
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Modeling Social and Temporal Context for Video Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Zhen Qin

June 2015

Dissertation Committee:

Dr. Christian R. Shelton, Chairperson
Dr. Tao Jiang
Dr. Stefano Lonardi
Dr. Amit Roy-Chowdhury



Copyright by
Zhen Qin

2015



The Dissertation of Zhen Qin is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am deeply grateful to my esteemed advisor, Dr. Christian R. Shelton, for his invaluable and endless

mentoring, support, and encouragement. Without his help, I would not have been able to enjoy my

five years’ journey and complete this dissertation. His broad knowledge, enthusiasm, sharp insight,

willingness to help, and integrity set an example for me to follow.

I thank my committee members, Dr. Tao Jiang, Dr. Amit Roy-Chowdhury, and Dr. Ste-

fano Lonardi. Especially, resources and discussions from Dr. Roy-Chowdhury’s Video Computing

Group (special thanks to Shu Zhang and Mahmudul Hasan) helped to greatly facilitate my research

in computer vision. Thank you for your help on making this thesis better!

I would also thank my lab mates in RLAIR, present and past: Dr. Juan Casse, Busra

Celikkaya, Dave Gomboc, Mike Izbicki, Matthew Zarachoff, Kazi Islam, and Sepideh Azarnoosh,

who made life in the lab more enjoyable. I appreciate RLAIR alumni’s, Dr. Yu Fan’s and Dr.

Guobiao Mei’s help during my job and intern search process.

My thanks also go to all the wonderful people I met in the past five years. My intern

mentors, Dr. Peter van Beek, Dr. Vaclac Petricek, and Dr. Shinko Cheng made me enjoy my

summers. My off-campus hours are pleasant thanks to my roommates Dr. Mingyang Li and Dr.

Shiwen Cheng, and all my wonderful friends, including Dr. Lunshao Chai, Dr. Bing Hu, Dr. Yuan

Hao, Dr. Zhixing Jin, Dr. Le An, Dr. Ergude Bao, Dr. Dongfang Zheng, Dr. Yan Li, Dr. Yiming

Chen, Xiaojing Chen, Xiaotao Chen, Yifan Fang, Yuting Fang, Bin Wu, Ming Wang, Shunan Li,

William Sun, Junrong Lei, Chunying Song, the Addinks, and people from Goodfriend Fellowship.

Finally, I would like to thank my parents in China and my cousin Xuanchen, who gave

me endless encouragement during my PhD study.

iv



To my parents, He Qin and Huayun Wang.

v



ABSTRACT OF THE DISSERTATION

Modeling Social and Temporal Context for Video Analysis

by

Zhen Qin

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2015

Dr. Christian R. Shelton, Chairperson

The ubiquity of videos requires effective content extraction tools to enable practical applications

automatically. Computer vision research focuses on bridging the gap between raw data (pixel val-

ues) and video semantics, but information based only on image values are not sufficient, due to

the visual ambiguities caused by varied camera characteristics, frequent occlusions, low resolution,

large intra-class and small inter-class variation among object/activity/event classes.

In this dissertation, we develop methodologies with new machine learning and statistical

optimization techniques to model high-level context to mitigate visual ambiguity, thus improving

performance on several real-world computer vision tasks. We first describe the usage of social

grouping context, supported by sociology research, to improve intra-camera multi-target tracking,

inter-camera multi-target tracking, and head pose estimation in video. For single-camera track-

ing, social grouping context regularizes existing tracking methods in a principled way and provides

a natural way to go beyond traditional tracking with Markovian assumptions. For multi-camera

tracking, social grouping context effectively mitigates visual ambiguities from cameras with differ-

ent viewpoints and lighting conditions. Both problems unify under a probabilistic formulation, and
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we provide a novel effective routine for the constrained nonlinear optimization problem that jointly

conducts tracking and social grouping. We also show that social grouping context helps head pose

estimation, which is challenging due to the small sized head images in typical high-angle surveil-

lance videos. A Conditional Random Field (CRF) is used to perform group head pose labeling, in

which interactions among group members are encoded. The model generalizes existing methods

that only focus on individuals, and allows exact learning and inference.

We further explore temporal context for an important computer vision task, in particular,

video event localization and recognition. We study a new model from machine learning, called the

Piecewise-constant Conditional Intensity Model (PCIM), which is able to model complex depen-

dencies in general event streams. We first develop a general-purpose inference algorithm for PCIMs

by designing an auxiliary Gibbs sampler. The sampler alternates between sampling a finite set of

auxiliary virtual events with adaptive rates, and performing an efficient forward-backward pass at

discrete times to generate samples. We show that our sampler is the first in literature to successfully

perform inference tasks in both Markovian and non-Markovian PCIM models, and can be employed

in Expectation-Maximization parameter estimation and structural learning for PCIM with partially

observed data. We then show that the problem of video event localization and recognition can be

modeled as the inference of high-level events given low-level observations in a PCIM. Our approach

provides a principled way to learn an interpretable model that utilizes dependencies among events

(both high-level and low-level), while existing methods mainly focus on local information. We

observe that temporal context helps to mitigate visual ambiguities, especially between events with

similar local appearances.
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Chapter 1

Introduction

1.1 The Need for Automatic Video Analysis

The amount of video being captured is growing at an explosive rate, due to the de-

creased cost of placing wide-area security cameras, the popularity of video sharing websites such

as YouTube, and the ubiquity of hand-held video capture devices including cellphones. There are

an estimated 30 million surveillance cameras now deployed in the United States, shooting 4 billion

hours of footage a week [86]. 300 hours of video are uploaded to YouTube every minute [1].

Such huge amount of video make it impossible for manual monitoring, and requires ef-

fective content extraction tools to enable practical applications. Applications related to video range

widely from homeland security to personal use, including video surveillance, self-driving vehicles,

content-based video recommendation, content-based video retrieval, video management and stor-

age. In virtually all applications, the video contents, especially high-level contents such as identity

(e.g., the identification of a suspect), activity (e.g., person running), and events (e.g., a robbery),

need to be extracted for annotation, indexing, or further human examining. At a small scale, content
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extraction is generally easy for human beings, as human brains can easily exact semantics from im-

ages or videos. However, modern computers have yet to accomplish these tasks with ease, due to the

huge gap between raw input (pixel values) and high-level semantics. Computer vision researchers,

for the past decades, mainly focused on developing representations and features that try to build

the pipeline from low-level representations to high-level semantics. Popular visual features such as

scale invariant feature transform (SIFT) [54], Histograms of Gradients (HoG) [22], Shape Context

[7] [15], and Color and Edge Directivity Descriptor (CEDD) [100] can more discriminatively repre-

sent visual information than raw pixel values. The huge effort has generated remarkable successes

in many domains, especially under experimental settings. For example, several face recognition

systems can achieve 100% accuracy in controlled scenarios [83].

1.2 Motivation

Computer vision research is still far from solving video understanding in the real-world

setting. The visual ambiguity present in almost all real-world videos is one major problem. In other

words, pure visual information, delivered by pixel values or local appearance features only, is not

sufficient to solve many practical problems. For example, under different cameras, the same object

might look quite different, which introduces difficulty to the identification problem, see Figure 1.1

for an example. Another source of visual ambiguity is from the video capture process. Cameras

may only capture low resolution and small images due to the camera configuration or the distance to

the targets. Such factors introduce difficulty to video analysis in everyday high-angle surveillance

videos (See Figure 1.2 for an example of the head pose estimation problem.) Other factors that

might cause visual ambiguity might arise from, but are not limited to, frequent occlusion by real-
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world objects, high intra-class variation of object/event classes, high inter-class similarity between

object/event classes, or intentional disguise of a suspect.

Figure 1.1: The same person look different under cameras with varying viewpoints and illumination
conditions. A multi-camera tracking system, or a person identification system, usually finds it hard
to decide if these two targets belong to the same person or not.

Figure 1.2: This figure shows head images captured in real-world surveillance cameras. With low
resolution, image blur, and unusual appearances caused by clothing such as hats, head pose estima-
tion in real-world videos is difficult [9].

Given that focusing purely on visual information is not sufficient, in this dissertation

we explore high-level contextual information to mitigate visual ambiguities, thus improving per-

formance on several computer vision tasks. We use two kinds of contextual information: social

grouping context and temporal context. These high-level contexts can effectively mitigate visual

ambiguities in 3 computer vision problems: multi-target tracking, head pose estimation, and event

detection in video.
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Figure 1.3: Pipeline for a typical computer vision system.

1.3 Research Problems

Social Grouping for Multi-target Tracking and Head Pose Estimation

Multi-target tracking is one of the fundamental computer vision tasks. A typical pipeline

of computer vision systems is the following: at the low-level, tasks such as object detection and

segmentation are performed, so as to identify the area of interest for further analysis. At the mid-

level, tracking generates consistent labeling of targets across all videos frames. At the high-level,

activity or event recognition, human computer interaction (HCI), etc. can be done on the consistent

areas of interest. Thus, tracking is one critical computer vision task that links low-level processing

and high-level reasoning. If a camera network tracking system can correctly associate tracks with

different targets across cameras, wide area scene understanding is possible. See Figure 1.3 for the

pipeline of typical computer vision systems. Similarly, head pose estimation helps to identify areas

of interest and human attention in a scene, which also leads to various useful video understanding
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Figure 1.4: When a target is occluded in the middle, filtering-based approach usually lose track. A
data association-based tracking framework performs association in the entire time window, thus it
is easier to recover from occlusion, by linking the first and last frames for the man in white. Simple
interpolation can be used for intermediate frames once the identity is successfully kept.

applications.

Tracking is a difficult task and has been extensively researched. We focus on multi-

person tracking in a data association-based tracking framework (DAT, also known as the tracklet

linking problem), which considers frames over an extended time window. Detection responses are

first conservatively linked into short tracks (tracklet), and global reasoning is performed to link the

tracklets into longer ones. It is the current standard approach for multi-target tracking, due to its

robustness to long-term occlusion and interaction between targets. It contrasts with the traditional

filtering-based approach which only performs tracking frame-by-frame (see Figure 1.4).

In single-camera tracking, people with similar appearance, frequent occlusion from the

scene, and heavy human interaction can all confuse a tracking system. In multi-camera tracking,

pedestrians may look quite different under cameras with varying conditions. Head pose estimation

in high-angle surveillance video is hard because human head images are usually of low resolution,

which makes visual evidence unreliable (see Figure 1.6). Existing computer vision researchers
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mainly delve into developing more advanced visual features, thus introducing more parameters,

complicating the system, and overfitting the training data. We, on the other hand, employ high-level

and intuitive contextual information to disambiguate.

We introduce social grouping as one such context. Sociology research [59] shows that

in natural scenes up to 70% of people walk in groups, possessing similar trajectories, speed, and

destinations. These factors should help to disambiguate confusing tracking decisions in both single-

camera (similar trajectories and speed) and multi-camera tracking (similar destinations). For exam-

ple, in multi-camera tracking the tracker usually finds it difficult to decide whether to link or split

two detections, since a single person can look quite different in different cameras. However, if the

two detections are accompanied by another well identified person, linking is preferred (Figure 1.5).

It is also intuitively clear that when people form groups, their head directions are correlated, as they

tend to look at each other or the same area of interest (Figure 1.6 right).

Figure 1.5: Compared with Figure 1.1, the tracking system should be more certain that the two
detections belong to the same woman, as she is accompanied consistently across cameras by another
man.

In this work, we provide a probabilistic framework with effective solvers to utilize social

grouping for visual tracking and head pose estimation. The joint optimization of tracking and social

grouping is modeled as a constrained nonlinear optimization problem, which decomposes into steps

involving standard fast procedures. Head pose estimation in groups is modeled as a graph labeling

6



Camera A Camera B 

Frame 27 Frame 196 

Figure 1.6: (Left) Social grouping behavior not only generally exists in one scene, but also usually
persists (with the same group members) across wide areas. (Right) Given head images alone, it
is sometimes difficult for human beings to correctly identify head pose directions in challenging
scenarios. Social context provides strong evidence for this difficult problem.

problem using a conditional random field (CRF) that allows exact convex learning and inference,

with tractability supported by sociology research. The generality of our social grouping model

makes it applicable to most existing tracklet linking and head pose estimation frameworks.

Our experiments show that social context can help in multi-target tracking and head pose

estimation on real-world datasets. Of particular interest, social grouping provides a natural high-

order cue for the single-camera multi-target tracking problem, while existing approaches usually

depend on complex solvers to go beyond single-order association. Furthermore, social grouping

assignment is also an output of the complete system. Our model produces results that are compar-

ative to or better than state-of-art methods on benchmark datasets on all three tasks (tracking, head

pose estimation, and group discovery), though our model employs only simple motion and visual

features.

Modeling Temporal Context for Event Detection with Inference in Piecewise-constant

Conditional Intensity Models

Event detection systems aim at identifying and localizing the classes of the events present

in a video, such as a person sitting down, independently of the background. Existing methods

7



Figure 1.7: (Left) Punching, (Middle) Punching, (Right) Shaking Hand. Based only on visual
features, the same action might look different, while different actions might possess similar appear-
ances.

usually model event detection as a classification or labeling problem, given coherent constituent

parts from video segmentation in the temporal domain. This approach assumes perfect segmentation

of the video. Then a feature vector can be generated for each segment and serve as input for a

discriminative classifier. However, video segmentation is an unsolved computer vision problem.

More importantly, by only looking at local visual features, the same event might look different in

different videos (when performed by different characters, or if the event has intrinsic intra-class

variance), and different events might look similar (for example, punching someone and shaking

hands with someone both consist of putting one’s arm forward, see Figure 1.7). Furthermore, the

single signature generated from a video segment usually abandons time ordering, making similar

events not differentiable (e.g., person entering or leaving a room). Temporal context could help

to disambiguate. For example, if followed by the “person running event” or “person falling down

event”, we should be more certain that the event before is “punching”, instead of “shaking hand”.

