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Abstract

The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied

through metagenomics. While metagenomes enable high-throughput exploration of the viral

sequence space, metagenome-derived sequences lack key information compared to iso-

lated viruses, in particular host association. Different computational approaches are avail-

able to predict the host(s) of uncultivated viruses based on their genome sequences, but

thus far individual approaches are limited either in precision or in recall, i.e., for a number of

viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a

two-step framework that integrates multiple methods to reliably predict host taxonomy at the

genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low

false discovery rate. Based on a large dataset of metagenome-derived virus genomes from

the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and

guide further characterization of uncultivated viruses.

Introduction

Viruses are widespread and influential throughout all ecosystems. In microbial communities,

viral infections can shift community composition and structure via viral lysis and alter biogeo-

chemical processes and metabolic outputs through reprogramming of host cells during infec-

tion [1–3]. Given current challenges for cultivating many environmental microbes and their

viruses, the extensive viral diversity is now primarily explored via metagenomics, i.e., by

assembling genomes of uncultivated viruses directly from whole community shotgun sequenc-

ing data [4–6]. Over the last decade, metagenomic studies have been incredibly powerful in

revealing viral diversity on Earth, investigating eco-evolutionary drivers of viral biogeography,
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and connecting viruses to ecological and metabolic processes [7–9]. A major limitation of

these approaches is that metagenome-derived viral genomes have no inherent link with a host,

as is the case for isolates [4]. This lack of host association remains a critical hurdle when

attempting to study virus–host interactions and dynamics in natural communities, in particu-

lar for the highly diverse bacteriophages (“phages”), viruses infecting bacteria [4].

Given the importance of phage–host interactions in microbiome processes, computational

methods to predict the host(s) of a phage based on its genome sequence are highly desirable,

and the subject of active research [10,11]. Existing host prediction tools either leverage various

levels and patterns of sequence similarity between phage and host genomes (“host-based” tools

hereafter) or use a “guilt-by-association” approach by comparing the query phage to a database

of viruses with known host(s) (“phage-based” tools).

In host-based tools, sequence similarity between phage and host genomes can be detected

through sequence alignment, reflecting, e.g., prophages integrated in the host genome or simi-

larity between phage genomes and host CRISPR spacers [10,12]. Alternatively, host-based

tools can rely on alignment-free approaches, e.g., comparison of nucleotide k-mer frequencies,

in which case these typically reflect the overall adaptation of virus genomes to their host cell

machinery [13–22]. Because they rely on different signals, these host-based tools display vary-

ing levels of recall and specificity and are likely to be each relevant for different types of sam-

ples and viruses [10]. In previous benchmarks, alignment-based methods could reach high

specificity when using strict cutoffs, e.g., >75% of predictions correct at the species level, but

only for a limited subset of the input phages due to limitations of the host reference database

[10]. Meanwhile, in the same benchmark, alignment-free methods appeared to contain a genu-

ine and strong phage–host signal for a broader range of phages, but more complex to parse as

the highest scoring host was often (>50% of the time) yielding an incorrect prediction at the

species, genus, and family level.

In contrast, “phage-based” tools rely not on phage–host similarity, but extract information

from a database of reference phages and archaeoviruses with known host(s) [23–27]. The most

recent tools in this category have been the most promising overall, with benchmarks suggest-

ing both high recall and high specificity. For example, RaFAH achieved a 33% improvement in

F1 score (combination of recall and precision) at the genus level compared to host-based

methods [25]. While phage-based approaches are particularly suitable if related phages exist

with known hosts, RaFAH also predicted hundreds of archaeal viruses, i.e., domain-level host

predictions, despite archaeoviruses being underrepresented in the database [25]. However, it

remains unclear to what extent phage-based tools can provide reliable host prediction at lower

ranks such as genus or species for entirely novel phages, and how to best complement these

phage-based predictions with host-based signals [11].

