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Highlights

• Subtropical plant distribution in the southwestern 
U.S. sky island region is primarily predicted by the 
extent of minimum winter temperature and warm-
season precipitation.

• Our results demonstrate that approximately 13.5% 
of the estimated regional flora is represented by 
peripheral plant taxa at or near their northern 
geographic distribution.

• We determined three sky island clusters of subtropical 
biotic similarity, which demonstrate a strong 
longitudinal progression from west to east. While 
warmer minimum winter temperature is a significant 
driver of the beta diversity of western sky islands 
surrounded by Sonoran Desert, the biotic similarity 
of eastern sky islands clustered along the Chihuahuan 
Desert was predicted by colder minimum winter 
temperature.

• The primary subtropical hotspot in Santa Cruz 
County, Arizona is a significant repository of rare and 
vulnerable species, containing 77% of all regionally 
rare subtropical taxa and nearly 87% of all regional 
subtropical taxa.

• Evaluating aggregations of peripheral populations may 
be especially valuable at biogeographic crossroads 
to delineate hotspots of conservation and ecological 
significance.

Abstract

A contributing element of the exceptional plant 
biodiversity of the Arizona-New Mexico sky islands is 
the numerous southern taxa at their northern extent, 
yet the local distribution and drivers of subtropical 
plant richness have not been delineated. We assess the 
proportion of subtropical richness (PSR) in sky islands 
as the ratio of subtropical taxa to total species richness. 
We (1) identified 284 subtropical vascular plant species 
at or near their northern range in 24 sky islands, (2) 
calculated PSR for each sky island, (3) quantified spatial 
patterns of PSR and subtropical beta diversity, (4) 
determined regional hotspots of PSR, and (5) analyzed 
independent eight variables as potential drivers of PSR 
and subtropical species turnover. Sky islands with the 
highest PSR occur in the southwestern portion of the 
region close to the international border. Four predictor 
variables (ordered by significance) strongly correlate 
with PSR: minimum winter temperature, monsoon 
season precipitation, area, and latitude. The primary 
subtropical hotspot occurs mostly within Santa Cruz 
County (southeastern Arizona), representing the 
largest regional concentration of rare subtropical taxa. 
We determined three primary clusters of species co-
occurrence with a strong longitudinal trend driving 
subtropical beta diversity. Nearly half of subtropical 
taxa are regionally rare or vulnerable, illustrating the 
potential value of assessing regional peripheral plant 
taxa to discern hotspots of ecological significance. The 
sky islands of Santa Cruz County represent a unique 
botanical hotspot with exceptional subtropical richness 
and rarity. Understanding regional drivers of subtropical 
influences helps forecast potential responses to global 
change, while strengthening conservation strategies that 
minimize future losses of biodiversity.

Keywords: abiotic drivers, Arizona sky islands, conservation, minimum winter temperature, peripheral populations, rarity 
hotspots, regional ecotones, sky islands, subtropical distribution.
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Introduction
The Arizona-New Mexico sky islands are known for 

supporting many plant taxa at their northern range 
(Felger and Wilson 1995, Verrier 2018); however, the 
distribution and drivers of these peripheral species 
with southern affinities have not been investigated. 
Located in southeastern Arizona and southwestern 
New Mexico, this area is the northern extent of the 
greater Madrean Archipelago (Fig. 1). Sky islands 
are isolated mountain ranges separated by broad 
lowlands or valleys (McCormack et al. 2009, Carnahan 
2020); these unique mountains are also defined by a 
vertical diversity of plant communities varying from 
lower desert or grassland to higher-elevation forest 
assemblages. Although delineated by an arbitrary 
political boundary on its southern edge (the U.S.-
Mexico border), the region’s northwest-southeast 
trending geology facilitates sky island biodiversity and 
ecological flows, encouraging a northern migration of 
subtropical taxa from tropical Central America to the 
Rocky Mountains (Drewes 1981, Warshall 1995b). 
Here, floristic influences intersect at the convergence 
of five physiographic provinces: Chihuahuan Desert, 
Neotropics, Rocky Mountains, Sierra Madre, and 
Sonoran Desert (Van Devender et al. 2013); it is the 
only global sky island complex spanning a subtropical 
and temperate distribution, which defines its unique 
floral character (Warshall 1995a).

The biological richness of the Arizona-New Mexico 
sky island region is largely due to geographic location, 
climate, and complex geology. An eclectic mixture of 
desert, grassland, and montane species commingle 
with plants of subtropical affinity in the sky islands. 
This region experiences a bimodal annual pattern, the 
winter El Niño Southern Oscillation and the summer 
North American Monsoon (Adams and Comrie 1997, 
Alexander et al. 2002). A combination of warm 
temperatures and monsoon precipitation fosters a rich 
assemblage of animals, plants, and invertebrates in 
the region (Buchmann 1995, Bowers and McLaughlin 
1996, Koprowski et al. 2005). While Arizona sky 
islands occupy less than 3% of the state’s area, they 
contain approximately 53% of its total vascular plant 
richness (McLaughlin 1995, Stein 2002, Canotia n.d.). 
Additionally, an extensive elevational gradient of 
approximately 2500 meters and diverse topography 
contribute to the distinct biological composition of 
the sky islands (Coblentz and Ritters 2005).

The southwestern U.S. sky islands occur along a 
biogeographic crossroads of physiographic regions 
and host a sizable number of subtropical plant taxa 
at their northern range. Although abiotic and biotic 
factors shape the distribution of species, plants are 
indicators of climatic conditions (Whittaker 1967, 
MacArthur 1972, Mott 2010, Brunbjerg et al. 2018), 
which may be explained by a diminished quantity or 
quality of appropriate habitat (Lee-Yaw et al. 2016, de 
Medeiros et al. 2018). Temperature and precipitation 
dynamics are significant drivers of the range limits of 
peripheral plant taxa. Temperature extremes strongly 
influence the geographic distribution of subtropical 
species (Sage et al. 1999, Sommer et al. 2018, 

Zhang et al. 2020), and the cold tolerance of subtropical 
plants can correspond with range extent, latitudinal 
gradient, and ecoregional boundaries (Shreve 1914, 
Duker et al. 2015, Wen et al. 2018). Augmented warm-
weather (monsoon) precipitation also characterizes 
humid subtropical habitats (Trewartha and Horn 1980).

Species at their geographic extremes often have 
local rarity designations, and numerous researchers 
have advocated for increased conservation of some 
peripheral populations (Lesica and Allendorf 1995, 
Nielsen et al. 2001, Bunnell et al. 2004, Channell 
2005, Gibson et al. 2009, Rehm et al. 2015); however, 
this subject is contentious. A policy dilemma is that 
peripheral species with regional rare listings are usually 
globally secure (Caissy et al. 2020). As resources to 
implement conservation policies are limited, Peterson 
(2000) argued that protecting peripheral species 
detracts from more valuable preservation efforts. 
Although marginal populations are known to be less 
genetically diverse or genetically bottlenecked in 
extreme cases (Soule 1973, Lesica and Allendorf 1995, 
Frankham 1996, Weidema et al. 1996, Gao and Gao 
2016, Langin et al. 2017), unique genetic variation or 
adaptations in peripheral populations could benefit 
species conservation efforts (Lomolino and Channell 
1995, 1998, Lammi et al. 1999, Hardie and Hutchings 
2010). Harsh environmental conditions and reduced 
habitat quality along the periphery can also augment 
resiliency (Gaston 2003), a vital adaptation during the 

Figure 1. The Madrean Archipelago of the southwestern 
United States and northwestern Mexico. The purple shading 
represents the southwestern U.S. sky island region, and the 
green shading shows the Mexican portion of the Madrean 
Archipelago.
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rapid rate of modern climatic change (Gibson et al. 
2009, Hardie and Hutchings 2010, Rehm et al. 2015). 
Rare and vulnerable species are particularly sensitive 
to global change as they occupy specialized habitat, 
which is threatened by recent losses of sky island 
habitat and projections of significant montane habitat 
loss over the next decades (Villarreal et al. 2019, 
Yanahan and Moore 2019).

