, type, and factors. In fact, there are

a total of 27 candidate pragmas for the CNN design in Code 5.1, which result in ∼ 1016

design configurations. The large design space motivates us to develop an efficient approach

to find the best configuration more systematically.

Table 5.2: Design space definition based on the Merlin pragmas.

Factor Design Space (Values)

CG-loop parallel
{
u
∣∣∣ 1 < u <= TC(L), u |TC(L) or u = 2kfor k ∈ Z

}
FG-loop parallel

u
∣∣∣

1 < u <= TC(L), u | TC(L) or u = 2kfor k ∈ Z, TC(L) > 16

u = TC(L), otherwise


loop pipeline

{
p
∣∣∣ p ∈ {off, cg, fg}}

loop tiling
{
t
∣∣∣ 1 < t < TC(L), t |TC(L)

}
CG: Coarse-grained; FG: Fine-grained; TC: Loop trip-count

5.3.2 Framework Overview

We develop and implement AutoDSE as a push-button framework, depicted in Fig. 5.1,

based on the strategies explained in Section 5.4. The framework first automatically builds

a design space by analyzing the kernel AST according to the rules and the syntax described

in Section 5.4.3. Then, it profiles and selects representative partitions using K-Means as

mentioned in Section 5.4.4. For each partition, AutoDSE’s explorer performs DSE using the

proposed bottleneck-based coordinate strategy in Section 5.4.2 and the parameter ordering

explained in Section 5.4.2.1. The explorer can be tuned to evaluate the quality of design

points based on different targets such as performance, resource, or finite difference (Eq. 5.5).

When the explorer finishes exploring a partition, it stores the best configuration found by

that partition and reallocates the working threads to other partitions to keep the resource

utilization high. Finally, when all partitions are finished, AutoDSE outputs the design

configuration with the best QoR among all partitions.
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Figure 5.1: The AutoDSE framework overview.

5.4 AutoDSE Methodology

In this section, we first examine the efficiency of the application-oblivious heuristics in Sec-

tion 5.4.1. As we will discuss, the main drawback of these heuristics for the HLS DSE

problem is the fact that they do not have any knowledge of the semantics of the program’s

parameters. This problem can potentially linger the DSE process since the explorer may

waste a lot of time on parameters with no impact on the results at that stage of optimiza-

tion. As a result, in Section 5.4.2, we present a bottleneck-guided coordinate optimizer that

can mimic an expert’s optimization method and generate high-QoR design points in fewer

number of iterations. We propose several optimizations in the remainder of this section to

further improve the performance of our framework.

5.4.1 Application-oblivious Heuristics

A prominent prior art, S2FA [Yu+18], adapted OpenTuner [Ans+14], a popular search en-

gine, for the HLS DSE problem. OpenTuner leverages the Multi-Armed Bandit (MAB)
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approach [Fia+10] to assemble multiple meta-heuristic algorithms for high generalization.

These meta-heuristics include uniform greedy mutation, differential evolution genetic al-

gorithm, particle swarm optimization, and simulated annealing for the case of S2FA. At

each iteration, the MAB selects the meta-heuristic with the highest credit and updates the

meta-heuristic’s credit based on the QoR. This means that the meta-heuristic that can find

high-quality design points will be rewarded and activated more frequently by the MAB, and

vice versa.

S2FA also employs the Merlin Compiler as its backend and further applies more strategies

to improve the OpenTuner efficiency when performing DSE for HLS. We use S2FA to perform

the DSE for 24 hours and depict the speedup of our benchmark cases compared to the

corresponding manual design over time in Fig. 5.2. The black dot indicates the time that

S2FA finds the overall best design point. We can see that S2FA requires on average 16.8

hours to find the best solution. We further analyze the exploration process and find that

most designs have an obvious performance bottleneck (e.g., low utilization of global memory

bandwidth, insufficient parallel factors, etc.), which usually dominates more than half of the

overall cycle counts and is controlled by only one or two design parameters (pragmas). In

this situation, the performance gain of tuning other parameters is often very limited, but it is

hard for the problem-independent searching algorithm to learn that. In fact, it needs many

iterations to identify the key parameter and tune it to resolve the performance bottleneck.

After that, it has to spend a large number of iterations again to find the next key parameter.

Since we rely on the HLS tool to assess a design point, it makes the search process very

time-consuming. This phenomenon motivates us to develop a new search algorithm that is

guaranteed to optimize the key parameter (high-impact parameter) prior to others.

Coordinate descent is another well-known iterative optimization algorithm for finding a

local minimum point. It is based on the idea that one can minimize a multi-variable func-

tion by minimizing it along one direction at a time and solving single-variable optimization

problems. At each iteration, we generate a set of candidates, Θcand, as the input to the

algorithm. Each candidate is generated by advancing the value of each parameter in the
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Figure 5.2: Performance speedup of the design found by S2FA [Yu+18] compared to the

manual design over time.

current configuration by one step. Formally, the c-th candidate generated from design point

θi is:

θci = [p0, p1, ..., next(pc), ..., pK ] (5.3)

where K is the total number of parameters, pc is the value of c-th parameter in θi, next(pc)

denotes the next value of this parameter (the next numeric factor for the parallel and

tiling pragmas and the next mode of pipelining for the pipeline pragma). Accordingly,

at each iteration, we will generate K candidates, forming the pool of candidates Θcand, and

execute the HLS tool K times to determine the next configuration as follows:

θi+1 = argmin
θci∈Θcand

g(θci , θi) (5.4)

We leverage the finite difference method to approximate the coordinate value by treating

the HLS tool as a black box. That is, given a candidate configuration θj deviated from the

current configuration θi, the coordinate value is defined as:

g(θj, θi) ∼
Cycle(H,P(θj))− Cycle(H,P(θi))
Util(H,P(θj))− Util(H,P(θi))

(5.5)

We calculate Util(H,P(θ)) by taking into account all the different types of resources using

the following formula:

Util(H,P(θ)) =
∑
u

2
1

1−u (5.6)
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where u is the utilization of one of the FPGA resources. We use exponential function to

penalize the over-utilization of FPGA more seriously. Note that Eq. 5.5 considers not only

performance gain but also resource efficiency, so it could reduce the possibility of being

trapped in a local optimum. For example, we may reduce 10% execution cycle by spending

30% more area if we increase the parallel factor of a loop (configuration θ1); we can also

reduce 5% execution cycle by spending 10% more area if we enlarge the bit-width of a

certain buffer (configuration θ2). Although θ1 seems better in terms of the execution cycle,

it may be more easily trapped by a locally optimal point because it has a relatively limited

resource left to be further improved. On the other hand, the finite difference values for the

two configurations are g(θ1, θ0) =
−10%
30%

= −0.3 and g(θ2, θ0) =
−5%
10%

= −0.5, so the system

prioritizes the second configuration for better long-term performance.

By leveraging the coordinate descent with a finite difference method, we expect to find

a better design point every K HLS runs. Unfortunately, as mentioned in Challenge 2 of

Section 5.1, the performance trend is not always smooth, so the coordinate process can

easily be trapped by a low-quality locally optimal design point. Moreover, the efficiency of

using the coordinate-based approach for DSE is limited by the number of parameters. More

specifically, at each iteration, we need to evaluate K design points, where K is the total

number of tuning parameters, to determine the next step. On the other hand, in most cases,

only a few of the K tuning parameters have a high impact on the performance, so we should

evaluate only the K ′ impactful parameters at each iteration where K ′ < K. For instance,

the design space generator will instrument Code 5.1 with 27 pragmas based on the rules

explained in Section 5.4.3 and the coordinate-based approach proposed in this section needs

to assess the quality of 27 new designs in each iteration. However, in the early iterations, the

convolution part takes more than 85% of the total cycle counts of the kernel. As a result,

changing the pragmas outside of this part will have an insignificant effect on the performance;

hence, it is wasteful to explore them at this stage.
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5.4.2 AutoDSE Exploring Strategy - Bottleneck-guided Coordinate Optimizer

Two main inefficiencies of the approaches reviewed in the previous section are: 1) they must

evaluate many design points to identify the performance bottleneck, and 2) they have no

knowledge of the semantics of the parameters, so they have no way of differentiating them

and prioritizing the important ones. Identifying the key parameters is not straightforward.

Although the HLS report may provide the cycle breakdown for the loop and function state-

ments, it is hard to map them to tuning parameters due to the applications of several code

transformations applied by the Merlin Compiler. Fortunately, the Merlin Compiler includes

a feature that transmits the performance breakdown reported by the HLS tool to the user

input code. More specifically, when performing code transformation, the Merlin Compiler

records the code change step by step so that it can propagate the latency estimated by the

HLS tool back to the user input code. This feature allows us to identify the performance

bottleneck by traversing the Merlin report and mapping the bottleneck statement to one or

a few tuning parameters.

By exploiting the cycle breakdown, we can develop a bottleneck analyzer to resolve the

issues mentioned above. We first build a map from the loop or function statements in the

user input code to design parameters so that we know which parameters can have the highest

impact on a particular statement. To identify the critical path and type, we start with the

kernel top function statement and build hierarchy paths of the design by traversing the

Merlin report using Depth-First Search (DFS). More specifically, for each hierarchy level,

we first check to see if the current statement has child loop statements and sort them by

their latency. Then, we traverse each of the child loops and repeat this process. In the case

of a function call statement, we dive into the function implementation to further check its

child statements for building the hierarchy paths. Finally, we return a list of paths in order.

Note that since we sort all loop statements according to their latency by checking the Merlin

report, the hierarchy paths we created will also be sorted by their latency.

Subsequently, for each statement, we check the Merlin report again to determine whether
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its performance bottleneck is memory transfer or computation. The Merlin Compiler obtains

this information by analyzing the transformed kernel code along with the HLS report. A

cycle is considered to be a memory transfer cycle if it is consumed by communicating to the

global memory. As a result, we can not only figure out the performance bottleneck for each

design point but also identify a small set of effective design parameters for consideration.

Therefore, we can significantly improve the efficiency of our search algorithm.

When we obtain an ordered list of critical hierarchy paths from the bottleneck analyzer,

we start from the innermost loop statement (because of the DFS traversal) of the most critical

entry and identify its corresponding parameters as candidate parameters to explore, if they

are not already tuned. Based on the bottleneck type, provided by the bottleneck analysis

(i.e., memory transfer or computation), we pick a subset of the parameters mapped to that

statement to evaluate. For example, we may have design parameters of parallel and tiling

at the same loop level. When the bottleneck type of the loop is memory transfer, we focus

on the tiling parameter for the loop; otherwise, we focus on the parallel parameter. In

other words, we reduce the number of candidate design parameters not only by the bottleneck

statement but also by the bottleneck type.

We define each design point as a data structure containing the following information:
curr_point = DesignPoint(configuration, tuned, result, quality, children)

where configuration contains the value of all the parameters and tuned lists the parameters

that the algorithm has explored for the current point. quality stores the quality of design

measured by finite difference value and result includes all the related information gathered

from the HLS tool including the resource utilization and the cycle count. Finally, each

design point stores a stack of the configurations for its unexplored children where each child

is generated by advancing one of the parameters by one step. The children are pushed to

the stack in the order of their importance (from least to most important) as computed by

the bottleneck analyzer so that by popping the stack, we get to work with the child who can

change the parameters and possibly have the most promising impact.

We define level n as a point where we have fixed the value of n parameters, so the
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maximum level in our algorithm is equal to the total number of parameters. For each level,

we define a heap of the pending design points that can be further explored and push the

design points by their quality into the heap. Since new design points are sorted by their

quality values when they were pushed into the heap, the design point with a better quality

value will be chosen for tuning more of its parameters prior to other points. As mentioned

above, the next point to be explored is chosen by popping the stack of the unexplored children

of this design point so that at each step, we get to evaluate the most promising design point.

Algorithm 1 presents our exploring strategy. As we will explain in Section 5.4.4, we

partition the design space to alleviate the local optimum problem. For each partition, we

first get its default point and initialize the heap of the first level (lines 2 to 7). Then, at each

iteration of the algorithm, AutoDSE gets the heap with the highest level, peeks the first

node of the heap, and pops its stack of unexplored children to get the new candidate (lines 9

to 12). Next, each option of the new focused parameter will be evaluated and the result will

be passed to the bottleneck analyzer to generate a new set of focused parameters for making

new children (lines 14 to 19). Since the number of fixed parameters is increased by one, it

will be pushed to the heap of the next level if there is still a parameter left that has not

been tuned yet (lines 20 to 24). When the stack of unexplored children of the current design

point is empty, it will be popped out of the heap (lines 26 to 28). The algorithm continues

either until all the heaps are empty or when the DSE has reached a runtime threshold (Line

8).

As an example, when AutoDSE optimizes Code 5.1, it will see that the convolution part

of the code takes 85.2% of the overall cycle counts. Since that section of the code is a

series of nested loops, the parameters of the innermost loop will take the top of the list

produced by the bottleneck analyzer. We shall explain in Section 5.4.3 (Rule 1) that we do

not consider loops with a trip count of less than or equal to 16 in our DSE since the HLS tool

can automatically optimize these loops well. As a result, the w loop in Line 16 would be the

innermost loop with parameters which the Merlin report tells us it is a computation-bound

loop. According to the parameter ordering described in Section 5.4.2.1, AutoDSE first tries
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Algorithm 1 AutoDSE Explorer: Bottleneck-guided Coordinate Optimizer
Require: A C program P with top function top_func and a set of design space partitions P.

Ensure: A design configuration θ with the best QoR.

1: for all P ∈ P do

2: best_cfg = cfg ← GetDefaultPoint(P )

3: report, hier ← Evaluate(cfg)

4: parameter_order ← BottleneckAnalysis(report, hier, top_func,∅)

5: children← GetChildren(cfg, parameter_order)

6: LevelHeap← ∅; LevelHeap.append(∅)

7: LevelHeap[0].push(DesignPoint(cfg,∅, report.result, 0, children))

8: while LevelHeap /∈ ∅ and elapsed_time < DSE_TIMEOUT do

9: curr_level = GetLastLevel(LevelHeap)

10: curr_point← LevelHeap[curr_level].peek()

11: tuned_parameters = curr_point.tuned

12: candidate_cfg, focused_parameter ← curr_point.children.pop()

13: for all option ∈ focused_parameter do

14: new_cfg ←Manipulate(candidate_cfg, focused_parameter, option)

15: new_tuned← tuned_parameters+ [(focused_parameter, option)]

16: report, hier ← Evaluate(new_cfg)

17: quality ← CalQuality(report.result, "FiniteDifference")

18: best_cfg ← UpdateBest(new_cfg, quality)

19: parameter_order ← BottleneckAnalysis(report, hier, top_func, new_tuned)

20: if len(parameter_order) > 0 then

21: children← GetChildren(new_cfg, parameter_order)

22: new_point← DesignPoint(new_cfg, new_tuned, report.result, quality, children)

23: LevelHeap[curr_level + 1].push(new_point)

24: end if

25: end for

26: if LevelHeap[curr_level].peek().NumChildren == 0 then

27: LevelHeap[curr_level].pop()

28: end if

29: end while

30: end for

31: return best_cfg
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to apply fg pipeline which would be a successful attempt. In the next iteration, the last

level heap will contain the design point that was just optimized and since the convolution

part is still the bottleneck, AutoDSE would try parallelizing the w loop and will choose

factor=4 since it achieves the highest quality value. Although factor=8 can reduce the

cycle count by 11%, it increases the overall area (Eq.5.6) by 63% which results in a worse

quality; therefore, AutoDSE picks factor=4 to make room for further improvement. By

adopting Algorithm 1, AutoDSE can improve the performance by 218× very quickly, only

after 2 iterations of the algorithm.

5.4.2.1 Parameter Ordering

It often happens that each bottleneck type has more than one applicable design parameter.

In these situations, we sort the parameters by a pre-defined priority. For example, if the

bottleneck of a loop statement is determined to be its computation, one can apply fg or

cg pipelining/parallelization, in general. In this case, we treat the pipeline pragma as two

different parameters based on its mode and choose the order of applying the pragmas to

be fg pipeline, parallel, and cg pipeline which is a heuristic approach to improve the

performance by utilizing more fine-grained parallelization units since the HLS tool handles

such optimizations better. Here, measuring the quality of design points with the finite

difference value (Eq. 5.5) helps AutoDSE not to over-utilize the FPGA. For a configuration,

when the gain of the achieved speedup is not comparable to the loss of available resources, the

quality of design decreases; hence, AutoDSE will not tune that parameter and the resources

are left for applying a design parameter with a higher impact.

Moreover, as mentioned in Challenge 3 of Section 5.1, the order of applying the pragmas

is crucial in order to get to the best design. Our experiments show that prioritizing the eval-

uation of the fine-grained optimizations helps AutoDSE reach the best design point in fewer

iterations. This is mainly because HLS tools schedule fine-grained optimizations better than

coarse-grained ones. Table 5.3 shows how the performance and resource utilization change

when fg pipeline and parallel pragmas are applied to line 16 in Code 5.1 compared to
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Table 5.3: Performance and area compared to the base design when the parameters of Line

16 in Code 5.1 change. TIMEOUT is set to 60 minutes. The results suggest that applying

fine-grained optimization first lets the HLS tool synthesize the design easier.

Optimization Status Perf BRAM LUT DSP FF

Pi-fg PASS (24 min) 175× +7% +23% +24% +15%

PF=4 TIMEOUT - - - - -

Pi-fg + PF=4 PASS (28 min) 218× +17% +44% +33% +25%
Pi: Pipeline, PF: Parallel Factor, fg: fine-grained

the base design where all the pragmas are off. The time limit to run the HLS tool is set to

60 minutes. The results suggest that in order to get to the optimal configuration for this

loop, we must first apply fine-grained pipelining. This way, the HLS tool can better schedule

the loop when parallelization is further applied and its synthesis will finish in 28 minutes.

However, if we first apply the other pragma which results in a coarse-grained parallelization,

the synthesis will be timed out and AutoDSE does not tune this pragma at this stage.

Note that we do not prune the other design parameters. We just change the order of the

parameters to be explored as these rules cannot be generalized to all cases due to the unpre-

dictability of the HLS tools. If the bottleneck of a design point is memory transfer, AutoDSE

prioritizes cg pipeline over the tiling pragma. The Merlin Compiler, by default, caches

the data and the former will further overlap the communication time with computation by

applying double buffering; however, the latter can be used to change the size of the cached

data.

