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Abstract

Optimizations for energy efficiency in GPGPU architectures

by

Alamelu Sankaranarayanan

It is commonplace for graphics processing units or GPUs today to render extremely complex

3D scenes and textures, in real time, both in the traditional and mobile computing spaces. The

computational power required to do this makes them a valuable resource to exploit for general

purpose computation. In order to map programs originally designed for sequential CPUs onto

massively parallel GPU architectures, it would be necessary to justify the transition with huge

performance benefits. Over the last couple of years, there have been numerous proposals to

improve the performance of GPUs used for general purpose computing (GPGPUs), but without

much consideration for energy efficiency.

In my dissertation, I evaluate the feasibility of GPGPUs from an energy perspective

and propose some optimizations based on the unique programming model used by GPGPUs.

First, I describe the simulation infrastructure, one of the few available to model GPGPUs today,

both individually and as part of a heterogeneous system. Next, I propose a design using a shared

translation lookaside buffer (TLB) to eliminate chronic memory copies between the CPU and

GPU addressing spaces, making heterogeneous CPU-GPU designs energy efficient. Further-

more, to improve the energy efficiency of the on-chip memory hierarchy, I propose adding tiny

incoherent caches per processing element, which can filter out frequent accesses to large shared

and energy-inefficient cache structures. Finally, I evaluate a design which moves away from

ix



the underlying SIMD architecture of GPUs towards a more MIMD-like architecture, enabling

the execution of both CPU and GPGPU workloads without negatively affecting the energy effi-

ciency availed by traditional workloads on GPGPUs.
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Chapter 1

Introduction

The ubiquitous nature of graphic processing units (GPUs) combined with their com-

putational prowess and tremendous memory bandwidth, made them a attractive resource for

system designers and programmers to exploit. The advent of programming languages and stan-

dards like CUDA [1] and OpenCL [60] gave the necessary initial thrust for their mainstream

use alongside CPUs, for sections of the code that were data parallel and that mapped well on

the regular SIMD-like hardware. With each generation, GPUs got more flexible, and powerful,

and consequently, today there is a significant amount of research conducted by the computer

architecture community to offload more tasks to the GPU by boosting the performance, the en-

ergy efficiency and ease of use of GPGPUs, i.e., for general purpose computation on graphic

processing units.
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GPGPUs evolved from a very large number of highly specialized, non programmable

fixed function units, to larger numbers of more programmable units, to an even larger number

of even more programmable units with shared memory. This evolution, unlike that of the CPU,

which focused on the performance of a single pipeline, can be attributed to the nature of the ap-

plications GPUs were originally designed for, i.e., simple and regular data parallel applications,

with limited communication between a very large pool of threads. Programming models like

CUDA and OpenCL allow us to express and use the GPU hardware for more general purpose

tasks, and extract high performance because of the massive multithreading that the architecture

supports, but to make this possible, there are several complex and potentially energy hungry

components including but not restricted to large multibanked cache structures and logic to sup-

port the massive multithreading.

As more compute units are integrated onto chips, and technology scaling pushes the

operating frequency higher, the power consumption of GPUs has skyrocketed. To make gen-

eral purpose computing truly feasible on GPGPUs, it is therefore imperative to maximize the

hardware utilization and improve the energy efficiency. In this dissertation, I identify, evaluate

and propose optimizations that exploit the unique nature of programming models like CUDA

and OpenCL, and typical GPGPU applications, to improve the on-chip energy efficiency in

GPGPUs.

GPGPUs and applications that run on GPGPUs differ tremendously both in design

and behavior from traditional CPUs, and it is not trivial to extend existing CPU simulators to

model and study GPGPUs. Chapter 2 gives a brief overview on GPGPU architecture and the

programming model associated with it, and Chapter 3 elaborates on the simulation infrastructure

2



that I developed and use to model GPGPUs.

As applications get more diverse, it is increasingly important to improve the coupling

between the CPU and the GPU. The biggest, and most obvious bottleneck both in terms of

performance, and the energy efficiency, is the chronic exchange of data between the two mem-

ory addressing spaces. Chapter 4 elaborates on how the uniqueness of the programming model

allows us to mitigate these memory copies.

As we move closer towards the individual processing elements within a GPGPU,

from the memory subsystem, the first level shared data cache strikes us an obvious choice for

optimization for energy efficiency. Once again, exploiting the intricacies of the programming

model can allow tiny incoherent caches higher up in the memory hierarchy which can filter out

a significant number of requests to the shared DL1 cache, and thereby reduce the consumed

energy. This is discussed in more detail in Chapter 5.

There have been several proposals to maximize the utilization of cores available on

the GPU. A sizable number of these try to allay the effect of control divergence, which impacts

utilization severely. Since control flows are integral to general purpose applications, handling

them efficiently is critical. In Chapter 6, we take a step back, and propose a novel MIMD-like

architecture to handle highly divergent workloads without incurring any performance or energy

efficiency penalty. Finally, I conclude my dissertation in Chapter 7.
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Chapter 2

Background

With the help of microarchitectural techniques like out-of-order execution, branch

prediction, speculation, superscalar execution, favorable transistor-speed scaling, strides in mem-

ory technology, etc., computer architects were able to extract at least a 2X improvement with

each generation of microprocessors until the early 2000s [14]. However, with Moore’s law [58],

Pollack’s law [7] and Dennard’s law [25] closing in, we very quickly hit the power wall and

resorted to multiple processor cores to extract performance. At this point, a dichotomy of ap-

proaches emerged: One approach expounded using a few high performance superscalar cores

that were highly latency optimized for sequential code performance i.e., the multicore approach.

These cores are typically tightly knit with shared memory subsystems, allowing them to exploit

task parallelism as much as possible, and then exchange data and/or synchronize with each other

as needed. This is an intuitive extension to our sequential way of thinking of writing programs,

and has been widely adopted [5, 24, 42].
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The other approach, known as the many-core approach, proposed using a sea of

smaller and simpler cores, relying on the execution of a massive number of threads to hide

latency and maximize execution throughput. Using shared memory to exchange or synchronize

data frequently would impose a significant communication penalty owing to the large number

of cores, which meant that the cores needed to execute largely independently. The cores could

all either execute the same instruction on multiple data, i.e., follow the SIMD execution style,

or could execute multiple instructions, and operate on multiple data, i.e., follow the MIMD ex-

ecution style. The SIMD paradigm is extremely efficient for data parallel applications, while

MIMD is better suited to a program composed of independent tasks. In spite of being ex-

tremely efficient at what it did, the many-core approach had to deal with two main obstacles

for mainstream acceptance, the first being able to extract enough parallelism from traditionally

sequential programs to make use of the available cores, and then some more to hide the la-

tency. Secondly, it was notoriously hard to build compilers, and even write programs for these

architectures, even without the requirement of scalability [41, 74].

The key to extracting performance from either strategy lies in how easy it is for soft-

ware developers to harness the available computational power, and since the traditionally se-

quential programs mapped easier to multicore systems, the former approach met with more

success than the latter, for a majority of the next decade. Manycore architectures manifested

themselves in a smaller scale as different vector coprocessors for specific applications that were

inherently data parallel, or to support vector extensions to the ISA [8, 29, 65], but most promi-

nently as graphic processing units or GPUs.

5
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Figure 2.1: Evolution of GPUs

2.1 Evolution of GPUs

GPUs started out as a number of expensive fixed function pipelines that accepted

vertices as input and output textures. The transition from 2D to 3D graphics and the rapid

evolution of graphics algorithms soon demanded a programmable graphics pipeline, exposing

the vertex and the fragment processor to graphics programmers. Graphics cards were soon

being expected to render complex real time and 3D graphics, and GPU manufacturers started

adding many more pipelines that were not only deeper with more capabilities and complexity,

but also much cheaper owing to better and shrinking processor technology. As a result of

all these factors, GPUs became more and more commonplace. At around the same time that

uniprocessors hit the power wall (early 2000s), GPUs offered a few GFLOPS of compute power

as we see in the evolution of GPUs highlighted in Figure 2.1.

It soon became obvious that GPUs, when not being used for graphics, could offer a

6



sizable boost to the performance of the main processor if it could offload suitable tasks to the

GPU and take advantage of large amount of compute power available at its disposal. Early

attempts to do this involved transforming data into GPU understandable vertices, issuing graph-

ics commands in languages like OpenGL and Direct3D, and then reconverting the output back

into a format that could be processed by the CPU. Needless to say, not only was this extremely

tedious, but also it was not conducive to scaling or working across multiple generations of

GPUs [63].

2.2 The CUDA Programming Model

To make the latent compute power of GPUs more accessible for use by non-graphics

applications, there was a need for an alternate programming model that was

• Designed for highly parallel architectures at the very outset,

• Not tied in with the graphics pipeline (like OpenGL),

• Independent of the underlying graphics hardware, since GPUs evolved drastically, fre-

quently, and more importantly, details of their implementation are not made public.

This led to a few significant attempts at abstracting highly parallel architectures like the Brooks

paradigm, designed specifically for stream computing on graphics hardware [19], but it was

the launch of the CUDA programming model by NVIDIA that catapulted GPUs firmly into the

arena of general-purpose computation.
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Figure 2.2: The CUDA programming model

Compute Unified Device Architecture or CUDA is a set of abstractions to leverage

the compute hardware on NVIDIA GPUs. The three defining abstractions of CUDA are

• A hierarchy of threads,

• A hierarchy of memory shared at different levels, and

• Synchronization primitives like barriers.

These three abstractions are used to partition the program into smaller tasks that can be solved

in parallel by blocks of threads, and these tasks, in turn, can be subdivided into sub-tasks that

can be solved in parallel, and cooperate if needed using the shared memory and synchronization

primitives. This abstraction does not need the hardware details to be exposed, and consequently

is extremely scalable, as long as the underlying architecture is CUDA compatible.
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A CUDA-compatible GPU (henceforth referred to in this thesis simply as a GPGPU)

is imagined as a scalable array of multithreaded processors, known as Streaming Multiproces-

sors (SMs), each with a couple of processing elements known as Scalar Processors (SPs). A

typical CUDA program, called a kernel, is a sequence of one or more highly parallel subrou-

tines. A kernel can be visualized as a large set of parallel threads executing the same set of

instructions. This large set of threads is divided into blocks of threads, each of which is as-

signed to an available SM. Since the model does not assume any particular number of SMs,

the programmer has no idea when or where a block will be executed. The programming model

does not allow any kind of direct synchronization between individual thread blocks, however,

they may communicate by using atomic memory operations on global memory. This isolation

between the thread blocks allows them to be scheduled in any order over a large number of

cores.

Once a thread block is assigned to an SM, the SM creates smaller groups of threads

known as warps. A warp of threads is executed concurrently on the SM with the threads starting

at the same program address. A warp executes a common instruction at a time, so in case

the threads diverge, the warp is executed serially. When the warp encounters a long latency

instruction, the SM switches the warp out with another ready warp and strives to supply the

SPs with a constant stream of ready instructions, as a result, maintaining high computational

throughput. Threads within a thread block can cooperate using synchronization primitives like

barriers and exchange information via shared memory.

The CUDA programming model allows access to different addressing spaces. Global

Memory is a read and write memory whose contents are visible to all threads. On the first
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Our terminology CUDA OpenCL
thread thread work item
(thread) block thread block work group
global memory global memory global memory
scratchpad shared memory local memory
constant memory constant memory constant memory
local memory local memory private memory
SM Streaming Multiprocessor (SM) Compute Unit
Lane Scalar Processor (SP) Processing Element (PE)
kernel kernel program

Table 2.1: GPGPU terminology and their equivalent terms in CUDA and OpenCL

generation of CUDA devices, global memory was the same as device memory but, after Fermi,

global memory addresses could be cached closer within an SM. Shared memory is a high speed

read/write memory whose contents are visible only by the threads within a block. It resides on

the SM and is limited in size. The model also allows efficient reads from read-only texture and

constant caches and has a private area for automatic variables. Apart from these, there is a super

fast register file per SM, the contents of which are visible per thread only.

Following the success of CUDA to encourage more general-purpose computation on

GPGPUs, a consortium was established by other GPU manufacturers that led to the develop-

ment of the OpenCL standard as well as Microsoft’s DirectCompute [16], an extension to the

popular DirectX language. Most GPUs that offer compute as a part of their feature set today

are OpenCL compliant. The OpenCL and the DirectCompute architectures closely match the

CUDA architecture, and we evaluate a CUDA-compatible architecture and use CUDA bench-

marks for the rest of the dissertation. We expect our observations and inferences to hold irre-

spective of the language our benchmarks are written in. For the sake of clarity, we have enlisted

the terminology we use in the thesis and its CUDA and OpenCL equivalent in Table 2.1.
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Figure 2.3: Baseline architecture

2.3 Our Baseline GPGPU

Figure 2.3 shows the architecture of our baseline GPGPU. Since architectural spec-

ifications of GPGPU hardware is not made public by the manufacturers, our baseline is built

on our deductions from the publicly available details of modern Fermi-like [85] GPGPUs,

the impositions of the programming model, and assumptions made by other researchers in the

community [10, 31, 32, 34, 54, 81].

We assume that the Streaming Multiprocessor (SM) consists of 32 lanes, a register

file that is shared by all the lanes, scratchpad memory, and a level-1 data cache (DL1). Even

though the DL1 and the scratchpad memory are shown as two different blocks, they are a part

of the same on-chip memory structure. The coalescing unit tries to combine memory requests

11



to the same cache line from different threads in a warp to a single memory request. There is an

L2 cache that is shared by all multiprocessors.

There are also several other components in the SM that are not shown in this figure,

like the instruction fetch unit, warp schedulers, the Special Function Units (SFUs), the texture

and constant caches, etc. that are accounted for and modeled when relevant. More details about

the modeling are available in Chapter 3.
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Chapter 3

Simulation Methodology

In this chapter, I present GPSim which is a simulation infrastructure to model GPG-

PUs, built on top of an existing architectural simulator, ESESC [9].

3.1 The Need for Yet Another Simulator

The emergence of programming models like CUDA and OpenCL to harness the

power of GPGPUs has aroused the curiosity of researchers and software developers alike, and

there has been a flurry of activity in this area. With the lack of publicly available informa-

tion about the architecture of GPGPUs, most of the early research either relied on analytical

models [40] or in-house simulators [48] to estimate the impact of microarchitectural changes

on GPGPU compute. These approaches typically lacked the ability to model the finer details,

and there was an effort in the community to develop a more detailed and customizable simula-

tor for GPGPUs. GPGPUSim [10] was an early simulator that offered support for a NVIDIA

QUADRO FX GPGPU (and later on, for NVIDIA Fermi). This simulator offered options to

13



customize the GPGPU such as the number of shader cores, the number of registers, the size of

the L1 cache, etc., but did not allow customization of the shader core or a configurable memory

hierarchy seen in contemporary CPU simulators. This meant that simulating newer GPGPU

designs and heterogeneous architectures would involve a significant coding effort if we relied

on GPGPUSim.

GPSim was developed as a platform to obtain insight, enable research and potentially

propose prudent refinements to the existing architecture of GPGPUs. It was designed with the

following goals in mind:

• To provide a flexible and extensible framework to model GPGPUs

• To provide a framework that supports simulation of heterogeneous systems with both

CPUs and GPUs as well as other futuristic many-core architectures

• To support simulation of a large number of cores in a reasonable amount of time

• To model the energy/power consumption

ESESC is a fast, cycle accurate, application level simulator with detailed perfor-

mance, power and thermal models for modern CPUs. In addition to detailed models for in-order

and out-of-order CPU cores, it also includes detailed shared memory models, network models,

and the ability to fully configure a multiprocessor system to evaluate the performance of a mul-

tithreaded or multiprocess applications. GPSim uses this underlying framework and offers the

same flexibility to configure next generation GPGPUs and evaluate a heterogeneous system

with both CPUs and GPGPUs. Keeping in mind our goal to keep the simulator fast, GPSim
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Figure 3.1: High level architecture of GPSim

employs native co-execution of benchmarks on real hardware and provides an option to enable

spatial sampling which allows us to selectively execute only a few threads, in case of extremely

regular applications. The timing model is tightly coupled with an integrated power model for

CPUs, and GPSim extends ESESC to couple GPU cores to a power model for GPGPUs derived

from GPUSimPow [54].

Figure 3.1 shows a high level overview of GPSim. The emulator module emulates the

behavior of the target architecture and supplies a trace of instructions to the timing simulator

which models the hardware structures in the processor (the pipeline, the load store queues, the

execution units, etc.). This block interacts with the power model by feeding it relevant statistics

like cache misses, number of load-store instructions, floating point operations, etc., which in

turn can derive the power consumption by estimating the energy consumed for each action.

Since the details of the hardware implementation of GPGPUs are not available publicly, we

make reasonable assumptions about the underlying hardware with information available in the

programming guide and/or patents. We discuss this and provide more details about GPSim in

the following sections.

GPSim was one of the first simulators available to model GPGPUs and, until recently,
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was the only one to support the simulation of heterogeneous architectures with both CPUs and

GPUs. After GPSim, there have been a few other simulators that support the simulations of

heterogeneous architectures with GPGPUs in them. GPGPUSim, since its early days, is now

available with GPUWattch [53], a power model for GPGPUs. MacSim [45] and Mutli2Sim [81]

are two other recent simulators that support simulation of heterogeneous architectures. Unlike

GPSim that executes GPGPU applications natively, these rely either on Ocelot [28], LLVM [49],

or on a native GPGPU emulator like GPGPUSim to generate a trace to be fed to the simulator

and, hence, are inherently slower than GPSim.

GPSim is bundled and available for public use with ESESC at https://github.

com/masc-ucsc/esesc
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3.2 Functional Emulation of GPGPUs

As mentioned earlier, GPSim is built on top of ESESC and shares the infrastructure

wherever possible to keep the design simple. ESESC uses a modified version of QEMU [11]

which runs application binaries in user-mode and intercepts the instruction trace and passes it

to ESESC. GPSim uses a similar approach as shown in Figure 3.2.

3.2.1 Native Coexecution

To determine the program flow, it is necessary to be able to disassemble the binary and

mimic the behavior of the underlying architecture as correctly as possible. Unlike CPUs where

the ISA represents the instruction actually executed by the processor, GPGPU manufacturers

only expose a virtual ISA and not the native target architecture instructions. In the case of

NVIDIA GPGPUs, this virtual ISA is called the parallel thread execution ISA (PTX). To derive

the program flow from the PTX instructions, we need a disassembler and a detailed functional

model of the underlying GPGPU. This is not only prone to a lot of approximation errors, it is

also extremely slow, given that each GPGPU application usually has a couple thousand threads

each. To circumvent this problem, GPSim uses native co-execution, i.e., the GPGPU application

is natively executed on a GPGPU in a lock-step fashion, while relaying the program flow and

memory trace back to the emulator. Native co-execution provides tremendous speedups, and we

have empirically observed a speed up of at least three orders of magnitude over the emulation

speeds of the other simulators. Native co-execution also places the requirement of having a

physical GPGPU as a part of the simulation setup.
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3.2.2 Application Contamination

CUDA programs are not designed to work in a single step mode with CPUs. CPUs

launch a kernel and specify the grid and block dimensions, and the CUDA device spawns as

many threads as defined. Control is returned back to the CPU only after all the threads com-

plete execution. This behavior does not work well with the idea of native co-execution because

it makes the amount of state needed to be saved infeasible, given the number of threads. There-

fore, to enable native co-execution, we contaminate the application to execute only a basic block

of instructions at a time and return the control back to the CPU at the basic block boundary. As

shown in Figure 3.3, before and after each kernel spawn, we need to load and save state (in-

cluding the next destination basic block) and store the memory addresses after each load/store

instruction as a part of the memory trace. Contamination of applications is done automatically

by a preprocessing script, and it does not alter the program behavior in anyway. Despite the fact

that the added instructions are mostly memory instructions, the performance penalty on native

execution is negligible compared with simulation time.

