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Introduction: the what and why of real-world data
We are now practicing medicine in a world immersed with data. 
Advances in computing and health information technology have 
given rise to new sources and types of biomedical data. The grow-
ing availability of these data and their potential for novel uses 
have stimulated interest from many parties across the health care 
delivery spectrum. The United States Food and Drug Administra-
tion (FDA) has been using the phrases “real-world data” (RWD) to 
mean “data relating to patient health status and/or the delivery of 
health care routinely collected from a variety of sources” (1). They 
define “real-world evidence” (RWE) as “clinical evidence about 
the usage and potential benefits or risks of a medical product 
derived from analysis of RWD” (1).

While RWD include case reports or retrospective observa-
tional data, this definition actually covers a broader variety of data 
sources. These include electronic health records (EHRs) (Table 
1), administrative and claims data, registries, patient-generated  
data from websites and wearable sensors, measures of social 
determinants of health, and environmental exposures (2). Simi-
larly, although evidence derived from observational data can be 
construed as uncontrolled and low-quality evidence, RWE covers 
a broader range of analytic designs for causal inference. These 

include natural experiments, in which the assignment to the  
exposure of interest is made by arbitrary forces resembling a ran-
domized trial (3).

Although the best-known uses of RWD have been for the reg-
ulation of drug safety, RWD have attracted the attention of many 
other participants in the health care ecosystem: biopharmaceu-
tical companies, payors, providers, policy makers, and patients 
(Figure 1 and Table 2). In this Review, we evaluate their poten-
tial utility and present limitations. We proceed by highlighting  
seven broad categories and 21 specific applications of RWD — both 
existing and emerging ones. We then turn to a detailed discussion 
of ongoing challenges in their use. It is our belief that a broader 
awareness of these data can only serve to maximize their potential 
to improve human health at all levels.

RWD for post-approval safety
Updating side effect rates. As phase III clinical trials may not be suf-
ficiently powered to detect clinically significant adverse events, 
regulatory bodies and biopharmaceutical sponsors have relied on 
alternative approaches to study the safety of drugs after approval. 
The primary method in use by the FDA has been phase IV stud-
ies: open-label and noninterventional studies that assess a larger 
population and longer time period than are typically studied in 
phase III trials. By contrast, biopharmaceutical companies have 
primarily relied on national registries to facilitate post-marketing 
studies of safety and efficacy. This has in large part been because 
these registries collect other data of commercial interest, such 
as patient/physician experience, compliance, access/utilization, 
reimbursement, and competitive intelligence.

One of the earliest examples of regulatory adoption of RWD 
has been the FDA Sentinel Initiative (4). Sentinel is a federated 
network established in 2008 that integrates claims, EHR, and reg-
istry data nationwide to monitor product safety. Although the FDA 
is the primary consumer of the Sentinel system, it is increasingly 
being used by other parties, including biopharmaceutical compa-
nies as well as researchers developing methods for event detec-
tion. Over time, passive surveillance systems such as Sentinel and 
other regulatory platforms such as MedWatch (5) may grow in 
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Data mining techniques on raw, unfiltered RWD also have the 
potential to discover other kinds of side effects. These include bene-
ficial ones, such as the anti-TNF effect of bupropion in the setting of 
Crohn’s disease (9, 10). They also have the potential to identify unan-
ticipated side effects resulting from combinations of two or more 
drugs that are difficult to predict during drug discovery and develop-
ment, yet may be seen in larger cohorts through EHR data (11).

Although observational data play an essential role in the 
detection of adverse events, confirmatory randomized controlled 
trials (RCTs) are still necessary, especially in scenarios where 
prior studies are conflicting. For example, trials of widely used  
antidiabetic medications were needed to confirm serious risks 
such as those of bone fractures (12, 13) and amputations (14).

RWD to support regulatory approval
Single-arm experimental trials. Although placebo-controlled and 
double-blinded RCTs unambiguously represent the gold standard 
for clinical evidence, this ideal is frequently impractical. As one 
example, for rare and/or deadly diseases, it can be difficult to eth-
ically justify randomizing some subjects to a no-treatment arm. 
Trials can also prove too expensive, are difficult to recruit for, and 
can extend the regulatory timeline.

The challenges associated with obtaining these gold-standard 
sources of evidence have prompted many to explore expeditious 

importance as a more efficient, cost-effective, and real-time way 
of capturing and confirming important safety signals.

Discovering novel side effects. Many of the most valuable data 
residing in EHRs and many patient-generated sources (e.g., social 
media) exist in the form of unstructured, free-text data. These 
data have been more challenging to computationally manipulate 
than structured data fields (e.g., ICD codes for diagnoses), and as 
such have been left out from most RWD databases such as Senti-
nel (Table 1) (6). However, free-text data have several advantages 
over traditional, protocolized collection of structured data. First, 
they are more expressive and less encumbered by structured 
fields with rigidly defined categories. Second, they are less fil-
tered, because this information capture may have been initiated 
by the patient. As a consequence, these data have the potential 
to convey a richer survey of unanticipated side effects. Advances 
in natural language processing are making free text increasingly 
tractable for this type of analysis.