With multiple tools available for host prediction, several studies have attempted to integrate

the results from several approaches into a single prediction for each virus. This integration

step was originally performed via empirical “rule sets” prioritizing methods based on empirical

accuracy or error rate estimations [28,29]. Recently, several automated tools were developed

that instead leverage machine learning to obtain an integrated host prediction. PhisDetector

[30] combines multiple host-based methods, both alignment-based and alignment-free, and

uses an ensemble of machine learning approaches to evaluate the confidence of each potential

phage–host pair. VirHostMatcher-Net [31] proposes to integrate both virus–virus and virus–

host signal in a modeled virus–host network, from which potential virus–host pairs are evalu-

ated using a logistic regression. While both tools showed potential improvements compared to

single methods, none of the benchmarks provided suggested that they could reach a low

(<10%) false discovery rate (FDR) at the host genus level, even with the strictest cutoffs. In

addition, no benchmark was carried out across different degrees of phage “novelty,” i.e.,
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different degrees of similarity to the most closely related reference, so it remains unclear how

these approaches perform on “known” and “novel” phages.

Here, we present iPHoP, a tool for integrated Phage-Host Prediction, enabling high recall

and low FDR at the host genus level for both known and novel phages. We first demonstrate

the complementarity of phage-based and host-based approaches and describe a new modular

machine learning framework that yields highly accurate predictions at the genus level. Using a

diverse set of 216,015 metagenome-derived phage genomes, we further show that iPHoP

enables high-confidence host genus prediction (estimated <10% FDR) for phages across a

broad range of ecosystems and novelty compared to isolated references. iPHoP is available at

https://bitbucket.org/srouxjgi/iphop, through a Bioconda recipe, and a Docker container.

Results

To design an integrated framework for host prediction, we first evaluated the performance and

complementarity of 10 existing methods on a common benchmark dataset [10,12–14,16,24–

27]. We especially focused on comparing tool performances across a range of “novelty,” i.e.,

using a test set that included both viruses closely related to references and viruses entirely novel.

Limitations and complementarity of individual host prediction methods

A set of published alignment-based and alignment-free methods, either phage-based or host-

based, was selected for benchmarking (S1 Table). These tools were evaluated on a common

test dataset including bacteriophage and archaeovirus genomes available in NCBI GenBank

but not included in NCBI RefSeq [32] and thus typically not used to train any of these tools

(see Methods and S2 Table). This test dataset contained 1,870 genomes, spanning 170 host

genera, including both temperate and virulent phages, and with both “known” and “novel”

genomes (>90% and<5% genome-wide average amino acid identity, or AAI [33], to the clos-

est reference, respectively; see S1 Fig). As host references, we opted to use all genomes included

in the GTDB database [34], supplemented by additional publicly available genomes from the

IMG isolate database [35] and the GEM catalog [36]. For each tool, we assessed host predic-

tions at the host genus rank based on a naive “best hit” approach and using relaxed cutoffs (see

Methods and S3 Table for other ranks).

First, we evaluated the recall of each tool, i.e., the total number of correct predictions

obtained (Fig 1A). The recall differed across the tool categories, with the lowest observed for

host-based alignment-based tools such as blast and CRISPR, and the highest observed for

phage-based tools. The only exception was a very high recall observed for blast-based predic-

tions of temperate phages, which is due to the detection of integrated copies of these phages, or

closely related ones, in host genomes. A similar trend, i.e., a higher recall for temperate phages

compared to virulent phages, was observed for most approaches albeit to a much lower degree

(S2 Fig). For CRISPR-based predictions, the low recall compared to other approaches is likely

due to limitations of the host database as CRISPR arrays can be absent from large clades of bac-

teria [37] and, when present, CRISPR spacers are typically highly variable even between closely

related strains [10,38].