3.2.3 Trace Generation

When the application is contaminated, the preprocessing script divides the PTX code

into segments of code, each representing a single basic block. These segments are annotated

with information used by the GPGPU emulator, e.g., the basic block id, the number of regis-

ters used, divergence information, etc. When the contaminated application is executed on the

GPGPU, it executes one basic block at a time and returns a data structure back to the CPU

which tells the emulator the kernel executed, the basic block currently executed, the basic block
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Figure 3.3: A contaminated CUDA binary

scheduled next, and the memory trace. Using this information and the annotations made by the

preprocessing script after segmenting the code, the emulator pieces an execution trace together

for each executed thread. The emulator then passes this trace to the timing model and sets the

GPGPU up to execute the next basic block.

3.3 Modeling GPGPUs

The steps described above only provide the trace, but do not give any clue about how

they would be executed on the core. To do this we need to functionally model the thread man-

agement on GPGPUs including the warp scheduling mechanisms, handling of synchronization

primitives, etc.
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3.3.1 Thread Management

The thread management block groups threads into thread blocks and assigns them to

SMs for execution depending on the block and grid configuration that is input to the kernel

as well as other architectural parameters that determine if the GPGPU has enough on-chip

resources to sustain the threads in flight. It enables and disables threads that are to be natively

executed on the GPGPU, i.e., it ensures that only the threads in the current active warp are being

natively executed on the GPGPU. It also keeps a record of how many threads have completed

execution and when the GPU computation should stop.

3.3.2 Warp Scheduling and Context Management

Each SM on a GPGPU executes sets of threads known as warps, virtually as many

threads as the number of lanes. Each time a warp hits a long latency instruction (for instance,

a memory access which is a miss) or a synchronization primitive, it saves the context of the

existing warp and moves on to the next ready warp, supplying the SM with a steady stream of

ready-to-execute instructions. The warp scheduling policy is currently set to round robin, but

there are a number of warp scheduling policies that can be implemented, many of which are

listed in Table 6.1.

3.3.3 Modeling Divergence

When threads within a block diverge, it is believed that the divergence is handled

serially, i.e., threads taking a single path are executed first, followed by the next set of threads

executing a single path, and so on. It is not clear whether or not these threads are allowed to
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Parameter Significance Default Value

pes per sm Number of lanes 32
warpsize Number of threads in a warp 32
max warps sm Maximum concurrent warps per SM 24
max blocks sm Maximum concurrent blocks per SM 24
max shmem sm Scratchpad memory available per SM 48K
max regs sm Registers available per SM 65536
divergence mech Serial, Post Dom , SBI Serial
unifiedCPUGPUmem Memory copies between CPUs and GPUs false

Table 3.1: Configuration parameters affecting the functional emulation of GPGPUs

re-converge back and, if they are, at what point. GPSim allows for multiple ways to handle

divergence. At one extreme end, control divergence is handled serially and threads are not

allowed to re-converge. At the other extreme end, we assume that each thread has the capacity

to execute its own path. We also implement the post dominator reconvergence strategy where

divergent threads can re-converge back at the reconvergence point [31].

3.3.4 Spatial Sampling

Almost all GPGPU applications have a very large number of threads and while native

execution makes the emulation faster, the detailed timing model will still need to simulate all

the threads. A significant number of GPGPU applications are largely regular with almost no

divergence. Since the underlying architecture is also homogeneous, the behavior of blocks of

regular threads on different SMs is largely the same. We exploit this fact and provide the option

for Spatial Sampling of threads, i.e., emulate all the threads (for correct program execution) but

create a trace for only a select number of threads and pass it to the detailed timing model. Since

the number of threads or blocks that we model can vary per benchmark, we also have an option
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to turn this feature off completely.

3.4 Performance Modeling

ESESC supports detailed modeling of in-order and out-of-order processors. We add

a third type of processor we call SMcore designed to model the behavior of a single SM. The

SMcore is an extension of the simple in-order core model. It can process as many instructions

as the number of lanes per cycle and no more than one instruction per thread per cycle. A single

thread is affiliated with the same virtual lane for its lifetime. We assume that the register file

is large enough to support the requirements of the in-flight threads; we do not model spilled

registers. Divergence and synchronization primitives like barriers are handled by the emulator,

and the result is an instruction stream that has instructions from the next ready warp, or nops

to indicate that the lane has been underutilized. The number of integer, load/store and floating

point execution units are configurable, and we use default values as mentioned in the program-

ming guide. Branch prediction is not modeled for GPGPUs by default, but we have the option

to include very simple branch predictors.

We take advantage of the flexible and configurable memory hierarchy that ESESC

provides and setup a hierarchy like the one in GPGPUs by default. Each SM has a scratch-

pad cache for scratchpad accesses and a first level data cache. Based on the information in the

programming guide, we model the DL1 as a multibanked cache structure and assume a default

latency of 20 cycles [32]. Coalescing for the DL1 and scratchpad accesses is modeled using

Miss Status Handling Registers (MSHRs). All the SMs share a common L2 cache and this L2
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Default CPU configuration
Number of cores 1 out-of-order core, 3.0 Ghz
Issue Width 4 Instructions
Re-order Buffer 256 Instructions
BTB 4K entries - 4-way
L1 TLB 64 entries / Fully Assoc. / 1 cycle
Core L1 cache 32KB / 4-way / 64B line / 4 cycles
Core L2 cache 512KB / 16-way / 64B line / 7 cycles
Default SM configuration
Number of SMs 4 SMs, 1.7 Ghz
Number of SPs 32, in-order, per SM
Branch Predictor None
Memory Speculation None (Switch to the next ready thread)
Memory Coalescing Enabled
Scratchpad 48KB / 8 banks / 16 cycles, per SM
SM L1 cache 64KB / 8-way /64B line/ 16 cycles, per SM
SM L2 cache 256KB / 16-way /64B line/ 7 cycles, per die
Shared Memory
Shared TLB 512 entries / 4-way / 1 cycle
Shared LLC 8MB / 32-way / 128B line /14 cycles
Memory 18GBytes/s BW with 50ns access time

Table 3.2: Default simulation parameters in GPSim.

cache can either extend to the main memory or to a shared last level cache in case of heteroge-

neous systems. We have a basic bandwidth model to model the off chip memory accesses.

Table 3.2 summarizes some of the default configuration for our SM cores. We instan-

tiate a GPGPU like we would instantiate a multicore with as many cores as SMs on the GPGPU

and can also configure the number of lanes per SM. It is also possible to instantiate other CPU

cores. The default configuration is one CPU core, along with 4 SMs, with 32 lanes each.
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3.5 Estimation of Energy and Power

GPUSimPow [54] is a recently developed power model for GPGPUs that has been

validated by power measurements on a GPGPU. We extend the power model in ESESC and

provide an infrastructure to estimate the power consumption of GPGPUs based on GPUSim-

Pow. ESESC internally uses CACTI [84] to estimate the energy for all the different blocks

within a GPGPU, but it is also possible to ignore CACTI and specify externally computed en-

ergies via the configuration file for GPGPUs.

3.6 Summary

In this chapter, we provide a detailed look at our simulation infrastructure. We have

enlisted a few parameters that reflect the our baseline architecture. In each of our proposals,

we highlight and mention any additional modifications we may have made to the baseline.

This simulator is now freely available as a part of ESESC along with a few pre-contaminated

binaries.
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Chapter 4

Eliminating Redundant Memory Copies in a

Heterogeneous CPU-GPU Architecture

Traditional discrete GPUs, which are by design suited to handle huge streams of data,

are being increasingly used in tandem with the CPU for general purpose applications with the

aid of programming models like CUDA and OpenCL. These applications range from loosely

coupled applications where the CPU offloads a large batch of data for the GPGPU to process

to, more recently, tightly coupled applications operating systems abstractions like filesystems to

GPGPUs [75]. Recent initiatives like Intel’s Sandy bridge [92] and AMD’s Fusion [17] imple-

ment a tightly coupled heterogeneous architecture on a single die. By doing so, they provide a

powerful platform that integrates a modern CPU for efficient single threaded performance with

a GPGPU for high throughput parallel processing [3, 4].
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4.1 The Memory Transfer Problem

The OpenCL and CUDA programming models assume that the kernel is executed on

a physically separate GPU which behaves like a coprocessor to the host running the CPU pro-

gram. They also assume that both the device and the host maintain their own separate memory

spaces (host and device memory) without hardware cache coherence between them. Thus, a

typical CUDA or OpenCL application is composed of three distinct sequential stages: copying

the input state from the CPU to the GPU, spawning kernels with large number of threads to

compute on the GPU, and, finally, copying the result back from the GPU to the CPU address

space. This copy between the host and the device is very expensive.

The need to move data back and forth between separate addressing spaces necessitates

that for meaningful speedups the GPU compute time must be large enough to amortize the

transfer time. This restricts the range of algorithms that can benefit from a GPU to those with a

low transfer to compute ratio. In fact, simple applications with low data reuse like SAXPY or

sparse matrix vector multiplication are slower when implemented for GPUs.

The transfer of data between the CPU and the GPU over the PCI Express bus is a

well documented issue. The CUDA and OpenCL programming model allow us to amortize this

cost over a very large computation, achieved by spawning a large number of threads. However

many data parallel algorithms with a low compute to transfer ratio tend to perform better on the

CPU than on the GPU or show a huge potential for improvement [36,52]. Figure 4.1 shows the

memory transfer to GPU compute ratio for several application in a single die environment. A

PCI solution like a GTX580 would have an even worse ratio. Most applications that transfer
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Figure 4.1: Memory transfer to GPU compute time ratio for several CUDA applica-
tions in a single die solution shows that memory transfer is key even for CPU-GPU
multicores. The workloads considered here are described in Table 4.1.

Benchmark Description
Mem
Transfer
(MB)

Global
Memory
Access
%

Backprop A machine learning algorithm used in a graph 17.75 60.32
BFS A graph traversal algorithm 41.0 100
Convolution An image processing algorithm 72.0 5.82
HotSpot A tool to estimate the temperature for an architectural floorplan 12.0 30.95
LBM Simulation of a Newtonian fluid using the discrete Boltzmann equation 555.46 100.0
SAXPY A common subroutine from BLAS which performs z = ↵ ⇤ x + y 96.0 100.0
SGEMM Matrix Multiplication 11.99 6.70
SPMV A commonly used implementation for multiplication of sparse matrices 8.6 51.25
SRAD Used to remove locally correlated noise in an image 8.0 40.44
Transpose Compute the transpose of a matrix 55.125 100

Table 4.1: GPU workloads used in our evaluation

over the PCI express interconnect are deemed unfit to run on the GPU and, thus, a large category

of applications cannot exploit the parallel throughput of the GPU.

We profiled several applications like SGEMM and SPMV from the Parboil bench-

mark suite [78] on a GTX580. In many applications, the memory transfer consumes 4X more

time than the compute (i.e., transfer to compute ratio or Memory Transfer Time
GPU Compute Time is more than 4).
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Most applications with the exception of LBM, SRAD, and BFS have over 2X more memory

transfer time than GPU compute time. This means that it is possible to obtain more speedup

by avoiding the memory copy than by improving the GPU compute time. For example, matrix

TRANSPOSE and SAXPY have over a transfer to compute ratio of over 15. It is important to

notice that the transfer to compute ratio does not include CPU time. If we exclude the bench-

mark IO and initialization, the CPU compute time represents less than 10% of the total time for

the benchmarks analyzed.

Unifying the cache hierarchy will reduce a large chunk of the transfer time by elimi-

nating the transfer over the PCI interconnect. However our experiments show that there is still

a significant percentage of time that is spent on memory copies between the host and the device

addressing spaces. We take the unification of the cache hierarchy a step further and propose

removing the divide between the two addressing spaces by implementing a virtual shared mem-

ory system for a heterogeneous CPU-GPU multicore architecture on a single die based on a

Translation Lookaside Buffer (TLB) level shared by both the CPU and GPU sides.

Placing the GPU in the same die as the multicore mitigates the memory transfer cost,

but, as Figure 4.1 shows, this is still not enough and we need create a unified address space

to avoid the memory transfers. Our proposal addresses this issue overcoming the drawbacks

discussed in Section 4.3 for similar approaches and provides full binary compatibility to existing

CUDA applications.

28



4.2 Assessing the Need for Coherence

OpenCL and CUDA models assume that CPU cores provide cache coherence between

themselves while GPU cores do not. The new SoC integration opens up the question of whether

all the cores (CPU and GPU) need to have coherence or can just continue working with two

different address spaces.

If the CPU and GPU have two different address spaces, the CPU cores have coher-

ence between themselves, but they are incoherent with the GPU cores. Since the programming

models for GPUs have been designed assuming incoherent GPUs, the GPU cores also do not

need hardware cache coherence. However, the problem with this approach is the costly memory

copy needed between address spaces. Our experiments show that even in a single die SoC with

a shared last level cache the performance overhead is over 30% for GPU workload suites like

Parboil [78].

If we simply decide that the CPU and GPU share the same address space, both types

of cores need to be coherent. The trend is to provide and require hardware cache coherence

(EXOCHI [82], Bothnia [23], Intel Knights Corner, and AMD Fusion [77]). However, energy

inefficiency proves to be a challenge with the hardware cache coherence approach. This is

especially true for GPU applications with a high miss rate and sharing which triggers significant

cache invalidations and writebacks. We observe that coherence represents over 11% of the

memory traffic for GPU applications, while it is under 2% for traditional PARSEC applications.

Thus, blindly enabling hardware cache coherence will incur significant energy costs for GPU

applications.
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4.3 Related Work

To improve the compute to memory ratio and make the argument of offloading general

purpose tasks from the CPU to the GPU more compelling, there are a number of approaches

that are popular in the community. We discuss these approaches and other proposals below.

4.3.1 Avoiding Memory Copies with Pinned Memory

The CUDA programming environment provides two mechanisms to make the data

exchange between CPU and GPU more efficient: overlap the execution of one kernel with the

memory transfer of another and a zero-copy strategy which uses pinned host memory. The

first approach works best with the (rare) occurrence of two independent kernels that do not

share data, and is only fully beneficial if we are able to completely overlap the transfer time

for one kernel with the execution time of the other kernel. Zero-copy needs the host to pin

down memory and is not sustainable with large or growing data sets. The AMD OpenCL

Programming guide offers more advanced resources like zero-copy memory objects and zero-

copy buffers. They can virtually eliminate memory transfers but still show different drawbacks

like creating asymmetric memory behavior in the CPU and GPU sides. Many memory intensive

algorithms use other approaches like moving the entire data-set to the GPU’s memory [36],

which is again not sustainable.

4.3.2 Avoiding Memory Copies with a Shared Virtual Space

Chinya et al. propose Bothnia [23], an extension to the Intel Integrated Graphics

Driver, that avoids memory copies. It provides cache coherence and exception support and as-
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sumes a hardware configuration with no shared memory controller, no last level cache (LLC)

and no shared TLB (CPU and GPUs have only private TLBs). The CPU and GPU have different

page tables and page table entries, and the Bothnia driver transcodes a given CPU virtual ad-

dress translation into the corresponding GPU page table entry (PGTT) to keep the same virtual

to physical mapping. Wang et al. propose EXOCHI [82], a new programming environment

with a shared address space. It assumes the same architectural environment as in Bothnia,

with different translation systems for the CPU and GPU sides (private TLBs) requiring address

translation remapping (ATR). Although EXOCHI does not require coherence, it requires pro-

grammer modifications. The paper points out that in the absence of hardware support for cache

coherence, it is the responsibility of the programmer to use critical sections to protect other

threads from reading or writing the data being processed by threads on the exo-sequencers.

4.3.3 Integrated CPU-GPU Systems

On-chip heterogeneous architectures combining CPUs and GPUs are a growing trend

as exhibited by Intel’s Sandy Bridge [92], Knights Corner, AMD’s Fusion [17], and NVIDIA’s

Denver [13]. A radically different, but related, approach comes from Stratton et al. [79].

They convert CUDA code into standard C language, and, with the support of a runtime library,

they manage to run the translated CUDA programs on a CPU multicore, preserving the CUDA

semantics. The memory hierarchy design space available for the integration of CPU and GPU

cores is leveraged in different ways. Zhu et al. [95] cite the example of a real-world application

where assuming no overhead of the memory transfer between the CPU and GPU resulted in an

extremely efficient implementation on the GPU.
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The use of a shared L2 has been proposed in Woo and Lee [87], but only for running

CPU workloads. Lee et al. [50] study the implications of sharing a L2 cache between a CPU

and the GPU and leverage UCP [66] and RRIP [93] to mitigate the negative impact of GPU

workload accesses on the CPU workload, but they do not use the LLC to improve data sharing

between the CPU and the GPU like we do. An Intel patent [37] describes a shared cache to

allow faster communication among heterogeneous cores through synchronization mechanisms,

but it does not describe any address translation scheme.

4.3.4 SoC Virtual Memory and Memory Copy Support

Merely integrating a CPU and GPU on a die, sharing the same physical memory, does

not lead to a dramatic performance increase for existing applications. Our proposal lies in the

line of leveraging on-die integration and supporting a unified virtual memory space to eliminate

memory copies between CPU and GPU, and it is therefore closely related to the following

approaches.

Wong et al. propose Pangaea [86], a microarchitecture reorganization of both CPU

and GPU to achieve tighter architectural integration within a heterogeneous CMP design, along

with power and area efficiency. Pangaea keeps separate TLBs and supports coherence like in

Bothnia. It assumes the heterogeneous Open MP model under EXOCHI [82] (which provides

the necessary transcoding between the different PTEs) and the communication mechanism be-

tween the CPU and EU cores requires an ISA extension.

The Heterogeneous System Architecture (HSA) [70] is a set of specifications for

tightly integrated CPUS and GPUs proposed by the cross vendor HSA foundation that allows a
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unified main memory between the CPU and the GPU to eliminate the memory copies between

them, implying a coherent memory system. In general, cache coherence is believed to be too

much of an overkill in heterogeneous platforms such as combined CPU-GPU systems because

of potential scalability problems and energy inefficiency [80,94]. Modern AMD GPGPUs like

the Kaveri [15] that are HSA compatible only provide optional coherence between the CPU and

GPU using acquire/release memory instructions, which allows the programmer to define when

exactly coherence is needed, and when it is not.

Hampton et al. [38] and Menon et al. [57] exploit the property of idempotence in

kernels to implement support for exceptions in vector processors and GPUs, respectively. The

focus of their papers, unlike ours, is on providing support for exceptions.

4.4 Our Proposal: FuseTLB

On the basis of our understanding of the programming models and the nature of typi-

cal GPGPU applications, we propose a simple design where we establish a virtual shared mem-

ory space between the CPU and the GPU by having purely virtual caches on the GPGPU side

and sharing a TLB between them. We build our proposal on top of the baseline GPGPU (based

on NVIDIA’s Fermi [85]) as shown in Figure 2.3 and a modern CPU core (based on Intel’s

Sandy Bridge processor [92]). We call our design FuseTLB. Figure 4.2 illustrates the architec-

ture we propose, and we describe our proposal in detail below.
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exceptions in vector processors and GPUs respectively. The
focus of their papers, unlike ours, is on providing support for
exceptions.

3.6. TLBs in manycore systems

Most modern CMPs today adopt a multilevel TLB hierarchy,
with private per-core TLBs. However, in case of a manycore
system running parallel workloads, these private TLBs will not
be able to exploit the inherent sharing behavior. Bhattachar-
jee et al. propose a shared last-level TLB so as to leverage this
sharing behavior. Our proposal uses an inclusive shared TLB
like the one described in DiDi [33] and UNITD [28], triggering
a first level TLB invalidation instead of software based TLB
shootdowns. However, unlike DiDi [33] and UNITD [28], we
neither have to deal with coherence nor any hardware trans-
lation in the TLBs to compensate for the TLB shootdown
penalty.