Beyond EHR data, there may be benefits of analyzing other 
sources of free text, including social media, as a platform for phar-
macovigilance (7). For example, one recent study demonstrated 
how cutaneous adverse drug reactions resulting from cancer drugs 
can be identified from these sources about 7 months before their 
reporting in the literature; it also identified new side effects not 
previously reported (8).

Figure 1. Participants in the health care ecosystem that generate and consume health care data. Patients (and the communities they constitute) are the 
fundamental source of all clinical data. Much of the clinical data they generate emanates from clinic visits with health care providers. They also gener-
ate data from the pharmacies they purchase treatments from, the registries they participate in, and their use of modern/evolving technologies such as 
social media and wearables. In the setting of a traditional or telehealth-based encounter, clinical data in the form of laboratory test results, imaging, and 
notes are all generated and housed with an EHR system. These data may be repackaged and sent to managed care organizations and health care payors 
to facilitate reimbursement. These payors also transmit data relevant to drug benefits to pharmacy benefit managers (PBMs), who negotiate payment 
for drugs dispensed in pharmacies. Quality data from the EHR are also used by accountable care organizations (ACOs) to support certain quality-based 
reimbursement schemes. EHR data are also consumed by clinical researchers, individuals who oversee health care operations, and data aggregators. The 
latter deidentify and repackage these data for consumption by a variety of parties, including biopharmaceutical companies and regulators, as relevant for 
monitoring of treatment safety and efficacy, among other uses. Although most patient data represent a form of RWD, some patient data are collected in 
the setting of controlled trials. Although data from cardiac devices (e.g., pacemakers/cardioverter-defibrillators) and glucose meters occasionally end up in 
the EHR, data from consumer wearables and sensors and social media are currently not integrated into EHR systems. However, these data are increasingly 
being studied for their potential utility in health care, and may be integrated in the future. Adapted with permission from Datavant (58).
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palbociclib was approved only for women with ER+/HER2– breast 
cancer, because clinical trials only studied women (who constitute 
>99% of breast cancer cases). In April 2019, the sponsor Pfizer was 
able to secure approval for its use in males on the basis of outcomes 
data captured in EHRs related to its off-label use in that population 
(20). Similarly, in the setting of medical devices, the FDA recently  
approved the expanded use of the SAPIEN 3 transcatheter heart 
valve as a valve-in-valve procedure for patients with a failing bio-
prosthetic aortic or mitral valve with significant surgical risk. The 
approval for this additional indication was made on the basis of an 
evaluation of prospectively collected registry data (21).

Biosimilar development. Biologics are a class of medications 
derived from living sources that have transformed the course of 
many chronic diseases, such as rheumatologic conditions; however, 
they are complicated to manufacture and expensive to produce. To 
facilitate the approval of cheaper, nonbranded biologics at the time 
of patent expiration, the FDA has established expedited pathways for 
biosimilars, biologics that must be shown to have substantial similar-
ity to the originator drug in terms of safety, purity, and potency. Many 
in the clinical community initially regarded biosimilars with substan-
tial concern, in part because expedited regulatory pathways allowed 
for the extrapolation of efficacy from one drug indication to all indi-
cations of the reference product. However, multiple real-world stud-
ies have addressed these concerns by repeatedly demonstrating their 
safety, efficacy, and noninferiority to the reference product across 
indications and cohorts (22, 23). These studies supporting substantial 
similarity in the real-world setting have led to increased acceptance of 
these lower-cost drugs by the clinical community (24).

RWD to inform clinical trial design
Better patient selection. In 2017, a survey of life science companies 
found that 54% of survey participants were investing in RWE capa-

and less expensive alternatives. These include single-arm exper-
imental studies, in which data pertinent to the control arm are 
supplied by historical sources or otherwise derived from sources 
of RWD such as EHRs. It is important to point out that this study 
design has been — and continues to be — controversial among 
authorities. This is in large part because the placebo effect is both 
substantial and unpredictable in many scenarios. As a result, recent 
regulatory applications using this approach have been limited to 
diseases for which the treatment effect is expected to be rapid and 
substantial, and the natural history of untreated disease is thought 
to be well understood (15). Nevertheless, some have argued that 
changes in regulatory attitudes have largely been the result of 
undue political pressure (via the 21st Century Cures Act as well 
as lobbying from patient-advocacy groups and biopharmaceutical 
companies), rather than true advances in clinical science (16).