In this study, we utilize a large aggregation of 
northern peripheral plant taxa to discern the local 
distribution and drivers of sky island subtropical 
richness. Since bigger sky islands may contain more 
subtropical taxa than smaller sky islands, we investigate 
the proportion of subtropical richness (PSR), defined 
as the ratio of subtropical taxa to total species richness 
within each sky island flora. An additional goal is to 
analyze shared patterns of subtropical vegetative 
composition between sky islands. Finally, we determine 
the highest local density of regional subtropical 
influence (hotspots), which are likely ecologically 
significant due to higher concentrations of peripheral 
species with rarity designations. Discerning species 
distribution and richness are critical to identifying high-
value concentrations of rare species and implementing 
ecological preservation strategies in the Anthropocene.

Materials & Methods

Study area
The study area occurs within the Madrean 

Archipelago (Fig. 1) physiographic region in Arizona 
and New Mexico (U.S. Environmental Protection 
Agency 2013, Griffith et al. 2014). Different authors 

have proposed varied definitions for the Madrean 
sky islands based upon the extent of vegetative 
association diversity, all of which include a specific 
woodland association. Marshall (1957) described 
the greatest richness of sky island plant communities 
and identified pine-oak woodland (excluding pinyons) 
as the defining habitat; only nine ranges qualify for 
this description. Bezy & Cole (2014) determined sky 
islands based on the occurrence of Madrean Evergreen 
Woodland (oak-juniper-pine woodland) as defined 
by Brown (2014), but recognized four additional 
ranges stretching northward into central Arizona. 
Oak woodland was utilized by Deyo et al. (2013) and 
Moore et al. (2013), who employed the broadest 
interpretation of regional sky islands. Moore et al. 
(2013) also recognized two additional sky islands 
north of the classically-defined Madrean Archipelago 
(Griffith et al. 2014). We recognize oak woodland 
areas determined by Deyo et al. (2013), but utilize an 
intermediate sky island classification identified by oak-
pine woodland, or oak assemblages including any pine 
species. Online herbarium records on the Southwest 
Environmental Information Network (SEINet) (SEINet 
n.d.) were examined to verify the presence of pine 
species for our sky island determinations. We identified 
a total of 24 sky islands in the study area utilizing this 
criterion (Fig. 2); three ranges previously classified as 
sky islands by Deyo et al. (2013) are excluded due to a 
lack of oak-pine woodland (Alamo Hueco, Perilla, and 
Tortolita). However, we recognize two sky islands as 
clusters of several adjacent mountain ranges that are 
not clearly differentiated from each other, which is 
consistent with Deyo et al. (2013); Atascosa, Pajarito, 

Figure 2. The study area includes 24 sky islands in southeastern Arizona and southwestern New Mexico, representing the 
northern portion of the Madrean Archipelago. Sky islands were determined by those containing oak-pine woodland, or 
oak assemblages including any pine species.
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and Tumacacori are defined here as Atascosa, while 
Baboquivari includes nearby Quinlan.

Although three sky islands share a geographic 
distribution in both the United States and Mexico 
(Atascosa, Huachuca, and Peloncillo), we only examine 
botanical specimens and abiotic data from the U.S. 
portion of these mountain ranges. In addition to 
significantly less climate, geological, and botanical 
collection data from the Mexican border ranges, 
our primary interest is providing ecological and 
conservation insight for land management agencies 
in the southwestern U.S. sky island region.

Sky island subtropical plants
Plants identified in the sky island region were 

determined to be subtropical if they met the following 
conditions: a) those with a Mexican distribution that 
reach their northern range in Arizona-New Mexico 
sky islands and b) southern taxa with only a handful 
of ephemeral populations north of the sky islands 
(ephemeral peripheral hereafter). We identified 
subtropical taxa by reviewing online herbarium records 
on SEINet (SEINet n.d.) and all published floras (Wagner 
1977, Toolin et al. 1979, Wentworth 1982, Bowers 
and McLaughlin 1987, Johnson 1988, McLaughlin 
and Bowers 1990, McLaughlin 1993, Bennett et al. 
1996, Bowers and McLaughlin 1996, Buegge 2001, 
McLaughlin and McClaran 2004, Verrier 2018). A total 
of 82,507 records were processed from an assortment 
of regional herbaria through the SEINet database. 
Range distributions for each sky island plant taxa were 
estimated with the SEINet map function to determine 
those qualifying as subtropical taxa (Fig. S1).

The SEINet database was accessed to download 
all sky island herbarium records by searching the 
terms “mountains” and “mts” for each range or 
combination of ranges (i.e., Atascosa Highlands). 
Search criteria for Swisshelm also included “Leslie 
Canyon, Cochise County.” Due to the low number 
of collections from Little Dragoon, records from the 
bordering Texas Canyon area were included in this 
range. We examined records that were potentially 
problematic by examining the collection label to clarify 
the locale data. Questionable records represented by 
a single and highly disjunct specimen were discarded 
unless made by a well-known collector. Collections 
represented solely by historical relicts not known to 
be regionally extant were excluded.

Botanical field determinations were also made from 
one highly under-collected sky island (Sierrita), which 
is located between two sky islands with numerous 
subtropical plant taxa, Baboquivari and Santa Rita 
(McLaughlin and Bowers 1990, Austin 2010). Species 
occurrences in Sierrita seemed important to help us 
better understand subtropical plant distribution in the 
western part of our study region. We undertook nine 
days of fieldwork in Fall 2021 across this mountain 
range in an assortment of geologic substrates, habitats, 
and elevational gradients. All plant taxa not previously 
known to the flora of Sierrita were identified in the 
field with a hand lens and electronic dichotomous 
keys to avoid a subtropical collection bias.

We also identified the rarity status for all regional 
subtropical plants. Our rarity classification includes 
taxa with rare, vulnerable, endangered, and species 
of concern designations. For this process, we utilized 
NatureServe (NatureServe 2022) state conservation 
rankings, the Arizona Game and Fish Department 
Heritage Data Management System (Arizona Game and 
Fish Department 2021), the New Mexico Conservation 
Information System (New Mexico Natural Heritage 
n.d.), and the New Mexico Rare Plant List (New 
Mexico Rare Plant Technical Council 1999). Species 
ranked by NatureServe as S1 (critically imperiled), 
S2 (imperiled), or S3 (vulnerable) were included in 
our rarity determinations. We classified taxa with 
an intermediate rarity status of S1/S2 as S2 and S2/
S3 as S3.

We calculated sky island PSR by dividing subtropical 
plant richness by total species richness for each sky 
island. Since only eight sky islands have published 
floras, we also generated the approximate total taxa 
for the remaining 16 ranges from existing herbaria 
records, which were edited to correct taxonomic 
synonymy and to remove questionable records.

