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Abstract  

Exposure to bio-aerosols such as pollen can lead to adverse health effects. There is a 

need for a portable and cost-effective device for long-term monitoring and 

quantification of various types of pollen. To address this need, we present a mobile 

and cost-effective label-free sensor that takes holographic images of flowing 

particulate matter concentrated by a virtual impactor, which selectively slows down 

and guides particles larger than 6μm to fly through an imaging window. The flowing 

particles are illuminated by a pulsed laser diode, casting their inline holograms on a 

CMOS image sensor in a lens-free mobile imaging device. The illumination contains 

three short pulses with a negligible shift of the flowing particle within one pulse, and 

triplicate holograms of the same particle are recorded at a single frame before it exits 

the imaging field-of-view, revealing different perspectives of each particle. The 

particles within the virtual impactor are localized through a differential detection 

scheme, and a deep neural network classifies the pollen type in a label-free manner, 

based on the acquired holographic images. We demonstrated the success of this 

mobile pollen detector with a virtual impactor using different types of pollen (i.e., 

bermuda, elm, oak, pine, sycamore, and wheat) and achieved a blind classification 

accuracy of 92.91%. This mobile and cost-effective device weighs ~700 g and can be 

used for label-free sensing and quantification of various bio-aerosols over extended 

periods since it is based on a cartridge-free virtual impactor that does not capture or 

immobilize particulate matter. 
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Deep learning-based sensing, label-free sensing, air quality measurement, pollen 

detection using virtual impactors, digital holography 

 

  



3 
 

Bio-aerosols account for 5-34% of indoor particulate matter (PM)1. They are airborne 

microparticles originating from plants, animals, and living or dead microorganisms2. Bio-aerosols 

can easily enter the respiratory tract during inhalation due to their microscopic size. Exposure to 

bio-aerosols has been related to a wide range of health issues3,4. Some bio-aerosols cause irritation 

and allergic reactions, such as pollen5,6; some others, like fungal and bacterial7,8 PM, can spread 

infectious and respiratory diseases. For example, bio-aerosols served as an important transmission 

route during the COVID-19 pandemic9,10. They may also lead to an increased risk of cancer4,11,12. 

Conventional sensing of bio-aerosols includes two steps: the aerosols are first sampled using, e.g., 

an impinger, a cyclone, an impactor, or a filter13,14, and then analyzed in a central lab under a 

microscope with fluorescence labeling or through a culture-based procedure by a microbiology 

expert15. Other technologies, such as polymerase chain reaction (PCR)16 and enzyme-linked 

immunosorbent assays (ELISA)17, are also applied to better identify the captured bio-aerosols with 

high sensitivity and specificity. However, the complicated procedures and the need for well-trained 

experts hinder their widespread use for continuous monitoring of human exposure to bio-aerosols.  

For field-portable bio-aerosol monitoring devices that integrate aerosol sampling and 

inspection, a major challenge is identifying the collected particles. Most devices avoid this challenge 

by selectively sampling a few types of bio-aerosols using specific antibodies. This antibody-antigen 

specific reaction can be sensed using different mechanisms, such as lateral flow-based 

immunoassays18, vibrational cantilevers19, surface plasmon resonance-based sensors20, or Raman 

spectroscopy21. However, the immunoreaction limits the throughput of the device and the amount 

of aerosols that can be immobilized, and non-specific binding events can cause false-positive 

detections. Also, the utilization of antibodies creates storage and shelf-life-time issues for these 

sensors, and it lacks scalability to cover a larger variety of bio-aerosols that might be present in 

different parts of the world during different seasons. In another embodiment, analyzing the 

autofluorescence signals of individual bio-aerosols excited by ultraviolet (UV) light was utilized as 

a label-free method for bio-aerosol detection22,23, but this approach suffered from low specificity 

due to the insufficient information provided by the weak autofluorescence signals. As an alternative 

approach, a field-portable, cost-effective platform for high-throughput quantification of aerosols 

using mobile microscopy was also reported24,25. This device incorporates an impaction-based 

aerosol sampling method: a high-speed airstream carries particles moving from the impactor nozzle 
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to a transparent polymer substrate that faces the inlet flow direction. Large aerosols detach from the 

streamline due to their inertia and are physically collected/captured by the substrate. However, the 

transparent impactor used for particle collection in this platform suffers from an overfill of the 

sampling substrate: excessive particles captured on the polymer substrate occlude the imaging field-

of-view, preventing new particles from being detected. Therefore, the impactor cartridge must be 

frequently replaced, which makes the platform inadequate for long-term unsupervised operation. 

