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Abstract

Background: Preterm birth (PTB)1, defined as birth at gestational age less than 37 weeks, is a 

major public health concern. Infants born prematurely, comprising of about 10% of the US 

newborns, have elevated risks of neonatal mortality and a wide array of health problems. Although 

numerous clinical, genetic, environmental and socioeconomic factors have been implicated in 

PTB, very few studies investigate the impacts of multiple pollutants and social factors on PTB 

using large scale datasets.

1PTB: Preterm Birth
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Objectives: To evaluate association between environmental and socioeconomic factors and PTB 

in California

Methods: We linked the birth cohort file maintained by the California Office of Statewide Health 

Planning and Development from 2009–2012 years across 1.8 million births and the 

CalEnviroScreen 3.0 dataset from California Communities Environmental Health Screening Tool 

at the census tract level for 56 California counties. CalEnviroScreen contains 7 exposure and 5 

environmental effects variables that constitute the Pollution Burden variable, and 5 socioeconomic 

variables. We evaluated relationships between environmental exposures and the risk of PTB using 

hierarchical clustering analyses and GIS-based visualization. We also used logistic regression to 

evaluate the relationship between specific pollutant and exposure indicators and PTB, accounted 

for socio-demographic determinants such as maternal race/ethnicity, maternal age, maternal 

education and payment of delivery costs.

Results: There exists geographic variability in PTB for groups of counties with similar 

environmental and social exposure profiles. We found an association between Pollution Burden, 
particulate matter ≤ 2.5 μm (PM2.5), and Drinking Water Scores and PTB (adjusted odds ratios 

were 1.03 (95% Confidence Interval (CI): 1.01, 1.04), 1.03 (95% CI: 1.02,1.04), and 1.04 (95% 

CI: 1.03,1.05), respectively). Additional findings suggest that certain drinking water contaminants 

such as arsenic and nitrate are associated with PTB in California.

Conclusions: CalEnviroScreen data combined with birth records offer great opportunity for 

revealing novel exposures and evaluating cumulative exposures related to PTB by providing useful 

environmental and social information. Certain drinking water contaminants such as arsenic and 

nitrate are potentially associated with PTB in California and should be investigated further.

Keywords

Environmental exposure; Environmental disparities; Social stressors; Drinking water 
contaminants; Preterm birth; Cumulative Risk

1. Introduction

Preterm birth (PTB), defined as birth at gestational age less than 37 weeks, is a major public 

health concern. According to the National Center for Health Statistics, the U.S. PTB 

prevalence was 9.85% in 2016, meaning approximately 1 of every 10 births were preterm 

(Martin et al. 2017b). While the definitive etiology of PTB remains unclear (Romero et al. 

2014), environmental contamination has been implicated as a potential cause (Behrman and 

Butler 2007; Giorgis-Allemand et al. 2017). The majority of previous investigations of 

potential environmental causes of PTB have focused on air pollution including particulate 

matter (PM) (Brauer et al. 2008; Hao et al. 2016; Malley et al. 2017; Ritz et al. 2007; Sagiv 

et al. 2005; Schifano et al. 2013). Two separate meta-analyses included 23 and 18 individual 

studies respectively and confirmed a positive association between PM and increased PTB 

risk (Li et al. 2017; Sun et al. 2015). However, findings from individual studies of this 

association varied. Other environmental chemical exposures such as phthalate (Ferguson et 

al. 2014; Meeker et al. 2009), lead (Cantonwine et al. 2010; Vigeh et al. 2011), elemental 

carbon (Rappazzo et al. 2015a), sulfate (Rappazzo et al. 2015a), drinking water contaminant 
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(e.g. arsenic (Ahmad et al. 2001; Laine et al. 2015), nitrate (Stayner et al. 2017)) have also 

been linked to increased PTB risk.

Social factors play an important part in PTB risk, acting as confounders, effect modifiers or 

both (Anthopolos et al. 2014; Braveman et al. 2015; Kramer et al. 2009; Masho et al. 2017; 

Wheeler et al. 2018; Zeka et al. 2008). A recent meta-analysis based on 45 studies 

concluded there are pronounced racial/ethnic disparities concerning PTB risk wherein 

African-American women (PTB prevalence: 13%) have an increased risk of PTB compared 

with white women (PTB prevalence: 9%) (Martin et al. 2017a; Schaaf et al. 2013). Racial 

discrimination could be an etiologic pathway by which race modifies PTB risk given its 

relationship to psychological distress (Giurgescu et al. 2012; Wheeler et al. 2018). 

Socioeconomic condition is an additional important but complex factor associated with PTB. 