Predictor variables
We examined eight independent variables as 

potential drivers of PSR (Fig. 3), which were selected 
as we hypothesize factors that drive overall diversity 
might also influence PSR. Three climate variables 
were included due to their strong relationship with 
subtropical taxa (Shreve 1914, Mott 2010, Wen et al. 
2018): minimum winter temperature (Tmin), and 
two measures of precipitation, monsoon season 
precipitation (Pmon) and annual precipitation (Ptot). 
Elevational range (E, the difference between minimum 
and maximum elevation) was also chosen due to its 
known relationship with species richness and increased 
beta diversity (Trigas et al. 2013). While latitude (Lat) 
correlates with biodiversity, we also include longitude 
(Lon) due to regional temperature influences from 
the Sonoran (west) and Chihuahuan (east) deserts 
(Schmidt 1986, Weiss and Overpeck 2005). The log-
transformed area (km2) of each sky island (lnA) was also 
examined as larger ranges likely host greater species 
diversity. Finally, geological richness (G) was chosen as 
a key component of geodiversity, a correlate of plant 
species richness (Gray 2013, Hjort et al. 2015). These 
variables were also considered as possible drivers 
of sky island community similarity (beta diversity or 
species turnover). Values for these variables were 
calculated using QGIS 3.16.13.

Our measure of geological richness is the sum 
of lithographic (unique geological substrates), 
chronostratigraphic (geological time periods), and 
mineral units for each range. We downloaded 
shapefiles from the United States Geological Services 
(USGS) Geological Map Database of the Conterminous 
United States and USGS Mineral Resource Data System 
(U.S. Department of Agriculture 2021) and conducted 
a geological literature review for all 24 sky islands 
(Hayes and Landis 1964, Young 1969, Hayes 1970, 
Drewes et al. 1972, Sousa 1980, Thorman 1981, 
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Bykerk-Kauffman 1983, Wrucke and Armstrong 1984, 
Currier 1985, Hauck 1985, Mark 1985, Davis et al. 1987, 
Dickinson et al. 1987, Spencer 1993, Armstrong and 
Brown 1994, Huckelberry 1996, Force 1997, Dickinson 
1998, Houser 2005, Busby and Bassett 2007, Bykerk-
Kauffman 2008, Graham 2010, Davis et al. 2011, 
Rasmussen et al. 2012, Graybeal et al. 2015, Borel 2018, 
Johnson et al. 2018). As soil surveys are absent from 
37% of the study area (U.S. Department of Agriculture 
2021), it was not possible to calculate a geodiversity 
index (Serrano and Ruiz-Flaño 2007). However, we 
investigate a possible relationship between PSR and 
geological richness.

Computer-modeled gridded climate datasets offer 
a readily available and systematic resource to evaluate 
warm macroclimates and seasonal precipitation in 
the region. PRISM (Parameter-elevation Regressions 
on Independent Slopes Models) provides relatively 
accurate climate data based upon point station data 
at intervals across the conterminous United States, 
although several overestimations occur in mountainous 
terrain, including increased cold bias in all seasons and 
exaggerated precipitation (Ahn et al. 2014, Daly et al. 
2017, Strachan and Daly 2017, PRISM Climate Group 
2021). Station coverage is relatively good for PRISM 
from 1981 to present, which affords somewhat stable 
long-term climate data for the recommended standard 
of thirty years of consecutive climate data (Daly et al. 
1994, Daly et al. 2008, Parra and Monahan 2008, World 
Meteorological Organization 2009, Daly et al. 2017).

We obtained climate data from PRISM 30-year 
averages (1981-2010) at 800 m resolution. The mean 
minimum temperature for the three coldest winter 
months (December, January, and February) was used 
to generate Tmin. Monsoon precipitation was calculated 

from July and August totals. Although the North 
American monsoon is arbitrarily considered active 
through September 15th (Crimmins 2006), moisture 
occurring during September is often associated with 
cooler temperatures and comes at a time when many 
subtropical taxa are entering seasonal dormancy. Mean 
climatic averages for each sky island were calculated 
with zonal statistics in a GIS.

Statistical analyses

Modeling the proportion of subtropical richness

We chose eight independent variables as possible 
factors in determining the proportion of subtropical 
species richness: E, lnA, Lat, Lon, G, Tmin, Pmon, and Ptot. 
Predictor variables were standardized (mean centered 
and scaled) and used to fit a binomial generalized 
linear model with the logistic link function. Variables 
were selected using a stepwise selection procedure 
(step procedure in R) using the Bayesian Information 
Criterion (BIC) to sequentially filter out predictor 
variables that did not improve the model. BIC is a 
more parsimonious criterion than Akaike’s Information 
Criterion, thereby producing a more regulated model, 
which seemed warranted given the sample size and 
number of predictor variables. Selected variables 
were assessed for multicollinearity. We further 
assessed the possibility for Type-I errors associated 
with the stepwise selection procedure by using a 
permutation test with 5000 replicates and a parametric 
randomization test to assess the probability of the 
observed difference in BIC under the assumption of 
no relationship between the predictor variables and 
the observed proportions.

Figure 3. Modeled drivers of the proportion of subtropical plant richness (PSR) in the Arizona-New Mexico sky islands. 
Eight potential variables were selected, including three climate variables. Geological richness is shown here as the sum 
of three metrics.
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For each identified predictor variable in the best 
model, we used the difference in BIC between the 
best model and the best model minus the variable 
in question to assess the evidence in favor of 
that variable. Following Jones et al. (2001), we 
determined that a difference in BIC greater than five 
indicated very strong evidence that the variable was a 
significant factor in determining PSR and a difference 
between three and five indicated strong evidence. 
Coefficients for each predictor variable in the best 
model were estimated using the GLM function in 
R. To calculate a 90% confidence interval for each 
coefficient, we generated 20,000 bootstrapped 
samples, calculated coefficients for each sample, 
and determined the 5th and 95th percentile for each 
set of coefficients.
Modeling and predicting species composition 
similarity

All calculations in this section were performed 
using the software Primer-e v7. Presence data for 
284 subtropical species were used to create a similarity 
matrix for the 24 sample locations using the Bray-Curtis 
similarity index (Bray and Curtis 1957) (Fig. S1), which 
is identical to the Sorensen-Dice coefficient for binary 
data. Given two locations, X and Y,  where  equals 
the number of species the two sites have in common 
while  equal the number of species in site X and Y, 
respectively. Non-metric multidimensional scaling 
(NMDS) was performed to create a two-dimensional 
representation of the relative distances between 
sample locations. A permutation-based hierarchical 
clustering algorithm with 10,000 replications was used 
to search for meaningful groupings of the locations 
based on the species present at each site, and the 
Similarity Profile (SIMPROF) test (Clarke et al. 2008) 
was used to test for the significance of the observed 
differences (Type-I error rate set at 5%). SIMPROF is 
a permutation a posteriori test that does not require 
an a priori hypothesis. It is well suited to identifying 
significant groupings in unstructured species presence 
data that correspond to meaningful ecological 
communities.
Abiotic covariates and drivers of community 
similarity

Three steps were taken to search for abiotic drivers 
of community similarity using the eight independent 
variables used to model PSR. The independent variables 
were again standardized (mean centered and scaled). 
To look for correlations between abiotic variables and 
community assemblage, we used the BEST routine, 
which searches for the most explanatory subset of 
abiotic variables (Clarke et al. 2008). The Global BEST 
test was applied to the result to assess the significance 
of the findings. Global BEST cannot determine the 
significance of any single predictor variable, but it 
does provide a reliable, post-hoc significance test of 
the overall result looking for a relationship between 
the given set of abiotic variables and the similarity 
between each pair of communities.