5.4.3 Efficient Design Space Representation

To further facilitate the bottleneck-based optimizer, we seek to reduce the ineffective pa-

rameters. Intuitively, we can build a grid design space from the Merlin pragmas by treating

each pragma as a tuning parameter and searching for the best combination. However, many

points in this grid space may be infeasible. For example, if we have determined to perform
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coarse-grained pipelining at the outermost loop of a loop nest, the Merlin Compiler will

apply double-buffering on the loop. In this case, the physical meaning of double-buffering

at the outermost loop is to transfer a batch of data from DRAM to BRAM, which cannot

be further parallelized (assuming we only have one DRAM bank with a single read port).

As a result, pipeline and parallel pragmas are mutually exclusive for this loop. We propose

an efficient approach to creating a design space that preserves the grid design space but

invalidates infeasible combinations.

P1

P2

off

cg

fg

1 2 4 8 16 32 64

1

2

Figure 5.3: The proposed design space representation and its impact on DSE. P1 and P2

denote the pipeline and parallel pragmas of loop j in Code 5.1, respectively.

Fig. 5.3 illustrates the goal of an efficient design space representation. In this example,

we attempt to explore the best parameter with the best option for loop j of Code 5.1 with

pragma P1 and P2 denoting the pipeline and parallel pragmas, respectively. Pragma P1

and P2 are exclusive when P1 is used in cg mode; therefore, only one of them should be

inserted at a time. A good design space representation must preserve the grid design space

but invalidate infeasible points. An example of such representation is presented in Fig. 5.3.

Assume that we are at the configuration (P1, P2) = (cg, 1), we only have two candidates

to explore in the next step because the configuration (P1, P2) = (cg, 2) is invalid. This

representation is exploration-friendly and, it is easy to enforce rules regarding the infeasible

points.

To represent a grid design space with invalid points, we introduce a Python list com-

prehension syntax to AutoDSE. The Python list comprehension is a concise approach for

creating lists with conditions. It has the following syntax:
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list_name = [expression for item in list if condition]

Formally, we define the design space representation for Merlin pragmas with list comprehen-

sions as follows:
#pragma ACCEL <pragma-type> <attribute-key>=auto{

options: parameter_name=list-comprehension-expression;

default: default_value }

For our example, the design space can be represented using list comprehensions as follows:

1 // Skip the rest due to the page limit

2 #pragma ACCEL pipeline auto{

3 options: P1 = [x for x in [off, cg, fg]];

4 default: 'off' }

5 #pragma ACCEL parallel factor=auto{

6 options: P2 = [x for x in [1, 2, 4, 8, 16, 32, 64] if x == 1 or P1 != cg];

7 default: 1 }

8 for (int j = 0; j < NumIn; ++i) {

9 // Skip the rest due to the page limit

where line 6 indicates that the two pragmas are exclusive. In other words, when we set

P1 = cg, the available option for P2 is only the default value, which is 1 in this case. Note

that the default value of each pragma turns it off.

There are three main advantages to adopting list comprehension-based design space rep-

resentations. First, we are able to represent a design space with exclusive rules to greatly

reduce its size. Second, the Python list comprehension is general. It provides a friendly and

comprehensive interface for higher layers such as polyhedral analysis [Zuo+13] and domain-

specific languages to generate an effective design space in the future. Third, the syntax of

this representation is Python compatible. This means we can leverage the Python interpreter

to evaluate the design space and improve the overall stability of the DSE framework.

The Design Space Generator, depicted in Fig. 5.1, adapts the Rose Compiler [Lab] to

analyze the kernel AST and extract the required information for running the DSE such as

the loops in the design, their trip-count, and available bit-width. Artisan [Van+20] employs
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a similar approach for analyzing the code. However, it only considers the unroll pragma in

code instrumentation. Our approach, on the other hand, considers a wider set of pragmas

as listed in Table 2.2 and exploits the following rules to prune the design space:

1. Ignore the fine-grained loops with a Trip Count (TC) of less than or equal to 16 as the

HLS tool can schedule these loops well.

2. Tiling Factors (TF) should be integer divisors of their loop TC.

3. The allowed Parallel Factors (PF) for a loop are all powers of two and sub-divisors of

the loop TC up to min(128, TC) plus the TC itself. PF of larger than 128 causes the

HLS tool to run for a long time and it usually does not result in a good performance.

4. For each loop, we should have TF ∗ PF ≤ TC.

5. When fg pipeline is applied on a loop, no other pragma is allowed for the inner loops

since this parameter wants to unroll all the inner loops completely.

6. A parallel pragma is invalid for a loop nest when cg pipeline is applied on that

loop.

7. A tiling pragma is added only to the loops with an inner loop.

5.4.4 Design Space Partitioning

Unfortunately, the third inefficiency of the approaches reviewed in Section 5.4.1 also exists

in our bottleneck-guided optimizer. We still cannot identify whether the current option of

a parameter is locally or globally optimum. The most promising solution is breaking the

dependency between the options and searching for a set of them in parallel. Although we

need to evaluate multiple design points at every iteration, each design point will provide

the maximum information for improving the performance because we always evaluate the

parameters that have the largest impact on the performance bottleneck.
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By partitioning the design space based on the likely distribution of locally optimal points

and exploring each partition independently, we alleviate the local optimum issue caused

by the non-smooth performance trend (Challenge 2 in Section 5.1) since each partition

starts exploring from a different design point. Intuitively, we could partition the design

space according to the range of values of every parameter in a design, but it may generate

thousands of partitions and result in a long exploration time. Instead, we partition the

design space based on the pipeline mode, as fg pipeline unrolls all the sub-loops while

the cg pipeline exploits double buffers to implement coarse-grained pipelining. These two

modes could significantly influence the resulting architecture, with anticipated differences in

performance and resource utilization being unrelated. According to the pipeline modes in

each loop, we use the tree partition and generate 2m partitions from a design space with m

non-innermost loops.

Supposing we use t working threads to perform, at most, h hours of DSE for 2m design

space partitions, we need 2m

t
×h hours to finish the entire process. On the other hand, some

partitions that are based on an insignificant pipeline pragma may have a similar performance,

so it is more efficient to only explore one of them. As a result, we profile each partition by

running HLS with minimized parameter values to obtain the minimum area and performance

and use K-means clustering with performance and area as features to identify t representative

partitions among all 2m partitions.

5.5 Evaluation

5.5.1 Experimental Setup

Our evaluation is performed on Amazon Elastic Compute Cloud (EC2) [Ama24]. We use

r4.4xlarge instance with 16 cores and 122 GiB memory to perform the DSE and generate

accelerator bitstreams. The generated FPGA accelerators are evaluated on an F1 instance

(f1.2xlarge) with Xilinx Virtex UltraScale+TM VU9P FPGA. We chose the commonly-used

MachSuite [Rea+14] benchmark suite and the FPGA-friendly Rodinia [Che+09] benchmark,
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along with one convolution layer of Alexnet [KSH12] as our first benchmark. For several

common kernels, MachSuite provides C implementation that is programmed without the

consideration of FPGA acceleration, which makes it a natural fit for demonstrating our

approach. We evaluate the effect of our optimizations and compare the designs generated by

our tool to the state-of-the-art works using this benchmark. Furthermore, to the best of our

knowledge, we are the first ones to evaluate the performance of our tool on vision kernels

of Xilinx Vitits libraries [Xilb] that are optimized for Xilinx FPGAs, based on the OpenCV

library [Bra00].

5.5.2 Impact of Parameter Ordering

In this section, we examine the parameter ordering we explained in Section 5.4.2.1. It is

crucial to note that prioritizing the evaluation of fine-grained pragmas becomes particularly

significant in scenarios with multiple nested loops, as exemplified in our running Code 5.1.

With increased nesting, the distinction between coarse-grained and fine-grained optimiza-

tions becomes more pronounced. Additionally, as the loop hierarchy deepens, applying

coarse-grained optimizations becomes more challenging for the HLS tool. Table 5.4 summa-

rizes the performance and area metrics of the generated design based on the pragma ordering

described in Section 5.4.2.1 (fg pipeline, parallel, and cg pipeline) versus the reversed

ordering. The synthesis timeout is set to 1 hour and we ran AutoDSE for 7 hours. As the re-

sults demonstrate, by prioritizing fine-grained optimizations, AutoDSE achieves a significant

speedup of 143×. This clearly shows that by first optimizing the innermost loops and then

moving upwards to further optimize the outer loops, we not only get better performance but

also will be able to explore more design points. This happens because optimizing the inner

loops makes it easier for the HLS tool to integrate that part into a larger microarchitecture.
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Table 5.4: Effect of the parameter ordering on the performance and area of the generated

optimized design for Code 5.1 after running the DSE for 7 hours.

Ordering #explored Perf BRAM LUT DSP FF

Pi-fg->parallel->Pi-cg 71 143× 68% 40% 39% 24%

Pi-cg->parallel->Pi-fg 63 1× 53% 1% ∼0% ∼0%
Pi: Pipeline, fg: fine-grained, cg: coarse-grained

5.5.3 Evaluation of Optimization Techniques

We first measure the performance of the Merlin Compiler without any pragmas and without

the help of AutoDSE to get the impact of its default optimizations. The 1st bar of each case

in Fig. 5.4 depicts the speedup gained by the Merlin Compiler with respect to CPU. Then,

we evaluate the original Coordinate Descent (CD) method described in Section 5.4.1 and the

proposed optimization strategies explained in sections 5.4.3 and 5.4.4. The 2nd to 4th bars in

Fig. 5.4 show the speedup gained after tuning the pragmas by each of these optimizations.

Note that the chart is on a logarithmic scale. We can see that the default optimizations of

the Merlin Compiler are not enough and after applying the candidate pragmas generated

by the Original CD, we get 13.52× speedup, on the geometric mean. Moreover, each of the

proposed strategies benefits at least one case in our benchmark and together further brings

a 2.47× speedup. The list-based design space representation keeps the search space smooth

by invalidating infeasible combinations. As a result, we can investigate more design points

in a fixed amount of time. This helps AES, NW, KMP, PATHFINDER, KMEANS, and KNN. Design

space partition benefits the designs with many loop nests in which the coordinate process is

easily trapped by the local optimum when changing pipeline modes—such as AES, GEMM, NW,

STENCIL-2D, and STENCIL-3D.

The 5th bar shows the speedup of AutoDSE when the bottleneck-guided coordinate op-

timizer detailed in Section 5.4.2 is adapted along with the parameter order explained in

Section 5.4.2.1, design space representation introduced in Section 5.4.3, and design space

partitioning described in Section 5.4.4. With this setup, AutoDSE further improves the
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Figure 5.4: Comparison of performance speedup over an Intel Xeon CPU core with different

compilation strategies: no pragmas, pragma-augmented design generated by different ap-

proaches, and manually optimized design.

result by 5.5× on the geometric mean bringing the overall speedup compared to when no

pragmas are applied to 182.92×. As a result, AutoDSE can achieve a speedup of 19.9×

over CPU and get to 0.93× performance of the manual designs while running only for 1.1

hours on the geometric mean. The manual designs, depicted by the 6th bar, are optimized

by applying the Merlin pragmas manually without changing the source programs.

Fig. 5.5 depicts the AutoDSE process for four cases where the bottleneck-guided optimizer

showed significant performance improvement. This shows that our approach can rapidly

achieve a high-performance design. AutoDSE does not exactly match the performance of

manual designs for all of the cases because of the costly process of evaluating each design

point with the HLS tool, which can take minutes to hours. Consequently, in our experiments,

AutoDSE has only explored a limited portion of the solution space for most of the kernels.

Furthermore, the HLS report may not reflect accurate computation cycles when the kernels

contain many unbounded loops or while-loops, which in turn affects the Merlin report. To

get the importance of the parameters, the bottleneck analyzer (explained in Section 5.4.2)

needs to receive the accurate cycle estimation of the design. In the absence of the true cycle

breakdown, it cannot determine the high-impact design parameters. Therefore, our search

algorithm may focus on unimportant parameters.
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Figure 5.5: Performance speedup of generated designs compared to the manual designs over

time using AutoDSE for four cases where the bottleneck-guided optimizer demonstrated

significant impact.

5.5.4 Comparison with Other DSE Approaches

We further evaluate the overall performance of the generated accelerator designs by AutoDSE

compared to the previous state-of-the-art works including S2FA [Yu+18], lattice-traversing

DSE [FAP18b], and Gaussian process-based Bayesian optimization [Sun+21] in Table 5.5.

The numbers show the speedup of the design found by AutoDSE compared to the design

that their framework found after running the tools for the same allotted time. Note that the

performance of the other works is not reported by the authors for all of the kernels we are

testing. According to Table 5.5, by utilizing the bottleneck-based approach, we can outper-

form S2FA, lattice-traversing DSE, and Gaussian process-based Bayesian optimization by

3.45× (86.56×), 4.23× (5.11×), 17.92× (43.33×) respectively, on the geometric (arithmetic)

mean.

As we discussed in Section 5.4.1, the deficiency of S2FA stems from how hard it is for

the problem-independent learning algorithm to find the key parameters. Lattice-traversing

DSE needs an initial sampling step to learn the design space. This takes a long time for

our benchmark due to the size of the design space even though the authors only consider

unrolling the loops and function inlining. This constraint makes it hard for the tool to start
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Table 5.5: Performance speedup of our approach compared to S2FA [Yu+18], Lattice-

traversing DSE [FAP18b], and Gaussian process-based Bayesian Optimization [Sun+21]

Approach AES NW GEMM KMP SPMV STENCIL-3D GEO-Mean ARITH-Mean

Lattice

[FAP18b]
1.63 6.32 7.39 - - - 4.23 5.11

S2FA

[Yu+18]
512.86 1 1.52 1.74 1 1.26 3.45 86.56

Bayesian

[Sun+21]
- - 100.17 - 2.07 27.75 17.92 43.33

the exploration process before the time limit for DSE is met. The Gaussian process-based

Bayesian optimization also has to spend some time to sample the design space and build an

initial surrogate model. However, AutoDSE can learn the high-impact directives (pragmas)

by exploring the performance breakdown and thus, is able to find a high-performance design

in a few iterations.

Moreover, adopting the Merlin Compiler as the backend gives a further advantage to

AutoDSE compared to other DSE tools. This allows the tool to exploit the automatic

code transformations for applying common optimization techniques such as memory burst,

memory coalescing, and double buffering; and focus only on high-level hardware changes.

Nonetheless, the performance comparison with S2FA shows that adoption of the Merlin

Compiler alone is not enough and we still need to explore the design space more efficiently.

Another source of inefficiency in the S2FA framework is in the translation of code from

Scala to C code to be used by the Merlin Compiler. The generated C code, in general, may

not be efficient enough for HLS, especially for applications like AES that require bit-level

optimizations.

5.5.5 Comparison with Expert-level Manual HLS Designs

To further evaluate the performance of AutoDSE, we use 33 vision kernels from the Xilinx Vi-

tis Library [Xilb]. These kernels utilize 14 optimization pragmas, on average (by the geomet-
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ric mean), which include UNROLL, PIPELINE, ARRAY_PARTITION, DEPENDENCE, LOOP_FLATTEN,

INLINE, DATAFLOW, and STREAM. For each kernel, we remove all the optimization pragmas

except for DATAFLOW and STREAM. The removed pragmas, which are of the first six types men-

tioned above, are used 13.47 times on average (out of 14). As a result, we require less than

one optimization pragma per kernel, on the geometric mean. The only optimization pragmas

kept are DATAFLOW and STREAM pragmas. This is because our search space is built on top of

the Merlin Compiler and we do not search for the DATAFLOW and STREAM pragmas as these

pragmas are not among the Merlin-specified pragmas. The INTERFACE and LOOP_TRIPCOUNT

pragmas are also kept which are not among the HLS optimization pragmas. They are rather

used to specify the connection to the AXI bus and the range of the trip count of the loop,

respectively.

Table 5.6: Average (geometric mean) performance speedup of the Vitis tool, the Merlin

Compiler, and AutoDSE over the manually optimized kernels from Xilinx Vitis libraries.

The manual designs are the original kernels from the library and are summarized in the

Manually Optimized column for Vitis. The performance of those designs is compared to when

the optimization pragmas we search for (UNROLL, PIPELINE, ARRAY_PARTITION, DEPENDENCE,

LOOP_FLATTEN, and INLINE) are removed and the code is passed to the three different tools.

AutoDSE is able to retrieve the removed pragmas automatically.

Comparison Scenario

Compared to Vitis

(Manually Optimized)

Vitis

(Default)
Merlin Compiler AutoDSE

Speedup over the Vitis Library with

(Original) Manually Inserted Pragmas
1× 0.12× 0.38× 1.04×

Performance Improvement over the

Vitis Tool with Default Settings (no pragma)
8.69× 1× 3.29× 9.04×

#pragmas Listed in the Table’s Caption 13.47 0 0 0

Total Optimization Pragma Reduction

(including DATAFLOW and STREAM pragmas)
1× 26.38× 26.38× 26.38×

To better understand the effect of our optimizer, we tested the performance of the Vi-

tis tool and the Merlin Compiler on the input to AutoDSE (which does not include the
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optimization pragmas mentioned above). The performance comparisons are summarized in

Table 5.6. As the results show, while the Merlin Compiler can get to a speedup of 3.29×

compared to the Vitis tool, it still needs the help of AutoDSE to get to the manually opti-

mized kernels in the library. In fact, AutoDSE could achieve a further speedup of 2.74× by

automatically inserting 3.2 Merlin pragmas per kernel, on the geometric mean. As a result,

it could improve the performance of the Vitis tool by 9.04× and 1.04× when the code with

the reduced set of pragmas and the manual code, respectively, are passed to the Vitis tool.

Fig. 5.6 depicts the performance comparison of the design points AutoDSE generated

compared to the Xilinx results along with the number of pragmas that we removed in detail.

The results show that AutoDSE can achieve the same or better performance yet require

26.38× fewer optimization pragmas in its input code and it can find the optimal design

configuration in 0.3 hours, on the geometric mean; therefore, proving the effectiveness of our

bottleneck-based approach and the fact that it can mimic the method an expert would take.

For the cases that AutoDSE does not exactly match the performance of Vitis, AutoDSE

still finds the best combination of the pragmas. The inequality lies in the different II that

Merlin has achieved. For example, the histEqualize, histogram, and otsuthreshold

kernels all have a loop that requires the II to be set to 2 when pipeline pragma is used.

Otherwise, Vivado HLS achieves an II=3. However, it is not possible to change the II using

the Merlin Compiler. On the other hand, AutoDSE is able to outperform the performance of

customConv and reduce kernels significantly by better detecting the choices and locations

for pipelining and parallelization.