Lower PTB rates are associated with higher socioeconomic advantage (Braveman et al. 

2015). On a community level, neighborhoods with long-term high poverty experience 

increased PTB risk compared to those with low poverty (Margerison-Zilko et al. 2015), and 

material area deprivation is also linked to PTB (Auger et al. 2012). PTB also has a long-term 

impact on individual lifetime socioeconomic status attainment (Heinonen et al. 2013), 

suggesting a cycle of risk for vulnerable populations -- potentially over generations.

California is racially and ethnically diverse with distinct socioeconomic disparities. 

Approximately 14% Asian, 6.5% African American, and 38.9% Hispanics live in California 

in 2016. California has a 15% poverty rate with a median household income of about 

$62,000. Regarding educational attainment, more than 68% of the population (age > 25 

years old) has less than a Bachelor’s degree and around 18% has less than a high school 

degree (https://www.census.gov/). Such a high level of diversity in California communities 

has been connected to disproportionate burdens of environmental pollution and health 

disparities (Conroy et al. 2018; Morello-Frosch et al. 2001; Sadd et al. 2011). Also, evidence 

shows that neighborhood socioeconomic factors aggravate the positive relationship between 

PM and PTB, suggesting a ‘double jeopardy’ of high PM10 (PM <10 microns in 

aerodynamic diameter) exposure and living in impoverished neighborhood in the San 

Joaquin Valley of California (Padula et al. 2014a). Here, ‘double jeopardy’ was referred to 

the combined effects of environmental hazard exposures and vulnerability of socio-

economic disadvantaged communities (Behrman and Butler 2007; Institute of Medicine 

1999; Morello-Frosch and Shenassa 2006). Also, for the state of California, PM2.5 and its 

constituents such as ammonium, nitrate and bromine have been shown to be associated with 

an increased risk for PTB, with certain demographic groups including African Americans 

and Asians experiencing greater impacts than others (Basu et al. 2017).

While associations between environmental and social factors with PTB have been evaluated 

in certain counties in California (Padula et al. 2014b; Ritz et al. 2007; Wilhelm et al. 2011), 

very few state-wide analyses examined the linkage between PTB and both environmental 

and social stressors (Basu et al. 2017). A recently published study considered cumulative 

environmental exposures and PTB across the U.S. (Rappazzo et al. 2015b). They identified 

an overall association between Environmental Quality Index and PTB; however, the 

environmental data used were summarized at the county level and were less current (2000–

2005). Additionally, individual pollutant exposures were not evaluated directly. No study 
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that we know have investigated both air pollutants and drinking water contaminants along 

with social factors at both the summary and individual levels on such a large scale. In this 

study, we integrated a large publicly available environmental exposure dataset (the 

California Communities Environmental Health Screening Tool (CalEnviroScreen 3.0)), 

together with a California State birth cohort dataset including birth certificate and hospital 

discharge data to investigate the association between environmental and socioeconomic 

factors and PTB in California across 1.8 million births and over 80 measures of chemical 

exposures.

2. Methods

2.1 Data

In this work, we used the birth cohort file maintained by the Office of Statewide Health 

Planning and Development (OSHPD) and the CalEnviroScreen 3.0 dataset.

2.1.1 California Birth Cohort—The birth cohort file contains linked birth and death 

certificates from all California livebirths, as well as detailed information on maternal and 

infant characteristics, hospital discharge diagnoses, and procedures recorded as early as one 

year prior to delivery and as late as one year postdelivery. Data files provided diagnoses and 

procedure codes based on the International Classification of Diseases, 9th Revision, Clinical 

Modification (ICD-9). The hospital inpatient discharge dataset is maintained by OSHPD 

based on reports submitted by thousands of individual and licensed healthcare facilities 

(https://www.oshpd.ca.gov/HID/). We utilized 1.8 million singleton birth records from this 

database from year 2009 to 2012, which included around 6,500 unique census tract 

identifiers, and focused on the following variables: maternal demographics (e.g. race/

ethnicity, gender, age, place of birth), socio-economic factors (e.g. education, insurance 

coverage) and birth characteristics (e.g. term vs. preterm, gestational age).

Methods and protocols for the study were approved by the Committee for the Protection of 

Human Subjects within the Health and Human Services Agency of the State of California.

2.1.2 CalEnviroScreen—To address the issue of environmental justice, the Office of 

Environmental Health Hazard Assessment (OEHHA), in the California Environmental 

Protection Agency (CalEPA), developed the California Communities Environmental Health 

Screening Tool (Cushing et al. 2015) to incorporate both chemical and non-chemical 

stressors to identify communities with disproportionate environmental and social burdens, 

and provide insights for relevant public health and environmental policy making. 