Beyond the regulatory realm, historical and synthetic con-
trols have also been used to support payor coverage decisions. For 
example, alectinib, an ALK inhibitor for advanced ALK+ non–small 
cell lung cancer (17), was approved in both the US and Europe on 
the basis of two single-arm phase II trials, but European payors 
requested additional evidence of alectinib’s efficacy against the 
standard of care, ceritinib. The product sponsor Roche collaborated  
with Flatiron Health to generate a synthetic control cohort of 77 
patients that satisfied the requested coverage requirements. A fol-
low-up RCT confirmed similar efficacy between the propensity- 
matched synthetic control and the ceritinib-treated arm (18, 19).

Digital approvals. Although physicians are permitted to pre-
scribe treatments off-label in regulatory environments such as the 
US, the regulatory label of a given treatment impacts payor coverage 
decisions and ultimately how many patients will receive treatment. 
Regulatory agencies like the FDA are increasingly approving label 
expansions on the basis of RWD. For instance, the CDK4/6 inhibitor 

Table 1. Acronyms and terms used in this Review

Term Definition
Randomized controlled trial (RCT) A study design whereby subjects are randomly assigned to exposures of interest (including controls) and assessed for outcomes of interest. This is 

the gold-standard clinical study design for the inference of causal effects, because it controls common sources of bias in observational data such as 
confounding and mismeasurement. However, these can be expensive and/or impractical to do for all clinical questions of interest; moreover they can 
sometimes fail to generalize to common clinical populations or situations, prompting interest in alternative approaches.

Pragmatic clinical trial (PCT) A clinical trial designed to measure the strength of associations between exposures and outcomes in real-world settings, rather than to prove causal 
relationships. To achieve this, they can incorporate far less restrictive participant eligibility criteria, use a less complex and more cost-effective design 
to achieve adequate statistical power, be performed in the target settings where inference is desired, and relax other common features of RCTs, 
including the use of placebos and blinding. These studies can complement RWE studies to support high-quality clinical evidence in health systems.

Electronic health record (EHR) Computerized system that captures a large variety and volume of data relevant to patient-provider encounters. These include prescriptions, diagnoses, 
and procedures, as well as test orders and results, clinical notes, and provider-patient messaging. EHR systems are increasingly including patient-
reported outcomes and imaging.

Diagnosis code (e.g., ICD code) Providers commonly assign diagnosis codes at the time of a clinical encounter in order to facilitate medical billing and reimbursement. These 
commonly originate from a list of predetermined codes such as the International Statistical Classification of Diseases and Related Health Problems 
(the 10th revision contains over 70,000 such diagnostic codes).

Structured data Data elements that encode information in a predefined and consistently organized fashion. These include the use of diagnosis codes, procedure codes, 
and other elements that place limits on how the information is represented. These types of data are typically easier to analyze but can lose important 
information and nuance owing to their restrictive nature and inconsistent application.

Unstructured data In contrast to structured data, these data are not associated with any specifically imposed structure. One common example is the free-text notes 
associated with the documentation of clinical visits. Unstructured data are more difficult to analyze but contain richer and potentially more accurate 
content.

Natural language processing A research field concerned with the computational processing and analysis of human language. Techniques developed in this field are increasingly 
being used for the analysis of medically related free text such as from EHRs, social networks, and other sources.
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costs of this data collection process by informing trial designers 
as to what variables are most often used clinically, which are 
informative, and which might be redundant. Moreover, new  
trial designs in the clinical setting, such as adaptive platform tri-
als, which allow for the dynamic evaluation of multiple interven-
tions, may represent a valuable source of RWD with the poten-
tial to further increase trial efficiency and reduce costs (29). Of 
course, trial sponsors would have to synchronize any new data 
collection expectations with regulators.

RWD to continually establish efficacy
Assessing the efficacy-effectiveness gap. The efficacy-effective-

ness gap refers to systematic differences between rates of efficacy  
reported in RCTs and effectiveness in routine clinical settings 
(30). Multiple reasons have been proposed for the existence of 
this gap, including differences between patient populations; dif-
ferences in endpoints, time under observation, analytic methods, 
and treatment adherence; and confounding and measurement 
bias. In part to address questions of RCT generalizability, RWE 
studies have received considerable attention, especially those that 
aim to benchmark real-world studies against RCTs  (31, 32). Bet-
ter understanding of these differences has the potential to inform 
both local clinical practice and future clinical trial design.

Searching for efficacy in specific populations. In particular, RCTs 
have been criticized for their exclusive eligibility criteria. Women,  
especially pregnant women and those of childbearing potential, 
can be excluded from many trials (33). Patients with chronic kid-
ney disease (CKD) have also been excluded from many cardio-
vascular trials, even though they constitute a large and important 

bilities in order to support clinical trial design and patient recruit-
ment (25). In the early clinical phase, RWD (e.g., from the EHR) 
may be used to identify clinical cohorts with unmet clinical needs 
and a greater likelihood of benefiting from new therapies. These 
data may help refine trial inclusion/exclusion criteria to improve 
capture of target patients. Moreover, RWD could be used to iden-
tify the best study sites and enable more efficient recruitment and 
retention within the clinic setting. These interventions have the 
potential to decrease trial length while increasing both statistical 
power and generalizability. Much of this promise has already led 
to the formation of research networks with hopes of optimizing 
recruitment and data interchange. Examples include the public 
NIH Clinical and Translational Science Accrual to Clinical Trials 
(CTSA ACT) program (26) and the private TriNetX network (27).

