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Variance Estimation and Confidence Intervals from 
Genome-wide Association Studies Through High-dimensional 
Misspecified Mixed Model Analysis

Cecilia Dao1, Jiming Jiang2, Debashis Paul2, Hongyu Zhao1

1Yale University, USA

2University of California, Davis, USA

Abstract

We study variance estimation and associated confidence intervals for parameters characterizing 

genetic effects from genome-wide association studies (GWAS) in misspecified mixed model 

analysis. Previous studies have shown that, in spite of the model misspecification, certain 

quantities of genetic interests are consistently estimable, and consistent estimators of these 

quantities can be obtained using the restricted maximum likelihood (REML) method under a 

misspecified linear mixed model. However, the asymptotic variance of such a REML estimator 

is complicated and not ready to be implemented for practical use. In this paper, we develop 

practical and computationally convenient methods for estimating such asymptotic variances 

and constructing the associated confidence intervals. Performance of the proposed methods is 

evaluated empirically based on Monte-Carlo simulations and real-data application.

Keywords

asymptotic approximation; confidence intervals; GWAS; heritability; mis-LMM; variance; 
unbiasedness

1 Introduction

Genome-wide association studies (GWAS) have proved successful by scanning the genome 

for genetic variations, e.g., single nucleotide polymorphisms (SNPs), that are associated 

with disease status and traits across study subjects. Tens of thousands of SNPs have been 

identified to be associated with various diseases and traits. For a review of the remarkable 

discoveries through GWAS, see Visscher et al. (2017). Researchers can use GWAS results 

to further medical research, such as to determine a person’s risk of developing a disease 

or treat/prevent the disease. Genetic factors may account substantially for disease risk or 

various traits, and heritability estimates the proportion of variation in a phenotype due to 

genetic (and environmental) differences between individuals in a population. Historically, 
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heritability was inferred from resemblance among different degrees of related individuals 

(e.g., twin studies) without studying specific genetic variations, but today there is an 

emerging interest in quantifying how much variation can be accounted for from GWAS data 

due to the recent development of efficient genotyping and sequencing technology and the 

success of the GWAS strategy. However, when GWAS significant variants were considered, 

they only explained a small fraction of the genetic component of the phenotypes. The gap 

between the phenotypic variance explained by significant GWAS results and that estimated 

from classical heritability methods is known as the “missing heritability problem.”

More precisely, the problem refers to the concept that SNPs that are significant in GWASs 

cannot fully account for heritability of many diseases and traits. One explanation for missing 

heritability is that many SNPs jointly affect the phenotype, and SNPs with smaller effects 

that have not been identified may contribute to heritability as well. To address this issue, 

Yang et al. (2010) used an approach involving linear mixed models (LMMs) to show that a 

large proportion of heritability is not missing but rather captured by SNPs with weak effects 

that do not reach genome-wide significance level. The general idea is to use an LMM to 

treat the effects of all SNPs as random effects rather than relying on single-SNP association 

analysis. This approach has been widely used for heritability estimation in the genetics 

community via the genome-based restricted maximum likelihood (GREML) method (e.g., a 

popular implementation of GREML, with assumptions regarding the variance of the effect 

size prior distributions, is the GCTA software in Yang et al. 2011).

In an attempt to make the modelling more accurate, others have proposed extensions of this 

LMM approach. For instance, Heckerman et al. (2016) proposed to add an environmental 

random effect (along with a genomic random effect) in the LMM to reduce heritability 

inflation, and Zhou et al. (2013) proposed to use a hybrid of LMM and regression 

models to learn the true genetic architecture from the data to estimate heritability. To 

improve heritability estimation compared to GCTA, Speed et al. (2017) developed the 

LDAK model to factor in minor allele frequency (MAF), linkage disequilibrium (LD), and 

genotype certainty. Speed et al. (2020) extended their LDAK model to handle more complex 

heritabiltiy models by proposing an approximate model likelihood to be computed by 

GWAS summary statistics. Comprehensive comparisons of heritability estimation methods 

[Yang, Manolio, et al. (2011), Yang et al. (2015), Speed et al. (2017), Speed et al. (2012), 

Zaitlen et al. (2013), Bulik-Sullivan et al. (2015)] can be found in Evans et al. (2018). Zhu 

and Zhou (2020) also provides a review of statistical methods for heritability estimation.

