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Distributed Mode and Power Selection for
non-Orthogonal D2D Communications:

a Stochastic Approach
Federico Librino, Member, IEEE, and Giorgio Quer, Senior Member, IEEE.

Abstract—The coexistence of device-to-device (D2D) and cel-
lular communications in the same band is a promising solution
to the dramatic increase of wireless networks traffic load, in
particular in the presence of local traffic, when source and
destination nodes are in close proximity. In this case, the mobile
nodes can communicate in a semi-autonomous way (D2D mode),
with minimal or no control by the base station (BS), but they may
create a harmful interference to the cellular communications.
In order to avoid it, we design a distributed approach that
allows the mobile node to acquire in real time local information
by observing few channel and topology parameters. Based on
this information, each user can infer in advance not only the
quality of its transmission, but also its impact on other ongoing
surrounding communications towards the BS. This enables a
smart, adaptive mode and power selection performed with a
network wide perspective. Differently from most approaches, this
selection is made autonomously by each D2D sources, with no
need for a centralized scheduling. We compare our strategy to
the state-of-the-art in the same distributed network scenario,
showing the importance of exploiting local information for a
dynamic, interference aware power and mode selection.

I. INTRODUCTION

The recent advancements in cellular networks introduced
faster and more reliable communications, both in the up-
link and the downlink, due to a smarter assignment of
time/frequency resources. In particular, LTE technology led
to a huge increase in the overall network capacity thanks to
innovations in coding/decoding devices and to the application
of novel communication strategies.

The amount of traffic load is also increasing dramatically:
social media have driven the spread of file sharing (photos,
music, and videos), while many widespread mobile applica-
tions require frequent data exchanges with a remote server.
Handling this amount of communications with a given quality
of service (QoS) is challenging. Currently, 5G technologies
are being developed to answer the need for further increasing
network capacity, and among them, device-to-device (D2D)
communications are attracting increasing attention [1]–[6]. In
particular, D2D communications are a valid alternative in the
presence of traffic to be exchanged locally, i.e., when source
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and destination are in close proximity, as in file exchange be-
tween two colocated user equipments (UEs), in certain gaming
applications, or when a UE downloads local information from
wireless sensors in a smart city [7].

In this work, we divide the UEs based on their traffic, and
we distinguish between UEs with global traffic (UE-GTs),
and with local traffic (UE-LTs). A UE-GT is a cellular user
communicating with the corresponding base station (BS), since
its intended destination is not in close proximity. A UE-LT
can instead transmit its packets directly to its corresponding
destination, which is located within a short distance, in the
same or in an adjacent network cell.

If an orthogonal channel is available, it is possible to
allocate it to the D2D communication and to avoid any
interference to the BS. The problem is more complex when
the spectrum resources must be shared with the BS (non-
orthogonal channel). In this case, we can distinguish two
approaches. The first is a centralized approach, which consists
in letting the BS schedule all the D2D communications and to
balance the overall interference level [8], [9] by exploiting full
channel state information (CSI) about all of the involved links.
Centralized schemes based on global information can achieve
the optimal performance, but this acquisition is not always
possible since it requires a considerable overhead at the BS
to collect CSI, and it may be significantly disadvantageous in
the case of close proximity between the UE-LTs. The second
approach includes distributed schemes relying only on local
information, either static or dynamic. The knowledge of local
information is exploited by each user to estimate the effect of
the surrounding network environment on its performance, thus
allowing to perform the mode, power and channel selection to
attain a target QoS.

The drawback of this distributed approach is that it usually
aims only at keeping the user performance close to a pre-
defined level, but completely neglects the potentially strong
impact that a transmission can cause on the surrounding
communications.

In this work, we aim at incorporating also this aspect into
a distributed power and mode selection scheme. To this end,
we design a distributed strategy to deal with non-orthogonal
D2D transmissions without a centralized coordination by the
BS. The uplink resources of the cellular network are shared
between the UE-GTs (transmitting to the BS), and the UE-LTs
(the D2D terminals), while no additional spectrum resources
are reserved for the D2D data communications. Our distributed
approach is based solely on local information, including



critical time-varying parameters. However, differently from
other schemes, this information is then exploited at each D2D
source to estimate the impact of the selected transmission
mode and power level on the neighboring nodes, in terms of
capacity reduction. This allows us to find a tradeoff between
a selfish mode/power selection, which aims exclusively at
maximizing the user performance, regardless of the surround-
ing communications, and a network aware selection, which
is determined solely by the network conditions and allows
only non interfering D2D communications. Such tradeoff is
enforced by a protection mechanism employed by the core
network, thus granting a superior global network performance.

The main contributions of this paper are summarized in the
following.
• We propose a novel transmission strategy for a UE aiming
to transmit local traffic through D2D communications by
sharing the uplink resources with the cellular network. The
novelty of the approach resides in the fact that the scheduling
is autonomously performed at the D2D node using local
topological and channel information, not only to predict the
D2D quality of service, but also its impact on the capacity of
surrounding channels.
• A Bayesian Network (BN) probabilistic approach is pro-
posed in our scenario to cope with the limited and unreliable
information collected locally, in order for the UE to choose
the D2D mode only if the network conditions are suitable. We
stress the fact that in our scenario it is not possible to seek
for a global optimal solution, since the available information
is limited.
• We showcase the advantages of our stochastic technique, as
compared to the state-of-the-art, in the distributed scenario
considered. The performance is evaluated at the link level
to understand the behavior of the UE-GTs and the UE-LTs.
Then the system level performance is evaluated, showing a
substantial gain of our strategy for the UE-GTs with respect to
other state-of-the-art techniques. These results confirm that, in
the absence of a centralized controller, using local information
to predict both the expected quality of communication and the
impairment caused to the surrounding nodes can significantly
improve the network performance.

The rest of the paper is organized as follows. We overview
the most recent 3GPP releases in D2D communications and the
related works in Sec. II. In Sec. III we describe our distributed
network scenario and the corresponding system model, while
our proposed technique is outlined in Sec. IV. The details of
the BN probabilistic approach are illustrated in Sec. V, then the
results for the direct D2D transmissions are shown in Sec. VI.
Sec. VII concludes the paper.