5.5.6 Frequency of Employed Parameters

We explored the number of candidate pragmas and the number of pragmas that AutoDSE

tuned for optimizing the design to find out the most influential parameters. Figure 5.7

illustrates the total count of candidate pragmas in comparison to those that were adjusted

to their non-default values for the optimal design identified by AutoDSE for different target

kernels. For illustration purposes, we depict the frequency of employed pragmas for those
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Figure 5.6: Performance speedup and the number of reduced pragmas using AutoDSE com-

pared to the Vision kernels of Xilinx Vitis libraries [Xilb]

who either had the highest speedup or utilized the most number of pragmas, meaning that

AutoDSE spent more iterations for optimizing them. As the results suggest, the tiling

pragma has a special use case, only CONV and STENCIL-2D utilized it. For the rest of the

kernels, it is either not applicable or not necessary. The parallel and pipeline pragmas

are equally important. The pipeline pragma is employed more where there is a nested

loop, whereas, for single loops, the parallel pragma is more preferred. This is because the

HLS tools can implement both fg and cg pipelining better than cg parallelization. Also,

when a single loop does not have any pragmas, it will be pipelined automatically. Looking

at the vision kernels from the Xilinx Vitis Library that we targeted, there are 228, 122, and

18 candidate parallel, pipeline, and tiling pragmas in total, respectively. Since these

kernels rarely utilize deep nested loops, AutoDSE chose 65 and 48 of the parallel and

pipeline pragmas in total, respectively; while, it never used any tiling pragmas.

5.6 Conclusion

In this chapter, we have taken our initial, yet highly significant, attempt towards lowering the

barrier for accelerating programs with FPGA, aiming to make FPGAs universally accessible

to general software programmers. We analyzed the difficulty of exploring the HLS design

space and identified five challenges in Section 5.1. To address challenges 2 to 4 mentioned in
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Figure 5.7: The number of candidate pragmas vs. the number of pragmas that were adjusted

to their non-default values for the optimal designs of each target kernel.

Section 5.1, we treat the HLS tool as a black box. We use the synthesis results to estimate

the QoR rather than the placement and routing (PnR) results. This choice is made due to

the excessive time required for PnR, which limits the exploration of an adequate number of

design points within a reasonable time frame. According to our observation and analysis,

we propose a bottleneck-guided coordinate optimizer and develop a push-button framework,

AutoDSE, based on that to systematically approach a better solution. By exploring the

solution space efficiently, we address challenges 1 and 5. We propose a heuristic for ordering

the parameters that can further help challenges 3 and 5. To eliminate meaningless design

points, we incorporate a list comprehension-based design space representation and prune

24.65× ineffective configurations on average while keeping the design space smooth; hence,

further alleviating Challenge 1. Additionally, we employ a partitioning strategy to address

the local optimum problem mentioned in Challenge 2. We show that AutoDSE can out-

perform general hyper-heuristics used in the literature by focusing on high-impact design

parameters first. The experimental results suggest that AutoDSE lets anyone with a decent

knowledge of programming try customized computing with minimum effort.

AutoDSE is built with the assumption that we can get the performance breakdown of the

program from the HLS tool. We expect all HLS tools will provide performance breakdown

at some point, as it is important for manual performance optimization (such as the need for

Intel VTune Profiler [Int24c] in the case of CPU performance optimization). AMD Xilinx
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HLS is already providing such information that the Merlin Compiler leverages. It is likely

that other HLS tools [Cad24; Sie24; NEC24; Int24a] will add such information as well in

the near future. Hence, we believe, it is reasonable for AutoDSE to take advantage of such

information to mimic the human performance optimization process to perform bottleneck-

driven DSE.
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CHAPTER 6

GNN-DSE: Automated Accelerator Optimization Aided

by Graph Neural Networks

Using HLS, the hardware designers must describe only a high-level behavioral flow of the

design. However, it still can take weeks to develop a high-performance architecture mainly

because there are many design choices at a higher level to explore. In the previous chapter,

we developed an automated framework, AutoDSE, to explore the solution space. While

AutoDSE has proven effective for the HLS DSE problem and outperformed previous state-

of-the-art methods, its primary limitation is its reliance on the HLS tool for design point

evaluation. This decision stems from the challenge of developing a model capable of accu-

rately capturing the intricate behavior of the HLS tool, given that design choices may not

exhibit a linear impact on performance and are often highly interrelated. Nonetheless, the

time-intensive nature of HLS tool synthesis, ranging from several minutes to hours per de-

sign, limits the exploration of total design points. To solve this problem, we aim to develop a

graph neural network model trained to emulate the functionality of the HLS tool for a wide

range of applications. The experimental results demonstrate that our approach, termed

GNN-DSE, can estimate the quality of design in milliseconds with high accuracy, resulting

in up to 79× speedup (with an average of 44×) in running the explorer for optimizing the

design compared to AutoDSE1.

1All materials are available at https://github.com/UCLA-VAST/GNN-DSE.
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6.1 Introduction

Relying on the HLS tool to evaluate a solution can increase the DSE time significantly, given

that each design candidate may require a lengthy evaluation period (ranging from minutes

to hours). As a result of this limitation, we can explore only a fraction of the solution

space. While utilizing a model can potentially speed up the process, a simple analytical

model cannot capture the different heuristics used by the tool [SW19]. Adopting a learning

algorithm can help with increasing the accuracy. However, the related works mostly train a

separate model for each application which limits the scalability. We rather seek to develop

a model in which the knowledge gained from one application can be transferred to another

one. A nice effort was made by Kwon et al. [KC20] for transfer learning using a Multi-Layer

Perceptron (MLP) network. Nonetheless, they only use the pragma configurations as the

input to the model, which can result in considerable loss since the program semantics are

missing (see Section 6.4.2.3).

As current HLS tools optimize the design based on specific code patterns, learning to

identify the different code patterns and their effect can help with transferring the knowledge

across different applications. This property has motivated a few of the very recent works

to propose to represent the program as a graph and develop a GNN-based model to predict

the design’s quality [WXH22; Ust+20]. They have shown that this approach can help with

learning the operation mapping to FPGA’s resources for delay prediction in HLS [Ust+20]

or predicting the performance of the program under different resource allocations (DSP or

LUT) to its computation nodes [WXH22]. Although their studies clearly demonstrate the

value and power of applying GNNs, a complete representation of the program including its

pragmas and a model to learn the impact of the pragmas on the design’s quality is still

missing.

In this chapter, we aim to automate the design optimization using GNN with the support

for transfer learning by developing a framework called GNN-DSE. We first build a model to

evaluate the design quickly, in milliseconds, without the invocation of the HLS tool. Since
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the HLS tools employ many heuristics to optimize a design and the design parameters affect

each other, we let a deep learning model learn their impact. Furthermore, as the current

HLS tools optimize the design based on specific code patterns, it is important to identify the

different code patterns and learn their effect to be able to transfer the knowledge we gained

from one application to another. As such, we represent the program as a graph that includes

the program semantics in the form of control, data, call, and pragma flows and exploit a

GNN to extract the required features of the graph for predicting the objectives. We propose

several techniques for improving the accuracy of the model including Jumping Knowledge

Network (JKN) [Xu+18], node attention [Li+15], and multi-head objective prediction. To

demonstrate the effectiveness of our model, we build a DSE on top of it to find the Pareto-

optimal design points. We show that not only can GNN-DSE find the Pareto-optimal designs

for the kernels that were included in its training set, but it can also generalize to the kernels

outside of its database and detect their Pareto-optimal design points. To the best of our

knowledge, this work is the first one to employ a graph representation that captures both

the program semantics and the pragmas and to build a single predictive model for several

applications with transfer learning capability. In this chapter, we target AMD Xilinx FPGAs

as an example but our approach is tool-independent and extendable to Intel FPGAs as well.

In summary, this chapter makes the following contributions:

• We propose a graph-based program representation for optimizing FPGA designs which

includes both the program context and the pragma flow.

• We develop a learning model based on GNN as a surrogate of the HLS tool for assessing

a design point’s quality in milliseconds and propose several techniques for improving

its accuracy.

• We build an automated framework, GNN-DSE, to gather a database of FPGA designs,

train a learning model for predicting the design’s objectives, and conduct design space

exploration using the model to identify the high-performance design points.

• The experimental results indicate that GNN-DSE is capable of identifying Pareto-
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optimal design points for the kernels within its database. Furthermore, it demonstrates

the ability to optimize unseen kernels, similar to those in the training set, by leveraging

the knowledge acquired during its training process.

6.2 Problem Formulation

In this chapter, our objective is to speed up the DSE process for HLS by facilitating the

rapid estimation of the design point’s quality. For this matter, we propose solutions for the

following problems:

Problem 1: Build the Prediction Model. Let P be a C program as the FPGA ac-

celerator kernel with the candidate design configurations (θ), where RP is a set of all the

different configurations. Let H be a vendor HLS tool that outputs the true execution cycle

Cycle(H,P(θ)) and the true resource utilization Util(H,P(θ)) of the program P :

QH(P(θ)) =
(
Cycle(H,P(θ)), Util(H,P(θ))

)
(6.1)

Find a prediction function (F) that approximates the results of H for any given program P

with any design configurations (θ):

min
F

(
average

θ

(
Loss(QF(P(θ)), QH(P(θ))

))
(6.2)

In the case of a regression task, the loss function is calculated using Root Mean Squared

Error (RMSE) over all the designs. For the classification task, the percentage of misclassified

cases and the F1 scores are considered.

Problem 2: Identify the Optimal Configuration. Our final goal, like in AutoDSE, is to

find the Pareto-optimal design points. The difference is that, here, we aim to use a prediction

function F that can mimic the HLS tool instead of invoking the tool. More specifically, for

the program P defined above, our objective is to find a configuration θ ∈ RP within a given

search time limit such that the generated design P(θ) fits in the FPGA and minimizes the

execution cycle. Formally, our objective is:

min
θ

Cycle(F,P(θ)) (6.3)
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subject to

θ ∈ RK
P , ∀u ∈ Util(F,P(θ)), u < Tu (6.4)

where u is the utilization of one type of the FPGA on-chip resources and Tu is a user-defined

threshold for that type on the FPGA. As explained in Chapter 5, we set all Tu to 0.8 (80%),

an empirical threshold, in our experiments.

Result 
Database

Predictive Model

Trainer

Design Space Exploration

Top M Designs

Database Generator (AutoDSE-based)
Evaluator 

(Merlin/HLS tool)

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑛
En

co
d

e
r

MLP Prediction Layers
to predict the output

Graph Neural Network Encoder
to extract graph embedding

Graph Embedding

Explorer

Graph Generator

Design Config. 
Waiting Queue

Predictive 
Model

Evaluator
objectives

Design Space 
Generator

Pragma FillC Kernel
C Kernel with 

Candidate 
Design Config

C Kernel with 
Optimized 

Design Config

Figure 6.1: High-level overview of our model-based frameworks for optimizing the design.

6.3 Our Proposed Methodology

Figure 6.1 presents a broad outline of our model-based frameworks designed to enhance the

quality of HLS designs. The Trainer component aids in devising solutions to Problem 1, as

outlined in Section 6.2, while the Design Space Exploration addresses the second problem.

We first collect a database from various applications (Section 6.3.1) and represent each

design in the database as a graph (Section 6.3.2). Then, we train a predictive model for

estimating the design’s objectives (Section 6.3.3). Finally, the predictive model can be used

as a surrogate to the HLS tool to run inference and DSE stages (Section 6.3.4).
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Figure 6.2: Database generator for a model-based DSE framework such as GNN-DSE.

6.3.1 Database Generation

We adapt AutoDSE to generate the initial database for each of the applications. Fig. 6.2

demonstrates our approach to it. Each for loop can take up to three pragmas: pipeline,

parallel, and tiling. Note that the Merlin Compiler automatically inserts the rest of

the required HLS pragmas as mentioned in Section 2.1.1. We exploit AutoDSE’s rules for

pruning the design configurations (e.g., when fine-grained pipelining is applied on a loop,

the inner loops would not take any pragmas) and generate the solution space based on that.

Since the model needs to see a variety of design points from “bad” to “good” to learn to

distinguish them, GNN-DSE extends AutoDSE to exploit three types of explorers:

• The existing explorer of AutoDSE, the bottleneck-based optimizer, which can find

high-quality designs.

• A hybrid explorer integrates bottleneck-based optimization with exhaustive search. It

assesses up to P neighbors of the optimal design point following a X% enhancement

in quality. In this context, a neighbor is defined as a point where only one pragma

option differs from the current point. This exploration approach enables the model to

observe the impact of altering only one pragma within each local neighborhood.

• A random explorer that may explore configurations overlooked by the previous two

explorers.
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Once the explorer picks a design point, it is passed to the Merlin Compiler for evaluation.

The result will be committed to a common database along with the program’s graph rep-

resentation (Section 6.3.2). GNN-DSE gradually collects results from different applications

in a shared space to be used for training the model. Obtaining the true values of a design’s

objectives is time-consuming. This makes gathering the dataset for training the model to be

the primary bottleneck in our approach. After building an initial database, we leverage the

top points generated by our DSE (Section 6.3.4) to augment the database. It is important to

note that the DSE aims to evaluate the model on numerous unseen data points, necessitating

a comprehensive representation of all design choices in our database. On the other hand, if

our DSE mistakenly believes that an unseen design point has a high QoR, it indicates that

the model lacks enough data to generalize across the entire solution space. These particular

data points, which led to mispredictions of Pareto-optimal design points, are more likely to

contribute to a more accurate representation of the data distribution in subsequent rounds.

6.3.2 Program Representation

A popular way of representing a program as a graph is to extract its Control and Data Flow

Graph (CDFG) from its Intermediate Representation (IR) in LLVM [LA04]. Thus, instead

of focusing on the grammar of the code, the semantics of the program flow is captured.

In a CDFG, the nodes represent the LLVM instructions that are connected based on the

control flow of the program. For the data flow of the program, a second type of edge is

added between the nodes based on the operands of the instructions. Note that a CDFG

includes many low-level operations like memory management which makes it desirable for

FPGA kernels.

On the downside, the CDFGs ignore the precision of the operands and their values, which

are crucial in determining the design’s objectives. Recently, a more convenient program rep-

resentation has been proposed, ProGraML [Cum+21], which extends the CDFG by explicitly

assigning separate nodes to operands to retrieve the missing information. It also keeps the

function hierarchies by including the design’s call flow. As such, we adapt ProGraML and
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extend it by including the pragma flow to represent an HLS design. In our DSE works in-

cluding GNN-DSE, each of the candidate pragmas is defined in either of the following forms:

#pragma ACCEL pipeline auto{pragma_name}

#pragma ACCEL parallel factor=auto{pragma_name}

#pragma ACCEL tiling factor=auto{pragma_name}

the pragma_name is a placeholder for its option, which can be (off|cg|fg) for pipeline and

a numerical value for the other two as defined in Section 5.3.1. cg (fg) refers to coarse-grained

(fine-grained) pipelining (Section 2.1.1).

For each candidate pragma, we designate a new node. Given that the pragmas are

applied to loops, we link this node to one of the instruction nodes associated with the

loop: icmp. Code 6.1 shows a toy example having a simple for loop with two candidate

pragmas. Fig. 6.3 depicts its graph representation. We only show the relevant nodes here

for illustration purposes. As Fig. 6.3 demonstrates, there are four types of nodes in each

graph. The first kind (in blue) is for the LLVM instructions that together demonstrate the

control flow of the program. The second and third kinds (in red) exhibit the constant values

(diamond shape) and variables (oval shape) that capture the data flow of the program. The

pragma nodes (fourth kind) are presented as purple boxes connecting to the respective icmp

node. The edges also have different kinds which show the different flows of the graph: control

(blue), data (red), call (green), and pragma (purple). When there are two or more edges of

the same type connected to a node, they are numbered to further distinguish them (see the

edges connecting from pragma nodes to the icmp node).

Code 6.1: Code snippet of an input toy example to GNN-DSE.
1 void foo(int input[N]) {

2 #pragma ACCEL pipeline auto{_PIPE_L1}

3 #pragma ACCEL parallel factor=auto{_PARA_L1}

4 for (int i = 0; i < N; i++) {

5 input[i] += 1;

6 } }

As discussed in Chapter 5, HLS tools typically produce better outcomes when pragmas
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are applied to inner loops, as they find it easier to implement fine-grained optimizations.

Thus, the model can enhance its predictive capability if the representation includes infor-

mation about the loop level for each pragma within a nested loop. Fortunately, our graph

representation inherently incorporates loop levels through program control flow. We can

further encode this information in each node using the LLVM block ID of the for loop.

More specifically, each node/edge has the following attributes:
Node = {'block': LLVM block ID, 'key_text': Node key task, 'function': Function ID, 'type': Node type}

Edge = (Src node ID, Dst node ID, {'flow': Flow type, 'position': Position ID})

the type, flow, and position attributes encode this information:

type 0: instruction 1: variable 2: constant value 3: pragma

flow 0: control 1: data 2: call 3: pragma

position 0: tiling 1: pipeline 2: parallel -

The key_text attribute shows a keyword corresponding to that node. Here is an example

for each of the control, data, and pragma nodes from the graph in Fig. 6.3:
'full_text': #pragma ACCEL PIPELINE auto{_PIPE_L1}, 'key_text': PIPELINE

'full_text': %0 = load i32, i32* %i, align 4, 'key_text': load

'full_text': i32* %input, 'key_text': i32*

Fig. 6.4 illustrates the graph generator of GNN-DSE. It receives a C/C++ code as

input and constructs its graph utilizing the LLVM IR of the program alongside its candidate

pragmas. In each design configuration, the auto variables within the pragma placeholders

are substituted with their respective values. Consequently, within the graphs for various

design configurations of one application (kernel), only the attributes of their pragma nodes

differ.

6.3.3 Predictive Model

Fig. 6.5 depicts our model architecture for predicting the design’s objectives. It takes the

graph representation of the program as the input and creates the initial node/edge embed-

dings by concatenating the one-hot encoding of their attributes (Section 6.3.2) and impor-

tant numeric values, including pragma options and loop trip counts. This encoding helps the
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1 ...

2 for.cond:

3 %0 = load i32, i32* %i, align 4

4 %cmp = icmp slt i32 %0, 10

5 br i1 %cmp, label %for.body, label %for.end

6

7 for.body:

8 %1 = load i32, i32* %i, align 4

9 %idxprom = sext i32 %1 to i64

10 %arrayidx = getelementptr inbounds [10 x i32],

[10 x i32]* %a, i64 0, i64 %idxprom

11 %2 = load i32, i32* %arrayidx, align 4

12 %inc = add nsw i32 %2, 1

13 store i32 %inc, i32* %arrayidx, align 4

14 br label %for.inc

15 ...