An important observation is that in our case the GPU first
level caches are virtual without cache coherence.

4. FuseTLB
Our baseline architecture is based on a state of the art imple-
mentation of a CPU and GPU on a single die similar to [21].
Figure 2 shows the overall architecture. Both the CPU and
the GPU have an internal cache hierarchy but share a common
last level cache. Each CPU has a private L1 per core and a L2
cache shared by both the cores.

We consider four SM cores on the GPU side, and six out-of-
order CPU cores for our evaluations. We chose these numbers
on the basis of the hardware specs mentioned in [1] and [5],
but FuseTLB can handle more or lesser cores or SMs. More
details are available in Table 3. To avoid confusion, we prefix
the caches on the CPU with “core" and those on the GPU with
“SM" in our discussion below.

CPU1
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CPU2 SM3

SM2

SM1

SM0

SM

IL1G-0 DL1G-0

Scratchpad

L2GL2
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Main Memory

DL1-1

PTLB-1

Core1Core0

IL1-0 PTLB-0

DL1-0

GPU

STLB

IL1-1

Figure 2: Architecture proposed by FuseTLB.

4.1. Support for heterogeneous virtual memory

We establish a virtual shared memory space between the CPU
and the GPU with pure virtual caches on the GPU side and the

addition of a Shared TLB. We describe these modifications
proposed by FuseTLB below.

The SM-L1 is a virtually indexed virtually tagged cache,
private to each SM. This cache is split into two parts: a multi-
banked scratchpad without coalescing for scratchpad memory
accesses and a single port cache with coalescing for global
memory accesses, akin to NVIDIA’s Fermi architecture. The
scratchpad is important to model because for many applica-
tions it serves a significant fraction of the memory requests.
This is relevant for our work because we also need to provide
correct functionality and memory protection for the scratch-
pad.

Like the other SM caches, the scratchpad stores virtual
addresses as well. As per the CUDA/OpenCL programming
model, neither does the SM scratchpad survive kernel spawns,
nor is it shared across blocks. We thus initialize the SM
scratchpad before use, and to protect the data from malicious
applications, we discard its contents once the kernel completes
execution. To do this, we could use the present but unused
valid bit. An access to the scratchpad without a valid bit
returns zero 1. Even though we use pure virtual caches, we
do not have privacy issues across kernel spawns because all
the cache lines are invalidated from the SM-L1 cache once the
kernel finishes.

We implement coalescing by merging many accesses that
are sent to the same cache line in a single request. This is to
reduce power and increase efficiency. Also the accesses are
serialized in case multiple addresses are requested from the
same port of the multibanked scratchpad.

SMs are designed to sustain many misses with thousands
of in-flight threads. Typically the SM-L1 cache misses are
clustered to the same line. The modeled coalescing signifi-
cantly reduces memory traffic, but it does not consider the
observation that most SM-L1 misses across SMs are clustered.
This can put tremendous pressure on shared resources, and
potentially make this design infeasible due to the inevitable
energy consumption. This is why we extend the baseline archi-
tecture by adding a small non-inclusive virtual SM-L2 cache
shared by all the SM cores in the GPU.

The SM-L2 cache needs a kernel-id to distinguish between
accesses from different kernels. We can run blocks of the same
kernel across diferent SMs as in Nvidia devices, but each SM
can only execute a given kernel at a given time, and therefore
with n SMs there will be at most n kernels executing simulta-
neously. Since the whole SM memory hierarchy must flush
every cache line that belongs to the kernel just finished, there
are at most n kernels cached in the memory simultaneously in
the SM-L1 and L2 caches. As a result, log2(n) bits are needed
for the kernel-id. In our system, we have four SMs which
means just two additional bits per cache line tag.

Differently from other CPU-GPU on-die solutions, we also
add a shared TLB (STLB) just before the LLC, shared by both

1We could possibly trigger an exception for unauthorized accesses, but
current GPUs have no means to handle exceptions.

5

Figure 4.2: The FuseTLB architecture
.

4.4.1 A Virtually Indexed and Virtually Tagged SM Memory Hierarchy

The SM-L1 is a virtually indexed virtually tagged cache, private to each SM. This

cache is split into two parts: a multibanked scratchpad without coalescing for scratchpad mem-

ory accesses and a single port cache with coalescing for global memory accesses, akin to

NVIDIA’s Fermi architecture. The scratchpad is important to model because for many ap-

plications it serves a significant fraction of the memory requests. This is relevant for our work

because we also need to provide correct functionality and memory protection for the scratchpad.

Like the other SM caches, the scratchpad stores virtual addresses as well. As per the

CUDA/OpenCL programming model, neither does the SM scratchpad survive kernel spawns,

nor is it shared across blocks. We thus initialize the SM scratchpad before use, and, to protect the

data from malicious applications, we discard its contents once the kernel completes execution.
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To do this, we could use the present but unused valid bit. An access to the scratchpad without

a valid bit returns zero. We could possibly trigger an exception for unauthorized accesses, but

current GPUs have no means to handle exceptions. Even though we use pure virtual caches, we

do not have privacy issues across kernel spawns because all the cache lines are invalidated from

the SM-L1 cache once the kernel finishes.

We implement coalescing by merging many accesses that are sent to the same cache

line in a single request. This is to reduce power and increase efficiency. In case multiple

addresses are requested from the same port of the multibanked scratchpad, we serialize the

requests.

4.4.2 The Need For a Shared L2 Cache in the GPU

SMs are designed to sustain many misses with thousands of in-flight threads. Typi-

cally, the SM-L1 cache misses are clustered to the same line. The modeled coalescing signifi-

cantly reduces memory traffic, but it does not consider the observation that most SM-L1 misses

across SMs are clustered. This can put tremendous pressure on shared resources and potentially

make this design infeasible due to the inevitable energy consumption. This is why we extend

the baseline architecture by adding a small non-inclusive virtual SM-L2 cache shared by all the

SM cores in the GPU.

NVIDIA devices support concurrent kernel execution starting from the Fermi archi-

tecture. Therefore, the SM-L2 cache needs a kernel-id to distinguish between accesses from

different kernels. We can run blocks of the same kernel across diferent SMs as in NVIDIA

devices, but each SM can only execute a given kernel at a given time, and therefore with n SMs

35



there will be at most n kernels executing simultaneously. Since the whole SM memory hierarchy

must flush every cache line that belongs to the kernel just finished, there are at most n kernels

cached in the memory simultaneously in the SM-L1 and L2 caches. As a result, log2(n) bits

are needed for the kernel-id. In our system, we have four SMs which means just two additional

bits per cache line tag.

4.4.3 A Shared TLB between the CPU and the GPU

Unlike other CPU-GPU on-die solutions, we also add a shared TLB (STLB) just

before the LLC, that is shared by both the CPU and the GPU. Each CPU core has its own

private TLB, but this is not the case for SMs. Since the SM-L1 and SM-L2 are virtually indexed

and virtually tagged, we perform a TLB translation for the GPU at the STLB, just before the

LLC is accessed. Thus, the STLB is effectively a second level TLB for the CPU cores but a first

level TLB for the SM cores. It is only accessed when we miss on the SM-L2.

4.4.4 Writeback Invalidating the SM-Caches

As per the CUDA/OpenCL model, an access to a region of memory shared by GPU

before the kernel finishes is undefined. Once the kernel finishes, the SM cache lines for that

kernel are written back and invalidated in the SM-L1 and SM-L2. In CUDA/OpenCL, the only

way to share data between thread blocks (workgroups) in a deterministic way is to use atomic

instructions or the Threadfence directive, and we provide support for both. The CUDA/OpenCL

programming model requires all the threads in a thread block to see the same consistent memory

when they reach a barrier. Thus, atomic operations trigger a write back and invalidate on the

36



SM-L1 cache, but this is not needed for the SM-L2. There is no need to writeback or invalidate

the cache when a thread block finishes. This is because the CUDA/OpenCL programming

model does not permit blocks to share data. A buggy/malicious block could do it, but this is not

a security concern because all these blocks belong to the same kernel.

4.4.5 Avoiding Coherence in the SMs

A typical multicore hierarchy with coherence can be adapted to the SM cores with

just a few changes to make it functionally correct, but the features of the CUDA/OpenCL pro-

gramming model open up opportunities for FuseTLB to improve the efficiency. Since a thread

block is executed in a single SM, and the CUDA/OpenCL model does not have directives to

share data across blocks, there is no need to have coherence between the SM-L1 caches.

If there is no kernel being executed on the SM, it means that the SM caches have

already been flushed (since we writeback/invalidate when a kernel completes) and the CPU-

cores are free to touch shared pages. Whenever a CPU core touches a page used by the SM

cores, or whenever a shared GPU TLB entry is deallocated, it triggers a writeback invalidate in

the SM memory hierarchy for the allocated virtual page. When an SM core touches a memory

location from the CPU core, it does not need to writeback or invalidate the whole page in the

core caches or DRAM. The reason is that the CPU memory hierarchy already has coherence.

An SM memory request hit in the LLC will trigger a cache line invalidation in the core-L2 in

the same way that invalidations are triggered between cores.
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4.4.6 Binary and OS Compatibility

Our system fully preserves the semantics of the CUDA/OpenCL programming model.

In this model, copying data between the CPU and GPU addressing spaces entails allocating

memory for the kernel parameters in both the host and the kernel addressing spaces, obtaining a

pointer to each parameter in each space. Let us assume for example that hA and dA respectively

point to the same kernel input parameter in the host and the kernel (device) spaces. After the

allocation we copy hA to dA and then spawn the kernel. All the GPU threads will be able

to access dA. Our proposal assumes that CPU and GPU are integrated on chip and share a

LLC, which avoids actual data transfers by mapping hA and dA to the same physical address.

Consequently, data can be shared in the LLC. In a naive implementation, a write to dA would

modify the original hA in the CPU space which is a deviation from the programming model. To

avoid this, we could protect the page with copy-on-write (COW) in the SM TLB. On analyzing

the applications we observe that none of the analyzed benchmarks need to have COW. To avoid

redundant copies, the automatic COW is enabled per application. It is uncommon to clobber

input buffers during a kernel computation, but there is no such restriction in the programming

model and therefore it can happen.

Misses on the STLB necessitate a hardware page walk. Having a private TLB for the

cores would also require a separate hardware page table walk on both the GPU and the CPU

side. Since the GPU does not manage the TLB, we will need some support from the OS to

handle these misses. The STLB triggers an exception when it misses, and it is handled much

like one generated if the CPU TLB misses: a randomly picked core receives the request to
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Default CPU configuration
Number of cores 6 out-of-order core, 3.0 Ghz
Issue Width 4 Instructions
Re-order Buffer 256 Instructions
BTB 4K entries - 4-way
L1 TLB 64 entries / Fully Assoc. / 1 cycle
Core L1 cache 32KB / 4-way / 64B line / 4 cycles
Core L2 cache 512KB / 16-way / 64B line / 7 cycles
Default SM configuration
Number of SMs 4 SMs, 1.7 Ghz
Number of SPs 32, in-order, per SM
Branch Predictor None
Memory Speculation None (Switch to the next ready thread)
Memory Coalescing Enabled
Scratchpad 48KB / 8 banks / 16 cycles, per SM
SM L1 cache 64KB / 8-way /64B line/ 16 cycles, per SM
SM L2 cache 256KB / 16-way /64B line/ 7 cycles, per die
Shared Memory
Shared TLB 512 entries / 4-way / 1 cycle
Shared LLC 8MB / 32-way / 128B line /14 cycles
Main Memory 18GBytes/s BW with 50ns access time

Table 4.2: GPSim configuration to evaluate FuseTLB

handle a miss from another address space (GPU application). The exception handler just needs

to follow the usual routine, but use the GPU address space. This operation is not too complex

since we only deal with a shared TLB, and not private TLBs per SM.

4.5 Experimental Setup

We evaluate our proposal using GPSim and ESESC. Our baseline architecture is an

integrated CPU-GPU on the same die sharing a TLB and the last level cache. The relevant

simulation configuration parameters are listed in Table 4.2. We use the CACTI [84] model to

estimate the energy consumption of the memory structures.
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Exp Configuration

typSoC Baseline architecture with a shared TLB, without
virtual memory (memory copies), with coherence.

copySoC
Baseline architecture with a shared TLB, without
virtual memory (memory copies), without coher-
ence.

FuseTLB Our proposal with a shared TLB, with virtual mem-
ory (no memory copies), without coherence.

noSTLB
Similar to the FuseTLB, except that instead of a
STLB, we have two TLBs, one for all the CPUs and
one for all the GPUs

privTLB
A naive implementation, where there is no shared or
second level TLB, only private TLBs per core and
SM, without coherence.

Table 4.3: We evaluate five different architectural configurations.

As mentioned in Section 4.1, applications designed for use on GPGPUs are highly

compute intensive and try to avoid memory transfers between the host and the device as far

as possible. Most applications in popular benchmark suites [2, 21, 78] also reflect this choice

in design. Based on published results [52] and analyses [36], we picked benchmarks from

all the aforementioned suites that are impacted by frequent and/or large memory exchanges in

addition to a few typical and regular benchmarks. Table 4.1 lists and briefly describes the GPU

workloads that we evaluated.

All of the GPU workloads were obtained from commonly used test suites [21, 78],

and all except LBM were run with the largest dataset made available to completion. SAXPY

uses 8MB arrays. Convolution was performed on a 3072x3072 sized 2D image. Transpose used

a 2688x2688 square matrix as its input.

To evaluate FuseTLB, we ran several GPU workloads (listed in Table 4.1) using a few

different configurations which are explained in Table 4.3. These configurations are described
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Set Spec Rate Apps GPU Workloads

S1 mcf - art - soplex - perlbench Backprop, SPMV, SAXPY, transpose,
LBM, BFS, SRAD

S2 dealII - wupwise - libquantum - soplex Backprop, SPMV, SAXPY, transpose,
LBM, BFS, SRAD

Table 4.4: List of SpecRate and GPGPU workloads

in reference to the baseline architecture. To simulate the effect of a true heterogeneous core in

a few experiments, we also ran a subset of the GPU workloads with two sets of 4 SPECrate

applications each. We choose a few random mixes of GPU and CPU application workloads.

All of them have one GPU application and 4 SPEC2006 applications per run. To capture the

contention of the active CPU or SM cores, we ran the GPU workloads to completion. If a

benchmark finished early, it was relaunched again, but the simulator would not gather the statis-

tics for that particular benchmark anymore. When we evaluated GPU programs run along with

multi-threaded CPU programs, we waited until either the GPU application finished or 1 billion

instructions from the CPU were simulated, whichever occurred later.

4.6 Evaluation

The evaluation is divided in three main subsections. We start by showing the dynamic

energy savings in the GPU memory hierarchy, then show the overall performance improve-

ments and conclude providing insights about the TLB. We also provide a brief evaluation of the

fairness of multi-programmed workloads.
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CPU cores 6 out-of-order cores, 3.0 Ghz
Issue Width 4 Instructions
Re-order Buffer 256 Instructions
BTB 4K entries - 4-way
L1 TLB 64 entries / Fully Assoc. / 1 cycle
core L1 cache 32KB / 4-way / 64B line / 4 cycles
core L2 cache 512KB / 16-way / 64B line / 7 cycles

SM cores 4 SMs, 1.5 Ghz
Number of SPs 32, in-order, per SM
Branch Predictor None
Memory Speculation None(Switch to the next ready thread)
Memory Coalescing Enabled
Scratchpad 48KB / 8 banks / 4 cycles, per SM
SM L1 cache 32KB / 8-way /64B line/ 4 cycles, per SM
SM L2 cache 256KB / 16-way /64B line/ 7 cycles, per die

Shared Memory Shared by all
Shared TLB 512 entries / 4-way / 1 cycle
Shared LLC 8MB / 32-way / 128B line /14 cycles
Memory 18GBytes/s BW with 50ns access time

Table 3: System configuration parameters

Exp Configuration

typSoC Baseline architecture with a shared TLB, without virtual
memory (memory copies), with coherence.

copySoC Baseline architecture with a shared TLB, without virtual
memory (memory copies), without coherence.

FuseTLB Our proposal with a shared TLB, with virtual memory (no
memory copies), without coherence.

noSTLB
Similar to the FuseTLB, except that instead of a STLB,
we have two TLBs, one for all the CPUs and one for all
the GPUs

privTLB
A naive implementation, where there is no shared or sec-
ond level TLB, only private TLBs per core and SM, with-
out coherence.

Table 4: Five main architectures evaluated.

ory transfers between the host and the device as far as possible.
Most applications in popular benchmark suites [11, 9, 14] also
reflect this choice in design. Based on the results published
in [23] and the analysis in [17], we picked benchmarks from
all the three popular suites, which are impacted by frequent
and/or large memory exchanges, in addition to a few typical
and regular benchmarks. Table 1 lists and briefly describes the
GPU workloads that we evaluated.

All of the GPU workloads, were obtained from commonly
used test suites like [12] and [9], and all except LBM were run
with the largest dataset made available to completion. SAXPY
uses 8MB arrays. Convolution was performed on a 3072x3072
sized 2D image. Transpose used a 2688x2688 square matrix
as its input.

To evaluate FuseTLB, we ran the GPU workloads in a few
different configurations, the details of which are explained in
Table 4 in reference to the baseline architecture.

To simulate the effect of a true heteregenous core in a few
experiments, we also ran a subset of the GPU workloads with
two sets of 4 SPECrate applications each. We choose a few
random mixes of GPU and CPU application workloads. All of
them have one GPU application and 4 SPEC2006 applications

per run.
To capture the contention of the active CPU or SM cores,

we ran the GPU workloads to completion. If a benchmark
finishes early, it will relaunch, but the simulator will not gather
the statistics for that particular benchmark anymore. When
we evaluated GPU programs run along with multi-threaded
CPU programs, we waited until either the GPU application
finished or 1 billion instructions from the CPU were simulated,
whichever occurred later.

6. Evaluation
The evaluation is divided in three main subsections. We start
by showing the dynamic energy savings in the GPU memory
hierarchy, then show the overall performance improvements
and conclude providing insights about the TLB. We also pro-
vide a brief evaluation of the fairness of multi programmed
workloads.

6.1. GPU Memory Hierarchy Energy

We implement a model based on CACTI [35] to extract en-
ergy per access for the GPU memory hierarchy. We model
the scratchpad memories, the DL1s and shared L2, the TLB
and lastly the LLC. Our energy model is independent of the
execution time (we use a perfect clock gate and only consider
the memory hierarchy). FuseTLB is compared against the
baseline (copySoC). Additionally, two alternate memory hi-
erarchies are evaluated. One in which GPU and GPU do not
share a TLB, instead use a private TLB (half the size) for each
(noSTLB). The other scenario is one where we implement a
more CMP traditional TLB hierarchy in which each SM has
its own private TLB (privTLB), making it comparable to the
CPU cores.
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We start by highlighting the contribution of two features
we see in CPU-GPU SoCs today: coherence and memory
copies accross address spaces. Figure 3 is a stacked-plot
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Figure 4.3: Memory hierarchy energy breakdown for a typical SoC (typSoC).

4.6.1 GPU Memory Hierarchy Energy

We implement a model based on CACTI [84] to extract energy per access for the

GPU memory hierarchy. We model the scratchpad memories, the DL1s and shared L2, the TLB

and lastly the LLC. Our energy model is independent of the execution time (we use a perfect

clock gate and only consider the memory hierarchy). FuseTLB is compared against the baseline

(copySoC). Additionally, two alternate memory hierarchies are evaluated. One in which CPU

and GPU do not share a TLB, and instead use a private TLB (half the size) for each (noSTLB).

The other scenario is one where we implement a more traditional TLB hierarchy in which each

SM has its own private TLB (privTLB), making it comparable to the CPU cores.