II. RELATED WORK

The concept of D2D proximity services in an LTE network
has been proposed by 3GPP as a promising way to either
reduce the traffic load at the BSs, or to extend service beyond
cellular coverage in emergency scenarios, where the core
network may be unavailable [1], [3]. Most of the opportunities
and challenges foreseen by 3GPP in establishing D2D connec-
tions in a cellular network, including peer discovery, resource

allocation, synchronization and interference management, are
discussed in [2]. Pricing models for D2D are introduced in [4],
while multiple-input-multiple-output (MIMO) D2D communi-
cations are discussed in [5], and an opportunistic multi-hop
forwarding technique is presented in [10]. In these papers,
D2D communications are investigated as a mean to extend
the cellular coverage, i.e., a mobile terminal may forward the
data packets to/from another terminal that is not in the range
of a BS. Differently from these works, in our paper we do
not exploit D2D to extend the coverage area of the BS, but to
allow a direct communication among UEs in close proximity.

The use of an orthogonal channel for D2D communications
is investigated in [11], where nodes in a single cell scenario are
organized into clusters by centralized scheduling. In our work,
conversely, we focus on non-orthogonal spectrum sharing
between nodes transmitting to the BS, and nodes in D2D
mode. In this case, there are two ways in the state-of-the-art
to access the spectrum. 1) The D2D source can transmit only
on a temporarily free channel (overlay), without interfering
with the BS, and 2) it can also use a busy channel by limiting
the resulting interference (underlay). In [12] both options are
analyzed in terms of coverage probability and connectivity of
the D2D network, by means of stochastic geometry tools.

In the literature, the resource allocation in an underlay
approach in a multicell scenario is often done by a centralized
entity (usually located at the BS) based on the available and
collected information about the channels [13]–[15]. An opti-
mal allocation of D2D and cellular (D2B) communications,
following the underlay principle, is detailed in [13], where
mutual interference constraints are taken into account to derive
a centralized scheduling. CSI is also exploited in [15]; here,
the idea is to limit the interference of D2D communications
over cellular links by deriving an outage constrained precoding
at the D2D source. Also in this case, where multiple antennas
are considered, a proper centralized optimization problem is
set up, taking into account that only partial CSI is available on
some channels. An optimal centralized transmission strategy
based on a Markov decision process is instead derived in [16]
in a single-cell scenario. In the multi-cell scenario, however,
this global optimization would result in a computationally
unfeasible state space cardinality.

A main difference between our approach and the aforemen-
tioned works lies in our strategy to mitigate the interference,
which is not based on a centralized optimization problem
(assuming full or partial CSI over all the channels), as in [9],
[11], [13], [17]. Instead, we rely only on local information,
distributedly acquired thanks to the observation of topology
and channel parameters, and on its exploitation via a BN
approach.

An interesting solution in a similar scenario, without a
centralized coordination entity, is proposed in [18]. In that
work, D2D communications with power control can be per-
formed using uplink resources only if source and destination
are within a maximum distance, as in our approach, in order to
keep interference within an acceptable level. Nonetheless, the
choice to transmit directly to the receiving UE or to the BS is
based only on parameterized topological considerations, thus
lacking the fundamental adaptiveness of our approach. This



approach is summarized in Sec. IV-E, and its performance is
compared to our work in Sec. VI.

Another distributed approach, the Distributed Power and
Mode Selection (DPMS), is presented in [19], where each
potential D2D transmitter can autonomously perform mode
and power selection based on the measured interference levels
at both the intended D2D receiver and at the BS. This scheme
shows an increased adaptivity, but local information is used
only to estimate the D2D transmission quality, thus ignoring
the potentially high interference caused to the surrounding BS.
We highlight the importance of this aspect by comparing our
technique with DPMS in Sec. VI.

Other distributed approaches are instead implemented in
multi-channel scenarios [20]–[22], thus including also resource
allocation. In [20], users are distributedly partitioned into
coalitions, and power control algorithms are implemented to
maximize the sum-rate within each coalition. Here, however,
each user has its own dedicated uplink resources, which
can be shared among multiple users in such a way that the
interference on shared channels is minimized. Coalitions are
created also in [21], each one composed by the users which
selected the same transmission mode. Each coalition aims
at minimizing the overall transmit power while attaining a
predefined target rate. However, the analysis is limited to a
single cell scenario. Authors in [22] propose a distributed
channel and power selection for D2D sources based on a
Stackelberg game with pricing. This is also a stochastic ap-
proach, since the D2D transmitters adopt a stochastic learning
algorithm to minimize interference. However, mode selection
is not considered, downlink resources are exploited, and a
single cell scenario is studied.

Finally, in our previous works, we applied a probabilistic
approach to the design of a network-aware retransmission
strategy [23] in an ad hoc wireless network, and to promote
cooperation between two adversarial ad hoc networks that
share the same spectrum [24]. In [25], we investigated a two-
tier network, where the D2D tier coexists with the D2B tier
thanks to a probabilistic approach. In that work, in order to
make the inference on the amount of interference to the BS,
the potential D2D source needed to collect information about
all the channels to all its neighbors, including the neighboring
BSs and D2D nodes, thus making this approach unfeasible.
Furthermore, the potential D2D source in that work did not
have the choice to adaptively switch to a D2B mode, as in the
current work, and power control was not adopted.

III. SYSTEM MODEL

A. Primary tier: cellular users

In this paper, we study a 4G cellular network, where BSs are
distributed according to a bi-dimensional Poisson point process
ΨV with intensity λV . In our scenario, B is the set of BSs,
which partition the plane into Voronoi cells v ∈ {1, . . . , V },
and B(v) ∈ B is the BS located in cell v. Time is slotted, and
divided into epochs, each one composed by Ne consecutive
time slots.

We focus on the uplink, and full frequency reuse is assumed.
We consider a fully loaded network where in each cell v there

are Nc uplink channels, and there is a non-empty set W(v) of
users, randomly deployed within the cell. In our model, all the
sources are backlogged, hence all the users in W(v) always
have data packets to transmit, and we set |W(v)| ≥ Nc. Intra-
cell interference is not allowed in the primary tier, hence in
cell v, at the beginning of each epoch, each uplink channel c
is assigned to one of the users in W(v), which transmits for
the entire epoch, thus the maximum number of active users
is Nc. Since all the channels have the same statistics, in the
following we can limit our analysis to a single uplink channel.
The same analysis holds for the remaining channels, under the
assumption that channel selection has been already performed
by each user.

In general, a different user inW(v) can be granted access to
the considered channel at each epoch, following a centralized
scheduling procedure. Since we do not deal with the users
scheduling, in this paper we assume that only the same UE-GT
U (v) ∈ W(v) can be allowed to transmit over channel c in ev-
ery epoch. Nonetheless, our scheme can be extended to a more
general scenario, and integrated with any kind of scheduling
and channel selection procedure. A joint mode/power/channel
selection may result in a better resource utilization, and is left
as a promising direction for future work.