Figure 6.3: Part of the LLVM IR of Code 6.1 and its graph representation illustrating the

different kinds of nodes and edges in GNN-DSE’s representation.

C/C++ Code

Design 
Space 

Generator
Graph Builder

(Extension of 
PrograML)

Clang(++)
Graph Generator

LLVM IR
+ 

Pragma 
placeholder

Pragma 
Fill

Design 
Config

Denoting: #pragma ACCEL parallel factor=auto{_PARA_L1}

#pragma ACCEL 

parallel factor=4

Figure 6.4: Graph generator of GNN-DSE.

model assign a higher weight to the attributes that contribute more to the final prediction.

For this matter, the model exploits a GNN encoder (Section 6.3.3.1) to update the embed-

dings. The GNN encoder, then, passes the graph embeddings to a set of MLPs to estimate

the outputs (Section 6.3.3.2).
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Figure 6.5: The architecture of GNN-DSE’s predictive model.

6.3.3.1 GNN Encoder

The GNN encoder assigns hG ∈ RD to a graph G via three stages: (1) stacked Trans-

formerConv layers to produce node embeddings, (2) a Jumping Knowledge Network for

combining the output of different layers to make the final node embeddings with dynamic

ranges of neighborhoods, and (3) an attention mechanism to merge the node-level embed-

dings into a graph-level embedding.

TransformerConv: We reviewed GCN [KW16] and GAT [Vel+17] in Section 2.3.

One drawback of these layers is that they both overlook the edge embeddings. Trans-

formerConv [Shi+20], inspired by the Transformer model [Vas+17], is a state-of-the-art

GNN architecture, which builds attention coefficients (αi,j) for aggregating the neighbors in

a different manner than GAT:

αi,j = softmax

(
(W1h⃗i)

⊤(W2h⃗j +W3e⃗ij)√
D

)
(6.5)

where W1, W2, and W3 are learnable weight matrices, and eij denotes the embedding of

the edge between nodes i and j. Including edge attributes is a desirable feature for our

task since the edges in our graph representation contain useful information (Section 6.3.2).

In addition, TransformerConv makes use of gated residual connections when updating

the node embeddings that can mitigate potential issues with over-smoothing in the model.

Consequently, we adopt TransformerConv as the basic building block of our model.

Jumping Knowledge Network (JKN): Each layer of a GNN gathers the embeddings
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of the first-order neighbors. By adding each layer, the nodes will receive the embeddings

from one hop further since their first-order neighbors are now updated with theirs. However,

different nodes in the graph may require information from varying neighborhood ranges. For

instance, in the graph depicted in Figure 6.3, both the load and add nodes are influenced

by the pragma nodes. The load node observes the effects of the pragma node after three

layers, while add requires four layers. With the utilization of four layers, the load node

may accumulate additional noise from new nodes, potentially impacting its embeddings

negatively. Consequently, to fully exploit the embeddings produced by different layers of

the GNN model, we utilize JKN [Xu+18]. As illustrated in Figure 6.5, JKN considers the

output of all layers to selectively choose varying neighborhood ranges for each node. In its

simplest form, JKN utilizes max pooling to select the final embeddings of each node from

its node embeddings across all previous GNN layers:

h⃗i = max
(
h⃗

(1)
i , . . . , h⃗

(T )
i

)
(6.6)

where h⃗
(k)
i denotes the embedding of node i after the k-th layer.

Node attention-based graph-level embedding generation: To create a single vec-

tor representation for the entire graph, one can simply average all the node embeddings as

follows:

h⃗G =
1

N

N∑
i=1

h⃗i. (6.7)

where h⃗G and N denote the graph-level embedding and the number of nodes in the graph,

respectively. However, given the fact that our graph representation contains both the pragma

nodes and the program context nodes, it is preferable to introduce attention [Li+15] to learn

which nodes are more important for the prediction tasks:

h⃗G =
N∑
i=1

softmax
(
MLP1(h⃗i)

)
·MLP2(h⃗i) (6.8)

where MLP1 maps the node embedding from RD to R followed by a global softmax to obtain

one attention score per node. The attention scores are then applied to the transformed

node embeddings, MLP2(h⃗i), to obtain the final graph-level embedding. Fig. 6.6 depicts the
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graph for a design of the stencil kernel in MachSuite benchmark [Rea+14]. Each node’s circle

size is proportional to the attention that its embedding receives in building the graph-level

embedding. As we expected, the pragma nodes are among the most important nodes. Yet,

the model could learn that not all the pragma nodes are equally important here. As the

figure suggests, the loop trip count (icmp node and i32 node connecting to it) and other

contextual information of the loop determine their importance.

Figure 6.6: Node attention scores of a design of the stencil kernel determined by GNN-DSE’s

model. The size of each circle corresponds to its attention score, with larger circles indicating

higher attention.

Given that the embeddings are high-dimensional vectors (124/64-D vectors for initial/fi-

nal embeddings), we employ t-SNE [MH08] for visualization. t-SNE is a powerful technique

that can model high-dimensional data by 2-D points in a way that nearby (distant) points
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model similar (dissimilar) data. Figure 6.7(a) illustrates the t-SNE plot for the stencil kernel

based on its initial embeddings. The graph-level embedding is generated using Eq. 6.7, which

computes the average of all node embeddings. Each point denotes a design configuration,

color-coded by its latency (cycle counts). Figure 6.7(b) showcases the t-SNE plot when uti-

lizing the graph-level embeddings produced by our GNN encoder. While the initial features

exhibit high similarity between design points with significant differences in their latencies,

the GNN encoder successfully assigns embeddings to the graphs, ensuring that only designs

with similar latencies are clustered together.

6.3.3.2 MLP Prediction Layers

After encoding the graph as a vector, further transformation is needed to perform the final

prediction. We have the following learning tasks for assessing a design point:

• Classification task for determining whether a design configuration is valid.

Invalidity can arise from various factors, including 1) the difficulty for the HLS tool

to implement certain combinations of pragmas, leading us to label designs as invalid if

they remain unfinished after a certain timeframe. 2) Refusal of the HLS tool to synthe-

size designs with high parallelization factors. 3) General infeasibility of some pragma

combinations. For example, the implementation of coarse-grained pipelining involves

applying double buffering, which is non-parallelizable when only a single DRAM port

is available. In these instances, the Merlin Compiler issues a warning indicating the in-

ability to apply at least one pragma, which we utilize to designate the design as invalid.

While we identified certain invalid cases in developing AutoDSE, not all scenarios may

have been accounted for. On the other hand, the learning model can identify patterns

within pragma combinations that result in invalid designs, thanks to its exposure to

large datasets.

• Regression task to estimate the design’s objectives. After determining the

validity of a design, we proceed to assess its quality by predicting its cycle count and
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(a) Initial Embeddings

(b) Embeddings learned by GNN-DSE

Figure 6.7: t-SNE [MH08] visualization of the design configurations of stencil. Each point

represents a different pragma combination with colors indicating its latency value. While

the initial embeddings tend to cluster points irrespective of their latency values, GNN-DSE’s

embeddings achieve a more distinct and informative clustering.
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resource utilization, constituting our regression task. The resources considered in this

dissertation include Digital Signal Processing (DSP), Block RAM (BRAM), Look-Up

Table (LUT), and Flip-Flop (FF). Nonetheless, it is important to highlight that the

model can be further trained to predict additional objectives provided there is access

to additional labeled data.

For each of these tasks, we exploit MLPs to do the prediction based on the graph-level

embedding. Note that our regression task seeks to predict multiple objectives. We can

either employ separate models for each objective or use the same GNN encoder as the

backbone while adopting different MLP branches for each objective to perform multi-task

prediction, as shown in Figure 6.5. In the former approach, each model independently seeks

to derive the graph-level embedding necessary to predict its target objective. However, the

latter approach is preferable when the objectives exhibit correlation, as they can mutually

contribute to the creation of a more refined graph-level embedding.

6.3.4 Design Space Exploration

Once we have an accurate model, we can use it for finding the Pareto-optimal design points.

For each design configuration, we first run the classification model to determine its validity.

If it is valid, we then run our regression models to predict the design’s objectives. If, for any

of the resources, the utilization is higher than 0.8 (80%), we reject that design due to over-

utilization. This threshold is empirically set, as exceeding it leads to frequency degradation

and mapping difficulties. Subsequently, from the remaining designs, we select the top 10

designs with the lowest latency numbers for evaluation using the HLS tool. Consequently,

our model enables us to reduce the number of evaluations with the HLS tool to only 10,

rather than invoking it for every design.

Since our models can complete inference for each design point within milliseconds, we can

efficiently examine numerous design points. However, when dealing with vast solution spaces,

an exhaustive search within a reasonable timeframe might not be feasible. Therefore, we set

a time limit for running the DSE and employ a heuristic to prioritize the exploration of the
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most promising candidates. As the HLS tools can implement the fine-grained optimizations

better, we adapt a BFS-like traversal of the pragmas starting with the inner-most loops to

create an ordered list of them. As a result, the pragmas of the inner-most loop levels are

evaluated sooner.

If there are multiple pragmas at a loop level, we prioritize parallel over pipeline over

tile. If the picked pragma (Pp) depends on another pragma (Pd) from the same loop level or

one loop level further, we move pragma Pd up in the ordered list. Pragma dependencies are

established when defining rules for the solution space to prune invalid pragma combinations,

as detailed in Section 5.4.3. For instance, there is always a dependency between the parallel

pragma of one loop level and the pipeline pragma of its upper loop level because fg

pipelining fully unrolls the sub-loops, making the parallel pragma unnecessary. Since there

is always a dependency between the parallel pragma of one loop level with the pipeline

pragma of its upper level, for the second-inner-most loop level upwards, this ordering results

in evaluating the pipeline pragma before any other optimizations (even before pipelining or

tiling of its inner loop). This prioritization is desirable because successful pipelining can lead

to either double buffering or full unrolling of the inner loops, both of which are typically

preferred over other optimizations on the inner loop. After evaluating this pragma, the same

process is repeated for the next loop section until all pragmas are visited.

6.4 Evaluation

6.4.1 Experimental Setup

We choose our target kernels from the commonly-used Machsuite benchmark [Rea+14], and

the Polyhedral benchmark suite (Polybench) [YP]. The initial database is generated as

explained in Section 6.3.1, using the AMD Xilinx Virtex Ultrascale+ VCU1525 as the target

FPGA synthesized with AMD Xilinx SDAccel 2018.3 (v18) [AMD] and a target frequency of

250 MHz. It consists of kernels with different computation intensities including matrix and

vector operations, stencil operation, encryption, and a dynamic programming application
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(nw). We then augment this database by including the top design points of three rounds of

our DSE as explained in Section 6.3.4, resulting in our final database.

Our model predicts the latency in the form of cycle counts, and the resource utilization

for DSP, BRAM, LUT, and FF. Our framework is deployed and trained using PyTorch [Pas+19]

on the NVIDIA Tesla V100 GPU. We use 80% (20%) of the dataset for training (testing),

3-fold cross-validation during training with Adam optimizer [KB14], and a learning rate

of 0.001. The reported performance metrics of the model are obtained by executing the

inference process on the test set. The initial embeddings, created by concatenating one-hot

encoders of various node attributes, consist of 124 features. We train separate models for the

classification and regression tasks (defined in Section 6.3.3.2). Each model comprises 6 GNN

layers, each with 64 features, followed by different MLP heads for individual objectives. The

MLP networks consist of 4 layers, gradually reducing the feature vector from 64 dimensions

to a scalar value representing the final objective.

Table 6.1 summarizes the number of pragmas, the total number of design points in the

solution space, the total number of configurations in our database, and the number of valid

configurations among them for each kernel. It also includes the number of designs after

augmenting the database as detailed in Section 6.3.4. In our database, the latency is in the

range of 660 to 12,531,777 cycles. DSP/ BRAM / LUT / FF counts are in the range of 0 / 0 /

913 / 0 to 28,672 / 7,464 / 2,639,487 / 3,831,357 showing a wide range for all the objectives.

6.4.2 Model Evaluation

6.4.2.1 Preprocessing the Data

We preprocess our data to limit their ranges so that they can contribute to the loss equally.

For this matter, we normalize the resource utilizations by dividing them by the available

number of resources on the FPGA and apply the following formula for latency:

Tlatency = log2
NormalizationFactor

latency
(6.9)
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Table 6.1: The statistics for our target kernels including the number of pragmas, the size of

the solution space, and the database size utilized for training the GNN-DSE model.

Kernel name aes atax
gemm-

blocked

gemm-

ncubed
mvt spmv-crs

spmv-

ellpack
stencil nw Total

# pragmas 3 5 9 7 8 3 3 7 6 -

# Designs configs 45 3,354 2,314 7,792 3,059,001 114 114 7,591 15,288 3,095,613

Initial database

(# Total /

# Valid)

15 /

15

605 /

101

616 /

149

432 /

149

571 /

180

98 /

35

114 /

60

1,066 /

281

911 /

66

4,428 /

1,036

Final database

(# Total /

# Valid)

44 /

44

636 /

129

667 /

183

476 /

193

621 /

224

114 /

51

114 /

60

1,098 /

291

982 /

103

4,752 /

1,278

therefore, the model spends more time on reducing the loss for large values of Tlatency which

corresponds to low latency values, i.e., the high-performance designs. The log2 factor is

employed to create a more balanced data distribution, compensating for the inherent bias

towards low-performance values due to the nature of the problem. While the use of the log2

factor may lead to increased prediction losses when reverting the data back to its original

range, it does not affect our primary objective of identifying the best design configuration.

It is important to note that during the DSE process, we care more about the ranking of

the design points based on their latency values rather than their absolute values. After this

normalization, the lower range for all the objectives is 0.0 and the upper range is 12.7414 /

4.1900 / 1.7200 / 2.2300 / 1.6600 for latency/ DSP/ BRAM / LUT / FF, respectively.

6.4.2.2 Grouping the Objectives

Fig. 6.8 depicts the correlation matrix of the objectives in our database with a correlation

coefficient of 1 indicating a perfect positive correlation, -1 indicating a perfect negative cor-

relation, and 0 indicating no correlation. As the figure illustrates, the LUT, FF, and DSP

values are highly correlated. The latency value (Tlatency) has a weak correlation with each

of the LUT, FF, and DSP values but it almost does not correlate with BRAM. As a result, the
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latency, LUT, FF, and DSP values can help each other to learn a better graph embedding

as explained in Section 6.3.3.2. Consequently, we train two separate models to learn the

regression objectives: one solely predicts the BRAM utilization, while the other predicts the

remaining objectives. Although it is possible to train a single regression model for all objec-

tives, we can get better results by grouping the objectives based on their correlations and

training separate models accordingly.

Figure 6.8: Correlation matrix for the database used in training GNN-DSE’s model with 1

(-1) showing a perfect positive (negative) correlation and 0 indicating no correlation.

6.4.2.3 Comparative Studies

To test whether our program representation is beneficial for this problem or not, we first test

the performance of two other models that only use MLP networks with no considerations for

the graph structure. The first one (M1) follows the same approach as in [KC20]2 and just

2As the authors were not ready to share their codes at the moment, we reimplemented their model as
closely as possible.
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Table 6.2: Model evaluation on the test set of our database. RMSE loss is used as the

evaluation metric for the regression task. The sum of all losses is reported in the ‘All’

column. For the classification task, the accuracy and F1-score are reported.

Model Method
Latency

(as in Eq. 6.9)
DSP LUT FF BRAM All Accuracy F1

M1
MLP-pragma

(as in [KC20])
3.2756 0.5857 0.3115 0.2483 0.3356 4.7567 0.52 0.42

M2
MLP-pragma-

program context
2.9444 0.4650 0.2401 0.1349 0.1597 3.9442 0.78 0.40

M3 GCN 1.6825 0.4265 0.1642 0.1277 0.1593 2.5602 0.79 0.51

M4 GAT 1.1819 0.2557 0.1266 0.1009 0.1178 1.7829 0.85 0.68

M5 Tconv 1.1323 0.2540 0.1245 0.0938 0.1231 1.7277 0.85 0.76

M6 M5 + JKN 1.0846 0.2521 0.1112 0.0933 0.0912 1.6324 0.92 0.86

GNN-DSE M6 + node att. 0.5359 0.1253 0.0762 0.0632 0.0515 0.8521 0.93 0.87

Tconv: TransformerConv

uses the pragma settings as the input. The second model (M2) takes all the nodes of the

graph with their initial embeddings as the input but does not exploit the GNN techniques

for updating the embeddings and rather only uses an MLP. As the results suggest, including

the program context in the input is crucial for improving the accuracy of the model since it

wants to predict the objectives across applications with different semantics.

Additionally, we assess the effect of our optimizations on the model. We first tested

the model’s performance when it used either the GCN, GAT, or TransformerConv as

the GNN layer with normal averaging to create the graph-level embeddings (M3 to M5).

Then, we added the JKN (M6) and replaced the normal averaging with the node attention

layer (M7). As Table 6.2 shows, the fact that these models include various design flows

(control, data, call, pragma) of the program using a graph structure can help to decrease their

loss. The results further demonstrate the effectiveness of our optimizations as explained in

Section 6.3.3.1. Specifically, among the GNN models, the TransformerConv leads to the

best performance by incorporating an attention mechanism for both nodes and edges. The
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performance numbers also validate our hypothesis that the model must not only have a way of

deciding which program and pragma nodes are more important for the given application but

also dynamically adjust neighborhood ranges for each node to update its features effectively.

0

1

2

3

aes atax

gemm-blocked

gemm-ncubed mvt

spmv-crs

spmv-ellpack
stencil nw

DSE1: 0.71x DSE2: 0.82x DSE3: 1.02x DSE4: 1.23x

Figure 6.9: Speedup comparison of GNN-DSE relative to the optimal design in the initial

database. Following each round of DSE, the top designs are added to the database to retrain

the model and improve the discovered optimal designs.