A good substitution for a physical impactor can be a virtual impactor, which replaces the 

collection substrate of an impactor with a middle channel (a collection probe)26, where only a minor 

portion of the input flow will go through. Most of the input air leaves the device via by-pass channels, 

leading to a sharp flow direction change, where large particles detach from the major streamline and 

enter the middle channel, as their greater inertia prevents them from following the drastic flow 

direction change. Consequently, particles are separated based on their inertia, and large ones are 

concentrated inside the middle channel. Virtual impactors have been widely implemented for 

ambient fine particle sensing27–29, especially monitoring PM in air30–35. Recent efforts have also 

utilized this platform for bio-aerosol detection in indoor environments36,37. However, to classify the 

type of the collected particles for bio-aerosol sensing, the airflow from the middle channel needs to 

go through a filtration step, where the flowing bio-aerosols are transferred to a physical filter37 or a 

bio-aerosol collector (an impinger)38. Further analytical examination steps, such as culturing and 

PCR analysis39, are applied to reveal the species of the collected bio-aerosols.  

In this work, we present a virtual impactor-based, cartridge- or filter-free pollen detection 

method that combines computational imaging and deep learning to sense and classify pollen 

particles without any external labels or chemical sample processing steps (Fig. 1(a)). Different types 

of pollen (including bermuda, elm, oak, pine, sycamore and wheat) were selected as representative 

bio-aerosols because of their wide-spread existence and potential allergenic hazard. For instance, 

just the oak pollen makes up ~20% of allergic pollen in North America40 and exposure to oak pollen 

may induce respiratory symptoms such as allergic rhino-conjunctivitis41,42, allergic rhinitis43,44, and 

asthma45 in sensitive individuals. In our mobile and cost-effective device, a virtual impactor was 

designed and 3D printed to concentrate the flowing particles larger than ~6 µm, which covers the 

size range of most pollen species. An imaging window with a sensing volume of 25 mm3 was placed 

on the middle channel, and inline lensfree holography was used to image the passing-by particles, 
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owing to its capability of recording volumetric information with a large field-of-view46–52. Coherent 

illumination from a laser diode shined through the imaging window, forming inline holograms on a 

complementary metal-oxide semiconductor (CMOS) image sensor placed on the other side, right 

next to the imaging window (Fig. 1(b) and (c)). Three illumination pulses were fired during each 

frame, casting three different holographic images of each particle – all captured at the same frame. 

With each illumination pulse, a clear lensfree hologram of the particle that is free from motion blur 

and rolling shutter artifacts was captured by the CMOS image sensor. After three pulses, the CMOS 

image sensor integrated all three holograms of the same particle at three different lateral locations, 

forming a unique triplicate holographic pattern per flowing particle (Fig. 1(d)). The particles are 

localized by a differential detection algorithm, and a trained deep neural network was used to 

classify the pollen type of each particle from its auto-focused holograms. As a demonstration of the 

proof of concept of this mobile and cost-effective system, we imaged aerosols of six different types 

of pollen: bermuda, elm, oak, pine, sycamore and wheat, which are widespread in North America 

and Europe53,54. With the triplicate holographic patterns per particle, a majority voting was applied 

to the classification decision of each particle, achieving a pollen classification accuracy of 92.91% 

(Fig. 1(e)).  