Using the identified variables from the BEST 
routine, we used the LINKTREE procedure to look 

for significant thresholds in the predictor variables 
to categorize the locations based on biotic similarity. 
LINKTREE is a constrained binary divisive algorithm 
that seeks to cluster samples based on breakpoints in 
quantitative variables. These breakpoints were added 
to the NMDS plot to graphically represent how these 
thresholds corresponded with resemblance based on 
species assemblage.

Finally, we wanted to graphically represent different 
abiotic variables and their relationship to the difference 
and similarities between plant communities. To this 
end, we divided each variable into five categories 
based on normalized quintiles. These categories 
were plotted on the NMDS representation. We also 
used the five categories as factors for an Analysis of 
Similarity (ANOSIM), a permutation test for a significant 
relationship between the factors and the Bray-Curtis 
similarity matrix (Clarke 1993).

Sky island subtropical plants
Sky islands with the highest regional PSR were 

used to identify hotspots of subtropical influence. 
Hotspots are represented as either individual sky 
islands or clusters of adjacent sky islands, which were 
determined through statistically significant overlap 
of subtropical species based upon the results of the 
Bray-Curtis biotic similarity analysis. For each hotspot 
cluster, PSR was calculated by averaging the PSR for 
all sky islands within the cluster.

The number of rare subtropical taxa was also 
determined for each hotspot to provide potential 
conservation insight. We calculated (a) the percentage 
of rarity for each hotspot, represented by the ratio 
of rare subtropical taxa within the hotspot to all 
regionally rare subtropical taxa and (b) the proportion 
of subtropical taxa in relation to the total number of 
regional subtropical species.

Results
A significant number of subtropical plant taxa 

were determined from the study area, representing 
approximately 13.5% of estimated regional floristic 
richness. The highest concentrations of PSR occurred 
in the southwest portion of the region close to the 
international border. We identified 284 subtropical 
peripheral taxa from the known regional flora of 
~2100 taxa (McLaughlin 1995), encompassing 
60 families and 195 genera (Fig. S2). In this group, 
there were 191 taxa at their northern extent (67%) 
and 93 ephemeral periphery taxa (33%) (with a few 
outliers north of the study region). Sixty-five subtropical 
taxa are annual (~23%) and 219 are perennial (~77%). 
Plant families with the greatest number of subtropical 
taxa are Fabaceae (51), Asteraceae (48), Poaceae (18), 
Apocynaceae (15), Malvaceae (11), and Convolvulaceae 
(10). Genera with the highest number of subtropical 
plant taxa include Dalea, Asclepias, Desmodium, 
Muhlenbergia, and Ipomoea, respectively with 8, 7, 
7, 7, and 5 taxa each. We identified a clear break in 
PSR for six sky islands with the highest PSR (equal to 
or greater than 16.0%), while all other sky islands had 
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a PSR equal to or less than 13.5%. Sky islands with the 
highest PSR were Patagonia (23.9%), Atascosa (19.0%), 
Santa Rita (16.4%), Mule (16.3%), Huachuca (16.1%), 
and Baboquivari (16.0%) (Table 1) (Fig. 4).

During our fieldwork in Sierrita, we identified an 
additional 51 subtropical taxa, increasing the known 
number in that sky island to 60. The vascular flora of 
Sierrita was also expanded from the previously known 
total of 121 to 443 plant species.

A total of 135 subtropical taxa are rare or vulnerable, 
representing 47.5% of regional subtropical plant species. 
This includes one endangered species, one species of 
concern, 35 very rare taxa, 41 rare taxa, 45 vulnerable 
taxa, and 12 rare taxa without a recognized conservation 
status. Only six subtropical taxa had rare designations in 
New Mexico; while all six occur in Arizona sky islands, 
four of these taxa lack a rarity status in Arizona.

Statistical analyses

Abiotic drivers of PSR

Values of the response and predictor variables for 
the 24 samples are shown in Table  2. Sample statistics 

for the eight predictor variables (used to standardize 
the variables) are shown at the bottom of Table 2.

Six predictor variables were identified as part of 
the best linear model for predicting the proportion 
of subtropical plant species. In order of significance, 
they are minimum winter temperature (Tmin), monsoon 
season precipitation (Pmon), the log-transformed 
area (lnA), geological richness (G), latitude (Lat), 
and elevational range (E). There was some observed 
collinearity between the elevational range and the 
log of the area (r = 0.60). Logistic coefficients for 
the standardized variables and the difference in BIC 
between the model with the variable and without the 
variable are reported in Table 3. Both the permutation 
test and the parametric randomization test showed the 
model to be highly significant, with no permutation 
out of 5000 replicates (for each test) having a greater 
difference in BIC than the observed difference ( -313.8). 
Model fit was good; the correlation between observed 
and predicted PSR was r = 0.933.

Computed confidence intervals were consistent with 
the GLM coefficient estimates and the determination 
of significance using the difference in BIC in all cases 

Table 1. The proportion of subtropical richness (PSR) in the southwestern U.S. sky island region. The number of subtropical 
plant taxa occurring in each range is also listed, along with the known species richness of plants. Sky islands without 
existing floras are designated with an asterisk.

No. Sky island Proportion of subtropical 
richness to flora

Subtropical indicator 
richness Total known flora

12 Patagonia * 23.9% 129 540
10 Atascosa 19.0% 176 925
11 Santa Rita 16.4% 195 1,188
17 Mule * 16.3% 95 583
13 Huachuca 16.1% 160 994
7 Baboquivari * 16.0% 109 682
9 Sierrita * 13.5% 60 443
6 Rincon 12.0% 130 1,084

19 Dos Cabezas * 11.4% 23 202
20 Chiricahua 11.2% 141 1,261
21 Peloncillo * 10.4% 68 651
8 Coyote * 10.4% 50 479

14 Whetstone * 10.2% 46 453
16 Dragoon 10.1% 72 712
5 Santa Catalina 9.6% 130 1,360

18 Swisshelm * 9.3% 45 486
15 Little Dragoon * 7.6% 27 356
4 Winchester * 6.8% 10 146
3 Galiuro * 6.6% 42 637

22 Animas * 6.5% 41 632
2 Pinaleño 4.6% 39 844
1 Santa Teresa 4.2% 27 637

24 Big Hatchet * 4.1% 10 242
23 Little Hatchet * 3.6% 12 330
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Figure 4. Regional heatmap of PSR in the southwestern U.S. sky island region. Darker red represents the highest proportion 
of subtropical richness, while yellow denotes the lowest extent of subtropical influence. The primary concentration of 
PSR occurs in the southwestern portion of the region in proximity to the international border.

Table 2. Independent variables of PSR in the Arizona-New Mexico sky islands: elevational range (E), area (lnA), latitude 
(Lat), longitude (Lon), geological richness (G), minimum winter temperature (Tmin), monsoon season precipitation (Prmon), 
and annual precipitation (Prtot).