We start by highlighting the contributions of two features we see in CPU-GPU SoCs

today: coherence and memory copies across address spaces. Figure 4.3 is a stacked-plot of
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of the energy consumption seen in a CPU-GPU SoC which
needs coherence and memory copies (typSoC), one that does
not need coherence, but uses memory copies (copySoC), and
finally, FuseTLB which uses neither. Hardware cache coher-
ence represents around 10% of the memory hierarchy energy
consumption. The memory copies between the CPU and the
GPU represent between a small 5% for sgemm to over 50%
for transpose. The significant contribution that coherence and
memory copies make to the overall energy consumption allows
FuseTLB to decrease the energy consumed by and average of
38%, well below copySoC and typSoC.
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Figure 4: CPUs have less cache coherence traffic than
GPU workloads.

Figure 4 provides an understanding of why the hardware
cache coherence is specially bad for GPU applications. It
shows that for PARSEC workloads, the cache coherence traffic
represents less than 2% of all the memory transactions. Due
to the higher miss rate of GPU applications, where cache
coherence traffic represents over 11% of all the memory traffic.
This implies that cache coherence is more problematic for the
GPU hierarchy than for the CPU hierarchy because of the
application characteristics.

Figure 5 shows the effect of coherence and memory copies
in the baseline architecture. Values are normalized to the
baseline without coherence (copySoC), which is more energy
efficient than typSoC, the option with coherence. Eliminating
both coherence and memory copies (FuseTLB) achieves up to
27% energy reduction on an average.

Figure 6 and Figure 7 breakdown the energy consumed by
the principal components of the memory hierachy in each
experimental setup. The contribution of TLBs to energy con-
sumption in this system hardly reaches 1% in the case we have
private TLBs in all cores without any shared TLB.

Figure 8 compare FuseTLB with the designs without the
STLB in terms of energy consumption, normalized to the
baseline (no coherence in all the cases). FuseTLB is as or
more energy efficient than the other TLB configurations.

In summary, avoiding memory copies reduces energy con-
sumption independently of the TLB organization. On the
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highly energy efficient.
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Figure 4.4: CPUs have lesser cache coherence traffic than GPGPU workloads.

the energy consumption seen in a CPU-GPU SoC which needs coherence and memory copies

(typSoC), one that does not need coherence, but uses memory copies (copySoC), and finally,

FuseTLB which uses neither. Hardware cache coherence represents around 10% of the memory

hierarchy energy consumption. The memory copies between the CPU and the GPU represent

between a small 5% for SGEMM to over 50% for transpose. The significant contribution that

coherence and memory copies make to the overall energy consumption allows FuseTLB to

decrease the energy consumed by and average of 38%, well below copySoC and typSoC.

Figure 4.4 provides an understanding of why the hardware cache coherence is espe-

cially bad for GPU applications. It shows that for PARSEC workloads, the cache coherence

traffic represents less than 2% of all the memory transactions. Compare this with GPU applica-

tions, where, due to the higher miss rate, cache coherence traffic represents over 11% of all the

memory traffic. This implies that cache coherence is more problematic for the GPU hierarchy
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of the energy consumption seen in a CPU-GPU SoC which
needs coherence and memory copies (typSoC), one that does
not need coherence, but uses memory copies (copySoC), and
finally, FuseTLB which uses neither. Hardware cache coher-
ence represents around 10% of the memory hierarchy energy
consumption. The memory copies between the CPU and the
GPU represent between a small 5% for sgemm to over 50%
for transpose. The significant contribution that coherence and
memory copies make to the overall energy consumption allows
FuseTLB to decrease the energy consumed by and average of
38%, well below copySoC and typSoC.
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Figure 4: CPUs have less cache coherence traffic than
GPU workloads.

Figure 4 provides an understanding of why the hardware
cache coherence is specially bad for GPU applications. It
shows that for PARSEC workloads, the cache coherence traffic
represents less than 2% of all the memory transactions. Due
to the higher miss rate of GPU applications, where cache
coherence traffic represents over 11% of all the memory traffic.
This implies that cache coherence is more problematic for the
GPU hierarchy than for the CPU hierarchy because of the
application characteristics.

Figure 5 shows the effect of coherence and memory copies
in the baseline architecture. Values are normalized to the
baseline without coherence (copySoC), which is more energy
efficient than typSoC, the option with coherence. Eliminating
both coherence and memory copies (FuseTLB) achieves up to
27% energy reduction on an average.

Figure 6 and Figure 7 breakdown the energy consumed by
the principal components of the memory hierachy in each
experimental setup. The contribution of TLBs to energy con-
sumption in this system hardly reaches 1% in the case we have
private TLBs in all cores without any shared TLB.

Figure 8 compare FuseTLB with the designs without the
STLB in terms of energy consumption, normalized to the
baseline (no coherence in all the cases). FuseTLB is as or
more energy efficient than the other TLB configurations.

In summary, avoiding memory copies reduces energy con-
sumption independently of the TLB organization. On the
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Figure 4.5: Avoiding memory copies and coherence is highly energy efficient.

than for the CPU hierarchy because of the application characteristics.

Figure 4.5 shows the effect of coherence and memory copies on the baseline archi-

tecture. Values are normalized to the baseline without coherence (copySoC), which is more

energy efficient than typSoC, the option with coherence. Eliminating both coherence and mem-

ory copies (FuseTLB) achieves up to 27% energy reduction on an average.

Figure 4.6 and Figure 4.7 break down the energy consumed by the principal compo-

nents of the memory hierachy in each experimental setup. The contribution of TLBs to energy

consumption in this system hardly reaches 1% in the case we have private TLBs in all cores

without any shared TLB.

Figure 4.8 compare FuseTLB with the designs without the STLB in terms of energy

consumption, normalized to the baseline (no coherence in all the cases). FuseTLB is as or more
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of the energy consumption seen in a CPU-GPU SoC which
needs coherence and memory copies (typSoC), one that does
not need coherence, but uses memory copies (copySoC), and
finally, FuseTLB which uses neither. Hardware cache coher-
ence represents around 10% of the memory hierarchy energy
consumption. The memory copies between the CPU and the
GPU represent between a small 5% for sgemm to over 50%
for transpose. The significant contribution that coherence and
memory copies make to the overall energy consumption allows
FuseTLB to decrease the energy consumed by and average of
38%, well below copySoC and typSoC.
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Figure 4: CPUs have less cache coherence traffic than
GPU workloads.

Figure 4 provides an understanding of why the hardware
cache coherence is specially bad for GPU applications. It
shows that for PARSEC workloads, the cache coherence traffic
represents less than 2% of all the memory transactions. Due
to the higher miss rate of GPU applications, where cache
coherence traffic represents over 11% of all the memory traffic.
This implies that cache coherence is more problematic for the
GPU hierarchy than for the CPU hierarchy because of the
application characteristics.

Figure 5 shows the effect of coherence and memory copies
in the baseline architecture. Values are normalized to the
baseline without coherence (copySoC), which is more energy
efficient than typSoC, the option with coherence. Eliminating
both coherence and memory copies (FuseTLB) achieves up to
27% energy reduction on an average.

Figure 6 and Figure 7 breakdown the energy consumed by
the principal components of the memory hierachy in each
experimental setup. The contribution of TLBs to energy con-
sumption in this system hardly reaches 1% in the case we have
private TLBs in all cores without any shared TLB.

Figure 8 compare FuseTLB with the designs without the
STLB in terms of energy consumption, normalized to the
baseline (no coherence in all the cases). FuseTLB is as or
more energy efficient than the other TLB configurations.

In summary, avoiding memory copies reduces energy con-
sumption independently of the TLB organization. On the
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Figure 4.6: Energy distribution across various blocks in the baseline memory hierar-
chy

of the energy consumption seen in a CPU-GPU SoC which
needs coherence and memory copies (typSoC), one that does
not need coherence, but uses memory copies (copySoC), and
finally, FuseTLB which uses neither. Hardware cache coher-
ence represents around 10% of the memory hierarchy energy
consumption. The memory copies between the CPU and the
GPU represent between a small 5% for sgemm to over 50%
for transpose. The significant contribution that coherence and
memory copies make to the overall energy consumption allows
FuseTLB to decrease the energy consumed by and average of
38%, well below copySoC and typSoC.
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Figure 4: CPUs have less cache coherence traffic than
GPU workloads.

Figure 4 provides an understanding of why the hardware
cache coherence is specially bad for GPU applications. It
shows that for PARSEC workloads, the cache coherence traffic
represents less than 2% of all the memory transactions. Due
to the higher miss rate of GPU applications, where cache
coherence traffic represents over 11% of all the memory traffic.
This implies that cache coherence is more problematic for the
GPU hierarchy than for the CPU hierarchy because of the
application characteristics.

Figure 5 shows the effect of coherence and memory copies
in the baseline architecture. Values are normalized to the
baseline without coherence (copySoC), which is more energy
efficient than typSoC, the option with coherence. Eliminating
both coherence and memory copies (FuseTLB) achieves up to
27% energy reduction on an average.

Figure 6 and Figure 7 breakdown the energy consumed by
the principal components of the memory hierachy in each
experimental setup. The contribution of TLBs to energy con-
sumption in this system hardly reaches 1% in the case we have
private TLBs in all cores without any shared TLB.

Figure 8 compare FuseTLB with the designs without the
STLB in terms of energy consumption, normalized to the
baseline (no coherence in all the cases). FuseTLB is as or
more energy efficient than the other TLB configurations.

In summary, avoiding memory copies reduces energy con-
sumption independently of the TLB organization. On the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

backprop

bfs convo
hotspot

lbm saxpy
sgemm

spmv
srad

transpose

GeoMean

N
o

rm
a

liz
e

d
 E

n
e

rg
y 

R
e

d
u

ct
io

n

typSoC FuseTLB copySoC

Figure 5: Avoiding memory copies and coherence is
highly energy efficient.

30% 

8% 59% 

0% 3% 

copySoC 
L1 L2 L3 TLB Scratchpad

35% 

9% 

52% 

0% 4% 

FuseTLB 
L1 L2 L3 TLB Scratchpad

26% 

9% 
62% 

0% 3% 

typSoC 
L1 L2 L3 TLB Scratchpad

Friday, September 7, 12

Figure 6: Energy Distribution across various blocks in
the baseline memory hierarchy

34% 

9% 

54% 

0% 3% 

noSTLB 
L1 L2 L3 TLB Scratchpad

35% 

9% 

51% 

1% 4% 

privTLB 
L1 L2 L3 TLB Scratchpad

Friday, September 7, 12

Figure 7: Energy Distribution across various blocks in
the two organizations without a STLB

8

Figure 4.7: Energy distribution across various blocks in the two organizations without
a STLB
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Figure 8: Comparison of energy consumption in Fu-
sionTLB (STLB) and non-STLB organizations,
normalized to the baseline

average, both private and shared TLBs achieve over 25% en-
ergy savings, with the shared TLB solution achieving 27%
energy savings.

6.2. Overall Performance
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Figure 9: FuseTLB halves the execution time against
an architecture that performs memory copies
(copySoC).

Figure 9 compares the breakdown of the speedup achieved
with our proposed architecture against a CPU-GPU multi-
core that requires a memory copy between address spaces.
It shows the FuseTLB configuration (proposed) performance
normalized against copySoC configuration (baseline) shown
in Table 4. On average, we achieve 100% speedup because
we just cut in half the execution time. This considers the GPU
and the CPU execution time. As explained in setup section,
we exclude the application initialization and IO.

To provide more insights, Figure 9 provides the normalized
speedup of the CPU and the GPU component of the applica-

tion. Although we improve both CPU and GPU execution
time, avoiding the memory copy has a significant impact on
the CPU execution time. In some applications like convo,
SAXPY, srad, and transpose the resulting CPU execution time
without memory copy is negligible. Avoiding the memory
copies not only improves the CPU performance, but also the
GPU performance. The reason is that it avoid cache pollution
and reduces the LLC miss rate. Interestingly, two of the best
performing applications (SAXPY and transpose) have a slight
increase in the GPU execution time. We attribute this to the
prefetching effect of the memory copy on the GPU.
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Figure 10: FuseTLB eliminates over half the LLC
misses.

The elimination of the memory copy has a direct impact on
the speedup not only for applications where this can easily be
expected (i.e., those with a high transfer to compute ratio like
SPMV or SAXPY (Figure 1)), but also for others like convo,
srad, transpose and backprop. We attribute the speedups this
set of workloads sees to the significant reduction in the num-
ber of last level cache (LLC/L3) misses. This reduction of
almost 50% in the LLC miss rate can be observed in Figure 10,
where we plot the number misses in the LLC per million in-
structions observed in our proposed configuration (FuseTLB),
normalized to the baseline configuration (copySoC).

Since our proposed solution eliminates the instructions
needed for the memory copy, we also include Figure 11 that
plots the IPC for the CPU and the GPU. It shows that the IPC
increases accordingly for these applications. All data coming
and going through memory copies in the baseline architecture
can be now reused in the LLC. Data reuse is typical in many
CUDA benchmarks [17, 23].

The lower speedup logically corresponds to applications
that have a high enough compute ratio or are highly divergent
making them inherently slow, as is the case of bfs, hotspot and
sgemm. However, our proposal does not add any overhead or
make them slow either. In fact, hotspot shows a significant
reduction in the LLC miss rate.

9

Figure 4.8: Comparison of energy consumption in FuseTLB (STLB) and non-STLB
organizations, normalized to the baseline

energy efficient than the other TLB configurations.

In summary, avoiding memory copies reduces energy consumption independently of

the TLB organization. On the average, both private and shared TLBs achieve over 25% energy

savings, with the shared TLB solution achieving 27% energy savings.

4.6.2 Overall Performance

Figure 4.9 compares the breakdown of the speedup achieved with our proposed ar-

chitecture against a CPU-GPU multicore that requires a memory copy between address spaces.

It shows the FuseTLB configuration (proposed) performance normalized against copySoC con-

figuration (baseline) shown in Table 4.3. On average, we achieve 100% speedup because we

just cut in half the execution time. This considers the GPU and the CPU execution time. As
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Figure 8: Comparison of energy consumption in Fu-
sionTLB (STLB) and non-STLB organizations,
normalized to the baseline

average, both private and shared TLBs achieve over 25% en-
ergy savings, with the shared TLB solution achieving 27%
energy savings.

6.2. Overall Performance
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Figure 9: FuseTLB halves the execution time against
an architecture that performs memory copies
(copySoC).

Figure 9 compares the breakdown of the speedup achieved
with our proposed architecture against a CPU-GPU multi-
core that requires a memory copy between address spaces.
It shows the FuseTLB configuration (proposed) performance
normalized against copySoC configuration (baseline) shown
in Table 4. On average, we achieve 100% speedup because
we just cut in half the execution time. This considers the GPU
and the CPU execution time. As explained in setup section,
we exclude the application initialization and IO.

To provide more insights, Figure 9 provides the normalized
speedup of the CPU and the GPU component of the applica-

tion. Although we improve both CPU and GPU execution
time, avoiding the memory copy has a significant impact on
the CPU execution time. In some applications like convo,
SAXPY, srad, and transpose the resulting CPU execution time
without memory copy is negligible. Avoiding the memory
copies not only improves the CPU performance, but also the
GPU performance. The reason is that it avoid cache pollution
and reduces the LLC miss rate. Interestingly, two of the best
performing applications (SAXPY and transpose) have a slight
increase in the GPU execution time. We attribute this to the
prefetching effect of the memory copy on the GPU.
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Figure 10: FuseTLB eliminates over half the LLC
misses.

The elimination of the memory copy has a direct impact on
the speedup not only for applications where this can easily be
expected (i.e., those with a high transfer to compute ratio like
SPMV or SAXPY (Figure 1)), but also for others like convo,
srad, transpose and backprop. We attribute the speedups this
set of workloads sees to the significant reduction in the num-
ber of last level cache (LLC/L3) misses. This reduction of
almost 50% in the LLC miss rate can be observed in Figure 10,
where we plot the number misses in the LLC per million in-
structions observed in our proposed configuration (FuseTLB),
normalized to the baseline configuration (copySoC).

Since our proposed solution eliminates the instructions
needed for the memory copy, we also include Figure 11 that
plots the IPC for the CPU and the GPU. It shows that the IPC
increases accordingly for these applications. All data coming
and going through memory copies in the baseline architecture
can be now reused in the LLC. Data reuse is typical in many
CUDA benchmarks [17, 23].

The lower speedup logically corresponds to applications
that have a high enough compute ratio or are highly divergent
making them inherently slow, as is the case of bfs, hotspot and
sgemm. However, our proposal does not add any overhead or
make them slow either. In fact, hotspot shows a significant
reduction in the LLC miss rate.

9

Figure 4.9: FuseTLB halves the execution time against an architecture that performs
memory copies (copySoC).

explained in setup section, we exclude the application initialization and IO.

To provide more insights, Figure 4.9 provides the normalized speedup of the CPU

and the GPU component of the application. Although we improve both CPU and GPU execu-

tion time, avoiding the memory copy has a significant impact on the CPU execution time. In

some applications like convo, SAXPY, SRAD and transpose, the resulting CPU execution time

without memory copy is negligible. Avoiding the memory copies not only improves the CPU

performance, but also the GPU performance. The reason is that it avoids cache pollution and

reduces the LLC miss rate. Interestingly, two of the best performing applications (SAXPY and

transpose) have a slight increase in the GPU execution time. We attribute this to the prefetching

effect of the memory copy on the GPU.

The elimination of the memory copy has a direct impact on the speedup not only
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Figure 8: Comparison of energy consumption in Fu-
sionTLB (STLB) and non-STLB organizations,
normalized to the baseline

average, both private and shared TLBs achieve over 25% en-
ergy savings, with the shared TLB solution achieving 27%
energy savings.

6.2. Overall Performance
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Figure 9: FuseTLB halves the execution time against
an architecture that performs memory copies
(copySoC).

Figure 9 compares the breakdown of the speedup achieved
with our proposed architecture against a CPU-GPU multi-
core that requires a memory copy between address spaces.
It shows the FuseTLB configuration (proposed) performance
normalized against copySoC configuration (baseline) shown
in Table 4. On average, we achieve 100% speedup because
we just cut in half the execution time. This considers the GPU
and the CPU execution time. As explained in setup section,
we exclude the application initialization and IO.

To provide more insights, Figure 9 provides the normalized
speedup of the CPU and the GPU component of the applica-

tion. Although we improve both CPU and GPU execution
time, avoiding the memory copy has a significant impact on
the CPU execution time. In some applications like convo,
SAXPY, srad, and transpose the resulting CPU execution time
without memory copy is negligible. Avoiding the memory
copies not only improves the CPU performance, but also the
GPU performance. The reason is that it avoid cache pollution
and reduces the LLC miss rate. Interestingly, two of the best
performing applications (SAXPY and transpose) have a slight
increase in the GPU execution time. We attribute this to the
prefetching effect of the memory copy on the GPU.
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Figure 10: FuseTLB eliminates over half the LLC
misses.

The elimination of the memory copy has a direct impact on
the speedup not only for applications where this can easily be
expected (i.e., those with a high transfer to compute ratio like
SPMV or SAXPY (Figure 1)), but also for others like convo,
srad, transpose and backprop. We attribute the speedups this
set of workloads sees to the significant reduction in the num-
ber of last level cache (LLC/L3) misses. This reduction of
almost 50% in the LLC miss rate can be observed in Figure 10,
where we plot the number misses in the LLC per million in-
structions observed in our proposed configuration (FuseTLB),
normalized to the baseline configuration (copySoC).

Since our proposed solution eliminates the instructions
needed for the memory copy, we also include Figure 11 that
plots the IPC for the CPU and the GPU. It shows that the IPC
increases accordingly for these applications. All data coming
and going through memory copies in the baseline architecture
can be now reused in the LLC. Data reuse is typical in many
CUDA benchmarks [17, 23].