Consider an LMM which can be expressed as

y = Xβ + Zα + ϵ, (1)

where y is an n × 1 vector of observations; X is an n × q matrix of known covariates; β 
is a q × 1 vector of unknown regression coefficients (the fixed effects); and Z = p−1 ∕ 2Z, 

where Z is an n × p matrix whose entries are random variables. Furthermore, α is a p × 1 

vector of random effects that are distributed as N(0, σα
2I), ϵ is an n × 1 vector of errors that is 

distributed as N(0, σϵ
2I), and α, ϵ and Z are independent. The heritability parameter is defined 
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as ℎ2 = σα
2 ∕ (σα

2 + σϵ
2) when the average trace of the genetic relationship matrix is one (i.e., 

under the GCTA model); for the general equation, see equation B1 in Speed et al. (2012).

The LMM (1) is the model used by Yang et al. (2010) where it is assumed that the 

effects of all the SNPs (random effects) are nonzero. The restricted maximum likelihood 

(REML) estimator of the heritability is given by ℎ2 = σα
2 ∕ (σα

2 + σϵ
2), where the estimates of 

the variance components σα
2 and σϵ

2 are based on the REML method [e.g., Jiang (2007), 

Section 1.3.2]. In reality, however, only a subset of the SNPs are potentially nonzero. Let α 
be the vector of effect sizes across the whole genome, where non-causal SNPs have a zero 

effect. Without loss of generality, we can assume that α = {α(1)
′ , 0′}, where α(1)

′  is the vector 

of the first m components of α (1 ≤ m ≤ p), and 0 is the (p − m) × 1 vector of zeros. 

Correspondingly, we have Z = [Z(1); Z(2)], where Z(j) = p−1/2 Z(j), j = 1, 2, Z(1) is n × m, and 

Z(2) is n × (p − m). Therefore, the true LMM can be expressed as

y = Xβ + Z(1)α(1) + ϵ, (2)

With respect to the true model (2), the assumed model (1) is misspecified. We call the latter 

a misspecified LMM, or mis-LMM.

Jiang et al. (2016) showed that even under a mis-LMM, σϵ
2 and ℎ2

 are consistent by 

investigating the asymptotic behavior of the estimators as the sample size and the number 

of SNPs increase to infinity, such that their ratio converges to a finite, nonzero constant. 

However, the asymptotic variances of the REML estimators have complex forms that are 

not ready to be implemented for practical use. This issue is important, from a practical 

point of view, because the asymptotic variance is used to obtain the standard error of the 

estimator, and confidence interval for the associated parameter, in applications. The main 

goal of the current paper is to propose accurate estimators of the variance of σϵ
2 and ℎ2

 along 

with confidence intervals that are robust even under the mis-LMM. The proposed variance 

estimators are derived based on asymptotic approximation; they have analytic expressions 

and are simple to use. Using the variance estimators and Jiang et al. (2016), we construct 

approximate 100(1 − α)% confidence intervals for the associated parameters.

In this paper, we first derive the variance estimators and associated confidence intervals, 

providing technical details in the the Appendix. Then, we compare the performance of our 

method with that of GREML under the GCTA model through simulation studies and a real 

data example using the UK Biobank data. We end with a discussion of the results.

2 Derivation of variance estimators

As noted, Jiang et al. (2016) showed that REML estimators of certain variance components 

of genetic interest are consistently estimable and asymptotically normal; however, the 

corresponding asymptotic variances do not have expressions suitable for implementation. 

Thus, our first objective is to derive (simple) estimators of those asymptotic variances. Let us 

begin with estimation of var(σϵ). By Jiang et al. (2016), we have the expression
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σϵ
2 = y′P γ

2y
tr(P γ) , (3)

where Pγ = V γ
−1 − V γ

−1X(X′V γ
−1X)−1X′V −1 with V γ = In + γZZ′, γ = σα

2 ∕ σϵ
2 and γ = σα

2 ∕ σϵ
2. 