ID Sky island PSR E (m) lnA (km2) Lat (DD) Lon (DD) G Tmin (°C) Prmon (mm) Prtot (mm)

1 Santa Teresa 4.2% 1306 2.61 32.97 -110.30 96 -0.29 141 483
2 Pinaleño 4.5% 2222 2.95 32.65 -109.87 53 -0.93 183 520
3 Galiuro 6.6% 1197 2.82 32.55 -110.31 50 0.07 163 475
4 Winchester 6.8% 1007 2.28 32.34 -110.06 24 -0.57 187 541
5 Santa Catalina 9.6% 1965 2.87 32.41 -110.74 105 1.39 193 587
6 Rincon 12.0% 1636 2.52 32.18 -110.56 47 1.34 218 544
7 Baboquivari 16.0% 1479 2.61 31.82 -111.61 71 2.14 208 475
8 Coyote 10.4% 1078 1.74 31.99 -111.52 43 2.97 182 405
9 Sierrita 13.5% 842 2.12 31.88 -111.22 76 2.14 224 505

10 Atascosa 19.0% 910 2.62 31.44 -111.15 66 1.07 236 523
11 Santa Rita 16.4% 1810 2.67 31.71 -110.81 114 1.39 245 607
12 Patagonia 23.9% 944 2.23 31.41 -110.72 171 0.75 232 519
13 Huachuca 16.1% 1421 2.47 31.45 -110.35 70 -0.56 259 631
14 Whetstone 10.2% 987 2.26 31.83 -110.41 57 0.69 211 479
15 Little Dragoon 7.6% 716 1.99 32.08 -110.11 69 1.02 169 412
16 Dragoon 10.1% 863 2.21 31.91 -109.97 87 0.03 189 512
17 Mule 16.3% 932 2.62 31.48 -109.92 71 0.81 184 412
18 Swisshelm 9.3% 815 2.05 31.69 -109.53 44 -0.65 195 451
19 Dos Cabezas 11.4% 1318 2.39 32.24 -109.60 61 -1.00 174 439
20 Chiricahua 11.2% 1700 3.11 31.89 -109.29 109 -2.31 237 578
21 Peloncillo 10.4% 976 3.16 32.01 -109.04 189 -1.42 143 376
22 Animas 6.5% 1199 2.78 31.59 -110.70 126 -2.15 178 451
23 Little Hatchet 3.6% 653 2.08 31.85 -108.46 76 -2.20 147 344
24 Big Hatchet 4.1% 1198 2.13 31.61 -108.35 45 -2.62 180 410

Mean 10.8% 1216 2.47 31.96 -110.11 80 0.05 195 487
Standard deviation 5.2% 430 0.36 0.40 0.87 39 1.50 32 72
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except for geological richness (G). While the coefficient 
estimate for G is positive, 13.2% of bootstrapped 
coefficient estimates were negative, suggesting that 
the influence of G was not very uniform across sites, 
and a few sites may have skewed the coefficient 
estimate. Indeed, the data for G are skewed by two 
sites with very high geological indices, Patagonia and 
Peloncillo. Consequently, G should not be considered 
a significant linear predictor of PSR.

The change in odds ratio (Table 3) shows the 
change in the ratio of the probability of a species being 
subtropical to the probability of it not being subtropical 
(, where  = proportion of subtropical species). Since 
the variables have been standardized, they can be 
interpreted as the result of a change of one standard 
deviation. Thus, a one standard deviation increase in 
Tmin leads to a 31.1% increase in the odds ratio for any 
given species being a subtropical species.

Monsoon precipitation and the log of the area were 
all also positively correlated with the probability of a 
species being subtropical. Greater elevational range 
and greater latitude were all negatively correlated 
with the proportion of subtropical species.

Assessment of biotic similarity between sky islands
The two-dimensional NMDS representation of the 

similarity matrix is shown in Fig. 5. Stress was slightly 
above desirable levels at 0.14, but comparison with 
the 3D representation (not shown) which had a stress 
level of 0.08 did not show any significant differences. 
The results of the clustering algorithm are presented in 
two ways. Fig. 6 shows the cluster dendrogram. Solid 
lines represent a statistically significant difference 
between islands or clusters based on the SIMPROF 
test. Dashed lines represent indistinguishable clusters. 
Fig. 7 shows a map of the different sample regions 
shaded and coded to represent the different clusters. 
Similarity thresholds report the minimum level of Bray-
Curtis similarity between sky islands in the same cluster.

The NMDS plot shows a tight clustering of seven sky 
islands— Atascosa, Chiricahua, Huachuca, Patagonia, 
Santa Catalina, Rincon, and Santa Rita. These seven, 
along with Baboquivari, Coyote, and Sierrita form the 

main cluster (A) on the left side of the dendrogram 
in Fig. 6. The main cluster is somewhat clustered 
geographically in Fig. 7, except one outlier (Chiricahua) 
occurring significantly to the east. Dragoon, Mule, 
Peloncillo, Swisshelm, and Whetstone form another 
nearby cluster (B). Animas, Dos Cabezas, Little Hatchet, 
Pinaleño, and Santa Teresa form a loose cluster (C) 
separate from the others. Galiuro is in its own category, 
but it shares relatively equal biotic similarity with 
clusters A and B. Big Hatchet, Little Dragoon, and 
Winchester are on the far outskirts of the NMDS and 
do not belong to these three subtropical clusters. 
Big Hatchet and Little Dragoon are not significantly 
different from each other under the permutation test, 
which is likely because Big Hatchet bears little similarity 
to any other sky island except for Little Dragoon.

Table 3. Results for the logistic regression model for PSR for the six predictor variables identified by stepwise variable 
selection in the Arizona-New Mexico sky islands. The change in odds ratio shows the increase or decrease in the odds ratio 
of a plant species in the system being a subtropical species given a one-unit change in the predictor variable.  shows the 
difference in the Bayesian Information Criterion between the model with and without that variable, and the last column 
shows the resulting evidence for this variable as a significant predictor.

Variable Coefficient 90% Confidence Change in 
odds ratio 𝚫BIC Significance

Minimum winter 
temperature

0.2711 (0.183,0.366) +31.1% -70.99 Very strong

Monsoon precipitation 0.2362 (0.102,0.401) +26.7% -23.10 Very strong
Area (log) 0.1515 (0.047,0.290) +16.3% -9.27 Very strong

Geological richness 0.1079 (0.183,-0.059) +11.4% -8.92 Very strong
Latitude -0.1897 (-0.324,-0.005) -17.3% -8.92 Very strong

Elevational range -0.1311 (-0.268,0.000) -12.3% -4.71 Strong

Figure 5. Plot of the first two dimensions of a non-metric 
multidimensional scaling representation of the Bray-
Curtis similarity matrix seeking to match the ordination 
of distances between southwestern U.S. sky islands. In 
general, the farther two sites are from each other in the 
plot, the less their similarity. The two-dimensional stress 
(0.14) implies some inconsistencies between the plot and 
the similarity matrix.
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Figure 6. Dendrogram showing the results of the hierarchical clustering algorithm for subtropical biotic similarity in the 
Arizona-New Mexico sky islands. Dashed red lines show divisions that were not statistically significant based on the 
species present as determined by the SIMPROF routine. The vertical axis shows the percent similarity between samples 
connected at that level based on the average similarity between the samples on either side of the division. The symbols 
denote significant clusters and subclusters which are displayed in Fig. 7. Three samples were not assigned to clusters 
given their low similarity with all other samples.

