UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Role Of Metaphors In Novices Learning
Programming

Permalink

btt_gs:[[escholarship.orq/uc/item/4kw7v6cﬁ

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Author
Jones, Ann

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4kw7v6db
https://escholarship.org
http://www.cdlib.org/

THE ROLE OF METAPHORS IN NOVICES LEARNING

PROGRAMMING

Ann Jones

The Open University
Milton Keynes, England

Abstract

Learning a complex skill such as programming
requires the developments and use of conceptual
models, both of the concepts in the programming
language, and the 'behaviour' of the machine. The
latter has been referred to as the 'notiomal
machine' (du Boulay, B., 0'Shea, T. and Monk,
1981). Such a conceptual model, however, must
interact and build upon models and metaphors which
students already have. It is these metaphors and
some techniques for studying them which are
discussed in this paper.

Introduction and Background

Behavioural studies of programming are motivated by
a diversity of goals, for examnle a desire to
understand the task better and thus how it cam be
performed more efficientlv: or a concerm about the
importance of developing procedural literacy, (for
example, Sheil, 1980, (b)) or an interest in pro-
gramming as an applied example of a high level
skill. It is the latter, mainly, which motivates
the present study: the overall question, although
it is far from simple, can be simply phrased 'What
goes on in the mind of the learnmer programmer?'

There is now a substantial body of research om pro-
gramming, although Sheil, (1980) argues that many
empirical studies of programming have added very
liccle to our knowledge of what it means to learn
programming, partly because the methodology is
fraught with difficulties but mainly because we
still know so little about what the task entails:
how programming knowledge is organized and how it
can be represented. There is some agreement that
it can be thought of as a collection of units, (or
'frames', 'paradigms' or 'schemas') organised as
program fragments with a set of propositions about
its behaviour and rules for combining it with
others. (Rich 1978, Floyd, 1979.) There is no
evidence, however, that novices have access to such
structures; on the contrary, studies of the know-
ledge organization of experts and novices, in the
programming domain, indicate not unsurprisingly,
that novices lack such organizing schemas.
(McKeithen and Reitman, 1981; Adelson 1981). It
has been argued (du Boulay, 0'Shea and Monk, 1981.)
that one of the difficulties of teaching a novice
programming is how to describe at the right level
of detail the machine she is learming to comtrol;
and as a way of doing this they suggest teaching
using the idea of a notional machine - an idealised
conceptual computer whose properties are implied by
the constructs in the programming language
employed. The notional machine is similar to the
'transactions' which Mayer uses to describe the
workings of a BASIC machine (Mayer, 1979), and
also suggests as a basis for teaching BASIC. Other
studies, (e.g. Miller, 1974) have also emphasized
providing novices with carefully thought out meta-
phors and models to help them learn. The gap,
however, in all cthis is what the learner herself
brings to the situation, and that is, all her

past experience and knowledge which will be used

to interpret and organize the new material that is
to be learnt. Although programming has many
specialised terms, many words do have everyday

152

meanings and associations which are different from
their programming use and may not facilitate the
learning process. Such words will not necessarily
have a shared meaning among novices. McKeithen and
Reitman (1981), in studying the organizationm of
programming knowledge found that beginners' organi-
zations show a rich variety of common language
associations to these programming concepts. Botts'
study of learning how to use a text editor, (Borrc,
1979) suggests that such pre-associations are
powerful and pervasive, and may not be easily re-
placed by new metaphors and models.