Some technical (see Subsection A.1 of the Appendix) derivations lead to the following 

approximation:

σϵ
2 ≈ E(Uγ, y)

E(Uγ, y) − E(Sγ, y) ⋅ y′P γ
2y

tr(P γ) + E(Sγ, y)
E(Sγ, y) − E(Uγ, y) ⋅ y′Qγy

tr(P γZZ′)
, (4)

where γ = γ*, which is the asymptotic limit of γ  according to Jiang et al. (2016). Denote the 

right side of (4) by σ ϵ
2, then, by the law of total variance, we have

var(σϵ
2) ≈ var(σ ϵ

2) = E{var(σ ϵ
2 ∣ Z)} + var{E(σ ϵ

2 ∣ Z)} . (5)

It can be shown that the second term on the right side of (5) is of lower order than the first 

term; therefore, we have

var(σϵ
2) ≈ E{var(σ ϵ

2 ∣ Z)} . (6)

To obtain a further approximation, define

A = tr(QγZZ′){tr(Pγ
2)tr(QγZZ′) − tr2(Qγ)}

tr2(Pγ)tr2(PγZZ′)
,

B = tr(QγZZ′)
tr(PγZZ′)

− tr(Qγ)
tr(Pγ) .

Then, it can be shown (see Subsection A.2 of the Appendix) that the right side of (6) can be 

approximated by 2σϵ
2E(A) ∕ {E(B)}2. Thus, in conclusion, we obtain the following estimator 

of var(σϵ):

var(σϵ
2) = 2σϵ

2 A
B2 , (7)

where A, B are A, B with γ replaced by γ , respectively.

Next, we consider estimation of var(γ). Using similar arguments (details omitted), it can be 

shown that

var(γ) ≈ E(C)
{E(B)}2 , (8)

where
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C = tr Pγ
tr(Pγ) − PγZZ′

tr(PγZZ′)
2

.

Thus, an estimator of var(γ) is given by

var(γ) = C
B2 . (9)

The variance estimator (9) is used to obtain a variance estimator for ℎ2
, the REML estimator 

of the heritability, h2. Using the expression ℎ2 = γ ∕ (1 + γ), and the delta-method (e.g., Jiang 

2010, sec. 4.2), we obtain

var(ℎ2) ≈ var(γ)
(1 + γ)4 , (10)

where, again, γ = γ*, the limit of γ . Thus, an estimator of var(ℎ2) is given by

var(ℎ2) = C
(1 + γ)4B2 . (11)

Note that all of the variance estimators obtained here are guaranteed to be nonnegative (and 

positive with probability one), a desirable property for a variance estimator. In particular, 

one can take square root of the variance estimator, and use it to construct a large-sample 

confidence interval for the corresponding parameter. Let θ denote a parameter of interest, 

such as σϵ
2, h2, and θ  be its estimator. Let var(θ) be a variance estimator for θ  that is 

guaranteed nonnegative. Since θ  has an asymptotically normal distribution due to Theorem 

3.2 in Jiang et al. (2016), given α ∈ (0, 1), an approximate 100(1 − α)% confidence interval 

for θ is

θ − zα ∕ 2 var(θ), θ + zα ∕ 2 var(θ) , (12)

where zα/2 is the α/2 critical value of N(0, 1) [i.e., P(Z > zα/2) = α/2 for Z ~ N(0, 1)].

3 Simulation Studies

We simulate scenarios similar to that in Jiang et al. (2016). Specifically, we simulate the 

allele frequencies for p SNPs from the Uniform[0.05, 0.5] distribution, and denote fj as 

the allele frequency of the jth SNP, for j = 1, 2, … p. The genotype matrix U ∈ {0, 1, 

2}n×p has rows corresponding to the individuals and the columns corresponding to the SNPs. 

The genotype value of each individual for the jth SNP is sampled from {0, 1, 2} with 

probabilities (1 − fj)2, 2fj (1 − fj), fj
2, respectively. Let the standardized genotype matrix Z 

be such that each column of U is standardized to have zero mean and unit variance, and 
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then let Z = p− 1
2Z. We express the relationship between the phenotypic vector y and the 

standardized genotype matrix Z in the LMM in (1).

As previously noted, (1) assumes that αj ∼ N(0, σα
2) for all j ∈ {1, 2, …, p} when in reality, 

only a subset m of the SNPs is associated with the phenotype. Thus, a correct model is (2) 

and the heritability should be

ℎtrue
2 = ωσα

2

ωσα
2 + σϵ

2 , (13)

where ω = m/p. Since it is not possible to identify all of the m SNPs in practice, we follow 

model (2) to simulate the phenotypes and use all of the SNPs in Z to estimate the variance 

components, σα
2 and σϵ

2, in model (1). We therefore estimate the heritability as

ℎ2 = σα
2

σα
2 + σϵ

2 , (14)

where the estimates of the variance components are their REML estimates.