EHR data are particularly relevant to pragmatic clinical trials 
(Table 1). These are a variant of RCTs that are designed to answer 
practical questions faced by decision makers in the routine clinical 
setting rather than to establish causal relationships. By elucidating 
typical practice patterns for the disease of interest (e.g., frequency 
of visits, laboratory/imaging studies, etc.), EHR data may enable 
the design of more efficient trial protocols. For such trials embed-
ded within the clinic, future trial designs could take greater advan-
tage of randomization schemes built within the practice workflow 
(e.g., consent at the time of check-in, randomization during the 
clinic visit, etc.).

Trimming the trials: more efficient data collection. Excessive 
data collection has been blamed for clinical trials’ contributions 
to substantial expense, complexity, and delay in the drug devel-
opment process (28). RWD may help reduce the complexity and 

Table 2. Producers and consumers of RWD in the health care ecosystem

Participant Role
Regulatory bodies (FDA, European 
Medicines Agency [EMA]) 

Promote public health through the control and supervision of medical products, including drugs and medical devices. As discussed in this Review, 
regulatory bodies are increasingly using RWD to assess the safety and efficacy of medical treatments.

Pharmaceutical and medical device 
industry

Companies manufacturing medical drugs and devices. These companies commonly use registries to track efficacy, safety, and use of their products 
(and those of their competitors); they are increasingly interested in other sources of RWD for these purposes.

Providers A term encompassing all individuals who professionally provide a health care service. This includes physicians, surgeons, nurses, dentists, physical 
and behavioral therapists, and other allied health professionals. Providers increasingly capture clinical data in EHR systems during clinical 
encounters. Many disease registries are run by and updated by providers and the individuals employed by them.

Patients and communities The recipients of health care from providers. They are typically the subjects of RWD, and generate these data through clinical encounters, 
wearables, social networks, etc. Increasingly, they are also becoming administrators of their own RWD, as well as consumers of it (as discussed in 
the penultimate section of this Review).

Payors The entities that finance the provision of health care. In the US, these include the US government, employer-subsidized health insurance, and 
individually paid health insurance. Payors collect claims data on their enrollees in order to meet financial objectives. Both government- and 
private-payor claims data have been made available for research purposes.

Managed care organization A health insurance organization that provisions services in exchange for a predetermined fee. These organizations control the utilization of 
health care in order to reduce costs while attempting to improve quality. These organizations can be independent of the payor. They analyze RWD 
submitted by provider groups in order to assess patterns of health care utilization and determine reimbursement.

Facilities Places where health care is delivered. These include hospitals, clinics, urgent care facilities, surgical centers, pharmacies, and long-term care and 
rehabilitation facilities. Increasingly, health care is being delivered independent of physical facilities via telemedicine. These facilities are commonly 
associated with systems that capture health care data, including EHRs, researchers who maintain disease registries, etc.

Accountable care organization (ACO) An organization of US health care providers whose reimbursements are tied to meeting quality targets and reducing the cost of care. These 
organizations typically submit data on health care quality during the reimbursement process to Medicare and other payors. ACOs are increasingly 
interested in using RWD to predict future declines in health.

Other third-party businesses in health 
care

There are a wide variety of companies in the health care space that produce and consume RWD. These include health care analytics firms and 
consultancies, operators in the mobile health space, telehealth firms, and direct-to-consumer companies (e.g., microbiome trackers, digital 
pedometers, heart rate monitors).
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the later unblinding of the study), as would the capture of patient- 
reported outcomes (e.g., HealthMeasures, PROMIS).

RWD for comparative effectiveness
Integrating costs with comparative effectiveness. In the overall effort 
to bring rational and cost-conscious decision making to the clinic, 
comparative effectiveness studies represent the next logical step 
after real-world effectiveness studies. Comparative effectiveness 
studies are particularly relevant to chronic diseases with multiple 
medication classes and multiple agents within a class. Head-to-
head comparisons of drugs in the setting of clinical trials are rare, 
in large part because of their expense and a lack of funding incen-
tives from industry. When comparisons do exist, they are more 
commonly found in the setting of noninferiority studies, rather 
than assessments of superiority.

