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ARTICLE

Multi-faceted epigenetic dysregulation of gene
expression promotes esophageal squamous cell
carcinoma
Wei Cao 1,15✉, Hayan Lee 2,15, Wei Wu 3,4,15✉, Aubhishek Zaman3,4,15, Sean McCorkle5, Ming Yan6,

Justin Chen2, Qinghe Xing7, Nasa Sinnott-Armstrong 2, Hongen Xu8, M. Reza Sailani2, Wenxue Tang8,

Yuanbo Cui1, Jia liu1, Hongyan Guan1, Pengju Lv1, Xiaoyan Sun1, Lei Sun1, Pengli Han1, Yanan Lou1, Jing Chang9,

Jinwu Wang10, Yuchi Gao11, Jiancheng Guo8, Gundolf Schenk 12, Alan Hunter Shain13, Fred G. Biddle14,

Eric Collisson3,4, Michael Snyder 2✉ & Trever G. Bivona 3,4✉

Epigenetic landscapes can shape physiologic and disease phenotypes. We used integrative,

high resolution multi-omics methods to delineate the methylome landscape and characterize

the oncogenic drivers of esophageal squamous cell carcinoma (ESCC). We found 98% of

CpGs are hypomethylated across the ESCC genome. Hypo-methylated regions are enriched

in areas with heterochromatin binding markers (H3K9me3, H3K27me3), while hyper-

methylated regions are enriched in polycomb repressive complex (EZH2/SUZ12) recognizing

regions. Altered methylation in promoters, enhancers, and gene bodies, as well as in poly-

comb repressive complex occupancy and CTCF binding sites are associated with cancer-

specific gene dysregulation. Epigenetic-mediated activation of non-canonical WNT/β-cate-
nin/MMP signaling and a YY1/lncRNA ESCCAL-1/ribosomal protein network are uncovered

and validated as potential novel ESCC driver alterations. This study advances our under-

standing of how epigenetic landscapes shape cancer pathogenesis and provides a resource

for biomarker and target discovery.
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Epigenetic regulation is an important determinant of many
biological phenotypes in both physiologic and pathophy-
siological contexts1. Nevertheless, epigenetic forces that

shape the evolution of complex diseases, such as cancer, remain
incompletely defined. Esophageal cancer is the sixth leading cause
of cancer-related death and the eighth most common cancer
worldwide2. In China and East Asia, esophageal squamous cell
carcinoma (ESCC) is the most prevalent pathohistological type of
esophageal cancer3. Comprehensive analysis by whole-genome
and whole-exome sequencing uncovered the genetic landscape of
ESCC4–9 and multi-region whole-exome sequencing revealed
intra-tumor genetic heterogeneity in ESCC10. This intra-tumor
genomic heterogeneity could serve as a prognostic predictor in
esophageal cancer11 and as a foundation for improved treatments.
Notable and frequently mutated epigenetic modulator genes in
ESCC include KMT2D, KMT2C, KDM6A, EP300, and CREBBP,
and epigenetic perturbations might interact with other somatic
genomic alterations to promote the progression of ESCC. The
interplay between epigenetic perturbations and other somatic
genetic alterations may play a critical role during ESCC
tumorigenesis4.

The Cancer Genome Atlas research group (TCGA) identified
ESCC-related biomarkers at different multi-omics levels (geno-
mic, epigenomic, transcriptomic, and proteomic) and highlighted
82 altered DNA methylation events, along with transcriptional
and genomic alterations9. While genomic and transcriptomic-
level studies of ESCC produced valuable biological discoveries
and resources, the single-nucleotide resolution of the epigenetic
landscape of ESCC, and of most other cancers, at the whole-
genome level remains poorly studied. This knowledge gap is due
to the comparatively high cost, computational complexity, and
technical challenges of capturing genome-wide single-nucleotide
resolution of the epigenetic landscape. Integrative and causal
analyses using orthogonal multi-omics datasets are incomplete
without a high-resolution methylome profile. We addressed this
challenge by using an integrated multi-omics study that includes
whole-genome bisulfite sequencing (WGBS), whole-genome
sequencing (WGS), whole-transcriptome sequencing (RNA-seq),
and proteomic experiments on a cohort of ESCC samples and
their adjacent non-tumor esophageal tissues, along with ortho-
gonal analysis and validation using the large TCGA-esophageal
cancer (ESCA) dataset. Our goal was to understand the extent
and complexity of DNA methylation alterations and their con-
sequent dysregulation of both protein-coding and non-coding
gene expression.

Results
WGBS reveals the epigenetic landscape in ESCC. Different types
of cancers exhibit unique epigenetic alterations, particularly in the
DNA methylome12–14. We initially collected ten pairs of primary
ESCC samples and their adjacent non-tumor tissues (Supple-
mentary Fig. 1), performed WGBS with over 99% of a bisulfite
conversion ratio, and generated a mean 15× sequencing depth per
sample (Supplementary Data File 1, Supplementary Fig. 2). Over
99% of CpG dinucleotides were covered and ~95% of CpGs
were reliably mapped by more than five reads. We orthogonally
validated approximately 300K CpG methylation changes detected
in our sample cohort with their methylation level changes
detected in TCGA-ESCA sample cohort using Human Methyla-
tion 450K (HM450K) array (Supplementary Fig. 3a) and showed
overall high correlation of CpG methylation changes in all normal
and tumor samples between the two cohorts (Pearson’s r=
0.9644, p value < 0.01, Supplementary Fig. 3b), and within sub-
type of tumors (Pearson’s r= 0.7570 for our ESCC versus TCGA-
ESCC, Pearson’s r= 0.5554 for our ESCC versus TCGA-EAC

(esophageal adenocarcinoma), Supplementary Fig. 3c, d). DNA
methylation at non-CpG contexts was present in less than 0.5% in
our samples.

More than five million significantly differentially methylated
cytosines (DMCs) were identified (one-way ANOVA test, multi-
ple hypothesis tests were adjusted by the Benjamini–Hochberg
method, q value < 0.05) (Fig. 1a). Among them, 57.5% of DMCs
were located at known annotated regions (e.g., introns, exons,
promoter and enhancer regions, and CpG islands) and 42.5%
were located at unannotated regions of the genome (Supplemen-
tary Fig. 4a). Methylation loss in cytosines in ESCC accounted for
97.3% of the DMCs and was mostly confined to intergenic
regions of the genome. Only 2.7% of the DMCs were gains of
methylation in ESCC (proportional test for hyper- and hypo-
methylation, p value < 2.2e−16, Fig. 1b) and 83.67% of them
mapped to gene bodies, promoters and enhancers, and CpG
islands with RefSeq annotation (Supplementary Fig. 4b, c). Of the
hypomethylated DMCs in ESCC, 63.08% were mapped to
lncRNA regions with ENCODE annotation (v27lift37), which is
significantly higher than that in random regions (permutation
test, p= 0.001, Z-score= 15.021, 1000 permutation), whereas
58.01% of hypermethylated DMCs in ESCC were dispersed in
antisense RNA regions of the genome (Supplementary Fig. 5a, b).
We found 36.24% and 69.79% of DMCs overlap with enhancers
and CpG islands, respectively (permutation test, p value=
0.00099, number of iterations= 1000), which are dispersed in
regulatory regions in the genome.

Epigenetic features shape cellular identity. We found that the
genome-wide CpG methylation levels can discriminate normal
tissues from tumor tissues in an unbiased manner, as measured
by unsupervised principal component analysis (PCA) (Fig. 1c),
similar to unsupervised transcriptome-mediated clustering of
normal and tumor samples (PCA in Supplementary Fig. 6a and
Dendrogram in Supplementary Fig. 6b). In the larger sample set
(n= 202) of TCGA-ESCA, CpG probes present in the lower
resolution Illumina HM450K array were also able to discriminate
normal and tumor and even subtypes of esophageal cancer using
t-distributed stochastic neighbor embedding (t-SNE), a nonlinear
dimensionality reduction algorithms (Fig. 1d). Twenty-seven of
DMC probes were identified in ESCC versus EAC using the
criteria of absolute log2(FC) ≥ 0.59 and FDR < 0.05 (Supplemen-
tary Fig. 6c). The data suggest that alterations in DNA methy-
lation can characterize the distinct biological features of cellular
states of physiologic and pathophysiologic phenotypes. DNA
methylation heterogeneity has been observed in other cancer
types14,15 and stochastically increasing variation in DNA
methylation appears to be a property of the cancer epigenome16.
We found significantly higher variance of methylation changes in
ESCC (275.76 ± 204.01) compared with normal samples (95.67 ±
112.38, two-sample t-test, p value ≈ 0) in our cohort. This was
also observed in our analysis of TCGA-ESCC cohort (n= 98,
two-sample t-test, p < 2.2e−16) (Supplementary Fig. 6d). As a
further measurement of the level of epigenetic variance, we cal-
culated Shannon’s entropy of methylation levels at each CpG
locus. We observed increased entropy in ESCC compared with
normal samples (two-sample t-test p value ≈ 0) (Fig. 1e). This is
consistent with the increase in stochastic noise (heterogeneity) in
tumors. Our simulation using the Euler–Murayama method17

also reflected increased DNA methylation heterogeneity in ESCC
(Supplementary Fig. 6e).

The clinical significance of such high variance of DNA
methylation changes in cancer remains unclear. Using the
independent TCGA-ESCC clinical cohort, we stratified patient
samples into low or high variance groups by their median
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variance of methylation level along with other clinical variables
(age, gender, alcohol usage) for multivariate Cox regression
analysis. Although heavy alcohol intake is a known risk factor in
ESCC development18, we observed a trend toward to inferior
overall survival time in patients with alcohol consumption but no
impact on methylation variance: only three DMC probes
associated with alcohol users (log2(FC) ≥ 0.2 and FDR < 0.05)

(Supplementary Fig. 7a–c). The group with a lower variance (n=
49) of methylation levels showed a favorable overall survival time
(hazard ratio= 0.36, 95% confidence interval (0.16–0.80), Wald
test p value= 0.002) after normalized to age, gender, and alcohol
consumption (Fig. 1f). We examined additional squamous types
of cancer including TCGA-head and neck squamous carcinoma
cohort (n= 516) and found that again the high variance of DNA
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methylation changes associates with poor survival outcome
(p value <2e−16) (Supplementary Fig. 7d). The above findings
provide potential clinical relevance of the epigenetic heterogeneity
within ESCC.