Next, we evaluated the precision of each tool, i.e., its ability to distinguish correct from

incorrect hosts among all its predictions. As previously noted [10], host-based alignment-free

tools struggled to achieve a high positive predictive value (PPV), i.e., a low FDR, even when

using strict cutoffs (Fig 1B). In contrast, alignment-based tools, both phage-based and host-

based, were able to reach high (>80%) PPV when filtering hits based on score(s). Pragmati-

cally, this means that the scores provided by alignment-based tools are able to distinguish
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correct from incorrect predictions, while the scores provided by alignment-free tools are usu-

ally not sufficient to identify correct predictions.

Phage-based tools thus seemingly present an ideal combination of high recall and high preci-

sion, with RaFAH [25] in particular able to maintain a very low FDR (<5%) while providing the

highest recall of all tools (Figs 1 and S2). However, phage-based tools depend on the availability of

a related phage with a known host in the reference database. Specifically, phage-based tools

mostly provide predictions for phages that are related to reference sequences and much less fre-

quently for “novel” phages (<5% AAI to closest reference; Fig 1C). This reference bias was

observed for all phage-based tools, including the one based on k-mer similarity (HostPhinder; Fig

1C). A similar trend, although less pronounced, can be observed for host-based tools relying on

sequence alignment. Meanwhile, alignment-free host-based tools show little to no bias for phages

with closely related references, suggesting that these methods would be well suited for dealing

with the most “novel” phages. This bias is important to consider because the vast majority (57%

to 79%) of viral genomes identified from metagenomes have<5% AAI to their closest reference

(S3 Fig), so that phage-based approaches alone would not yield reliable host predictions.

Ultimately, these simplified benchmarks suggest that to tackle diverse “known” and “novel”

phages, as typically obtained through metagenomics, host prediction tools will need to combine

phage-based and host-based approaches. For phage-based approaches, several tools such as

RaFAH already provide both high recall and high precision. Conversely, all current host-based

methods suffer from either limited recall (alignment-based methods) or limited specificity (align-

ment-free methods), at least when used individually and in a simple “best hit” approach. In addi-

tion, the predictions from different host-based methods partially overlap, suggesting that multiple

methods could be considered together to either reinforce or correct each other (S4 Fig). For our

integrated host prediction tool, we thus decided to first optimize host-based predictions by

Fig 1. Comparison of different host prediction approaches on a single test dataset. (A) Total number of predictions and number of correct predictions (y-

axis) obtained for each tool (x-axis) using a “best hit” approach and relaxed cutoffs (see Methods) on sequences from the test dataset (S2 Table). For each tool,

the number of correct predictions is indicated by the colored bar, while the total number of predictions is indicated by the gray bar. Similar plots including the

whole test dataset, virulent phages only, and temperate phages only are available in S2 Fig. (B) Precision-Recall curves for the different tools, using the same

color code as in panels A and C. Two standard thresholds, 5% and 10% false discovery rates, are indicated by horizontal dashed lines. (C) Relationship between

“novelty” of input virus, represented as AAI (average amino acid identity) percentage to the closest NCBI RefSeq reference on the x-axis, and the number of

correct host predictions obtained with each tool. To evenly represent both “known” and “novel” input viruses, 300 sequences were randomly subsampled from

each AAI percentage category (x-axis). (D) Schematic overview of iPHoP host prediction pipeline. Detailed explanations of the new steps 2 and 3 are available

in Figs 2 and 3, and source data in S1 Data.

https://doi.org/10.1371/journal.pbio.3002083.g001
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integrating multiple hits per method and several methods together, and then combine these host-

based predictions with an established phage-based method to derive a single host prediction.

Increasing host prediction accuracy by robustly integrating multiple hits

for each virus

Elevated FDRs with host-based methods have been highlighted previously [10,13,14]. Tradi-

tionally, these have been addressed by applying relatively strict cutoffs on the prediction score,

and by considering an arbitrary number of hits passing these cutoffs, e.g., the 5 or 10 best hits.

These hits might be further integrated using a lowest common ancestor (LCA) approach. Intu-

itively, this will allow to distinguish reliable cases, where the top hits all point to the same host

taxon, from unreliable cases where the top hits correspond to different taxa and the host pre-

dictions only reach consensus at a higher rank. Alternatives to LCA approaches have been pro-

posed including the taxonomy-aware sequence similarity ranking framework from PHIRBO

[39]. Here, we explored whether machine learning approaches could help improve these pre-

dictions by integrating all hits obtained for a virus using a given method.