The Study

The study of novice programmers' initial metaphors
and models is being investigated as part of a
larger study of how students learn two very dif=-
ferent programming languages: only one of which
will be discussed here, a language called SOLO.
The students using SOLO are taking an Open Univer-
sity Cognitive Psychology course; and SOLO provides
an enviromment for them to manipulate an asser-
tional data base, as a tool for learning and
thinking about knowledge representation. It was
designed to make life easy as possible for total
novices by being restricted to a small number of
primitives, and incorporating many user aids, such
as a spelling corrector. Nevertheless, learning to
program in SOLO is by no means trivial, and so it
has been necessary to find out what problems the
students have so that the programming environment
can be tailored to suit their needs. (Eisenstadt,
Laubsch and Kahrey, 1981). In order to build a
really fool-proof enviromment it is necessary to
understand precisely what the novice really thinks
is going on inside the SOLO machine. Of course,
trying to find out what someone 'really thinks' is
going on 1s a tall order, and to a large extent
this study has been concerned with exploring meth-
odologies which will provide 'windows' into novi-
ces' conceptual models of the SOLO machine.
Several such windows have been explored: students
were asked to actually start learning SOLO in the
laboratory and to talk aloud while doing the
exercises in the primer, (for this study, the fact
that SOLO is learnt at a distance, from a cor-
respondence text, is a great advantage, as the
teaching method and techniques used are made
explicit and are consistent across students); they
are interviewed and asked to talk about some of the
concepts before they started; they completed
Repertory grids, (Kelly, 1970) and the worked
through some very simple exercises. The next
section will briefly discuss the virtues and
problems of some methodologies for specifically
exploring the metaphors and models which students
bring with them, and some examples of these.

The Repertory grid

Repertory grids are usually used to elicit con—
structs rather more general than those concepts
used in programming. They are a way of finding out
how a person categorizes the world or some part of
the world. Other studies of kmowledge strucrures,
e.g. Adelson (1981) have investigated how programs

are organised. The approach used here however was
to ask students to categorize the actual promitives
of the SOLO language, and subjects talked aloud
while they did the exercise. In this exercise

they were shown three of the S0LO 'words' on cards,
and asked if there was a way in which two were
alike and one was dissimilar; and told thact they
would then categorize the rest of the cards
according to this conmstruct. This is repeated
until no more constructs can be elicited. In doing
this I was interested in the comstructs a subject
would choose, given the freedom to carve up the
'SOLO world' however she wanted, and also whether,
given a construct elicited from the first triple it
would be possible to categorize the remaining SOLO
terms in accordance with it. For example, one
subject started with NOTE (an 'Assert' functionm),
CHECK (a 'retrieve' functiom) and LIST - which
lists procedures. She said that NOTE was to do
with 'Giving (the database) new things' whereas
CHECK and LIST have a retrieval functionm - "they
show you what's there.' 1It's not clear how much
sense such constructs have for the rest of the
primitives. This subject's categorization for this
construct was:

"Giving new things" "Retrieval"

DESCRIBE IF PRESENT
NOTE IF ABSENT

To (Defining a procedure) CHECK

CONTINUE EDIT

EXIT

PRINT

PARAMETER

VARIABLE

FORGET (delete)

In this case, the construct does make some sense as
a way of categorizing the SOLO terms. As might be
expected from other related studies (eg Adelsonm,
1981) many of these begimmer programmers used coo~
structs which were idiosyncratic and related to
everyday knowledge as much as to programming knmow-
ledge.

Eliciting such constructs is clearly a hard activi-
ty for beginners (as indeed it is for experts), but
although subjects found it demanding they also
found it rewarding as it forced them to think about
how they organized these concepts which they were
not aware of having categorised. This thinking it
through becomes explicit in their verbalizatiom.
What seems to be happening to this is that the
students are learning while doing the task. Whilst
this is exciting and can provide rich data it is
also clearly problematic for analysis as the
learner's state is changing during the exercise.

Secondly, some srudents seem to ''chain" concepts;
to lose track of the construct or category and to
categorize each element or concepts (the primi-
tives) according to its similarity or otherwise,
to the previous one.

The grouping of the constructs for each subject and
differences between subjects has not yet been
analysed, and so, overall, it is difficult at the
moment to assess how useful this technique will be.

Concept Interviews and Talking through Exercises

The most fruitful technique so far for investiga-
ting metaphors has been a combination of concept
interviews and students talking aloud while work-
ing through the exercises in the promer. In the
'concept' interviews, subjects were asked to talk
about some of the words used in the SOL0O language

before starting to learn about it. Information
about how a student interprets a certain word
before even starting provides a baseline for inter-
preting their behaviour. Some interpretations are
remarkably common, yet unsurprising, (in retro-
spect!) "Parameter”, if it elicited any reply at
all, was "limits", "boundaries" '"comstraints", -
which is not particularly close to its programming
use. 'Node', on the other hand, which is a word
used in SOLO's semantic network, was for many the
biological 'node' of a nerve network; - a not
inappropriate metaphor.