Differentially methylated regions (DMRs) associate with
chromatin modifications. We further defined 295,295 DMRs
(p value ≤ 0.05, FDR ≤ 0.05) between tumor and normal tissues,
resulting from a CpG density peak of 4% and a DMR peak size of
200–400 base pairs (bp) (Fig. 2a, Supplementary Fig. 8a, b). Only
1.8% of these DMRs are hypermethylated, while 98.2% of DMRs
are hypomethylated (proportional test, p value <2.2e−16) in
tumors relative to normal tissues. DMRs in regions of −2990 to
+6990 bp to transcription start site (TSS) appear hypermethy-
lated while gene bodies, intergenic, and non-coding regions are in
general hypomethylated in tumors (Fig. 2b). The DMRs dis-
tribution in Chromosome (Chr)8, Chr19, and Chr20 is higher
than in other Chrs after normalization to chromosome size
(Supplementary Fig. 9a) and DMRs are enriched in gene pro-
moters at Chr19 ((Supplementary Fig. 9b (normalized by gene
size), 9c (normalized by gene counts in each Chrs)).

We integrated the most significant DMRs with all CpGs, CpG
island, chromatin state, and potential transcription factor (TF)
binding data using the ENCODE dataset19. We observed Chr8
harbors three large genomic regions with unique DMR patterns
and these regions contain the SOX17, RGS22, and ESCCAL-1
(CASC9) gene loci, respectively. For example, around the gene of
SOX17 (Chr8: 55,360,000–55,400,000), CpG island regions were
hypermethylated but CpG shore regions were hypomethylated
(Fig. 2c). Two CpG islands with a significant hypermethylation
upstream of the SOX17 gene were observed but that was not
associated with low gene expression (p value= 0.668, Fig. 2d). In
the region 100,650,000–101,190,000 of Chr8, hypo-DMRs
covered all of the gene body of RGS22 (regulator of G protein
signaling), which is a putative tumor suppressor20. This was
associated with decreased RGS22 expression (p value= 0.2)
(Supplementary Fig. 10). The region around the lncRNA
ESCCAL-1 (Chr8:76,130,000–76,240,000), which was previously
identified by us21, contained significantly hypomethylated DMRs
in its promoters and we further investigated the uncharacterized
biological function of this lncRNA later in this study.

TFs play important biological roles in gene regulations and
their binding affinities can be affected by DNA methylation
changes22. The occupancy of each TF binding consensus varies in
the genome (161 TF-binding sites from ENCODE), with
POLR2A (DNA-directed RNA polymerase II subunit A)
(5.23%) and CTCF (CCCTC-binding factor) (3.55%) ranking at
the top (Supplementary Fig. 11a, Supplementary Data File 2). We
searched CpG content in these TF-binding sequences and the top
20 TFs affected by methylation alterations in consensus-binding
sites were identified. Notably, the Polycomb Repressor Complex 2

(PRC2) subunits SUZ12 and EZH2 binding sites were substan-
tially affected by hypermethylation in the CpGs (Supplementary
Fig. 11b–d). EZH2 and SUZ12 and other TFs tend to
preferentially bind to promoter regions compared to enhancer
regions (p value <0.001) (Supplementary Fig. 12a–c). These
observations indicated the possibility of a paradoxical activation
mechanism for PRC2 target genes through loss of PRC2
occupancy in gene promoters in tumor cells.

A link between hypomethylated blocks, variable gene expres-
sion, and large heterochromatin domains such as Large
Organized Chromatin lysine (K) modification (LOCK) or
lamina-associated domains was previously reported in cancer23.
We performed the genomic region set enrichment analysis with
LOLA24 to test these DMRs for enrichment against the LOLA
Core database, which contains DNaseI hypersensitive elements
and chromatin immunoprecipitation sequencing (ChIP-seq)
peaks from a variety TFs and chromatin modifiers. ESCC-
derived hypo-DMRs were enriched in genomic regions with
heterochromatin markers such as H3K9me3 and H3K27me3,
whereas hyper-DMRs were enriched in genomic regions with
EZH2 or SUZ12 protein-binding sites (Fig. 2e, Supplementary
Data File 3). The DMRs enriched in regulatory elements in cancer
indicates cancer-specific dysregulation of gene expression con-
tributing to cancer progression, which we explore further later in
this study.

Aberrant DNA methylation in promoter regions mediates
transcriptional dysregulation in ESCC. From our WGBS ana-
lysis, we identified 4391 promoter regions (−4500 to +500 bp to
TSS) of coding and non-coding genes whose CpGs were sig-
nificantly differentially methylated (FDR < 0.01). Functional
annotation of these target genes harboring promoter hypo-
methylation indicated an over-representation of WNT/β-catenin
signaling, whereas gene promoters harboring hypermethylation
were enriched for KIT signaling genes (Supplementary Fig. 13a).
The RNA-seq dataset displayed 4074 significantly differentially
expressed genes (DEGs) in ESCC relative to the adjacent normal
tissues. The functional annotation of these DEGs indicated
enrichment for genes regulating cell cycle pathways and metal-
lopeptidase activity (Supplementary Fig. 13b).

DNA methylation at regulatory regions can influence tran-
script expression levels25. We merged DMRs and DEGs and
identified 694 genes that showed significant differential methyla-
tion alteration in promoters and concomitant dysregulation of
gene expression (Fig. 3a). The genes were systematically classified
into four distinct clusters (denoted as C1, C2, C3, and C4)
according to methylation and gene expression pattern (Fig. 3b).
Genes in C1 and C2 followed the well-documented canonical
model, showing anti-correlation in promotor methylation and
gene expression13; in contrast, genes in C3 and C4 showed a non-
canonical pattern in that promotor methylation and gene

Fig. 1 Epigenetic landscape and heterogeneity in esophageal squamous cell carcinoma (ESCC). a Ten pairs of ESCC and adjacent normal tissues were
performed whole-genome bisulfite sequencing (WGBS). The asymmetric density distribution of all CpG methylation statuses in the normal esophageal
tissues versus ESCC. ESCCs lose methylation which leaves most CpGs partially methylated. Normal= blue, tumor= red. b Circos plot of >5 million
differentially methylated CpGs (DMCs) between ESCC tumor and adjacent normal tissue. DMCs are substantially hypomethylated in ESCC (97.3%). Only
2.7% are hypermethylated in ESCC. c Principal component analysis (PCA) shows that characteristic CpGs discriminate tumor samples from normal
samples. d t-Distributed Stochastic Neighbor Embedding (t-SNE) showed CpG methylation profiling of TCGA-esophageal cancer from human methylation
450K analysis clustered into either normal tissue (n= 15, green circles) or ESCC (n= 97, red circles) or esophageal adenocarcinoma (n= 89, black circles)
subtypes. e Entropy analysis of all CpGs showed variations per CpG in normal esophageal tissues (blue bars) and ESCC (red bars). The entropy of CpGs in
ESCC was higher than in normal samples. f Multivariate cox proportional hazard analysis demonstrated TCGA-ESCC patients (n= 92) with lower variance
of CpG methylation in tumors showed better survival time than those with higher variance. Median variance was used to discriminate high versus low
variance groups. Variance of DNA methylation changes were normalized for age, gender, and alcohol consumption in patients. Statistical significance was
assessed by two-sided Wald test, p= 0.002.
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expression was positively correlated (Fig. 3c, Supplementary Data
File 4). Among the 694 genes, only 1.5% of them harbor non-
synonymous mutations from our selected cases of WGS and no
copy number changes of these genes were detected from WGS
and inferred from RNA-seq analysis (Supplementary Fig. 15). As
TF expression can lead to changes in gene expression, we
examined the RNA expression of 161 TFs in our ESCC samples

and found no significant changes in expression of these TFs in
tumors versus normal samples (Supplementary Fig. 16). There-
fore, the majority (98.5%) of these dysregulated genes in cluster
C1–C4 appear to occur via epigenetic dysregulation (epimuta-
tion)26. This phenomenon was recapitulated in the independent
TCGA-ESCC (n= 96) sample cohort with available multi-OMICs
datasets (Supplementary Fig. 17a–d).
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The underlying mechanisms of the divergent regulation of gene
expression are complex and involve DNA methylation, chromatin
remodeling, and DNA accessibility27. We explored a potential
explanation for the non-canonical patterns in C3 and C4 across
epigenetic regulatory features. First, we cross-referenced 13,000
TCGA-ESCA chromatin-accessible regions as determined by
ATAC-seq27 to the regulatory regions of the 694 genes.
Accessibility in promoter regions was higher in C2 and C3 than
in C4 and C1, respectively (Supplementary Fig. 18a, b). Second,
methylation in defined promoter regions and in gene bodies
showed a differential phenotype between C1 and C3 (but not
between C2 and C4): methylation levels in gene bodies were
higher in C3 (−5.4587 ± 26.3450) than in C1 (−26.8551 ±
16.4716, p < 0.05). There is no significant difference in related
enhancer regions of genes in all clusters (Fig. 3d). Third,
hypermethylation at cohesion and CCCTC-binding factor-bind-
ing sites could compromise binding of this methylation-sensitive
insulator protein and result in gene activation22. Thus, we
searched for CTCF-binding sites within promoter regions of
the 694 genes and observed that the CTCF-binding sites were
enriched in C3 (Fig. 3e), which could partially explain
the phenotype of high promoter methylation and high gene
expression. The data also indicated that the promoters of genes in
C4, despite being hypomethylated in the tumor, have scarce
accessible regions (Supplementary Fig. 18b). This highlights the
importance of both accessibility and absence of methylation as
linked features of the gene expression pattern in the C4.
Enhancer–promoter interaction is a fundamental mechanism of
gene regulation28. We found the pattern of enhancer-gene
expression was highly correlated to promoter-gene expression
pattern, with the exception of non-canonical C3 and C4 groups,
in which the methylation change in enhancers was opposite to
that in promoters (Supplementary Fig. 14b–d).