6.4.3 Results of Design Space Exploration

Using our models, we are able to run 22 inferences per second. As a result, we can ex-

haustively search through all the design choices for our target kernels, except for mvt, in a

few minutes. We adopt the heuristic proposed in Section 6.3.4 to search through mvt for

one hour. We run the DSE on all the kernels and evaluate their top 10 design points using

the HLS tool. Depending on how it performs, we add a various number of design points

with their true objectives to the database as explained in Section 6.3.4. Fig. 6.9 depicts the

speedup that GNN-DSE could achieve for each kernel compared to the best design in the

initial database for different rounds of the DSE. The figure demonstrates that after three

rounds of expanding the database, the DSE almost consistently discovers configurations that

are almost always better or equivalent to those found by AutoDSE for all kernels. This is
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because these newly added data enhance the representativeness of the database, which can

help us train a better model capable of identifying equivalent or better configurations in each

iteration for the majority of cases. The chart’s legend summarizes the average speedup of

all the kernels after each round.

6.4.4 Results on Unseen Kernels

To test whether our tool is extensible to unseen kernels, we have chosen four new kernels from

Polybench that were not part of our database but bear similarities to the ones already in-

cluded: bicg, doitgen, gesummv, and 2mm. bicg is doing two matrix-vector multiplications,

doitgen multiplies a 3-D tensor with a matrix, gesummv has two matrix-vector multiplica-

tions and a weighted vector addition, and 2mm consists of two matrix multiplications. Note

that four of the kernels in our database are working with matrix-vector operations, although,

in general, they have a different problem size and coding structure. Table 6.3 summarizes

the number of pragmas and the design configurations for each of these kernels. Like in

Section 6.4.3, we set a time limit of one hour for 2mm, which has more than 492M design

choices. For the rest of the kernels, we exhaustively search through all their configurations

which takes less than 2 minutes. For all of them, we then pass the top 10 designs to the

Merlin Compiler and run them in parallel to evaluate them. The 4th column of Table 6.3

lists the overall runtime of this process for getting the best design for each kernel.

To measure the quality of top designs generated here, we ran the original explorer of

AutoDSE for up to 21 hours (its search for doitgen finished after 3 hours). During this

time, it explored up to 163 design configurations for each of the cases achieving a maximum

speedup of 350× compared to the design with no optimizations. GNN-DSE could achieve

about the same performance (from −2% and +5% difference with a mean of +1%) but in

much less time. Table 6.3 presents a summary of the speedup achieved by GNN-DSE in

the total DSE runtime and design synthesis with HLS for each kernel, relative to AutoDSE.

The results show that GNN-DSE can accelerate this process by up to 79× with an average

of 44×. Note that here we are not further fine-tuning our model to adapt to these kernels.
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The success of the model depends on how closely the new kernel aligns with our existing

database. In the next chapter, we aim to tackle this issue by developing a robust model

capable of more systematic adaptation to new environments.

Table 6.3: GNN-DSE’s performance on unseen kernels without further adaptation. The

runtime speedup numbers are with respect to AutoDSE, after running it for up to 21 hours.

GNN-DSE could achieve about the same performance but in much less time.

Kernel #pragma
#Design

configs

DSE + HLS

runtime (m)
#Explored

Runtime

speedup

bicg 5 3,536 18 3,536 69×

doitgen 6 179 16 179 11×

gesummv 4 1,581 16 1,581 79×

2mm 14 492,787,501 74 78,676 17×

6.5 Conclusion

In this chapter, we developed a push-button framework, GNN-DSE, to build a learning model

for predicting the design’s objectives in milliseconds. We proposed a graph-based program

representation that includes both the program semantics and the candidate pragmas and

implemented a GNN-based model to help us extract the required information for estimating

our targets. We exploited our model to optimize the target applications by searching through

their different design configurations. The experimental results show that GNN-DSE can

build a single model with high accuracy to be used among different domains. They also

demonstrate that GNN-DSE is able to not only find the Pareto-optimal designs quickly

for the applications in its database but also extend the knowledge it gained from them to

optimize new applications from its existing domains. In Chapter 8, we enhance our model-

based methodology to create a model with improved adaptability to new environments in a

more systematic manner.
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CHAPTER 7

HLSyn: Benchmark for High-Level Synthesis Targeted to

FPGAs

In order to train our models effectively, we require a database containing various HLS designs.

However, there are no existing open-source datasets suitable for our needs, so we created

our own. We utilize AutoDSE as our primary tool to explore and collect different design

points for each application in our training set. As detailed in Section 6.3.1, we enhance

AutoDSE’s main explorer with both a hybrid explorer and random search functionalities.

This allows us to gather a diverse range of design points, spanning from “bad” to “good”,

making the database more representative of the whole space. When a design point is selected

by the explorer, it is sent to the Merlin Compiler for evaluation and to generate the design

objectives. The outcomes are stored in a shared database, HLSyn, which contains results

from various applications along with their corresponding program graph representations. We

progressively accumulate results from different applications within this common space, which

serves as the foundation for training our model.

The HLSyn dataset includes kernels of intermediate complexity that can be used as

building blocks of larger applications. Specifically, we selected 41 kernels from the widely

used MachSuite benchmark [Rea+14] and the Polyhedral benchmark (PolyBench)[YP]. They

include kernels with different computation intensities including linear algebra operations on

matrices and vectors (e.g., BLAS kernels), data mining (correlation and covariance),

stencil operations, encryption (aes), and a dynamic programming application (nw). For

synthesis, we employ three AMD Xilinx HLS tools, SDAccel 2018.3 (v18) [AMD], Vitis

2020.2 (v20), and Vitis 2021.1 (v21) [Xilb], targeting the AMD Xilinx Alveo U200 FPGA
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with a frequency of 250MHz. The v20 and v21 datasets are solely collected using AutoDSE

after running each of its explorers for a day. Meanwhile, the design points in v18 additionally

incorporate results from multiple iterations of GNN-DSE, as explained in Section 6.3.4.

For each design point, we collect the latency in terms of cycle counts and resource

utilization for DSP, BRAM, LUT, and FF. We normalize the resource usage with the available

resources on the board and the latency with Normfactor ∗ log2(Latencyreflatency
) which we call perf

with Normfactor being set to 0.5 and Latencyref to 1e7. Table 7.1 presents our database

statistics. It is important to note that not all combinations of pragmas yield valid design

points. Invalid design points include those with excessively long synthesis times (more than

200 minutes) or cases where either the Merlin Compiler or the HLS tool failed to implement

them for reasons mentioned in Section 6.3.3.2.

The three versions of the database consist of a total of 41 unique kernels, with 21 kernels

existing in all versions. Among the 22 kernels shared between the v18 and v20 databases,

the average latency of optimal design found by AutoDSE in v18 is 5.54× (1.36× on the

geometric mean) higher than that in v20, suggesting improvements in the heuristics of the

HLS tool over time. Similarly, we see an average latency reduction of 2.68× (1.58× on the

geometric mean) in the optimal design points found by AutoDSE for the 25 common kernels

when we transition from the v20 to the v21 HLS tool.

Table 7.2 provides an overview of the statistics for each kernel in the HLSyn dataset. No-

tably, certain kernels have two versions with slight variations. The objective is to introduce

subtle changes to the code structure, allowing the model to comprehend the impact of such

modifications. For example, eliminating a loop dependency may enable greater paralleliza-

tion, while reordering independent loop nests might not make a difference. These alterations

may range from being unimportant, such as defining an unused variable, to significantly

influencing the final microarchitecture objectives. Changes affecting the objectives include

adjustments to problem size (e.g., arrays and loop trip counts), code modifications to incor-

porate a reduction tree, and minor alterations to enhance HLS compatibility by removing

dependencies. Some kernels undergo both objective-affecting and non-objective-affecting
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Table 7.1: Statistics of HLSyn dataset which consists of 41 unique kernels among which 21

of them are shared in all databases. We denote the normalized value of latency as perf as

it corresponds to the base-2 logarithm of the speedup relative to a reference latency value.

Version
# #points Data range [min – max]

kernels (All/Valid) Range latency BRAM DSP LUT FF

SDAccel

2018.3

v18

[660 – [0 – [0 – [0 – [0 –

23,524/ Original 94,129,840] 12,950] 57,531] 7,739,313] 7,558,355]

35 8,481 [-1.62 – [0 – [0 – [0 – [0 –

Normed 6.94] 2.99] 8.41] 6.54] 3.19]

Vitis

2020.2

v20

[992 – [0 – [0 – [0 – [0 –

11,721/ Original 1,453,575,296] 3,182] 45,056] 6,611,687] 4,411,806]

26 4,508 [-3.59 – [0 – [0 – [0 – [0 –

Normed 6.65] 0.73] 6.58] 5.59] 1.86]

Vitis

2021.1

v21

[1,243 – [0 – [0 – [0 – [0 –

45,371/ Original 162,024,512] 13,750] 89,728] 13,288,216] 41,661,056]

40 10,886 [-2.01 – [0 – [0 – [0 – [0 –

Normed 6.49] 3.18] 13.11] 11.23] 17.61]

changes for experimentation purposes. We suggest that including additional kernels with

these types of variations in the future could enrich the database, allowing the model to bet-

ter understand how code transformations influence the optimal pragma combination. The

table also includes the number of nodes and edges corresponding to the hierarchical graph

presented in Section 8.2.1.

Table 7.2: Statistics of each kernel in the HLSyn dataset. v18, v20, and v21 refer to AMD

Xilinx SDx 2018.3, Vitis 2020.2, and Vitis 2021.1, respectively. Difference columns indicate

the description of the application’s functionality, number of nodes and edges in the hierar-

chical graph representation, number of candidate pragmas, total number of points in the

solution space, and the number of points in each version of the database.

Kernel Description nodes edges pragmas space in

v18

in

v20

in

v21

2mm 2 Matrix Multiplications 380 1,332 14 492M 793 861 1,364

(cont’)
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Kernel Description nodes edges pragmas space in

v18

in

v20

in

v21

3mm 3 Matrix Multiplications 526 1,850 21 17T 841 - 1,720

adi Alternating Direction Im-

plicit Solver

1,077 3,880 13 201M 505 - 969

aes Advanced Encryption

Standard

1,784 6,339 3 45 45 43 36

atax-S Matrix Transpose and

Vector Multiplication

(small)

249 864 5 2,644 884 891 1,787

atax-M Matrix Transpose and

Vector Multiplication

(medium)

241 836 5 9,454 316 - 1,501

bicg-S BiCG Sub Kernel of

BiCGStab Linear Solver

(small)

249 866 5 2,975 502 466 727

bicg-M BiCG Sub Kernel of

BiCGStab Linear Solver

(medium)

231 802 5 19,536 270 - 1,445

correlation Correlation Computation 705 2,489 17 513B 1,464 636 1,512

covariance Covariance Computation 454 1,596 13 970M - 287 1,589

doitgen Multiresolution Analysis 266 926 6 179 179 172 179

doitgen-R Multiresolution Analysis

with reduction pattern

252 878 7 595 595 221 595

fdtd-2d-S 2-D Finite Different Time

Domain Kernel (small)

555 1,965 16 18B 619 - 1,161

fdtd-2d-M 2-D Finite Different Time

Domain Kernel (medium)

555 1,965 16 70B - 159 1,150

gemm-

blocked

Blocked Version of Ma-

trix Multiplication

294 1,023 9 2,314 775 440 2,234

gemm-

ncubed

Matrix Multiplication 189 655 7 7,152 742 515 1,356

gemm-p-S Weighted Matrix Multi-

plication (small)

235 818 8 409K 1,118 677 1,421

gemm-p-M Weighted Matrix Multi-

plication (medium)

235 818 8 690K - 149 1,116

gemver-S Vector Multiplication

and Matrix Addition

(small)

438 1,532 13 100B 877 641 1,285

gemver-M Vector Multiplication

and Matrix Addition

(medium)

447 1,564 13 13B - - 428

(cont’)
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Kernel Description nodes edges pragmas space in

v18

in

v20

in

v21

gesummv-S Scalar, Vector and

Matrix Multiplication

(small)

276 968 4 1,543 442 371 1,196

gesummv-

M

Scalar, Vector and

Matrix Multiplication

(medium)

254 890 4 777 292 - 777

heat-3d Heat Equation over 3D

Data Domain

849 3,066 11 71,511 1,620 - 268

jacobi-1d 1-D Jacobi Stencil Com-

putation

212 740 5 2,871 593 - 2,331

jacobi-2d 2-D Jacobi Stencil Com-

putation

412 1,466 11 7M 1,815 - 1,837

md n-body Molecular Dy-

namics

409 1,448 3 75 12 - 75

mvt-S Matrix-Vector Product

and Transpose (small)

224 778 8 2M 1,154 1,415 3,132

mvt-M Matrix-Vector Product

and Transpose (medium)

224 778 8 933K 367 - 1,323

nw Dynamic Programming

for Sequence Alignment

479 1,662 6 15,288 1,336 590 45

seidel-2d 2-D Seidel Stencil Com-

putation

329 1,174 7 8,016 1,314 - 184

spmv-crs Sparse Mat-Vec Mult. w/

Variable-Len. Neighbor

186 644 3 114 114 114 -

spmv-

ellpack

Sparse Mat-Vec Mult. w/

Fixed-size Neighbor

168 580 3 114 114 102 114

stencil-2d A Two-Dimensional Sten-

cil Computation

216 744 7 7,591 1,401 1,010 4,267

stencil-3d A Three-Dimensional

Stencil Computation

375 1,350 5 239 239 239 55

symm Symmetric Matrix Multi-

plication

335 1,182 7 50,265 96 100 449

symm-opt-

S

Symmetric Matrix Multi-

plication (HLS friendly)

(small)

376 1,324 8 730K - 285 1,473

symm-opt-

M

Symmetric Matrix Multi-

plication (HLS friendly)

(medium)

376 1,324 8 665K - - 833

syr2k Symmetric Rank-2k Op-

erations

293 1,024 8 340K 380 - 526

(cont’)
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Kernel Description nodes edges pragmas space in

v18

in

v20

in

v21

syrk Symmetric Rank-k Oper-

ations

242 840 8 340K 600 166 775

trmm Triangular Matrix Multi-

plication

214 746 7 50,265 176 923 485

trmm-opt Triangular Matrix Multi-

plication (HLS friendly)

204 710 7 43,463 934 248 1,651

Table 7.2 Statistics of each kernel in HLSyn dataset. (cont’)
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CHAPTER 8

HARP: Robust GNN-based Representation Learning for

HLS

The efficient and timely optimization of microarchitecture for a target application is hin-

dered by the long evaluation runtime of a design candidate, creating a serious burden. To

address this issue, in the previous chapter, we introduced a surrogate for the HLS tool by

developing a GNN-based model, GNN-DSE. We showed that this model can achieve high

accuracy across diverse domains while expediting the optimization process through rapid

evaluation of each candidate. This chapter focuses on tackling challenges related to the

program’s long dependency range and deeply coupled input program and transformations

(i.e., pragmas). We present HARP (Hierarchical Augmentation for Representation with

Pragma optimization) with a novel hierarchical graph representation of the HLS design by

introducing auxiliary nodes to include high-level hierarchical information about the design.

Additionally, HARP decouples the representation of the program and its transformations

and includes a Neural Pragma Transformer (NPT) approach to facilitate a more systematic

treatment of this process. Our proposed graph representation and model architecture for

HARP enhance the model’s predictive accuracy, resulting in superior design space explo-

ration outcomes, while also contributing to the development of a more robust and reliable

HLS GNN-based representation. This enhancement, in turn, improves its transfer learning

capability, simplifying the adaptation process to new environments1.

1All materials are available at https://github.com/UCLA-VAST/HARP.
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8.1 Introduction

In HLS C/C++, the main instruments used to define the microarchitecture are compiler

directives in the form of pragmas. An essential research question here is how to incorporate

the right combination of pragmas into the code to enhance the QoR. This includes deter-

mining the type of required pragmas, where to apply them, and their options, such as the

unroll factor or pipelining type. The complexity of this problem arises from the exponen-

tial growth in the number of candidate pragmas, the long synthesis time for each design,

and the fact that the pragmas do not have a monotonic effect on performance and/or area,

which makes it challenging to predict their impact. While the optimal choice of pragmas can

yield significant performance improvements in the resulting microarchitecture, such as the

9000× speedup reported in [Chi+22], as we discussed in the previous chapters, identifying

the optimal combination of pragmas remains a challenging task [Chi+22; Hua+21].

To address this problem, several previous studies, as outlined in [SW19], have treated

the HLS tool as a black box and focused on developing efficient heuristics to explore the

solution space more intelligently. In Chapter 5, we introduced AutoDSE as an advanced

approach that employs a bottleneck optimizer, emulating the optimization strategies of an

expert designer. However, these works suffer from long runtimes as they rely on running the

tool directly for evaluating the design configurations, with each run taking minutes to hours.

Recognizing the effectiveness of GNNs in the EDA domain [Kha+20; Ren+22; Ust+20;

Guo+22; Kou+22], we introduced GNN-DSE in Chapter 6 to speed up the optimization

process. GNN-DSE represents the input program along with its pragmas as a graph and

utilizes GNNs to capture graph properties and generate vectors for graph/node embeddings.

The model then employs a post-processing stage to convert these embeddings into the final

objectives we aim to predict, such as performance and/or area. In addition to GNNs, recent

advancements in Large Language Models (LLMs) like ChatGPT [Ope24], GPT-4 [Ope23],

and AlphaCode [Li+22] make them potential candidates for addressing the HLS optimization

problem. However, all of these models take huge computing power to train and none of them
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has targeted FPGA accelerator designs with performance optimization in mind. Therefore,

for now, GNNs are a more practical solution for the problem at hand and we will consider

utilizing LLMs at a later time.

Although GNN-based models have shown promising performance in the EDA domain,

there are still some challenges that need to be addressed to make them more effective. One of

the main challenges is how to represent the HLS design (C/C++ program with architectural

pragmas) in a way that captures all relevant details and makes it informative for the learning

model. Additionally, as the design objectives are influenced by both program context and

pragmas (i.e., transformations), it can be beneficial to develop a model that can learn the

effect of each component separately. In response to these challenges, we propose and imple-

ment HARP. To address the first challenge, it includes a novel hierarchical representation

of HLS designs. This representation incorporates program semantics and pragmas, while

also introducing auxiliary nodes that provide high-level hierarchical information about the

design. This graph representation provides a coarsened view of the design, which can assist

with coping with the long-range dependencies within the program. In fact, it helps to reduce

the average shortest path of our benchmark by a factor of 5. This permits the GNN model to

pass the nodes’ messages more easily throughout the whole graph. To tackle the second chal-

lenge, HARP intends to enhance modeling the pragma optimizations. Hence, we propose

two optimizations for decoupling the program representation from its transformations. The

first optimization separates the vector representation of the program and pragmas generated

by the GNN and employs an autoencoder loop to ensure the pragma vector representation

can reconstruct its initial features. The second optimization introduces a Neural Pragma

Transformer (NPT), which models pragmas as learnable functions applied to the program

representation. This architectural design aligns more naturally with the transformative na-

ture of pragmas. We compare and evaluate these two optimizations in our experiments.