The lower speedup logically corresponds to applications
that have a high enough compute ratio or are highly divergent
making them inherently slow, as is the case of bfs, hotspot and
sgemm. However, our proposal does not add any overhead or
make them slow either. In fact, hotspot shows a significant
reduction in the LLC miss rate.

9

Figure 4.10: FuseTLB eliminates over half the LLC misses.

for applications where this can easily be expected (i.e., those with a high transfer to compute

ratio like SPMV or SAXPY (Figure 4.1)), but also for others like convo, SRAD, transpose and

backprop. We attribute the speedups this set of workloads sees to the significant reduction in

the number of last level cache (LLC/L3) misses. This reduction of almost 50% in the LLC

miss rate can be observed in Figure 4.10 where we plot the number of misses in the LLC

per million instructions observed in our proposed configuration (FuseTLB) normalized to the

baseline configuration (copySoC).

Since our proposed solution eliminates the instructions needed for the memory copy,

we also include Figure 4.11 that plots the IPC for the CPU and the GPU. It shows that the IPC

increases accordingly for these applications. All data coming and going through memory copies

in the baseline architecture can be now reused in the LLC. Data reuse is typical in many CUDA
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Figure 11: Both GPU and CPU have IPC improvements
by avoiding memory copies.

FuseTLB achieves between 20 and 50 times speedups in
applications like saxpy, convo, and spmv. These applications
executed in a baseline architecture have much longer execution
times when executed on the GPU rather than on the CPU. The
proposed virtual shared memory for GPU-CPU multicores
thus enables the GPU to excel in applications that currently
have a transfer to compute ratio that make GPU execution
expensive. Even if we exclude these applications, we see a
significant 49% speedup in the eight remaining applications.

6.3. Multiprogrammed Workloads

GPU workloads make typically a big pressure on the memory
hierarchy, and we want to evaluate the impact of that behavior
if a multiprogrammed CPU workload is sharing a die with
FuseTLB, as it could happen in an heterogeneous multicore.
For that, a set of random combination of 4 SPEC benchmarks
is run in isolation (regarding GPU), and with GPU running an
application. We compare the performance of each individual
CPU application in the isolated multiprogram run against their
performance in the runs coupled with a GPU application. This
comparison specifies the impact of GPU on the observed CPU
performance.

We use a weighted speedup similar to [29], as well as har-
monic mean of the speedups as proposed in [24]. Equation 1
and Equation 2 formulate the metrics.

WeightedSpeedup =

n
� IPCcoupled

IPCisolated

n
(1)

HarmonicSpeedup =
n

n
� IPCisolated

IPCcoupled

(2)

Figure 12 shows the weighted and harmonic speedup. Both
metrics agree on the throughput and fairness of FuseTLB.
To compare the results against the baseline architecture, Fig-
ure 13 shows the box plot of the distribution of speedups
across different architectures and for different metrics. The
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results indicates that FuseTLB has less impact on the CPU
applications. This is because less traffic is generated due to
no memory copy, that reduces the pressure on the memory
subsystem.
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6.4. TLB Characterization

To determine the size of the shared TLB, we varied the number
of entries in the STLB and noted the impact on the IPC and
the STLB miss rate. Figures 14 and 15 summarize our results
for a full set of GPU and multi-programmed SPEC2006 CPU
workloads. Most systems have a TLB that has at least 512
entries, but we wanted to check if the GPU would be able to
sustain performance with a smaller TLB with 256 entries. We
eventually chose 512 entries to strike a balance between the
performance and the energy. The main observation is that the
GPU is more insensitive to smaller TLBs.

Figure 16 shows TLB misses per million instructions nor-
malized to the baseline and compares the solution with STLB
against private TLBs. It can be observed that misses are quite
high in the private TLB approach. Along with this high TLB
miss ratio, the behavior of bfs has to do with another fact,

10

Figure 4.11: Both GPU and CPU have IPC improvements by avoiding memory
copies.

benchmarks [36, 52].

The lower speedup logically corresponds to applications that have a high enough

compute ratio or are highly divergent making them inherently slow, as is the case of BFS,

hotspot and SGEMM. However, our proposal neither adds overhead nor does it make them

slower. In fact, hotspot shows a significant reduction in the LLC miss rate.

FuseTLB achieves between 20 and 50 times speedups in applications like SAXPY,

convo, and SPMV. These applications executed in a baseline architecture have much longer

execution times when executed on the GPU rather than on the CPU. The proposed virtual shared

memory for GPU-CPU multicores thus enables the GPU to excel in applications that currently

have a transfer to compute ratio that make GPU execution expensive. Even if we exclude these
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applications, we see a significant 49% speedup in the eight remaining applications.

4.6.3 Multiprogrammed Workloads

GPU workloads make typically a big pressure on the memory hierarchy, and we want

to evaluate the impact of that behavior if a multiprogrammed CPU workload is sharing a die

with FuseTLB as it could happen in an heterogeneous multicore. For that, a set of random

combination of 4 SPEC benchmarks is run, both in isolation, and in conjunction with the GPU

running an application. We compare the performance of each individual CPU application in the

isolated multiprogram run against their performance in the runs coupled with a GPU application.

This comparison highlights the impact of the GPU on the observed CPU performance.

As a metric, we evaluate both weighted speedup [76] and a harmonic mean of the

speedup [55]. Equation 4.1 and Equation 4.2 formulate the metrics.

WeightedSpeedup =

nP IPC
coupled

IPC
isolated

n
(4.1)

HarmonicSpeedup =
n

nP IPC
isolated

IPC
coupled

(4.2)

Figure 4.12 shows the weighted and harmonic speedup. Both metrics agree on the

throughput and fairness of FuseTLB. To compare the results against the baseline architecture,

Figure 4.13 shows the box plot of the distribution of speedups across different architectures

and for different metrics. The results indicates that FuseTLB has less impact on the CPU ap-

plications. This is because less traffic is generated due to no memory copy which reduces the

pressure on the memory subsystem.
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FuseTLB achieves between 20 and 50 times speedups in
applications like saxpy, convo, and spmv. These applications
executed in a baseline architecture have much longer execution
times when executed on the GPU rather than on the CPU. The
proposed virtual shared memory for GPU-CPU multicores
thus enables the GPU to excel in applications that currently
have a transfer to compute ratio that make GPU execution
expensive. Even if we exclude these applications, we see a
significant 49% speedup in the eight remaining applications.

6.3. Multiprogrammed Workloads

GPU workloads make typically a big pressure on the memory
hierarchy, and we want to evaluate the impact of that behavior
if a multiprogrammed CPU workload is sharing a die with
FuseTLB, as it could happen in an heterogeneous multicore.
For that, a set of random combination of 4 SPEC benchmarks
is run in isolation (regarding GPU), and with GPU running an
application. We compare the performance of each individual
CPU application in the isolated multiprogram run against their
performance in the runs coupled with a GPU application. This
comparison specifies the impact of GPU on the observed CPU
performance.

We use a weighted speedup similar to [29], as well as har-
monic mean of the speedups as proposed in [24]. Equation 1
and Equation 2 formulate the metrics.

WeightedSpeedup =

n
� IPCcoupled

IPCisolated

n
(1)

HarmonicSpeedup =
n

n
� IPCisolated

IPCcoupled

(2)

Figure 12 shows the weighted and harmonic speedup. Both
metrics agree on the throughput and fairness of FuseTLB.
To compare the results against the baseline architecture, Fig-
ure 13 shows the box plot of the distribution of speedups
across different architectures and for different metrics. The
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results indicates that FuseTLB has less impact on the CPU
applications. This is because less traffic is generated due to
no memory copy, that reduces the pressure on the memory
subsystem.
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6.4. TLB Characterization

To determine the size of the shared TLB, we varied the number
of entries in the STLB and noted the impact on the IPC and
the STLB miss rate. Figures 14 and 15 summarize our results
for a full set of GPU and multi-programmed SPEC2006 CPU
workloads. Most systems have a TLB that has at least 512
entries, but we wanted to check if the GPU would be able to
sustain performance with a smaller TLB with 256 entries. We
eventually chose 512 entries to strike a balance between the
performance and the energy. The main observation is that the
GPU is more insensitive to smaller TLBs.

Figure 16 shows TLB misses per million instructions nor-
malized to the baseline and compares the solution with STLB
against private TLBs. It can be observed that misses are quite
high in the private TLB approach. Along with this high TLB
miss ratio, the behavior of bfs has to do with another fact,

10

Figure 4.12: Fairness of the FuseTLB architecture running multiprogram applications on CPUs
along with a selected benchmarks running on GPU
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by avoiding memory copies.

FuseTLB achieves between 20 and 50 times speedups in
applications like saxpy, convo, and spmv. These applications
executed in a baseline architecture have much longer execution
times when executed on the GPU rather than on the CPU. The
proposed virtual shared memory for GPU-CPU multicores
thus enables the GPU to excel in applications that currently
have a transfer to compute ratio that make GPU execution
expensive. Even if we exclude these applications, we see a
significant 49% speedup in the eight remaining applications.

6.3. Multiprogrammed Workloads

GPU workloads make typically a big pressure on the memory
hierarchy, and we want to evaluate the impact of that behavior
if a multiprogrammed CPU workload is sharing a die with
FuseTLB, as it could happen in an heterogeneous multicore.
For that, a set of random combination of 4 SPEC benchmarks
is run in isolation (regarding GPU), and with GPU running an
application. We compare the performance of each individual
CPU application in the isolated multiprogram run against their
performance in the runs coupled with a GPU application. This
comparison specifies the impact of GPU on the observed CPU
performance.

We use a weighted speedup similar to [29], as well as har-
monic mean of the speedups as proposed in [24]. Equation 1
and Equation 2 formulate the metrics.

WeightedSpeedup =

n
� IPCcoupled

IPCisolated

n
(1)

HarmonicSpeedup =
n

n
� IPCisolated

IPCcoupled

(2)

Figure 12 shows the weighted and harmonic speedup. Both
metrics agree on the throughput and fairness of FuseTLB.
To compare the results against the baseline architecture, Fig-
ure 13 shows the box plot of the distribution of speedups
across different architectures and for different metrics. The
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results indicates that FuseTLB has less impact on the CPU
applications. This is because less traffic is generated due to
no memory copy, that reduces the pressure on the memory
subsystem.
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6.4. TLB Characterization

To determine the size of the shared TLB, we varied the number
of entries in the STLB and noted the impact on the IPC and
the STLB miss rate. Figures 14 and 15 summarize our results
for a full set of GPU and multi-programmed SPEC2006 CPU
workloads. Most systems have a TLB that has at least 512
entries, but we wanted to check if the GPU would be able to
sustain performance with a smaller TLB with 256 entries. We
eventually chose 512 entries to strike a balance between the
performance and the energy. The main observation is that the
GPU is more insensitive to smaller TLBs.

Figure 16 shows TLB misses per million instructions nor-
malized to the baseline and compares the solution with STLB
against private TLBs. It can be observed that misses are quite
high in the private TLB approach. Along with this high TLB
miss ratio, the behavior of bfs has to do with another fact,

10

Figure 4.13: Shared and private TLBs have similar fairness.

4.6.4 TLB Characterization

To determine the size of the shared TLB, we varied the number of entries in the STLB

and noted the impact on the IPC and the STLB miss rate. Figures 4.14 and 4.15 summarize our
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Figure 15: Multi-programmed SPEC2006 rate benefits
from larger than 1024 entry TLBs.

which is the elevated number of short (one byte) memory
transfers that we have seen in our simulations. All these mem-
ory transfers become TLB accesses in our scheme, with poor
locality and a high TLB miss ratio.

The conclusion is that GPU applications are less sensitive
to TLB misses than CPU applications, and the use of a shared
TLB - aided by the prefetching and sharing of address space -
reduces the TLB miss rate.

7. Conclusions

In this paper we propose a virtual memory system for hetero-
geneous CPU-GPU architectures on a single die. By unifying
the address spaces between the CPU and the GPUs, leveraging
a shared TLB (STLB), we are able to completely eliminate the
time spent transferring the data back and forth. We provide full
binary compatibility with the CUDA/OpenCL model and our
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Figure 16: Private TLBs have more misses than shared
TLBs.

experiments have shown that this simple optimization achieves
over 10x speed up for some applications that have tradition-
ally been avoided on the GPU because of huge data transfer
overhead. In other currently deployed GPU applications, a
speedup of 49% is achieved.

Previous GPUs avoided hardware cache coherence because
they resided in different dies and the programming model did
not need it. Integrating the CPU and the GPU in a single
die opens the opportunity to add hardware cache coherence.
This is specially important to avoid the costly memory transfer
between the CPU and the GPU address space. This is in fact
the trend used by several current architectures from Intel and
AMD.

We point a novel architectural solution called FuseTLB that
avoids the costly memory transfers without hardware cache
coherence. We do so with virtually indexed caches in the GPU
memory hierarchy that further simplify design and improve
energy efficiency. The resulting solution achieves close to 50%
speedup while saving over 25% energy consumption in the
memory hierarchy for typical GPU applications.
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which is the elevated number of short (one byte) memory
transfers that we have seen in our simulations. All these mem-
ory transfers become TLB accesses in our scheme, with poor
locality and a high TLB miss ratio.

The conclusion is that GPU applications are less sensitive
to TLB misses than CPU applications, and the use of a shared
TLB - aided by the prefetching and sharing of address space -
reduces the TLB miss rate.

7. Conclusions

In this paper we propose a virtual memory system for hetero-
geneous CPU-GPU architectures on a single die. By unifying
the address spaces between the CPU and the GPUs, leveraging
a shared TLB (STLB), we are able to completely eliminate the
time spent transferring the data back and forth. We provide full
binary compatibility with the CUDA/OpenCL model and our
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experiments have shown that this simple optimization achieves
over 10x speed up for some applications that have tradition-
ally been avoided on the GPU because of huge data transfer
overhead. In other currently deployed GPU applications, a
speedup of 49% is achieved.

Previous GPUs avoided hardware cache coherence because
they resided in different dies and the programming model did
not need it. Integrating the CPU and the GPU in a single
die opens the opportunity to add hardware cache coherence.
This is specially important to avoid the costly memory transfer
between the CPU and the GPU address space. This is in fact
the trend used by several current architectures from Intel and
AMD.

We point a novel architectural solution called FuseTLB that
avoids the costly memory transfers without hardware cache
coherence. We do so with virtually indexed caches in the GPU
memory hierarchy that further simplify design and improve
energy efficiency. The resulting solution achieves close to 50%
speedup while saving over 25% energy consumption in the
memory hierarchy for typical GPU applications.

References
[1] Amd a8-3850. [Online]. Available: http:

//www.amd.com/us/products/desktop/processors/a-series/Pages/
a-series-model-number-comparison.aspx

[2] Amd fusion. [Online]. Available: http://sites.amd.com/us/fusion/apu/
Pages/fusion.aspx

[3] Amd llano. [Online]. Available: http://www.amd.com/us/
press-releases/Pages/amd-ushers-in-next-2011june14.aspx

[4] Gpgpu.org. [Online]. Available: http://www.gpgpu.org
[5] Intel 2600k. [Online]. Available: http://ark.intel.com/products/52214/

Intel-Core-i7-2600K-Processor-(8M-Cache-up-to-3_80-GHz)
[6] Nvidia cuda zone. [Online]. Available: http://developer.nvidia.com/

category/zone/cuda-zone
[7] Nvidia denver. [Online]. Available: http://blogs.nvidia.com/2011/01/

project-denver-processor-to-usher-in-new-era-of-computing
[8] Nvidia fermi. [Online]. Available: http://www.nvidia.com/content/

PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf

[9] The parboil benchmark suite. [Online]. Available: http://impact.crhc.
illinois.edu/parboil.aspx

[10] (2010) NVIDIA GF100. NVIDIA Corporation. Santa Clara, CA.
[Online]. Available: http://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

11

entries entries entries

Figure 4.15: TLBs with more than 1024 entries are beneficial for
Multi-programmed SPEC2006 rate applications.

results for a full set of GPU and multi-programmed SPEC2006 CPU workloads. Most systems

have a TLB that has at least 512 entries, but we wanted to check if the GPU would be able to

sustain performance with a smaller TLB with 256 entries. We eventually chose 512 entries to

strike a balance between the performance and the energy. The main observation is that the GPU

is more insensitive to smaller TLBs.

Figure 4.16 shows TLB misses per million instructions normalized to the baseline and

compares the solution with STLB against private TLBs. It can be observed that misses are quite
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Figure 14: GPU workloads do not need many TLB en-
tries.

Figure 15: Multi-programmed SPEC2006 rate benefits
from larger than 1024 entry TLBs.

which is the elevated number of short (one byte) memory
transfers that we have seen in our simulations. All these mem-
ory transfers become TLB accesses in our scheme, with poor
locality and a high TLB miss ratio.

The conclusion is that GPU applications are less sensitive
to TLB misses than CPU applications, and the use of a shared
TLB - aided by the prefetching and sharing of address space -
reduces the TLB miss rate.

7. Conclusions

In this paper we propose a virtual memory system for hetero-
geneous CPU-GPU architectures on a single die. By unifying
the address spaces between the CPU and the GPUs, leveraging
a shared TLB (STLB), we are able to completely eliminate the
time spent transferring the data back and forth. We provide full
binary compatibility with the CUDA/OpenCL model and our
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experiments have shown that this simple optimization achieves
over 10x speed up for some applications that have tradition-
ally been avoided on the GPU because of huge data transfer
overhead. In other currently deployed GPU applications, a
speedup of 49% is achieved.

Previous GPUs avoided hardware cache coherence because
they resided in different dies and the programming model did
not need it. Integrating the CPU and the GPU in a single
die opens the opportunity to add hardware cache coherence.
This is specially important to avoid the costly memory transfer
between the CPU and the GPU address space. This is in fact
the trend used by several current architectures from Intel and
AMD.

We point a novel architectural solution called FuseTLB that
avoids the costly memory transfers without hardware cache
coherence. We do so with virtually indexed caches in the GPU
memory hierarchy that further simplify design and improve
energy efficiency. The resulting solution achieves close to 50%
speedup while saving over 25% energy consumption in the
memory hierarchy for typical GPU applications.
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Figure 4.16: Private TLBs have more misses than shared TLBs.

high in the private TLB approach. Along with this high TLB miss ratio, the behavior of BFS

has to do with another fact which is the elevated number of short (one byte) memory transfers

that we have seen in our simulations. All these memory transfers become TLB accesses in our

scheme with poor locality and a high TLB miss ratio.

The conclusion is that GPU applications are less sensitive to TLB misses than CPU

applications, and the use of a shared TLB, aided by the prefetching and sharing of address space,

reduces the TLB miss rate.

4.7 Summary

Integrating a CPU and a GPU on a single die opens up the opportunity to unify the ad-

dress space and thereby eliminate costly memory transfers between the CPU and the GPU. This
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presents several non-trivial design choices, and the trend seen in several new architectures from

Intel and AMD is to propose a fully coherent memory system between the CPU and the GPU.

We propose FuseTLB, a simpler, energy efficient design to establish a virtual memory system

for heterogeneous CPU-GPU architectures on a single die. The unique GPGPU programming

models allow us to get away with simply a shared TLB between the CPU and the GPU cores to

establish a protected shared memory space between them. We also propose a small, shared vir-

tual cache between all the SMs to filter bursty requests from the SMs and reduce the pressure on

shared resources, thus improving the energy efficiency. Our evaluation shows that the prefetch-

ing effects between the CPU and the GPU and the elimination of the memory transfers result

in a speedup of over 49% and an additional 27% in energy savings. The addition of a shared

L2 across all the GPU cores is also able to reduce the LLC miss rate by almost 50%. This

CPU-only coherent memory hierarchy with incoherent GPUs is fully compatible with existing

programing models like CUDA and OpenCL, and it provides 100% binary compatibility.