Functional annotation of the 694 genes was performed using
multiple databases (KEGG29, WikiPathways30, ENCODE19,
ChEA31) and showed that PRC2 subunit (EZH2 and SUZ12)-
mediated polycomb repressive gene sets were enriched in the
non-canonical clusters C3 and C4 (Fig. 4a). We searched for
ENCODE-defined EZH2 and SUZ12-binding sites across gene
promoters in C1–C4 and observed that EZH2 occupancy was
enriched in C3 (1.5970 ± 1.2316) and C4 (0.6000 ± 0.7684)
compared with C1 (0.9167 ± 0.8464) and C2 (0.2336 ± 0.5870),
respectively (p value < 0.001) (Fig. 4b). SUZ12 occupancy was
higher only in C3 gene promoter regions (1.5522 ± 1.7946)
(Fig. 4c). To understand the functional mechanism that is
responsible for differential methylation at target-gene promoters,
we performed unsupervised hierarchical clustering of ENCODE-
defined known TF-binding sites in 694 gene promoters.

The analysis showed that EZH2 and SUZ12 binding sites
clustered together and were enriched in genes in C3 compared to
other TFs in other clusters (Fig. 4d, Supplementary Figs. 19 and
20). Increased WNT2 gene expression was significantly associated
with increased methylation in promoter regions in C3 (Fig. 4e).
The comprehensive analyses show the non-canonical gene
expression pattern (C3) appears to arise via de-repression of
the EZH2-mediated suppressor effects on promoter regions of
genes in C3 to increase gene expression, which we experimentally
validate later in this study.

DNA methylation gain at the promoter region activates the
WNT2/ β-catenin pathway in ESCC. WNT2 belongs to the
structurally related WNT family of genes that function as secre-
tory ligands for the WNT signaling pathway32. Canonical WNT
signaling pathway results in stabilization of the transcriptional co-
regulator β-catenin and subsequent upregulation of downstream
target genes32.

Epigenetic dysregulation of the components of MAPK, AKT,
and WNT pathway can promote aberrant activation of these
pro-growth pathways in ESCC33. In our RNAseq dataset, we
identified only WNT2 in the WNT pathway as significantly
highly expressed in the tumor samples compared to normal
samples (Supplementary Fig. 21a, b). WNT2 protein was
highly expressed in the cytoplasm of cancer cells relative to
normal cells (Supplementary Fig. 22a, b). Although high
expression of WNT2 is not a prognostic marker, it was
associated with tumor progression (Supplementary Fig. 22c).
These results indicate selective and specific upregulation of
WNT2 in ESCC tumors through a putative non-canonical
epigenetic regulatory mechanism.

To gain mechanistic insight into the epigenetic regulation of
the WNT2 promoter, we queried our TF target-gene hierarchical
clustering analysis for genes in C3 and found that the EZH2-
binding site along with SUZ12-binding sites were present within
the WNT2 promoter region compared to other regulatory factors
(Fig. 4d, Supplementary Fig. 19b). EZH2 and SUZ12 are subunits
of PRC2, which has histone methyltransferase activity to
primarily tri-methylate histone H3 on lysine 27 (H3K27me3)34

resulting in gene silencing. We also found that the EZH2-binding
site within the WNT2 promoter overlaps with the hyper-CpG
methylation sites in the WNT2 promoter region in cancer cells
(Fig. 5a).

The WNT2 promoter region (Chr7: 116,960,000–116,965,000)
was hypermethylated, but paradoxically associated with increased
gene expression in tumors (Supplementary Fig. 23 from our
WGBS dataset, Supplementary Fig. 24a–c from TCGA-dataset).
The WNT2 gene shows rare mutation (0.55%, 1/183 cases) and

Fig. 2 Differentially methylated regions (DMRs) and their functional impacts on the ESCC genome. a A DMR identification algorithm from DMC was
developed using two criteria: (1) two flanking DMCs should be close (150 base pairs, bp) given the minimum size of CpG island (CGI) 150 bp and (2) the
methylation pattern should be consistent, either hypomethylated or hypermethylated within a DMR. Our algorithm revealed the distribution of DMR size and
CpG density within DMRs. Both distributions of DMR size and CpG density are asymmetric and have long tails as DMR size increases in length and CpG density
is more compact. The peak of DMR size is 200–300 bp and the peak of CpG density is approximately 4% (also seen in Supplementary Fig. 8). b Methylation
level of CpGs within 15,000 bp upstream and downstream relative to a transcription start site (TSS) was assessed in ESCC and normal esophagus separately.
Overall methylation conversions between normal esophagus tissue and ESCC were observed. CpGs in ESCC tend to be hypermethylated between 2990 bp
upstream and 6990 bp downstream of a given TSS. The arrow indicates the p value for the specific region of significant methylation changes. c A representative
genomic region at chr8:55,360,000–55,400,000 with hypermethylation in CpG island and hypomethylation in the CpG shore. d SOX17 expression is decreased
in ESCC tumors (T, 10 cases) relative to normal tissue (N, 10 cases). Y-axis is the normalized gene expression levels (transcript per million reads, TPM) from
RNAseq data. Box and whisker plot: center line, median; box limits, upper and lower quartiles; and whiskers, maximum and minimum values, circle dots, outliers.
Statistical significance was assessed by two-sided t-test, p=0.67, FDR=0.8. e Genomic regional enrichment analysis of ESCC-associated DMRs. In all,
289,973 hypo-DMRs and 5322 hyper-DMRs were mapped to LOLA core database with ENCODE, DNase, CODEX, and UCSC genomic annotations. The
significant overlapping genomic regions were selected with p value <0.05 and odds ratio >2 from Fisher’s exact test. Each bar with pseudocolor gradience
represents each dataset in LOLA core databases (see Supplementary Data File 3).
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copy number alteration (16%, 30/183 shallow loss; 4.4%, 8/
183 shallow gain) in TCGA-ESCA cohort (Supplementary
Fig. 24d). Thus, we reasoned that de-repression of EZH2
occupancy may cause non-canonical methylation-mediated
activation of WNT2 gene expression in ESCC. We validated
EZH2 occupancy on the DMRs of the WNT2 promoter by

performing chromatin immunoprecipitation sequencing (ChIP-
seq) in normal immortalized esophageal epithelial cells (Het-1A)
and the patient-derived ESCC cell line, EC109. The ChIP-seq
analysis showed EZH2-binding peaks at the WNT2 promoter
region in normal cells compared to minimal binding peaks in the
ESCC cells (Fig. 5a). Furthermore, we confirmed the promoter
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region of WNT2 was hypermethylated in three esophageal cancer
cell lines (EC9706, EC109, and EC1) while no methylation was
detected in normal esophagus epithelial cells (Het-1A) (Fig. 5b).
Accordingly, WNT2 protein expression was higher in three
cancer cell lines (Fig. 5c). DNA methyltransferase inhibitor (5-
Azacytidine) treatment partially decreased the methylation level
in the promoter region of WNT2 (Fig. 5d) and increased EZH2
binding (Fig. 5e), leading to the attenuation of WNT2 expression
in cancer cells (Fig. 5f). In tissue samples, WNT2 mRNA and
protein expression was also increased (Fig. 5g, h).

To identify downstream effector genes of WNT/β-catenin
signaling that might promote ESCC, functional annotation of
differential expression from proteomic data and Gene Set
Enrichment Analysis (GSEA) from RNAseq data revealed
extracellular matrix organization (Supplementary Fig. 25) and
extracellular metalloproteins (MMP3 and MMP9, known β-
catenin targets)35 gene sets (Supplementary Fig. 26) were
enriched in tumor samples. We validated that both MMP3 and
MMP9 transcripts and proteins were highly expressed in ESCC
relative to normal tissues (Fig. 5h, Supplementary Fig. 26a). As
WNT2 RNA expression in ESCC cell lines is significantly higher
than in normal cell lines (Supplementary Fig. 27a), we tested
whether WNT2-mediated signaling was required for tumor cell
growth, we suppressed WNT2 expression using two independent
short interfering (si)RNAs in two ESCC cell lines (EC9706 and
EC109) (Supplementary Fig. 27b, c). WNT2 knockdown
significantly inhibited ESCC cell growth (p value < 0.01) (Supple-
mentary Fig. 27d, e). WNT2 knockdown decreased expression of
MMP3 and MMP9, known targets of WNT/β-catenin signaling
(Fig. 5i). Since MMPs can promote tumor invasion and
metastasis36, we tested whether WNT2 knockdown abrogates
the migratory and invasive potential of ESCC tumor cells. In two
ESCC cell lines (EC9706 in Fig. 5j, and EC109 in Supplementary
Fig. 27f, g), silencing of WNT2 significantly reduced cellular
invasion and migration (p value < 0.01). The protein but not RNA
levels of β-catenin, encoded by CTNNB1 gene, was significantly
elevated in ESCC tumors, which indicates that β-catenin protein
has higher stability in these tumors (Supplementary Fig. 27h).
Knockdown of WNT2 reduced the elevated protein level of β-
catenin in patient-derived cell lines, as expected by previous
findings37,38 (Supplementary Fig. 27i). Moreover, WNT2 knock-
down in EC9706 tumors significantly suppressed tumor growth
and tumor burden (Student’s t-test, p value < 0.05, Fig. 5k and
Supplementary Fig. 27j). The combined in vitro and in vivo
evidence showed that a WNT2/β-catenin/MMP signaling axis
was required for tumor cell growth, migration, and invasion in
ESCC. Together, our results demonstrate a non-canonical
mechanism for increased WNT2 expression in the absence of
EZH2-PRC2 occupancy of the WNT2 promoter with hyper-
methylated CpGs. This non-canonical epigenetic activation of

WNT2-mediated signaling and exerted functional consequences
in ESCC progression (Fig. 5l).

Epigenetic activation of lncRNA ESCCAL-1 is an oncogenic
driver in ESCC. Increasing evidence indicates dysregulation of
lncRNAs during cancer progression and metastasis; however, the
mechanisms of dysregulation and of action of lncRNAs in cancer
are relatively poorly understood39. Previously, we showed that the
lncRNA ESCCAL-1 was overexpressed in ESCC21, and over-
expression of ESCCAL-1 has been reported in other cancer
types40–43. The mechanism underlying ESCCAL-1 upregulation
in cancer is unknown.