A general approach to explore temporal dependencies among events in video could be modeled as

follows. In training, we have both observed low-level events (visual features) and annotated high-

level events. We build a model to encode the dependencies. In testing, given the observed low-level

events, we perform inference on the high-level events.
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Besides event detection in video, modeling temporal dependencies in general event streams

has wide-ranging applications. For example, users’ behaviors in online shopping and web searches,

social network activities, and machines’ responses in datacenter management can each be viewed as

a stream of events over time. Models that can successfully learn the complex dependencies among

events (both label and timing) allow targeted online advertising, automatic policy selection in data-

center management, user behavior modeling, or event prediction and dependency understanding in

general.

We use a state-of-art model, called a piecewise-constant conditional intensity model (PCIM),

from the machine learning literature. [37] proposed the PCIM which captures the dependencies

among the types of events through a set of piecewise-constant conditional intensity functions. A

PCIM is represented as a set of decision trees, which allow for efficient model selection. Forecast-

ing via forward sampling is also simple by iteratively sampling next events based on the current

history.

However, currently model selection and forecasting for PCIMs is only effective given

complete data. When there are missing data, an inference method is needed to answer general

queries or be employed in expectation-maximization (EM) algorithms for model selection and pa-

rameter learning. In the context of event detection in video, such an algorithm can be used to infer

high-level events, given observed low-level image observations. Currently, no inference algorithm

has been proposed for PCIM that can condition on general evidence. Correctly filling in incomplete

event streams (trajectories) from a PCIM is challenging: Propagating events in the unobserved time

intervals via forward sampling based on the current history is not enough, due to their complex

non-Markovian dependencies on future evidence.
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We first propose the first general inference algorithm for PCIMs, based on the idea of

thinning for inhomogeneous Poisson process [51]. This inference algorithm can be used in the

video event detection task, as well as other tasks using PCIMs. Our formulation is an auxiliary

Gibbs sampler that alternates between sampling a finite set of virtual event times given the current

trajectory, and then sampling a new trajectory given the set of evidences and event times (virtual and

actual). Our method is convergent, does not involve approximations like fixed time-discretization,

and the samples generated can answer any type of query. We propose an efficient state-vector

representation to maintain only the necessary information for diverging trajectories, reducing the

exponentially increasing sampling complexity to linear in most cases. We show empirically our

inference algorithm converges to the true distribution, permits effective query answering, and aids

model selection with incomplete data for PCIM models with both Markovian and complex non-

Markovian dynamics. We also show the connection between PCIMs and continuous-time Bayesian

networks (CTBN), and compare our method with existing methods on such models.

We apply the new PCIM inference algorithm to the event detection task. By inferring the

beginning and ending times of high-level events given low-level visual observations, we achieve

simultaneous localization and labeling of video events. This model is able to explore the temporal

dependencies among both high-level and low-level events.

10



Chapter 2

Social Grouping for Multi-target

Tracking and Head Pose Estimation

In this section, we provide a probabilistic framework with effective solvers that uses social

grouping for visual tracking and head pose estimation. The generality of our social grouping model

makes it applicable to most existing tracklet linking and head pose estimation frameworks. Our

experiments show that social context can help in multi-target tracking and head pose estimation on

real-world datasets. The coupling of social grouping with single-camera and multi-camera tracking

is mainly based on our published work [69] [71].

2.1 Related Work

Head pose estimation, group discovery, and especially multi-target tracking, have been

extensively researched in the computer vision community. We focus on the literature that is most

related to our work.
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Figure 2.1: (Left) Motion dependency problem for order-one association methods [93]: though
τ1 − τ2 and τ2 − τ3 can be reasonably pairwise linked, the full trajectory is not probable. (Middle,
Right) Social context from τ4 gives strong evidence to disambiguate the dependency among tracks,
indicating τ1 − τ2 − τ3 is probable (middle) or not (right).

Single-camera multi-target tracking. Multi-target tracking is a key step in many computer

vision tasks, including visual surveillance, activity recognition, and scene understanding. Time-

critical approaches usually use particle filtering algorithms for state estimation [96]. However, it is

very difficult for such systems to handle long-term occlusions and detection failures. Thus, recently

data association-based tracking (DAT, also known as the tracklet-linking problem) has dominated

the research community. With the help of state-of-art tracklet extraction methods such as human de-

tector approaches [52], algorithms look at extended time periods and link conservatively extracted

tracklets (short tracks) to recover full tracks. Many focus on how to obtain more reliable linking

probabilities between tracklets [52][46][47][19]. To effectively infer the best matching given the

affinity measurements among tracklets, different optimization methods such as the Hungarian al-

gorithm [52][81], K-shortest path [10], Maximum Weight Independent Set (MWIS) [11], set-cover

[90], min-cost flow [12], approximate dynamic programming [67], and continuous energy mini-

mization [58] have been proposed. Some of them are shown to be equivalent to each other [40].

Importantly, these methods are mostly order-one methods, meaning that they optimize only pair-

wise similarities. This might lead to global inconsistencies. One typical problem is the motion

12



Figure 2.2: An illustration of our tracking approach with social grouping context: Tracklet colors
are ground truth and numbers are our social groupings. We optimize over tracklet-tracklet linkings
and tracklet grouping assignments to exploit global social grouping consistency.

dependency problem described in Figure 2.1.

[93] employs a CRF model to mitigate the motion dependency problem for single tracks,

by modeling motion dependencies among tracklet pairs (each node in the CRF is a pair of track-

lets, instead of a single tracklet). [12] uses a relaxation to the min-cost network flow framework to

explore higher-order smoothness constraints such as constant velocity. These models involve com-

plex solvers and still possess limitations as they only address the motion dependency problem for

single tracks: As shown in Figure 2.1, the likelihood of one track with sudden motion change might

depend on whether it is accompanied by a group member with a similar trajectory. Our method,

on the other hand, models such scenarios by design, can be built upon simple solvers, and naturally

helps higher-order tracking when coupling with social grouping information (modeled as a global

spatial-temporal clustering procedure, see Figure 2.2 for an illustration).
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Multi-camera multi-target tracking. Multi-camera systems are ubiquitous, and a reliable

multi-camera tracking system allows wide-area scene understanding. Researchers typically employ

spatial-temporal and appearance cues to handover targets across cameras [99]. For spatial-temporal

information, [43] uses a Parzen window density estimator to jointly model the inter-camera travel

time intervals, locations of exit/entrances, and velocities of objects. [56] proposes an unsupervised

learning method to validate the camera network model. In terms of appearance similarity, [43]

shows that the Brightness Transfer Function (BTF) between cameras lies in a low dimensional sub-

space and proposes a method to learn them with labeled correspondences. A cumulative brightness

transfer function (CBTF) is proposed by [68] for mapping color between cameras using sparse

training set. [45] use Multiple Instance Learning (MIL) to learn a discriminative appearance affinity

model online. [27] evaluates several BTFs and shows that they demonstrate similar behaviors and

limitations. The vast literature on person re-identification focuses on modeling appearance cues

only [3] [4] [5]. Our work, on the other hand, is the first to explore social grouping for the multi-

camera tracking problem, which is more robust to changes in camera characteristics, viewpoints,

and illumination conditions.

Head pose estimation. Head pose and gaze estimation is a long-studied area in computer

vision and human computer interaction (HCI). It enables various applications such as human at-

tention tracking and area or object of focus detection [57][2]. Most work focuses on head image

classification where images possess reasonable resolutions and face landmarks are visible. [60]

gives a review on diverse approaches towards this problem. Recent advances in this area include

using part-based models [101] and integrating complementary features (visual and temporal) [25].

In this work, we focus on head pose estimation in the common high-angle surveillance video, also
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known as head direction estimation [18] and coarse gaze estimation [9]. Compared to traditional

pose estimation work, the visual features of head images are usually very weak given their small

sizes, thus methods requiring face landmarks are not applicable. This problem is usually modeled

as a regression problem (though discretized classes sometimes serve as an intermediate step, due to

the easiness of dealing with discrete labels over real-valued angles [18] [76]; our work follows this

approach), where the angle difference between prediction and annotation, instead of classification

accuracy, is measured, because of the difficulty of accurate class labeling [24] and the contiguity

of nearby classes/angles in the feature space. Most work still focuses on feature extraction and

estimation based on head images alone: [76] explores skin color feature. [85] explores covari-

ance features. The histogram of gradients (HoG) [22] is popular recently [9][18]. Support Vector

Machine (SVM), SVM Regressor, Neural Network, Decision Trees, and Nearest Neighbor classi-

fiers are among classifiers/regressors applied [85][76][63]. The recent representative work by [9]

employs structured learning, proposing a CRF for head pose estimation. [17] employs spectral

clustering for scene adaptation. [18] couples head direction estimation with body pose in a gen-

eral kernel learning framework. However, all these existing work only consider single images or

individuals, without using much information that goes beyond the weak image values. We consider

general social tendencies beyond individuals as high-level contextual information.

Group discovery. Social discovery has also drawn much attention in the computer vision

community recently [91][34][16][80]. [34] infers social groups given a tracking result. By contrast,

we perform grouping and tracking jointly. [16] uses attention cue to help discovering groups, while

we perform grouping first to aid head pose estimation. This is because we note that in challenging

scenarios, head pose estimation can be more difficult than group discovery ([34] also notes that
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trajectory information alone is enough to yield substantial agreement with human annotations for

the grouping task).

Socially-aware computer vision. Social context has been explored in a number of com-

puter vision problems. For tracking, [65] proposes a more effective dynamic model based on social

information. [66] and [91] infer grouping for better trajectory prediction and behavior prediction

respectively. [6] and [92] focus on tracking groups. Ours is the first to consider social grouping

context for the data association-based multi-target tracking and head pose estimation problem.

2.2 Social Grouping for Multi-target Tracking and Head Pose Estima-

tion

We first introduce our notation and the probabilistic formulation of utilizing social group-

ing for multi-target tracking and head pose estimation as two maximum a posteriori (MAP) prob-

lems.

2.2.1 Notation

The input of our system is a set of n tracklets (possibly including false alarms) τ =

{τ1, τ2, . . . , τn} within a time interval [0, T ], extracted by methods described in Section 2.5.2.

Each tracklet τi is a sequence of short descriptions of a single target across the time interval [tstarti ,

tfinishi ]. Such descriptions include the position and size of target (for the tracking problem), and the

position and size of the pedestrian head (for the head pose estimation problem). In particular we let

ai(t) be the camera (discrete camera labels) and li(t) be the position (discrete pixel coordinates in

the image) of τi at time t. We abuse li(t) to denote both pedestrian and head positions.
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The task of multi-target tracking is to determine which tracklets correspond to the same

target, which can be represented as a binary correspondence matrix φ:

φij =


1 if tracklet j immediately follows tracklet i,

0 otherwise,

(2.1)

with the added constraints that
∑

j φij = 1 and
∑

i φij = 1, indicating each tracklet should only

follow and be followed by one other tracklet (except for the first and last tracklets of each track,

addressed by virtual starting and ending tracklets in Section 2.3.4). We let Φ be the set of valid

correspondence matrixes.

For social grouping evaluation, we model it as a clustering problem and assume people

form K groups, where K is unknown. Within each group, there is a group mean trajectory (a se-

quence of image coordinates) Gk, with G = {G1, G2, . . . , GK}. ψ denotes a binary social grouping

assignment matrix:

ψik =


1 if tracklet i is assigned to group k,

0 otherwise.

(2.2)

Again there is an added constraint that
∑

k ψik = 1 and we let Ψ be the set of valid social grouping

matrixes.

For group head pose estimation, we will process each group independently at every time

point so we drop the time stamp here. Let C denote the number of individuals in a group, Y denote

the head directions of everyone in the group, Υ denote the head directions of all head images in

the scene, X denote any existing unary evidence for individuals (such as image values or walking

direction; there are M such features), and L denote the pedestrians’ head locations. Let yj and lj

17



be the head direction and location of the jth person, and xij be the ith unary evidence for the jth

person. Thus Y = {y1, . . . , yC}, L = {l1, . . . , lC},Xi = {xi1, . . . , xiC}, andX = {X1, . . . , XM}.

Information of X and L can be extracted from tracklet descriptions.

2.2.2 The Probabilistic Model Formulation

The inference of tracking, group discovery, and head pose estimation given inputs can be

modeled as two maximum a posteriori (MAP) problems:

(φ∗, ψ∗, G∗) = arg max
φ∈Φ,ψ∈Ψ,G

P (φ, ψ,G|τ) (2.3)

and

Υ∗ = arg max
Υ

P (Υ|φ, ψ,G, τ). (2.4)

In our work, the input to the second problem is the output of the first problem. Thus a single

forward filtering of these two steps would output all desired information (tracking, group discovery,

head pose estimation).

2.3 Coupling Social Grouping with Multi-target Tracking

We model the first MAP problem, P (φ, ψ,G|τ), as

P (φ, ψ,G|τ) ∝ P (φ, ψ,G, τ)

= P (G) P (τ, ψ|G) P (φ|τ, ψ,G)

= P (G) P (τ, ψ|G) P (φ|τ, ψ),

(2.5)
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assuming group trajectories do not affect tracklet linking given grouping assignments. Next we

explain each component of this model and the optimization algorithm.

2.3.1 Social Grouping as K-means Clustering

P (τ, ψ|G) is the data likelihood function of the probabilistic interpretation of clustering

algorithms such as K-means clustering. We have

P (τ, ψ|G) ∝
∏

i,k|ψik=1

P (τi|Gk), (2.6)

assuming trajectories for each individual are independent from each other given group mean trajec-

tories (a similar assumption is made in general K-means clustering). P (τi|Gk) is the likelihood that

tracklet i comes from group k, which we decompose across time as

P (τi|Gk) =

tfinish
i∏
t=tstarti

P (ai(t)|Gk) P (li(t)|ai(t), Gk). (2.7)

P (ai(t)|Gk) is the probability that group k appears at camera ai(t), a parameter of the model for

group k which we denote as bk,a(t). P (li(t)|ai(t), Gk) is the probability that at time t, a member

of the group in camera ai(t) will appear at position li(t), which we model as a Gaussian centered

around the mean uk,a(t), the position for group k in camera a at time t, also a parameter of the

model for group k. We use a fixed variance for all such Gaussians.

