Title
High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography

Permalink
https://escholarship.org/uc/item/4m38r1gx

Journal
Journal of American Association for Pediatric Ophthalmology and Strabismus, 13(1)

ISSN
1091-8531

Authors
Gerth, Christina
Zawadzki, Robert J
Héon, Elise
et al.

Publication Date
2009-02-01

DOI
10.1016/j.jaapos.2008.09.001

Peer reviewed
High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography

Christina Gerth, MD, Robert J. Zawadzki, PhD, Elise Héon, MD, and John S. Werner, PhD

PURPOSE
To test the feasibility and applicability of a handheld probe for Fourier-domain optical coherence tomography (Fd-OCT) retinal imaging in infants and children.

METHODS
Thirty children ages 7 months to 9.9 years, with (10 of 30) or without (20 of 30) retinal pathology, were imaged with Fd-OCT. Imaging was performed under sedation in 10 of 30 children ages 7 months to 3.7 years. A high-resolution Fd-OCT system (axial resolution: 4.5 μm; acquisition speeds: 1000 A-scans/frame, 9 frames/second), constructed at the UC Davis Medical Center, in conjunction with a handheld scanner, was used for retinal imaging.

RESULTS
Useful images were obtained from all selected patients. Image acquisition was possible in a conscious state in children as young as 3 years of age. All children tolerated the tests well. The most challenging situation for young children was the lack of an internal fixation target and the moving scanning line, which usually distracted them from a steady fixation. Despite these problems, image quality was comparable with scans previously obtained from an adult population.

CONCLUSIONS
The flexible handheld scanner in association with high acquisition speed and high-resolution Fd-OCT allows retinal imaging in infants and children. This technology provides high-resolution documentation of retinal structure in a pediatric population for the first time. (J AAPOS 2009;13:72-74)
younger than 6 years of age, was the lack of an internal fixation target for the nontested eye. The most challenging situation for young children, especially those external fixation target for the nontested eye. The most difficult was the use of a speculum in children who were not sedated. In these cases, the nurse held open the child’s eye (Figure 1). The first aim was to locate the macular area without simultaneous fundus viewing. The retina was “screened” with a “volumetric” scan mode, which permits image acquisition over an area of 6 × 6 mm centered in the fovea. Images were postprocessed as described in detail elsewhere, and retinal layers were identified based on previously published data.

Results

We were able to obtain retinal images from all 30 children enrolled in the study. Children who were not sedated deeply did not tolerate a speculum placement. In those cases, the nurse held open the child’s eye (Figure 1). The first aim was to locate the macular area without simultaneous fundus viewing. The retina was “screened” with a “volumetric” scan mode, which permits image acquisition over an area of 6 × 6 mm and reconstruction of an OCT fundus image. Once the macular mound was located, a macular line or a volumetric scan followed. Children who could sit quietly were imaged with a chin rest with a mount for the scanner. Smaller or more restless children were asked to lie down on an examination stretcher and were imaged with the handheld probe. We imaged children as young as 2.9 years with this approach. Participants were instructed to look straight ahead or at an external fixation target for the nontested eye. The most challenging situation for young children, especially those younger than 6 years of age, was the lack of an internal fixation target and the moving scanning line, which usually distracted them from a steady fixation. External fixation targets were successful in only a few cases. The localization of the macular area was easier in conscious than in sedated children because of lack of simultaneous fundus viewing.

Retinal layer identification was possible in all subjects. Images obtained using the handheld mode contained movement artifacts caused by the examiner and/or the child. It still allowed retinal layer identification but reduced the image quality for further possibility of 3D reconstruction.

Macular Scans Obtained from Controls

Scans from control subjects of different ages were obtained under sedation or conscious conditions. The resolution of the images was similar in all tested subjects (Figure 2). Macular scans shown in Figure 2 demonstrate well-formed macular layering. Retinal layers are labeled as previously published. The small sample size in this pilot study did not allow us to address potential age-related changes of different retinal layers. Macular scans of patients with retinal diseases that illustrate the usefulness of high-resolution imaging in children are available in e-Supplement 1 (available at jaapos.org).

Discussion

The application of high-resolution retinal imaging in infants and children without and with sedation using a flexible setup is described here for the first time. The high-speed acquisition allowed imaging in young children with a low attention span or intermittent fixation as well as in one patient with nystagmus and reduced vision. In addition, very cooperative children younger than 6 years of age could be imaged without pupil dilation.

These cases highlight the benefit of having high-speed, high-resolution retinal imaging modalities for pediatric assessments. Microstructural retinal abnormalities can now be detected and correlated with visual function in this population. The ability to recognize small intraretinal abnormalities is an important objective measure in cases where nonorganic vision loss is suspected. Identification and quantification of retinal layer changes and localization of intraretinal deposits is an important investigative tool in children with early stages of retinal dystrophy (e-Supplement 1).

The handheld retinal imaging system with the flexible probe has overcome the current technical limitations of using OCT systems in a supine position. The probe can be mounted to a slit lamp or articulating arm or held, depending on the child’s cooperativeness and ability. Further improvements of this technology, such as simultaneous fundus viewing and a fixation target, will advance the applicability in a routine clinical setting. The use of such a device will contribute to our further understanding of normal retinal morphology, develop-
ment, and aging, and prove useful in early detection of retinal diseases in children.

Literature Search

PubMed and MEDLINE were searched for the period 1990 to the present for the following terms: OCT, optical coherence tomography, infant, pediatric, and children.

Acknowledgments

The authors wish to thank Drs. Asim Ali, J. Raymond Buncic, Peter Kertes, Stephen Kraft, Wai-Ching Lam, Alex V. Levin, and Nasrin Najm-Tehrani for patient recruitment; Yesmino Elia for study coordination; Lindsay Hampton, Carmelina Trimboli, and Cynthia Vandenhoven for fundus photography; Yasmin Sbariff and Beverly Griffiths for support of studies under sedation; Jonathan Klingenberg and Andrew Baziw for technical setup; Tom Wright for help with data analysis; Carole Panton for editorial comments; and the patients and their families who made this study possible.

References

Macular scans of patients with retinal diseases illustrate the usefulness of high-resolution imaging in children.

Composite of horizontal Fd-OCT scans through the fovea and fundus photographs from 3 patients with different retinopathies are discussed.

Fd-OCT was valuable in the investigation of a 9.1-year-old neurologically challenged boy with sudden vision loss (0.7 log MAR in both eyes), minimal macular RPE changes on fundus exam, and normal electroretinogram (ERG) responses. Macular scans identified loss within the foveal outer and inner segment layer (OSL/ISL; denoted by stars), which could explain the vision loss and excluded a nonorganic cause.

Macular scans of an 8.9-year-old girl with nyctalopia and vision loss to 0.4 logMAR in both eyes showed inner retinal splitting in the right macula (denoted by an error) as well as OSL and ISL disruption (marked by stars). These findings complemented the diagnosis of the ERG abnormalities in support of Enhanced S-cone syndrome.

A 7.3-year-old with nystagmus and reduced visual acuity (RE, 0.5 logMAR; LE, 1.6 logMAR) was diagnosed with Leber's congenital amaurosis caused by a homozygous RPE65 mutation. Fd-OCT images demonstrated well-preserved inner retinal layers. Photoreceptor layers were thinned with nondistinguishable OSL or ISL (marked by stars). This information will be useful in selecting an optimal potential therapeutic approach.