We found ESCCAL-1 is one of the most notable candidates for
increased gene expression in C2 in association with decreased
methylation (Fig. 6a). One DMR in the promoter of ESCCAL-1
showed decreased CpG methylation in cancer, leading to
increased transcription of lncRNA ESCCAL-1 (Fig. 6b, c). There
was no mutation or copy number variation of ESCCAL-1
reported or observed in TCGA-ESCA genomic dataset or in
our WGS data of ESCC patients (Fig. 6b, top panel, Supplemen-
tary Fig. 24d). Independent verification of the methylation status
of the ESCCAL-1 promoter region showed 62.5% (20/32)
hypomethylation in ESCC tumors versus 71.8% (23/32) hyper-
methylation in adjacent normal tissues (chi square test p value <
0.01) (Fig. 6d, e). In agreement, ESCCAL-1 expression was
significantly higher in ESCC compared to adjacent normal tissues
(p value= 0.00113, FDR < 0.05) (Fig. 6c, from RNAseq). We
corroborated these observations by analysis of an independent
cohort of 73 ESCC tissues relative to their normal counterparts
(Fig. 6f). We also noted a hypermethylated ESCCAL-1 promoter
region in normal esophageal cells (Het-1A), whereas methylation
was not detected in three ESCC cell lines (EC1, EC109, and
EC9706) (Fig. 7a). ESCCAL-1 expression was substantially
overexpressed in ESCC cell lines compared with normal cells
Het-1A (Fig. 7b). Furthermore, increased expression of ESCCAL-
1 was a biomarker of worse overall survival time and progression-
free survival in ESCC patients (Fig. 7c, d). Knockdown of
ESCCAL-1 reduced growth of patient-derived ESCC cells in vitro
(Supplementary Fig. 28) and in vivo (Fig. 7e, f), suggesting a
cancer-promoting function.

To identify a possible mechanism of ESCCAL-1 upregulation,
we examined sequence motifs of known TFs in the ESCCAL-1
hypomethylated promoter region in silico and found a predicted
binding site for YY1. YY1 is an TF belonging to the GLI-Kruppel
class of zinc-finger proteins and contributes to tumorigenesis44.
Using ChIP-PCR, we validated YY1 binding at the hypomethy-
lated promoter region of ESCCAL-1 (Fig. 7g). RNA-seq profiling
in cells with YY1 knockdown also revealed ESCCAL-1 as a YY1-
regulated target-gene (Supplementary Fig. 29). RT-PCR assays
also showed decreased expression of ESCCAL-1 in cells with YY1

Fig. 3 Integrative analysis of WGBS and RNAseq uncovered methylation-mediated diverse gene regulation. a A total of 694 genes were selected for the
methylome–transcriptome association analysis. The selected genes have statistically significant DMRs (FDR≤ 0.001) in promoters, defined as 4500 base
pair (bp) upstream and 500 bp downstream relative to transcription start sites, and are statistically significant DEGs (differentially expressed genes) (|log2
(fold change)| > 1, FDR≤ 0.05). b, c The association of promoter methylation and expression of the 694 genes were identified. There are four clusters: C1
(n= 48): genes that are hypermethylated in the promoter with low expression level in ESCC; C2 (n= 389): genes that are hypomethylated in the promoter
with high expression in ESCC; C3 (n= 67): genes that are hypermethylated in the promoter with high expression in ESCC; C4 (n= 190): genes that are
hypomethylated in the promoter with low expression in ESCC. Genes in C1 and C2 fit the canonical model of regulation, while genes in C3 and C4 are not
well explained by current understanding. Representative genes are listed in each cluster. See Supplementary Data File 4. d The quantification of CpG
methylation in gene promoters and gene bodies in C3 (n= 67) is significantly higher than in C1 (n= 48), p < 0.001, while no significant difference (NS) for
enhancers. e CTCF-binding sites are significantly higher in C3, indicating hypermethylation of inhibitors leads to de-repression to promote gene expression.
The sample sizes for C1, C2, C3, and C4 in d and e are the same as defined in b and c. Box and whisker plot: center line, median or mean; box limits, upper
and lower quartiles; and whiskers, maximum and minimum values, circle dots, outliers. Statistic significance was assessed by one-way ANOVA.
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deficiency (Fig. 7h), indicating YY1 transcriptionally regulates
ESCCAL-1 in ESCC.

Since the downstream mechanism of ESCCAL-1’s contribution
to ESCC pathogenesis was unclear, we performed a “guilty-by-
association” co-expression analysis using our RNA-seq dataset.
The ESCCAL-1-related gene expression modules are enriched in

cell cycle pathways, RNA binding and the Myc pathway
(Supplementary Fig. 30a–c). In order to explore the causative
roles of ESCCAL-1 in ESCC progression, we conducted RNA-seq
profiling in EC9706 cells with ESCCAL-1 knockdown by shRNA
(or with shControl). We hypothesized that depletion of ESCCAL-
1 could reverse the phenotype of cells to the relative normal cell
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state. Thus, we also compared RNA-seq data from a normal cell
line, Het-1A with that of the ESCCAL-1 knockdown tumor cells,
EC9706. Using an iterative clustering approach, we identified
210 significant genes whose expression was differential between
shControl EC9706 and shESCCAL-1 EC9706 cohort and was
similar between shESCCAL-1 EC9706 and Het-1A (normal)
cohort (gene list in Supplementary Data File 5)45. Functional
annotation on these identified DEGs exhibit an enrichment of
RNA binding, ribosomal proteins, and Myc target-gene sets
(Fig. 7i, Supplementary Fig. 31). Myc knockdown depleted
ribosomal translational processes in ESCC, phenocopying the
effect of ESCCAL-1 knockdown (Fig. 7j). These results indicate
that ESCCAL-1 participates in the biological process of ribosome
regulation and Myc-mediated regulation of genes, which extends
current knowledge on the potential role of translational
machinery and Myc signaling in ESCC46. Moreover, simulta-
neously abolishing ESCCAL-1 and WNT2 expression increased
apoptosis compared to individual knockdown in vitro (Supple-
mentary Fig. 32). Thus, beyond WNT2-mediated WNT pathway
activation, other aberrant signaling pathways activated by
ESCCAL-1 upregulation also contribute to ESCC tumorigenesis.
Therefore, epigenetic dysregulation promotes ESCC through
divergent and multi-factorial mechanisms.

Discussion
The development of ESCC is a complex, dynamic biological
process that involves multiple steps of genetic and epigenetic
alterations. Numerous genetic studies of ESCC revealed genomic
alterations in genes within the cell cycle, p53, AKT/mTOR, and
Hippo signaling pathways4,6,8,47,48. It remained unclear in ESCC,
as in most other cancer types, whether and how the epigenetic
landscape contributes to cancer pathogenesis. We performed
WGBS, RNA-seq, and proteomic analyses on matched normal
and tumor samples along with analysis of TCGA-ESCA datasets
and validated our findings in independent samples. We observed
98% of global CpG hypomethylation and 2% of local CpG
hypermethylation across the ESCC genome. The trend of global
loss of DNA methylation is consistent with studies in colon and
other types of cancers, but the degree of hypomethylation in
ESCC appears to be significantly larger than reported in other
cancers12,49. The characteristics of CpG methylation alterations
can discriminate cellular states between tumor and normal con-
ditions, and histological subtypes of esophageal cancer. DNA
methylation is a defining feature of cellular identity and is
essential for cell development50. Cancer-specific DMRs have been
identified in colon cancer and such stochastic methylation var-
iations distinguish cancer from normal and may serve as diag-
nostic or therapeutic biomarkers13. We found that the
heterogeneity of DNA methylation alteration is greater in ESCC

relative to normal esophageal tissues. Higher variance of DNA
methylation alteration in squamous carcinomas (ESCC, HNSC) is
strongly associated with poor clinical outcome. Our findings
provide insight into the potential clinical relevance of epigenetic
dysregulation and heterogeneity as a molecular biomarker of
clinical outcome in cancer.

We validated prominent epigenetically altered coding and non-
coding genes from the non-canonical cluster (C3) and canonical
cluster (C2), respectively. The WNT pathway is epigenetically
dysregulated in ESCC by the inactivation of negative regulators
(SFRP1/2/4/5, SOX17, and WIF1)33. Our multi-omics data
identified high WNT2 expression along with a highly methylated
promoter region in ESCC. We verified this observation in inde-
pendent samples and ESCC cell lines. We experimentally
demonstrated decreased EZH2 binding to the hypermethylated
promoter region of WNT2 in cancer cells relative to normal cells,
in association with higher expression of WNT2 in cancer. DNA
methyltransferase inhibitor treatment in cancer cells reversed this
phenotype. Our findings indicate that hypermethylation-
mediated de-repression of WNT2 activates the WNT pathway
in ESCC. TCGA-ESCC cohort suggested higher expression of
WNT2 is a biomarker of tumor progression. Knockdown of
WNT2 expression suppressed cancer cell growth, reduced cellular
invasion and migration, reduced β-catenin target-gene expression
(MMP3/9) in vitro, and inhibited xenograft tumor growth in vivo.
Our data provide new insight into the mechanism of epigenetic
dysregulation that results in non-canonical gene-expression reg-
ulation in cancer and the underlying molecular events promoting
WNT pathway activation in ESCC.

LncRNA dysregulation is an emerging but poorly understood
feature of oncogenesis21. We reported ESCCAL-1 overexpression
in ESCC21, which is also overexpressed in other cancer types40–42.
Overexpression of ESCCAL-1/CASC9 promotes cancer cell
growth51, invasion52, and metastasis53. We discovered that loss of
methylation in its promoter and an increase of YY1 TF binding is
a principle molecular mechanism of ESCCAL-1 dysregulation in
ESCC, resulting in cell cycle and ribosomal pathway dysfunction.
We found that ESCCAL-1 plays an epigenetic-mediated causal
role in tumor growth and is a biomarker of worse clinical out-
come in ESCC. ESCCAL-1 is also overexpressed in other cancer
types and associated with drug resistance in lung cancer40.
Whether ESCCAL-1 is similarly dysregulated by epigenetic
mechanisms in other cancer types beyond ESCC remains to be
investigated. Nevertheless, suppressing ESCCAL-1 expression,
potentially using antisense RNA54 or CRISPR-based strategies55,
may be a promising therapeutic approach in ESCC and other
cancers.