To the best of our knowledge, this is the first demonstration of an imaging-based virtual 

impactor design that enables label-free pollen detection using neural networks, without the need for 

any filtration or chemical processing. This device is compact, cost-effective and light-weight (~700 

g) and since it does not require a cartridge or filter for pollen sensing, it enables air quality 

monitoring over an extended period of time without any supervision. This AI-based bio-aerosol 

detection and classification device provides a unique solution to indoor air quality monitoring and 

label-free bio-aerosol sensing.  

Results  

Portable pollen sampling device using a virtual impactor 

Our portable device designed to sample and image pollen particles contains three major parts: a 

virtual impactor that collects and slows down the flowing pollens in its middle channel, a lens-free 

holographic imaging system capturing microscopic images of pollens, and a controlling circuit 
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automating the entire workflow. The virtual impactor contains one middle channel with a designed 

flow rate of 10 mL/min, and two symmetrical by-pass channels with a total flow rate of 1L/min. 

The physical dimensions of the virtual impactor were optimized by finite element method (FEM) 

simulations using COMSOL (Figs. 2(a) and (b)). Input aerosols larger than 6.3 μm aerodynamic 

diameter (see the Methods section for details) have more than 50% probability of entering the virtual 

impactor through the middle channel, while other smaller particles leave via by-pass channels (Fig. 

2(c)). Based on this, the pollen particles to be detected and classified are concentrated in the middle 

channel, where the flow rate is ~100 times smaller than the input flow rate. Consequently, each 

pollen type of interest has a significantly higher concentration inside the middle channel than in 

ambient air. Two fans are used to power the flow inside the middle and by-pass channels 

independently, whose flow rates are monitored by two separate flow meters. The real-time signals 

are sent to an Arduino microcontroller, where a simple PID feedback loop was implemented to 

adjust the fans’ speed (see Fig. 2(d) and Supplementary Fig. S1).  

An imaging window with a volume of 551 mm3 is opened at the center of the middle channel 

(Fig. 2(b)), sealed by coverslip glasses. A CMOS image sensor to capture the lensfree holograms of 

the particles flowing over the imaging window was placed next to the channel, touching the 

coverslip glass. The axial distance from the bottom of the channel to the CMOS sensor is ~1.5 mm. 

A customized Graphical User Interface (GUI) was designed to control the CMOS imager and take 

holographic videos at a frame rate of 3.5 fps. If CW illumination were to be used to form holograms, 

the high speed of the concentrated particles (~0.17m/s) would normally introduce a strong motion 

blur and rolling shutter artifacts. To capture motion blur-free and undistorted holograms, the imaging 

system was configured to mimic strobe photography (Fig. 1(d)). When all the pixels of the CMOS 

are turned on to collect photons, a signal was sent to our customized pulse generation circuit, firing 

a train of three successive pulses using a laser diode (𝜆=515nm) that shines through the imaging 

window. Under each laser pulse, all the flowing particles above the imaging window form their 

holograms captured by the CMOS image sensor. The pulse duration was short enough (6.9 µs) to 

avoid motion blur for each holographic pattern. The particles travel along the flow direction during 

the interval between two pulses (δ𝑡 = 699𝜇𝑠). As a result, after the pulse train, three individual 

holograms were acquired by the CMOS image sensor, through a single frame with triplicate 

holographic patterns for each pollen particle flowing inside the middle channel. Each captured 
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hologram was transferred into the controlling laptop for further processing. The entire mobile device 

has dimensions of 24.1 cm×10.5 cm×10.2 cm and weighs ~700g. The components of our 

prototype cost ~$923 to build, and its detailed list can be found in Supplementary Table S1.  

Label-free pollen imaging and classification  

To demonstrate the proof-of-concept of our mobile device for label-free pollen detection, we 

targeted aerosols containing six different types of pollens: bermuda, elm, oak, pine, sycamore, and 

wheat. Purified aerosols containing only a single pollen type were generated using a customized 

particle generator that directly connects to our device (see Supplementary Figs. S2 and S3). In each 

measurement, the CMOS image sensor was configured to take 60 frames of time-lapse holographic 

images. Fifty different measurements were conducted on each type of pollen within a period of a 

month, without any need to replace the virtual impactor. This capability to conduct long-time 

experiments is a unique feature enabled by the virtual impactor, which does not immobilize the 

particles or create contamination on the imaging window.  