We define the set of all the cellular users in the network
as Ug = ∪vW(v). The users of this set are also called
UE-GTs in the following. User U (v) sets its transmit power
to PU(v) = ρd(U (v), B(v))α, where ρ is a predefined target
received power level, d(X,Y ) indicates the Euclidean distance
between terminals X and Y and α is the path loss exponent. In
order to avoid truncation outage effects, we randomly deploy
U (v) within cell v under the condition d(U (v), B(v)) ≤ dR,
where dR = (PM/ρ)1/α and PM is the maximum allowed
transmit power.

A threshold model is assumed for decoding: a data packet
sent at time slot k is correctly decoded if the SINR at the
destination is greater than a fixed decoding threshold, φ. All
channels are modeled as Rayleigh channels, so the SINR at
B(v) for the signal from U (v) at time slot k can be written as

ΓB(v)(k) =
PU(v) |h(B(v), U (v), k)|2

(N0 + IB(v)(k)) d(U (v), B(v))α

=
ρ|h(B(v), U (v), k)|2

N0 + IB(v)(k)
, (1)

where N0 is the noise power, and h(X,Y, k) is the fading
coefficient between terminals X and Y at time slot k, which
is symmetric and independent from the channel gain between
other pairs of nodes. It is modeled as

h(X,Y, k) = %h(X,Y, k − 1) +
√

1− %2ζ , (2)

where ζ is an independent Gaussian random variable with
zero mean and unit variance, and % is the correlation coef-
ficient [26].
IB(v)(k) is the interference level at the BS, introduced in
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Fig. 1. Considered multi-cell scenario. UE-LTs may transmit directly to their
associated BS (UE-LTs 2 and 4), or they can communicate with each other
in a D2D fashion (e.g., UE-LTs 3 and 10).

(1), which is defined as

IB(v)(k) =
∑
w 6=v

PU(w)

|h(U (w), B(v), k)|2

d(U (w), B(v))α
+

+
∑
US∈U`

PUS

|h(US , B
(v), k)|2

d(US , B(v))α
, (3)

where the two terms account for the transmissions on channel
c from users in other cells and from other D2D sources (in
the set U`, as detailed in the next section), respectively.

B. Secondary tier: UEs with local traffic (UE-LTs)

In our network scenario, besides the cellular users (Ug), we
consider an additional set of users (U`), which are sources of
local traffic, namely UE-LTs. Each UE-LT has data to transmit
to another user located in its proximity. The UE-LTs are
distributed according to a bi-dimensional Poisson process ΨD

with intensity λD, independent from ΨV . Each UE US ∈ U`
is associated to a receiver uniformly deployed within a circle
centered at the location of US and with radius dL.

Differently from the cellular users in Ug , the UE-LTs are
not required to transmit to the corresponding BS. In fact, given
the small distance from their intended receiver, it may be
convenient for a UE-LT to set up a D2D communication. We
consider non-orthogonal D2D transmissions, which take place
on the considered uplink channel1. A UE-LTs US ∈ U` in cell
v can hence choose between two transmission modes.

D2D mode. The data packet is sent directly to the cor-
responding receiver UD by reusing the same uplink channel
as the cellular user U (v). The transmission power PS can be
chosen within a set Π of logarithmically spaced levels, and
the transmission succeeds if the SINR at UD is greater than
φ, that is, if

ΓUD
(k) =

PSh|US , UD, k|2

(N0 + IUD
(k)) d(US , UD)α

≥ φ , (4)

1We assume that the uplink channel selection has already been performed.
The UEs in U` are those that selected the considered uplink channel c.
Analogous sets of UE-LTs can be identified for the other uplink channels.

where IUD
(k) is the interference perceived at UD, and has an

expression analogous to (3). This transmission can start at any
time slot within an epoch, and proceeds until the end of the
epoch.

D2B mode. The data packet is first transmitted to the BS,
which subsequently forwards it to UD on a downlink channel.
If it selects this mode, US must first issue a resource allocation
request to the BS B(v), which will grant US the exclusive
access to the channel in one of the subsequent epochsn (thus
halting the transmission from U (v)). The selected transmit
power level π ∈ Π in this case is the minimum one greater than
ρd(US , B

(v))α. Notice that, although the D2B mode allows US
to avoid mutual interference with U (v), it also implies that the
uplink channel is to be orthogonally shared with U (v) (and
possibly with other UE-LTs in the same cell, also selecting
the D2B mode), thus increasing the data delivery delay.

IV. DISTRIBUTED MODE AND POWER SELECTION

A. Problem Formulation

At the beginning of each epoch, each D2D source in U`
can decide whether to issue a request for channel access to
the BS (D2B mode) or to select the D2D mode. In the latter
case, the transmission power must also be chosen by the D2D
source within the set Π. The optimal mode/power selection
depends on the metric to be optimized. In this paper, we are
interested in the spectral efficiency, since it can offer a global
view of the spectrum utilization throughout the network. The
instantaneous spectral efficiency of a transmission from user
i ∈ Ug ∪ U` at time slot k is given by:

Ri(k) = θ ln(1 + Γi(k)) , (5)

where Γi(k) is the SINR at the intended receiver of the trans-
mission from UE i, while θ is equal to 1 if the transmission
is a D2D communication, and is equal to 1/2 if instead i is
transmitting to a BS. The presence of this factor is due to the
fact that, if a D2B transmission is being performed, the data
packet requires a second downlink transmission (not modeled
in this paper) in order to be delivered to its destination, and
the spectral efficiency must be halved.