Overall, our study provides a rationale and a roadmap for
delineating the landscape and functional roles of epigenetic

Fig. 4 DNA methylation at regulatory consensus protein-binding sites and impacts on gene expression. a Functional annotation for the four distinct
methylation-transcriptome clusters. Lists of genes in C2 (n= 389), C3 (n= 67), and C4 (n= 190) were subjected to gene set analysis using
hypergeometric statistics for gene sets collected from multiple databases (ENCODE, CHEA, KEGG, WikiPathways, Reactome, GO molecular function,
Panther, BIOGRID, etc.). The significance of the hypergeometric analysis is indicated as –Log10 (p value) in the form of a horizontal histogram where bar
heights represent level of significance. Bars are color coded based on their inclusion in each cluster. Gene pathways or GO terms in different clusters,
including polycomb repression complex 2 (PRC2) subunit, EZH2 (Ester of Zinc Finger Homolog 2), and SUZ12 (Polycomb Repressive Complex 2 Subunit)-
binding sites significantly enriched in C3, suggesting hypermethylation of PRC2 de-represses gene expression. Genes in C1 have no significant gene set
enrichment. b, c In silico analysis of EZH2 or SUZ12-binding sites within gene promoters in each cluster (C1–C4) and show more significant binding scores
in C3 than in other groups, Box and whisker plot: center line, median (red) or mean (green); box limits, upper and lower quartiles; and whiskers, maximum
and minimum values; red dots, outliers. Statistic significance was assessed by one-way ANOVA. d The probability of the top 20 transcription factor
consensus-binding sites in C3 showed EZH2 has the highest binding scores in a subset of genes in C3, including WNT2. The heatmaps for C1, C2, and
C4 are in Supplementary Fig. 18. e In non-canonical gene cluster C3 (n= 67), WNT2 is significantly hypermethylated in the promoter (one-way ANOVA,
FDR= 6.6005e−03) and highly expressed in ESCC (one-way ANOVA, FDR= 0.0039). WNT2 also shows the highest fold change in gene expression in
ESCC relative to adjacent normal tissues. Each dots represent individual gene; colored dots reflect different categories genes.
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dysregulation in cancer at a genome-wide, high resolution.
Further analysis will provide a better understanding of the
impact of epigenetic dysregulation and heterogeneity on var-
ious cancer-associated phenotypes and treatment responses14.
Multi-regional WGBS or single-cell DNA bisulfite sequencing

could facilitate this opportunity in the future. Our study pro-
vides a resource that includes comprehensive profiling of the
epigenetic landscape to enable the discovery of additional bio-
markers and therapeutic targets in ESCC and potentially other
cancers.
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Methods
Primary ESCC specimens. Matched clinical samples of esophageal squamous
carcinoma and adjacent normal esophageal tissue are obtained from ten patients
(Linzhou Cancer Hospital) as fresh frozen specimens at Translational Medical
Center, Zhengzhou Central Hospital, affiliated to Zhengzhou University, China
(Supplementary Fig. 1). Written informed consent was obtained from patients
before surgery. The collection of human samples and the protocols for the inves-
tigations were under the approval of the Institutional Ethics Committee of
Zhengzhou, Henan Province. These specimens were used for sequencing and
different assays; WGBS (n= 20), WGS (n= 6), RNA-seq (n= 20), and iTRAQ
proteomic assay (n= 20). For validation, independent 93 matched ESCC and
adjacent normal samples with clinical follow-up (n= 73) were prepared for gene
expression analysis.

Whole-genome sequencing. DNA was extracted using the QIAamp DNA Mini
Kit (Qiagen), fragmented using Bioruptor® Pico. Libraries were constructed using
VAHTSTM Universal DNA Library Prep Kit for Illumina V3 ND607-02 (Vazyme,
Nanjing). Libraries were sequenced with an Illumina HiSeq 4000 to obtain 150 bp
paired-end reads. Base calling was performed with the Illumina Real Time Analysis
version 2.7.7 and the output was demultiplexed and converted to FastQ format
with the Illumina Bcl2fastq v2.19.0.316. The FastQC package (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc) was used to check the quality of the
sequencing reads. Sequencing adapters were trimmed from raw reads with Trim-
momatic (version 0.36)56. We performed mapping, duplicates marking, and
mutation calling with bcbio-nextgen (https://github.com/bcbio/bcbio-nextgen), a
community developed platform for variant calling. Specifically, Reads were mapped
to the human reference genome assembly GRCh37 using BWA-MEM in the BWA
package (version 0.7.17) with the default parameters57. Duplicates were marked
using the tool Sambamba version 0.6.6 (ref. 58). Somatic mutations include single-
nucleotide variants (SNVs), small insertions and/or deletions (indels), and struc-
tural variants (SVs). The detection of somatic mutations was performed using
tumor and matched normal whole-genome BAM files generated in the steps
described above. We used a series of software packages, including VarDict59,
MuTect2 (ref. 60), and Strelka2 (ref. 61), to detect somatic SNVs and indels, and
packages including LUMPY62, Manta63, CNVkit64, and MetaSV65 to detect SVs.

Whole-genome bisulfite sequencing. Genomic DNA was extracted with QIAmp
DNA Mini kits (Qiagen) from fresh frozen tissue samples. One microgram DNA
was fragmented by sonication with a base pair peak of 300 bp for the resulting
fragment, and adaptors were then ligated to both ends of the fragments. Bisulfite
conversion was performed to whole genomes of ten pairs of ESCC and matched
normal tissues, where converts cytosine residues of the dinucleotide CpG to uracil
but leaves methylated cytosine unaffected66. PCR amplification and purification
were carried out. The uracil-binding pocket of KAPA HiFi DNA polymerase has
been inactivated, enabling amplification of uracil-containing DNA. The high
quality of the library was estimated by The Qubit® 3.0 Fluorometer. Bisulfite
conversion success ratio is 99.18% and 99.49%, respectively, in normal and ESCC
samples (Supplementary Data File 1). The WGBS library was sequenced on an
Illumina HiSeq2500 sequencers and generated 400M of paired-end reads (2 ×
125 bp).

Whole-transcriptome sequencing (RNA-seq). The RNA was extracted with
TRAzol from ten pairs of fresh frozen tissue samples. The input material for total
RNA-seq library preparation was 2 μg per sample. Sequencing libraries were
generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (#E7530L,

NEB, USA) following the manufacturer’s recommendations. Index codes were
added to attribute sequences to each sample. Briefly, mRNA was purified from total
RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out
using divalent cations under elevated temperature in NEBNext RNA First Strand
Synthesis Reaction Buffer (5×). First-strand cDNA was synthesized using random
hexamer primer and RNase H. Second-strand cDNA synthesis was subsequently
performed using buffer, dNTPs, DNA polymerase I, and RNase H. The library
fragments were purified with QiaQuick PCR kits and elution with EB buffer.
Terminal repair, A-tailing, and adapter ligation were implemented. The aimed
products were retrieved by agarose gel electrophoresis followed by PCR, and then
the library was completed. RNA concentration of library was measured using
Qubit® RNA Assay Kit in Qubit® 3.0 to preliminary quantify and then diluted to 1
ng/µl. Insert size was assessed using the Agilent Bioanalyzer 2100 system (Agilent
Technologies, CA, USA), and qualified insert size was accurately quantified using
StepOnePlus™ Real-Time PCR System (Library valid concentration >10 nM). The
clustering of the index-coded samples was performed on a cBot cluster generation
system using HiSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the man-
ufacturer’s instructions. After cluster generation, the libraries were sequenced on an
Illumina Hiseq 4000 platform to 2 × 150 bp paired-end reads.

Proteomic assay and data analysis. Reduced and tryptic digested peptides from
samples were labeled with eight isobaric ItraQ reagent for an individual run and
mixed at an equimolar ratio. Resuspended labeled peptides were pH optimized and
separated through strong cation ion chromatography. Samples prepared as such
were run through reverse phase liquid chromatography–mass spectrometry (LC-
MS). The isobaric labeling and LC-MS quantifications were operated in Beijing
Genomics Institute (BGI) using optimized quantitative MS-MS protocols67. For
Protein identification and data analysis, IQuant was used68. For improved protein
identification, a Mascot Percolator and Mascot Parser, a customized post-
processing tool was used. The signal-to-noise ratio was decreased by variance
stabilization normalization. Due to the low abundance or low ionization of pep-
tides, missing the reporter ions is a common phenomenon in isobaric data, and
may hinder downstream analysis. A missing reporter was imputed as the lowest
observed values to avoid estimation bias. Nonunique peptides and outlier peptide
ratios are removed before quantitative calculation73. The weight approach pro-
posed is employed to evaluate the ratios of protein quantity based on reporter ion
intensities69. The ratio between normal and tumor samples were generated for each
match control pairs. This way three distinct datasets were generated for ten pairs of
tumor and normal samples. Sample number 7 (for both tumor and normal, T7
versus N7) was run in each time to standardize among three datasets. For dataset
integration, each dataset was normalized by the T7/N7 ratio for the abundance of
the protein in all datasets. Dataset normalized as such was represented as a matrix
so that protein abundance (row-wise) can be compared across ten different samples
as tumor versus normal quantitative ratios (column-wise) generated from three
separate runs. The raw data in Supplementary Dataset file 6.