To promote the study of comparative effectiveness, the US Con-
gress, as a part of the Affordable Care Act (ACA), established the 
Patient-Centered Outcomes Research Institute (PCORI) in 2010 
to investigate relative effectiveness and inform decision making 
for Medicare coverage. Although PCORI has funded many import-
ant population studies, in part through the use of its data network, 
PCORnet, it is still prohibited by law from funding cost-effective-
ness research using the traditional metric of quality-adjusted life 
years (43). The reasons for this restriction at the time of bill passage 
were complicated, including concerns that this would stifle innova-
tion and lead to a slippery slope in coverage decisions and that wide 
cost variation in the US would make such research misleading, as 
well as political reasons related to passage of the ACA. This, along 
with prohibitions on Medicare to centrally negotiate drug prices, is 
likely contributing to worsening US health care costs.

These limitations highlight the potential for RWD to address 
this critical evidence gap and place it in a cost-aware framework. 
Specifically, charge data may be captured in the EHR or in matched 
claims data. Integrating costs with measures of performance that 
incorporate average patient use/compliance using RWD can help 
beneficiaries and payors afford high-quality care (as a simplified 
example, ranking diabetes drugs by their drop in hemoglobin A1c 
per dollar). With larger collections of EHR data available, the 
efficiency in running more of these studies is likely to improve, 
enabling comparative cost-effectiveness studies that PCORI itself 
has been challenged to support (44).

Understanding effects of pharmacy practices on health care 
utilization. Understanding and curbing high health care spend-
ing is of obvious importance. One such practice currently being 
considered for potential regulation is the use of rebates passed 
between drug manufacturers and pharmacy benefit managers, 
intermediaries that negotiate and administer prescription ben-
efits on behalf of payors. Although drug rebates are commonly 
promoted as reducing drug costs, critics have been unsatisfied 
with the lack of transparency in this practice, including how 
much of the rebate is actually passed on to beneficiaries (45). 
Equally unclear is how these practices affect the “list price” of 
medications (e.g., whether or not they may actually increase the 
list price and/or paradoxically decrease beneficiary access to 
affordable medications) (45).

RWD — whether as medical claims or other administrative 
billing data — may offer important transparency to this otherwise 

fraction of this disease cohort (34). The desire to control unde-
sired outcome variability and maximize trial efficiency reflects a 
fundamental tradeoff between the internal validity and external 
utility of these studies.

To the extent that RCTs do not capture these vulnerable popu-
lations well, their exclusion leaves open a critical evidence gap that 
must be filled by RWD. For example, recent studies have used 10 
years’ worth of EHR data to study the safety of lower endoscopy in 
pregnant patients who report alarm symptoms (e.g., rectal bleed-
ing) that might indicate inflammatory bowel disease or cancer (35). 
Similarly, RWD have illuminated the safety and efficacy of anti-
coagulants for patients with CKD — a patient population prone to 
conditions needing this treatment but commonly excluded from 
controlled studies (36).

Effect modifiers and precision medicine. The specific study of 
real-world efficacy in subgroups opens the possibility of research 
into effect modifiers (e.g., treatment by group interactions) and 
precision medicine. Treatment effect modifiers can take a variety 
of forms: inherited factors, concurrent medications, comorbidi-
ties, surgical history, diet, and other lifestyle habits (e.g., exercise, 
smoking). The use of RWD to identify treatment effect modifiers 
can help guide patient selection (e.g., picking the patients most 
likely to respond to treatment) and tailored behavioral modifica-
tion (e.g., exercise to augment insulin sensitivity [ref. 37]; NSAIDs 
and smoking cessation [ref. 38] for Crohn’s disease). More impor-
tantly, however, these studies can shed important light on patho-
physiology and fundamental mechanisms of disease (39). But it 
is important to note that many of these components, even well-
known social determinants of health, are still not captured well 
in clinical EHRs (40). Overall, it should be noted that the identi-
fication of precision medicine subgroups is particularly difficult 
because it is susceptible to false positives from multiple-hypoth-
esis testing; positive results will still need to be confirmed with 
independent data sets and/or study designs.

Long-term, post-trial outcomes. Another critique of controlled 
trials is that they are too short, especially in comparison with 
chronic disease time scales. In addition to the substantial expense 
associated with continual and considerable data collection,  
longer-term trials increase the burden on trial participants, who 
are then increasingly prone to dropout.

The analysis of long-term outcomes from post-trial data has 
been a valuable source of information related to treatment effi-
cacy and safety. For instance, 10-year and 30-year follow-up data 
from the UK Prospective Diabetes Study and the Diabetes Control 
and Complications Trial, of type 2 and type 1 diabetes mellitus, 
respectively, have demonstrated a long-term reduction in disease 
complications following a strategy of intensive glycemic control 
(41, 42). Sources of RWD, such as the EHR, may be able to identi-
fy former study participants who are not already being tracked by 
post-trial registries and further track their outcomes from an effi-
cacy and safety standpoint.

In addition, with the advent of individual-participant data 
sharing from clinical trials, linkage methods may facilitate a more 
complete understanding of important long-term outcomes. But 
for this to happen, the representation of clinical trial participation 
in the EHR would need to improve (e.g., how to later record which 
investigational drug or placebo a patient was treated with, after 
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opaque practice. In particular, by uncovering systematic differenc-
es in the prescribing patterns between patients of different payors, 
RWD may clarify the effects of these market drivers on health care 
utilization and outcomes.