Notice that here we provide a general formulation for the multi-camera scenario. When

it is the single-camera case, Equation 2.7 can be significantly simplified (P (ai(t)|Gk) can be

dropped).
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2.3.2 Socially Constrained Multi-target Tracking

P (φ|τ, ψ) measures the probability of tracklet linking (or track handover in the multi-

camera case) given the social group information. Compared to traditional tracking methods, this

adds a group constraint that if two tracklets are linked (they are the same person), they belong to the

same group (one group per person):

P (φ|τ, ψ) =
∏

i|∀m,φm,i=0

Pinit(τi)
∏

j|∀m,φj,m=0

Pterm(τj)
∏

i,j|φi,j=1


Plink(i, j) if ∀k, ψi,k = ψj,k,

0 otherwise.

(2.8)

where Pinit(τi) is the likelihood of τi being an initial tracklet, and Pterm(τj) the likelihood of τj

being the last tracklet. Plink(i, j) is the likelihood that tracklet j is the first instance following

tracklet i. These probabilities are the affinity model; any standard cues from the literature can be

used (see Section 2.5.3).

2.3.3 A Simple Social Group Model

We model the probability of social groups as

P (G) ∝ e−κ|G|, (2.9)

penalizing large numbers of social groups to avoid overfitting (such as placing each person in a

separate group). Note that other heuristics are also applicable. Our choice is intuitive and results in

a simple linear penalty in the optimization space, with its effectiveness validated in experiments.
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2.3.4 Joint Optimization of Social Grouping and Multi-target Tracking

This section introduces the joint optimization of tracking and social grouping (P (G),

P (τ, ψ|G), and P (φ|τ, ψ) in Equation 2.5) as a constrained nonlinear optimization framework,

which we call SGB (Social Grouping Behavior) algorithm.

We first reformulate the joint optimization of social grouping and multi-target tracking in

the negative log space and achieve clean formulations. Then we introduce an effective optimization

framework that can result in simple existing methods.

Optimization Reformulation

We perform the joint optimization of tracking and social grouping in the negative log-

likelihood space (a minimization problem). Ignoring an additive constant from the proportionality

in Equation 2.9,

− lnP (G) = κ|G|. (2.10)

This term is in charge of selecting the number of groups and serves as the outer loop of optimization.

Ignoring a similar additive constant, for P (τ, ψ|G) (Equation 2.6), we have − lnP (τ, ψ|G) =∑
i,k|ψik=1D(τi, Gk) =

∑
i,k|ψik=1

tfinish
i∑
t=tstarti

−α ln bk,ai(t)(t) + β
∣∣li(t)− uk,ai(t)(t))∣∣2 (2.11)

from Equation 2.7 whereα and β are weights relating to the variance of the Gaussian. For simplicity,

we define D(τi, Gk) to be the “distance” of tracklet i from group k as above. In the single-camera
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case, the distribution bk,a(t) is degenerate and drops out of the equation:

∑
i,k|ψik=1

tfinish
i∑
t=tstarti

β
∣∣li(t)− uk(t))∣∣2. (2.12)

P (φ|τ, ψ) (Equation 2.8) can be transformed to an assignment problem by defining a

2n× 2n tracklet linking matrix

H =

 H link
n×n Hterm

n×n

H init
n×n ∞n×n

 (2.13)

withH link
i,j = − lnPlink(i, j),H init

i,i = − lnPinit(τi),Hterm
i,i = − lnPterm(τi) and infinity (− ln 0)

elsewhere. The augmentation can be treated as setting a threshold on the maximum value of H link
i,j

when φi,j = 1. Two very dissimilar tracklets might be linked by only using the H link matrix

(consider the case in which one person exits the scene, and another person with very different

appearance enters the scene after that), but they will be linked to the virtual starting/ending tracklets

in the augmented matrix, thus resulting in two different output tracks. Equation 2.8 is 0 if any

assignments violate the constraint that linked tracklets must be in the same social group. Therefore,

if we add this as a constraint: ∀i, j, k φi,j(ψi,k − ψj,k) = 0, the resulting equation can be written in

terms of H:

− lnP (φ|τ, ψ) =
∑
i,j

φi,jHi,j (2.14)

Our optimization’s outer loop tries different numbers of social groups (P (G)). Inside

(optimizing P (τ, ψ|G) and P (φ|τ, ψ)), we can drop Equation 2.10 and minimize the sum of Equa-
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tion 2.14 and Equation 2.11 with the above constraint:

arg min
φ∈Φ,ψ∈Ψ,G

∑
ij

φi,jHi,j +
∑
ik

ψi,kD(τi, Gk)

s.t. ∀i, j, k φi,j(ψi,k − ψj,k) = 0.

(2.15)

We call Equation 2.15 the primal problem.

A Two-stage Alternating Minimization Algorithm

We use a two-stage iterative alternative optimization algorithm to solve the constrained

nonlinear optimization problem in Equation 2.15. The Lagrangian is

L(φ, ψ,G, µ) =
∑
ij

φi,jHi,j +
∑
ik

ψi,kD(τi, Gk) +
∑
ijk

µijkφi,j(ψi,k − ψj,k), (2.16)

where the µs are the Lagrange multipliers. The dual of this problem is

max
µ

q(µ)

where q(µ) = min
φ∈Φ,ψ∈Ψ,G

L(φ, ψ,G, µ).

(2.17)

The resulting correspondence φ of the optimization is the output of the method. For a fixed µ, let

(φµ, ψµ, Gµ) = arg min
φ∈Φ,ψ∈Ψ,G

L(φ, ψ,G, µ). (2.18)

To solve Equation 2.17, we use a quasi-Newton strategy with limited-memory BFGS
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updates and Wolfe line search conditions guided by the subgradient [78]:

∂q

∂µijk

∣∣∣∣
µ

= φµi,j(ψ
µ
i,k − ψ

µ
j,k). (2.19)

To calculate the subgradient, we use a two-stage block coordinate-minimization algorithm

to solve Equation 2.18. The first stage minimizes over φ (the tracklet correspondence result) from

Equation 2.16 with ψ and G fixed:

φµ = arg min
φ∈Φ

∑
ij

φi,j [Hi,j +
∑
k

µijk(ψi,k − ψj,k)]. (2.20)

This amounts to adding a penalty term to the matrix scores (compare with Equation 2.14). So

Equation 2.20 is a standard assignment problem and can be efficiently solved by the Hungarian

algorithm (or any algorithm designed for tracklet linking).

The second stage minimizes Equation 2.16 over ψ and G, with φ fixed: (ψµ, Gµ) =

arg min
ψ∈Ψ,G

∑
ik

ψi,k[D(τi, Gk) +
∑
j

(µijkφi,j − µjikφj,i)]. (2.21)

This amounts to a standard K-means clustering problem. If the “centers,” G, are fixed, the as-

signments, ψ, are made to minimize the augmented distance. When the assignments are fixed, the

centers can be placed to minimize their distances to the captured points. Several initial group assign-

ments are tried, as K-means converges to local minimum. The output of the one with the minimum

value for Equation 2.17 for one specific |G| is maintained. At the end, we add the linear penalty of

|G| indicated by Equation 2.10 and the outer loop (over |G|) selects the solution with the minimal
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negative log-likelihood score. See Algorithm 1 for details.

Our method can be viewed as approximate max-product on the graph G − ψ − φ (in

which the constraint forms the potential between ψ and φ). Direct variable elimination does not

work, as it would require transmitting a distribution over all tracklet-tracklet-group triples. Dual

decomposition [82] also results from a Lagrangian formulation, but is different from ours. We

employ combinatorial optimization methods inside of max-product (our K-means and Hungarian

algorithms) which has been explored in other max-product formulations [29].

Algorithm 1: SGB Algorithm
Data: Tracklet set τ
Result: Tracking φFinal, Grouping ψFinal

1 for K ← 1 to Km do
2 for i← 1 to N do
3 µ← 0, φK,i ← 0
4 initialize ψK,i and GK,i randomly
5 while Not local maximum for Equation 2.17 do
6 µ← subgradient ascent: Eqs. 2.18 and 2.19
7 while φK,i or ψK,i changes do
8 Update φK,i: Equation 2.20
9 while ψK,i changes do

10 Update ψK,i: Equation 2.21
11 Update GK,i according to ψK,i

12 CostK,i ← primal cost (φK,i, ψK,i, GK,i): Equation 2.15
13 (K∗, i∗)← arg minK,iCost

K,i + βK

14 φFinal ← φK
∗,i∗ , ψFinal ← ψK

∗,i∗

2.4 Socially-aware Head Pose Estimation

This section introduces the estimation of head poses given grouping information and

tracking result (P (Υ|φ, ψ,G, τ)). We formulate this problem as inference in a Conditional Ran-

dom Field (CRF). We then discuss how we build the social interaction factor, as the binary factor
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in the CRF. We further provide exact convex learning and inference procedures, based on existing

standard learning and inference algorithm for CRF.

2.4.1 A Conditional Random Field Formulation

P (Υ|φ, ψ,G, τ) is the probability of head pose labeling in the video. In this work, we

model the head poses of a group as a generative graph labeling1 problem for each group at each

time instance:

P (Υ|φ, ψ,G, τ) = P (Υ|φ, ψ, τ) =
∏
k

P (Yk|Xk, Lk), (2.22)

assuming group mean trajectories do not affect head pose estimation given grouping assignments.

Concentrating on a single group (one P (Yk|Xk, Lk) term), we drop the k subscript. By assuming

a uniform prior on head poses, each evidence source is independent given the head pose, and each

unary evidence (x) only depends on the person’s head pose (y), we have

P (Y |X,L) =
1

Z
P (Y,L)

∏
i

∏
j

P (yj |xij), (2.23)

with Z being a normalization constant. We model pairwise social tendencies in the group for

P (Y,L). This problem can be modeled as a CRF as shown in Figure 2.3. By using a log-linear

model and ignoring the normalization constant, we get

lnP (Y |X,L) ∝
∑
i

〈
wi1,Λ

i
1(Xi, Y )

〉
+ 〈w2,Λ2(Y,L)〉

= 〈w,Λ(X,Y, L)〉 ,

(2.24)

1We use label and head pose direction interchangeably.
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where

Λi1(Xi, Y ) =
∑
j

λi1(xij , yj). (2.25)

and

Λ2(Y, L) =
∑
j1≺j2

λ2(yj1 , yj2 , lj1 , lj2). (2.26)

≺ is an ordering: we enumerate all unique pairs in a group. The subscript in λ2 denotes a pairwise

term. λ2(·) is the feature vector for a pair of people that jointly models head pose labeling Y and

locations L, with details described in Section 2.4.2, w2 is the weight vector for these features, and

〈·, ·〉 is the dot product. Evidence from unary factors (i.e. λ1 and Λ1) is represented similarly.

Λ(X,Y, L) is the feature vector composed of features from Λ2 and Λi1 for all i (from 1 to M ). w

is a vector of parameters to be estimated (composed of the weights from w2 and wi1 for all i). This

formulation allows exact convex learning with closed-form gradient and exact brute-force based

inference, as in standard CRF formulations.

2.4.2 Building Group Interaction Models

We study the pairwise head pose interaction patterns in social groups for Equation 2.26,

which is key for using social grouping information to improve head pose estimation performance.

We define the structure-aware head pose angle difference as illustrated in Figure 2.4. We will use

SA(j1, j2), short for SA(yj1 , yj2 , lj1 , lj2), to denote this angle between the head directions of person

j1 and j2. This angle takes into account the relative positions of the two people. Using structure

information allows us to differentiate between social attraction and divergence when the absolute

angle difference is the same. Given social groups, we collect such angle differences from only 200
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Figure 2.3: A factor graph showing how variables and cliques interact in the CRF. A graph of three
head images and only two unary features are shown for simplicity. If there are more people in a
group or more unary features, this graph can be straight-forwardly augmented.
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Figure 2.4: Structure-aware head pose angle difference. Nodes are head images and dark blue
arrows are head directions. Relative positions within group members are considered. The difference
is simply β − α. A positive number implies social attraction.
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Figure 2.5: Two social interaction modes with structure-aware head direction angle difference. Left:
dynamical social interaction mode, fitted with two exponentials on either side of 0 degree. Right:
static social interaction mode, fitted with two Gaussians on either side of 90 degrees. The specific
distributions (exponential and Gaussian) are chosen due to their expressive power in this application
and simplicity to express in the negative log space. The fitted distributions are rescaled and are for
illustration only; their actual parameters are learned from training data.

pedestrian pairs from training data (the model data), identify two modes by thresholding velocity (a

dataset dependent parameter in pixel/frames similar to that in [17]), and build the histograms shown

in Figure 2.5.

The resulting histograms are intuitive: (1) As shown in Figure 2.5 (left), when people

walk, they tend to look in the same direction (where they are heading generally or where an object

of interest is), but there is more social attraction than divergence, as people tend to make eye contact

with each other. We choose to model it with two exponential distributions on both sides of zero

degrees. (2) As shown in Figure 2.5 (right), when people are relatively stationary, they tend to look

directly at each other (angle difference around +180 degree), or be attracted to common objects of

interest (around 0 degrees, for example, when people scan shop windows). Though this is arguably a

mixture of Gaussian, we model it with two Gaussians, separating at 90 degrees, for simplicity. The

goal of learning is then to learn the rates of the exponentials and variances of Gaussians (feature
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weights in the negative log space).

These general forms can be converted into features so that the weights in Equation 2.26

correspond to the rates and variances above. Given the group head pose interaction models, the

feature vector of dynamical interaction mode for two head images (two exponentials on either side

of 0 degree) is λmoving2 (yj1 , yj2 , lj1 , lj2) =

 |SA(j1, j2)| I[SA(j1, j2) > 0]

|SA(j1, j2)| I[SA(j1, j2) < 0]

 . (2.27)

I[·] is the indicator function indicating the submode of social interaction for the pair j1 − j2. If the

mode is off, the corresponding feature is 0.