CalEnviroScreen is a screening tool used to identify California communities exposed to 

multiple sources of contamination (Faust et al. 2017). This tool integrates 20 indicator 

variables representing pollution and population vulnerability (Figure 1) for all 8,035 census 

tracts across all 58 counties in California. There are two main categories of indicators: 

Pollution Burden and Population Characteristics. Pollution Burden is the average of its two 

component scores: Pollution Exposures and Environmental Effects, with the latter half-

weighted. Population Characteristics is the average of its two components: Sensitive 
Populations and Socioeconomic Factors (Faust et al. 2017). We used the data available from 

CalEnviroScreen 3.0 for 15 individual pollutant indicators and 2 summary indicator 
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variables (Pollution Burden and Drinking Water Score) at the census tract-level. We also 

analyzed 13 individual drinking water contaminants that comprise the Drinking Water Score 
indicator, which is one of the pollution exposure indicators. Due to low variability across 

birth records in the matched dataset, two drinking water contaminants Hexavalent 
Chromium and Combined Radium 226, 228 were not included in further analysis. 

Supplementary Material Table S-1 provides definitions of all the variables utilized in this 

study. We used raw values of these variables rather than their corresponding percentiles 

included in the database.

In this study, we used individual socioeconomic information from the California Birth 

Cohort including maternal race/ethnicity, maternal age, maternal education and payment of 

delivery costs, as confounding factors, but considered the neighborhood-level socioeconomic 

data from the CalEnviroScreen 3.0 as exposure variables, similar to other environmental 

contaminant variables. We assume that the exposure period for each birth is the entire 

pregnancy.

There were several steps involved in estimating drinking water contaminant concentrations 

by census tract developed for CalEnviroScreen 3.0. First, about 80 percent of drinking water 

system boundaries called community water systems (CWS) were identified based upon 

established boundaries from the Water Boundary Tool (http://cehtp.org/water/). The 

remainder of the boundaries were approximated based on locations of sampling wells or 

treatment plants and the population served by the systems. People living outside of CWS 

were assumed to drink from unregulated small water systems or private wells. A 6 × 6 mile 

township grid was used to summarize ambient groundwater concentrations and assigned to 

these areas (https://nationalmap.gov/small_scale/a_plss.html). Second, contaminant 

concentrations and violation data were associated and averaged within each water system or 

township for the selected group of contaminants and violation measures. Third, weighted 

averages were used to convert the contaminant concentrations or violation scores by water 

system or township to census tract. The weight used in the calculation was the population 

served by each system or population living in each township. Finally, contaminant or 

violation averages by census tract were computed and then summed to create the drinking 
water score for each tract.

2.2 Data Harmonization and Matching

We matched the OSHPD birth records with the CalEnviroScreen 3.0 data based on census 

tracts. Figure 2 shows the detailed process.

2.2.1 Initial Matching Strategy—With the assumption that geographic information of 

a tract would not change if a tract ID remains the same, we merged the OSHPD data with 

CalEnviroScreen 3.0 data based on census tract information which resulted in only 728,257 

unique records with 3,953 unique geographic identifiers. In this initial matching, we were 

only able to match 40% of the records, due to incomplete or missing tract information for 

certain records in the OSHPD data. Among the 0.7 million records, we have 49,923 records 

of preterm birth (gestational age < 37 weeks) and 678,334 term birth records.
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2.2.2 Secondary Matching Strategy—Because a proportion of census tract IDs in the 

OSPHD data were recorded based on tract ID systems across different decades, we were not 

able to match all records during initial matching. The U.S. Census Bureau updates the 

boundary information of all census tracts every ten years and provides census tract 

relationship files (https://www.census.gov/geo/mapsdata/data/relationship.html) for mapping 

how the boundary of a census tract may be defined differently over different tract ID 

systems. There are several possible types of boundary changes for a census tract including 

consolidation, split and other change (Logan et al. 2014).

To match the OSPHD records that were based on ID systems from different years within the 

CalEnviroScreen 3.0 data, we interpolated environmental information for census tracts from 

2010 ID system to either 2000 or 1990 ID systems with the CalEnviroScreen 3.0 data by 

using the interpolation method with area weights, i.e. the area weighted method. This 

method has been applied previously and been shown to yield appropriate estimates for social 

variables such as poverty level and race/ethnicity if the estimates are not absolute counts as 

discussed in a previous study (Logan et al. 2014). This approach was compared with another 

method – the combined area and population interpolation method. The results showed that 

discrepancies in the estimates of absolute counts were significantly greater than average 

estimates. Because the majority of the environmental and social variable across all census 

tracts in the CalEnviroScreen 3.0 data were population-based average estimates, we chose 

the area weighted method.