The global spectral efficiency is the sum of the spectral
efficiency of all the users averaged over an entire epoch. The
maximization of this metric is quite involved. Consider the
indicator variable χi, equal to 1 if UE i ∈ Ug∪U` is scheduled
to transmit to the BS of its own cell, which we call B(i), and 0
otherwise. In several works, a centralized solution is proposed,
based on an optimization problem which, in our scenario, can
be formulated as

max
X,P

1

Ne

Ne∑
k=1

∑
i∈Ug

Ri(k) +
∑
j∈U`

Rj(k)

 (6a)

s.t. χi ∈ {0, 1}, ∀i ∈ Ug ∪ U` (6b)

χi +
∑

j∈U`(B(i))

χj = 1, ∀i ∈ Ug (6c)

Pj ∈ Π ∪ {0}, ∀j ∈ U` : χj = 0 , (6d)



where U`(B) ⊂ U` is the subset of UE-LTs located in the cell
of BS B, while the spectral efficiency in (5) can be rewritten
as

Ri(k) =
1

2
ln
(
1 + χiΓB(i)(k)

)
, (7)

for i ∈ Ug , and as

Rj(k)=
1

2
ln
(
1 + χjΓB(j)(k)

)
+ln

(
1+(1−χj)ΓD(j)(k)

)
,

(8)
for j ∈ U`. Here, D(j) is the receiver associated with the
UE-LT j. Notice that χi = 0, for i ∈ Ug , implies that UE
i does not transmit in the considered epoch, while χj = 0,
for j ∈ U`, implies that j either does not transmit at all, or
it transmits via D2D to its associated receiver, depending on
the selected value for Pj , which can be equal to 0 or belong
to Π. The maximization is done over the vector X, containing
all the indicator variables, and over the vector P, containing
all the transmit power levels for the UE-LTs in D2D mode:

X = {χi, i ∈ Ug∪U`}, P = {Pj , j ∈ U` : χj = 0} . (9)

In (6a), we consider that all the transmissions must start at
the beginning of the epoch, and that the transmit power used
for a D2D communication is fixed during the entire epoch.
Even with these constraints, the solution of the maximization
problem is quite involved: for a single cell, (|Π|+1)Ns−1(|Π|+
Ns + 1) allocations are possible, where Ns is the number of
UE-LTs in the cell. In addition, given the expressions of the
SINRs, the fading coefficients of all the channels for all the
time slots must be known in order to find the best allocation.
A global optimization, taking into account also the inter-cell
interference, is therefore clearly unfeasible for Ns � 1.

B. Distributed Solution

Instead of relying on a global, centralized optimization, in
this paper we opt for a suboptimal distributed mode/power
selection, without the need for a centralized entity. Each UE
autonomously decides whether to issue a resource request to
the BS (for D2B transmission in a subsequent epoch) or to
start a D2D communication, and it selects the transmit power.
This scalable approach strongly alleviates the burden required
to the core network. On the flip side, however, the lack of a
global coordination requires a careful mode selection, in order
to limit the intra-cell and inter-cell interference.

Since we are interested in a distributed mode/power selec-
tion, we need to shift from a global metric to a local one. In
our distributed approach, in fact, each UE-LT US ∈ U` aims
at increasing its own expected spectral efficiency towards a
target value, using only partial knowledge about local topology
and surrounding nodes. The details of this approach will be
described in Sec. IV-D.

The main assumptions in our scenario are listed in the
following.
• An out-of-band channel, namely c0, is available for the
UE-LTs. This channel is used to send feedback or to exchange
short control packets for setting up the D2D communication.

• Each UE-LT US is aware of the local topology2. In this
study, the local topology includes the locations of US itself,
of its intended destination and of the BS B(v) located in the
same cell v.
• US can acquire information about the condition of its
channel towards the BS B(v) and about the current SINR
ΓB(v) perceived at the BS B(v) (e.g., by overhearing a proper
downlink control channel).
• A BS constantly monitors the signal received on channel c,
and is able to recognize the presence of D2D communications
within its cell.

A distributed mode and power selection, aiming at maxi-
mizing only the transmitter’s performance, can easily lead to
selfish behaviors. This in turn may cause a D2D communi-
cation to strongly interfere with other D2D communications
and with the transmissions of cellular users, thus lowering the
overall network performance. Notice that the interference to
D2B communications is more relevant, since D2B transmitters
are the legitimate users of the uplink channel, and their
communications must be protected to guarantee a target QoS.
In order to tackle this issue, we adopt the two following
refinements.

R1) D2D communications are preceded by a short RTS/CTS
exchange on the out-of-band channel c0. This allows the D2D
transmitter US to inform surrounding UE-LTs of an incoming
transmission. Furthermore, in the CTS, the intended receiver
UD can inform US of the channel quality and of the current
perceived interference level.

R2) We assume that a protection mechanism is adopted by
the cellular network to protect the D2B communications. At
each time slot k, from the SINR ΓB(v)(k), the BS can compute
the instantaneous capacity CB(v)(k) = log(1 + ΓB(v)(k)). An
ongoing D2D communication has a detrimental effect on the
capacity, since it lowers the SINR. We define a novel metric,
called relative capacity loss, at time slot k due to the D2D
communication performed by US as

Λ(US , B
(v), k) = 1− CB(v)(k)

C
(−US)

B(v) (k)
, (10)

where C
(−US)

B(v) (k) = log(1 + Γ
(−US)

B(v) (k)) is the estimated
capacity which would have been achieved if US had not
transmitted. The modified SINR is hence equal to

Γ
(−US)

B(v) (k) =
ρ|h(B(v), U (v), k)|2

N0 + (IB(v)(k)− Psb)
, (11)

where Psb = PSd(US , B
(v))−α|h(US , B

(v), k)|2 is the power
received at the BS from US . Whenever a capacity loss greater
than a threshold ΛM occurs, the BS broadcasts a warning
message on the downlink channel, forcing US to stop its D2D
transmissions until the end of the current epoch. We choose to
utilize the relative capacity loss, instead of the interference or
the SINR, since it allows to take into account also the useful
signal strength and to identify the interference contribution
of the various D2D sources. Henceforth, it better captures
the detrimental effect of the D2D transmission from US . The

2The performance increases if topology information about other nodes is
also available, but at the price of a higher overhead necessary to acquire it.



capacity loss limit ΛM is a system parameter that can be tuned
to balance the tradeoff between offloading the transmissions
over D2D links and suffering an increased interference level.

In the next sections, we will detail how these coun-
termeasures can be incorporated in an effective distributed
mode/power selection strategy.

C. Interference Estimation

The presence of the protection mechanism poses a severe
limitation to the allowed transmission power for a UE-LT
in D2D mode. In fact, while a low power can lead to a
reduced spectral efficiency during the epoch, an excessively
high one, triggering the protection mechanism, would lead to
a transmission stop, and hence to a zero efficiency. Differently
from the interference perceived at the D2D receiver, which
can be conveyed to the trasmitter during the handshaking, a
feedback from the BS is unlikely to be admissible, since it
would require a consistent amount of overhead.