The feature vector of the static interaction mode is λstatic2 (yj1 , yj2 , lj1 , lj2) =

 (SA(j1, j2)− 180)2 I[SA(j1, j2) > 90]

(SA(j1, j2))2 I[SA(j1, j2) < 90]

 . (2.28)

Similar to the feature vector in Equation 2.27, these two features indicate which Gaussian submode

is active and the corresponding feature value.

The dynamical interaction feature and static interaction feature can be unified as Λ2(yj1 , yj2

, lj1 , lj2) =

 λmoving2 (yj1 , yj2 , lj1 , lj2) I[moving]

λstatic2 (yj1 , yj2 , lj1 , lj2) I[not moving]

 . (2.29)

For example, if people are moving (estimated from tracking result), the dynamical interaction (mov-
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ing) mode is on, and all features in λstatic2 become 0. When people are relatively static, the dynam-

ical interaction (moving) mode is off.

2.4.3 CRF Parameter Learning

Our CRF modeling allows exact convex discriminative learning. Note that we are inter-

ested in a regression problem, as the loss function models angle difference. However, using discrete

and fine (32 bins) class labels make exact learning possible.

Let X(m) denote all unary features, L(m) denote head locations, and Y (m) denote the

ground-truth labeling of group instance m. Further, let Λ(m)(Y ) = Λ(X(m), Y, L(m)); thus Λ(m)

(Y (m)) = Λ(X(m), Y (m), L(m)) indicates a ground-truth feature-label configuration from training

data. We conduct discriminative learning [84] of P (Y |X,L) in the negative log space. Given N

training examples, each of which is a graph labeling and related features, the objective function of

training is

g(w) =
1

N

N∑
m=1

ln
∑
Y

(
P (Y |X(m), L(m))

P (Y (m)|X(m), L(m))
el(Y

(m);Y )

)
+
γ

2
||w||2, (2.30)

where l(·; ·) is the loss function for a group:

l(Y (m);Y ) =
∑
j

l
′
(y

(m)
j ; yj). (2.31)

l
′
(·; ·) ∈ [0, 180] is the absolute difference between two directions. γ

2 ||w||
2 is a regularization term

to avoid overfitting (γ is set via cross-validation in training).
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After we apply Equation 2.24, the objective function becomes

g(w) =
1

N

N∑
m=1

ln
∑
Y

Γ(m)(Y ) +
γ

2
||w||2 (2.32)

where Γ(m)(Y ) = el(Y
(m);Y )−〈w,Λ(m)(Y (m))−Λ(m)(Y )〉, (2.33)

Equation 2.32 is convex with gradient

γw − 1

N

N∑
k=1

∑
Y Γ(k)(Y )(Λ(k)(Y (k))− Λ(k)(Y ))∑

Y Γ(k)(Y )
. (2.34)

Since the objective function and gradient are explicit, minimization can be done exactly with any

convex programming package, and we again use the one from Schmidt [78].

The complexity is O(QC), where Q is the number of quantized head pose directions and

C is the number of people in a group. Sociology research [59] shows that in natural scenes, people

generally form groups of fewer than 6 people. This is also validated in the dataset we use. If the

scene is really crowded (such as a Marathon event), large groups can be divided into smaller ones,

or our model is not suitable since social interaction can be quite noisy in such cases. Running time

is discussed in Section 3.5.

2.4.4 Head Pose Estimation Inference

Given model parameters (feature weights learned in the previous section), we perform

head pose estimation inference by outputting

arg max
Y

〈w,Λ(X,Y, L)〉 , (2.35)
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which is the maximization of the log of P (Y |X,L).

We use a brute-force approach to try all combinations of head directions for exact infer-

ence. The complexity is the same as learning, with tractability discussed above.

2.5 Details on Lower-level Tasks

Our framework for tracking and head pose estimation is general in that it can be built upon

different choices of lower-level components, such as tracklet extraction methods, features to build

the tracklet affinity matrix, and unary features used for head pose estimation. We give details of our

choices for implementation.

2.5.1 Parameter Estimation for Tracking

Parameters for tracking and group discovery include the feature weights for tracking,

and κ for group number selection. They are estimated by a coarse grid search in the first time

window in each dataset, and are fixed afterwards. In practice, feature weights are first selected for

tracking without social grouping. Then κ is selected by a simple binary search after adding the

social grouping term.

2.5.2 Tracklet Extraction

Our framework only requires the tracklet extraction method employed to be reliable (com-

monly assumed in the literature). Namely there should be few within tracklet identity switches. In

order to perform comparative experimental evaluation, when tracklets from authors of published

work are available, we use them. Otherwise we build our tracklet extraction framework based on
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human detection responses, combining nearest neighbor association and template matching to ex-

tract conservative tracklets. Given detection responses, we link detection response pairs only at

consecutive frames which have very similar color, size and position. Additionally, the newly added

detection must be similar to the first detection in the tracklet, thus avoiding within-tracklet identity

(ID) switches caused by gradual changes. We find this simple strategy produces almost zero ID

switches within tracklets and good recall performance.

2.5.3 Basic Affinity Model

Social grouping behavior regularizes the tracking solution and alleviates the need for a

highly tuned affinity model. However, the basic affinity model must produce reasonable measure-

ments, Hi,j . For both single-camera and multi-camera tracking, we build the basic affinity model

using appearance (app) cues and spatial-temporal (st, usually referred as motion in single-camera

tracking) cues:

− lnPlink(i, j) = − ln pappi,j − ln psti,j . (2.36)

For single-camera tracking, we use the Bhattacharyya distance between the average color

histograms within the tracklets [81]. We employ the HSV color space and get a 24-element feature

vector after concatenating 8 bins (uniformly discretized) for each channel. A smaller value indicates

more similar appearances between a pair of tracklets. The motion model is a simple linear motion

smoothness measure [52]. For a pair of tracklets, we do a forward extrapolation based on linear

motion for the earlier tracklet, and measure the image distance between the prediction at the starting

time of the later tracklet and the actual starting position of the later tracklet. A similar backward

extrapolation is done for the later tracklet. We use the average of the two distances as the motion
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feature.

Though simple, color histogram and the linear motion smoothness measure work well in

practice. In [52], the authors use boosting algorithms to get feature weights for a pool of various

features, and find color histogram and linear motion smoothness are picked with top-valued weights.

There could be many alternatives for the basic affinity model. For example, appearance features

from the person identification literature can be used [47]. Recently, nonlinear motion smoothness

models have been explored in the tracking literature [95].

For multi-camera tracking, we use the BTF model and the Parzen window technique for

spatial-temporal information in [43]. The BTF model is achieved by learning a one-to-one map-

ping between pixel values for each pair of cameras through annotated pairs of ground-truth color

histograms (those belong to the same target in different cameras). In testing, the color histogram

in one camera is first mapped to that in the other camera through the learned mapping functions,

then the distance between color histograms is calculated. For spatial-temporal features, a Parzen

window technique is used to estimate the distribution of travel time, entry and exit positions, and

exit velocity between each pair of cameras through annotated correspondences. In testing, given a

pair of tracklet, the spatial-temporal feature can be extracted by comparing the testing statistics with

the learned distributions. Pinit(Ti) and Pterm(Ti) are set to be a single constant (from training) for

simplicity. There is also the time constraint that tracklet linking is only possible when tracklet j

takes place later than tracklet i and within a maximum allowed frame gap tmax.

2.5.4 Spatial-temporal K-means Clustering

We describe how to implement the two steps of K-means clustering: group update (with

group assignments given) and tracklet assignment (with group parameters given).
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Recall that we modeled the group mean trajectory for Gk as, at each time t, a distribution

over which camera a member of the group appears in, bk,·(t), and a mean position within each

camera a that a group member would appear, uk,a(t). Track assignment (finding ψ given a fixed G)

is simple: for each tracklet τi, compute D(τi, Gk) from Equation 2.11 for each group Gk and select

the one that minimizes the negative log-likelihood.

For the update of Gk with the assignment ψ fixed, we must find the parameter assign-

ments to bk,· and uk,· that maximize the likelihood. The log-likelihood is a sum across time, so

the maximization can be done independently at each time point. bk,a(t) is a multinomial parameter

and therefore its maximum likelihood estimate is proportional to the number of tracklets that are

assigned to group k at time t in camera a.

uk,a(t) is the conditional mean for group k at time t in camera a. Therefore, its maximum

likelihood parameter is the average position of all tracks assigned to group k at time t in camera

a. If at any point there are no tracklets for group k and camera a, we use linear interpolation or

extrapolation to generate a mean. If no tracklets in camera a are ever assigned to group k, we place

uk,a(t) in the middle of the image for all t.

2.5.5 Unary Terms in CRF

Features from existing work can be used to construct unary features in our head pose

estimation framework. We use two unary features. First, walking direction is shown to be effective

in some datasets. As proposed by [9] and validated in our work, head pose direction is distributed

approximately as a Gaussian with the walking direction as the mean. Thus in our negative log-
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likelihood framework, the unary feature of walking direction is

λwalking1 (yj , x
walking
j ) = (yj − xwalkingj )2. (2.37)

We also build a two-level HoG vector to model visual features of head images, following [18]. Then

we train a multi-class SVM with probability estimates [88]. Besides predicting labels, this allows

us to estimate the probability of a visual vector belonging to each class. In this way, we have

λHoG1 (yj , x
HoG
j ) = − logP (yj |xHoGj ). (2.38)

where − logP (yj |xHoGj ) can be directly obtained from the output of an SVM classifier with prob-

ability estimates. Any existing work that has a valid probabilistic meaning can be used here.

2.6 Summary

We show a general framework of coupling the novel social grouping context with im-

portant computer vision tasks including multi-target tracking and head pose estimation. Certain

sub-components in our framework are naturally coupled and thus can be joint optimized. We then

provide effective solvers for those components based on nonlinear optimization and conditional

random field.

37



Chapter 3

Experiments on Social Grouping for

Multi-target Tracking and Head Pose

Estimation

We conduct comparative experiments with recent related methods on publicly available

datasets for tracking, head pose estimation, and group discovery. Experimental results clearly show

the benefits of utilizing social grouping context. The datasets we use is summarized in Table 3.1

Table 3.1: Datasets used for each task in the experiments.

Task Datasets
Multi-target Tracking PETS 2009, CAVIAR, TUD
Multi-camera Tracking VideoWeb
Head Pose Estimation PETS 2009, CAVIAR, TownCentre
Group Discovery PETS 2009, PSUHub, TownCentre
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Table 3.2: Comparison of the tracking result on the CAVIAR dataset: 75 ground truth (GT) tracks.

Method Recall Prec. MT ML Frag IDS
Particle filter [81] 55.7% 60.4% 53.3% 10.7% 15 19
Basic affinity 81.1% 82.7% 77.3% 6.7% 9 12
MCMC [81] 84.5% 90.7% 84.0% 4.0% 6 8
SBM [98] − − 85.3% 4.0% 7 7
Our SGB 90.1% 95.1% 88.0% 2.6% 5 6

3.1 Single-camera Tracking Evaluation

We first evaluate how modeling social grouping behavior helps to improve single-camera

multi-person tracking on the CAVIAR Test Case Scenarios dataset [13]. We use the videos se-

lected by [81], consisting of 12308 frames for about 500 seconds. We retrieve tracklets from the

same authors and use the same evaluation metrics as [52]: the number of ground truth trajectories

(GT), mostly tracked trajectories (MT), mostly lost trajectories (ML), fragments (Frag), ID switches

(IDS), and recall and precision for detections. A comparison with several published results under

the same configuration is shown in Table 3.2. Our basic affinity model achieves reasonable results,

while better results than competing methods can be achieved by employing our social grouping

model with the simple affinity model.

Figure 3.1 shows representative cases of the strong grouping information that allows us to

improve tracking performance.

We further compare our model on the popular PETS 2009 and TUD-Stadtmitte datasets

against a number of state-of-the-art methods using the same evaluation metrics. We obtained the

publicly available detection results, ground truth data, and automatic evaluation tool from the au-

thors of [95]. In addition to the former metrics, we also report the false alarm rate (FAF) for detec-
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Frame 890 Frame 950 Frame 980 Frame 1010
(a) Even under heavy occlusions and interactions, the usual identity switch of 2 and 10 is avoided.

Frame 510 Frame 1245 Frame 1650 Frame 1682
(b) Long-term tracking of the couple (20,21) is possible under challenging conditions:

small target, illumination change (frame 510), and false detection (frame 1245).

Frame 1127 Frame 1147 Frame 1200 Frame 1320
(c) The baseline model labels 12 and 6 as the same person. Our model identifies a new track.

Figure 3.1: Some representative tracking results for CAVIAR dataset.

tions, and partially tracked trajectory ratio (PT) from the evaluation tool. In Table 3.3 and Table 3.4

we can see that our model outperforms several state-of-art methods, even though our model is built

upon a simple basic affinity model. On the other hand, competing methods either solve complex

optimization problems ([58] introduces six types of jumps in the optimization space) or build so-

phisticated affinity models ([47] uses appearance features from the person identification literature).

Of particular interest, for the PETS 2009 dataset, pedestrians were asked to travel across the scene

multiple times. Even in such a scenario they formed groups and made social interactions, which is

utilized by our model to help tracking. An example is shown in Figure 3.2.
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Though there are heavy interactions between person 10 and person 15, social grouping context

from person 2 helps to recover an ID switch easily generated by existing methods.

Figure 3.2: One representative tracking result for PETS dataset.

Figure 3.3: Topology of the cameras in the experiments.

3.2 Multi-camera Tracking Evaluation

We test our method using two sets of videos on the publicly available VideoWeb dataset

[26]. We choose Cam27, Cam20, Cam36 and part of Cam21 (indexed by 1–4) to establish the

desired non-overlapping topology, shown in Figure 3.3. Multi-camera tracking in this setting is very

challenging for the following reasons. (1) We use 4 cameras, unlike most prior work that use 2–3.

(2) This is an outdoor dataset with a cluttered environment and severe within-camera illumination
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Table 3.3: Comparison of the tracking result on the PETS 2009 dataset.