To consider an ensemble of hits in a taxonomy-aware context, we opted to treat each hit as

a separate classification problem, i.e., “is this host hit reliable or not considering the context of

other hits obtained for this same virus with the same approach?”. For a given input genome,

each hit is thus considered as a candidate host, and an ensemble of hits for a virus is provided

as input to different classifiers with information on the hits quality as well as phylogenetic dis-

tances between each hit and the candidate host based on the GTDB [34] framework (Figs 2A

and S5). The task asked of the classifiers is to predict whether the candidate host belongs to the

correct host genus, and the underlying assumption is that classifiers would learn to recognize

reliable series of hits, e.g., cases where most of the top hits are close to the candidate host, from

unreliable series of hits, e.g., cases where hits are distributed across diverse hosts and/or distant

from the candidate host, without having to resort to arbitrary cutoffs (Fig 2B).

To evaluate this approach, we applied it separately to 5 host-based methods (Blast, CRISPR,

WIsH [13], VirHostMatcher [14,31], and PHP [16]; see S1 Table), used RefSeq Virus

sequences to train and optimize 3 types of classifier, namely dense neural networks, convolu-

tional neural networks, and random forest classifiers (S4 Table), and compared the results

obtained on the test dataset (see above) to a standard best hit approach (S5 Fig). Overall, con-

sidering multiple hits with automated classifiers reduced the error rate (average FDR) for all

methods and all types of classifiers, with the highest reductions obtained with convolutional

neural networks (Figs 2C and S6). This reduction in average error rate was especially impor-

tant for WIsH- and CRISPR-based predictions (>40%), and smaller for BLAST, for which

standard scores already seem to perform well.

Finally, we verified whether different variants of each classifier could be complementary,

i.e., provide reliable scores for different types of sequence. In all cases, a set of 2 variants

appeared to be the best combination to maximize the number of correct predictions while

minimizing the FDR (see Methods). The 10 classifiers that were ultimately selected (2 for each

of the 5 host-based methods) showed improved PPV, often >75%, at most true positive rates,

confirming their improved ability to distinguish likely and unlikely candidate hosts compared

to the raw score of each method (Fig 2D).

Integrating host- and phage-based predictions for a comprehensive

coverage of phage diversity

After optimizing the scoring systems for each host-based method, the next step was to inte-

grate predictions across different methods to obtain a single prediction score taking into
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account all different approaches for each potential phage–host pair. Traditionally, this has

been done using fixed “rule sets” informed by estimation of FDR for each approach, e.g., prior-

itizing alignment-based approaches over alignment-free approaches [28,29]. Here, we instead

used a 2-step integration process to robustly consider all hits for each input sequence.

First, to leverage the high sensitivity of alignment-free approaches but reduce their error

rate, we trained and optimized a random forest classifier based on the scores from the 10 indi-

vidual host-based classifiers described in the previous section (“Combined-hosts-RF classifier”;

Fig 3A). This Combined-hosts-RF score yielded low FDR (�10%) even at high TPR (�75%)

and was comparable in that regard to the scores obtained from the phage-based tool RaFAH

[25], as well as host-based aligment-based tools (Blast and CRISPR; Fig 3B).

Next, we designed a composite confidence score (“iPHoP score”) for each phage–host pair

to summarize results from both phage- and host-based methods (Fig 3A; see Methods).

Because BLAST- and CRISPR-based predictions can also be reliable on their own without the

need for any other approach (Fig 2D), we included the best score for each of these approaches

along with the Combined-hosts-RF score and the score from RaFAH [25], the most reliable

phage-based tool in our benchmark (Fig 1A and 1B). As expected based on our initial bench-

marks (Fig 1C), different methods provided correct host predictions for different input phages,

and combining them led to high rates of phages with correct predictions (�50%) for both

“known” and “novel” phages (S7 Fig).