Protocols of students working through exercises

in the teaching test were also taken. Consider the
following extract from a transcript, which conerns
how procedures take paramenters:

"I think of it in relation to a sort of work pro-
cessor, that if I was doing a lot of letters I
would do a letter and put an X in 'Dear X' and then
each one I'd just print in Fred, Mary.. so that
each letter...."

This metaphor is very useful for a novice thinking
about the idea of a procedure taking a parameter.
It should be stressed however that this is some-
thing the learner brings with her; no matter what
metaphors are offered in the teaching, the student
must map what she's learning on to her own experi-
ence. Normally this is a 'hiddem' activity; but
part of the aim of this research is to make it
'explicit’'. Such information can pay dividends
later, ss such metaphors may only be useful for

a fragment of time, or for learning on particular
thing. In the above example, the metaphor led to
expectations about the way the editor would behave,
- that it would be able to delete single words
within a line of the procedure, which did not
match its actual behaviour, as in fact, whole lines
must be deleted, and yet, such beliefs were per-
sistent. Both (1978) cites the way in which such
expectations can lead to interpretations which are
false, yet very pervasive, and how complicated
stories are constructed to account for the mismacrch
between expectation and reality, before the learmer
finally discard an inappropriate schema.

Conclusions

In helping novices to learn programming, it is not
enough to provide metaphors and models. In addi-
tion we must study the models and metaphors
students already have, and which they bring with
them to the learning situatiom. This paper has
discussed such metaphors and possible methodolo-
gles for investigating them. The next step is to
examine how existing metaphors interact with
experience in the development of conceptual modes
of a programming language. This is a4 vital issue
in understanding how novices learn programming.

Acknowledgements

I would like to thank Tim 0'Shea and Richard Young
for help and advice on this paper, and for helpful
discussions.

References
Adelson, B. Knowledge Structures of Computer
Programmers Proceedings of 3rd Annual Conference

of Cognitive Science Society, 1981, pp 243-248.

Bott, R.A. A Study of Complex Learning. Report
No. 82, University of California, Centre for

Human Information Processing, 1979.

du Boulay, B., 0'Shea, T., and Monk, J. The black
box inside the glass box: presenting computing
concepts to novices., Int J Man Mach Studies,
1981, 14, 237-249.

Eisenstadt, M. Artificial Intelligence Project,
Cognitive Psychology Course, Open University
1978,

Eisenstadt, M., Laubsch, J., and Kahney, H.
Creating Pleasant Programming Enviromnments for
Cognitive Science Students. Proceedings of 3rd
Annual Conference of Cognitive Science Society
1981.

Floyd, R,W, "The Paradigms of Programming" Commus.
ACM 228 (August 1979) 455-460.

Kelly, G.A. A brief introduction to personal
comstruct theory. In Perspectives in Perscmnal
Construct Theory (BANNISTER D. Ed), London
Academic Press, 1970.

154

Mayer, R. A Psychology of Learning BASIC Communi-
cation of the ACM, Vol. 22, No. ll, Nov. 1979.

YcKeithen, D.B. and Reitman, J.S5. et al. Know-
ledge Organization and Skill Differences in
Computer Programmers. Cognitive Psychology, 13,
307-325, 1981.

Miller, L.A. Programming by non programmers. Int
J Man-Mach Studies, 1974, Vol. 6, 273-260.

Rich, C., and Shrobe, H. '"Tnitial report on a
Lisp programmer's apprentice', IEEE trnas.
Softw. Eng. SE-4 (1978) 456-467.

Sheil, B, The Psychological Study of Programming,
Computing Surveys, Vol. 13, Nol. L, March 1980.

Sheil, B(b). "Teaching procedural literacy" in
Proc. ACM Annual Conf. 1980, pp 125-126.

	cogsci_1982_152-154