It is therefore pivotal to use the available information to
estimate the capacity loss which would be caused at the BS
by a D2D transmission, and properly set the transmit power
level. According to the assumptions listed in the previous
section, a UE-LT in cell v has local topology information,
and can collect, at time slot k, information about its channel
towards the BS B(v). Let us call PC(US , k) the set of useful
information available at US at time slot k, defined as

PC(US , k) =
{
d(US , B

(v)), h(US , B
(v), k),ΓB(v)(k)

}
,

(12)
where d(US , B

(v)) can be considered fixed over short time
periods. Estimating the expected capacity loss at BS B(v)

caused by a D2D transmission from US is not straightforward:
channel fading coefficients are not fixed, although temporally
correlated, and new D2D communications, in the same or
adjacent cells, may start in the subsequent time slots, thus
leading to unpredictable capacity variations at the BS.

Our proposed solution is to estimate the distribution of the
capacity loss at the BS, for any possible transmit power level
π ∈ Π, using the parameters in PC(US , k). A mathematical
derivation of this distribution is quite involved, since it also
depends on the mode and power selection of other UE-LTs
in the same and in adjacent cells, which is not known at US
a priori. We therefore rely on a properly designed Bayesian
network BNint, which estimates the distribution of the capacity
loss in the subsequent slot k+1 using, as input, the parameters
in PC(US , k) and a transmit power level π ∈ Π. The details
on the BN approach adopted and its complexity are illustrated
in Sec. V.

The cumulative distribution function (CDF) of the capacity
loss can be written as

FΛ(US ,B(v),k+1) (x|π,PC(US , k))

= P
[
Λ(US , B

(v), k + 1) ≤ x|π,PC(US , k)
]
.

(13)

Using this distribution, we can calculate the probability
pblo(π) of triggering a blockage for the given transmit power
level π, i.e.,

pblo(π) = 1− FΛ(US ,B(v),k+1) (ΛM |π,PC(US , k)) . (14)

The blockage probability pblo(π) quantifies the cost of select-
ing a transmit power level π, and hence makes it possible
to find a tradeoff between a high D2D transmission quality
towards UD, and a low interference level caused at the BS.

Notice that we can potentially add any kind of available
information as an input for the BN, since we rely on a
stochastic tool for the interference estimation, rather than
on mathematical expressions. The available information may
include also upper layer quantities, like buffer occupancy,
running applications types, traffic statistics, or buildings and
walls location. We leave this improvement as an interesting
direction for future work.

D. Aware strategy, AWA-S

We propose a network aware strategy, which we name
AWA-S. It is a transmission strategy relying on local informa-
tion to select transmission mode and power based on the BN
approach. This strategy works as follows. At the beginning of
each epoch, a UE-LT not scheduled for transmission towards
the BS, namely US , randomly selects a time slot k, with
2 ≤ k ≤ Nw+1, to attempt its D2D transmission. The quantity
Nw < Ne defines a contention window, which is meant to
spread the starting slot of different D2D sources over time.

At time slot k − 1, US sends the short RTS on the out-of-
band channel c0. The intended destination UD replies with
a CTS, where it reports the current value of the channel
fading |h(US , UD, k − 1)|2, as well as its current perceived
interference value IUD

(k− 1). Notice that this value includes
the interference from other surrounding D2D communications
which selected an earlier slot to start transmission. Subse-
quently, US performs the following four steps.

S1) At time slot k − 1, it collects the parameters in
PC(US , k − 1).

S2) It repeatedly exploits BNint to estimate the distribution
of Λ(US , B

(v), k) for any possible value π ∈ Π of the transmit
power. From these distributions, the conditional cumulative
distribution function FΛ(US ,B(v),k) (x|π,PC(US , k − 1)) of
the capacity loss is derived, and the blockage probability is
computed for any power level according to (14).

S3) It determines the maximum transmit power level πs ∈ Π
which satisfies

pblo(πs) ≤ ξ , (15)

and the minimum transmit power πm ∈ Π which satisfies

πm|h(US , UD, k − 1)|2d(US , UD)−α

N0 + IUD
(k − 1)

≥ φ . (16)

In (15), ξ is a tunable parameter, which we call residual
blockage probability. Low values of ξ translate into a conser-
vative strategy, while higher transmission powers are chosen
as ξ increases. Notice that πm is the minimum transmit power
required to have a SINR greater than the decoding threshold
φ, while πs is the maximum transmit power allowed in order
to keep the blockage probability below ξ.

S4) If πm ≤ πs, then a D2D transmission is possible. US
starts a D2D transmission towards UD at time slot k with
power πm; the D2D communication will continue, with the
same transmit power level, until the end of the current epoch.



If no value in Π could match condition (15), or if πm > πs
then no D2D transmission is viable. In this case, US switches
to D2B mode, and issues a request to the BS B(v) to have
the uplink channel assigned in the next epoch. Then, at the
beginning of the next epoch, B(v) assigns the channel to either
U (v), or to one of the UE-LTs in cell v which issued a resource
request. We do not focus on a specific scheduling in this work,
hence we assume that this choice is made at random, but any
scheme can be integrated. The UE-LTs whose request is not
accepted start again the mode and power selection procedure
in the subsequent epoch.

The strategy AWA-S can be opportunistically tuned by
adapting the parameters ΛM and ξ, choosing to favor either
the UE-GTs or the UE-LTs. It is also worth noticing that while
ΛM can be seen as a predefined network parameter, the value
of the residual loss probability ξ might be in principle selected
independently by each UE-LT, in order to find a tradeoff
between transmitting at higher power (high ξ) and being
silenced less frequently (low ξ). A more conservative approach
includes also the estimation of the capacity losses caused at
other surrounding BSs. This option is not investigated in this
paper since it would require a consistently higher overhead in
order to collect all the necessary input parameters for the BN.
Moreover, due to the exponential path loss model adopted in
this work, the interference caused at the associated BS is the
strongest one, and limiting this one is likely to strongly reduce
the impairment to the rest of the network as well.

In order to test the effectiveness of exploiting local infor-
mation in a distributed scheme, we compare AWA-S with two
representative state-of-the-art mode/power selection strategies.
The former, based only on topology information, has been
proposed in [18], and we rename it as GEO-S. The latter
instead takes advantage also of instantaneous channel infor-
mation, thus adding a considerable degree of adaptivity. It has
been described in [19], and is called DPMS in the following.
GEO-S and DPMS offer a good reference point to evaluate the
benefit attained by stochastically leveraging local information
to infer transmission quality and interference impact. The ob-
served performance gaps become good indicators to quantify
the potential benefits offered by a distributed and dynamic
exploitation of the available topology and channel information.