These time-lapse holographic images monitor the particles passing through the imaging window 

above the image sensor. A flying particulate matter can be easily identified from the time-lapse 

holograms captured by the portable device (Fig. 3); without loss of generality, the triplicate 

holographic patterns of a flowing particle of interest appear in the second frame of any consecutive 

three-frame holograms: 𝐻(𝑡0) , 𝐻(𝑡0 + Δ𝑡)  and 𝐻(𝑡0 + 2Δ𝑡) . A differential hologram 𝐻𝑑  can be 

calculated from these three successive CMOS frames (Fig. 3), i.e., 

𝐻𝑑 = 2𝐻(𝑡0 + Δ𝑡) − (𝐻(𝑡0 + 2Δ𝑡) + 𝐻(𝑡0)). (1) 

Note that Δ𝑡=285.7 ms and should not be confused with the interval between two successive pulses 

(δ𝑡 = 699𝜇𝑠); the latter creates multiple holograms of each flowing particle on a single lensfree 

image frame, whereas Δ𝑡 is determined by the frame rate of the CMOS imager (3.5 fps) . After this 

differential calculation, the flying particles of interest that only appear in the frame 𝐻(𝑡0 + Δ𝑡) 

present a lower intensity level compared to the background. A threshold was applied to 𝐻𝑑  for 

localizing each flowing particle, and the resulting image patches with the detected particles were 

cropped, each with a size of 256×256 pixels. 

The microscopic image of the flowing pollen in each region of interest (ROI) was reconstructed 
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by digitally propagating the raw hologram using the angular spectrum method to its focal plane, 

estimated by an autofocusing algorithm55. For all the six pollen species used in this work, the raw 

triplicate holograms of some representative particles and their back-propagated images are 

illustrated in Fig. 4. The back-propagated holograms of each pollen, without any motion blur or 

rolling shutter artifact, showed a good reconstruction fidelity. Importantly, the three holographic 

replicas of the same particle were not identical, which indicates that the particles have free rotation 

while flowing within the air stream. These images of each pollen from different perspectives 

provided richer information about the pollen, which proved important for more accurate 

classification of their type, as will be reported next.  

An image dataset was established from the experimental data captured using our device, 

containing ~6000 ROIs for training and validation, and ~900 ROIs for blind testing. A deep neural 

network based on DenseNet20156 was trained to classify the type of pollen particles. During the 

training, the network treated each ROI as an independent particle. In other words, the relation 

between the holographic replicas of each flowing particle was intentionally ignored to increase the 

robustness of our classification system. To utilize the volumetric information provided by lensfree 

holographic imaging, the network was trained with both the real and imaginary channels of each 

ROI propagated to five axial locations: its focus plane and 50µm and 100µm above and below the 

focus plane. After the training phase, the deep neural network achieved a blind testing accuracy of 

90.48% in classifying all the individual ROIs containing 6 different types of pollen. The 

corresponding confusion matrix is displayed in Fig. 5(a). Using the additional information (with 

different perspectives of the pollen) available in triplicate holographic images of each flowing 

particle helps improve the final classification accuracy. The ROIs belonging to the same particle 

were first located and grouped together. To utilize this additional source of information, we devised 

a majority voting scheme applied to the labels of the three successive ROIs (corresponding to three 

holographic replicas of the same particle), which were independently classified using the same 

trained network. The voting winner (with 2 or more votes) was selected as the final predicted label 

(pollen type) for all three replicas of each flowing pollen particle, which increased the blind testing 

accuracy to 92.91% (see the confusion matrix in Fig. 5(b)).  
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Discussion 

The presented particle classification scheme using triplicate holographic images has a unique 

advantage since it permits the visualization of the same particle from different perspectives during 

its flow within the virtual impactor. The impact of this capability can be better seen in the 

classification of pine pollens. In general, pine pollens have a unique feature with wing-like bladders 