Chromatin immunoprecipitation with DNA sequencing (ChIP-seq). ChIP
assays were performed according to the protocol supplied with the kit (catalog no.
9003) from Cell Signaling Technology. Briefly, EC109 and Het-1A cells were cross-
linked with 37% formaldehyde at a final concentration of 1% at room temperature
for 10 min. Fragmented chromatin was treated with nuclease and subjected to
sonication. Chromatin immunoprecipitation was performed with anti-KMT6/
EZH2 antibody (ab195409, Abcam), Anti-Histone H3 (acetyl K27) antibody ChIP
Grade (ab4729, Abcam), Anti-YY1 antibody (ab38422, Abcam), rabbit anti-histone
H3 (a technical positive control; 1:50) (catalog no. 4620; Cell Signaling

Fig. 5 Hypermethylation in the WNT2 promoter leads to high WNT2 expression in ESCC. a Chromatin immunoprecipitation by high-throughput DNA
sequencing (ChIP-seq) showed EZH2 preferentially binding to the hypomethylated WNT2 promoter region in normal cells (Het-1A) relative to the
hypermethylated WNT2 promoter region in ESCC cells (EC109). b The WNT2 promoter region is hypermethylated in ESCC cell lines by methylation-
specific PCR (MS-PCR) analysis. M methylation detection, U unmethylation detection, PC positive control, NC negative control. Het-1A cells are an
immortalized normal esophageal epithelial cell line. EC9706, EC109, and EC1 are patient-derived ESCC cell lines. c Western blot analysis showed WNT2
protein is overexpressed in three ESCC cancer cell lines compared to normal cell line Het-1A. d EC9706 cancer cells were treated with or without the DNA
methyltransferase inhibitor, 5-Azacytidine (5-AzaC), for 24 h. The methylation change status in promoter region of WNT2 was detected by MS-PCR.
e ChIP-PCR detection of EZH2 pull-down in EC9706 cancer cells were treated with or without 5-AzaC for 24 h. f RT-PCR detection of WNT2 expression in
EC9706 cancer cells were treated with or without 5-AzaC for 24 h. g WNT2 is overexpressed in ESCC tumor (n= 10) and adjacent normal samples (n=
10). Left panel: protein expression from western blots, right panel: RNA abundance (FPKM) from RNAseq. h WNT2, MMP3, and MMP9 expression in the
tumor and normal samples. Representative blots from 10 paired normal and ESCC tumor samples. i WNT2 depletion with two independent siRNAs
inhibited MMP3 and MMP9 expression in the ESCC cell line EC9706. j Two independent siRNAs to silence WNT2 expression reduced the invasion and
migration of ESCC cells relative to siRNA controls. Scale bar:100 µm. k Xenograft tumor growth curve and tumor weight in EC9706 cells expressing either
shRNA control (sh-NC, n= 5) or sh-Wnt2 (n= 5). l Schematic representation of the mechanism of EZH2/PRC2-WNT2-MMP signaling upregulation in
ESCC. Functional study of WNT2 in EC109 cell line is presented in Supplementary Fig. 27. Representative results from three independent experiments are
presented in b–e, j; triplicates in each condition are shown in f. The bar plots are plotted as mean ± s.d. Statistic significance was measured using two-sided
t-test. *p < 0.05, **p < 0.01. ***p < 0.001, ****p < 0.0001. Source data are provided as a Source Data file.
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Technologies), and normal rabbit IgG (a negative control; 5 μg) (catalog no. 2729,
Cell Signaling Technologies). After reverse cross-linking and DNA purification,
ChIP-Seq libraries were prepared and sequenced on a HiSeq 4000 sequencer
(Illumina, San Diego, CA). To ensure the accuracy of subsequent bioinformatics
analysis, the original sequencing data were filtered to obtain high-quality sequen-
cing data (clean data). Quality control of the sequencing data was performed using
Sickle (https://github.com/najoshi/sickle) and SeqPrep (https://github.com/jstjohn/

SeqPrep). The sequencing output raw reads were trimmed by stripping the adaptor
sequences and ambiguous nucleotides and reads with quality scores less than 20
and lengths below 20 bp were removed. The cleaned reads were aligned to human
reference genome hg19 using BWA. MACS2 (model-based analysis of ChIP-seq)
algorithm70 was used for peak calling. The reads of EZH2 binding on WNT2
promoter region were visualized using Integrative Genomics Viewer (IGV, Broad
Institute).

10
Protein_coding
LincRNA
Transcribed_processed_pseudogene
Transcribed_unprocessed_pseudogene
Processed_transcript
Processed_pseudogene

–45

Chr 8

p2
3.

3
p2

3.
2

p2
3.

1

p2
2

p2
1.

3

p2
1.

2

p1
2

p1
1.

21

q1
1.

21

q1
1.

23

q1
2.

1

q1
2.

3

q1
3.

2
q1

3.
3

q2
1.

11

q2
1.

13

q2
1.

2

q2
1.

3

q2
2.

1

q2
2.

2
q2

2.
3

q2
3.

1

q2
3.

3

q2
4.

12

q2
4.

13

q2
4.

21

q2
4.

22

q2
4.

23

q2
4.

3

W
G

S

C
ou

nt
 o

f c
as

es
 (

n 
=

 3
2)

CpG

500bp

Chi sq
p < 0.011T

M U

M U M U M U M U

M U M U M U

Normal
M > U U > M

23

12

20

9

Tumor

p = 0.002

Normal Tumor

400

100

90

80

70

ESCCAL-1 expression

ESCCAL-1

p value: 13e–03

FDR: 4.4e–03

Normal Tumor

60

50

40

N
or

m
al

iz
ed

 T
P

M

40

20

10

0

300

200

100

R
el

at
iv

e 
E

S
C

C
A

L-
1 

ex
pr

es
si

on

0

n = 73

2T1N

3N 4N3T 4T

2N

200bp

500bp

200bp

CGI
DMR

Gene
Chrom

state

W
G

B
S

P2
P1

P3

100

80

60

40

CASC9
CASC9
CASC9

Postion (bp)

0

76
,1

30
,0

00

76
,1

40
,0

00

76
,1

50
,0

00

76
,1

60
,0

00

76
,1

70
,0

00

76
,1

80
,0

00

76
,1

90
,0

00

76
,2

00
,0

00

76
,2

10
,0

00

76
,2

20
,0

00

76
,2

30
,0

00

76
,2

40
,0

00

76
,2

50
,0

00

76
,2

60
,0

00

76
,2

70
,0

00

20

–40 –35

a

b

d e f

c

Methylation Δ ( tumor–normal )
–30 –25 –20

8

6

4

G
en

e 
ex

pr
es

si
on

 fo
ld

 c
ha

ng
e

(lo
g 2

(t
um

or
/n

or
m

al
) 

)

2

0

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17227-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3675 | https://doi.org/10.1038/s41467-020-17227-z | www.nature.com/naturecommunications 13

https://github.com/najoshi/sickle
https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
www.nature.com/naturecommunications
www.nature.com/naturecommunications


WGBS data preprocessing. Bisulfite-treated DNAs are further sequenced using
Illumina HiSeq 2500 system. Approximately 400M of paired-end reads
(125 bp x 2) and 100 Gbp per sample are generated except one sample (N15). The
reads are sent out to the pipeline. Our pipeline consists of four steps (Supple-
mentary Fig. 2a). Firstly, we trimmed using Trim Galore! (v0.4.1) to remove
Illumina adaptors with the options of “--paired –length 50 --clip_R1 6 --clip_R2 6”.
After trimming, around 90 Gbp of data remained per sample. Then trimmed reads
were aligned to the HG19 reference genome using BSMAP (v2.89) with the option
of “-p 8 -R”. Then SAMtools (v. 1.3.1) was used to sort by genomic coordination
and make a bam file index. Picard Tools (v.1.92) is used to remove PCR duplicates.
After deduplication, ~70 Gbp remained per sample. Lastly, we ran MOABS (v.
1.3.4) to compute the methylation ratio per CpG with the option of “--cytosine-
MinScore 20 --skipRandomChrom 1 -p 4 --keepTemp 0 --processPEOverlapSeq 1
--requiredFlag 2 --excludedFlag 256 --minFragSize 110 --reportCpX G --qual-
ityScoreBase 0 --trimRRBSEndRepairSeq 0 --trimWGBSEndRepairPE1Seq 5
--trimWGBSEndRepairPE2Seq 5”. Around 95% of CpGs are covered by at least
five reads.

WGBS data matrix. Given the methylation ratio and coordination computed, we
built a data matrix, whose columns are samples and rows are CpGs. The normal
tissue WGBS of sample 15 (N15) has generated a small amount of volume
(~4.5 Gbp), which is just 6% compared to average (72 Gbp) and covers the half of
CpGs with notably low coverage (1.58×) than other samples (~15×). Thus, we
decided to eliminate N15 for the further downstream analysis. As a result, we have
ten ESCC samples and nine normal esophageal tissue samples. For more robust
analysis, we applied the minimum threshold 5× and also selected CpGs that all
samples have its methylation ratio. This screening process gave 13 M of CpGs with
confident methylation ratio (Supplementary Data File 1).

Cross-validation between WGBS and TCGA ESCA. We aligned our data with
TCGA ESCA data (n= 202). The methylation data of TCGA ESCA exploited
Illumina Infinium Human Methylation 450K Beadchip to measure methylation
level for 202 samples: 186 esophageal cancer tissue samples and 16 esophageal
normal tissue samples. To compare TCGA ESCA HM 450K methylation ratio and
WGBS methylation ratio of our data, we computed the mean methylation ratio of
the tumor and normal samples per CpG for both TCGA and our WGBS data.
Around 300K of CpGs are in the intersection of TCGA ESCA HM 450K and
WGBS. We computed the Pearson correlation coefficient (PCC) to measure the
representative power in our dataset albeit a rather small sample size. First, we
calculated the PCC of the tumor and normal from TCGA ESCA HM 450K and
WGBS. The highest PCC (=0.9674) is between TCGA ESCA normal and WGBS
normal since normal tissues are relatively homologous. The PCC (0.9639) between
TCGA ESCA tumor and WGBS tumor was followed due to tumor heterogeneity
but still showed a high correlation. The third and fourth PCCs are between TCGA
ESCA tumor and WGBS normal (=0.9512), and TCGA normal and WGBS tumor
(=0.9468) due to the difference between tumor and normal esophageal tissues.

We downloaded clinical annotation to match the histological type of each
sample. All of the WGBS data is ESCC. The PCC between TCGA ESCC and WGBS
ESCC is 0.757, the PCC between TCGA EAC and WGBS ESCC is 0.5554
(Supplementary Fig. 3).

Data processing of RNA-seq. RNA-Seq reads were mapped to the HG19 refer-
ence genome using STAR (Spliced Transcripts Align to a Reference, v2.4.2a). The
expression level of transcript per million (TPM) reads were quantified using RNA-
Seq by Expectation-Maximization algorithm (RSEM v1.2.29). The quantified gene
expressions of 26,334 transcripts (including coding genes and non-coding genes)
were processed in Rstudio console with R programme (v 3.4). Differentially
expressed genes between tumor and normal samples were identified using the
EdgeR algorithm.

Differentially methylated CpG (DMCs). Among 18,421,444 of CpGs, we com-
puted the F-statistics from one-way analysis of variance (ANOVA) to identify
confident CpGs. Almost half of them has very low p values (<0.05). The p values
are further adjusted by Benjamini–Hochberg procedure to compute FDR. In total,
5,092,845 of CpGs has q values less than 0.05. The 5,092,845 of DMCs is used for
the downstream study in this paper. Among 5,092,845 of DMCs 97.29% are
hypomethylated in ESCC samples while only 2.71% are hypermethylated in ESCC
samples.