With the 2010 U.S. census tract relationship files and the area weighted algorithm (Logan et 

al. 2014), we added to the CalEnviroScreen 3.0 dataset by matching it to both the 1990 and 

2000 Tract ID systems. Different ID systems share a large number of census tracts IDs even 

though the boundary of a census tract with the same ID label may be defined differently over 

time, so those tracts may have more than one set of environmental records. For these tracts, 

we used existing information in the CalEnviroScreen 3.0 data rather than the expanded data. 

But for those unique tract IDs that were not included in the 2010 ID system, we used the 

information created by the area weighted algorithm. Eventually, we matched these expanded 

CalEnviroScreen data with the OSHPD PTB dataset, which resulted in 74% of the records 

matched. The remaining 22% could not be matched using this approach due to missing 

labels and other discrepancies related to census tract ID.

2.2.3 ZIP Code Interpolation Method—If no census tract ID was available for a birth 

record, a ZIP Code matching a valid census 2010 ZIP Code Tabulation Area was used as the 

surrogates of the birth’s geographic information (Morello-Frosch et al. 2010). Except Placer, 

San Benito and Santa Cruz, most of the counties with empty labels and zero matched 

records are rural counties, including: Alpine, Amador, Calaveras, Colusa, Inyo, Lake, 

Lassen, Mendocino, Modoc, Mono, Plumas, Shasta, Sierra, Siskiyou, Tehama and Trinity. 

By applying the ZIP Code interpolation algorithms on the updated matched data, we were 

able to match 1,797,284 records (99.18%) in total.
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2.3 Statewide Data Analysis and Visualization

To understand the dependence among the exposure variables, we examined and visualized 

the Pearson correlations between the environmental and social variables measured by the 

CalEnviroScreen 3.0 of the matched dataset by using the R package ‘corrplot’ (Wei and 

Simko 2017).

To visualize pollution levels and social factors together with birth data at the county level, 

we calculated the county-averaged contaminant exposure levels based on census tract-level 

data and generated a heatmap of the exposure levels normalized by the corresponding 

maximum of each variable. The structure of the heatmap was based on hierarchical 

clustering analysis embedded in the R function ‘heatmap.3’ (https://

raw.githubusercontent.com/obigriffith/biostartutorials/master/Heatmaps/heatmap.3.R). 

According to the urban-rural scheme for counties developed by the CDC National Center for 

Health Statistics (NCHS), each California county was assigned with a discrete urbanization 

code (https://www.cdc.gov/nchs/data_access/urban_rural.htm) ranging from 1 (the highest 

level of urbanization) to 6 (the lowest level of urbanization). To identify the significant 

clusters, we calculated the statistical significance level for the county-wise hierarchical 

clustering using the R package ‘pvclust’ (Suzuki and Shimodaira 2006) that provides the 

Approximately Unbiased (AU) p-values based on multiscale bootstrap resampling scheme. 

In this study, the number of bootstrapping was set to be 1,000 times to gain reliable 

estimates. Clusters with AU p-values smaller than 0.05 were highlighted in blue rectangles 

indicating strong support by the data.

2.4 Association Analysis

We used logistic regression to evaluate the relationship between environmental pollutant 

data, social factors and PTB. Specifically, we used the R package ‘biglm’ (Lumley 2015) 

because of its ability to handle large scale database. We conducted two evaluations. First, we 

estimated the relationship between summary variables, Pollution Burden and Drinking Water 
Score, and PTB while accounting for potential confounders including maternal race/

ethnicity, maternal age, maternal education and payment of delivery costs (private insurance 

or not). Second, we used multivariate logistic regression models by including all individual 

pollutant variables adjusted by all the above-mentioned confounders. For some pollutant 

variables identified as significantly associated with PTB, we also calculated and visualized 

their estimate arithmetic means for both the PTB and term birth groups for each county in 

California to evaluate their differences at the county level.

2.5 ArcGIS Mapping

Using ArcMap in ArcGIS for desktop (version 10.4; Esri Inc., Redlands, CA), we generated 

maps for contaminant variables of interest to evaluate the geographic variability of certain 

environmental pollutants across California.
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3. Results

3.1 Study Population

The population in this study is ethnically diverse. More than 48% of births were Hispanic 

mothers, while non-Hispanic white, Asian and Black mothers accounted for approximately 

25%, 14% and 6% of births respectively (Table 1). The majority of the women in the study 

(79.11%) were between 18 and 34 years at delivery. About half of the population had less 

than a college degree and a quarter with less than high school education at the time of 

delivery. Individuals with private insurance coverage constituted 45.84% of the population.