E. Geographical strategy, GEO-S

GEO-S [18] is completely determined by topological infor-
mation and by the value of the bias factor Td. The topological
information is composed by d(US , UD), the distance from
US to its corresponding destination UD, and d(US , B

(v)), the
distance from US to its associate BS B(v). A direct D2D
transmission will be performed only if

Tdd(US , UD)−α ≥ d(US , B
(v))−α , (17)

so, when Td = 0, no D2D communications are possible,
whereas when Td → +∞ all the D2D potential sources are
forced to select D2D mode. Since we are dealing with fixed
topologies, the choice is made only once at the beginning
of the transmissions, and is never changed. As to the trans-
mission power, it is set according to the truncated channel

X1 π(U)
BNint X2 |h(U,B, k)|2d(U,B)−α

X3 ΓB(k)
Y Λ(U,B, k + 1)

TABLE I
INPUTS AND OUTPUT FOR BNINT .

inversion rule. Recalling that ρ is the target power at the
receiver, if D2D mode is chosen, the transmit power is set
to Pt = ρd(US , UD)α, otherwise it is Pt = ρd(US , B

(v))α.
The sources of local traffic in the same cell v that choose

to transmit in D2B mode share the uplink channel c with the
cellular UE U (v) transmitting to the BS B(v). Time division
is applied in this case, with all the involved UEs transmitting
in a round robin fashion to avoid intra-cell interference and
maintain fairness.

F. Distributed Power and Mode Selection (DPMS)

The DPMS strategy was introduced in [19], and is a
distributed power and mode selection strategy. Each UE-LT, at
the beginning of each epoch, collects the SINR at the intended
receiver and the one at the reference BS. It chooses D2D mode
if the former is higher, and D2B mode otherwise, provided that
another UE-LT has not already occupied the channel towards
the BS. The transmission power is selected as the minimum
necessary to reach the target SINR. This approach can be
applied to transmit over multiple uplink channels, as done
in [19].

Notice that, although this approach leverages some informa-
tion about the channels of interest (towards the D2D receiver
and the BS), it does not take into account the interference
created at the BS when the D2D mode is selected, thus
potentially impairing neighboring D2B communications.

V. BAYESIAN NETWORKS

In this section, we detail the technique to learn the BNs of
interest. A BN is a probabilistic graphical model [27], [28]
used to describe the conditional dependence relations among
a set of random variables. Each variable is represented as a
node in the BN. The conditional dependences are represented
in a directed acyclic graph (DAG), which defines the structure
of the joint probability among all the nodes, and in particular
it highlights the conditional independences among the nodes.
This structure can be learned through an algorithm of structure
learning, or it is given a priori based on previous knowledge
of the data.

A. BN for AWA-S strategy

The AWA-S strategy exploits a BN, whose inputs and
outputs are listed in Table I.

BNint is used to determine how much a given transmission is
harmful to the cell where it takes place. It estimates the capac-
ity loss Λ(U,B, k) at the BS B due to the transmission by the
user U . As output it provides the distribution of Λ(U,B, k+1),
from which the CDF FΛ(U,B,k+1)(x) is calculated. This CDF
is used to verify the condition in (15).



B. BN learning

In this work, we considered the case in which the
structure of the BN is given in the form of a naive
BN. We have a set of N + 1 random variables at each
time t, i.e., Y (t), X

(t)
1 , . . . , X

(t)
N . Each variable is dis-

tributed according to a multinomial, i.e., X(t)
i has values in

{xi(1), xi(2), . . . , xi(ni)} for all t, where ni is the number
of possible values assumed by X

(t)
i . If we consider the set

of variables X(t)
i for t ∈ {1, 2, . . . , T} we obtain the discrete

time random process Xi, corresponding to a node in the DAG.
In a naive BN, there is only one parent node, Y , and N

children nodes, X1, . . . , XN . In the corresponding DAG, there
is an arrow (describing a conditional dependence) from Y
towards each of the other nodes. A joint observation of all
the nodes at instant t is the measurement of all their values
at this instant. Let us assume that 1) we have a dataset D
with T joint observations of all the nodes at different time
intervals, and 2) the observations at different time intervals are
independent and identically distributed, i.e., P (X

(t)
i , X

(k)
j ) =

P (X
(t)
i )P (X

(k)
j ), and P (X

(t)
i , X

(t)
j ) = P (X

(k)
i , X

(k)
j ), ∀i, j,

given that t 6= k.
The conditional probabilities for all the children nodes,

namely θi,q,s = P (X
(t)
i = xi(q)|Y (t) = y(s)), can be learned

from the data with a maximum likelihood (ML) approach, i.e.,

θ∗i,q,s = arg maxP (D|θi,q,s) , (18)

which in our case is equivalent to

θ∗i,q,s =

∑T
t=1 1(X

(t)
i , xi(q))1(Y (t), y(s))∑T
t=1 1(Y (t), y(s))

, (19)

where 1(·, ·) is the indicator function, 1(x, y) = 1 if x = y,
and 1(x, y) = 0 otherwise.

The complexity of this ML approach for the estimation of
the parameters in (19) is linear in T , the size of the dataset. We
highlight that the BN learning should be executed only once
at the beginning of the transmissions. As detailed in Sec. IV,
the same BN can be used by each node to infer in constant
time how much a given transmission is harmful to the cell
where it takes place.

C. BN data collection

The estimation of the BN starts with the collection of
several instances of the parameters involved as inputs and
outputs. We developed a full system level MATLAB network
simulator, according to the system model described in Sec. III,
and the protocol implementation introduced in Sec. IV. For
each investigated scenario, we run the simulator for different
random topologies, in which the nodes are randomly deployed
over a square area of side L. We simulated 100 time slots
for each topology, during which the protection mechanism
employed by the BSs was not implemented, and the transmit
power is randomly selected among the values in Π.

The rationale behind this approach is to consider all the
parameters involved as multinomial random variables3, with a
realization of each random variable at each time step k.

For every link involved in each simulation, a row of the
dataset D(BNint) is then filled with the chosen power level
πs, with the parameters in PC(US , k) and the corresponding
capacity loss measured at the associated BS B(v).

We iteratively repeat the process of generating a new
topology, run the simulation for 100 time slots and collect
new rows in the dataset. The iterations end when D(BNint) is
filled with the minimum number of rows, n = 105.