In the simulations, given n, p, and m, we set the true parameters as β = 0, 

σϵ
2 = σϵ0

2 , and σα
2 = σα0

2  for (σϵ0
2 , σα0

2 ) ∈ {(0.8, 0.2
ω ) , (0.6, 0.4

ω ) , (0.4, 0.6
ω ) , (0.2, 0.8

ω )},, so that the 

heritability parameter is varied. We perform simulations with those true parameters under 

misspecifications of ω ∈ {0.005, 0.01, 0.05, 0.1, 0.5}. Note that γ = σα
2

σϵ
2 . We simulate the data 

under model (2), but compute REML estimates under model (1). For each scenario, we carry 

out 300 replications, and report the results (see below).

Let var(θ) be the sample variance of all of the simulated θs for θ ∈ {σϵ
2, ℎ2}, v = var(θ), and 

E(v) be the sample mean of all of the simulated vs. The percentage of relative bias (%RB) is 

defined as

% RB = 100 × E(v) − var(θ)
var(θ)

.

We also look at the sample standard deviation of all of the simulated vs, denoted as s(v). 
The Nλ for λ ∈ {0.01, 0.05, 0.1} is the empirical coverage probability for large sample 

confidence intervals of θ at level λ. Since θ is bounded, we also consider the large sample 

truncated confidence intervals of θ and denote the empirical coverage probability by Tλ for 

λ ∈ {0.01, 0.05, 0.1}. To find the truncated confidence intervals of θ ∈ {σϵ
2, ℎ2}, we use the 

quantiles of the truncated normal distribution, where the mean is the REML estimate of θ 
and the variance is the variance estimate of REML estimate of θ. In particular, since the 

lower bound of θ = σϵ
2 is 0, we truncate the lower bound by 0 but not the upper bound. For 

θ = h2, we truncate the lower bound by 0 and the upper bound by 1. The quantiles of the 

truncated normal distribution at levels λ/2 and 1 − λ/2 are the lower and upper bounds of the 

confidence interval, respectively.
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In the following tables, we showcase some results for θ ∈ {σϵ
2, ℎ2} using our method in 

comparison to the GREML method under GCTA. Other simulations are given in the 

supplementary materials.

4 Real data example

We apply the proposed method to a real data example using a subset of indviduals with 

height data from the UK Biobank (UKBB) database. We consider n = 4,986 Caucasian 

individuals who are unrelated up to the 3rd degree using KING (Manichaikul et al. 2010) 

to avoid inflating the heritability estimate. The UKBB performed genotype imputation using 

IMPUTE4 and the Haplotype Reference Consortium reference panel (Bycroft et al. 2018). 

We have retained imputed SNPs with high imputation quality (INFO scores greater than 

0.8). Then, we have removed imputed SNPs with a missing call rate exceeding 0.05, a 

Hardy-Weinberg equilibrium exact test p-value below 1 × 10−10, or a minor allele frequency 

below 0.05. After quality control, p = 6,133,110 SNPs remained for analysis.

After the preprocessing described above, we apply the LMM approach described in model 

(1) to obtain REML estimates of the variance components, and then estimate their variances 

and construct confidence intervals for the parameters of interest. For the matrix X of fixed 

effects, in addition to the intercept, we account for sex, age, and population stratification 

using the first twenty principal component scores derived from genotype data provided by 

the UKBB.

We obtain REML estimates σϵ
2 = 20.150, γ = 1.003, and ℎ2 = 0.5009. Using our approach, 

we get the following variance estimates for our parameter of interests: var(σϵ
2) = 7.117, 

and var(ℎ2) = 0.0045. The variance estimates from GCTA are comparable: var(σϵ
2) = 7.242, 

var(ℎ2) = 0.0046. The corresponding 95% confidence intervals for σϵ
2 are (14.921, 25.379) and 

(14.875, 25.424) for our method and GCTA, respectively. The 95% confidence intervals for 

h2 are (0.3697, 0.6321) and (0.3685, 0.6332) for our method and GCTA, respectively. The 

heritability of height estimated by LMM/REML have similar results in other data sets (e.g., 

Yang et al.(2010), Zhou et al. (2013), Golan et al. (2014)).

5 Discussion

In this paper, we developed variance estimators and their associated confidence intervals 

that are robust under misspecified mixed model analysis in GWAS studies, supported by 

the theory established in Jiang et al. (2016). In our simulation studies, the GREML under 

the GCTA model performed satisfactory in terms of variance estimators and associated 

confidence intervals despite not taking into account misspecification. In fact, our proposed 

method and GCTA method, performed similarly in our simulation studies and real data 

example.