3.2 Statewide Data Analysis and Visualization Identifies Relationships Between Exposure 
Variables and Geographic Regions

To understand any potential dependence among the exposure variables from 

CalEnviroScreen 3.0, we observed and visualized correlations among different pairs of 

variables. Average Trihalomethane (THM) levels were negatively correlated with average 

nitrate level, and several social variables, including Unemployment, Linguistic Isolation, 

Housing Burden and Poverty, were positively correlated with each other (the upper left 

cluster in Figure 3). Another small cluster of positive correlation among variables Solid 
Waste, Groundwater Threats, Cleanup Sites and Hazardous Waste were observed (lower 

right of Figure 3). In addition, PCE was positively correlated with TCE (Figure 3).

There were several major groups of counties clustered together in the heatmap (Figures 4 & 

Supplementary Material Figure S-1). Cluster A (Figure 4, the leftmost, AU p-value = 0.02) 

of rural counties (Humboldt, Mendocino, Del Norte, Trinity, Tuolumne, Lassen, Siskiyou, 

see Figure 4, colored in light gray and gray in the second horizontal bar) with the lowest 

PTB prevalence is characterized by low level of all pollutants except 1,2-Dibromo-3-

chloropropane average (DBCP). In contrast, cluster B (center to the left in Figure 4, AU p-

value = 0.01) of suburban counties in the San Joaquin Valley (Kings, Tulane, Kern, Madera, 

Fresno & Stanislaus, colored orange in the second horizontal bar of Figure 4) are clustered 

together with PTB prevalence well above the average (indicated as deep purple color in the 

horizontal side bar at the top of Figure 4). These counties are characterized by high levels of 

social stressors such as poverty and environmental pollutants including ozone, PM2.5, and 

arsenic and nitrate in drinking water. Cluster C (San Francisco, San Diego, Santa Clara, San 

Mateo, Marin, Sonoma, Sacramento, Alameda, Contra Costa, AU p-value = 0.02), centered 

in the middle of the heatmap shows modest level of PTB prevalence with several urban 

counties (Figure 4, colored in brown and black in the second horizontal bar). Other clusters 

have less strong exposure signals in comparison to these three clusters described. Majority 

of drinking water contaminants exhibited low variability (Figure 4, colored in blue). We 

found that AU p-values of Clusters A, B and C were all below 0.05 (Supplementary Material 

Figure S-1), which suggests high level of statistical significance regarding similarity of the 

exposure profiles of counties within the same cluster.

We observed two statistically significant clusters among the environmental variables along 

the vertical sidebar (Figures 4, Supplementary Material Figure S-2) when applying 

hierarchical clustering. MCL Violation and TCR Violations clustered close to the bottom 
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(AU p-value = 0.05), followed by three of the social variables, Poverty, Unemployment and 

Housing Burden, along with Ozone clustered at the bottom (AU p-value = 0.02).

3.3 Logistic Regression Analysis Identifies Specific Exposure Association with Preterm 
Birth

Due to a specific requirement of the R package ‘biglm’, we removed 348,684 birth records 

that contained missing information for the exposure variables of interest, so the sample size 

of the input dataset for regression analysis was 1,448,600 (Figure 2).

We found a positive association between Pollution Burden and PTB in our logistic 

regression. For an increase of 17.29 points (interquartile range (IQR) change) in Pollution 
Burden score, the adjusted odds ratio (AOR) was 1.03 (95% CI: 1.02,1.04, p-value < 0.0001) 

for PTB vs. term birth. The Drinking Water Score was also found to have a positive 

association with preterm birth – for an increase of 392.05 point (IQR change) in Drinking 
Water Score, the AOR was 1.04 (95% CI: 1.03,1.05, p-value < 0.0001) for PTB vs. term 

birth.

Among the individual indicator variables, we found that PM2.5 and drinking water 

contaminants including nitrate and arsenic were positively associated with PTB (Table 2). 

Specifically, for an increase of 9.33 parts per million (ppm) (IQR change) in nitrate (as NO3) 

average, the AOR was 1.02 (95% CI: 1.01, 1.03) for PTB vs. term birth; for an increase of 

1.38 parts per billion (ppb) (IQR change) in arsenic average, the AOR was 1.01 (95% CI: 

1.00, 1.012) for PTB vs. term birth. However, THM in drinking water showed a negative 

association with PTB. Social factors including Linguistic Isolation, Poverty, and 
Unemployment were also found to elevate the PTB risk (Table 2).