Figure 7. Map of the Arizona-New Mexico sky island region coded according to the results of the hierarchical clustering 
algorithm. Significant divisions based on the biotic similarity matrix are denoted by changes in color or number. Thresholds 
in similarity are shown in the key with the following exceptions: Galiuro (striped, green bars) is grouped with clusters A 
(dark green) and B (light green) but is its own category at a similarity level of 35.56%; clusters A and B have an average 
similarity of 30.97%, while Galiuro shares an average similarity with clusters A and B of 19.05%. Three sky islands (gray) 
that share the same coding were found to not be significantly different at the 5% level based on the post-hoc SIMPROF 
test, which were deemed to not have a high enough count of subtropical species for reliable categorization.
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Abiotic drivers and covariates for biotic similarity
The BEST algorithm and associated permutation 

test for significance showed a strong and significant 
relationship between the species assemblage and the 
assessed abiotic variables (Spearman’s R = 0.472, p = 
0.008 based on 103 permutations). The most correlated 
subset of variables contained (in order of influence) 
longitude, latitude, minimum temperature, and the 
log of the area. Given the small number of species in 
Big Hatchet and Winchester, the BEST algorithm, the 
NMDS, and the clustering algorithms were recalculated 
with these sites removed. None of the outputs 
showed a significant change in the observed patterns 
of similarity between the other 22 sites. Given the 
linear nature of the BEST algorithm, potential outliers 
can influence which variables are selected and how 
strong the perceived relationship is. Removing these 
two sites increased the strength of the relationship 

overall (Spearman’s R = 0.543, p = 0.001), and annual 
precipitation and monsoon precipitation were added 
as significant factors, both being equally effective.

Fig. 8 shows the normalized quintiles for a subset 
of explanatory variables displayed sequentially on 
the NMDS plot. We also ran an ANOSIM test for 
each variable (as an unordered categorical variable), 
both with and without Winchester and Big Hatchet. 
The ANOSIM results reported are for all 24 sites. All six 
variables show a clear relationship to the similarity 
between sites, and the relationships with longitude and 
minimum winter temperature are particularly strong. 
Elevational range shows some clear patterns, but the 
patterns do not respect the order of the variable, 
suggesting a non-linear relationship. In general, the 
sites in the main cluster tend to be characterized 
(with some exceptions) as having high minimum 
winter temperatures, high annual precipitation, higher 

Figure 8. Display of normalized quintiles for six abiotic variables on the NMDS plot with one corresponding to the lowest 
normalized quintile (not necessarily the lowest quintile for the data) in the southwestern U.S. sky island region. Spearman’s 
correlation coefficient and corresponding significance level (based on a permutation test with 104 replicates) for the 
ANOSIM test are shown in the upper left of each figure. Results are for each variable as an ordered categorical variable 
except for elevational range where the test for the ordered category was not significant (R = 0.011, p = 0.381).
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elevational range, being larger in size, and lying to the 
southwest of the region.

There were some notable changes when the 
ANOSIM was run without Big Hatchet and Winchester. 
Spearman’s R increased for longitude to 0.350 and for 
elevational range (unordered) to 0.254 (p = 0.009).

Results from the LINKTREE procedure are shown 
in Fig. 9. The procedure was run on longitude and 
latitude, which together had a Spearman’s R = 0.467. 
Latitude and longitude accounted for the most 
meaningful divisions, and these divisions are apparent 
in Fig. 7. When the LINKTREE routine was run with 
temperature included, temperature was shown to be a 
determining factor in separating Baboquivari, Coyote, 
and Sierrita, all of which had an average minimum 
winter temperature more than one standard deviation 
above the mean, from the other sites. However, what 
is most apparent in Fig. 9 is the degree to which much 
of the clustering remains unexplained by the abiotic 
variables. Also, there seem to be some discrepancies 
between the LINKTREE divisions and the NMDS 
coordinatization. The LINKTREE procedure works 
directly with the resemblance matrix rather than the 
NMDS, and the relatively high level of stress for the 

NMDS may be a partial explanation of the apparent 
differences.

Hotspots of conservation significance
Subtropical hotspots occurred in the southwest 

portion of the region, situated close to the international 
border. Based on the six sky islands with the highest 
regional PSR, we identified four hotspots of subtropical 
influence: three individual sky islands and one cluster 
containing three sky islands (Fig. 10). The regional 
epicenter of PSR was the Atascosa-Patagonia-Santa 
Rita cluster (average PSR of 19.7%), located primarily 
within Santa Cruz County. Two individual hotspots 
occurred along the border to the east of the primary 
hotspot: Mule (16.3% PSR) and Huachuca (16.1% 
PSR). The other individual hotspot was located on the 
extreme western edge of the region in Baboquivari 
(16.0% PSR).

All four hotspots comprised 92% of regional 
subtropical taxa and 83% of rare subtropical taxa. 
The primary subtropical hotspot (No. 1) contained 86% 
of regional subtropical taxa and 77% of rare subtropical 
taxa, while other hotspots contained significantly less 
taxa (Table 4).

Figure 9. Significant breakpoints between Arizona-New Mexico sky islands based on the LINKTREE algorithm using 
longitude and latitude. Each dashed line in the top figure represents a statistically significant division (permutation test 
with 103 permutations) between sky islands based on subtropical plant assemblages. Line thickness is proportional to 
the species similarity within groups. Red lines indicate divisions based on longitude and purple lines indicate latitude. 
The lower figure shows the dendrogram based on the LINKTREE procedure.
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Discussion
This study provides the first description of the 

distribution and abiotic drivers of subtropical plant 
influences in the Arizona-New Mexico sky islands. 
We show that the proportion of sky island subtropical 
richness is primarily a function of temperature 
and precipitation. Although we did not examine 
absolute subtropical species richness or diversity 
in each sky island, our results are consistent with 
previous studies demonstrating correlations between 
overall species richness and climate (Francis and 
Currie 2003, Hawkins et al. 2003, Moser et al. 2005, 
Vonlanthen et al. 2006, Hawkins et al. 2007). Since 
cold tolerance is well known to define subtropical 
range distributions (Duker et al. 2015, Sommer et al. 
2018, Wen et al. 2018, Zhang et al. 2020), it is not 
surprising that minimum winter temperature exerted 
the most substantial influence on PSR. The seasonal 
timing of precipitation (monsoon) was a primary driver 
of PSR, which is congruent with increased warm-

season precipitation as a known characteristic of 
humid subtropical habitat (Trewartha and Horn 1980). 
The summer rainy season is also the primary active 
growing and reproductive period for many sky island 
subtropical plants, and a number of these taxa break 
dormancy in response to the onset of the monsoon 
and experience partial dormancy shortly after warm-
weather precipitation ends. Annual precipitation was 
not a statistically significant subtropical correlate, 
further highlighting the strong relationship between 
subtropical plants and warm-weather precipitation.

Additional abiotic drivers of PSR with strong 
statistical correlations include area and latitude. 
Our results show that PSR corresponds with area, 
which conforms to expectations that more species 
will occur in larger areas (MacArthur and Wilson 1967, 
Rosenzweig 2010). However, we are unable to entirely 
explain the correlation between PSR and area, because 
complex dynamics can influence relationships between 
area and species (Lomolino 2001, Kallimanis et al. 

Table 4. Species rarity and richness of subtropical hotspots in the southwestern U.S. sky island region. Rare percentage is 
the ratio of rare subtropical taxa to all regionally rare subtropical taxa (n=135); species richness represents all subtropical 
taxa present within a hotspot; richness percentage is the ratio of subtropical taxa present in a hotspot to regional 
subtropical taxa (n=284).