(see the fourth column in Fig. 4 as an example). During its flow inside the virtual impactor channel, 

there is a chance that the captured hologram of a pine pollen only reflects its main body, with the 

bladders hidden behind it, which makes it resemble a wheat pollen of similar size (see 

Supplementary Fig. S4 as an example). In fact, because of this, the trained neural network 

misclassified 22.97% of pine pollens as wheat using a single holographic image. The classification 

accuracy of pine pollens was improved using the triplicate holographic images through a majority 

voting process, reducing the error rate to 18.57%. Furthermore, if we relax our voting rule for pine 

pollens such that all the particles in triplicate holographic images will be labeled as pine pollens if 

at least one of those holographic images was classified as pine, the error rate can further drop to 

17.14%. From the perspective of allergies, this remaining mislabeling of pine pollen (~17%) as 

wheat would not necessarily mislead the potential users since many people that are sensitive to pine 

pollen are also allergic to other pollen57.  

The designed virtual impactor device with lens-free holographic imaging also presents a unique 

feature of volumetric sensing of flowing particulate matter. It allows us to image flowing particles 

distributed inside a large volume (25 mm3) and records the 3D information about the particles 

through holography. Harvesting this 3D information, in this work, we demonstrated a deep neural 

network that utilizes the complex-valued images of each flowing particle at five different axial 

locations, each of which has different phase and amplitude profiles, reflecting the unique 3D 

refractive index information of the particle. To shed more light on the classification advantages 

brought by this volumetric sensing approach, we further trained another deep neural network taking 

only the auto-focused images, i.e., from a single axial location, while keeping the architecture and 

training parameters the same as before. This network that only used the complex-valued object field 

from a single axial plane achieved a worse classification accuracy of 85.23%, which indicates the 

advantages of using multiple complex fields at different axial planes for each flowing particle. 
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Generally, the quality of an inline holographic image after a simple auto-focusing step suffers 

from the twin-image artifact unless phase recovery is applied to it. In this study, however, since the 

distance between the samples and the CMOS image sensor is relatively large (on average ~ 2 mm), 

we did not use phase retrieval and the twin image artifact did not constitute an obstacle to the 

accurate classification of pollen particles. In case a more clear microscopic image of each flowing 

particle is desired, iterative or neural network-based phase recovery algorithms58–61 can be used to 

remove the twin-image artifacts, revealing increased contrast and SNR for each particle. In addition, 

deep neural networks can also be used for auto-focusing and phase recovery at the same time60,62,63. 

The inclusion of these additional processing steps might further improve the performance of our 

virtual impactor-based label-free bio-aerosol detection and classification device. 

In our proof-of-concept demonstration reported in this work, the image processing was done 

offline on a computer. However, this does not limit our sensing throughput. The CMOS image sensor 

is controlled by a C++ program, which can be transferred to other portable platforms. Our 

differential imaging-based particle/pollen detection algorithm can be easily handled by a light-

weight device. Each cropped particle FOV can be either processed on the cloud24 or on-the-spot, 

and the neural network-based processing can be covered by edge computing units such as Nvidia 

Jetson One64.  

While this work utilized a virtual impactor device to sample and concentrate pollen particles in 

air, it is also conceivable that, with various advances made in the microfluidics field, different 

sampling methods can also be used to separate particles/pollen based on their size or inertia65–67, 

especially if the pollens are pre-sampled through an aqueous solution68. The pulsed illumination 

system adopted in our device is also suitable for high fidelity imaging of flowing particles within 

microfluidic channels if an alternative, fluidic-based pollen collection method were to be 

implemented. 

 

Conclusion  

In conclusion, we presented a novel device for label-free pollen detection using a virtual 

impactor and computational imaging. Pollen particles in the air were slowed down and concentrated 
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in the middle channel of a virtual impactor. Pulsed illumination was used to form triplicate 

holographic patterns of the same particle on a single frame. The volumetric sensing provided by 

holographic multi-shot imaging of the same flowing particle brought unique features to this device, 

using which a deep neural network achieved 92.91% accuracy in classifying different types of 

pollens. The mobile device prototype costs ~$920 and weighs ~700g, which can be further reduced 

in mass production, providing a cost-effective and portable solution to long-term unattended 

personalized bio-aerosol monitoring.  