Entropy analysis. Entropy is computed per CpG in both ESCC and normal eso-
phageal cohorts separately as a measure of variance. The “entropy” function was
used in the “stats” package of SciPy (v 0.19.1) on top of python3 (v3.5.2). The bin
size was 10%. The distribution of CpG entropy was plotted using MatLab (v. 9.2)
“plot” and “histogram” function with the default option.

DMC enrichment analysis with genomic annotation. We annotated the reg-
ulatory elements of the confident DMCs. The genomic coordination of exons and
introns were downloaded from UCSC Genome Browser (http://hgdownload.soe.ucsc.
edu/goldenPath/hg19/database/refGene.txt.gz). The promoter is computed 4.5 kbp
upstream and 500 bp downstream given TSS. The genomic coordinates of enhancers
are downloaded from VISTA Enhancer Browser (https://enhancer.lbl.gov). We
learned that hypomethylated DMCs outnumber hypermethylated DMCs in ESCC,
4.95M versus 138K, respectively. Among hypermethylated in DMCs in ESCC, 83.67%
has overlapped with regulatory elements while only 56.77% of hypomethylated DMCs
has overlaps. Such overlaps were further dissected into enhancers, promoters, exons,
introns, and CpG islands (Supplementary Fig. 4).

DMC enrichment analysis with functional annotation. We performed functional
annotation on the confident DMCs except for protein-coding RNAs. Functional
annotation includes long noncoding RNA (lncRNA), antisense RNA, MicroRNA
(miRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), small
cytoplasmic RNA (scRNA), ribosomalRNA (rRNA), vaultRNA, and Mt_tRNA.
The functional annotation was downloaded from the GENCODE project (https://
www.gencodegenes.org/releases/27lift37.html). The composition of the functional
annotation is illustrated (Supplementary Fig. 5). We deconvoluted functional
mapping of hypermethylated DMCs and hypomethylated DMCs. The majority of
the hypermethylated DMCs are mapped to antisense RNAs (58.01%) followed by
lncRNA (39.28%) while that of the hypomethylated DMCs are mapped to lncRNAs
(63.08%) followed by antisense RNA (29.89%). The permutation test was used to
perform statistical analysis with regioneR package (Supplementary Fig. 5).

Transcription factor-binding site analysis. Transcription factors and their
binding sites annotation were downloaded from the ENCODE project (http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeRegTfbsClustered/). First of all, we computed the proportion of each TF.
With regard to base-pair counting, POLR2A, the largest contributor to the com-
position, followed by CTCF (Supplementary Fig. 11a). We mapped DMCs to TF-
binding sites and calculated the composition of TFs both in DMCs and HG19.
Enrichment was computed as a ratio of the proportion of TFBS mapped to DMCs
over TFs in HG19 (Supplementary Fig. 11b). Relatively DMC are most enriched in
SUZ12 followed by EZH2, which are the component of the Polycomb Repressive
Complex 2 (PRC2) (Supplementary Fig. 11c). Methylation type has been studies
among top 20 TFs that DMCs are enriched. Hypomethylated DMCs dominated in
the most TFs except for three TFs: SUZ12, EZH2, and CTBP2, which is related to
endometrial cancer pathway and WNT pathway (Supplementary Fig. 11d).

TSS methylation level analysis. The methylation ratio was summarized in every
200-bp window relative to TSS. Then the methylation ratio per bin was normalized

Fig. 6 Hypomethylation-mediated upregulation of long non-coding RNAs (lncRNAs) in ESCC. a In canonical gene cluster C2 (n= 389), ESCCAL-1 is
significantly hypomethylated in the promoter (one-way ANOVA, FDR= 1.7386e−04) and highly expressed in ESCC (one-way ANOVA, FDR= 0.01).
ESCCAL-1 also shows the most significant and substantial methylation difference between normal esophageal tissues and ESCC among the lncRNAs in C2.
Each dots represent individual gene; colored dots reflect different categories genes. b Loss of CpG methylation at the ESCCAL-1 promoter region in ESCC
(chr8:76,135,639–76,236,976 of GRCh37/hg19). WGS (whole-genome sequencing) of three ESCC patients shows no mutation or copy number variations
detected at the above indicated region. This is validated by TCGA ESCA data (n= 186), where no mutation or copy number variations were observed (see
Supplementary Fig. 24d). DMRs around transcription start sites (TSSs) of the two isoforms showed extensive differentiation between ESCC and normal
samples. c ESCCAL-1 was significantly differentially expressed and highly abundant in ESCC samples (n= 10) relative to normal samples (n= 10). Statistic
significance was assessed by one-way ANOVA, p value= 0.0013, log2 (fold change) >1, FDR= 0.0044. d Methylation status of the ESCCAL-1 promoter
region was verified on an independent matched normal (n= 32) and ESCC tumor (n= 32) samples using a methylation-specific PCR (MS-PCR) assay; four
representative PCR results are shown. M: PCR with methylation primers, U: PCR with unmethylation primers. e Quantification of MS-PCR results in the 32
paired normal and tumor samples. Chi square analysis tested for significance between groups. P value < 0.01. f ESCCAL-1 expression is significantly higher
in ESCC tumors in an independent cohort of 73 matched normal and tumor samples. Error bars are median values with 95% confidence intervals.
Significance for comparison between the two cohorts was measured using an unpaired two-sided Student’s t-test, p= 0.002.
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and averaged for both ESCC and normal cohorts. Methylation conversion is
observed both upstream and downstream given TSS. The normalized methylation
ratio of ESCC samples is higher between around −3000 to 7000 bp given TSS. The
graph was made by R with spline interpolation with default options.

Differentially methylated regions. DMRs were computed from 5,092,845 of
confident DMCs. The window size is flexible as long as any two CpGs locate in
150 bp and have consistent methylation pattern either keeping hypermethylated or

hypomethylated. The criteria make sure the minimum CpG density is at least 0.01.
DMRs peak size is of 150–350 bp and CpG density peak is of 0.04–0.05 (Supple-
mentary Fig. 8a, b). The genomic region enrichment analysis for DMRs was
conducted using LOLA package (http://code.databio.org/LOLA) in R.

Integrating and clustering methylome and transcriptome data. To integrate
methelomic and transcriptomic data, we focused on methylation in the promoter
regions which are defined 4.5 kbp upstream and 500 bp downstream given TSS. We
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aligned DMRs that are identified previously with q value <0.01 to the promoter
regions of all genes. We also increased the promoter size up to 11 kbps to see if any
level of extension of promoter size can affect the final gene set whose promoters
hold any DMRs, but that added only four more genes. As a result, we learned that
4391 genes have significant DMRs in their promoter regions. High-throughput
transcriptome sequencing (RNA-Seq) was conducted. Around 20,000 gene
expression levels are estimated for both normal and ESCC pairs of ten patients.
Significantly differentially expressed transcriptomes between two cohorts are
selected given absolute log2(fold change) ≥1 and q value <0.05. In total, 4768 genes
are significantly highly expressed in the ESCC cohort or the normal cohort. The
number of genes in the intersection, i.e. the genes whose promoters are differen-
tially methylated and expressions are significantly different between normal and
ESCC cohorts, is 694 in total. We categorized those genes into four groups (1) C1:
hypermethylated in their promoters with low gene expression in ESCC; (2) C2:
hypomethylated in their promoters with high gene expression in ESCC; (3) C3:
hypermethylated in their promoters with high gene expression in ESCC; (4) C4:
hypomethylated in their promoters and low gene expression in ESCC. The genes in
the former two groups (C1 and C2) are explained by canonical promoter methy-
lation and gene expression model while the genes in the latter two groups (C3 and
C4) are not. The gene list of the four groups is in Supplementary Data File 4. The
heat map with dendrograms is made using “clustergram” command of MatLab v9.4
with parameters of “Standardize”, “Row”, “Colormap”, “redgreencmap”.

CTCF analysis in gene promoter and gene body. The genomic coordination of
CTCF was retrieved from ENCODE Project (https://www.gencodegenes.org/
releases/27lift37.html). We identified the number of CTCF-binding site overlapped
with promoter regions by BEDTools (v2.26.0) with “intersect -wa -wb -a -b”
option. The CTCF ratio in the gene promoter region is highest in C3.

Gene body methylation level analysis. DMCs (FDR ≤ 0.05) in the gene body and
promoter region is selected for C1 and C3 to search hypothesis of noncanonical
correlation in C3, where promoters are hypermethylated with high gene expres-
sion. Overall gene body is hypomethylated for both C1 and C3, but such reverse
methylation between promoter and gene body is much prominent in C1 genes.

Copy number alteration inferred from RNAseq. CNVkit-RNA71 was used to
infer copy number alterations from RNAseq reads. The segments and recurrent
copy number gains or loss across samples were generated and plotted using GIS-
TIC 2.0 algorithm (Supplementary Fig. 15a, b).

Simulation of CpG methylation heterogeneity. Simulations of
Ornstein–Uhlenbeck processes have been performed for CpG islands at selected
promoter regions in both normal and cancer samples17. The model is described as θ
(μ−M)dt+ σdW, with M being the methylation value, μ the equilibrium point, θ the
restoring force, σ the noise level (4%), and dW a Wiener process increment. Shown
are ten example traces of simulated methylation levels. Regulatory forces (θ) are set
high in the normal tissue and low after a carcinogenic event. For the data in this study,
the model works well for regions with single-peaked or broad methylation distribu-
tions. The histogram shows methylation variation by the stochastic simulation if more
samples collected (Supplementary Fig. 6e).

Co-expression analysis of RNAseq. Co-expression analysis was conducted in R
environment using RedeR package72. Co-expression analysis is to compute a null
distribution via permutation and returning the significant correlation values. In all,
1000 permutations were performed to build the null distribution with Pearson
correlation. We considered correlations with p value less than 0.01 with FDR
adjustment as significant. The hierarchical clustering analysis used the complete
method and considers the distances of each individual component to progressively
computing the clusters until it finds a stable state. The final result is a dendrogram
presenting hierarchical leaves, which has been used to plot the network. To clear
the visualization, clusters ware nested using the fourth level of dendrogram to build
the nests.