54



Chapter 5

An Energy Efficient GPGPU Memory

Hierarchy with Tiny Incoherent Caches

Traditional CPUs are highly latency optimized: they have a few, very complex, high

performance cores sharing a pool of memory and are extremely efficient at handling few threads.

In contrast, throughput processors like GPGPUs employ hundreds of very simple cores to ex-

ecute hundreds of thousands of lightweight threads to hide long memory latencies. It is this

massive multithreading that helps GPGPUs achieve high performance. Several complex (and

energy hungry) components are required to make this possible on the GPGPU, and two of the

key structures are the highly banked scratchpad memory and on-chip data caches. These caches

are shared across multiple lanes within a streaming multiprocessor on the GPGPU and play a

big part in both the performance and the energy efficiency of the GPGPU. The first level data

cache (DL1G) is a massive structure and, considering the support it needs to sustain requests

from all the lanes and to coalesce memory, it is extremely energy inefficient. For the applica-
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Figure 5.1: A breakdown of the energy consumption of the on-chip memory hierarchy in a
typical GPGPU for the benchmarks listed in Table 6.3. The DL1G and the scratchpad memory
account for most of the energy consumed.

tions we evaluated, we saw that in a typical GPGPU the DL1G accounts for almost 69% of the

dynamic energy consumed by the on-chip memory hierarchy. With another 25% expended on

the scratchpad memory, this amounts to a total of over 90% as seen in Figure 5.1.

In this chapter, we focus on the DL1G and the scratchpad memory and explore alter-

natives to make it more energy efficient.

5.1 Common Approaches to Energy Efficiency

Most of the research on efficiency in GPGPUs is steered toward improving their abil-

ity to sustain a high throughput (performance) in a discrete system, but with the newer gen-

erations of GPGPUs getting larger and the adoption of mobile GPGPUs, there is a growing

emphasis on the energy efficiency of GPGPUs.

A common approach to energy efficiency is to make memory accesses to the memory

hierarchy as efficient as possible. The goal here was to minimize the number of accesses to the
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memory hierarchy and minimize the wastage of energy wherever possible. These ranged from

judicious warp scheduling [31, 56, 62] to memory scheduling policies to exploit locality and

boost performance [91]. Lee et al. study the effects of coalescing and different memory schedul-

ing policies for a pre-Fermi memory hierarchy [51]. Gou et al. discuss the relation between

the address pattern and warp locality [35] and use it to choose the access granularity based on

the horizontal locality for a given memory instruction. They argue that the extra data requested

would be used by neighboring warps in most cases, thus improving memory efficiency without

the penalty of wasted memory bandwidth. Skadron et al. propose a software API in [22] that

allows programmers to play with the data memory layout for a variety of common memory

access patterns to extract locality and boost performance. Rhu et al. propose a locality aware

memory hierarchy that is aware of the temporal locality in GPGPU applications [69], while

Rogers et al. propose a scheduler that takes into account thread locality to limit the number of

threads actively used per SP to take advantage of the intra- or inter-wavefront locality [72].

Gebhart et al. explore several register allocation algorithms and propose a compiler

specifiable register file hierarchy that allows sharing of temporary register file resources among

running threads, reducing the usage of this energy hogging resource [33], [32]. They also pro-

pose a unified scratch, register and primary cache that can be configured at runtime to minimize

the access latencies [34]. Leng et al. propose DVFS on a SM-level to save more energy [53].
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5.2 Feasibility of Adding Filter Caches

An orthogonal and seemingly straightforward solution is to add a small filter cache

per lane to intercept frequent requests to the shared DL1G. The filter cache was first proposed

for uniprocessors [46] and traded off a loss in performance for energy efficiency. The idea was

extended to multicore processors using a victim cache at the filter cache level [64]. The prob-

lem is that if we have such a filter cache for each lane in the GPGPU, we will need to maintain

coherence between all the lanes in an SM. A CUDA/OpenCL kernel usually spawns thousands

of threads that cannot modify the same address without an explicit barrier, but they typically

access the same cache line. This is a common strategy used by GPGPU programmers to max-

imize memory coalescing which directly impacts the performance (by reducing the memory

bandwidth) of the application. This results in a sharing pattern with high false sharing, very

different from one seen in typical multiprocessor applications, and makes it highly inefficient

to have to maintain coherence between private filter caches per lane.

Instead of simple filter caches, we propose tinyCache, an incoherent, write-back cache

per lane that leverages an adapted write-validate policy to maintain correctness. A tinyCache

cache line can be merged back to the existing DL1G when the data is displaced without hav-

ing to care about invalidations or updates which is made possible by the peculiarities of the

CUDA/OpenCL programming model. We provide more details in following sections.
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Figure 5.2: We propose adding tinyCaches per lane for energy efficiency These tinyCaches
filter both scratchpad memory and global addresses.

5.3 Our Proposal: Add a tinyCache per Lane

As shown in Figure 5.2, the tinyCache is the first cache in the memory hierarchy for

an individual lane, and all the global and scratchpad memory requests can be routed through

it. The main idea behind this is to filter frequently accessed addresses and avoid a lookup from

the lower levels. Since we are adding a level to the memory hierarchy, and since this cache

lies in the critical path, it is extremely important to keep the access latency to this cache as

small as possible. To maximize its ability to store frequently re-used data and exploit locality,

we compare various configurations with a number of entries and different line sizes for the

minimum energy delay product. Our sizing experiments, detailed in Section 5.5.2, helped us

pick a tinyCache with 16 entries and 64B line size.
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Figure 5.3: The tinyCache controller implements a write-validate write-on miss policy with
write-back update. Each cache line has control bits per half-word (plus two state bits that are
not shown). A shaded half-word means that the word was written on entering that state. In
Dv, all the half-words are valid (both set and unset control bits denote valid), whereas in Dpv

only the half-words marked dirty are valid (unset control bits indicate that the corresponding
half-word is are invalid).

5.3.1 Behavior of the tinyCache

We adopt a write-validate write on-miss policy for the tinyCache [43]. Figure 5.3

shows the state diagram for a line in the tinyCache, detailing our implementation of the write-

validate policy with write-back. We modify the role of the validity bits in the original protocol,

and, depending on the state, they can act now as don’t care bits, validity bits or dirty bits. We

will henceforth refer to them as control bits. Our adaptation of the protocol requires four states

which adds two bits per line, plus the control bits, to encode the line state (we omit the transient

states here). A control bit per byte would guarantee correct operation with an overhead of 64
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bits for a typical 64 Byte cache line. We analyzed typical applications and found that a word or

half-word granularity suffices, so we selected the half-word granularity for our experiments.

All lines enter the invalid state (I) upon initialization of the cache. A read miss (rm)

will make the controller fetch a clean memory block, setting the line in the clean (C) state (the

control bits are don’t care terms). A write hit on this clean line will switch the state to Dv, and

the control bit(s) of the written half-word(s) will be set (meaning valid and dirty). The other

control bits will be cleared (meaning valid and clean). Further write hits (wh) on a line in the

Dv state will set the corresponding control bits. Note that any tag hit on a line in this state is

also a half-word hit because all half-words are valid, irrespective of whether their control bit is

set or cleared.

A write miss (wm) will allocate a cache line by selecting a victim, but will not fetch

the missing block from memory to the cache, and the line will switch to the Dpv state. The

control bits of all half-words will be cleared, except for those half-words that are written upon

after the write miss. For the updated half-words, the control bit will be set, indicating that

the half-word is both dirty and valid. Further read or write hits on valid (dirty) half-words in

the line (rh(v)) imply no action. Write hits on an invalid half-word (i.e. tag hits, half-word

misses) set the corresponding control bit. A write hit on the last invalid half-word in the line

(wh(last)) will make the state change to the Dv state with no further action. A read hit on the

line, addressing a half-word which is set invalid (i.e. a tag hit, word miss, noted rh(i)) will also

switch the state to Dv, but the controller will fetch the block from memory and will merge it in

the cache line with the half-words that have their control bit set.

The rpl event in the diagram stands for evictions. When a line is evicted I becomes
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a transitory state leading to one of the three other states. The termination of a thread block

triggers an invalidation of all the tinyCache lines in the SM where the block was executing. The

rpl event on a line in the Dv or Dpv states triggers a write-back of the valid (dirty) half-words

(rpl : wb(v)).

5.3.2 Maintaining Coherence

The biggest implication of having a cache per lane is the task of maintaining coher-

ence across the lanes, since one or more lane may cache the same line from either the scratch-

pad memory or global memory. However, the CUDA/OpenCL programming model allows us

to take certain liberties to establish coherence between these tinyCaches with a lower overhead.

There are five scenarios to consider:

• Some lanes write to different locations in scratchpad memory/global memory: A

typical programming pattern in CUDA applications is that consecutive threads reference

consecutive memory elements and therefore consecutive lanes will share the same mem-

ory block in their tinyCaches, referencing only a part of it. This false sharing would wreak

havoc on a coherence protocol when it comes to writings. The write-validate, write-back

protocol described earlier let us obviate any invalidation or update across the tinyCaches.

The CUDA/OpenCL programming model only ensures sequential consistency on writes

by a single thread [6]. A thread reading a shared variable will not see a change made

by another thread unless explicitly using a barrier, irrespective of whether or not these

threads belong to the same warp or block, or whether they access the scratchpad memory

or the global memory. Assume x(0) and x(1) are two array elements lying on the same
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cache block. Thread 0 writes element x(0) and then reads element x(1), whereas thread 1,

which is running concurrently, writes element x(1) and then reads x(0). The model does

not allow any assumption on the values read from x(1) and x(2). On the other hand, both

threads will have a copy of the same memory block in their tinyCache, in Dv state, with

different control (dirty) bits set. When these blocks are replaced, the dirty half-words will

be correctly written-back to memory. It is precisely this subtlety that we exploit to use

incoherent caches.

• Some lanes write to the same location in scratchpad memory/ global memory: Since

there is no ordering of threads, the programming model does not guarantee which thread

will first write to the address [6]. Thus, we do not need to take further actions beyond the

ones implicit in the write-validate policy with write-back as described above.

• Atomic operations: Atomic operations need to guarantee a consistent view of the mem-

ory. To avoid the coherence overhead, we do not cache these atomic addresses in the

tinyCache.

• Synchronization primitives (barriers) : When we hit a barrier, we evict all the tiny-

Cache entries.

• A single byte write access cached by the tinyCache: Since the cache line only has a

control bit per half-word, we do not cache such addresses. Effectively, we trigger an

eviction if the address was already cached or just bypass the tinyCache if the address was

not cached.
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Local memory is transparent to the programmer. It is a specially allocated area of

the global memory used for spill code. Since there have been numerous techniques that im-

prove the utilization and effective capacity of the register file and given the low frequency of its

occurrence, we reserve the tinyCache only for the global and shared addresses.

5.3.3 Area Overhead

A control bit per half-word implies 32 control bits per line for a tinyCache with 64 B

line size. The tag SRAM has two bits for the state plus 79-bit tag for a total of 81 bits per line.

The tag is a part of the extended address that can indicate if a given reference is a global or a

scratchpad memory reference as well as the block-id if needed. Thus, each tinyCache line needs

15B of meta data. Therefore each 16-entry tinyCache costs us just over 1 KB (1264 B), 19% of

which is control overhead. In all, the tinyCaches account for about 9% of the area of the GPU

on-chip memory hierarchy. Our estimation is based on GPUSimPow [54] including coalescing,

shared memory, constant and texture cache, and the L2 cache, but excluding the LLC.

5.4 Experimental Setup

We compare the architecture we propose in Figure 5.2 with the baseline depicted

in Figure 2.3. Following the trend of integrating GPUs and CPUs on a single die sharing

caches [92], we incorporate an LLC in our baseline similar to [50, 90, 92]. Some relevant con-

figuration parameters are listed in Table 5.1. Our proposal to add a tinyCache per lane, shown
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Parameter Configuration
SM cores 4 SMs, 1.5 Ghz
Number of lanes per SM 32, in-order
Memory Coalescing Enabled
Maximum concurrent blocks per SM 8
Maximum concurrent warps per SM 24
Tinycache per lane 1KB / 8-way / 64B line /1 cycle
Scratchpad per SM 48KB / 8 banks / 18 cycles
L1 cache per SM 32KB / 8-way /128B line/ 18 cycles
L2 cache per die 256KB / 16-way /128B line/ 7 cycles
LLC per die 8MB / 32-way / 128B line /14 cycles
Memory 18GBytes/s BW with 50ns access time

Table 5.1: GPSim simulation parameters to evaluate tinyCaches

in Figure 5.2, is built on top of the baseline. As mentioned before, the tinyCaches were sized

and parameters were chosen on the basis of the energy-delay product (ED) and the IPC.

We use CACTI [84] to estimate the latencies of the memory structures, except for the

DL1G, whose complex architecture is not modeled well by CACTI. We rely on measurements

and published Fermi latencies that estimate the DL1 latency to be around 18 cycles, which is

consistent with related work [32, 92].

Our energy estimations include only the on-chip dynamic energy, and are based on the

GPUSimPow power model and CACTI. We do not model the DRAM. As far as the tinyCaches

go, we do not treat the line fills and coalescing requests like other regular requests; they are

more expensive and accounted for separately. We expect the same leakage as with DL1 memory

structures (without coalescing and crossbars) which should be less than 10% of the leakage of

the total on-chip memory hierarchy.

The benchmarks we use to evaluate our proposal are from Rodinia [21] and Par-

boil [78] in addition to a few regular benchmarks from the CUDA SDK [2]. Table 5.2 lists

and briefly describes the GPU workloads that we use in our evaluation. All benchmarks from
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Benchmark Description
Backprop A machine learning algorithm used in a graph
BFS A graph traversal algorithm
Convolution (convo) An image processing algorithm

HotSpot A tool to estimate the temperature for
an architectural floorplan

SAXPY A common subroutine which performs z = ↵ ⇤ x + y
SGEMM Matrix Multiplication

SPMV A commonly used implementation
for multiplication of sparse matrices

SRAD Used to remove locally correlated noise in an image
Transpose Compute the transpose of a matrix

Table 5.2: GPU workloads used in our evaluation.

the standard benchmark suites were run to completion with the largest dataset made available.

SAXPY uses 8MB arrays. Convolution was performed on a 3072 ⇥ 3072 sized 2D image.

Transpose uses a 2688 ⇥ 2688 square matrix as its input.

5.5 Evaluation

Section 5.5.1 presents our main results and emphasizes the ability of the tinyCache

to meaningfully filter out accesses to the DL1G, cutting down the energy. The sizing of the

tinyCache is presented in Section 5.5.2.

5.5.1 Main Results

Different benchmarks exhibit different memory patterns, dominated by global refer-

ences, scratchpad memory references or both. To maximize the potential of the limited entries

in the tinyCache, each benchmark needs a specific set of references to be cached. We ran ex-

periments where the tinyCache was allowed to cache only the global or only the scratchpad

memory or both references and noted which configuration was the most effective in minimizing
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Figure 5.4: Addition of a tinyCache per lane reduces the dynamic energy consumption of the
on-chip memory hierarchy by 37%.

the energy delay product for each benchmark.

Typically programmers are encouraged to make use of the scratchpad memory, and

we see that caching these references does not affect the caching ability of the tinyCache for

global references. We pick this configuration as our default policy and refer to it as tCbase. To

highlight the potential of tinyCaches for energy savings and their impact on performance we

compare tCbase with a handpicked optimal configuration per application tCpick which could

be a configuration that cached either one or both global and scratchpad memory references,

offering maximum savings in the energy-delay product. Both are normalized to the baseline

with no tinyCache notC.

A well-designed tinyCache will be effective in filtering out frequent expensive re-

quests to the DL1G and replacing these requests with energy-efficient accesses to the tinyCache.

Figure 5.4 highlights that our base policy, tCbase, which caches both the global and scratchpad

memory accesses, is able to achieve a significant reduction of around 37% in the total dynamic

energy consumed by the on-chip memory hierarchy. Note that tCpick is just tCbase in many
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Figure 5.5: The IPC remains largely unchanged for most benchmarks, with a 2.3% reduction
seen on average.

benchmarks except in the case of convo and SAXPY. SAXPY performs significantly worse with

tCbase policy. SAXPY is a streaming application with no re-use of the data it fetches or intra-

thread locality. In addition, each miss on the tinyCache entails an expensive line fill operation

from the DL1G. Thus the presence of the tinyCache only adds overhead without filtering any

traffic from DL1G. As a result, it is not beneficial to use a tinyCache with such applications.

Since our emphasis for this paper is energy efficiency, tCpick for SAXPY is essentially the same

as notC since by bypassing global we do not cache any references in the tinyCache. We could

disable the tinyCache by exposing it through the API to the driver that spawns the kernels, sim-

ilar to disabling L1 caching in the Fermi. We could also potentially detect streaming accesses

in hardware and disable the tinyCache transparently; we leave this exploration to future work.

Figure 5.5 shows that the IPC per lane does not vary significantly across different

policies. This is because of the large number of threads available on the GPGPU for interleav-

ing which makes it possible to tolerate a wide range of memory latencies. We note that unlike

the increase reported in SAXPY’s energy numbers, the tinyCache does not hurt its performance.

Transpose is a similar case. This application is right behind SAXPY when we consider the tiny-
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Figure 5.6: We see a 35% reduction in the ED after the addition of a tinyCache per lane

Cache miss ratio and yet the performance is not affected. This is because the latency added by

the tinyCache is very small compared with the rest of the memory levels and is easily engulfed

by the warping mechanism. We see a similar decrease in the IPC even if we opt for the tCpick

policy.

The Energy Delay product (ED) in Figure 5.6 closely follows the IPC in Figure 5.4.

The average reduction in the ED with respect to the baseline in Figure 5.6 highlights how tiny-

Caches achieve substantial energy savings for the moderate performance losses observed in

Figure 5.5. Applications like backprop, SGEMM, SPMV and SRAD benefit from a tinyCache:

they show a large decrease in energy consumption (68%, 85%, 32% and 52% respectively) for a

negligible loss in performance. Convo yields good numbers if we bypass the scratchpad mem-

ory references and provide more space for the global references, but a streaming application

like SAXPY does not benefit at all.
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Figure 5.7: A breakdown of the memory accesses seen by each cache in the on-chip memory
hierarchy for the baseline, the baseline tinyCache and the best pick per application. We see
a 61.8% and 81% reduction to the number of accesses to the DL1G and scratchpad memory
respectively.

Figure 5.7 shows the breakdown of memory accesses to each memory level, normal-

ized to the baseline (no tinyCache). The leftmost bar in each group plots the baseline breakdown

as a reference. The bars in the center and on the right stand for the base tinyCache (tCbase) and

the best pick per application (tCpick) according to Figure 5.8. We observe that the number of

accesses to DL1G drops by almost 62% on an average and by almost 81% for scratchpad mem-

ory references. Note that an access to the tinyCache is significantly less expensive compared to

DL1G. This is because an access to the tinyCache does not require going through the coalescer

and the address and data distribution network which are expensive parts in terms of energy con-

sumption. The L2 cache shows a minor improvement as well. This is probably because the

tinyCache is able to retain references that would otherwise have been displaced from the DL1G

incurring a costly L2 reference.

We should note that memory accesses that would have coalesced in a typical GPGPU
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memory hierarchy still have the same benefits in the tinyCache configuration except that they

may have less data reuse in the tinyCache. Effectively, all the tinyCaches have the same address

cache misses and these tinyCache misses are coalesced. Due to evictions at different times,

we could potentially have a higher number of DRAM accesses. The worst case is evident in

SAXPY, where the number of DRAM accesses nearly doubles with tinyCaches, increasing from

a 1.7% global miss rate to 3%. Nevertheless, this is the worst benchmark and, on average, we

maintain the same global miss rate of 1.5% across applications.
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Figure 5.8: A tinyCache which caches both global and scratchpad memory references pro-
vides the most optimal savings in ED (and E) (bypass none) as compared with a configuration
caching only global references (bypass shared) and one caching only scratchpad memory ref-
erences (bypass global).