In addition, we observed that associations between drinking water contaminants and PTB 

were higher in urbanized counties than in rural counties (Supplementary Material Table 

S-2). All social stressor variables that were significantly associated with PTB in urban or 

suburban counties were not associated with PTB in rural counties (Supplementary Material 

Table S-2).

With regard to the spatial variability of arsenic and nitrate across California, we found that 

northern California and the southern coastal areas have the lowest arsenic levels (less than 

1.16ppb) in drinking water (colored in green in Figure 5). Higher arsenic concentrations 

were observed in Death Valley National Park, in the Mojave Desert, in the Mojave National 

Preserve and in Joshua Tree National Park, ranging from 2.54 to 32.09 ppb. Some of these 

areas (colored in purple in Figure 5) exceeded that the California Maximum Contaminant 

Level (MCL) for arsenic in drinking water (10 ppb) (https://www.waterboards.ca.gov/

drinking_water/certlic/drinkingwater/Arsenic.shtml).

Similar to the geographic distribution of arsenic average concentration in drinking water in 

this state, high nitrate levels (33.04 to 85.48 ppm) were observed in the San Joaquin Valley 

area (Figure 6) which was above the California MCL for nitrate in drinking water (45 ppm, 

2The 95% C.I. upper bound overlaps the adjusted odds ratio due to decimal points rounding.
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details here: https://www.waterboards.ca.gov/rwqcb3/water_issues/programs/ag_waivers/

docs/resources4grow ers/nitrate_info%20guide_102913.pdf), but less so in Death Valley.

The contrast of spatial variability of nitrate is less stark compared with that of arsenic. Urban 

areas of the state as well as northern California exhibit lower nitrate exposures overall except 

the adjacent areas of Highway 5.

3.4 Arsenic & Nitrate Concentrations Differ Between Preterm and Term Birth Groups

Heterogeneity across different counties was observed for both arsenic and nitrate 

contaminants based on their respective arithmetic means (Supplementary Material Figures 

S-3, S-4). The arsenic levels in drinking water for the PTB group were not always 

necessarily higher than those for the term birth group. For example, the average arsenic 

concentration for PTB was slightly higher than that for term birth in Kings county, although 

the arsenic levels for both groups were already well above the estimates of other counties. 

The levels of uncertainty which were denoted by the width of 95% confidence interval 

varied tremendously for different counties, ranging from less than 1 (e.g. arsenic levels in 

Alameda) to more than 25 ppb (e.g. arsenic levels in Inyo).

4. Discussion

This study integrates large and wide-ranging data on environmental exposures and detailed 

birth and hospital records for all singleton births in California over a 4-year period. This is 

one of the largest studies to date to examine the relationship between PTB and multiple 

environmental and social stressors. Our results are consistent with previous studies that have 

shown an association between PTB and exposures such as PM (Brauer et al. 2008; Hao et al. 

2016; Ritz et al. 2007; Sagiv et al. 2005; Schifano et al. 2013). Our study also includes novel 

findings of relationships between PTB and exposures from drinking water contaminants 

including arsenic and nitrate. Additionally, our study included investigation of the 

relationship between PTB and social factors in conjunction with environmental factors and 

found that poverty and unemployment were also positively associated with PTB. These 

findings are in agreement with those of previous investigators (Auger et al. 2012; 

Margerison-Zilko et al. 2015; Rodrigues and Barros 2008). Lastly, it is important to note that 

this study contained individual birth records that were useful in accounting for potential 

confounders which improved the strength of the findings.

From our clustering analysis, we identified different clusters of counties based on the 

environmental and social factors investigated in this study. These clusters were also aligned 

with the distinct levels of both county urbanization and PTB prevalence. We found that PTB 

was associated with environmental pollutants provided that urbanization level of a county 

was intermediate or high. In rural areas, since fewer contaminant sites are located with 

smaller population, effects of pollutants along with social stressors are less impactful. In 

addition, several major clusters of counties had their own environmental or social 

‘fingerprints’. That is to say, the most important variables linked to PTB differed across 

counties, which echoes the results of logistic regression models for each urbanization group.
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Considering the results from logistic regression model, the most important environmental 

exposure variables positively related to PTB include PM2.5, nitrate and arsenic. While 

statistically significant emergence of associations between PM2.5 and PTB were expected, 

identification of associations between the other three drinking water contaminant variables 

and PTB were less so. The significant odds ratios identified may seem very small, but it may 

involve sizeable population impacts. For example, the OR associated with PM2.5 is around 

1.03, if the population without PM2.5 exposure has a 7.0% PTB rate, then the sub-population 

with this exposure will have a 7.2% PTB rate. Such increase in PTB rate related to a specific 

pollutant exposure, though reflected as a small OR, may have public health policy 

implications.