Methylation-specific PCR (MS-PCR). DNA was extracted from cells using the
AllPrep DNA mini kit (Qiagen) according to the manufacturer’s instructions and
was quantified by NanoDrop analysis. Bisulfite modification was carried out on
200–500 ng of DNA using the EZ DNA Methylation-Gold Kit (Zymo Research)
according to the manufacturer’s instructions. MS-PCR analysis was carried out
using a BioRad T100TM Thermal Cycler with 20 μl reaction mixtures. Primers for
modified methylated sequences and modified unmethylated sequences are listed
below. The PCR reactions were carried out under the following conditions: 95 °C
for 10 min, 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s for a total of 45 cycles,
72 °C for 10 min. Five microliters of PCR product were used for electrophoresis on
2% agarose gel, and the methylated strip and unmethylated strip were analyzed by
gel imaging analyzer. Representative results showed the ECSSAL-1 promoter
methylation status identified by MS-PCR in ESCCs. Lanes M and U indicate the
amplified products with primer recognizing methylated and unmethylated
sequences, respectively. NC, negative control; PC, positive control. Primers for MS-
PCR are listed in Supplementary Table 1.

Functional annotation analysis. Curated gene sets were collected from multiple
curated databases such as ENCODE, CHEA, EnrichR, KEGG, WikiPathways,
Reactome, GO molecular function, Panther, and BIOGRID. Overlapping between
differentially methylated and/or expressed genes were estimated for significance
using hypergeometric statistics. P values were adjusted to Bonferroni correction.
−Log10(p value) for significance was measured and compared.

Cell cultures. Human ESCC cell lines (EC109, EC9706, EC1) and immortalized
esophageal epithelial cell line Het-1A were purchased from the Shanghai Institutes
for Biological Science (Shanghai, China). All cell lines were cultured in Dulbecco's
modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum
(Hyclone, Logan, UT, USA) and maintained at 37 °C in a humidified 5% CO2

incubator.

Cell transfection. ESCCAL-1 shRNA, WNT2 siRNA, YY1 siRNA, Myc siRNA,
and their control shRNA or siRNAs were synthesized from GenePharma
(Shanghai, China). EC109 and EC9706 cells were transfected using Lipofectamine™
2000 (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions.
Transfection efficacy was validated by RTq-PCR or western blot assay.

Fig. 7 Oncogenic functions of ESCCAL-1 in ESCC. a Hypomethylation at ESCCAL-1 promoter regions was confirmed in three different ESCC cell lines using
methylation-specific PCR. M: PCR with methylation primers, U: PCR with unmethylation primers. Het-1A: an immortalized esophageal epithelial cell line.
EC1, EC109, and EC9706 are patient-derived ESCC cell lines. b ESCCAL-1 expression was significantly higher in three ESCC cell lines (EC1, EC109, and
EC9706) relative to a normal esophageal epithelial cell line (Het-1A). Triplicates in each cell lines, mean ± s.d., unpaired two-sided t-test, **p < 0.01, ****p <
0.0001. c, d ESCC patients with higher expression of ESCCAL-1 exhibit worse overall (OS) and progression-free survival time (PFS), risk ratio= 2.56, log-
rank test, p value= 0.003. e, f shRNA knockdown of ESCCAL-1 inhibited tumor growth in a tumor xenograft mouse model (n= 6 in each group, unpaired
two-sided t-test, p value= 0.001). ESCCAL-1 remains greater than 50% lower expression in xenograft tumors of ESCCAL-1 knockdown group relative
to the control group. Bar plots (mean ± s.d.) indicate triplicates in each condition for RT-PCR. **p < 0.01 was measured by unpaired two-sided t-test.
g Chromatin immunoprecipitation by YY1 transcription factor protein-directed antibody followed by a standard polymerase chain reaction (PCR) assay in
ESCC cancer cells (EC109) and normal esophageal cells (Het-1A). IgG was used as negative control. H3 was used as a positive control. Representative
results from three independent experiments. h Representative western blot assay showed decreased YY1 protein expression following 72 h post-
transfection of three independent siRNAs targeting various transcript regions of YY1 in ESCC cell line (EC109). ESCCAL-1 expression was measured in YY1
knockdown cells using RT-PCR. Bar plots (mean ± s.d.) showed quantification of YY1 protein expression from two independent experiments or ESCCAL-1
expression from triplicates in each condition. Statistical significance was assessed by unpaired two-sided t-test, *p < 0.05, **p < 0.01. i RNAseq was
performed in duplicate in the normal esophageal cell line Het-1A, ESCC cancer cells EC9706 with control shRNA, or EC9706 with an shRNA against
ESCCAL-1. Unsupervised hierarchical clustering of differential gene clusters between the three conditions is shown. Differentially expressed genes were
selected based on an iterative clustering approach selecting for genes with the top 5% of the most variable and differential gene expression. Two hundred
and ten genes were identified and subjected to functional annotation using a hypergeometric test in multiple databases. j Gene Set Enrichment Analysis
(GSEA) for RNA-seq data from either ESCCAL- 1 knockdown or Myc knockdown in EC9706 showed ribosomal genes (pathways) enriched in EC9706 cells.
k Diagram illustrating YY-1 binding to hypomethylated promoter regions of ESCCAL-1, driving its overexpression and leading to dysregulation of ribosomal
genes and ESCC progression. Source data are provided as a Source Data file.
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Transwell migration and invasion assay. Cell migration and invasion assays were
carried out in transwell chambers (Costar, Lowell, MA, US) inserted into 24-well
plates. For invasion assay, the upper chamber of the transwell plate was coated with
matrigel and allowed to solidify at 37 °C and 5% CO2 incubator for 30 min. The
transfected EC109 and EC9706 cells were trypsinized, resuspended in serum-free
culture medium, and adjusted to 2 × 106 cells/ml, added 200 μl cell suspension and
500 μl DMEM containing 10% fetal bovine serum to the lower chamber. After
incubation for 48 h, the transwell chamber was fixed with 10% methanol, followed
by the staining with crystal violet. Cells were counted under an inverted micro-
scope. The protocol used for migration assay was similar to the invasion assay
without the need to coat the upper chamber of the transwell with matrigel. Each
experiment was conducted in triplicates.

Western blot analysis. Total proteins were extracted from tissues or cells using
RIPA lysis buffer (Solarbio, China) containing protease inhibitor and then dena-
tured at 100 °C for 10 min. Equal amounts of proteins in each group were separated
by 10% SDS-PAGE. After PVDF membrane transfer, blocking in 5% skim milk and
incubation with primary antibodies (MMP3, CST, USA; MMP9, CST, USA; Wnt2,
Abcam, USA; β-actin, Santa Cruz, USA) and secondary antibody, respectively, the
immunoreactive bands on the membrane were incubated with ECL kit and
detected by using the Chemidoc EQ system (BioRad, USA).

Mouse xenograft experiment. Six-week-old male BALB/c immunodeficient mice
were purchased from the Shanghai Experimental Animal Center, Chinese Academy
of Sciences (Shanghai, China). Animal experimental procedures were carried out
according to the Ethical Committee of Zhengzhou University. Mice were housed
under a 12 h light/dark cycle and automatically given food and water. The EC9706
cells expressing with ESCCAL-1-shRNA, WNT2-shRNA, or shControl were sub-
cutaneously injected into back flank of mice as the knockdown group (n= 5 for
WNT2, n= 6 for ESCCAL-1) or the control group (n= 5 or 6). The tumor
volumes were calculated as length × width2 × 0.5 from day 13 to day 22 or 23 every
two days, the mice were sacrificed at day 22 or 23 after injection.

ChIP-PCR. Chromatin immunoprecipitations were performed using digested
chromatin from EC109 cells or Het-1A cells and the indicated antibody YY1. The
antibody Histone H3 (D2B12) as a positive control. Purified DNA was analyzed by
standard PCR methods using SimpleChIP® Human RPL30 Exon 3 Primers and
ESSCAL-1 primers. Equal amounts of total genomic DNA (Input) were used for
immunoprecipitation in each condition. Primer sequence information are given in
Supplementary Table 1.

Immunohistochemistry for WNT2 expression. Immunostaining was performed
on the paraffin-embedded tumor and adjacent normal tissues from ESCC patients’
surgical removal samples. The avidin-biotin-peroxidase method was used to
determine the location and relative expression level of the proteins. In briefly,
xylene is used for paraffin section dewaxing, citric acid antigen repair buffer is used
to repair the antigen, blocked endogenous peroxidase by 3% H2O2 and blocked
with 3% BSA, and incubated overnight at 4 °C with primary antibodies WNT2
(1:100 dilution, Bioworld, USA). Then, secondary antibody was incubated at room
temperature for 50 min, DAB stained and hematoxylin restained nucleus. Sections
were visualized under a microscope at ×400 or ×200 (Olympus, Japan).

Statistics. Student's t-test was used for two group mean comparison. Wilcoxon
rank-sum test was used for non-parametric mean comparison. One-way ANOVA
was used for multiple groups comparison. Hypergeometric test was used in GSEA.
Permutation test was used for comparison between observed target versus random
evaluation. Multiple hypothesis test was adjusted with the Benjamini–Hochberg
method. The standard α= 0.05 was used as cutoff, and the null hypothesis is
rejected when p value <0.05. Different significant levels were used: *p value < 0.05;
**p value < 0.01; ***p value < 0.005; ****p value <0.001. The 95% confidence
interval (CI) for the median duration of progression-free survival and overall
survival were computed with the robust nonparametric Brookmeyer and Crowley
method. Hazard ratio with 95% CI and p values were calculated with the Cox
proportional-hazards regression model with survival package in R.

Computational resources and code sharing for reproducibility. Most of the
analysis was done using SCG4 cluster of the Genome Sequencing Service Center by
Stanford Center for Genomics and Personalized Medicine Sequencing Center. The
SCG4 cluster has 20 compute nodes, each with 384 GB RAM, 56 CPUs each, and
40 compute nodes with 16 and 48 CPUs and 10 GbE connectivity. It shares 4+ PB
of storage NIH dbGaP compliant and have 350+ software packages installed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The WGBS, RNAseq, and ChIP-seq sequence data that support the findings of this study
have been deposited in NCBI GEO database with the accession codes, GSE149608,
GSE149609, GSE151838. WGS has been deposited in NCBI sequencing read archive
(SRA) database with the accession code PRJNA630082. The proteomic data have been
deposited in ProteomXchange database with the accession code, PXD019834. All the
other data supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request. A reporting summary for this article is available as a Supplementary Information
file. Source data are provided with this paper.

Code availability
Code for WGBS analysis is available upon request.
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