D. BN implementation

In a real network, the BN learning and data collection
phases can be performed only once at the beginning of the
network operations by collecting the parameters in PC(US , k),
defined in (12), at one or more nodes responsible for the
learning phase. The resulting BN can then be used by each
UE-LT to determine its mode/power selection. Differently
from other learning mechanisms, whose reliability holds only
for a given topology and hence for a limited amount of time,
the BN learns a stochastic relationship among the network
parameters. Therefore, it can still be used even when the
topology changes, as long as the general network scenario
(e.g., in terms of UE-LTs density) remains unaltered.

The BN learned at the beginning of the network operations
is then used by each UE-LT, which exploits it for interference
estimation, as detailed in Sec. IV-C.

VI. RESULTS

In this section, we compare the performance of GEO-S,
DPMS and AWA-S by using the same MATLAB system level
simulator employed in the BN learning phase. For each set
up of the parameters, we run 100 simulations over random
topologies, each one lasting 100 time slots.

A. Parameters setup

We set the values of our scenario parameters according
to those commonly adopted in the literature [18], [29], thus
resembling the relevant aspects of a real scenario. The simu-
lated area is a square with side L = 5 km. In this area, we
set the BS intensity λV = 10BSs/km2, the maximum UE
transmit power PM = 200mW , the path-loss exponent α = 4,
the SINR decoding threshold φ = 1, and the noise power
N0 = −90 dBm. The channel correlation coefficient % is set
to 0.9; however, since the correlation level strongly affects
the estimation accuracy, we plan to analyze the impact of
different values of % in a future work. The epoch length is set
to Ne = 10 time slots, while the contention window for AWA-
S spans over Nw = 4 time slots. The target received power
value is ρ = −70 dBm, from which the maximum transmitting
distance for GEO-S is dR ' 210m. The maximum D2D link
length is instead set to dL ' 120m.

3If the variable is not discrete, we quantize it in a given number of values,
depending on the variable distribution. The higher this number, the better the
representation of the variable, but the more complicated the inference of the
conditional dependences.
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Fig. 2. SINR outage probability of AWA-S as a function of the
residual blockage probability ξ. Solid lines are relative to D2B
communications, while dashed lines refer to D2D communications.

B. Performance metrics

In order to highlight different aspects of the techniques
analyzed, we selected five performance metrics, described in
the following. The performances are derived as a function of
the bias factor, Td (for GEO-S) or ξ (for AWA-S), which can
be tuned to favor the D2B or D2D mode4.

SINR outage probability. This is the probability that the
perceived SINR falls below the decoding threshold φ, and
can be derived from the SINR distribution. The SINR outage
probability on the D2B links illustrates the impact of the
additional interference from the D2D communications on the
cellular users, while the SINR outage probability on the D2D
links depicts the quality of the D2D transmissions.

Fraction of UE-LTs in D2D mode. In order to fully
understand the network behaviors, it is pivotal to observe how
often a UE-LT relies on direct D2D communications, as a
function of the tunable parameter Td (or ξ).

Spectral efficiency. For a given source U , the spectral
efficiency R(U) of each user U is defined as per (7) and
(8), averaged over all time slots. Notice that if the source
U is not transmitting in a given time slot (e.g., because U is
being forced to be silent, in AWA-S), its efficiency in that time
slot is set to 0. We compute separately the average spectral
efficiency of the UE-GTs and that of the UE-LTs, regardless
of their effective transmission mode.

The spectral efficiency is a good indicator of the overall
network performance. Differently from the SINR outage prob-
ability, which considers only active links, this metric also takes
into account the advantages of offloading the traffic from the
BS (thus reducing the users contending for the same channel).

Network spectral efficiency. This metric is used to evaluate
the performance of the whole network. It is given by the sum
of the average spectral efficiencies of a UE-GT and a UE-LT,
each multiplied by the corresponding density (λV and λD,
respectively), i.e.,

S = EU∈Ug [R(U)]λV + EU∈U` [R(U)]λD . (20)

4Even if Td can be any positive real number, we limit its value to the
interval [0, 1], since the best performance appears to be obtained for Td ≤ 1.
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Fig. 3. Fraction of UE-LTs selecting D2D mode, as a function of Td
(for GEO-S), or ξ (for AWA-S). Here λD = 5λV .

This metric offers a global perspective on the network, mea-
suring how efficiently the spectrum can be reused by D2B and
D2D transmissions.

Aggregate Throughput. This metric is chosen to illustrate
the overall network performance in terms of data delivery and
reliability. A packet is delivered in a time slot if the trans-
mission achieves a SINR greater than the decoding threshold
φ. The aggregate throughput is obtained as the total number
of delivered packets divided by the simulation time. A packet
delivered at the BS is also counted as a delivered packet, since
we assume that the BS operates in full duplex over uplink and
downlink channels, and that the bottleneck lies in the uplink.

C. Link-level performance

In Fig. 2, we plot the observed SINR outage probability
attained by our strategy AWA-S for both D2D and D2B
communications when the maximum allowed relative capacity
loss is ΛM = 0.1, as a function of the biasing parameter ξ and
for different values of the D2D pairs density λD. As expected,
increasing the residual blockage probability ξ leads to a higher
number of simultaneous D2D communications, thus raising
the overall interference level. This in turn results in a higher
outage probability for both D2D and D2B transmissions.
Notice, however, that the outage probability grows faster for
D2D communications. This is due to the presence of the
blockage mechanism at the BSs, which promptly stops those
communications causing a capacity loss higher than ΛM . For
low to medium densities of D2D pairs, this mechanism is
effective in keeping the D2B outage probability at the BSs
unaltered as long as ξ ≤ 0.75, with only a minor increase for
higher values. As the D2D pairs density grows, the blockage
mechanism is less effective, since the overall interference is
caused by a larger number of D2D transmitters, each causing a
relatively low capacity loss. Nevertheless, by setting ξ ≤ 0.3,
the D2B outage remains almost unaltered even for λD = 5λV .
For comparison, GEO-S has an outage probability for D2D
links which ranges from 0.5 to 0.85 as λD grows. The outage
probability for D2B links is close to the one achieved by AWA-
S when λD = λV , but rapidly increases to 0.6 for λD = 5λV .
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Fig. 4. Average user spectral efficiency, for λD = 5λV , as a function
of ξ. Solid lines are for UE-GTs, while dashed lines are for UE-LTs.

In Fig. 3, we observe the fraction of UE-LTs that select D2D
transmission mode, which can strongly affect the SINR outage
probability. Here, we fix the D2D pair density λD = 5λV .
For GEO-S, the fraction of D2D sources in D2D transmission
mode is uniquely determined by the topology and, as expected,
this value grows with Td, regardless of the UE-LTs density.
Nevertheless, even for Td = 1, less than 40% of the UE-LTs
select D2D mode.