Both nitrate and arsenic exhibited positive associations with PTB, but THM demonstrated 

the opposite. Maternal arsenic exposures have been previously linked to adverse birth 

outcomes (Ahmad et al. 2001; Laine et al. 2015). However, the linkage between arsenic and 

PTB is not fully clear (Myers et al. 2010). Our results suggest the potential role of arsenic 

exposure and PTB requires further study. Though associations between nitrate exposure in 

the form of herbicides and certain adverse pregnancy outcomes (e.g. small-for-gestational-

age) have been identified (Ochoa-Acuna et al. 2009), the relationship between nitrate and 

PTB has not been fully evaluated (Ochoa-Acuna et al. 2009; Stayner et al. 2017). Previously, 

nitrate intake from public water supplies was found to be associated with significantly 

increased risk of thyroid disease (Ward et al. 2010), which could in turn lead to higher risk 

of PTB (Stagnaro-Green 2009). The positive association between nitrate and PTB identified 

in this study raised concerns and merit further investigation. The opposite trends of THM 

and other contaminants with PTB were possibly caused by the fact that THMs are 

disinfection by-products (https://www.cdc.gov/safewater/) in larger drinking water systems, 

especially in urban counties, but it could also be induced by confounding of other variables. 

The negative correlation between THM and nitrate was also captured in the correlation plot 

(Figure 3). Other drinking water contaminants such as PCE and TCE, which are large scale 

industrial contaminants emerging mostly in urban areas such as Los Angeles (shown in 

Figure 4) but not in the San Joaquin Valley area, were not observed to be significantly 

associated with PTB.

In addition, exposure variable Traffic was not found to be statistically associated with PTB 

across the whole state of California, although association between PTB and traffic-related air 

pollution has been identified previously (Laurent et al. 2016; Padula et al. 2014a). This may 

be related to the difference in the geographic exposure assignment involved in the variable 

Traffic across different studies. In the CalEnviroScreen 3.0 database, traffic density is 

defined as ‘vehicle-kilometers per hour per road length, within 150 meters of the census 

tract boundary’ (Supplementary Material Table S-1, more details in CalEnviroScreen 3.0 

Report (Faust et al. 2017)), but previous studies oriented this variable based on maternal 

residence. For example, Laurent et al. estimated traffic density within ‘circular buffers of 

different sizes centered on maternal homes’ (Laurent et al. 2016), and Padula et al. 

calculated traffic density within ‘a 300m radius of geo-coded maternal residences (Padula et 

al. 2014a), instead of census tract boundaries. Such geographic difference involved in the 

definitions of traffic can contribute to the lack of associations we observed. In addition, the 

air pollution assessment methods in this study are quite different from those adopted by 
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previous efforts such as timing and distance of measurements, which could potentially lead 

to different findings. We also suspect that some of the signals such as the association 

between PM2.5 and PTB were ‘diluted’ in a statewide study comparing with studies focused 

on a particular area or region.

Strengths of the present study include large sample size, inclusion of a wide variety of 

exposure variables, integration of individual birth information to account for potential 

confounders, and useful visualization of the relationships between PTB and environmental 

and social factors while accounting for clustering of different counties. The CalEnviroScreen 

3.0 data are more current and contain more accurate drinking water data in comparison to 

the study by Rappazzo et al.(Rappazzo et al. 2015b) Specifically, the drinking water 

contaminant data in CalEnviroScreen were based on chemical concentration monitoring at 

the census tract level in the California State Water Resources Control Board’s Water Quality 

Monitoring database (https://www.waterboards.ca.gov/resources/data_databases/) while the 

water information involved in constructing the Environmental Quality Index is a collection 

of data from different sources at the county level (Messer et al. 2014). The higher resolution 

of drinking water contaminant data in this study allows us to pinpoint individual water 

pollutant variables that are associated with PTB, which could provide useful insights for 

developing relevant environmental and public health policy. There are also several 

limitations inherent in this study that should be recognized. First, the linkage of the OSHPD 

and CalEnviroScreen datasets could potentially result in imprecise effect estimates owing to 

misclassification of exposures. Second, we assumed that maternal residence was constant 

over the entire duration of pregnancy, which may not be valid across all 1.8 million birth 

records and could possibly introduce exposure misclassification into this study. Third, 

although we identified interesting environmental patterns associated with PTB, the 