We also considered a nonparametric approach to construct bootstrap confidence intervals. 

Particularly, let F be the true distribution of θ(F) ∈ {σϵ
2, ℎ2}, and let θ ≡ θ(F) ∈ {σϵ

2, ℎ2} be 
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the REML estimate of θ(F). Let F∗ denote a bootstrap approximation to F . Since the 

sampling distribution of θ(F) ∕ θ(F) ≈ θ(F∗) ∕ θ(F), we constructed an approximate 100(1 − 

α)% confidence interval for θ as θ
q1 − α ∕ 2

∗ , θ
qα ∕ 2

∗ , where qt
∗ is the t-th quantile of the bootstrap 

sampling distribution of θ(F∗) ∕ θ(F). However, simulation studies results based on the 

method of confidence interval construction in this paper performed better based on empirical 

coverage probabilities so it was presented here.

6 Conclusion

The GREML method under the GCTA model is based on the standard LMM analysis (e.g., 

Jiang 2007), which does not take into account (i) that the LMM is misspecified (see Section 

1); (ii) that the design matrix, Z, for the random effects is random; and (iii) the asymptotic 

framework is different than the standard assumption that the number of random effects is, at 

most, of the same order as the sample size. In typical GWAS, the number of random effects, 

which correspond to the SNPs, is typically of higher order than the sample size. On the other 

hand, our method is fully supported by the recently established theory on high-dimensional 

mis-LMM analysis (Jiang et al. 2016), based on which, the variance estimators are derived 

in the current paper. Thus, in a way, the results of this paper provide additional justification 

for the use of the GREML method under the GCTA model for inference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1 Derivation of (4)

Using the identity B−1 = A−1 + A−1 (A − B)B−1, the following first-order approximations 

can be derived: Pγ ≈ Pγ − (γ − γ)Qγ, where γ = γ* which is the limit of γ , and Qγ = PγZZ′Pγ. 

With those, and (3), the following approximation can be derived:

σϵ
2 ≈ y′P γ

2y
tr(P γ) − (γ − γ)Sγ, y, (A.1)

where

Dao et al. Page 8

J Stat Plan Inference. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sγ, y = y′Rγy
tr(P γ) − tr(Qγ)

tr2(P γ)
y′P γ

2y (A.2)

with Rγ = Pγ Qγ + Qγ Pγ.

Next, we obtain an expansion for γ − γ. From (3) of Jiang et al. (2016), we have

y′P γZZ′P γy
tr(P γZZ′)

= y′P γ
2y

tr(P γ) . (A.3)

The RHS (righthand side) of (A.3) is approximated by (A.1). As for the LHS (lefthand size) 

of (A.3), one can derive Qγ ≈ Qγ − (γ − γ)T γ, where T γ = PγZZ′Qγ + QγZZ′Pγ. Furthermore, 

using the elementary expansion of Jiang 2010 (p. 103), we have

1
tr(PγZZ′)

≈ 1
tr(PγZZ′)

+ (γ − γ)tr(QγZZ′)
tr2(PγZZ′)

.

Thus, the LHS of (A.3) can be approximated by

{y′Qγy − (γ − γ)y′T γy} 1
tr(P γZZ′)

+ (γ − γ)tr(QγZZ′)
tr2(P γZZ′)

≈ y′Qγy
tr(P γZZ′)

− (γ − γ)Uγ, y,
(A.4)

where

Uγ, y = y′Tγy
tr(PγZZ′)

− tr(QγZZ′)
tr2(PγZZ′)

y′Qγy .

By equating the LHS to the RHS, i.e., (A.1) to (A.4), we obtain the following:

γ − γ ≈ 1
Sγ, y − Uγ, y

y′P γ
2y

tr(P γ) − y′Qγy
tr(P γZZ′)

≈ 1
E(Sγ, y) − E(Uγ, y)

y′P γ
2y

tr(P γ) − y′Qγy
tr(P γZZ′)

.
(A.5)

Combining (A.1) and (A.5), we obtain

σϵ
2 ≈ y′Pγ

2y
tr(Pγ) + Sγ, y

E(Uγ, y) − E(Sγ, y)
y′Pγ

2y
tr(Pγ) − y′Qγy

tr(PγZZ′)
≈ y′Pγ

2y
tr(Pγ) + E(Sγ, y)

E(Uγ, y) − E(Sγ, y)
y′Pγ

2y
tr(Pγ) − y′Qγy

tr(PγZZ′)
= E(Uγ, y)

E(Uγ, y) − E(Sγ, y) ⋅ y′Pγ
2y

tr(Pγ)
+ E(Sγ, y)

E(Sγ, y) − E(Uγ, y) ⋅ y′Qγy
tr(PγZZ′)

= σϵ
2 .
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A.2 Further approximation to the right side of (6)

Note that σ ϵ
2 = y′Dγy for some matri Dγ. Thus, by the normal theory (e.g., Jiang 2007, p. 