Method Recall Prec. FAF GT MT PT ML Frag IDS
KSP [10] 83.8% 96.3% 0.160 23 73.9% 17.4% 8.7% 22 13
Energy Min [58] 92.4% 98.4% 0.070 23 91.3% 4.4% 4.4% 6 11
Online CRF [95] 93.0% 95.3% 0.268 19 89.5% 10.5% 0.0% 13 0
Nonlinear Motion [94] 91.8% 90.0% 0.053 19 89.5% 10.5% 0.0% 9 0
Our SGB model 97.2% 98.6% 0.077 19 94.7% 5.3% 0.0% 4 2

Table 3.4: Comparison of the tracking result on the TUD-Stadtmitte dataset.

Method Recall Prec. FAF GT MT PT ML Frag IDS
KSP [10] 63.1% 79.2% 0.650 9 11.1% 77.8% 11.1% 15 5
Energy Min [58] 84.7% 86.7% 0.510 9 77.8% 22.2% 0.0% 3 4
PRIMPT [47] 81.0% 99.5% 0.028 10 60.0% 30.0% 10.0% 0 1
Online CRF [95] 87.0% 96.7% 0.184 10 70.0% 30.0% 0.0% 1 0
Our SGB model 95.2% 98.5% 0.085 10 90.0% 10.0% 0.0% 4 3

change, which makes traditional methods that establish one single transformation between each

camera pairs, such as BTFs, much less reliable. (3) Since this dataset is mainly designed for complex

real-world activity recognition, there exist heavy interactions among individuals, unlike “designed”

tracking datasets (for example the one in the work of [43]).

We compare our proposed multi-camera social grouping behavior tracking (MulSGB)

to directly using the Bhattacharyya distance between RGB color histograms, Parzen window es-

timation for spatial-temporal information and the original color histogram for appearance (Parzen

Window) and the BTF plus Parzen window estimation framework (Parzen Window + BTF) in the

work of [43].

We gather 9 videos using all 4 cameras and 4 videos with camera 1–3. We use 5 videos

from the first set for training and all the other videos for testing (note the second set of videos

contains a subset of cameras of the first set so no additional training is needed). All other videos in

the dataset either had no inter-camera motion or were missing data for more cameras. The data used
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Figure 3.4: Percentage of correctly linked pairs on the four video sequences with four cameras. The
videos consist of 27, 5, 5 and 23 (60 in total) ground truth linked pairs respectively.
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Figure 3.5: Percentage of correctly linked pairs on the four video sequences with three cameras.
The videos consist of 17, 24, 9 and 14 (64 in total) ground truth linked pairs respectively.

have roughly 40,000 frames (25fps) for each of the four cameras for training and 80,000 frames for

each camera for testing. For detection, we use a state-of-art pedestrian detector [33] to get detection

responses and generate reliable intra-camera tracks using our introduced single-camera tracking

framework. The same set of tracks are used for all comparing methods. We hand-labeled ground

truth and measure the percentage of correctly linked pairs for the eight testing scenes (which consist

of 244 single-camera tracks in total). Figure 3.4 and Figure 3.5 show the results for each set of
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Frame 5809 (Cam 3) Frame 6222 (Cam 3) Frame 6295 (Cam 2) Frame 6689 (Cam 2)

Figure 3.6: Example tracking result with our model, where G indicates group number. Because
people form groups and show proximity to group members, social grouping provides powerful
contextual information to improve multi-camera tracking. Other methods tend to identify a new
person (Frame 6295 target 1) and output an identity switch (target 3 and 5) on this sequence, because
traditional evidences are unreliable.

videos.

We have the following observations. (1) Given the poor color histogram result, especially

for the four-camera setting (demonstrating the difficulty of the dataset), the overall performance

is good, as our MulSGB model indeed improves tracking performance over competing methods.

(2) The example in Figure 3.6 shows a representative example where social grouping helps track-

ing, while other methods fail under this challenging sequence. (3) Since our social grouping model

serves as a regularizer, the basic affinity model upon which we built social grouping model is some-

times a bottleneck. For example, we observe no improvement upon the baseline model for two

sequences in Figure 3.5. We observed that in such cases, although the optimization usually heads

toward a good solution, it could not recover wrong links since the basic model provides very un-

likely handover possibility between the correct pairs. For example, when the illumination condition

changes between the testing set and training set, the learned BTF may even hurt the performance

comparing to pure color histogram comparison, as is the case for video1 in Figure 3.5.
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Walking HoG HoG+Walking Social+HoG+Walking

(a) Our model provides finer head direction estimate even when walking direction is reliable.

(b) Our model helps to correct head direction estimations in social groups with multiple people.

Figure 3.7: Representative head direction estimation results for TownCentre. Red lines indicate
human-labeled head direction.

3.3 Head Pose Estimation Evaluation

We evaluate how social interaction improves head pose estimation in challenging videos,

using the TownCentre dataset [9], CAVIAR, and PETS 2009. We use mean absolute angle differ-

ence (MAAD) stated in degrees as the evaluation metric, as is commonly done in related work.

We quantized head pose into 32 directions, which is finer than most existing work (such as 8 di-

rections [18][76]). This helps alleviating errors from coarse quantization when comparing angles.

Competing methods that require discretization use the same setting.

We compare our method with models using visual features only (HoGSVM) and walking

direction only (Walking). We also compare our method with a model with both visual and motion

features. We call this model the BR (Benfold and Reid) setting [9]. Our implemented BR baseline

does not incorporate temporal information. However, the resulting CRF can be solved exactly.

We feel these two factors largely compensate each other as we get comparable results as those
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Walking HoG HoG+Walking Social+HoG+Walking

(a) Our model corrects head direction for small head images as people interact.

(b) One case that our model is not able to fully recover false estimations.

Figure 3.8: Some representative head direction estimation result for CAVIAR dataset.

by [9]. Temporal information might be incorporated in our framework if approximate inference

algorithms were applied. We also compare with two state-of-the-art methods: [63] builds a mean

image for each class and represent each image as a distance map to these references. We use our

own implementation with KL-Divergence as the distance measure (best reported measure in the

paper). [85] designs a new visual feature and have publicly available implementation. Note that

the small-sized head images make the comparison to landmark detection based work (e.g. [101])

impossible.

We use head images from people that are not in groups to train the multi-class SVM.

Note we only report results for people identified in groups. For people that are not identified in

groups, our model would output exactly the same result by using individual features alone. For the

TownCentre dataset, about 30% of the people are identified in groups. For PETS 2009, over 40% of

the people are in social groups. For the CAVIAR dataset over 60% are in groups.

We first use the TownCentre dataset to test our proposed method. This dataset has been
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Table 3.5: Comparison of the head pose estimation results on the TownCentre, CAVIAR and PETS
2009 dataset. Numbers are reported on MAAD.

Method TownCentre CAVIAR PETS
HoGSVM 31.20 28.80 32.64
Walking 23.89 72.01 58.28

DisMap [63] 33.12 30.20 31.54
WARCO [85] 31.12 25.70 28.65
BR Setting [9] 22.87 27.00 31.85

Ours 21.83 24.65 28.78

used in several recent papers. It involves people traveling in a shopping mall. Though this dataset

is treated as high-resolution video in the tracking literature, head images are small due to the high

camera angle. We use the result of head tracking from [9] and use our spatial-temporal clustering

procedure in Section 2.5.4 to determine groups. We manually label head directions for every 15

frames. Due to annotation differences, the angle differences are not directly comparable. But the

performance we get from our BR setting baseline implementation is comparable to that of [9], which

reports an MAAD of 23.90.

We gather 270 pairs of head images for this dataset. Whenever training is involved, 100

pairs are used for training and the others are used for testing. Since camera parameters are available

for this dataset, we evaluate performance on the ground-plane. The results for different methods are

shown in Table 3.5.

As stated by [9], we also observe that walking direction provides a very good baseline in

this dataset since most people are walking in the shopping mall. It can generate a better result than

using only visual features. But even in such scenario, our model improves upon the best non-social

method. As people walk together, their head directions tend to be attracted by other group members.
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Using social information regularizes out outliers that do not conform to such social constraints. Note

that the performance gain from our social model is as large as the gain from combining two non-

social information sources (comparing to using walking direction alone). We show two qualitative

examples in Figure 3.7.

We also compare performances on the CAVIAR dataset and PETS 2009 dataset. We

annotate 5 video sequences1 in CAVIAR and the entire PETS dataset at every 5 frames for head

locations and head direction manually to focus on head pose estimation. For CAVIAR we gather

241 pairs of data, 100 of which are used for training and the others for testing. For PETS we

gather 194 pairs of data and use half of them for training. Note for these two datasets we directly

assign person ID and group ID based on our tracking model. That is, we do not assume ground

truth identity or group member labeling and we evaluate head pose estimation performance in the

complete system.

Compared to the TownCentre dataset, head images in these two datasets are of lower

resolutions but possess lower variance because there are fewer people. CAVIAR involves more

people standing still; the static mode of our social interaction model is more frequently activated

and walking directions can be very noisy. People in PETS also show more freedom while walking

so walking direction is again not as reliable as that in TownCentre. For these two datasets, we

evaluate performance on the image plane.

We summarize the results in Table 3.5. The performance gains by incorporating social

context are more significant on these two datasets. They are much larger than the gain from com-

bining the two non-social information sources (comparing to using visual feature alone.) This is

because walking direction is often no longer a reliable feature and visual features are still weak.
1FightChase, MeetSplit3rdGuy, FightOneManDown, MeetWalkTogether1, FightRunAway1
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Yet, when people are relatively static, they tend to make more social contacts so our model helps

more. Also, when walking, pedestrians’ head direction severely deviates from walking direction,

such deviations are usually motivated by group members or objects of interest, which is modeled in

our formulation. We note that the reference-set based approach [63] does not perform very well due

to its classification (instead of regression) formulation and the sparsity of training data. Our model

performs comparatively with or better than the state-of-the-art method [85]. Some examples are

shown in Figure 3.8. We also show a case where our social model is not able to recover from false

head pose estimations: Figure 3.8(b). This is because our social model can be viewed as a regular-

izer, and it will not help much when the baseline model provides very bad evidence (for example,

assigning very low probability to the true label).

3.4 Group Discovery Evaluation

Group discovery is provided by the group assignment matrix of our model. The sim-

ple spatial-temporal clustering approach is robust as a global consistency measure, while existing

methods typically use features such as velocity, which can be unreliable with noisy detections or

standing-still people. We show that our group discovery component can produce reasonable result

compared to other designed approaches. The fact that our group discovery model is coupled with the

tracking process (while other methods typically assume and are built upon perfect tracking result)

makes our grouping approach more practical. When trajectories are available, the spatial-temporal

clustering approach can be directly applied. We evaluate both cases.

Following [34], we use the following evaluation method: Each pedestrian is coded into

one of two categories: alone or in a group. This is called the dichotomous coding scheme. A tri-
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chotomous coding scheme classifies each pedestrian into alone, in a group of two, or in a group of

three or more. Match rate indicates the percentage of persons that are classified correctly. Further-

more, to test the statistical significance of the agreement between the human annotations and the

output of the algorithm, Cohen’s Kappa test [49] is used. Kappa score ranges from −1 to 1, and

Landis and Koch [49] characterize values smaller than 0 as indicating no agreement and (0, 0.2]

as slight, (0.2, 0.4] as fair, (0.4, 0.6] as moderate, (0.6, 0.8] as substantial, and (0.8, 1] as almost

perfect agreement.

Since we are not aware of group discovery results or annotations on the datasets we con-

duct tracking experiments on, or any available implementations of relating work, we are not able to

conduct comparative experiments on these datasets. We thus annotate grouping in the PETS 2009

dataset. Our method produces 87% matching rate and a κ value of 0.75 for both dichotomous and

trichotomous coding scheme (there are no trichotomous groups in the ground truth.) 55 trajecto-

ries are identified in time windows of 100 frames. (The same person in different time windows are

treated as different persons [34].) We can achieve substantial agreement with human annotator on

this dataset. If we focus on predicted pairs of people in social groups, for the 11 groundtruth pairs,

our system achieves 91% recall and 71% precision.

We also compare our method with [16] on the Towncentre dataset. Since their imple-

mentation is not available, we report the same measure, group accuracy (whether two people are

in a group or not, compared with human annotation), as reported in the paper on the same dataset.

We achieve an accuracy of 78.2% while they report 81.8%. The results are comparable and their

method is based on the ground truth trajectories.

We further test our spatial-temporal clustering method against [34] on their publicly avail-
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Table 3.6: Comparison of the group discovery result on the PSUHub dataset.

Match Rate κ

dichotomous [34] 84% 0.74
trichotomous [34] 75% 0.63

dichotomous [ours] 83% 0.58
trichotomous [ours] 76% 0.49

able PSUHub dataset and compare with their results. The dataset provides 2476 pedestrian trajec-

tories in 177 time windows without images. We show the results in Table 3.6.

We achieve comparative matching rates to a method designed solely for group discovery.

Our model is inferior in terms of Kappa test, but we still get moderate agreement with ground truth.

Note that our model is very simple to implement with only one parameter (weight for group size

penalization, which is fixed across each dataset), while we are aware of at least four free parameters

in [34]. Also, our method tends to group strangers that follow common path. Such pragmatic social

groups still help tracking and head pose estimation. (Strangers may still follow common path, look

at where they are heading to, or look at common object of interest.) Furthermore, the coupling of

our clustering method with tracking makes it more practical when full trajectories are not available.

3.5 Running Time

We use a standard desktop and all our code is implemented in Matlab without specific

optimization or parallelization. For the tracking problem, given tracklets and the affinity matrix H ,

the running time of our optimization depends on the implementation of the second-order gradient

based method and scales with the number of tracklets. For the datasets in this paper, it takes 1 to 10

seconds to converge to a local maximum for each run on a time window. Though multiple runs with
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different random initializations are necessary to find a better optimum, our optimization is trivial to

parallelize for each run. For head pose estimation, our implementation for training takes about one

minute to converge to the global optimum with 100 pairs of data. Testing typically takes fewer than

5 seconds to finish (since no gradient descent is involved). Group discovery given full trajectories

takes less than one second for each time window for the PSUHub dataset.