The next challenge emerges when deploying the model in a new environment, where

two types of shifts can occur that can lead to different data distributions compared to the

training set. First, the domain shift arises when the model encounters a kernel that was not

145



seen by the model during the training process. Second, the task shift appears when there

is a need to predict a new objective that was not included in the model’s training. Bai et

al. [Bai+22] discuss how we can leverage meta-learning techniques to tackle domain shift.

We aim to adapt to these shifts by simply fine-tuning the model so our goal is to enhance

the quality and reliability of representation learning. As a result, we anticipate improved

transfer learning capabilities to emerge from these adjustments.

A significant source of task shift occurs when the HLS tool is updated, and the heuristics

used in these tools change, which, in turn, impact the design’s objectives. Fig. 8.1 showcases

the variations in latency and the rest of the resources’ utilization (including LUT, FF, BRAM,

and DSP) for a total of 1145 designs during the transition from SDx 2018.3 to Vitis 2020.2,

the HLS tools from AMD Xilinx. The vertical axis represents the objectives obtained using

Vitis 2020.2, while the horizontal axis corresponds to the results obtained with SDx 2018.3.

To provide a clearer comparison, the outcomes are contrasted with the diagonal line y =

x. The figure shows that all objectives have changed, and the degree of change varies for

each objective. Given the cost of regenerating the database and retraining the model, it is

preferable to transfer the model using a smaller dataset. Our experimental results show that

HARP improves the performance of both the original and transferred models. Even with

large datasets, the pretrained model of HARP yields better results after transfer learning.

This strong transfer learning capability is due to our novel graph representation and model

architecture

In summary, in this chapter, we make the following contributions:

• We propose a novel hierarchical graph representation to combine both a high-level

view (combination of C/C++ level and LLVM IR level) and a low-level view (LLVM

IR level) of the HLS designs, which can help to reduce the long range of dependencies.

• We design two approaches to decouple the representation of programs and their prag-

mas, allowing the model to learn the individual impact of each component more effec-

tively.
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• We evaluate the effectiveness of our proposed hierarchical graph representation and

model architectures for transfer learning by showcasing their capacity to enhance the

adaptability of the resulting model to changes in the objectives of HLS designs.

• The experimental results demonstrate that our approach can decrease the prediction

loss compared to our previous state-of-the-art (SOTA) GNN-based work by 12-34%.

• When utilized in DSE, HARP delivers an average performance improvement of 2.13×

over the SOTA model-free DSE while operating within a reduced time limit of 25×. It

also outperforms the SOTA model-based approach by 1.38× on average after transfer

learning with limited data.

• Even with large datasets, HARP shows strong transfer learning capability, outper-

forming the SOTA model-based approach by 1.26× on average.

8.2 HARP Methodology

The objective of our study is to enhance the efficiency of exploring the HLS design space by

developing a model capable of predicting the behavior of the HLS tool. Similar to AutoDSE

and GNN-DSE, we build our tool on top of the Merlin Compiler (Section 2.1.1). This

means that our solution space consists of three types of pragmas (pipeline, parallel, and

tiling) which are considered as transformations T applied to the program (i.e., kernel)

P. In this context, HARP includes a novel hierarchical graph representation, introduced in

Section 8.2.1, which facilitates the propagation of graph information throughout the graph.

Furthermore, HARP utilizes an advanced model architecture to increase the accuracy of

the prediction. Applying traditional machine learning models to determine the objectives

may erroneously carry the correlation between program P and transformations T in the

collected data into the prediction. In contrast, HARP individually learns the impact of each

component, as we discuss in Section 8.2.2. In Section 8.2.3, we explain that this attribute

can also be advantageous when transitioning to new tasks and domains (kernels) that cause
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Figure 8.1: The comparison of design objectives when the HLS tool is changed from AMD

Xilinx SDx 2018.3 to Vitis 2020.2. Each point on the graph represents a distinct design

configuration, plotted against the y = x line.

shifts in the data distribution. The model can more readily adjust to these shifts, offering

an advantage in adaptation.

8.2.1 Hierarchical Graph Representation

A common issue in GNNs is that their performance tends to degrade as the number of layers

increases, leading to a phenomenon known as over-smoothing. This occurs when repeated

graph convolutional layers create too similar node embeddings, thus losing important infor-

mation about the graph structure. Consequently, GNNs typically have shallow networks,

which focus on learning local neighborhoods, leading to limited receptive fields and diffi-
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• cond-I

• body-I

• cond-J

• body-J

• cond-K

• body-K

• inc-K

• end-K

• inc-J

• end-J

• inc-I

• end-I

• cond-I

• body-I

• cond-J

• body-J

• inc-J

• end-J

• cond-K

• body-K

• inc-K

• end-K

• inc-I

• end-I

a) Code snippet 1 and 2 b) Hierarchical structures of sample codes

Code 1 Code 2

Code 1:

Code 2:

Sequential blocks

“for” loop hierarchy

Pseudo node to actual nodes

c) A sample hierarchical graph representation

Figure 8.2: (a) Two sample code snippets; (b) The hierarchical structures of the two sample

code snippets, showing only the pseudo nodes and the connections between them; (c) A

sample hierarchical graph focusing on demonstrating the pseudo nodes and their connections.
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culties in capturing a global view of the graph [Guo+22; LHW18]. This poses a significant

challenge in effectively learning programs that are typically characterized by extensive depen-

dency chains, wherein the performance of a given program element depends on the operation

of another element located far away in the code.

We aim to tackle this challenge by developing a hierarchical graph representation that

integrates both high-level and low-level perspectives of the program, specifically, the HLS

design. By introducing nodes in the graph that can establish relationships at various levels,

we can coarsen the graph representation to mitigate the impact of the long range of depen-

dencies. To this end, our method incorporates a high-level view that combines the C/C++

code level and LLVM IR [LA04] level and a low-level view that relies solely on the LLVM IR

level. We leverage the graph representation provided by GNN-DSE to build the graph from

LLVM IR and extend it to incorporate two additional abstraction levels of the program.

In GNN-DSE, separate nodes represent the instructions and their operands (data) in

LLVM IR, and they are connected according to the control, data, and call flow of the

program. The pragmas are modeled as extra nodes that link to the icmp instruction of

their respective ‘for’ loop, where the optimization pragmas are applied. To build the second

level of representation in the graph, we insert auxiliary nodes (pseudo nodes), where each

pseudo node corresponds to a distinct LLVM IR block. A block in LLVM IR is a sequence of

instructions that end with a terminator instruction, such as a branch, return, or switch. Each

basic block in LLVM IR has a single entry point and a single exit point. We define a new

node called pseudo_block for each block. Fig. 8.2(a) and (b) illustrate two toy examples for

showcasing these nodes and the hierarchical structures between them. In LLVM IR, each ‘for’

loop is typically translated into 4 blocks. These blocks consist of the loop condition block,

the loop body block, the block for updating the loop iterator, and the final block with a

branch instruction to transition to the subsequent block after the loop’s completion. Fig. 8.2

(b) portrays the pseudo nodes assigned to each of these blocks, along with their order and

connectivity. The pseudo nodes are linked to one another based on their sequential order.

Additionally, the pseudo nodes representing the initial blocks of the ‘for’ loops establish
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connections based on their order in the C/C++ code. As demonstrated, each ‘for’ loop is

linked to its parent ‘for’ loop (if any) and its first-level children (if any).

Fig. 8.2(c) shows a partial view (due to the space limit) of a graph for a real case. Each

pseudo_block node has three types of edges. First, it links to all instruction and data

nodes within that block. Second, it connects to other pseudo nodes in sequential order,

thereby creating the first level of hierarchy. Third, it establishes connections based on the

hierarchy level of the ‘for’ loops in the C/C++ code, linking their first blocks according

to their hierarchy in the code. This creates the second level of hierarchy in the graph

representation. By adopting a hierarchical graph representation that combines high-level

and low-level views, our approach can provide a more comprehensive understanding of the

design and reduce the complexity of modeling long-range dependencies. This is achieved by

decreasing the shortest path between the nodes via the pseudo nodes and their connections,

which helps the GNN model to pass messages throughout the graph. For the kernels in our

HLSyn benchmark (comprising 41 unique kernels as summarized in Chapter 7), the average

shortest path between every two nodes in the graph is reduced from 25.3 (24.5) for the

original graph to 5.1 (5) for the hierarchy graph, on average (the geometric mean).

Since we are augmenting the graph with new nodes and edges, we extend the attributes

defined in Section 6.3.2. Specifically, we expand the type and flow attributes to include the

new information:

type
0: instruction 1: variable 2: constant value 3: pragma

4: pseudo node

flow

0: control 1: data 2: call 3: pragma

4: pseudo node

to actual node

5: 1st hierarchy

(LLVM blocks)

6: 2nd hierarchy

(for loops)

8.2.2 Decoupling Program and Transformation

The input to HLS tools is composed of two primary components that significantly influence

the final microarchitecture. The first component is a high-level program description, denoted

as P, expressed in C/C++, which defines the semantics and functionality of the DSA to be
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designed. The second component is a set of pragmas that include parallelizing, pipelining,

and tiling directives, which are applied as transformations (T). These pragmas modify the

microarchitecture which in turn affects the performance, power, and/or area of the DSA.

The resulting HLS design is a function of both P and T. This work focuses on minimizing

the latency L(P, T) of the design, given the available resource constraints of the FPGA

on which the design will be implemented. The resource constraints are determined by the

utilization of BRAM, DSP, flip-flops (FF), and lookup-tables (LUT), which are denoted

as BRAM(P, T), DSP(P, T), FF(P, T), and LUT(P, T), respectively, and must be within

certain preset thresholds. Thus, the GNN task is to learn the impact of T on P. In our

initial effort to build a learning model for this problem, GNN-DSE, we learned a coupled

representation vector containing both P and T. In this chapter, we propose to separate the

modeling of each component as it allows for a more natural understanding of their individual

impacts. In sections 8.2.2.1 and 8.2.2.2, we present two distinct optimizations for effectively

implementing such a modeling strategy.

8.2.2.1 Separating Vector Representation of Program and Transformation
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Figure 8.3: Separating the vector representation of the program P and its transformation T.

Distinct vectors are generated for each one. A further reconstruction loss with an autoencoder

is used to enhance the influence of pragmas on the T vector.
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Fig. 8.3 depicts the model architecture for separating the vector representation of P

and T. As in GNN-DSE, we start with encoding the node and edge attributes using one-

hot encoders. The graph is then passed through a series of GNN layers and a JKN. This

JKN enables the model to dynamically adapt the neighborhood range for each node. We

demonstrated the effectiveness of this technique in Chapter 6. Once the GNN encoder is

finished, the nodes have seen the program and the pragma structure, and their embeddings

are produced based on that. We employ two attention layers to build the final P and T

vectors. The attention layer is responsible for learning an attention (importance) score for

each node and applying a weighted addition accordingly on their embeddings. The program

attention layer merges the nodes corresponding to the program context (NP) while the

pragma attention layer pools only the pragma nodes (NT ). In addition to separating the

learning of the program and its transformation, this architecture helps to amplify the effect

of the pragmas in predicting the final objectives. Formally, the computation here can be

modeled as:

∀V ∈ P , T h⃗V =
∑
i∈NV

softmax
(
MLP1(h⃗i)

)
·MLP2(h⃗i) (8.1)

where h⃗i represent the embedding vector of node i, V can denote either the program context

P or the transformation context T and NV designates the set of nodes that are in the context

of V .

To make the T vector (h⃗T ) more meaningful, we utilize an autoencoder [HS06] structure.

Autoencoders are designed to reconstruct part of the input data given its context. We use

them to make sure h⃗T , which summarizes the pragmas, can reconstruct the input pragmas

stored as a vector θ⃗. This can help us increase the effect of a change in the input pragma

options in the final vector representation. The autoencoder architecture consists of an MLP

encoder and an MLP decoder, which takes as input h⃗T and aim to produce θ⃗. Despite the

varying number of pragmas in different programs (HLS designs), we employ a fixed-sized

vector for θ⃗ to enable training a shared MLP decoder for all programs. In cases where

programs have fewer pragmas, the remaining elements of θ⃗ are filled with zeros. The total
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loss of the model would be calculated as:

lT = lCE

(
AE(h⃗T ), θ⃗

)
+
∑
o∈obj

lMLP

(
Fo(P, T ), Ho(P, T )

)
(8.2)

where lCE and lMLP denote the cosine error and prediction error of the MLP decoder, respec-

tively. lMLP is calculated as cross-entropy loss for the classification task and mean squared

error for the regression task. AE(h⃗T ) is the generated vector from the autoencoder. Fo(.)

and Ho(.) show the predicted value and the groud-truth value (HLS results) for objective o,

respectively.

The t-SNE [MH08] visualizations of the embeddings generated by GNN-DSE and our

new proposed P vector (h⃗P) are compared in Fig. 8.4. t-SNE is a method that is capable of

representing data with high dimensionality through 2-D points, where data points that are

close together in the 2-D space are indicative of similar data, and those far apart indicate

dissimilar data. Each point in the figure represents a different design point from a different

kernel and is color-coded based on its kernel name. The embeddings generated from GNN-

DSE are interleaved when labeled by kernel name, whereas our proposed model successfully

clusters the embeddings based on the kernel they belong to. To quantitatively assess the

improvement in clustering, we compute the Euclidean distance between every pair of embed-

dings for a given kernel and measure the maximum and average distance among them. The

average (across kernels) of the average and maximum distance using h⃗P decreases by 3.7×

and 2.5× respectively, compared to the embeddings generated by GNN-DSE. These findings

highlight the effectiveness of h⃗P in understanding the program scope and its semantics.

Furthermore, Fig. 8.5 shows the t-SNE visualization of h⃗T for a random kernel from the

MachSuite benchmark [Rea+14], gemm-blocked, which is color-coded based on the perf

value. The perf value, defined in Chpater 7, represents the log speedup of the design points

to a reference latency value. In order to better illustrate the effectiveness of h⃗T , we compare

it with visualization using pragma options θ⃗. As the figure shows, there are some points

that are similar to each other when they are compared with their pragma options θ⃗ but

have large differences in their perf value. This is expected as a small change in the pragma

options (for example, changing the pipelining from coarse-grained to fine-grained) can have
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(a) GNN-DSE graph-level embedding.

(b) HARP P vector (h⃗P) representation.

Figure 8.4: t-SNE visualization of the generated embeddings that are color-coded by the

kernel name.

a significant effect on the resulting microarchitecture and the final performance. However,

h⃗T can effectively capture the impact of transformations, leading to improved clustering of
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(a) The input pragma options (θ⃗).

(b) HARP T vector (h⃗T ) representation.

Figure 8.5: t-SNE visualization of the T vector compared to input pragma options that

are color-coded by the performance value (log of speedup). Warmer colors indicate higher

performance (lower latency).
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design points. This helps us further in distinguishing the design points within the same

program.

Therefore, our proposed P and T vector representations together provide a better un-

derstanding of the program scope and the transformations that are applied to it. For the

final prediction, we concatenate these two vectors and pass them to MLP decoders. Like

GNN-DSE, we define two types of tasks, classification to predict whether a pragma candidate

creates a valid design or not, and regression to predict the latency and resource utilization.

Experimental results (Section 8.3.2) reveal that this model can decrease the loss by 10-23%.

8.2.2.2 Modeling Pragmas as Function Transformation via Neural Pragma Trans-

former (NPT)
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Figure 8.6: Modeling pragmas as function transformations using NPT: each pragma type

is modeled as a learnable MLP which takes in the embeddings of the pseudo node of the

pragma block along with the pragma option. A second level of MLP is used to merge the

results.

The primary goal of this study is to predict the objectives of an HLS design after applying

a specific transformation T to its behavioral description in program P. These transformations

are applied in the form of pragmas that alter the microarchitecture of the target application

(Section 2.1.1). For example, the parallel pragma duplicates statements within a loop and

creates parallel units to process them simultaneously. Therefore, it is appropriate to model

157



the pragmas (T) as functional transformations that are applied to the program P, which is

represented as a graph. Our model for achieving this goal is illustrated in Fig. 8.6.

The model in Section 8.2.2.1 can work with both the original graph and the hierarchy

graph. However, this model needs to be applied to the hierarchical graph. Since the actual

graphs are too crowded to visualize (∼ 400 nodes on average), a schematic of the hierarchical

graph is presented in Fig. 8.6. The blue boxes represent the LLVM blocks, and only one

representative node, namely, the icmp node, is depicted inside each box, which is connected

to the pragma nodes. Each box has a corresponding pseudo node, and these pseudo nodes

are connected with the hierarchical structure of the program as described in Section 8.2.1.

A GNN encoder with the same architecture as the one shown in Fig. 8.3 encodes the

graph. This encoder is intended to focus on the program’s structure along with the domain

of its pragmas. Therefore, all pragma nodes have the same attribute as their default option

(1 for parallel and tiling pragmas. ‘off’ for pipeline pragma). As a result, unlike in

Section 8.2.2.1, the input one-hot encoder does not encode the pragma options. After the

GNN encoder has finished, the nodes have gained insight into the program’s semantics in

addition to the domain of the pragmas. We then utilize the learnable NPT module to apply

pragmas as function transformations. NPT takes the embedding of the pseudo nodes that

contain a pragma node in their block as the input and transforms it based on the type of

the pragmas and their actual options. Each pragma type is modeled using a learnable MLP

that accepts the node embedding and the pragma option as input and transforms the node

embedding. If a pragma type is not present in the block, the default option is employed.

The results of the MLP transformation for each pragma type are concatenated, and another

MLP is used to learn their interactions and transform the concatenated result to the final

node embedding of the corresponding pseudo node. After this stage, the pseudo nodes have

acquired knowledge of the program semantics, the pragma domains, and their options. A

further GNN layer is utilized to propagate the new information (pragma options) to the rest

of the program nodes via message passing.

Once the final node embeddings have been generated, they are pooled to create the
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graph-level embedding. Consistent with the approach used in Section 8.2.2.1, two vectors

are generated with the attention mechanism in Eq. 8.1 to represent the program P and trans-

formation T separately. Note that in this architecture, the transformations T are applied to

the pseudo nodes. P vector (h⃗P) is generated by pooling the program nodes and B vector

(h⃗B) is the result of pooling the pseudo nodes, which are the primary sources containing

the pragma information. As before, h⃗P and h⃗B are concatenated, and the result is passed

through MLP decoders to predict the final objectives. Experimental results (Section 8.3.2)

reveal that this model can decrease the loss by 12-34% compared to GNN-DSE.