Methods 

Virtual impactor design and fabrication  

The virtual impactor separates aerosols based on their aerodynamic diameter 𝑑𝑎. For an arbitrary 

particle, 𝑑𝑎 can be calculated as  

𝑑𝑎 = 𝑑𝑒 (
𝜌𝑝

𝜌0𝜒
)

1
2

(2), 

where 𝑑𝑒 is the diameter of a spherical particle with the same volume, 𝜌𝑝 and 𝜌0 refer to the density 

of the particle and water, respectively. 𝜒  is the dynamic shape factor calculated based on the 

microscopic shape of the particle26. The cut-off diameter ( 𝑑50)  of a virtual impactor is the 

aerodynamic diameter of a particle that has 50% probability to be collected by the middle channel, 

resulting in a particle collection efficiency of 50%. It can be estimated using the flow velocity and 

the virtual impactor geometry26: 

𝑑50 = √
9𝜂𝑊2𝐿(𝑆𝑡𝑘50)

𝜌𝑝𝑄
− 0.0078 × 10−6 (3) 

where 𝜂  is the air viscosity. 𝑊  and 𝐿  denote the width and length of the impaction nozzle (the 

junction of the middle and by-pass channels). In this work, we used 𝑊=5 mm and 𝐿=1 mm (see 

Supplementary Fig. S5 for details). 𝑆𝑡𝑘50 is the Stokes number of the particles with 50% collection 

efficiency, 𝜌𝑝 is the density of the particle, and 𝑄 is the flow rate. In designing the virtual impactor, 

the flow rate Q was first empirically chosen, and the dimension of the virtual impactor nozzle was 

optimized using the FEM solver in COMSOL (see Fig. 2(a)). The virtual impactor channel was 

fabricated using a 3D printer (Objet30 Pro, Stratasys Inc.) with a light-blocking material. The region 
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designed for the imaging window was fabricated as open holes during the 3D printing. Coverslip 

glasses were used to seal them and form an air-tight channel.      

Camera exposure settings and illumination pulse synchronization 

The CMOS sensor (IDS-UI-3592LE-C-VU, 4912 x 3684 pixels, pixel pitch 1.25µm) used in this 

work operates based on a rolling shutter with a global release feature. The camera sequentially turns 

on all 4912 rows of pixels to start collecting photons, from top to bottom, and sequentially turns 

them off. The time between the bottom row of the pixels to start detecting photons and the top row 

to stop detecting photons was set to be 2600 µs. In other words, all pixels on the CMOS sensor 

collect photons during this 2600 µs period. A high voltage level is provided when all pixels are 

turned on. This signal triggers a single pulse with a duration of 1600 µs from a re-triggerable 

monostable multivibrator (74LS123, Texas Instrument Inc.). This single pulse is further coupled 

with a pulse train generated by a 555 timer (LMC555CN, Texas Instrument Inc.) with a pulse width 

of 6.9 µs and a period of 707 µs. Three pulses (each having 6.9 µs) are generated and sent to an 

LED controller (TLC5917, Texas Instrument Inc.), which injects 120 mA current into the laser diode 

(PLT5 510, OSRAM Opto Semiconductors GmbH).  

Neural network training 

The network used in this work was adapted from DenseNet20156, with the channel number of the 

first convolutional layer tuned to match the input image channels. In the network training, each ROI 

was first randomly cropped to have a size of 224×224 pixels. Data augmentation, including random 

flipping and rotation, was consequently applied to the images. Finally, before being fed into the 

networks, each input image was processed with a Gaussian blur to remove salt and pepper noise 

caused by the short exposure under each pulsed illumination (6.9 µs). A softmax cross entropy loss 

was calculated using the network predicted class scores and the ground truth pollen species as: 

ℒ𝐼  = − ∑ 𝑔𝑐 ∙ log (
exp(𝑠𝑐)