3.6 Summary

We conduct extensive experiments to show that social grouping context helps tracking and

head pose estimation on diverse real-world video data. Our model can produce better or comparative

results when compared with state-of-art methods, though we do not rely on highly sophisicated low-

level visual features. Our social grouping model alone can also produce reasonable results based on

simple trajectory clustering.
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Chapter 4

Inference in Piecewise-constant

Conditional Intensity Models with

Application in Modeling Temporal

Context for Event Detection

In this chapter, we apply a state-of-art machine learning model, a Piecewise-constant

Conditional Intensity Model (PCIM), that models complex nonlinear non-Markovian dependencies

in event streams, for the task of event detection in video. We describe the PCIM model, and then

propose the first inference algorithm for PCIM that can answer general inference queries [70]. This

inference algorithm is applicable for any problems that can be modeled by PCIM. We show that

event localization and labeling in video could be modeled as the inference of high-level events, given

low-level visual observations on a PCIM learned from training data. We apply our new inference
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algorithm for this task and evaluate on real-world videos. We how that PCIM can learn meaningful

structures that model interesting temporal dependencied for the event detection task, which is among

the first to do so.

4.1 Related Work

We first describe related work in machine learning that models temporal dependencies. A

dynamic Bayesian network (DBN) [23] models temporal dependencies between variables in discrete

time. For systems that evolve asynchronously without a global clock, it is often not clear how

timestamps should be discretized. Health records, computer server logs, and social networks are

examples of asynchronous event data streams. For such systems, too slow a sampling rate would

poorly represent the data, while too fast a sampling rate makes learning and inference more costly.

Continuous-time models have drawn attention recently in applications ranging from so-

cial networks [28] [77] [53] [31] to genetics [21] to biochemical networks [35]. Continuous Time

Bayesian Networks (CTBN) [62] are homogeneous Markovian models of the joint trajectories of

discrete finite variables, analogous to DBNs. Non-Markovian continuous models allow the rate of

an event to be a function of the process’s history. Poisson Networks [72] constrain this function to

depend only on the counts of the number of events during a finite time window. Poisson Cascades

[79] define the rate function to be the sum of a kernel applied to each historic event, and requires

the modeler to choose a parametric form for temporal dependencies.

A PCIM defines the intensity function as a decision tree, with internal nodes’ tests map-

ping time and history to leaves. Each leaf is associated with a constant rate. A PCIM is able to

model non-Markovian temporal dependencies, and is an order of magnitude faster to learn than
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Poisson networks. Successful applications include modeling supercomputer event logs and fore-

casting future interests of web search users. While PCIMs have drawn attention recently [64] [87]

and have potential usage in a wide variety applications, there is no general inference algorithm.

Inference algorithms developed for continuous systems are mainly for Markovian models

(or specifically designed for a particular application). For CTBNs, there are variational approaches

such as expectation propagation [30] and mean field [21], which do not converge to the true value

as computation time increases. Sampling based approaches include importance sampling [32] and

Gibbs sampling [74] [75] that converge to the true value. The latter is the current state-of-the-art

method designed for general Markov Jump Processes (MJPs) and its extensions (including CTBNs).

It uses the idea of uniformization [36] for Markov models, similar to thinning [51] for inhomoge-

neous Poisson processes. We note that our inference method generalizes theirs to non-Markovian

models.

Event streams in video is a specific example of event streams in general. To identify and

recognize events or actions in video, computer vision researchers mainly focus on the classification

or labeling problem given pre-segmented video clips [39] [38]. However, real-world videos are

continuous, and the task of video segmentation is no easier than video classification. Recently,

some work tries to address the problem of simultaneous video segmentation and labeling [41].

These methods mostly use the time-consuming sliding window approaches, which process each

segment independently at multiple time scale. High-level contexts such as temporal dependencies

have rarely been explored. Models based on Conditional Random Fields (CRF) can only explore

dependencies up to some fixed order (usually chosen manually), and the computation becomes

infeasible when the order of dependency specified increases [102]. Our idea of using event stream
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models explicitly address temporal dependencies in the continuous-time domain and is the first to

do so, to the best of our knowledge.

4.2 Background on PCIM

Assume events are drawn from a finite label set L. An event then can be represented by a

time-stamp t and a label l. An event sequence x = {(ti, li)}ni=1, where 0 < t1 < . . . < tn. We use

hi = {(tj , lj) | (tj , lj) ∈ x, tj < ti)} for the history of event i, when it is clear from context which

x is meant. We define the ending time t(y) of an event sequence y as the time of the last event in

y, so that t(hi) = ti−1. A conditional intensity model (CIM) is a set of non-negative conditional

intensity functions indexed by label {λl(t|x; θ)}|L|l=1. The data likelihood is

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ) (4.1)

where Λl(t|h; θ) =
∫ t
t(h) λl(τ |h; θ)dτ . The indicator function 1l(l

′
) is one if l

′
= l and zero oth-

erwise. λl(t|h; θ) is the expected rate of event l at time t given history h and model parameters θ.

Conditioning on the entire history causes the process to be non-Markovian. The modeling assump-

tions for a CIM are quite weak, as any distribution for x in which the timestamps are continuous

random variables can be written in this form. Despite the weak assumptions, the per-label condi-

tional factorization allows the modeling of label-specific dependence on past events.

A PCIM is a particular class of CIM that restricts λ(h) to be piecewise constant (as a func-

tion of time) for any history, so the integral for Λ breaks down into a finite number of components

and forward sampling becomes feasible. A PCIM represents the conditional intensity functions as
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Figure 4.1: Decision tree representing S and θ for events of labels A and B. Note the dependency
among event labels (the rate of B depends on A). [37]

decision trees. Each internal node in a tree is a binary test of the history, and each leaf contains an

intensity. If the tests are piecewise-constant functions of time for any event history, the resulting

function λ(t|h) is piecewise-constant. Examples of admissible tests include

• Was the most recent event of label l?

• Is the time of the day between 6am and 9am?

• Did an event with label l happen at least n times between 5 seconds ago and 2 seconds ago?

• Were the last two events of the same label?

Note some tests are non-Markovian in that they require knowledge of more than just which event

was most recent. See Figure 4.1 for an example of a PCIM model.

The decision tree for label l maps the time and history to a leaf s ∈ Σl, where Σl is the

set of leaves for l. The resulting data likelihood can be simplified:

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
cls(x)
ls e−λlsdls(x). (4.2)
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S is the PCIM structure represented by the decision trees; the model parameters θ are rates at the

leaves. cls(x) is the number of times label l occurs in x and is mapped to leaf s. dls(x) is the total

duration when the event trajectory for l is mapped to s. Together, c and d are the sufficient statistics

for calculating the likelihood.

[37] showed that given the structure S, by using a product of Gamma distributions as a

conjugate prior for θ, the marginal likelihood of the data can be given in closed form, and thus

parameter estimation can be done in closed form. The prior density is given by

p(λls|αls, βls) =
βαls
ls

Γ(αls)
λαls−1
ls e−βlsλls , (4.3)

and the posterior density is given by

p(λls|αls, βls, x) = p(λls|αls + cls(x), βls + dls(x)). (4.4)

Assuming the prior over the model parameters θ is a product of such priors, the marginal likelihood

of data is

p(x|S) =
∏
l∈L

∏
s∈Σl

γls(x), (4.5)

with

γls(x) =
βαls
ls

Γ(αls)

Γ(αls + cls(x))

(βls + dls(x))αls+cls(x)
. (4.6)

Then the authors choose to use a simple point estimate E[λls|x] for the rate, which is αls+cls(x)
βls+dls(x) .

Furthermore, imposing a structural prior allows a closed form Bayesian score to be used

for greedy tree learning. The local structure Sl can be chosen independently for each l by using a
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factored structural prior

p(S) ∝
∏
l∈L

∏
s∈Σl

κls (4.7)

and the prior and the marginal likelihood that also factor over l. Given the current structure Sl

(initialized as a single root), a new structure S
′
l is considered by choosing a leaf s and expand it with

a test to get a set of new leaves {s1, · · · , sm}. The gain in the posterior of the structure is

p(S
′
l |x)

p(Sl|x)
=
κls1γls1(x) · · ·κlsmγlsm(x)

κlsγls(x)
. (4.8)

The new structure with the largest gain is chosen if the gain is larger than 1.

4.3 Auxiliary Gibbs Sampling for PCIM

In this section we introduce our new inference algorithm for PCIM, called ThinnedGibbs,

based on the idea of thinning for inhomogeneous Poisson processes. We handle incomplete data in

which there are intervals of time during which events for particular label(s) are not observed.

4.3.1 Why Inference in PCIM is Difficult

Filling in partially observed trajectories for PCIM is hard due to the complex dependen-

cies between unobserved events and both past and future events. See Figure 4.2 for an example.

While the history (the event at t) says it is likely that there should be events in the unobserved area

(with an expected rate of 2), future evidence (no events in R) is contradictory: If there were indeed

events in the unobserved area, those events should stimulate events happening in R.

Such a phenomenon might suggest existing algorithms such as the forward-filtering-
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R

Figure 4.2: A simple PCIM with a partially observed trajectory. The vertical solid arrow indicates
an evidence event. Areas between parentheses are unobserved. History alone indicates there should
be events filled in, while the future (no events in R) provides contradictory evidence.

backward-sampling (FFBS) algorithm for discrete-time Markov chains. However, there are two

subtleties here: First, we are dealing with non-Markovian models. Second, we are dealing with

continuous-time systems, so the number of time steps over which to propagate is infinite.

4.3.2 Thinning

Thinning [51] can be used to turn a continuous-time process into a discrete-time one,

without using a fixed time-slice granularity. We select a rate λ∗ greater than any in the inhomo-

geneous Poisson process and sample from a homogeneous process with this rate. To get a sample

from the original inhomogeneous process, an event at time t is thinned (dropped) with probability

1− λ(t)
λ∗ .

This process can also be reversed. If given the set of thinned event times (samples from

the inhomogeneous process), extra events can be added to a sample from the original constant-rate

process by sampling from a Poisson process with rate λ∗ − λ(t). The cycle can then repeat by

thinning the new total set of times (ignoring how they were generated). At each cycle, the times

(after thinning) are drawn from the original inhomogeneous process. It is this type of cycle we will
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employ in our sampler.

The difficulty is that a PCIM is not an inhomogeneous Poisson process. Its intensity

depends on the entire history of events, not just the current time. For thinning, this means that we

cannot independently sample whether each event is to be thinned. Furthermore, we wish to sample

from the posterior process, conditioned on evidence. All evidence (both past and future) affect the

probability of a specific thinning configuration.

4.3.3 Overview of Our Inference Method

To overcome both of these problems, we extend thinning to an auxiliary Gibbs sampler

in the same way that [74, 75] extended Markovian-model uniformization [36] (a specific example

of thinning in a Markov process) to a Gibbs sampler. To do this we introduce auxiliary variables

representing the events that were dropped. We call these events virtual events.

As a standard Gibbs sampler, our method cycles through each variable in turn. In our case,

a variable corresponds to an event label. For event label l, let xl be the sampled event sequence for

this label. Let Yl be all evidence (for l and other labels) and all (currently fixed) samples for other

labels. Our goal is to sample from p(xl | Yl).

Let vl be the virtual events (the auxiliary variable) associated with l and zl = xl ∪ vl (all

event times virtual and non-virtual). Our method first samples from p(vl | xl, Yl) and then samples

from p(xl | zl, Yl). The first step adds virtual events given the non-virtual events are “correct.” The

second step treats all events as potential events and drops or keeps events. The dropped events are

removed completely. The kept events, xl, remain as the new sampled trajectory for label l.

The proof of correctness follows analogously to that of [75] for Markovian systems. How-

ever, the details for sampling from p(vl | xl, Yl) and p(xl | zl, Yl) differ. We describe them next.
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4.3.4 Sampling Auxiliary Virtual Events with Adaptive Rates

Sampling from p(vl | xl, Yl) amounts to adding just the virtual (dropped) events. As the

full trajectory (xl for all l) is known, the rate at any time step for a virtual event is independent of

any other virtual events. Therefore, the process is an inhomogeneous Poisson process for which the

rate at t is equal to λ∗ − λl(t|h) where h is fully determined by xl and Yl. Recall that λl(t|h) is

piecewise-constant in time, so sampling from such an inhomogeneous Poisson process is simple.

The auxiliary rate, λ∗, must be strictly greater than the maximum rate possible for irre-

ducibility. We use an auxiliary rate of λ∗ = 2 max(λ(t|h)) to sample virtual events in the unob-

served intervals. This choice trades off well between mixing time and computational complexity in

the experiments.

A naı̈ve way to pick λ∗ is to find λmax: the maximum rate in the leaves of PCIM, and

use 2λmax. However, there could be unobserved time intervals with a possible maximum rate much

smaller than λmax. Using λmax in those regions would generate too many virtual events, most of

which will be dropped in the next step leading to computational inefficiency. We therefore use an

adaptive strategy.

Our adaptive λ∗(t|h) cannot depend on xl (this would break the simplicity of sampling

mentioned above). Therefore, we determine λ∗(t|h) by passing (t, h) down the PCIM tree for λl. At

each internal node, if the branch does not depend on xl, we can directly take one branch. Otherwise,

the test is related to the sampled events, and we take the maximum rate of taking both branches.

This method results in λ∗(t|h) as a piecewise-constant function of time (for the same reasons that

λl(t|h) is piecewise-constant).

Consider Figure 4.3 as an example. When sampling event l = A on the interval [1, 5),
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Figure 4.3: Adaptive auxiliary rate example. When sampling A, the branch to take at the root
does not depend on unobserved events for A. If the test is related to the sampled event, we take
the maximum rate from both branches. The red arrows indicate the branches to take between time
[1, 5], and λ∗ = 2× 2 in that interval, instead of 6.

we would not take the left branch at the root (no matter what events for A have been sampled), but

must maximize over the other two leaves (as different xl values would result in different leaves).

This results in a λ∗ = 4 over this interval, which is smaller than 6.

4.3.5 The Naı̈ve FFBS Algorithm

Once these virtual events are added back in, we take zl (the union of virtual events and

“real” sampled events) as a sample from the Poisson process with rate λ∗ and ignore which were

originally virtual and which were originally “real.” We then thin this set to get a sample from the

conditional marginal over l.