8.2.3 Transfer Learning

When faced with new programs or tasks, the data distribution may shift from the training

data distribution, making the prediction model unreliable. In Section 8.1, we discussed one

form of task shift that occurs when the HLS tool, used for synthesizing and implementing

the design, changes. In such cases, collecting all the labels again, including the latency and

resource usage, and retraining the entire pipeline can be time-consuming. To address this

issue, we aim to adapt to the new environment using less labeled data by leveraging transfer

learning. Specifically, we use the model trained on the previous version of the tool and

fine-tune it to adapt the predictions to the labels of the new version of the tool.

Transfer learning [Zhu+20] can be viewed as a form of task adaptation, where knowledge

learned from a source task is transferred to a target task with limited labeled data. In

our case, the source task refers to the previous version of the HLS tool, where a large

amount of labeled data is available, and the target task refers to the new version of the

tool, where limited labeled data is available. Additionally, as we transition to the new tool

version, we introduce new kernels to contain domain shifts as well. We speculate that one

important requirement for the success of transfer learning in this context is that the model

must have a clear understanding of the components that impact optimization results, namely

the program semantics and the impact of transformations. By distinguishing between these

two components, the model can better update its predictions when the data distribution
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shifts.

Fig. 8.7 presents the correlation matrix of the design objectives for the common design

points between versions v18 (SDx 2018.3) and v20 (Vitis 2020.2) within our HLSyn bench-

mark (introduced in Chapter 7). The correlation matrices between versions v18 and v21,

as well as between versions v20 and v21, follow the same trend and are included in Ap-

pendix A.2. In Section 6.4.2.2, we explained that a correlation coefficient of 1 indicates

perfect positive correlation, -1 indicates perfect negative correlation, and 0 indicates no cor-

relation. Notably, we observe a high correlation not only among some objectives within the

same version but also among the same objectives across different versions. This suggests

potential benefits for pretraining a model on one version of the tool and fine-tuning it on

another.

When the pretrained model’s target and the fine-tuned model’s target are highly cor-

related, it suggests that the knowledge encoded in the pretrained model is relevant to the

fine-tuning task. This can accelerate the learning process for new tasks. This correlation

suggests that the pretrained model has already acquired representations or features benefi-

cial for predicting the fine-tuned target. During fine-tuning, the weights of the pretrained

model are adjusted to better align with the new target task. A strong initialization from the

pretrained model can facilitate quicker convergence during fine-tuning and potentially yield

improved performance. Moreover, the risk of overfitting during fine-tuning is mitigated, as

the model learns generalizable features or patterns relevant to both tasks, aiding in regu-

larization and preventing the fine-tuned model from excessively fitting the training data.

Furthermore, fine-tuning may demand less labeled data to achieve satisfactory performance

compared to training the model from scratch, as the pretrained model has already acquired

useful representations from a potentially larger dataset.

Our experimental results demonstrate that indeed our graph representation and model ar-

chitecture are effective in improving the model’s performance after transfer learning. Specif-

ically, our approach achieves significant performance gains in terms of both the model accu-

racy and the DSE results when fine-tuned on the limited labeled data (in this case, about
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Figure 8.7: Correlation matrix of the design objectives resulted from AMD Xilinx SDx 2018.3

(v18) and Vitis 2020.2 (v20). The data is taken from our HLSyn dataset (Chapter 7).

half the size of the previous dataset) from the new version of the tool. We also demonstrate

that even in scenarios with ample data availability, transfer learning through fine-tuning re-

mains highly effective, further enhancing our performance metrics. Importantly, our HARP

design exhibits significantly greater capability in transfer learning compared to GNN-DSE,

underscoring the importance of the optimizations we implemented in the graph representa-
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tion and model architecture. These optimizations enable better learning of each problem

component, ultimately leading to a robust representation.

8.3 Experimental Results

8.3.1 Experimental Setup

Our framework is implemented and trained using PyTorch [Pas+19] on NVIDIA Tesla V100

GPUs. We use our HLSyn dataset, introduced in Chapter 7, for training. The dataset is

split into 70% for training, 15% for validation, and 15% for testing. We employ the Adam

optimizer [KB14] with a maximum learning rate of 1e-3, which is linearly increased from

zero over the first 2000 updates and then annealed to zero using a cosine schedule. Separate

models are trained for classification and regression tasks. The classification/regression model

is trained for 200/1500 epochs (taking less than 10h with 1 GPU) for the first version of

the database (v18) and 200 epochs for transfer learning to the v20 database. We pick the

model with the lowest validation loss and report its performance on the test set. The initial

embeddings have 154 features. We utilize 6 TransformerConv [Shi+20]) with a feature

dimension of 64 for the GNN encoder. The final objective prediction is performed using 4

MLP layers (one MLP network for each objective). The GNN and MLP layers are followed

by ELU activation [CUH15]. To mitigate overfitting, we apply dropout with a probability

of 0.1 to the neurons in the GNN layers. The NPT module utilizes two layers for each of

the MLPs. The autoencoder is an MLP with 4 layers that gradually reduces the feature size

from 64 to 8 and then increases it to 21 which is the dimension of the vector containing the

pragma options. When fine-tuning the model for transfer learning to the v20 database, we

freeze the first GNN layer and update the rest of the network.

8.3.2 Model Accuracy

We conducted a series of experiments to evaluate the effectiveness of various components

of our approach. Table 8.1 includes the model definitions that were tested in our ablation
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Table 8.1: Descriptions of models indicating the graph representation type and network

architecture.

Name Graph Model

GNN-DSE Original Coupled P&T (Chapter 6)

M2 Original Separate P&T

M3 Hierarchy Separate P&T

M4 Hierarchy Sequential pragma as Neural Pragma Transformer (NPT)

M5 Hierarchy Parallel & merge as Neural Pragma Transformer (NPT)

HARP Hierarchy Parallel & merge as Neural Pragma Transformer (NPT) + post GNN layer

Table 8.2: Total Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and perf

ranking (tau) of the models. For RMSE and MAE, the lower the better. For tau, the higher

the better. The percentage of difference is measured with respect to GNN-DSE (Chapter 6).

Table 8.1 contains the definitions of the models.

Name

v18 database v20 database

Train from scratch Train from scratch Fine-tuned from v18

RMSE MAE perf tau RMSE MAE perf tau RMSE MAE perf tau

GNN-DSE 1.104 0.357 0.90 1.253 0.770 0.78 0.955 0.479 0.85

M2
0.991

(-10%)

0.307

(-14%)
0.92

1.330

(+6%)

0.790

(+3%)
0.76

0.796

(-17%)

0.368

(-23%)
0.89

M3
0.975

(-12%)

0.257

(-28%)
0.93

1.443

(+15%)

0.948

(+23%)
0.70

0.872

(-9%)

0.348

(-27%)
0.89

M4
1.083

(-2%)

0.339

(-5%)
0.91

1.502

(+20%)

0.938

(+22%)
0.73

0.876

(-8%)

0.449

(-6%)
0.86

M5
0.989

(-10%)

0.277

(-23%)
0.92

1.073

(-14%)

0.636

(-17%)
0.81

0.739

(-23%)

0.309

(-35%)
0.89

HARP
0.974

(-12%)

0.295

(-18%)
0.93

1.015

(-19%)

0.601

(-22%)
0.82

0.679

(-29%)

0.317

(-34%)
0.90

studies. Firstly, we retrained the GNN-DSE model using our HLSyn database as the base-

line. Then, we developed M2 by replacing the model architecture of GNN-DSE with our
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proposed approach described in Section 8.2.2.1. This involved generating separate vector rep-

resentations for the program (P) and the transformation (T). Additionally, we constructed

M3 by replacing the graph representation with our hierarchical graph. Furthermore, we

implemented HARP based on the approach outlined in Section 8.2.2.2. Note that it also

exploits the idea of separating vector representations discussed in Section 8.2.2.1. We also

examined two variations of this model: M5, where the last GNN layer after the NPT module

was excluded, and M4, which additionally applied the pragmas sequentially instead of using

the existing parallel and merge structure of the NPT module. For each model, we evaluated

its performance under three different scenarios. The first two scenarios involved training

the model on datasets v18 and v20, respectively. The third scenario involved utilizing the

model pretrained on dataset v18 and fine-tuning it on dataset v20. Our empirical results

demonstrated that freezing the parameters of the first GNN layer, which helps reduce the

number of parameters requiring updates, resulted in the best performance after fine-tuning.

Table 8.2 summarizes the performance of each model, using three metrics to assess their

effectiveness. The first metric uses Root Mean Squared Error (RMSE) for each objective

and calculates the total loss by summing the losses of all objectives. The second one utilizes

Mean Absolute Error (MAE) instead. For both metrics, we also provide the percentage

difference compared to the results obtained from GNN-DSE. Since our primary objective

is to conduct DSE for design optimization, the ranking of the perf values holds significant

importance. Therefore, we employ Kendall’s tau [Ken38], a correlation coefficient that mea-

sures the similarity between two variables’ rankings. A value of 1 indicates a perfect positive

association. Hence, for RMSE and MAE, lower values indicate better performance, while

for tau, higher values indicate superior performance.

The analysis of the results reveals several key observations. Firstly, when we employ

separate learning of representations for program P and transformation T (M2), we observe

a decrease in both losses and an improvement in the tau ranking of perf. However, an

exception occurs when the model is trained from scratch on the v20 database. In this

case, the increased number of parameters in the new model makes it harder to converge
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in a limited training budget (dataset and training time). Nonetheless, when utilizing the

pretrained model from the v18 database, the performance is able to catch up and even surpass

GNN-DSE. A similar trend is observed when incorporating the hierarchical graph (M3),

which further improves the results. Additionally, our findings highlight that the optimal

architecture for the NPT involves modeling the pragmas as parallel learnable MLPs, with

another MLP responsible for managing their interaction and merging their results. Finally,

the most effective model for all scenarios (HARP) utilizes the hierarchy graph and consists

of NPT employing the parallel and merge structure, followed by an additional GNN layer

to propagate the pragma options throughout the program. It is important to note that this

architecture, as depicted in Fig. 8.6, also generates separate embeddings for program P and

pseudo nodes B, which contain the pragma (transformation) information here.

Moreover, the results in Table 8.2 align with our expectations, indicating a correlation

between the objectives obtained from the two different versions of the HLS tool. Impor-

tantly, we observe that the pretrained model from one version can effectively enhance the

performance of the other version. This eliminates the need to regenerate the whole training

set with each new version of the tool, streamlining the adaptation process. In addition, the

results demonstrate that HARP exhibits the best graph representation and model architec-

ture for effectively adapting to task shifts. This validates our hypothesis that by decoupling

the learning and representation of the program and its transformations (i.e., pragmas), the

model not only acquires a deeper understanding of each component but also enhances its

adaptability to new environments.

8.3.3 DSE Results

To verify the effectiveness of our model, we use it to identify the Pareto-optimal design points

by performing a DSE of the design parameters. We adopt the same exploration technique

as GNN-DSE in searching through the solution space. Specifically, we employ a bottom-up

approach that utilizes a BFS traversal of the pragmas, starting from the innermost loops.

This exploration strategy has shown to be very effective for this problem as it prioritizes the
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exploration of fine-grained optimizations over coarse-grained ones. HLS tools can usually

perform better for such optimizations, making this approach particularly relevant.

We employ HARP for conducting the DSE with a classification model to assist in pruning

invalid design points. Given the ample points available for training the classification model

and the relatively simpler task involved, we opt to train a model from scratch for each version

using its respective dataset. These models exhibit high accuracy, with rates of 95% for the

v18 database and 93% for the v20 database. Given their already high accuracy, we do not

employ additional transfer learning methods for them. During the DSE, the classification

model first determines the validity of the point, and if deemed valid, the regression model

assesses its quality. The DSE seeks to optimize the perf value (minimize the latency) while

ensuring that resource utilizations remain below 80%. We set a time limit of 1h/kernel on

our exploration and can explore approximately 100,000 points during this time. Once the

exploration is finished, we synthesize the top 10 points using the HLS tool to get their true

labels for comparison.

We also run DSE utilizing the GNN-DSE approach, trained on HLSyn datasets in the

same fashion. For the baseline comparison, we employ AutoDSE, which directly runs the

HLS tool to evaluate design points. Due to the nature of this approach, AutoDSE requires

a more extended runtime. Thus, we set a time limit of 25h/kernel for its DSE. During this

period, AutoDSE typically explores an average of 250 valid points. Note that not all of the

explored points can finish the synthesis as some of them may be invalid points.

Table 8.3 summarizes the DSE results obtained using versions v18 and v20 of the HLS

tool. The DSE is conducted on a total of 35 kernels for SDx 2018.3 (v18) and 26 kernels

for Vitis 2020.2 (v20). It is important to note that among the 22 kernels shared between

the v18 and v20 databases, the average latency of optimal design in v18 is 5.54× (1.36× on

the geometric mean) higher than that in v20, suggesting improvements in the heuristics of

the HLS tool over time. Due to space limitations, we only report the arithmetic (avg) and

geometric mean (geo mean) of the speedup of the optimal design found by each DSE with

respect to the best design discovered by AutoDSE. As the model-based DSEs get to explore
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a much larger space, they can find better points compared to a model-free DSE. Notably,

for 3mm kernel from PolyBench with a solution space of over 17 trillion points, both HARP

and GNN-DSE demonstrate speedups of 70×. The results reveal that HARP outperforms

both AutoDSE and GNN-DSE. Specifically, HARP showcases its competence in adapting

to new versions of the HLS tool (v20 kernels), surpassing the performance of GNN-DSE by

an average (geometric mean) speedup of 1.38× (1.35×). It is important to highlight that

when transitioning to the v20 dataset, in addition to the task shift, we also have included 4

new kernels, resulting in a domain shift as well. The results validate our hypothesis that the

hierarchical graph structure in addition to the decoupling of program and transformation

learning contributes to better adaptation capabilities in the face of shifts from the original

training data distribution.

Approach
Time v18 kernels (#:35) v20 kernels (#:26)

Limit avg geo mean avg geo mean

AutoDSE 25h/kernel 1× 1× 1× 1×

GNN-DSE 1h/kernel 3.51× 0.99× 0.84× 0.78×

HARP 1h/kernel 3.61× 1.23× 1.16× 1.05×

Table 8.3: The performance of the best design found by each DSE with respect to the best

one found by AutoDSE in 25h.

8.3.4 Ablation Study: Transfer Learning with Abundant Data

In Section 8.3.2, we demonstrated that higher prediction accuracy can be achieved through

transfer learning when limited data is available. This in turn leads to improved DSE results.

To investigate the effectiveness of transfer learning with a large dataset, we developed a

larger dataset with Vitis 2021.1 (v21) as detailed in Table 7.1. Similar to previous findings,

training a classification model on this dataset yielded 99% accuracy, eliminating the need

for further transfer learning. However, for the regression model, we pursued two different

approaches. Initially, we fine-tuned the v20 model using the v21 dataset for 400 epochs.

Then, considering the large number of data available for this version, we trained another
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model from scratch on the dataset for 1500 epochs until it nearly matched the accuracy of

the fine-tuned model on the test set.

We use the same experimental setting as in Section 8.3.3. Similar to the improvement

we saw in designs’ performances when we transitioned from v18 to v20, we see an average

latency reduction of 2.68× (1.58× on the geometric mean) in the optimal design points for

the 25 common kernels when we transition from the v20 to the v21 HLS tool. This further

shows the improvements in the HLS tools with each new version.

Table 8.4 presents a summary of the arithmetic and geometric mean speedup achieved

by each approach compared to the best results obtained by AutoDSE. Notably, model-

based approaches demonstrate strong performance when trained from scratch due to their

extensive training data. This, coupled with their ability to explore a larger solution space,

enables them to discover better design points. However, fine-tuning a pretrained model from

a previous version of the HLS tool yielded no advantages for GNN-DSE. It is noteworthy

to mention that alongside the task shift, we also encounter a domain shift, with 15 new

kernels introduced compared to v20 and 6 new kernels compared to v18 (the pretrained

model for v20). In contrast, HARP exhibits more robust results and notable improvements

post-transfer learning.

This feature is highly desirable as it allows us to leverage previously gathered data, a pro-

cess that incurred significant costs. Rather than discarding efforts and expenses associated

with collecting datasets from prior HLS tool versions and kernels, we can utilize them to

achieve enhanced optimization outcomes. Note that in the current setup, the model trained

from scratch nearly underwent 3.75× more epochs to achieve the same test set accuracy

as the fine-tuned model. Nevertheless, the fine-tuned model demonstrates superior general-

ization across the entire solution space, which includes many unseen points. Notably, this

trend is not observed for GNN-DSE, indicating that HARP exhibits better generalization

capabilities. This validates our hypothesis that the hierarchical graph structure in addition

to the decoupling of program and transformation learning contributes to a more robust rep-

resentation and better adaptation capabilities in the face of shifts from the original training.
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Approach

Time v21 kernels (#:40)

Limit Trained from scratch Fine-tuned from v20

h/kernel avg geo mean avg geo mean

AutoDSE 25 1× 1× 1× 1×

GNN-DSE 1 1.17× 1.04× 1.16× 0.98×

HARP 1 1.19× 0.82× 1.46× 1.15×

Table 8.4: The transfer learning results when a larger dataset is present. The performance

comparison shows the best design found by each DSE with respect to the best one found by

AutoDSE in 25h.

8.3.5 Ablation Study: Impact of the Classification Model

In Section 8.2.2, we discussed that numerous pragma combinations result in an invalid design.

We defined an invalid design as one that either cannot be synthesized, exceeds a given

synthesis time limit, or at least one of the pragmas could not be applied. Table 7.1 shows

that in our database, only 30% of the points created a valid design point. Therefore, it is

crucial for our optimizer to identify and discard design points that cannot produce a valid

microarchitecture. Our classification model is responsible for this task. Table 8.5 compares

the speedup performance we achieve compared to AutoDSE when our classification model is

absent. Here, we focus solely on the top 10 designs generated by the model. Acknowledging

that they may all be invalid designs, we calculate a modified version of the geometric mean

(denoted as geo mean* ), where we add one to all speedup values and subtract one from the

resulting geometric mean. The results show that the classification model can help to improve

the DSE results since it can prune the invalid points.