Hotspot Combined PSR Species richness Richness % Rare taxa Rare %
No. 1 (10, 11, 12) 19.7% 246 86.6% 104 77.0%

No. 2 (17) 16.5% 96 33.8% 24 17.8%
No. 3 (13) 16.1% 160 56.3% 58 43.0%
No. 4 (7) 16.0% 109 38.4% 37 27.4%

Figure 10. Subtropical hotspots in the Arizona-New Mexico sky island complex. Four subtropical hotspots are identified. 
The primary hotspot (#1) is a cluster of three sky islands, most of which occur within Santa Cruz County (represented as 
a red-dashed line).
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2007). Additionally, sampling effort is known to 
affect species-area calculations (Chase et al. 2019), 
and botanical sampling differs between sky islands. 
We also demonstrate that latitude correlates with PSR. 
Here, sky island subtropical plant taxa approach the 
limit of their geographic distribution, and desirable 
habitat quickly diminishes across short distances at 
the periphery. In contrast, geological richness and 
elevational range demonstrated questionable validity 
as drivers of PSR. Elevational range had the weakest 
evidence for its association with PSR and exhibited 
collinearity with the area of a sky island.

The results from bootstrapping geological richness 
data infer that the influence of this variable is uneven 
across the sky island region. Patagonia and Peloncillo 
are both significant outliers with abnormally elevated 
geological indices, and this degree of richness is 
beyond what we would expect elsewhere in the 
region. Patagonia has the highest mineral richness 
of the sky islands, nearly three times greater than 
the average. The lithographic richness of Peloncillo 
is 3.5 times greater than the average, which may be 
partially explained by a latitudinal distance spanning 
nearly three-quarters of the study area. In this instance, 
our small sample size prevents the extrapolation of 
geological richness as a predictor of PSR. As soil data 
are absent for more than a third of the study area, 
we were unable to calculate for geodiversity, a well-
known driver of biodiversity (Gray 2013, Hjort et al. 
2015); however, if these data become available, an 
investigation of geodiversity could fill a knowledge 
gap regarding a potential correlation with sky island 
subtropical plant distribution and richness.

Our findings demonstrate the highest concentration 
of subtropical influences occur in a group of six sky 
islands along the southwestern portion of the region. 
Centered within this rich cluster of sky islands, the 
primary subtropical hotspot (No. 1 in Fig. 10) includes 
the adjacent Patagonia (23.9% PSR), Atascosa (19.0% 
PSR), and Santa Rita (16.4% PSR). Populations of all 
subtropical plant taxa in Santa Rita are represented in 
the southern half of the range, located within Santa 
Cruz County. Therefore, the epicenter of PSR can be 
classified as sky islands occurring in Santa Cruz County, 
despite the seemingly arbitrary nature of this political 
boundary. While Atascosa and Santa Rita are known 
to be exceptionally rich with subtropical plant taxa 
(Toolin et al. 1979, McLaughlin and Bowers 1990), 
Patagonia has not been botanically inventoried, despite 
possessing the highest regional PSR. Regardless of 
the political nature of the international border, the 
strongest subtropical plant influences occur close to 
the U.S.-Mexico border.

Sky island subtropical plant taxa are taxonomically 
represented by three dominant plant families: 
Fabaceae, Asteraceae, and Poaceae. As expected, our 
results show that the subset of species richness we 
examined (subtropical plants) are consistent with the 
well-documented phylogeographic bias of the region 
(Bowers and McLaughlin 1987, Bennett et al. 1996, 
Bowers and McLaughlin 1996, Verrier 2018).

Subtropical biotic similarity

Three sky island clusters (A, B, C) of subtropical 
biotic similarity were determined in a strong 
longitudinal progression from west to east (Fig. 7). 
Figs. 8 and 9 provide statistical support for longitude 
as a significant driver of regional biotic similarity. This 
west-east gradient in subtropical beta diversity is 
likely partially explained by the influence of minimum 
winter temperature, a positive correlate of longitude. 
In the three western-most sky islands surrounded by 
Sonoran Desert, warm winter minimum temperature 
is a significant driver of biotic similarity in Baboquivari, 
Coyote, and Sierrita. Conversely, cold minimum 
winter temperature predicts the biotic similarity 
on the eastern flank of the region in Peloncillo and 
Swisshelm, clustered along the Chihuahuan Desert. 
While the Sonoran Desert is the most subtropical and 
the hottest of the four North American deserts, the 
Chihuahuan Desert experiences extremely cold winter 
temperatures (Shreve and Wiggins 1964, Schmidt 
1986, Turner et al. 1995, Weiss and Overpeck 2005). 
Although the primary cluster (A) is concentrated in 
the southwestern portion of the region, one outlier 
(Chiricahua) occurs to the east along the Arizona-
New Mexico border. Chiricahua is the largest of five 
major sky islands with significant high elevation 
habitat. It receives the 3rd and 4th highest volume of 
monsoon and annual precipitation respectively and 
lies just north of the international border. Although 
Chiricahua is most closely aligned with the comparably 
high-elevation Huachuca, it also shares cold-tolerant 
subtropical taxa with clusters B and C.

The second biotic cluster (B) is defined by its 
center-located longitude while occurring at middle 
to lower latitudes within the region. An increase in 
longitude and latitude drives colder winter minimum 
temperatures, contributing to a distinct change in 
species composition. Although Peloncillo stretches 
considerably further north than other ranges in the 
second cluster, nearly all subtropical plant collections 
from Peloncillo are from the southern half of this sky 
island. Peloncillo represents the eastern boundary of 
significant regional subtropical influence (10.4% PSR), 
contrasted by substantial drops in the adjacent Animas 
(6.4% PSR) and Little Hatchet (3.6% PSR).

The third cluster (C) has the lowest level of within-
cluster biotic similarity and occurs along the extreme 
eastern and northeastern fringe of the region. 
Here, subtropical influences diminish as community 
change occurs just east and north of this cluster 
along a regional ecotone. Cold Chihuahuan Desert 
temperatures manifest in the extreme eastern edge 
of the region in Animas and Little Hatchet, while the 
highest regional latitudes limit PSR in Pinaleño and 
Santa Teresa.

Galiuro is the only sky island that shares somewhat 
equal biotic similarity with clusters A and B. Several 
factors may contribute to this. The San Pedro River 
runs along its entire western perimeter and acts as a 
latitudinal corridor connecting sky islands in clusters 
A and B. Low-elevation Sonoran Desert habitat also 
occurs in the western foothills of Galiuro, sharing biotic 
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affinities with nearby sky islands aligned with cluster 
A (Rincon, Santa Catalina).

Three ranges (Big Hatchet, Little Dragoon, and 
Winchester) did not form significant relationships 
with the three subtropical clusters. Big Hatchet and 
Winchester may be explained by their depauperate 
representation in herbarium collections and minimal 
public access. When these two samples were removed 
from the analysis, annual precipitation was added as 
a driver of the longitudinal beta diversity gradient, 
which is supported by a generally decreasing volume 
of regional precipitation from west to east (McLaughlin 
1995). Conversely, Little Dragoon is relatively well-
collected and shares similarities with several nearby 
ranges (Dragoon, Whetstone), but is not statistically 
similar to any subtropical clusters.

Additionally, Galiuro, Little Dragoon, and Winchester 
appear to be on the geographical edge of two biotic 
regimes. To the southwest of these three ranges, 
dominant subtropical clusters and hotspots occur, 
while to the northeast, sky islands have relatively low 
subtropical richness. These three ranges are somewhat 
of a border area, which are not similar enough to be 
aligned with clusters on either side.