Studying novel on-label pharmaceuticals versus older off-label 
drugs. Off-label use of older and cheaper pharmaceuticals can 
often offer efficacy and safety similar to those of their on-label 
counterparts. However, because of the lack of formal regulatory 
evaluation for a given indication, they can often be denied cover-
age by payors. For instance, ocrelizumab was recently approved for 
the treatment of multiple sclerosis, although an older but highly  
similar agent, rituximab, had been used off-label for this condi-
tion. Genentech manufactures both drugs, and, to our knowledge, 
did not pursue FDA approval for rituximab, possibly given its near-
ing patent expiration. Although there is at least one ongoing clin-
ical trial comparing these agents head to head (NCT02980042, 
ClinicalTrials.gov; ref. 46), this question may also represent an 
illustrative opportunity for RWD to compare these agents by cost, 
efficacy, safety, and other endpoints, such as drug immunogenic-
ity. As pharmaceutical sponsors might not be incentivized to pur-
sue these types of studies, this remains an opportunity for others, 
such as payors or health care institutions, to use RWD to study 
cost-effectiveness to inform future coverage decisions.

RWD to study the practice of medicine
Quality of practice and medical errors. Analytics on RWD can help 
measure the quality of medical practice at the practitioner level. 
Medical groups associated with medical procedures can use RWD 
to specifically identify both underperforming and overperforming 
providers and use this as the basis of a strategy to disseminate best 
practices. RWD also have the potential to critically assess the equi-
ty of health care delivery across race, sex, and other socioeconomic  
strata. While these types of questions are still answered manually 
with sampled record reviews, automated systems could enable a 
more comprehensive and consistent evaluation of quality. Regu-
latory agencies and payors commonly use clinical data to evaluate 
the quality of delivered care, and we predict more of these reports 
will be generated using EHR data over claims data, owing to the 
higher degree of detail provided.

Although internal data-driven dashboards and physician 
“scorecards” have historically been heavily guarded from pay-
ors and patients, changes to regulations and data-interoperability 
practices may change over time as these data become increasingly 
integrated with existing physician-rating platforms on the Internet.

Standardizing care and care delivery. In health care systems such 
as in the US, excessive practice variation has been implicated as a 
major contributor to excess health care spending and poorer out-
comes (47). One important first step toward reducing unwanted 
variation (e.g., variation that deviates from evidence-based prac-
tice) is the accurate capture and modeling of current practices and 
identification of actionable changes — whether at the level of the 
system, community, practice, or provider. Analytic platforms that 
measure the current state of variation and the response to interven-
tion from a cost and outcomes standpoint represent another use 
case for RWD — for both payors and accountable care organizations.

The effect of payors on medical care. In the US, payors wield 
enormous influence on multiple aspects of health care — including 

access, costs, and outcomes. Understanding the variation of payor 
practices can not only yield important insights into their effect on 
important health care outcomes, but also help disseminate knowl-
edge relevant to marketplace regulation and best practices.

Payor decisions, including preapprovals and denials, are cap-
tured in the EHR and might be analyzed using causal inference 
techniques such as regression discontinuity and instrumental vari-
able analysis in order to understand their effects. Many expensive 
drugs and devices may only be used after prior authorization by a 
payor. Physicians (or their staff) may go through cycles of autho-
rization requests and denials or acceptances. The data related 
to these transactions are increasingly captured in EHR systems, 
including the actual denial letters. A systematic review of payors 
and their acceptance/denial rates per medication may be illuminat-
ing, especially if such data are published or made open. For exam-
ple, patients who would have been prescribed a given medication 
but were shunted to a different treatment as a consequence of 
payor denial could be analyzed in the setting of a matched-cohort 
study with similar patients who were able to be treated as intended.

Are new-generation diagnostics improving outcomes? Although 
the first major clinical appearance of genetic data was in the set-
ting of oncology and rare diseases, genomic testing is growing, 
with newer polygenic risk score tests being developed and pro-
posed even for the primary care setting (48). But the proliferation 
of these expensive tests has raised the important question: are 
they worth it? Early studies are beginning to address the aspect of 
cost and the practicalities of implementation (49, 50). However, 
the greater question that remains largely unaddressed is whether 
genomic data are positively impacting health care outcomes. Until 
payors demand high-quality evidence of value and regulators 
tighten control over direct-to-consumer marketing of diagnos-
tics, RWD platforms that capture the presence of testing, the test 
results, clinical outcomes, and costs may be in the best position to 
begin to answer this question.