8.3.6 Ablation Study: Alternative Hierarchy Structure and Larger Model

We tested two additional alternatives to determine if they could improve our results. First,

we explored a slightly different hierarchy structure in the graph representation. Instead

of connecting the first pseudo_blocks of each ‘for’ loop to form the second level of the
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Dataset
Without Classification With Classification

avg geo mean* avg geo mean*

v18 #:35 3.14× 0.89× 3.61× 1.37×

v20 #:26 0.93× 0.88× 1.16× 1.05×

v21 #:40 1.34× 0.92× 1.46× 1.09×

Table 8.5: Impact of the classification model. The baseline is AutoDSE after running for

25h.

hierarchy, we introduced new pseudo nodes to represent the ‘for’ loops and connected them

based on their hierarchy. Second, we examined the effect of making the model larger by

increasing the number of model parameters. We achieved this by increasing the dimension

of the hidden layers in the GNN, meaning that we increased the number of features in the

graph/node embeddings. Additionally, we added extra layers to the subsequent MLPs to

gradually reduce the size of these embeddings for the final prediction. The model was trained

from scratch on the v21 dataset, using a similar approach as before.

Figure 8.8 shows the MSE loss of each model on the test set. The results indicate that

using a higher dimension and more parameters generally reduces the loss. As the dataset size

increases, we could potentially increase these parameters further. While the new hierarchy

structure showed some improvement in loss for two cases, this trend was not consistent across

all cases. We further ran DSE using models with a dimension of 128, as they performed well

with both graph representations. Table 8.6 summarizes the DSE results for these models

and compares them to the HARP model from Section 8.3.4. The DSE results indicate that

increasing the parameter size improves model performance. However, the new hierarchy

structure does not provide consistent benefits. It is important to note that the DSE process

evaluates more than just the MSE loss; it also considers prediction accuracy for ranking of

points based on their latency.

170



Figure 8.8: Impact of alternative hierarchy structure and larger model on the Mean Squared

Error (MSE) on test set. In the new hierarchy graph, we define new pseudo nodes for ‘for’

loops.

Model
v21 kernels (#:40)

avg geo mean

D=64, HARP graph 1.19× 0.82×

D=128, HARP graph 1.22× 0.99×

D=128, New hierarchy graph 1.12× 1.01×

Table 8.6: Impact of alternative hierarchy structure and larger model. In the new hierarchy

graph, we define new pseudo nodes for ‘for’ loops. The baseline is AutoDSE after running

for 25h.

8.4 Conclusion

In this chapter, we discussed three key challenges in developing a GNN-based model for

HLS and developed HARP for addressing them. Firstly, we tackle the long-range depen-

dency issue in HLS kernels by proposing a hierarchical graph structure, reducing the average

shortest path in our benchmark kernels by 5×. Secondly, recognizing that the final objec-
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tives are influenced by two main components, program structure and its transformations in

the form of pragmas, we decouple their representation to enhance the model’s performance.

This improved graph representation and model architecture enable better adaptation to the

inevitable domain and task shifts.
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CHAPTER 9

Concluding Remarks

This dissertation aims to enhance the accessibility of customized computing by creating

automated frameworks capable of producing efficient accelerators. Given the importance of

machine learning in today’s world and its applications across various industries, we believe

it is essential to develop specialized accelerators to process them efficiently. Therefore, in

the first part of the dissertation, we concentrate on building highly efficient architectures

tailored for handling well-known machine learning tasks. While this method holds great

promise for creating accelerators suited to specific purposes, repeating all the necessary

steps for each new application requires substantial manual effort and may not be practical.

Fortunately, machine learning can help us develop optimizers that target general applications.

Consequently, in the second part of the dissertation, we aim to explore how to use machine

learning to automate the process of designing microarchitectures, making it applicable to

any given application.

In this regard, our initial effort focused on developing FlexCNN in Chapter 3, a flex-

ible and composable architecture designed for processing CNN applications. We demon-

strated that using a uniform tiling factor and data layout across all network layers leads to

low performance due to varying layer characteristics impacting each layer’s computation-to-

communication ratio. To adapt to these variations, FlexCNN employs dynamic tiling and

data layout optimization strategies to improve hardware efficiency across different layers.

We built a DSE engine guided by analytical latency and resource models to determine opti-

mal hardware configurations for the target network. We were able to develop an analytical

model because we worked with a fixed architecture template and only needed to modify a

few parameters, such as the number of processing elements and tiling factors. FlexCNN uses
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this information to generate the best architecture for the network, fuse different network

operations to determine which ones can be executed in one architecture pass, and gener-

ate instructions for running the entire network. We also developed a library to integrate

FlexCNN with TensorFlow, providing an end-to-end framework. This library reads the net-

work description, generates the optimal architecture, and offloads CNN processing to an

FPGA. We identified significant overhead when connecting the FPGA to TensorFlow, so we

developed a two-level pipelining system to overlap their execution. We showed that all these

optimizations result in 11.5× speedup for our target network, OpenPose.

Subsequently, we shifted our focus towards analyzing and exploring optimization oppor-

tunities involved in the application of GCN to small graphs. We noted that GCNs have

different computational complexities and memory access patterns compared to CNNs and

traditional graph algorithms, suggesting they could benefit from a specialized accelerator.

Therefore, we developed an efficient architecture named StreamGCN in Chapter 4, specifi-

cally designed for streaming processing of small graphs. It is especially suitable for facilitating

real-time or near real-time search and similarity computations of graphs, with applications

across fields such as biology, chemistry, and pharmaceuticals. We identified two types of

sparsity in GCN computations. The first one is due to the sparsity of the adjacency ma-

trix, which has been exploited in previous works, while the second one involves the node

embedding matrix, which has been overlooked by previous studies. The adjacency matrix is

known in advance, while the node embedding is generated dynamically, so we lack informa-

tion on its sparsity. Consequently, these two require different approaches to exploiting their

sparsity. We preprocess the adjacency matrix to prune zero elements and reorder them to

eliminate dependencies, allowing us to schedule new operations in each cycle. For the node

embeddings, we developed a mechanism that uses a pruner and an arbiter to prune zero

elements on-the-fly. As this is a memory-bound application, we further minimized global

memory access by reading each element once and scheduling all associated computations

before evicting it. We implemented StreamGCN with a deep pipeline that offers varying

levels and degrees of parallelization, including node, edge, feature, and batch parallelization,
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to effectively manage the workload across different stages. Our optimizations resulted in

2.3× speedup while requiring 1.7× less computation resources (DSP).

The second part of this dissertation focuses on democratizing FPGA acceleration for

general-purpose programs. We aim to simplify the adoption of customized computing by

optimizing an application’s microarchitecture through code augmentation with high-level

architectural pragmas. We began this line of work with the development of AutoDSE in

Chapter 5. Given the disparities in HLS tool implementations and the unpredictable effects

of pragmas on design objectives, we opted to treat the HLS tool as a black box. However,

this approach resulted in long evaluation times for each design point. This was particularly

problematic as the solution space grows exponentially with the number of pragmas. We

found that application-oblivious search heuristics were too slow because they lacked knowl-

edge of the various types of pragmas and their impact on different parts of the code. To

address this challenge, we proposed a bottleneck-guided coordinate optimizer and developed

AutoDSE as a push-button framework around this concept to systematically and efficiently

explore the solution space. To enhance the representation of solutions, we introduced a list

comprehension-based design space representation and formulated rules to eliminate mean-

ingless design points and shrink the size of the solution space. Additionally, we implemented

a partitioning strategy to mitigate the local optimum problem stemming from the non-

monotonic effects of pragmas. We demonstrated that AutoDSE can find design points that

closely match manual performance across a wide range of applications. AutoDSE outper-

formed the previous state-of-the-art works by a factor of 3.45× to 17.92×. On manually-

optimized vision kernels from the Xilinx Vitis Library [Xilb], AutoDSE achieved slightly

better performance while requiring 26.38× fewer optimization pragmas.

While AutoDSE excels in identifying Pareto-optimal points, its reliance on running the

HLS tool for evaluating design candidates makes it a very time-consuming approach. Con-

sequently, it explores only a small fraction of the solution space. To speed up the evaluation

process, we leveraged GNNs to build a learning model capable of predicting the design’s

objectives within milliseconds. We developed a heterogeneous graph-based program repre-

175



sentation based on LLVM IR that integrates both program semantics and candidate pragmas,

leading to the development of the GNN-DSE framework in Chapter 6. GNN-DSE further

employs a carefully-designed GNN-based model for extracting essential information required

for estimating our desired targets. The GNN model applies message passing, inspired by

the Transformer [Vas+17] architecture, on the attributes we defined for each node and edge

to create embeddings that show the role of each node in the graph. It then dynamically

selects the neighborhood range for each node and uses an attention mechanism to evaluate

the importance of each node in the graph, pooling the node embeddings into a single graph-

level embedding, accordingly. We extended AutoDSE to sample a representative database

for training a learning-based model. We also described how to use the model directly in

an active learning setting to select more informative points for the database. We demon-

strated that this approach achieves high accuracy and yields superior DSE results compared

to AutoDSE, primarily since it can explore a significantly larger solution space. Addition-

ally, we compiled the HLSyn database in Chapter 7, consisting of 41 distinct kernels and

employing three different AMD Xilinx HLS tools to generate labels, resulting in over 81,000

labeled designs, to serve as a large training dataset for training the models.

While GNN-DSE showcased the effectiveness of developing a learning-based optimizer,

we identified and addressed three challenges to enhance the robustness of representation

learning. This led to the development of HARP in Chapter 8, which stands for Hierarchical

Augmentation for Representation with Pragma optimization. First, we found that the graph

representation had long-range dependencies, whereas GNNs, with their shallow networks, are

more suited for applications requiring a local perspective and often miss capturing a global

view. To mitigate this, we introduced a hierarchical graph structure that decreased the

average shortest path of HLSyn kernels by 5×. Specifically, we retrieved missing information

about the design’s hierarchy that was lost when converting it to LLVM IR. This additional

information helped reduce the shortest path and bring the entire graph within the receptive

field of our GNN. Second, we discussed that the final design’s objectives depend on both the

program structure and the pragmas applied as program transformations. We showed that
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model prediction could be improved by separating the learning of these two components and

proposed effective ways to achieve this. Lastly, we discussed two types of shifts that can

occur during deployment: domain shift, when encountering a new kernel, and task shift,

when facing new labels to predict, such as when changing the HLS tool. We showed that

the combination of our hierarchical graph and new model architecture not only improves

prediction accuracy but also leads to more robust representations and better adaptability

to shifts. These optimizations enable the model to accumulate knowledge from different

sources and steadily strengthen its predictive capabilities. This is crucial given the difficulty

of collecting large labeled datasets of HLS designs, allowing us to leverage and integrate

knowledge from different sources rather than discarding the previous dataset and starting

over.

Even though our focus in this dissertation is on FPGAs, our design decisions are not

dependent on them. We believe that our approach can be applied to other platforms and

HLS tools as well. Moving forward, there are several promising directions for extending the

work in this dissertation:

We recognize that machine learning plays a significant role in today’s world. Also, manu-

ally analyzing the optimization space of an algorithm and designing a specialized architecture

can yield the most efficient accelerator. Though manually designing an accelerator for each

application may not be scalable, we believe it is worthwhile to do for widely used machine

learning applications. The architecture should be flexible enough and supported by a com-

piler that can optimize it to match the computation and communication requirements of the

target network, similar to our approach in the FlexCNN work.

Although machine learning for EDA holds great potential, applying it to design such

large microarchitecture for machine learning applications may not be feasible at the mo-

ment. This is primarily due to the intractable solution space that emerges from numerous

new optimization opportunities, such as code transformation for data layout optimizations,

enabling task-level pipeline parallelism across design stages, etc. To address these challenges

automatically, further enhancements to the learning-based framework are necessary, as dis-
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cussed later. Nevertheless, a hybrid approach can still be taken by manually breaking down

computations into smaller stages and allowing the learning model to optimize them more

quickly, freeing designers from this task.

The most critical problem in adopting machine learning for EDA is the lack of open-source

datasets and the significant time investment required to generate them using EDA tools,

which are typically slow. To advance this field, we believe it is crucial to develop more efficient

methods for selecting data points that need labeling, as suggested in [SS17]. In addition,

in our HARP work, we demonstrated that the model can benefit from a pretrained model

when designed appropriately. Building on this, we suggest leveraging pretrained models

through self-supervised learning techniques [Liu+22] or by creating an artificial dataset of

HLS kernels using analytical models. Although we discussed that the analytical models may

not precisely capture HLS implementations, they can serve as a primitive form of HLS tool,

aiding in the understanding and differentiation of various programs and transformations.

Subsequently, fine-tuning can help refine predictions and adapt them to the actual HLS tool.

On the representation side, we developed our graph representation based on LLVM IR and

aimed to retrieve missing hierarchical information that can enhance the GNN performance.

The Multi-Level IR (MLIR) compiler framework [Lat+20] provides a promising alternative

for building more informative graphs, as this work also aims to retrieve information that

might be lost when using a traditional compiler. Utilizing hierarchical GNNs [Yin+18b]

could also prove beneficial, allowing us to divide the graph into sub-graphs, summarize local

information, and gradually integrate them to form a global view and facilitate compositional

objective prediction. We also see significant potential in combining GNNs with Large Lan-

guage Models (LLMs) [Zha+23b], as this approach enables us to leverage various design

modalities: graph representation and source code. Moreover, state-of-the-art LLMs, trained

on vast datasets of diverse code, offer invaluable resources for our task, which is constrained

by small datasets.

Given our successful development of a learning model to predict the quality of an HLS

design, we believe that applying this data-driven approach to the search process could also
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be effective. In our work on AutoDSE, we observed that traditional search heuristics such

as simulated annealing and genetic search are not efficient for this problem. By carefully

analyzing the space and the problem, we could develop a highly efficient heuristic to explore

the search space. Although this analysis was done manually, a data-driven approach in the

DSE stage could automate the process and enhance exploration by training a reinforcement

learning agent [Wan+20] or employing black-box optimization [KMG22].
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APPENDIX A

Appendix

A.1 Optimized HLS Code for CNN

Code A.1 shows the optimized HLS code for the CNN algorithm in Code 5.1 after applying

the code transformations and pragmas listed in Table 5.1.

Code A.1: Optimized CNN HLS C Code Snippet
1 // Skip const variable initizalization for brevity

2

3 void CnnKernel(const ap_uint< 128 > * input, float weight,

4 const ap_uint< 512 > * bias, ap_uint< 512 > * output){

5 #pragma HLS INTERFACE m_axi port=input bundle=gmem1 depth=3326977

6 #pragma HLS INTERFACE s_axilite port=input bundle=control

7 // Skip the rest for brevity

8

9 float bias_buf[ParallelOut][ParallelOut];

10 #pragma HLS array_partition variable=bias_buf complete dim=2

11

12 float C[ParallelOut][ImSize][ImSize];

13 #pragma HLS array_partition variable=C cyclic factor=8 dim=3

14 #pragma HLS array_partition variable=C cyclic factor=2 dim=2

15 #pragma HLS array_partition variable=C complete dim=1

16

17 LoadBurst(bias, bias_buf);

18

19 for (int i = 0; i < NumOut / ParallelOut; i++) {

20 float weight_buf[NumOut / ParallelOut][NumIn][kKernel][kKernel];

21 #pragma HLS array_partition variable=weight_buf complete dim=4

22 #pragma HLS array_partition variable=weight_buf complete dim=3

23 #pragma HLS array_partition variable=weight_buf complete dim=1

24

25 float output_buf[NumOut / ParallelOut][OutImSize][OutImSize];

26 #pragma HLS array_partition variable=output_buf cyclic factor=16 dim=3
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27 #pragma HLS array_partition variable=output_buf complete dim=1

28

29 LoadBurst(weight, weight_buf);

30 // Initialization

31 for (int h = 0; h < ImSize; ++h) {

32 for (int w = 0; w < ImSize / 4; ++w) {

33 #pragma HLS dependence variable=C array inter false

34 #pragma HLS pipeline

35 for (int w_sub = 0; w_sub < 4; ++w_sub) {

36 #pragma HLS unroll

37 for (int po = 0; po < ParallelOut; po++) {

38 #pragma HLS unroll

39 C[po][h][w * 4 + w_sub] = 0.f;

40 } } } }

41 // Convolution

42 for (int j = 0; j < NumIn; ++j) {

43 float input_buf[InImSize][InImSize];

44 #pragma HLS array_partition variable=input_buf cyclic factor=8 dim=2

45 #pragma HLS array_partition variable=input_buf cyclic factor=5 dim=1

46 LoadBurst(input, input_buf);

47 for (int h = 0; h < ImSize; ++h) {

48 for (int w = 0; w < ImSize / 4; ++w) {

49 #pragma HLS dependence variable=C array inter false

50 #pragma HLS pipeline

51 for (int w_sub = 0; w_sub < 4; ++w_sub) {

52 #pragma HLS unroll

53 for (int po = 0; po < ParallelOut; po++) {

54 #pragma HLS unroll

55 float tmp = 0.f;

56 for (int p = 0; p < kKernel; ++p) {

57 #pragma HLS unroll

58 for (int q = 0; q < kKernel; ++q) {

59 #pragma HLS unroll

60 tmp += ...;

61 } }

62 C[po][h][w * 4 + w_sub] += tmp;

63 } } } } }

64 // ReLU + Max pooling

65 for (int h = 0; h < OutImSize; ++h) {

66 for (int w = 0; w < OutImSize; ++w) {

67 #pragma HLS dependence variable=output_buf array inter false

68 #pragma HLS pipeline

69 for (int po = 0; po < ParallelOut; po++) {
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70 #pragma HLS unroll

71 output_buf(h, w, po) = ...

72 } } }

73 StoreBurst(output, output_buf);

74 } }

Figure A.1: Correlation matrix of the design objectives resulted from AMD Xilinx SDx

2018.3 (v18) and Vitis 2021.1 (v21).
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A.2 Correlation Matrices of HLSyn Benchmark

We depicted the correlation matrix between versions v10 and v20 in Section 8.2.3. Fig. A.1

shows the correlation matrix between versions v18 and v21 of our HLSyn benchmark, while

Fig. A.2 illustrates the correlation matrix between versions v20 and v21. Across successive

versions, we observe a high correlation among the same objectives, suggesting that fine-

tuning could be highly effective, as discussed in Section 8.2.3.

Figure A.2: Correlation matrix of the design objectives resulted from AMD Xilinx Vitis

2020.2 (v20) and Vitis 2021.1 (v21).
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