We see that a tinyCache that caches both the global and scratchpad memory refer-

ences is often the configuration that yields the best savings in Energy (E) and the ED product

as seen in Figure 5.8. The long latencies associated with global references make them a good

candidate for caching. However, this is not necessarily the optimal choice for all benchmarks.

For example, an application like SGEMM which is highly scratchpad memory intensive prefers

a configuration where we cache only the shared references and exploit the spatial locality exhib-
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ited. On the other hand, convo, which involves both global and scratchpad memory references,

prefers caching global references only. The reason behind is how consecutive threads refer-

ence neighboring array elements in convo. When these elements fall in different cache lines

some thrashing may occur. We have observed that this effect strongly decreases in convo as we

increase the size of the tinyCache.

5.5.2 Sizing the Tinycache

Determining the size of the tinyCache is a crucial step. In the architecture we propose,

we add an extra level in the memory hierarchy –tinyCaches– between the lane and the DL1G

to save energy by reducing the distance traversed by on-chip data transfers as close as thread

locality allows, filtering requests that otherwise pass through the coalescing logic and go to the

DL1G. This may sacrifice performance on behalf of the energy savings if the hit rate in this

new level is low, because all the misses incur an additional delay. The tinyCache thus needs

to be large enough to retain as many memory references as possible to maximize the hit rate,

but conveniently small for energy efficiency. Since we know that memory access patterns are

usually quite varied, a poorly designed cache might not be able to provide the benefit we seek.

Our goal in picking a configuration was primarily energy efficiency, but not at the cost of a

significant performance difference. We thus use ED as our primary metric to pick the tinyCache

configuration.

We observe that the IPC per lane hardly fluctuates along the design space by changing

the configuration (Figure 5.9) of the tinyCache. Figure 5.10 plots the normalized E and ED. We

have chosen 16 entries and a line size of 64 B, as it is the smallest configuration with minimum
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Figure 5.10: Impact of varying the line sizes and entries in the tinyCache on Energy (E) and
Energy Delay (ED).

ED, to keep leakage low. In any case, as mentioned in Section 5.5.1, the overall leakage on the

tinyCaches of the 32 lanes in this range is negligible compared to the rest of the system, and

will likely be compensated by the reduction in temperature on DL1 and the coalescer.

5.6 Summary

In this chapter, we propose adding a tinyCache per lane in the GPGPU to filter out

requests to the energy inefficient DL1 and shared memory to save energy. We do this by ex-

ploiting features of the unique programming model and avoid incurring the overhead associated
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with coherence. We see a substantial saving of roughly 37% of the energy consumed by the

on-chip cache hierarchy on average and a 35% reduction in the energy-delay product. While

there are some memory access patterns that can benefit with larger tinyCache capacities or by

caching more types of references, the difference is not large enough to justify a complex adap-

tive mechanism. The tinyCache also makes it possible for us to think beyond the data access

patterns typically used while writing GPGPU applications and exploit locality in the tinyCache

to gain further savings.
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Chapter 6

EESI: A Simple Architecture for GPGPU and

CPU Workloads

The key to maximizing performance in a GPGPU with underlying SIMD hardware

is to maintain the execution throughput, i.e., to keep a steady stream of instructions available

for the lanes to execute. With the help of programming models that offer an abstraction of

a complex hierarchy of threads, shared memory, and synchronization primitives, it becomes

easier to map applications that are more general purpose onto the SIMD hardware. While the

programming model allows each thread to maintain its own logical program counter, optimal

performance demands minimal divergence across threads. This poses a limitation on the kinds

of general purpose applications that can be ported on to the GPGPU, and, even today, we see

that most of the applications that are ported to a GPGPU fall into the highly data parallel or

extremely regular category of applications.

There have been numerous proposals to mitigate the effect of divergence, ranging
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from supporting concurrent execution of a few divergent paths, to a newer architecture with

a few semantic changes to the programming model. However, the one thing that is common

to all these proposals is the complexity they add to the design as summarized in Table 6.1.

This usually implies an area overhead and more energy consumption and, in spite of all this,

still being unable to support truly divergent general purpose applications that are designed for

MIMD machines. We discuss these proposals in greater detail in Section 6.2.

In this chapter, we present the Execute Everything Simply (EESI) architecture. By

adding a tiny instruction cache, and an IF per lane in a GPGPU, and providing the requisite

support, we allow the lanes to diverge freely and efficiently execute divergent applications. The

SM morphs into a MIMD-like cluster of simple in-order cores, and, with this new design, we

can support the execution of both traditional GPGPU and CPU (MIMD) workloads.

6.1 Execution of Divergent Applications on a GPGPU

Figure 6.1a shows the example of a simple control flow graph. In the Single Instruc-

tion Multiple Threads (SIMT) model [2], a single instruction queue feeds all the individual

lanes (much like its SIMD cousin). Thus, all the lanes run the same instruction in a lock step

fashion. When a branch instruction is encountered, the execution is typically serialized: threads

taking one of the divergent paths are first executed followed by the threads taking the other path.

GPGPU architectures typically manage branch divergence using two approaches. Intel archi-

tectures maintain a per-warp single PC (program counter) and a per-thread logical PC, masking

out the results of those threads whose PC does not match the per-warp PC [26]. AMD and
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Figure 6.1: Execution of a divergent kernel on a SIMT architecture and opportunities to miti-
gate divergence in GPGPU applications

NVIDIA resort to a hardware mask associated with each branch which records which threads

follow either the true or false path. All threads will actually execute but the output produced by

the threads following the false path is masked out. Since branches can be nested and threads

reconverge after a number of instructions in most branches, hardware masks are stored in a

reconvergence stack [89].

Serial execution of threads can break the carefully coalesced memory accesses. To

avoid this, the threads have to reconverge back before they start executing in lock-step fashion.

Thus single path execution proves to be expensive, and the performance usually plummets. To

circumvent this, programmers are encouraged to have minimal divergence in their code.
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Proposal Main hardware implications
DWF [31] Warp update Register, PC-Warp LUT, Warp Pool, Warp allocator

LUT
DWS [56] Warp Split Table and changes in the scheduler
LWM [62] Changes to RF, table of active masks, temporary active masks buffers
SBI [18] Changes to RF and Scoreboard. 2 Contex Tables, Instruction buffer
DPS [68] Duplicated scoreboard, changes to the scheduler, Dual-path stack
MPIPDOM [27] Changes to scoreboard, extensions to Instruction Buffer and Recon-

vergence Table
TBC [30] Warp buffers, Thread Compactor
CAPRI [67] Prediction table, Warp Compaction Unit
BS [20] None (software)
ID, BD [39] None (software)
BH [73] None if software, negligible if hardware
VT [47] Complete GPGPU and ISA redesign
MSMD [83] Complete GPGPU and ISA redesign
VWS [71] Per lane instruction L1, new datapath, Warp Gang Unit

Table 6.1: Proposals to mitigate the effect of divergence in GPGPU applications

6.2 Proposals to Counteract the Effect of Divergence

There has been a substantial amount of research on techniques to improve the perfor-

mance of divergent applications on GPGPUs. While some stick to single path execution model

and try to group threads executing the same path dynamically, there have been others that pro-

pose multiple path execution that allows different lanes to concurrently execute different PCs as

shown in Figure 6.1b. To do this, there are different types of hardware additions to the archi-

tecture such as control logic [71], instruction buffers and other forms of storage [30], additional

tables [18] and interconnections like crossbars [83]. In addition to not being scalable (i.e., each

proposal can only support a predetermined number of execution paths), these designs add to

the complexity of the already complex GPGPU and do not offer the flexibility of a MIMD-like

design which supports truly divergent, general purpose code. Most of these proposals can be

assigned to one of three groups listed below.
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6.2.1 Mechanisms Based on Modifications to the Reconvergence Stack

In a seminal work, Fung et al. [31] proposed Dynamic Warp Formation (DWF) which

dynamically regroups threads into new warps on the fly following the occurrence of diverging

branch outcomes. This can increase conflicts on the register file which is tough to solve in some

situations. They first apply immediate post-dominator reconvergence (IPDOM) [59]. They

show that IPDOMs are not always the best reconvergence points so they also leverage threads

from different warps that arrive at the same PC. Dynamic Warp Subdivision (DWS) [56] decom-

poses large warps into smaller warp-splits upon branch or memory divergence. Each warpsplit

has its own divergence stack and is scheduled independently from the others. Like in con-

ventional divergence, when a warp-split is running, it only uses as many lanes as threads in

the warp-split; the others are idle. The focus is just to let other warp-splits in the same braid

interleave when one of them misses in the cache.This requires code instrumentation to avoid

over-subdivision, modification of the scheduler and of the per-warp scoreboard, and a warp-

split table in addition to the conventional reconvergence stack. Diverged splits reconverge at

the immediate post-dominator (IPDOM) of a subdividing branch but the IPDOMs of branches

nested within the subdividing branch are ignored. To compensate, DWS uses heuristics that

must carefully balance SIMD utilization with thread level parallelism (TLP).

Gebhart et al. also leverage the basic idea of DWS while considering the latency of

references to large register files [32]. Alternatively, the Large Warp Microarchitecture (LWM) [62]

uses fewer but larger warps, assuming that even in the presence of branch divergence there will

likely be a large number of active threads in the large warp. Large warp masks identify active
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threads which can be dynamically compacted together into fully populated sub-warps that better

utilize the SIMD resources on the core. This calls for a two-level warp scheduling which splits

all concurrently executing large warps into smaller fetch groups and prioritizes warps from a

single fetch group until they reach a divergence point.

Brunie et al. suggest interleaving parallel instructions from different branches within

the same warp (SBI) and/or different warps executing the same branch (SWI) [18]. Code and

scheduling is subject to thread-frontier reconvergence constraints, instead of stack reconver-

gence [26]. To enforce reconvergence at the earliest point, they employ a synchronization

instruction at each reconvergence point, which is treated as a synchronization barrier among

warp-splits.

Dual Path Stack (DPS) [68] extends the reconvergence stack to push both taken and

not-taken paths as a single entry. If we let both branches run in parallel, an architectural register

accessed from both branches should be mapped to different physical registers to avoid false

dependencies for which they design separate scoreboard units. The warp scheduler needs also

to be redesigned. Like SBI, it shows poor benefit on benchmarks with multi-path or unstructured

divergence.

The Scalable Multi-Path Microarchitecture (MPIPDOM) [27] is similar to DWS in

that warps branching true and missing in the cache can switch to warps branching false and

vice-versa, but it only applies to branch divergence. Instead of extending the reconvergence

stack they record the reconvergence points in a reconvergence table which can spill to memory.

A Splits Table (ST) keeps the state of the warp splits executing in parallel like the warp split

table in DWS. A mask added to each field of the scoreboard records active threads in warps.
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The instruction buffer is also modified to accommodate an entry per warp split.

Thread Block Compaction (TBC) [30] employs a block-wide instead of a warp-wide

reconvergence stack allowing threads from different warps to be compacted into new warps

depending on the branch outcome in a way close to LWM. It requires a warp buffer which

is an instruction buffer with entries augmented with the thread IDs of the compacted warps.

Compaction techniques like TBC or LWM require unnecessary synchronization which is alle-

viated in CAPRI [67] by dynamically identifying the compaction effectiveness of a branch, only

stalling threads that are predicted to benefit from compaction.

6.2.2 Software Mechanisms to Minimize Divergence

Code transformations can also improve performance in the presence of branch diver-

gence. Branch Splitting (BS) [20] splits parallelizable loops containing branches into multiple,

single-path loops. Han and Abdelrahman [39] propose iteration delaying (ID) which targets

branches enclosed in a loop and makes all the threads go through both taken and not-taken path

in successive iterations. Unlike the Branch Herding proposal [73], they mask any output from

threads taking a false path. They also propose branch distribution (BD), which reduces the

length of branch paths by factoring out structurally similar code.

6.2.3 Alternative Architectures

There are a number of proposals that require a more drastic redesign of the microar-

chitecture. The Vector-Thread Architecture (VT) [47] was a seminal hybrid proposal of the vec-

tor and multithreaded model which allows to freely intermix vector and thread-fetches. Thread-
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fetches enable vector processors (VP) threads to follow fully independent control paths. In-

structions are packaged in atomic instruction blocks (AIBs). When running data-parallel code,

a control processor broadcasts AIBs to all the slave VPs. In thread-parallel code, each VP di-

rects its control flow by fetching its own AIBs. VPs hold their own register file with physical or

logical registers depending on the implementation.

MSMD [83] is another non-standard GPU core capable of running SIMD fragments in

MIMD manner. The SIMD fragments run as subsets of datapaths actively executing, while other

subsets are idle because of narrower vectors than the available processing elements or because

of divergence. It resorts to a few instruction buffers (IBs) shared among the lanes through

an interconnection network. MSMD is very sensitive to the number of IBs because of buffer

conflicts, and basic blocks are statically scheduled to the IBs which poses a number of problems.

Syncing divergent datapaths requires syncing instructions but they do not provide an algorithm

or heuristic that determines where to place them or which threads should synchronize. The

Variable Warp Size architecture (VWS) [71] enables divergent applications to execute multiple

control flow paths while keeping the lock-step SIMD model in non-divergent cases. There is

an L1 instruction cache per SM. The datapath is split into eight slices capable of independently

fetching, decoding and issuing instructions when required, but warp ganging unit forces these

independent slices to operate in lock-step gangs when they run non divergent threads. Therefore,

warps can dynamically vary in size with ganged warps operating in SIMD mode and unganged

warps simultaneously running in MIMD mode on independent slices. Unlike our proposal,

which can run MIMD and SIMD workloads in an energy efficient way, VWS can only execute

SIMD workloads, by optimizing branch or memory divergence in them.
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Figure 6.2: We propose EESI, a more MIMD-like design for energy efficient handling of di-
vergent apps

An entirely different approach is Branch Herding (BH) [73] which forces all threads

in a warp to take the same branch patch or to load the same memory address, increasing per-

formance in error-tolerant GPU applications either by software (relying on the recent CUDA

ballot and popc intrinsics) or by hardware at negligible cost.

6.3 The EESI Architecture

In an effort to support multiple divergent paths we first break away from the SIMT

design of having a common instruction fetch and buffer shared across all the lanes. Instead,

we begin with a design where each core has its own IF unit, a local instruction and data cache,

and interfaces with the other cores through the memory hierarchy. To achieve this, we thus

supplement each lane in our GPGPU with it own instruction fetch and buffers. Instead of
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directly interfacing with the large IL1 cache available per SM, we add a tiny instruction cache

or tinyIcache (TC-I) closer to each core. The tinyICache is small enough to provide an obvious

benefit over not having to access the larger, slower and more energy inefficient IL1 each cycle,

but at the same time large enough to withstand a large number of potentially divergent warps in

flight. We evaluated this configuration over a large design space and propose a tinyIcache with

8 entries, each 64B wide. More details about the sizing are provided in section 6.5.4.

There is a lot of thought that application developers give to grouping the threads

smartly so as to align memory accesses to the data cache. This is done to maximize the co-

alescing ability (and thus reduce the coalescing penalty) as well as to minimize pollution in

the shared DL1 cache. Disturbing these memory access patterns could lead to more off-chip

memory accesses and prove to be expensive (both in terms of performance and the energy con-

sumed). If lanes are suddenly allowed to diverge, they could disrupt the carefully streamlined

memory accesses and incur a large enough penalty. We propose the inclusion of tiny incoherent

data caches per lane (TC-D) so as to minimize expensive accesses to the shared DL1G caches as

proposed in Chapter 5. We adopt an advanced two-level register file as proposed by Gebhart et

al. to provide both the performance and the energy efficiency that the design offers [32]. With

its own register file, instruction fetch unit, instruction buffers, scoreboard, and local instruction

and data cache, the design of the lane is now more like a generic MIMD core, and these generic

MIMD cores can be logically grouped into SMs to parallel a traditional GPGPU.
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6.3.1 CUDA/OpenCL Compatibility

To be compatible with CUDA and OpenCL, the EESI architecture must support the

three fundamental abstractions of the programming model, i.e. the thread hierarchy, the mem-

ory hierarchy and the synchronization primitives. To execute a CUDA/OpenCL application, we

adhere to the same hierarchy model for threads: threads are grouped into blocks of threads and

executed one warpset after warpset. The execution of the threads on the hardware is invisible to

the programmer, and, unlike the traditional GPGPU architectures where divergent threads are

executed serially, the EESI architecture uses the individual IF units to allow simultaneous exe-

cution of divergent threads. Threads are allowed to diverge until they reach a synchronization

primitive like a barrier or a memory fence, at which point, all threads within a block reconverge

and halt execution until all the threads within a block reach the barrier.

The tinyCache is configured to cache both scratchpad and global memory references.

The programming model allows all threads within a block to access the same scratchpad mem-

ory and it is possible that a single cache line with data from the scratchpad memory is present

in the tinyCache of multiple cores. However the programming model also does not guarantee

the order in which threads will be executed on the lanes, therefore if threads were needed to

modify a single cache line, it would only be within the bounds of a barrier or memory fence.

We use the same adopted write validate protocol proposed in Chapter 5 to maintain correctness

and remove the requirement for coherence between the tinyCaches.
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6.3.2 Support for Warping

Warping is one of the key features of traditional GPGPU architectures and is used

extensively to hide latencies. Each time a trigger (usually a long latency memory instruction) is

encountered, the warp scheduler assigns the next warpset for execution to the SM. All the lanes

in the SM execute the same PC from threads within the same warpset and continue until the next

warp switch trigger is encountered. To support fast and seamless switching from one warpset

to the other, the warps that are allocated to an SM are never really switched out. The register

file is large enough (or only as many warps are assigned to an SM) to save the context of all

the warps. While warping is not necessary to ensure the correctness of execution, it is critical

for the performance that we can extract from a GPGPU as seen in Figure 6.6a. We propose the

addition of a simple warp scheduler which is a circular buffer that stores the PCs corresponding

to threads in the same warpset for different cores.

To maximize the performance, it is critical to be able to schedule as many threads

as possible on each SM, so that a steady flow of instructions are available to hide long laten-

cies. This imposes a severe constraint on the number of registers available per thread, and this

manifests as frequent and unavoidable RAW hazards. We propose fully leveraging the warp

switching mechanism that is available to us by switching warps at each instruction. We study

the implications of this proposal as well as other warp switch triggers like branches, or both

memory and branch instructions and present our findings in Section 6.5.2.
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Figure 6.3: We evaluate two policies, the first policy (EESI-T) is more conservative. While
different lanes can execute different PCs, they must all belong to threads in the same warpset.
The second policy (EESI-M) is more free flowing, where different lanes can execute different
PCs as well as different warps, and converge at a barrier / exit. Blocks of the same color, indicate
that they belong to the same warp.

6.3.3 Divergence Policies

Since each core is equipped with its own tinyIcache and IF unit, it is indeed possible

for all the cores to execute divergent threads at the same time. When all the instructions within

a thread have been executed or if the thread encounters a trigger to switch to the next warp,

the core can simply switch to the next thread assigned to it. This can continue as long as the

threads that are executed belong to the warps that are currently scheduled for execution on the

SM. This is analogous to different lanes in an SM in a traditional GPGPU executing different

threads from different warpsets at the same time as shown in Figure 6.3a and exemplifies true

MIMD behavior, which is not directly possible on a traditional GPGPU. We call this the EESI-

M strategy.