The restriction to consider events only at times in zl transforms the continuous-time prob-

lem into a discrete one. Given zl with m possible event times (zl,1, zl,2, . . . , zl,m), let b = {bi}mi=1

be a set of binary variables, one per event, where bi = 1 if event i is included in xl (otherwise bi = 0

and the event is not included in xl). Thus sampling b is equivalent to sampling xl (zl is known) as
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it specifies which events in zl are in xl. Let Y i:j
l be the portion of Y between times zl,i and zl,j , and

bi:j = {bk|i ≤ k ≤ j}We wish to sample b (and thereby xl) from

p(b | Y ) ∝

(∏
i

p(Y i−1:i
l , bi | b1:i−1, Y 1:i−1

l )

)
p(Y m:∞

l | b) (4.9)

where the final Y m:∞
l signifies all of the evidence after the last virtual event time zl,m and can be

handled similarly to the other terms.

The most straight-forward method for such sampling considers each possible assignment

to b (of which there are 2m). For each interval, we multiply terms from Equation 4.9 of the form

p(Y i−1:i
l , bi | b1:i−1, Y 1:i−1

l ) = p(Y i−1:i
l | b1:i−1, Y 1:i−1

l )p(bi | b1:i−1, Y 1:i
l ) (4.10)

where the first term is the likelihood of the trajectory interval from zl,i−1 to zl,i and the second

term is the probability of the event being thinned, given the past history. The first can be computed

by tallying the sufficient statistics (counts and durations) and applying Equation 4.2. Note that

these sufficient statistics take into account b1:i−1 which specifies events for l during the unobserved

region(s), and the likelihood must also be calculated for labels l′ 6= l for which λl′(t|h) depends

on events from l. The second term is equal to λl(t|h)
λ∗(t) if bi = 1 (and 1 − λl(t|h)

λ∗(t) if bi = 0). The

numerator’s dependence on the full history similarly dictates a dependence on b1:i−1.

This might be formulated as a naı̈ve FFBS algorithm: To generate one sample, we prop-

agate possible trajectories forward in time, multiplying in Equation 4.10 at each inter-event interval

to account for the evidence. Every time we see a virtual event, each possible trajectory diverges

into two (depending on whether the virtual event is to be thinned or not). By the end, we have all
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Table 4.1: Tests and their corresponding state representations.

Test Example State Representation Property
TimeTest Is the time between 6am and 9am? Null independent of b
LastEventTest Is the last event A? Boolean Markovian
EventCountTest Are there >= n A event in A queue maintaining all the times of A Non-Markovian

[t− lag1, t− lag2]? between [t− lag2, t], and the most recent
n events between [t− lag1, t− lag2].

LastStateTest Is the last sublabel of var A=0? Boolean Markovian
StateTest Is the current sublabel of var A=0? Null independent of b

2m possible trajectories, each with its probability (Equation 4.9). We sample one trajectory as the

output, in proportion of the calculated likelihoods. As we explicitly keep all possible trajectories,

the sampled trajectory immediately tells us which virtual events are kept, so no actual backward

pass is needed.

4.3.6 An Efficient State-Vector Representation

The naı̈ve FFBS algorithm is clearly not practical, as the number of possible trajectories

grows exponentially with the number of auxiliary virtual events (m). We propose a more efficient

state-vector representation to only keep the necessary information for each possible trajectory. The

idea takes advantage of the structure of the PCIM and leads to state merges, similar to what happens

in FFBS for hidden Markov models (HMMs).

The terms in Equation 4.10 depend on b1:i−1 only through the tests in the internal nodes

of the PCIM trees. Therefore, we do not have to keep track of all of b1:i−1 to calculate these

likelihoods, but only the current state of such tests that depend on events with label l. For example,

a test that asks “Is the last event of label l?” only needs to maintain a bit as the indicator. The test

“Are there more than 3 events of label q in the last 5 seconds?” for q 6= l has no state, as b1:i−1 does

not affect its choice. By contrast, a test such as “Is the last event of label q?” does depend on b, even
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Figure 4.4: Dotted events are the virtual events that we sample as binary variables (bi is 1 if event
i is kept). The state diagram below the trajectory indicates the state of the test as we diverge (keep
or drop a virtual event). Though there are 23 possible configurations, state merges can reduce the
exponentially increasing complexity to linear in this case.

if q 6= l.

As we propagate forward, we merge b1:i sequences that result in the same set of states for

all internal tests inside the PCIM. See Figure 4.4 as a simple example. Though there are 8 possible

trajectories, they merge to only 2 states that we can sample from. Similar to the FFBS for an HMM,

we need to maintain the transition probabilities in the forward pass and use them in a backward

sampling pass to recover the full trajectory, but such information is also linear.

Note that this conversion to a Markov system for sampling is not possible in the original

continuous-time system. Thinning has allowed this by randomly selecting a few discrete time points

and thereby restricting the possible state space to be finite.

The state space depends on the actual tests in the PCIM model. See Table 4.1 for the

tests we currently support and their state representations. The LastStateTest and StateTest are used

to support discrete finite variable systems such as CTBN, as we will use in Section 4.3.8 and in
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experiments. Note the EventCountTest was the only supported test in the original PCIM paper. We

can see that for tests that only depend on the current time (i.e. TimeTest), the diverging history does

not affect them, so no state is needed. For Markovian tests (LastEventTest and LastStateTest), we

only need a Boolean variable. For the non-Markovian test (EventCountTest), the number of possible

states does grow exponentially with the number of virtual events maintained in the queue. This is

the best we can do and still be exact. It is much better than growing with the number of all virtual

events. However, note that commonly lag2 = 0 and n is a small number. In this case, the state

space size at any point is bounded as
(
m′

n

)
, where m′ is the maximum number of sampled events

in any time interval of duration lag1 (which is upper bounded by m). If n is 1, this is linear in the

number of samples generated in during lag1 time units.

As noted above, if the test is not related to the sampled event (for example, we are sam-

pling event l = A and the test is “are there >= 3 B events in the last 5 seconds?”), the state of the

test is set to null. This is because the evidence and sampled values for B (which is not the current

variable for Gibbs sampling) can answer this test without reference to samples for l.

See Algorithm 2 for the algorithm description for resampling event l. The complete algo-

rithm iterates this procedure for each event label to get a new sample. The helper function UpdateS-

tate(s,b,t) returns the new state given the old state (s), the new time (t), and whether an event occurs

at t (b). SampProbMap(M) takes a mapping from objects to positive values (M) and randomly re-

turns one of the objects with probability proportional to the associate value. AddtoProbMap(M,o,p)

checks to see if o is in M. If so, it adds p to the associated probability. Otherwise, it adds the

mapping o→ p to M.
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Algorithm 2: Resampling event l
input: The previous trajectory (xl,Yl)
output: The newly sampled x

′
l

for each unobserved interval for l do
Find piecewise constant λ∗(t|h) using Yl
Find piecewise constant λ(t|h) using xl, Yl
Sample virtual events vl with rate λ∗(t|h)− λ(t|h)

Let zl = xl ∪ vl, m = |zl|, and s0 be the initial state
AddtoProbMap(S0,s0,1.0)
for i← 1 to m do

for each {(si−1, ·)→ p} in Si−1 do
pkeep = p(Ei−1:i, bi = 1 | si−1, E1:i−1)
pdrop = p(Ei−1:i, bi = 0 | si−1, E1:i−1)

skeepi ← UpdateState(si−1, true, zl,i)
sdropi ← UpdateState(si−1, false, zl,i)
AddtoProbMap(Si,(s

keep
i , zl,i), p×pkeep)

AddtoProbMap(Si,(s
drop
i , ∅), p×pdrop)

AddtoProbMap(Ti(s
keep
i ), (si−1, zl,i), p×pkeep)

AddtoProbMap(Ti(s
drop
i ), (si−1, ∅), p×pdrop)

Update Sm by propagating until ending time
x
′
l ← ∅ and (s

′
m, t)← SampProbMap(Sm)

if t 6= ∅ then
x
′
l ← x

′
l ∪ {t}

for i← m− 1 to 1 do
(s
′
i, t)← SampProbMap(Ti+1(s

′
i+1))

if t 6= ∅ then
x
′
l ← x

′
l ∪ {t}

return x′l

4.3.7 Extended Example

Figure 4.5 shows an example of resampling the events for label A on the unobserved

interval [0.8, 3.5). On the far left is the PCIM rate tree for event A. Box (a) shows the sample from

previous iteration (single event at 2.3). Dashed lines and λ show the piecewise-constant intensity

function given the sample. Box (b) shows the sampling of virtual events. For this case λ∗ = 3 for

all time. λ∗ − λ is the rate for virtual events. The algorithm samples from this process, resulting in

two virtual events (dashed). In box (c) all events become potential events. The state of the root test
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Figure 4.5: Extended Example, see Section 4.3.7

is a queue of recent events. The state of the other test is Boolean (whether A is more recent). On the

bottom is the lattice of joint states over time. Solid arrows indicate bi = 1 (the event is kept). Dash

arrows indicate bi = 0 (the event is dropped). Each arrow’s weight is as per Equation 4.10. The

probability of a node is the sum over all paths to the node of the product of the weights on the path

(calculated by dynamic programming). In box (d) a single path is sampled with backward sampling,

shown in bold. This path corresponds to keeping the first and last virtual events and dropping the

middle one.

4.3.8 Representing CTBNs as PCIMs

A non-Markovian PCIM is more general than the Markovian CTBN model. We can,

therefore represent a CTBN using a PCIM. In this way, we can extend PCIMs and we can compare

our PCIM method with existing methods for CTBNs.

We associate a PCIM label with each CTBN variable. We also augment the notion of a

PCIM label to include a sublabel. For each CTBN variable, its PCIM label has one sublabel for
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Figure 4.6: Explicit conversion from a CTBN to a PCIM by using specific tests. Only rates for
variable A shown. The colored arrows and boxes show one-to-one correspondence of a path in the
tree and an entry in the rate matrix of CTBN. Diagonal elements in the CTBN are redundant and do
not need to be represented in the PCIM.

each state of the CTBN variable. Therefore, a PCIM event with label X and sublabel x corresponds

to a transition of the CTBN variable X from its previous value to the value x. The PCIM trees’ tests

can also check the sublabel associated with the possible event.

We augment the auxiliary Gibbs sampler to not only sample which virtual events are kept,

but also which sublabel is associated with each. This involves modifying the bi variables from the

previous section to be multi-valued. Otherwise, the algorithm proceeds the same way.

The last two tests in Table 4.1 are explicitly for this type of sublabelled event model. We

can use them to turn a conditional intensity matrix from the CTBN into a PCIM tree. See Figure 4.6

for an example of the “twonode” CTBN model converted to a PCIM.
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4.4 Event Detection in Video with ThinnedGibbs

We apply PCIM to event localization and labeling in video. We first show how to represent

videos as event streams. A PCIM can be learned from training videos, represented by event streams,

to encode nonlinear temporal dependencies between high-level events and low-level observations.

In testing, ThinnedGibbs can be used to infer high-level events given low-level visual observations.

This framework is among the first to encode temporal context for the event detection in video task.

4.4.1 Representation

Assume there are M high-level events in a video dataset, each of which is an event with

high-level semantics, such as “a person sitting down” and “a person working on a laptop”. We

generate 2M event labels to be used in PCIM: {s1, . . . , sM} and {e1, . . . , eM}. si indicates the

starting of a high-level event type i and ei indicates the ending of a high-level event type i. These

are the event types that are labeled in training and to be inferred in testing.

Given a video, we divide it into segments of fixed length, and a feature vector is generated

for each of the segments. (We use mean pooling of STIP features [50] generated for each segment,

but other methods are also applicable.) Then we learn a dictionary usingK-means clustering, so that

each segment can be assigned to one visual word in {w1, . . . , wK} and a time (we use the middle

time of each segment in the video). Together with the starting and ending of high-level events, we

have an event stream representation of a video. See Figure 4.7 for an example.

There are several benefits for this representation: First, by using fixed-length segment,

we do not assume semantic video pre-segmentation. Second, the usage of starting and ending of

high-level events enables automatic localization and labeling. Note that even though the low-level
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Figure 4.7: An illustration of an event stream representation for video. Low-level observations are
represented as regularly spaced events from a dictionary (the ws). s1 and e1 indicate the starting
and ending of “entering room”. s3 and e3 indicate the starting and ending of “sitting down”.

visual words are regularly sampled, each word is sparse across the timeline, which is suitable for a

continuous-time model.

4.4.2 Training

Given an event stream representation of video, training can be done by directly feeding

the training data into the PCIM learning algorithm. The resulted PCIM encodes temporal depen-

dencies between both high-level events and low-level visual observations. There are three types of

dependencies a PCIM can learn:

Dependency between high-level events. Global dependencies between high-level events

can be modeled, which helps to mitigate visual ambiguities by utilizing temporal context. For

example, after a person working on laptop, then the probability of a person standing up should be

higher than the person sitting down. PCIM is also able to learn the dependency between s and e for

each high-level events, which encodes the temporal range distribution of each event type.
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Dependency between high-level and low-level events. This type of dependency can be

treated as local dependency. Certain low-level observations indicate the appearance of high-level

events, or as a generative model, the high-level events “cause” low-level features. In testing, low-

level visual words are observed, and are responsible for proposing high-level events.

Dependency between low-level events. This kind of dependency provides interesting in-

formation about how low-level observations can be correlated. But for the event detection problem,

it is not very useful as in testing all low-level observations are observed.

4.4.3 Testing as Inference

Given a PCIM learned from training data, we can model the problem of event detection in

video as the inference of high-level events, given low-level observations. In other words, all the ws

are observed, while the ss and es are completely unobserved. We can then apply our inference algo-

rithm, ThinnedGibbs, to infer the starting and ending times of the high-level events. See Figure 4.8

and Figure 4.9 for an illustration.

Figure 4.8: In testing, the low-level events are fully observed, while the high-level events are not
observed.
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Figure 4.9: After running inference, each sample would fill in the unobserved intervals for high-
level events, which indicate their starting and ending times.