CalEnviroScreen was created and designed for screening disadvantaged communities and 

therefore more suitable for community-based estimates, rather than to assign individual 

exposure levels. Due to the design of this tool/database, we assume the pollutant levels in 

this database to be constant during the entire pregnancy, and didn’t account for temporal 

variability. Fourth, the methodology used to estimate drinking water contaminants involved 

population weighted averages by census tracts which may be covered by multiple drinking 

water systems and areas not served by public water systems, and relevant assumptions 

needed to be made due to inherent uncertainty. Therefore, some estimates may not be 

precise on the census-tract level, especially for rural counties. While these four limitations 

are certainly of concern, all of these items would likely pull our results towards the null and 

as such, we are less concerned about their leading to erroneous positive associations between 

contaminants and PTB. Finally, there is a broader limitation in that the results presented here 

are specific to the state of California. Broader national and international analyses are 

warranted to assess wider exposure-PTB relationships.

5. Conclusion

This comprehensive state-wide analysis compiles multiple pollutants and integrated social 

factors, which allowed us to explore associations between PTB and various contaminants 

that were not examined previously. The large sample size and diverse features of this study 

allowed us to better understand the linkage between environmental and social factors and 
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PTB on both the county and the state levels. These data could inform regulations to prevent 

PTB. We show that CalEnviroScreen data in combination with birth records offer great 

opportunity for revealing novel exposures and evaluating cumulative exposures related to 

PTB by providing useful environmental and social information, and that certain drinking 

water contaminants such as arsenic and nitrate are potentially associated with PTB in 

California and should be explored further. Small association signals may involve sizeable 

population impacts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Arsenic and Nitrate contamination in drinking water may increase preterm 

birth risk

• Spatial variability in preterm birth rate may be linked to county urbanization 

level

• Small exposure signals in a large cohort may involve sizeable population 

impacts

• Connecting CalEnviroScreen to other database can be instrumental in 

exposure research
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Figure 1. 
Categories of Variables in CalEnviroScreen 3.0

Note: This figure was adapted from CalEnviroScreen 3.0 Report (Faust et al. 2017). Further 

information on the construction of the individual metrics is given in the report.

*Drinking Water Score contain information of individual contaminants in drinking water 

(more details can be found in Supplementary Material Table S-1).
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Figure 2. 
Flow Chart of Construction of Study Population that Includes Data Matching of 

CalEnviroScreen and Office of Statewide Health Planning and Development Inpatient 

Discharge Data
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Figure 3. 
Correlation Plot of Contaminant Exposure Levels in the Matched Data (N=1,797,284)

DBCP - 1,2-Dibromo-3-chloropropane; MCL- Maximum Contaminant Level; PCE - 

Tetrachloroethylene; TCE - Trichloroethylene; TCP - 1,2,3-trichloropropane; TCR - total 

coliform rule; THM – trihalomethane.
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Figure 4. 
Heatmap of County-Averaged Contaminant Exposure Levels in California (N=1,797,284)

This heatmap demonstrates clusters of county-wise average estimates of various stressor 

variables evaluated in this study. Each column represents a county and each row a variable. 

Warmer color means higher values, or more pollution. The two sidebars at the top of the 

heatmap indicate the preterm birth percentage and county urbanization respectively. Deeper 

colors suggest higher preterm birth rate and higher degree of urbanization. The left sidebar 

shows which category each stressor variable belongs to. Environmental exposure, effects and 

drinking water contaminants are colored in Indigo, Turquoise and Shallows, but 

socioeconomic variable in golden sand. The clusters highlighted by blue rectangular box are 

statistically significant (p-value ≤ 0.05).

PBR – Preterm Birth Rate; SES – Socioeconomic Status. Urban-rural classification was 

based on 2006 NCHS Urban- Rural Classification Scheme for Counties codes for every 

county and county equivalent entity in the United States.
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Figure 5. 
Spatial Distribution of Arsenic Levels (ppb) in Drinking Water in California Year 2005– 

2013
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Figure 6. 
Spatial Distribution of Nitrate Levels (ppm) in Drinking Water in California Year 2005– 

2013
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Table 1.

Population characteristics in California, 2009–2012 (N= 1,448,600)

Characteristics n (%)

Race/ethnicity

White non-Hispanic 367,317 (25.36)

Hispanic 707,336 (48.83)

Black 83,658 (5.78)

Asian 196,503 (13.57)

Other Race 93,786 (6.47)

Maternal age at delivery (years)

< 18 38,941 (2.69)

18 to 34 1,146,026 (79.11)

> 34 263,633 (18.20)

Maternal education (years)

< 12 341,931 (23.60)

12 379,457 (26.19)

> 12 727,212 (50.20)

Payer for delivery costs

Private insurance 663,994 (45.84)

Other payer 784,606 (54.16)
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