Climate change implications
Understanding the abiotic drivers of PSR in the 

sky islands provides insight into potential responses 
to anthropogenic global change. Although nighttime, 
summer, and winter temperatures have significantly 
risen in the Southwest over the past half-century, 
increases in winter temperatures are the most extreme 
(Ruddell et al. 2013, Vose et al. 2017, Gonzalez et al. 
2018). As minimum winter temperatures substantially 
influence subtropical plant distribution, Osland et al. 
(2021) highlight the potential of some tropical species 
to expand their geographic range due to projections 
of global warming. However, the current 27-year 
megadrought in the Southwest is the worst since 800CE 
(McClaran and Wei 2014, Williams et al. 2022), and 
models project a weakening of the North American 
Monsoon with high confidence (Pascale et al. 2019, 
Moon and Ha 2020, Wang et al. 2021). Regional winter 
precipitation has also decreased during the current 
multi-decade drought, while anomalies of winter 
rainfall shortages have increased in frequency and 
intensity (Bertelsen 2018, Verrier 2022).

While Osland et al. (2021) documented the 
northward expansion of six tropical plant taxa due to 
increasing winter temperatures, our analysis shows 
that 284 sky island subtropical plant species are 
jointly predicted by temperature and precipitation. 
These northern peripheral populations occupy 
specialized montane microhabitats, temporally 
buffering some taxa from prolonged environmental 
stress (Dobrowski 2011, McLaughlin et al. 2017). 
Mountain terrain receives increased precipitation due 
to atmospheric circulatory dynamics (Ruddiman 1997, 
Stewart et al. 2002, Antonelli et al. 2018) and offers 
substantially augmented water storage potential due 
to subsurface bedrock moisture and slope geodiversity 
(surface and subsurface rocks and fragments), 

providing a vital resource during severe drought and 
reducing evapotranspiration (Dubinin et al. 2021, 
McCormick et al. 2021, Nardini et al. 2021). Conversely, 
the broad lowland and arid habitat separating the 
sky islands can act as a climate-driven dispersal 
barrier for some species due to significantly hotter 
temperatures, increased soil evapotranspiration, and 
reduced rainfall. Additionally, nearly half of sky island 
subtropical plants are rare or vulnerable species, 
which are not known to experience significant range 
expansion and perform poorly under diminished 
precipitation dynamics (Vincent et al. 2020). Hotter 
summer and winter temperatures precipitate vapor 
pressure deficits, promote soil evaporation, increase 
plant transpiration, reduce soil moisture, and intensify 
drought severity (Breshears et al. 2013). Long-term 
temperature increases have also caused substantial 
upward elevational range shifts (Breshears et al. 2008, 
Lenoir et al. 2008, Vitasse et al. 2021), which may be 
problematic in the sky islands where high elevation 
habitat is limited, and species can quickly exhaust 
vertical space (Urban 2018). When considering the 
precipitation needs of regional subtropical plant taxa, 
the factors discussed above present sizable challenges 
to northward range expansion during worsening 
drought conditions.

The increasing frequency and intensity of 
megafires cause stand-replacing burns resulting in 
dramatic community assemblage changes, including 
conversions from conifers to hardwoods and forests 
to shrub-dominated communities (Barton and 
Poulos 2018, Hagmann et al. 2021, O’Connor et al. 
2021, Poulos et al. 2021). Recent severe fires in four 
Arizona sky islands have impacted more than half of 
their total area (Villarreal et al. 2019), while models 
project that Madrean sky islands will lose significant 
areas of montane habitat in the next few decades due 
to climate change (Yanahan and Moore 2019). While 
some peripheral populations are resilient (Channell 
and Lomolino 2000), rapid environmental change may 
precipitate local extinction events, altered community 
composition, and range contractions in edge species 
experiencing more extreme conditions than those 
at the core (Allen and Breshears 1998, Gibson et al. 
2009). As seasonal precipitation is a strong driver of 
PSR, sky island subtropical plants are likely to be highly 
sensitive to weakened monsoon dynamics, especially 
when combined with increasing temperatures and 
intensified heat waves. Additionally, many regional 
subtropical taxa are habitat specialists at their northern 
periphery and may be vulnerable to accelerated rates 
of change.

Conservation significance
Identifying hotspots of subtropical species 

richness in the sky island region highlights important 
conservation considerations. Although biodiversity 
hotspots are typically defined by species richness, 
rarity (threat), or endemism, hotspots of species 
richness seldom coincide with rarity (Lombard 
1995, Reid 1998) or endemism (Orme et al. 2005, 
Stohlgren et al. 2005). By contrast, rarity hotspots 
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are better predictors of biodiversity than those of 
species richness (Williams et al. 1996, Balletto et al. 
2010). Spector (2002) proposed regional ecotones 
for conservation consideration due to their high beta 
diversity. Sky islands occurring within Santa Cruz 
County represent the greatest regional concentration 
of rare subtropical taxa. Encompassing just a tenth of 
the region, Atascosa, Patagonia, and the southern half 
of Santa Rita contain 77% of all rare subtropical taxa 
and 86% of regional subtropical plant species. A large 
aggregation of subtropical sky island taxa occurs within 
a regional ecotone, an area more likely to be sensitive 
to global change that could serve as an environmental 
indicator (Neilson 1991, Kitzberger 2012). Species 
occurring in ecotones and peripheral populations have 
been proposed for conservation consideration (Neilson 
1993, Kitzberger 2012, Rehm et al. 2015), some of 
which may represent valuable genetic repositories 
due to phenotypic plasticity or potential adaptive 
genetic variation from environmental stress (Chevin 
and Hoffmann 2017, Hanson et al. 2017). Regional 
ecotones host a high density of peripheral species 
(Kark 2013) and also experience increased human 
disturbance (Soares-Filho et al. 2006, Kitzberger 2012, 
Körner 2012), highlighting an additional conservation 
concern. As many species may not adapt fast enough 
to rapid environmental change (Jump and Peñuelas 
2005, Quintero and Wiens 2013, Radchuk et al. 2019), 
some peripheral populations may contribute vital 
genetic adaptations, supporting long-term species 
preservation (Gibson et al. 2009, Rehm et al. 2015, 
MacDonald et al. 2017).

Overall, sky island subtropical plants represent a 
valuable repository of rare species, as nearly half of 
all taxa are designated rare or vulnerable. Although 
plant species at the edge of their geographic range 
are more likely to be locally classified as rare, the 
primary subtropical hotspot (No. 1) within Santa Cruz 
County hosts an unusually large concentration of rare 
species. Rare species strongly contribute to functional 
diversity (Lyons et al. 2005, Leitão et al. 2016, Basile 
2022) and anthropogenic land-use adversely alters 
functional diversity (Mayfield et al. 2010, Ribeiro et al. 
2019, Matuoka et al. 2020), highlighting the 
potential conservation value of subtropical hotspots. 
An escalating feedback loop of climate change, habitat 
loss, invasive species, and human impacts punctuate 
the urgency of developing management approaches 
to preserve biological diversity. Our results suggest 
that identifying hotspots in regional ecotones may 
provide a useful method to discern areas of high 
conservation priority.

Conclusion
Sky island subtropical plant distribution is principally 

influenced by climate. Sky islands with the highest PSR 
are situated in the southwest corner of the region 
along the international border, while the primary 
subtropical hotspot lies mostly within Santa Cruz 
County. Our results identify three sky island clusters 
of subtropical similarity along a strong longitudinal 
trend from west to east. Additional drivers of beta 

diversity include latitude and area. Nearly half of sky 
island subtropical plant species are rare or vulnerable, 
and the primary subtropical hotspot is a significant 
reservoir of rare species, which merits consideration 
in land-use management and planning.
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