Traditional GPGPU workloads have highly aligned memory accesses and exhibit a
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fair amount of intra-warp locality. A MIMD oriented policy like EESI-M destroys these aligned

access patterns and can impose a significant performance penalty. To avoid this, we propose a

more conservative policy, EESI-T, where threads executing on different cores can execute di-

vergent paths, but will switch to the next warpset in sync with the other cores, grouped together

as an SM, as shown in Figure 6.3b. We compare their performance of these two policies in

Section 6.5.3.

6.3.4 Executing CPU Applications

If we ignore the tinyCache and the tinyIcache, EESI is like a MIMD system with

in-order cores and a large register file to handle multiple thread context. Since the register file

has roughly 1K entries in contemporary GPGPUs like Fermi, we assume a RF of the same size

which means that each core can behave like it supports 32 thread SMT contexts. This is too

much for typical multithreaded applications, so to save energy we could power down all but 32

entries from the RF when running CPU or multithreaded applications.

The tinyIcache is virtually indexed and virtually checked and each time that there is

a code modification, all the tinyIcaches need to be invalidated. The tinyIcaches have been sized

to be efficient with GPGPU workloads (Section 6.5.4) which means that they are going to have

a higher miss rate than a design optimized for MIMD workloads.

The tinyCache presents a more interesting problem. The tinyCaches are incoherent

and not using them will create too much traffic to the shared L1 cache. EESI has a release

consistency model. As such, we can allow the delay of all the globally performed stores until a

memory ordering event like a memory fence is issued. The stores go to the tinyCache, and they
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are written back on conflicts when a memory fence retires, and all the entries in the tinyCache

are written back and invalidated. Thus, the tinyCache can be viewed as a larger store completion

buffer inside the core not visible to the coherence traffic. Reads do not need trigger coherence

events to other tinyCaches. Stores are considered globally complete when they are “displaced”

from the tinyCache. The shared L1 cache has the coherent data. Since we assume a release

consistency multithreaded program, a program with data races that breaks consistency is likely

to show unexpected behavior, as we would observe in an aggressive out-of-order processor with

a release consistency model.

Putting all the above together, we present the EESI architecture in Figure 6.2.

6.4 Experimental Setup

To evaluate how the EESI architecture fares for typical GPGPU applications, we com-

pare it against a traditional GPGPU architecture supplemented with tinyCaches per lane as pro-

posed in Chapter 5 and as seen in Figure 5.2.

6.4.1 Simulation Infrastructure

To simulate the EESI architecture, we configure the simulator to model simple in-

order cores with dedicated IF units that are logically grouped and are viewed as lanes within

an SM. The executing GPGPU benchmarks are oblivious to this mapping, and, from their point

of view, they are executing on a traditional GPGPU. We disable this logical grouping and treat

the in-order cores as cores in a multicore system when we execute CPU benchmarks. For
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Baseline GPGPU EESI Baseline MIMD
Core configu-
ration

2 SMs with 32 in-
order lanes each 64 inorder lanes/cores

IF
Common IF and
buffers per SM,
shared by 32 lanes

IF and IB per lane/core

Tiny cache
Instructions None

1KB / 8-way / 64B
line / 1 cyc / inco-
herent

None

Branch Pre-
dictor

Not Taken Predictor
per SM

Not Taken Predictor
per Lane

Not Taken Predic-
tor per core

32 inorder lanes per SM, each SM allows a maximum of 24
concurrent warps and 8 concurrent blocks depending on the
resources required per thread.

Core Group-
ing None

Register File Shared, Banked RF with 32768 entries 64 Entries per core
Tiny cache
Data 1KB/8-way/64B line /1 cyc/incoherent None

Scratchpad 48KB/8 banks/18 cycles, shared by 32 lanes None

DL1 cache 32KB/8-way/64B line/ 18 cyc/ incoherent, shared by 32 lanes
16KB/4-way/64B
line/4 cyc per
core/coherent

IL1 cache 32KB/8-way/64B line/ 4 cyc, shared by 32 lanes 16KB/2-way/64B
line/ 4 cyc per core

L2 cache 256KB/16-way/64B line/ 7 cyc, for Data and Inst

LLC 2MB/32-way/64B line/14 cyc 6MB/32-way/64B
line/14 cyc

Main Memory 18GBytes/s BW with 50ns access time
Core Fre-
quency 1.5Ghz

Table 6.2: GPSim simulator configuration used to evaluate the EESI architecture

comparisons with more aggressive divergence handling mechanisms in a traditional GPGPU,

we extended GPSim to support the immediate post-dominator reconvergence policy [31] and

another recent proposal that allows simultaneous execution of multiple divergent paths [18].

Our energy estimations are based on the power model in GPUSimPow [54] and

CACTI [61]. Our estimations include only the on-chip dynamic energy; we do not include

DRAM. To evaluate our CPU workloads, we use the same core parameters that we used for

EESI, but supplement them with a much more substantial instruction and data cache hierarchy.
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CPU Workloads Description
Blackscholes Calculate prices of a portfolio of options.
Bodytrack Track the pose of a human with multiple cameras
Ferret Content based similarity detection algorithm
FFT FFT algorithm
FluidAnimate Simulate an incompressible fluid
RADIX Integer radix sort
Swaptions Price a portfolio of swaptions
x264 Lossy video encoder

Table 6.3: Workloads used in our evaluation

Table 6.2 summarizes the architectural parameters we have used in our simulations.

6.4.2 Benchmarks

Apart from GPGPU workloads used to evaluate our prior work (Table 5.2), we also

chose benchmarks from both the SPLASH [88] and the Parsec [12] benchmark suite for our

CPU workload evaluations, all of which used the largest input set available, and ran until com-

pletion.

6.5 Evaluation

In this section we quantify the performance of EESI against more traditional GPGPUs

(i.e., more SIMD-like) and conventional CPU (i.e., more MIMD-like) architectures. First, we

present the performance of GPGPU and CPU workloads on the EESI architecture. Next, we

evaluate the impact of different warp switch triggers on the performance and then discuss the

implication of breaking away from the more conservative EESI warping mechanism (EESI-

T) towards a more free flowing approach (EESI-M). Finally, we justify the need for a tiny

instruction cache and offer some insights on sizing it as per our need.
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Alias Description

GPU-SE Serial divergence handling mechanism, without immediate post-
dominator re-convergence

GPU-PD Serial divergence, with immediate post-dominator re-convergence [31]
GPU-SBI Simultaneous Branch interleaving as proposed in [18]

EESI Allow concurrent execution of multiple divergence paths, conservative,
as shown in Figure 6.3b

Table 6.4: Divergence handling mechanisms

6.5.1 Main Results

Figure 6.4 summarizes the performance of our GPGPU and CPU benchmarks on the

EESI architecture. Here EESI refers to the more conservative EESI-T strategy, which switches

warps at every instruction. For GPGPU benchmarks, we compare against our baseline GPGPU

equipped with three divergence handling mechanisms listed in Table 6.4. The implications of

choosing the right warp switch trigger is discussed in Section 6.5.2. To keep the comparison

fair, the baseline GPGPU also switches warps at each and every instruction.

A traditional GPGPU has a common instruction cache and could get away with sup-

porting fewer maximum requests to the cache. However since we propose switching warps at

every instruction, we raise the limit to sustain a large number of maximum requests for the

baseline without which we see a 7% reduction in the execution time for the baseline.

GPGPU workloads cannot be executed on a traditional CPU, which is why there is no

bar corresponding to the MIMD execution for these. The performance of our CPU benchmarks

is compared against a more traditional CPU architecture described in Table 6.2. Since CPU

workloads cannot be executed on traditional GPGPUs, so there are no bars corresponding to

GPU-SE, GPU-PD and GPU-SBI for these benchmarks.
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Figure 6.4: The EESI architecture supports the execution of traditional GPGPU workloads,
with an average speedup of 13%, as wells as traditional MIMD (CPU) workloads, with a 20%
hit in performance on average.
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Figure 6.5: There is no significant change in the EPI for GPGPU workloads, but it shows a
slight reduction (<10%) for traditional MIMD workloads.

To maximize performance on traditional GPGPU architectures, most GPGPU work-

loads try to keep the behavior as regular as possible, along with highly synchronized and aligned

memory accesses. They are designed to maximize the occupancy on the GPGPU, by having as

many threads in-flight as possible. The workloads we examine show these characteristics to

varying degrees.

Backprop, needle, hotspot and SGEMM exhibit enough divergence in the application

for EESI to exploit, and show almost a 25% improvement in the performance, on average. Even

though BFS is inherently divergent, almost all the execution is done by one or two threads in

a warp, and it shows very poor occupancy which is why we don’t see as big a performance
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improvement with EESI. Convo and SAXPY are extremely regular applications with no di-

vergence and show no difference in execution time. All these applications show very regular

memory access pattern, and prefer the more conservative EESI strategy to fully exploit intra-

warp locality of memory references. This is discussed in more detail in Section 6.5.3.

Transpose is a memory intensive application that is susceptible to memory divergence

and ideally prefers no warping or warping on branches (which are few and far between). Warp-

ing at every instruction seems to skew the memory access pattern, so EESI performs slightly

worse than the traditional GPGPU architecture.

The presence of the tiny data and instruction caches results in a higher miss rate

and average memory latency per instruction which is uniformly the reason for the deteriorated

performance for the CPU benchmarks.

Figure 6.5 shows the energy per instruction (EPI). The larger caches are also the

reason that the average EPI for a traditional MIMD is higher than EESI. The difference between

the EPI for EESI and traditional GPGPU architectures is negligible.

6.5.2 Role of Warping Mechanisms

Warping is one of the key techniques used to hide latencies in GPGPUs and tradi-

tionally the trigger for switching to the next warp is a long latency memory operation. In this

section, we discuss the implication of choosing different triggers for switching to the next warp.

We evaluated different configurations where we used the warp switch triggers listed

in Table 6.5 to switch to the next warp. Since most of our applications are fairly regular and

have a fair number of memory operations, most applications seemed to prefer switching at every
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Alias Description
NON Warp only at a barrier or when the thread exits.
MEM Warp only on long latency memory instructions.
BRA Warp only when you encounter a branch.
MBR Warp at both memory and branch instructions.
ALL Warp after each and every instruction.

Table 6.5: Triggers for switching to the next warp.

memory instruction (MEM) or after every instruction (ALL). We compare the performance of

our baseline GPGPU and the EESI architecture and present the results ins Figure 6.6a. Other

applications show negligible change in the average EPI, irrespective of the warp switching pol-

icy.

As expected, we see a sizeable loss (25%) in performance on average when we com-

pare both the baseline and EESI without warping and with warping at every memory instruction

((GPU-PD/NON vs GPU-PD/MEM) and (EESI/NON vs EESI/MEM)). Applications like BFS,

convo, hotspot and needle show the maximum sensitivity to switching at memory instructions

in the baseline architecture. However, letting lanes diverge on the EESI architecture also in-

creases the sensitivity of backprop to memory instructions. Benchmarks like SAXPY which

show no reuse patterns and do not have enough threads to saturate the GPU are indifferent to

the warp switch. Transpose shows a slight deterioration due to its sensitivity to the memory

access pattern.

Switching warps at every instruction allows us to hide not only the memory laten-

cies when they show up, but also RAW hazards that are very common given the limited re-

sources available per lane per thread. Both the baseline (GPU-PD/NON vs GPU-PD/ALL) and

EESI (EESI/NON vs EESI/ALL) show roughly a 50% improvement in performance, and even
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Figure 6.6: Switching warps at each instruction offers a sizeable improvement in performance
even for the baseline GPGPU architecture. The EESI architecture switching warps at each
instruction, provides >30% increase (on average) over a traditional GPGPU architecture (GPU-
PD) switching warps at a memory instruction (MEM). A few individual applications are indeed
more energy efficient with conservative (or no) warping policies, but on the whole switching
between warping policies alone does not offer a reduction in the EPI

a streaming application like SAXPY can double its performance.

EESI, combined with switching at every instruction (EESI/ALL), provides a 30%

improvement in performance over a traditional GPGPU warping at every memory instruction

(GPU-PD/MEM).
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Figure 6.6 shows the impact of the above triggers on the EPI. Applications like convo,

needle and SGEMM, which make heavy use of scratchpad memory, cache these accesses in

the tiny data cache. When we disable warping, the tiny data cache is large enough to service

scratchpad memory requests instead of fetching them from the more energy hungry scratchpad

memory and this greatly improves the energy efficiency. We lose this advantage if we have a

large number of warps and threads in flight.

It is important to note that disabling warping opens up the possibility for us to dra-

matically size down energy hungry resources like the register file or make a larger number of

registers available to each thread, thereby increasing the performance. It thus might be possible

to tune the EESI architecture to be more energy efficient without much loss in performance and

eliminate the complexity of warping. We leave this exploration as future work.

6.5.3 EESI-T vs EESI-M

As discussed in Section 6.3, a truly divergent (i.e., general purpose) application where

every thread in every lane follows a different path could benefit even more if we allowed threads

to break warp boundaries and execute in a more free-flowing fashion. However, the benchmarks

we surveyed are optimized for traditional GPGPU architectures, and this would take a huge hit

if we allow this and skew the carefully aligned memory accesses. Our experiments confirm the

same, and the GPGPU benchmarks we study show almost a 30% reduction in the execution time

if we opt for the more free flowing execution of EESI-M. This makes it a much less attractive

option for traditional GPGPU workloads.

We are not aware of any existing GPGPU benchmarks that can exploit the true MIMD
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Figure 6.7: The absence of a TCI significantly affects the performance, causing almost a 60%
drop in the performance.

behavior that the EESI-M can sustain. We believe that supporting EESI-M opens up avenues

to port more general purpose applications like request response based server side applications,

etc.

6.5.4 Sizing the TinyICache

The addition of a tiny instruction cache per lane is crucial to the increased perfor-

mance and reduced EPI that the EESI architecture offers. Figure 6.7 shows that the shared

instruction cache can become the bottle neck even for relatively small GPGPU kernels that

warp at every instruction. The absence of the tiny instruction cache can reduce the execution

time by more than 60% on average and increase the EPI by more than 20%. Both the plots are

normalized to GPU-PD/ALL.

None of the GPGPU applications other than SGEMM, strongly prefer a larger tinyI-

cache. CPU workloads show a clear preference for larger tinyICaches, and we choose a tinyI-

Cache that has 8 entries with 64B each. Changing the line size had no impact for either GPGPU
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Figure 6.8: Varying the size of the tinyIcache impacted the performance of SGEMM, however
it did not significantly impact the average EPI. We picked a tinyICache with 8 entries with 64B
in each entry.

or CPU workloads.

6.5.5 Area Overhead Estimations

We try to estimate the area overhead of EESI by comparing the decode area with that

of the register file.

First, we synthesized an Imagination MIPS M14K in-order core that has 4 pipeline

stages, and that can execute the full MIPS R5 ISA. The Master Pipeline Control (MPC) block

that includes all the decoding and control for the MIPS core has 8500 gates. To put it in per-
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spective, this is equivalent in size to 5 times the MIPS register file with 32 entries. Thus, for a

register file with 1024 entries per core, as in EESI, the area of the decode and control block, can

be approximated to be about 15.6% of the RF area.

We also studied the OpenSPARC core which is an in-order core with 4 SMT contexts.

The decode has approximately the same SPARC register file which with support for sliding

windows is roughly equivalent to 288 register entries. The decode for the OpenSPARC also

includes the instruction TLBs and the icount policies for the SMT. Since the EESI tinyICache is

virtually indexed, the TLB does not need to be replicated. After excluding the TLB, the decode

is almost 50% of the 288 entry register file, approximately the same area as that of a 144 entry

register file. Thus, approximating in the same way as we did above, this tells us that the decode

logic should occupy roughly 15% of the area of the register file.

Both of our estimations come from different inorder cores, but point to a similar area

overhead of roughly 14% to 15% of area of the per core the register file. According to Khailany

et al., a 15% area for the register file translates to roughly 3% area overhead for the Imagine

processor [44]. This estimation is consistent with the 2% area overhead estimation [31] by Fung

et al.

We use CACTI [61] to estimate that the tinyIcache is roughly 7% the area of the RF.

We add this to the overhead of the decode, and, based on the above, we conclude that the area

overhead is between 4% and 5% per core for the EESI architecture. We believe that this is a

conservative estimation of the overhead, since we do not have the need for complicated control

and decode needed by some of the other proposals to support multipath execution [18, 71, 83]

and attribute no area overhead to them.
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6.6 Summary

In this chapter we present EESI, a novel MIMD-like architecture, designed with the

following goals in mind.

• To support multiple divergent paths with a simple design.

• To offer support for both traditional GPGPU and CPU workloads.

• To sustain the energy efficiency of a more SIMD-like architecture for traditional GPGPU

workloads.

By adding a tiny instruction cache and IF per lane we allow the lanes to diverge and

efficiently execute divergent applications. This morphs an SM into a MIMD-like cluster of

simple inorder cores. EESI leverages tiny incoherent data caches per lane to reduce overheads

and coordinates switching between warps in different lanes (EESI-T) to take advantage of the

coalesced memory accesses available in GPGPU programs. Our evaluations show a 13% per-

formance benefit available by warping after each instruction for traditional GPGPU workloads

and with no impact on the average EPI when compared to a traditional GPGPU. The down-

sized cores and the GPGPU optimized memory hierarchy also allow execution of traditional

CPU workloads, albeit with a 20% hit in performance. Replicating the IF and adding a tiny

instruction cache per lane does add an area overhead of roughly 5%, but we feel that this is a

justifiable, especially if it means that we can execute more general purpose applications on the

GPGPU.
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Chapter 7

Conclusions

The early GPGPU arrived on the scene with the promise of being the perfect com-

plement to the CPU to tackle more than just the embarrassingly data parallel category of ap-

plications that were usually assigned to SIMD machines. The newly designed programming

models of the time allowed a larger set of regular applications that were executed sub-optimally

on the CPU to harness the throughput of the GPGPU and promised performance gains ranging

anywhere between 10X and 1000X. This led to a very sudden spike in the popularity of the

GPGPU, and it soon became one of the hottest topics of research in the architecture community.

GPSim is a platform to simulate the behavior and estimate the performance of both

traditional and futuristic GPGPUs. It was one of the first simulators to allow the simulation of

a truly heterogeneous architecture with both CPUs and GPUs. It is the only GPGPU simulator

that uses native coexecution of GPGPU applications and provides a significant boost in the

simulation speeds. GPSim was used to study the GPGPU architecture and make the following

new proposals.
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With tighter coupling between CPUs and GPGPUs, transferring data between the two

addressing spaces became the bottleneck, both in terms of performance and in terms of energy

efficiency. FuseTLB is a simple energy efficient design that exploits the unique programming

model for GPGPUs to unify the addressing spaces and create a virtual shared memory between

CPUs and GPUs on the same die, without coherence.

An immersive study of potential energy optimizations within a GPGPU led to the

proposal of the addition of tiny, incoherent, per-lane data caches to the GPGPU. This addition

lets us filter out expensive accesses to the shared data structures and offers a substantial saving

of roughly 37% of the energy consumed by the on-chip cache hierarchy on average.

In spite of the GPGPU coming a long way both in terms of capability and capacity,

their applicability and scope is constrained by the limited support for divergent applications.

EESI is a novel MIMD-like design to better enable divergence and allow the execution of both

GPGPU (barely divergent) and traditional CPU (fully divergent) workloads. A key feature of the

EESI architecture is the simplicity of design. It proposes the removal of all specialized hardware

and logic that are added to the GPGPUs to support divergence, and instead adds tiny instruction

and data caches per lane, decoupling the instruction fetch and breaking the requirement of

lock step execution of all the lanes. Despite the replication of the instruction fetch and the

tiny instruction and data caches, the design is just as energy efficient as a regular GPGPU is

for SIMD workloads. This is crucial to help the GPGPU step outside the high performance

computing box, and find acceptance in both mainstream and mobile applications.
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