For AWA-S, the fraction of UE-LTs selecting D2D mode
also grows with ξ, since higher transmit power levels are
allowed. The effect of ΛM is also highlighted: the higher ΛM ,
the faster the growth of the fraction of UE-LTs in D2D mode.
This is reasonable, since a higher interference level is tolerated
at the BS, and D2D transmissions become more convenient.
Clearly, when ξ tends to 1, mode selection does not depend
on ΛM any more. In fact, condition (15) is always satisfied,
and the D2D mode is chosen based only on condition (16),
thus explaining why the curves tend to the same value when
ξ = 1, between 55% and 60%.

D. Network-level performance

In this section we analyze the performance from a network-
level perspective by observing the spectral efficiency of the
whole network. In Fig. 4, we set λD = 5λV and we compute
separately the spectral efficiency for UE-GTs and UE-LTs.

We compare AWA-S with the dynamic mode and power
selection DPMS. We immediately observe that, for DPMS,
the spectral efficiency of UE-LTs is much higher than that
of UE-GTs. This is not surprising, since the mode and power
selection for a UE-LT is based only on the performance of that
user, and no countermeasures are taken to prevent excessively
high interference levels at the BSs.

Things are much different with AWA-S, at least for low
values of ξ. In this case, in fact, D2D transmissions are allowed
only when they do not impair the communications of the
UE-GTs. By tuning ξ, however, the spectral efficiency can
be balanced between UE-LTs and UE-GTs. For ΛM = −6 dB
a perfect balance is obtained when ξ = 0.3. We also observe
that, for ΛM = −2 dB and high ξ, the spectral efficiency
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Fig. 5. Network spectral efficiency as a function of ξ. Here, the D2D
pairs density is λD = 5λV .

for UE-LTs becomes 10% higher that that offered by DPMS,
while still retaining an efficiency for UE-GTs 70% higher than
the one attained by DPMS.

The overall gain can be investigated by looking at the
network spectral efficiency, depicted in Fig. 5. Since λD
is much higher than λV , improving the UE-LTs spectral
efficiency by raising ξ has a global positive effect, even if
the spectral efficiency of the UE-GTs is reduced. The network
spectral efficiency grows with ξ, until it saturates, and is higher
for low values of ΛM . In fact, this makes D2D mode viable for
more UE-LTs, thus improving the spatial reuse. AWA-S can
outperform DPMS of up to 13% when ΛM = −2 dB. Notice,
however, that a higher spectral efficiency does not always turn
into a higher packet delivery rate, since it also implies a higher
interference level, which increases the outage probability, as
observed in Fig. 2.

In order to investigate the effective network performance,
we now analyze the aggregate throughput. In Fig. 6 we illus-
trate the network throughput as a function of ξ in a scenario
where λD = 3λV . We can observe some relevant behaviors.
Firstly, it appears to be detrimental to increase ξ beyond
a certain threshold, since it causes the overall throughput
to be reduced, due to excessive interference. There is an
optimal value of ξ which guarantees the highest performance.
Secondly, this optimal value also depends on the maximum
allowed capacity loss ΛM . With the relatively low density
λD = 3λV , the highest throughput is obtained with ΛM = −2
dB and ξ = 0.4. Thirdly, we compare the performance of
AWA-S with that obtained by a centralized power and mode
selection, which provides a local optimum and works as
follows: in each cell, at the beginning of each epoch, the
conditions of all the channels are collected, and the mode and
power selection of all the users in the cell is performed by
solving the optimization problem (6a) for the users within the
cell via exhaustive search5. The computational complexity of

5This is not the global optimum, since the mode and power selection is
done independently for each cell. Instead, it provides a realistic benchmark for
comparison exploiting a large amount of information collected in a centralized
fashion, while the amount of information required to compute the global
optimum would make it impractical for this scenario.
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Fig. 6. Aggregated throughput, as a function of ξ. Here, the D2D
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this centralized approach is also quite high: with an average
of 3 D2D pairs per cell, and 10 possible power levels, 1694
possible combinations are to be verified, a number which
grows very fast in scenarios with higher D2D pairs densities.
Conversely, in AWA-S, once the learning phase is completed,
the computational burden at each D2D source grows linearly
with the number of power levels, thus ensuring high scalability.
Even if the centralized approach can exploit a far higher
amount of information, AWA-S is still able to get a throughput
which is only 10% lower.

Finally, in Fig. 7, we plot the aggregate throughput as a
function of the UE-LT density, for all the considered strategies.
For GEO-S and AWA-S we consider, for each density, the
throughput obtained with the best selection of the correspond-
ing parameter (Td for GEO-S, ξ for AWA-S). GEO-S has the
worst performance, due to the fact that it can only exploit
static topology information. DPMS is the best choice, for low
network densities, since the impact of D2D transmissions on
the BSs remains limited. Nevertheless, as λD increases, the
throughput of DPMS saturates. Our strategy AWA-S, con-
versely, can adaptively limit the growing interference caused
by multiple simultaneous D2D communications. Even with a
severe constraint (ΛM = −10 dB), AWA-S shows the same
performance of DPMS for λD = 6λV . If ΛM is increased to
-4 dB, which is optimal for λS ≥ 5λV , then the throughput is
also increased, and AWA-S outperforms DPMS of up to 8%
for λD = 7λV .

VII. CONCLUSIONS

In this paper, we proposed a distributed approach that allows
a mobile node with local traffic to acquire in real time local
information by observing few channel and topology parame-
ters. This information is utilized to perform a mode and power
selection which takes into account also the capacity reduction
caused at the BS. Our dynamic transmission strategy is hence
able to adaptively switch between a D2D transmission, when
the interference is limited, and a D2B transmission, otherwise.
Power control is also performed targeting a balance between
the quality of the D2D transmission and the impairment caused
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Fig. 7. Aggregated throughput, as a function of the UE-LTs density
λD .

to the surrounding network. The comparison of our strategy
with some state-of-the-art works in the same network scenario
sheds light on the potential of the proposed learning mech-
anism and on the effectiveness of dynamic leveraging local
information to perform a smart mode and power selection.

In a future work, we plan to extend the proposed technique
keeping into consideration other constraints of the wireless
network, like the energy consumption in each wireless node,
and considering also multi-hop D2D communications.
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