RWD for data-driven decision support
Clinical decision support: the provider perspective. Most clinicians 
might have seen only a single case of acute porphyria or mesen-
teric panniculitis over the course of an entire career. However, the 
odds are far greater that a health system with a thousand provid-
ers has collectively encountered these conditions dozens of times. 
This idea is at the heart of one of the most exciting prospects 
for RWD and the future of clinical decision support, dubbed the 
“green button” (51). This concept proposes to strengthen clinical 
decision making by allowing clinicians to be more data- and expe-
rience-driven.

The most straightforward implementation of the green button 
concept involves providing data on similar patient outcomes, or 
connecting requesting clinicians to prior providers who can speak 
to their experience and lessons learned. Another exciting version 
of this idea is informatics as a clinical consultation service — one 
that makes EHR-powered data and recommendations accessible 
to providers within the setting of existing clinical reimbursement 
frameworks (52). A more sophisticated version might harness 
machine learning methods such as dimensionality reduction/ 
clustering, supervised learning, and reinforcement learning to 
form an embedded recommender system.
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The potential impacts of this concept are tremendous. First, it 
may enable truly personalized medicine by accounting for local fac-
tors such as demographics, surgical expertise, etc. Second, clinical 
data sharing protocols (e.g., FHIR-enabled application program-
ming interfaces) and/or federated-learning methods may ultimately 
enable the possibility of leveraging insights from millions of patient-
years across systems. Third, a careful study of differences in recom-
mendations for the same patient across systems may yield important 
new insights to help health systems learn from each other.

Clinical decision support: the patient perspective. Although 
advances in health information technology increasingly enable 
patients to integrate their clinical data across systems for the pur-
poses of care coordination, it has not been as easy for patients to 
download their own data and use it as they see fit. The advent of 
tools such as the “blue button” are increasingly giving patients 
more access to their health care data (53).

While the average user may take advantage of blue button 
tools for the purpose of understanding their health status, plan-
ning for future health care expenditure, and sharing health infor-
mation with family and caregivers, the liberalization of health care 
data could empower the future patient to do much more. If given 
more control of their data, patients could add to and correct their 
own health record (54). They may be in the best position to use 
apps that can answer the question: Given your data, what do you 
think we should do next?

These future tools could also help clinical researchers reach 
previously untapped participants. For instance, patients may be 
able to lend their clinical data to crowdsourced clinical research 
endeavors such as deep learning on mammograms (55).

Clinical decision support: the community perspective. Given the 
broad scope of RWD sources extending beyond just the hospital- 
clinic setting (e.g., air and water pollutants, drug abuse, gun vio-
lence, occupational exposures, socioeconomic status, climate 
and weather patterns), there is a potential for more community- 
level engagement in directing health care efforts. Some data are 
already available through governmental or otherwise publicly 
available platforms; others may become available if compati-
ble with community preferences and local legislation. Once this 
occurs, these data may become resources for the community itself 
to do its own data audit and advocate for its own health care prior-
ities, or to invite the global data science community to participate 
in the effort. Data-driven efforts may be usable to precisely target 
the best inventions to the right homes in the right cities at the right 
time, an effort termed precision public health (56, 57).

Challenges in the use of RWD
In this Review, we have briefly highlighted multiple use cases for 
RWD — some ongoing and many still to be seen. While there are 
many reasons to be excited about the potential of RWD, many 
challenges also lie ahead. These generally fall into two categories: 
epidemiologic challenges and biomedical informatic challenges.

Epidemiologic challenges primarily concern problems of data 
quality and bias (Table 3). These are issues that generally result 
from ad hoc data collection and from lack of the quality control 
that would ordinarily follow from a well-designed and controlled 
experiment. Although the central assumption underlying most 
RWD analyses is that these biases can be identified and mitigated  

in the analysis phase, doing so requires substantial expertise, 
including epidemiology, knowledge of the clinical domain and 
the health system itself, biostatistics, and clinical informatics.

Even in the presence of such expertise to “de-noise” the 
data and “unbias” the analysis, the success of the process can-
not be assessed from within the confines of the data themselves. 
It requires external validation from independent sources of evi-
dence. Thus our view is that, for the most part, the enterprise of 
RWE cannot be relied upon in isolation, nor can it be understood 
as a replacement for controlled trials. To the contrary, it interfaces 
deeply with both health system stakeholders and pragmatic clini-
cal trialists to enable a learning health system.

There are also many challenges at the level of biomedical infor-
matics. Data collection in real-world settings is frequently haphaz-
ard and unstandardized. Although the analysis of free text using 
natural language processing is evolving with advances in methods 
and computation, the use of these technologies remains mostly at 
the level of methodologic development and far beyond the reach of 
the average investigator. Structured data are the workhorse of most 
analyses, but come with their own set of challenges, including the 
lack of standardization and harmonization across data sources.