∑ exp(𝑠𝑐′)6
𝑐′=1

)6
𝑐=1    (4), 

where 𝑠𝑐  denotes the predicted class score for the 𝑐th  class, and 𝑔𝑐  denotes the 𝑐th  entry of the 

ground truth label vector. The network parameters were optimized using an Adam optimizer, with 
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the learning rate set to be 1×10-4 at the beginning and tuned using a cosine annealing schedule. The 

network was trained using a desktop computer with a Ryzen 9 3950X central processing unit (AMD 

Inc.) and an RTX 2080Ti graphic processing unit (GPU, NVidia Inc.) with 64 GB of memory, 

running on Windows 10 (Microsoft Inc.). The typical training time with 200 epochs is ~5 hours. 
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Notes 

The design files of our device can be found at:      

 https://github.com/Yijie-Zhang/Virtual-impactor-CAIR.  
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Figures 

 

Figure 1. The virtual impactor-based label-free pollen detection device. (a) 3D computer-aided-

design (CAD) drawing of the device. (b) Photograph of the prototype. Major parts of the device 

were 3D printed. (c) Schematic drawing of the virtual impactor channel used to concentrate the 

flowing aerosols and the lens-free imaging set-up. (d) Schematic drawing of the lens-free imaging 

system. A laser diode illuminated the particles flying through the imaging window with pulsed 

illumination. (e) Three pulses formed a pulse train. Particles cast lens-free inline holograms on a 

CMOS image sensor with each pulse. Triplicate holographic patterns are digitally integrated by the 

CMOS sensor on each frame. (f) A deep neural network was trained to classify pollen species. FOVs 

containing individual pollen particles were first auto-focused. The focused hologram was 
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intentionally defocused for ±50 and ±100µm in the axial direction. Both the real and imaginary 

channels of the focused and defocused holograms formed an image stack to train the network. In 

the blind testing stage, a majority voting was applied to the labels inferred using the triplicate 

holographic patterns of each flowing particle.  
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Figure 2. Design of the virtual impactor-based system. The geometrical design of the virtual 

impactor used to concentrate flowing particles was optimized using FEM simulations. (a-b) The 

flow field inside the channel. (c) Simulated particle collection efficiency in the middle channel of 

the virtual impactor. (d) Schematic drawing of the controlling circuit for the portable device. On the 

left, the circuit receives the signal from the CMOS image sensor and fires a pulse train. On the right, 

the circuit measures the flow rate inside the virtual impactor channel and uses it to adjust the fan 

power using a PID controller.  
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Figure 3. Flowing particle detection and localization using differential holograms. Differential 

holograms (see Eq. 1) were calculated using three successive holograms 𝐻(𝑡0) , 𝐻(𝑡0 + Δ𝑡)  and 

𝐻(𝑡0 + 2Δ𝑡). Note that Δ𝑡=285.7 ms and should not be confused with δ𝑡 = 699𝜇𝑠 which is the 

interval between two successive pulses. One of these holographic images contains the entire 

triplicate hologram set of a flowing particle within the imaging window. Flying particles present 

lower intensity levels in the differential hologram 𝐻𝑑  and a threshold was used to localize the 

flowing particles. 
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Figure 4. Triplicate holographic patterns of the same flowing particles under pulsed illumination; 

each pulse duration is 6.9 𝜇𝑠 and δ𝑡 = 699𝜇𝑠. Top row: a representative pollen particle of each 

species imaged under a bright-field microscope. Bottom three rows: triplicate holographic patterns 

of a different pollen particle of each species captured during our experiments; their autofocused 

images are also shown to the right of the corresponding lensfree hologram.  

  



24 
 

  

 

Figure 5. Confusion matrices of the classification deep neural network. (Left) In the blind testing 

stage, each image FOV is separately/individually classified, ignoring triplicate holograms of each 

flowing particle. (Right) A majority voting was applied to the three labels predicted by using the 

triplicate holographic patterns of each flowing particle. The final classification accuracy with 

majority voting improved to 92.91%.  
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