To illustrate the unique features and performance improvements provided by iPHoP, we

compared it to other automated tools integrating multiple approaches for host prediction,

Fig 2. Overview of the single-tool classifiers used in iPHoP. (A) Schematic representation of the process used to

score individual hits from host-based tools. Briefly, each hit was scored by a neural network or random forest classifier,

which also considered other top hits for the same virus and the same tool. This process was applied to the 5 host-based

tools selected (“Blast,” “CRISPR,” “WIsH,” “VHM,” “PHP”), except for the random forest classifiers (highlighted with a

*), which were only used for “Blast” and “CRISPR.” When considering multiple hits, their similarity or difference in

terms of host prediction was estimated from the GTDB phylogenies [34]. (B) Illustration of how multiple hits are

represented in neural networks input matrices (top) or random forest classifier inputs (bottom). Two examples are

provided, one “reliable” in which the hits with high scores are all consistent and at a small distance to the candidate

host considered (left), and the other “unreliable” in which a few hits with medium-to-high scores are scattered across

hosts with variable distance to the candidate host considered. (C) Estimated improvement in classification provided by

the automated classifiers compared to “naive” raw scores. These estimations are based on smoothed ROC curves

obtained from the test dataset (see S6 Fig) and calculated as the average decrease in false discovery rate for 17 true

positive rates ranging from 10% to 90%. Random forest classifiers were only evaluated for Blast and CRISPR

approaches. (D) Precision Recall curves for the 2 classifiers selected for each host-based tool (see S4 Table). Conv,

“Convolutional Neural Network”; “RF”, “random forest classifier”; VHM, “VirHostMatcher.” Source data are available

in S1 Data.

https://doi.org/10.1371/journal.pbio.3002083.g002
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namely VirMatcher [29], PhisDetector [30], and VirHostMatcher-Net [31]. Based on Receiver

Operating Characteristic and Precision Recall curves, iPHoP performed as well as, or better

than all other integrated tools (S8 Fig). However, the major improvement of iPHoP comes

from the number of phages with a host prediction: for a given FDR, iPHoP typically provides

approximately 3 to 5 times more predictions than the next best tool, especially for “novel”

phages (Fig 3C). This is likely due to the fact that (i) iPHoP uniquely leverages both phage-

based and host-based approaches; (ii) iPHoP integrates more approaches than any other tool;

(iii) the iPHoP host database is larger and more diverse than those used by other tools; and (iv)

iPHoP was specifically optimized for predictions at the host genus rank. In contrast, VirHost-

Matcher-Net relies on a network architecture to represent virus–host interactions and derive

host predictions at multiple taxonomic ranks, while PhisDetector was designed to provide host

predictions down to the species rank [30,31].

Expanding host predictions in a large database of metagenome-derived

viruses

To further evaluate the improvements provided by iPHoP and the remaining challenges when

analyzing diverse metagenome-derived phage genomes, we applied iPHoP to 216,015 high-

quality (i.e., predicted to be�90% complete by CheckV) IMG/VR sequences (S3 Fig). We

Fig 3. Schematic and performance of iPHoP host genus predictions. (A) Schematic representation of the integration

process. “Individual classifiers” refer to single-tools scores calculated for each virus–candidate host pair (see Fig 2). (B)

Precision Recall curve for each of the 4 scores considered in iPHoP composite score, based on the test dataset. (C)

Comparison of the percentage of input sequences from the test dataset for which a correct host genus prediction was

obtained, when using cutoffs limiting FDR to 20% maximum. This percentage is given for all sequences in the test dataset

(“All”), and for subsets of sequences defined based on their amino acid similarity to the closest reference phage genome in

the NCBI RefSeq or RaFAH database. AAI, amino acid identity; FDR, false discovery rate; RF, random forest. Source data

are available in S1 Data.