4.5 Summary

We review PCIM and how it models nonlinear dependencies in general event streams. We

propose the first effective inference algorithm, ThinnedGibbs, for PCIM. Our auxiliary Gibbs sam-

pling method effectively transforms a continuous-time problem into a discrete one. Our state-vector

representation of diverging trajectories takes advantage of state merges and reduces complexity

from exponential to linear for most cases. We also build the connection between PCIM and CTBN.

Then we show how PCIM can be used to model temporal context for event detection in video, and

how event detection can be modeled as an high-level event inference problem given low-level ob-

servations. The formulation provides a generic way to model temporal context in event streams and

relaxes the assumption of video pre-segmentation.
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Chapter 5

Experiments on ThinnedGibbs

Verification and Event Detection in

Video

5.1 ThinnedGibbs Validation

We perform two sets of experiments to validate our inference method. First we perform

inference with our method on both Markovian and non-Markovian models, and compare the result

with the ground-truth statistics. For both we show our result converges to the correct result. Ours is

the first that can successfully perform inference tasks on non-Markovian PCIMs. For the second set

of experiments, we use ThinnedGibbs in EM for both parameter estimation and structural learning

for a non-Markovian PCIM. Our inference algorithm can indeed help producing models that achieve

higher data likelihood on holdout test data than several baseline methods.

75



Figure 5.1: The toroid network and observed patterns [30].
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Figure 5.2: Number of samples versus KL divergence for the toroid network. Both axes are on a
log scale.

5.1.1 Verification on the Ising Model

We first evaluate our method, ThinnedGibbs, on a network with Ising model dynamics.

The Ising model is a well-known interaction model with applications in many fields including sta-

tistical mechanics, genetics, and neuroscience [21]. This is a Markovian model and has been tested

by several existing inference methods designed for CTBNs.
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Using this model, we generate a directed toroid network structure with cycles following

[30]. Nodes can take values −1 and 1, and follow their parents’ states according to a coupling

strength parameter (β). A rate parameter (τ ) determines how fast nodes toggle between states. We

test with β = 0.5 and τ = 2. The network and the evidence patterns are shown in Figure 5.1. The

network starts from a deterministic state: at t = 0 variables 1 − 5 are +1 and 6 − 9 are −1. At

t = 1, variable 1 − 3 have switched to −1, 4 − 5 remain +1, and 6 − 9 have switched to +1. The

nodes are not observed between t = 0 and t = 1. We query the marginal distribution of nodes

at t = 0.5 and measure the sum of the KL-divergences of all marginals against the ground truth.

We compare with the state-of-the-art CTBN Auxiliary Gibbs method [75]. Other existing methods

either produce similar or worse results [14]. For example, the mean field variational approach [21]

produce error that is above the error range of the methods we use. We vary the sample size between

50 and 5000, and set the burn-in period to be 10% of this value. We run the experiments 100 times,

and plot the means and standard deviations.

Results in Figure 5.2 verify that our inference method indeed produces results that con-

verge to the true distribution. Our method reduces to that of [75] in this Markovian model. Differ-

ences between the two lines are due to slightly different initializations of the Gibbs Markov chain

and not significant.

5.1.2 Verification on a Non-Markovian Model

We further verify our method on a much more challenging non-Markovian PCIM (Fig-

ure 5.3). This model contains several non-Markovian EventCountTests. We have observations for

eventA at t = 0.4, 0.6, 1.8, 4.7 and for eventB at t = 0.1, 0.2, 3.4, 3.6, 3.7. EventA is not observed
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Figure 5.3: Non-Markovian PCIM and evidence. The ending time is 5.
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on [2.0, 4.0) and event B is not observed on [1.0, 3.0).

In produce ground truth, we discretized time and converted the system to a Markovian

system. Note that because the time since the last A event is part of the state, as the discretization

becomes finer, the state space increases. For this small example, this approach is just barely feasible.

We continued to refine the discretization until the answer stabilized. The ground-truth expected total

number ofA events between [0, 5] is 22.3206 and the expected total number ofB events is 11.6161.

That is, there are about 18.32 A events and 6.62 B events in the unobserved areas. Note that if the

evidence is changed to have no events these numbers drop to 1.6089 and 8.6866 respectively and

if the evidence after the unobserved intervals is ignored the expectations are 22.7183 and 8.6344

respectively. Therefore the evidence (both before and after the unobserved intervals) is important to

incorporate in inference.

We compare our inference method to the exact values, again varying the sample size

between 50 and 5000 and setting the burn-in period to be 10% of this value. We ran the experiments

100 times and report the mean and standard deviation of the two expectations. Our sampler has

very small bias and therefore the average values match the true value almost exactly. The variance

decreases as expected, demonstrating the consistent nature of our method. See Figure 5.4. We are

not aware of existing methods that can perform inference on this type of model to which we could

compare.

5.1.3 Parameter Estimation and Structural Learning

We further test ThinnedGibbs by using it in EM, for both parameter estimation (given the

tree structure, estimate the rates in the leaves), and structural learning (learn both the structure and
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Figure 5.5: Parameter estimation. Testing log-likelihood as a function of the number of training
samples.
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Figure 5.6: Structure and parameter estimation. Testing log-likelihood as a function of the number
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rates). We use Monte Carlo EM that iterates between two steps: First, given a model we generate

samples conditioned on evidence with ThinnedGibbs. Second, given the samples, we treat them as

complete trajectories and perform parameter estimation and structural learning, which is efficient

for PCIM. We initialize the model from the partial trajectories, assuming no events occur in the

unobserved intervals. EM terminates when the parameters of PCIMs in two consecutive iterations

are stable (all rates change less than 10% from the previous ones), or the number of iterations

surpasses 10. For structural learning, the structure needs to be the same between iterations.

We use the model in Figure 4.1 and generate complete trajectories for time range [0, 10).

We vary the number of training samples (5, 10, 15, and 20) and use a fixed set of 100 trajectories

as the testing data. For each training size, we use the same the training data for all algorithms and

runs. We randomly generate an unobserved interval with length 0.6 × T for both event labels. For

each training sample, ThinnedGibbs fills it in to generate a new sample after burning in 10 steps.

For each configuration, we run ThinnedGibbs for 5 times. We measure the data likelihood of the

holdout testing data on the learned models.

For parameter estimation, we compare with the true model that generated the data, the

model learned with only partial data in which we assume no events happened during unseen intervals

(Partial Data), and a model learned with complete training data (Complete Data). The results are

summarized in Figure 5.5. We can see that the model learned by EM algorithm using ThinnedGibbs

can indeed produce significantly higher testing likelihood than using only partial data. Of course,

we do not do as well as if none of the data had been hidden (Complete Data).

If learning the structure, there is one other possibility: We could use the original fast

PCIM learning method, but indicate (by new event labels) when an unobserved interval starts and
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stops. We augment the bank of possible decisions to include testing if each pseudo-events have

occurred most recently. In this way, the PCIM directly models the process that obscures the data.

Of course, at test time, branches modeling such unobserved times are not used. Such model should

serve as a better baseline than learning from partially observed data, because it can potentially learn

unobserved patterns and only use the dependencies in the observed intervals for a better model. We

call this model EMUP (explicit modeling of unobserved patterns).

For structure learning, we fix the bank of possible PCIM tests as EventCountTests with

(l, n, lag1, lag2) ∈ {A,B} × {1, 2} × {2, 3, 4, 5, 6} × {0, 1, 2} (omitting tests for which lag1 ≤

lag2). For EMUP we also allow testing if currently in unobserved interval. The results are sum-

marized in Figure 5.6. We can see that EMUP does outperform models using only partial data.

However, Structural EM with ThinnedGibbs still performs better. The performance gain is less than

that in the parameter estimation task, probably because there are more local optimums for structural

EM, especially with fewer training examples.

5.2 Experiments on Event Detection

We use the UCLA office dataset for experimental validation. The UCLA office dataset

consists of 3 videos of a total length of 32 minutes, in which actors perform 10 kinds of actions in

an office setting. See Table 5.1 for the high-level events types and their ID numbers.

We use 2 videos for training and 1 video for testing. We use 20 frames as the segment

length and 30 for the dictionary size (K). The learned PCIM has approximately 100 internal tests

and leaves. PCIM is able to learn 3 major kinds of meaningful dependencies that are useful for the
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Table 5.1: High-level Event Types in the UCLA Office Datasets.

ID Event Type
1 Enter Room
2 Exit Room
3 Sit Down
4 Stand up
5 Work on Laptop
6 Work on Paper
7 Throw Trash
8 Pour Drink
9 Pick Phone
10 Place Phone Down

Table 5.2: Examples of meaningful structures learned by PCIM. Time unit used is 20 frames.

Structure Learned Semantics
if s5 in [t− 2, t) The starting of “work on laptop”
rate of w3 = 0.68 tends to generate w3

if s3 in [t− 5, t− 2) This encodes the duration distribution
rate of e3 = 0.7 of “sit down”.
if e5 in [t− 3, t− 1) The ending of “work on laptop”
rate of s4 = 0.22 stimulates “stand up”.

event localization and labeling task. We show some examples in Table 5.2.

We compare with an SVM-based approach that classifies the video segments into one of

the ten high-level events. Consecutive segments of the same labels are merged to one event. We

report precision and recall. Precision is the proportion of detected events that match ground truth

events over at least 70% of the time range. Recall is the proportion of ground truth events that are

successfully covered by the detection algorithm over at least 70% of the time range.

We report the results in Table 5.3. SVM based discriminative approaches can produce

very reasonable result for this dataset. For this dataset, certain dimensions in the feature vector are

very salient. For example, the extracted features contain location information that is salient for this

dataset because the camera is static and certain events only happen at certain locations (for example,
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“pour drink” always happen close to the drinking machine.) SVM is able to get perfect result for

most event classes, and only tend to confuse between certain pairs of event types (i.e. “enter room”

and “exit room”, “stand up” and “sit down”, “work on laptop” and “work on paper”.) So it is a strong

baseline for the event detection task on this dataset. However, we can see that, by taking advantage

of the complex temporal contexts, PCIM can produce better precision by correcting wrong labels,

although the discretization of image features and using uniform weights of different features (in

K-Means clustering based dictionary learning) tend to lose some salient visual information. On

dataset with larger intra-class variance and without dominating salient visual features, we expect

PCIM to perform even better as visual evidences alone are less useful.

The recall is similar, as PCIM tends to omit event types with few training instances. PCIM

can be treated as a data-driven approach, and needs sufficient data to learn meaningful structures

for each event types. For this particular dataset, events such as “pick up phone” are very sparse

in training data, so PCIM is not able to learn meaningful structures for such event types. Then in

testing, these events tend to be missing. However, since these are sparse events (also in testing data),

missing them does not significantly affect the overall performance. When there is more data (such

as videos from everyday streaming surveillance videos that could be hundreds of hours long), we

expect PCIM to mitigate such drawbacks as more instances are observed.

We show one example in Figure 5.7 in which global temporal context among high-level

events help to produce better result. In this example, SVM based approach tends to confuse the

events “sit down” and “stand up” by only looking at local appearance information, because both

events involve the actor performing actions close to the chair. PCIM, on the other hand, is able to

get the correct result, by learning the temporal context that, a person should not sit down again after
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he had already sat down and been working on the laptop. Other typical cases that PCIM performs

better involves differentiating between events such as “enter room” and “exit room”.

Table 5.3: Testing results of PCIM and SVM. Result for PCIM is average among 10 samples from
ThinnedGibbs. There are 36 ground truth events in testing.

Method Precision Recall
SVM 0.720 0.750
PCIM 0.756 0.753

Figure 5.7: Temporal context information helps to recover wrong detection by local discriminative
methods. The slight time shift for PCIM is due to its continuous-time nature.

5.3 Summary

We validate ThinnedGibbs on several tasks, including its effectiveness in video event

detection. We show our method generalizes the state-of-art inference method for CTBN models.

We validate our inference idea on non-Markovian PCIMs, which is the first to do so. Then we

show that the modeling of temporal context with PCIM can improve event detection performance

in video.
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Chapter 6

Conclusions

In this thesis, we show methods on modeling high-level contextual information, includ-

ing social grouping context and temporal context, with machine learning methods, to effectively

mitigate visual ambiguities in computer vision tasks.

We first show a general framework of coupling the novel social grouping context with

multi-target tracking and head pose estimation in video. Certain sub-components in our framework

are naturally coupled and thus can be joint optimized. We then provide effective solvers for those

components based on nonlinear optimization and conditional random field. We conduct extensive

experiments to show that social grouping context helps tracking and head pose estimation.

We then study PCIM, which models temporal dependencies in event streams. We develop

the first inference algorithm for PCIM, ThinnedGibbs, which could answer queries in both Marko-

vian and non-Markovian models. We show that event detection in video can be modeled as the

inference of high-levels events given a meaningful PCIM learned from data. Results on real-world

videos show that modeling temporal dependencies indeed helps to mitigate visual ambiguity in this
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application.

This thesis should motivate future computer vision research that explores more diverse

and robust contextual information. We believe this is a promising research approach, since even

human vision and brain systems tend to use contextual information to recognize and memorize

things. Using contextual information is also in need for real-world applications that we really care

about. Existing computer vision research has been focusing a lot on experimental setting with

controlled data (for example, cropped images, hand picked video segments). While real-world data

(for example, images and videos capturing a holistic scene) usually contain a lot of useful contextual

information that could help computer vision algorithms work in practice.

Models proposed in this thesis are general in that existing work can usually be used as

subcomponents. This provides two approaches for future work: researchers can propose better high-

level models similar to ours, or focus on gaining incremental performance improvement (especially

for real-world working systems) under the general model.

Our continuous-time perspective on event detection in video has shown several benefits

over the vast literature of this long-studied application. We believe modeling dependencies in event

streams, or a continuous-time perspective in general, could have wide applicability in diverse areas,

such as modeling user behavior in web search and personalized advertising. PCIM might be the

useful model for many real-world problems, and our ThinnedGibbs inference algorithm can help to

answer any kinds of interesting inference questions.
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