238), we have

var(σϵ
2 ∣ Z) = 2tr(DγΣDγΣ) = 2tr σϵ

2Dγ + σα
2 ∑
i = 1

m
DγZiZi

′
2

,

where Σ = σϵ
2In + σα

2∑i = 1
m ZiZi

′
 is the true covariance matrix of y. Therefore, we 

have E{var(σ ϵ
2 ∣ Z)} = 2{σϵ

4E{tr(Dγ
2)} + 2σϵ

2σα
2E(I1) + σα

4E(I2)} with I1 = ∑i = 1
m tr(DγZiZi

′Dγ) and 

I2 = ∑i, j = 1
m tr(DγZiZi

′DγZjZj
′). By the fact that Zi, 1 ≤ i ≤ p are i.i.d., it can be shown that 

E(I1) = ωE{tr(DγZZ′Dγ)}, and E(I2) ≈ ω2E{tr(DγZZ′DγZZ′)}, where ω = m/p. Thus,

E{var(σϵ
2 ∣ Z)} = 2[σϵ

4E{tr(Dγ
2)} + 2ωσϵ

2σα
2E{tr(DγZZ′Dγ)}

+ ω2σα
4E{tr(DγZZ′DγZZ′)}]

= 2E{tr(σϵ
4Dγ

2 + 2σϵ
2ωσα

2DγZZ′Dγ + ω2σα
4DγZZ′DγZZ′)}

= 2E[tr{(σϵ
2Dγ + ωσα

2DγZZ′)2}] .

It follows that the RHS of (6) is approximately equal to

2E tr (σϵ
2Dγ + ωσα

2DγZZ′)2 = 2σϵ
4E tr{(aP γ + bP γZZ′)2} , (A.6)

where

a = E(Uγ, y)
tr(Pγ){E(Uγ, y) − E(Sγ, y)} , b = E(Sγ, y)

tr(PγZZ′){E(Sγ, y) − E(Uγ, y)}

since ωσα
2 is estimated by σα

2 and PγVγPγ = Pγ. So when σϵ
2 is pulled out, ωσα

2 ∕ σϵ
2 is replaced 

by γ, which is estimated by γ .

Thus, we have

aP γ + bP γZZ′ = 1
E(Uγ, y) − E(Sγ, y)

E(Uγ, y)
tr(P γ) P γ − E(Sγ, y)

tr(P γZZ′)
P γZZ′ . (A.7)

Furthermore, using, once again, the i.i.d. property, it can be shown that

E(Sγ, y) = σϵ
2E tr(Qγ)

tr(P γ) , E(Uγ, y) = σϵ
2E tr(QγZZ′)

tr(P γZZ′)
. (A.8)

Combining (6), (A.6)-(A.8), it can be shown var(σϵ
2) ≈ 2σϵ

2E(A) ∕ {E(B)}2, where A, B are 

given below (6).
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Highlights for Review

• Justification of GREML GCTA under misspecification

• Variance estimations and confidence intervals for GWAS mixed model

• Misspecified mixed model GWAS
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Table 1:

σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = σϵ

2, (n, p) = (2000, 20000)

m % RB var(θ) E(v) s(v) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

20 3.208 0.009 0.010 0.003 0.983 0.947 0.900 0.983 0.947 0.900

200 −10.250 0.010 0.009 0.001 0.983 0.930 0.860 0.983 0.930 0.860

2, 000 7.608 0.008 0.009 0.001 0.990 0.953 0.907 0.990 0.957 0.907

20, 000 −3.961 0.010 0.009 0.001 0.990 0.947 0.890 0.990 0.947 0.890
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Table 2:

GCTA CIs: σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = σϵ

2, (n, p) = (2000, 20000)

m % RB var(θ) E(v) s(v) GCTA0.01 GCTA0.05 GCTA0.1

20 3.306 0.009 0.010 0.004 0.987 0.947 0.907

200 −9.926 0.010 0.009 0.001 0.983 0.930 0.863

2, 000 7.653 0.009 0.009 0.001 0.990 0.950 0.910

20, 000 −3.772 0.010 0.009 0.001 0.990 0.943 0.893
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Table 3:

σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = h2, (n, p) = (2000, 20000)

m % RB var(θ) E(v) s(v) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

20 −33.676 0.014 0.009 0.000 0.953 0.880 0.810 0.953 0.880 0.810

200 −15.510 0.011 0.009 0.000 0.980 0.927 0.850 0.980 0.927 0.850

2, 000 4.060 0.009 0.0003 0.000 0.990 0.953 0.897 0.990 0.953 0.900

20, 000 −2.021 0.010 0.009 0.000 0.983 0.953 0.903 0.983 0.953 0.903
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Table 4:

GCTA CIs: σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = h2, (n, p) = (2000, 20000)

m % RB var(θ) E(v) s(v) GCTA0.01 GCTA0.05 GCTA0.1

20 −33.624 0.014 0.009 0.001 0.950 0.883 0.813

200 −15.199 0.011 0.009 0.001 0.977 0.927 0.847

2, 000 4.071 0.009 0.009 0.001 0.987 0.957 0.900

20, 000 −1.804 0.010 0.009 0.001 0.990 0.947 0.903
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Table 5:

σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = σϵ

2, ω = m/p = 0.01

(n, p) % RB var(θ) E(v) s(v) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) −8.854 0.020 0.019 0.003 0.990 0.927 0.877 0.990 0.940 0.883

(2000, 20000) −10.250 0.010 0.009 0.001 0.983 0.930 0.860 0.983 0.930 0.860

(3000, 30000) 5.450 0.006 0.006 0.001 0.997 0.957 0.907 0.997 0.957 0.907

(4000, 40000) −16.138 0.005 0.005 0.000 0.983 0.917 0.870 0.983 0.917 0.870

(5000, 50000) 10.734 0.003 0.004 0.000 0.987 0.967 0.923 0.987 0.967 0.923

J Stat Plan Inference. Author manuscript; available in PMC 2023 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dao et al. Page 18

Table 6:

GCTA CIs: σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = σϵ

2, ω = m/p = 0.01

(n, p) % RB var(θ) E(v) s(v) GCTA0.01 GCTA0.05 GCTA0.1

(1000, 10000) −8.477 0.020 0.019 0.004 0.993 0.930 0.877

(2000, 20000) −9.926 0.010 0.009 0.001 0.983 0.93 0.863

(3000, 30000) 5.408 0.006 0.006 0.001 1.00 0.957 0.907

(4000, 40000) −16.172 0.006 0.005 0.001 0.987 0.920 0.867

(5000, 50000) 10.868 0.003 0.004 0.001 0.987 0.963 0.923
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Table 7:

σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = h2, ω = m/p = 0.01

(n, p) % RB var(θ) E(v) s(v) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) −12.968 0.022 0.019 0.001 0.987 0.913 0.873 0.990 0.917 0.877

(2000, 20000) −15.510 0.011 0.009 0.000 0.980 0.927 0.850 0.980 0.927 0.850

(3000, 30000) −2.363 0.006 0.006 0.000 0.993 0.957 0.893 0.993 0.957 0.893

(4000, 40000) −22.084 0.006 0.005 0.000 0.983 0.910 0.860 0.983 0.910 0.860

(5000, 50000) 5.989 0.004 0.004 0.000 0.993 0.950 0.920 0.993 0.950 0.920
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Table 8:

GCTA CIs: σϵ0
2 = 0.4, σα0

2 = 0.6 p
m  for θ = h2, ω = m/p = 0.01

(n, p) % RB var(θ) E(v) s(v) GCTA0.01 GCTA0.05 GCTA0.1

(1000, 10000) −12.611 0.022 0.019 0.001 0.990 0.910 0.870

(2000, 20000) −15.199 0.011 0.009 0.001 0.977 0.927 0.847

(3000, 30000) −2.393 0.007 0.006 0.000 0.993 0.957 0.893

(4000, 40000) −22.109 0.006 0.005 0.000 0.983 0.910 0.857

(5000, 50000) 6.140 0.004 0.004 0.000 0.993 0.950 0.923
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