Data access is another major issue. Much of the promise of 
RWE follows from its potential to achieve statistical significance 
by amalgamating population-level data sets. In the US, where the 
culture of privacy protection is strong and public scrutiny over dig-
ital privacy continues to grow with increasing awareness, the shar-
ing of clinical data to unlock important insights remains difficult. 
The risks of data theft, manipulation, and other malignant use are 
only becoming more apparent with every news cycle. Deidenti-
fication strategies are being tried, but fundamentally may not be 
possible for every type of data. Strategies to avoid the transfer of 
actual data, such as synthetic cohorts and federated learning, are 
being explored, but are largely in their infancy. Tiered access to 
data seems unavoidable, with many stages of permissioned access 
likely to come between completely private and widely open access.

The nature of the competitive US health care system also 
hampers data exchange. We predict that partnered health systems 
situated across the country will be more likely to share clinical 
data with each other than with neighboring (and thus competing) 
systems. We may likely end up with a hopscotch-like set of inter-
secting regions of “friendly” noncompeting systems sharing data 
in their own circles. But consistently convincing business reasons 
to share data at this scale have yet to materialize. Any clinical data 
interoperability work takes resources, and those with budgets will 
likely need to see a financial reason to interoperate, beyond help-
ing researchers get better papers published and grants funded. 
Some of the uses listed above may help make the case.

Despite the substantial hurdles, we remain optimistic about 
the potential for RWD to transform health care at every level. We 
believe that the very human ingenuity that led to these data being 
captured also has the same potential to overcome these challenges,  
safeguard human rights, and unlock the insights that can help peo-
ple everywhere lead healthier and more productive lives.
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Table 3. Epidemiologic and biostatistical challenges to the use of RWD

Problem Description Potential solutions
Missing data and selection bias RWD by definition involve routinely collected and 

nonprotocolized data collection. Thus, the presence of data 
is typically associated with the outcome, resulting in bias if 
handled improperly. For example: 
i. Patients may not follow up with their clinician because 

they are unwell and/or did not benefit from the first visit. 
In this case, the patients found within in an EHR database 
would have better outcomes than a prospective study 
tracking all patients. 

ii. Patients with poor health may seek more care. In this 
case, patients within an EHR database would have poorer 
outcomes than a prospective study tracking all subjects. 

iii. Patients who use wearables and health-related social 
networks may be systematically healthier and less prone 
to adverse outcomes than all patients with a given 
condition.

i. Careful study design incorporating epidemiologic principles. Cohorts 
must be carefully defined to maximize their representativeness of 
the target population for which inference is desired. 

ii. Biostatistical methods for bias estimation and correction, sensitivity 
analyses

Measurement biases Many RWD analyses involve the “repurposing” of data collected 
for one purpose to be used for other purposes (e.g., research, 
business decision making, policy). Because the data collection 
process was not explicitly designed with the secondary use in 
mind, it may not accurately capture exposures and outcomes of 
interest, leading to bias. For example: 
i. Patients with a disease may be more likely to recall 

potential exposures than patients without. 
ii. Clinicians may be more likely to selectively document 

patient-reported risks that have established associations 
with disease. 

iii. Clinicians may make diagnoses on the basis of different 
tests with different sensitivities and specificities. 

iv. Many clinical diagnoses are subjective and require blinded 
adjudication committees in clinical trials.

i. Consultation and/or collaboration with the individuals who made 
the original measurements to be repurposed 

ii. Biostatistical methods such as errors-in-variables models, mixed-
effects models, quantitative bias analysis, etc.

iii. Use of preregistered protocols to clearly define variables and limit 
subjectivity (e.g., ref. 59)

Confounding Clinicians may select into treatment only those most likely to 
respond. Thus, treatments may appear to perform better than 
they would appear in controlled trials.

i. Consultation and/or collaboration with the individuals who made 
treatment assignments 

ii. Restriction, regression-based stratification, and other biostatistical 
methods

Absence of controls (e.g., placebos) Because RWD are primarily generated in the course of routine 
clinical care, the decision to give no treatment in situations in 
which treatment is needed is rare and is commonly related to 
the outcome of interest. The prescription of sham treatments 
(i.e., placebos) is typically prohibited. Thus it is difficult to use 
RWD to estimate treatment effectiveness and/or confirm that 
treatments are actually better than no treatment at all.

i. Access to historical data may permit the evaluation of outcomes 
during periods when treatment was unavailable 

ii. Use of natural experiments (e.g., a new treatment happened to be 
used first in one clinic site before other comparable clinics, or was 
covered by one health care payor before others) 

iii. Use of quasi-experiments (e.g., the laboratory arbitrarily determined 
a diagnostic cut point; patients falling on either side of the cut point 
are highly comparable but assigned to different treatments)

Multiple hypothesis testing/inflated  
type I error rate 

Because most RWD analysis takes place on already collected 
data, these data are susceptible to being used to perform many 
post hoc statistical tests and only report positive results. This 
results in a well-known statistical problem, multiple hypothesis 
testing, which culminates in an increased rate of false-positive 
discoveries

i. Preregistration of planned studies with associated protocols 
ii. Internal and external validation
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