https://doi.org/10.1371/journal.pbio.3002083.g003
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then compared the iPHoP predictions to the current host predictions available in the IMG/VR

database, which were primarily based on blast hits to host genomes and CRISPR spacers [8]

(Fig 4A). Overall, iPHoP predictions at an estimated FDR�10%, i.e., iPHoP score�90, repre-

sented a 1.5- to 13-fold increase compared to the original number of host prediction in the

IMG/VR v3 database; however, these numbers vary greatly depending on the ecosystem (Fig

4A). For human-associated microbiomes, about 89% of the nonredundant high-quality

genomes had a host predicted using iPHoP, including 57% with very high confidence predic-

tions (iPHoP score�95). For all other ecosystems, the total number of phages with predictions

was lower, ranging from approximately 40% to 50%, including approximately 15% to 22%

with medium or high confidence (iPHoP score�90). For comparison, VirHostMatcher-Net

applied to the same dataset yielded a host prediction for 23% of the input sequences for a com-

parable estimated FDR of 15%, with the majority (86%) of these sequences also being con-

nected to a predicted host via iPHoP. Across ecosystems, host predictions originated primarily

from host-based methods, consistent with the high number of metagenome-derived sequences

unrelated to those in the reference databases (Figs 4B, S3 and S9). Human microbiomes again

stand out with >25% of host predictions confirmed by both phage- and host-based methods,

which explains the high number of high-confidence predictions (Fig 4A). For all ecosystems,

iPHoP provided host prediction for both temperate and virulent phages, although a higher

percentage of predictions was obtained for temperate ones (S10 Fig). While these results reflect

the inherent bias in current microbial and phage reference databases, they suggest that iPHoP

is already useful across different biomes and for different virus types and may be expected to

improve as more of the global microbial and viral diversity is characterized.

Within host-based approaches, nearly half (mean: 45%) of the predictions were based on

genomes of uncultivated bacteria and archaea, highlighting the value of using large databases

including single-cell amplified genomes (SAGs) and/or metagenome-assembled genomes

(MAGs) [34,36] (Fig 4C). These genomes from uncultivated microbes were particularly

important for predicting hosts of environmental phages, especially freshwater and marine

phages (Fig 4C). This was confirmed by performing host prediction with iPHoP for the same

sequences using a custom database without any MAG, which yielded 9.95% less host predic-

tion on average, including 17.65% and 20.71% less for freshwater and marine phages, respec-

tively (S5 Table). Given this increased prediction rate, public MAGs from uncultivated

bacteria and archaea (approximately 60,000) were included in the iPHoP default host database.

Fig 4. Overview of iPHoP host prediction for high-quality IMG/VR v3 genomes. (A) Distribution of the best iPHoP score for high-quality genomes from

the IMG/VR v3 database by ecosystem. For each IMG/VR vOTU, the best score from iPHoP was considered if�75, or the vOTU was considered as not having

a predicted host. The proportion of sequences for which a host prediction was available in the original IMG/VR database is indicated with a dashed red line. (B)

Distribution of the type of signal used to achieve host prediction with a score�90 in iPHoP. “Host-based” includes all 5 host-based tools, while “Phage-based”

includes predictions obtained with RaFAH. “Both” includes consistent predictions obtained with RaFAH and at least 1 host-based tool. (C) Percentage of hits

from isolated or uncultivated host genomes used in host-based predictions with iPHoP scores�90. These are based on the individual genome hits underlying

iPHoP genus-level predictions. (D) Origin of the uncultivated host genomes used in host-based predictions with iPHoP scores�90. The original dataset and

study ID for the query virus and the uncultivated host genome were obtained from the Gold database, and when both were available, these were compared to

evaluate whether the uncultivated host genome originated from the same dataset, a different dataset from the same study, or another study from the query

virus. Source data are available in S1 Data.

https://doi.org/10.1371/journal.pbio.3002083.g004
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We next wondered what proportion of these hosts were “local,” i.e., assembled from the same

sample as the query phage or another sample in the same study. Overall, in several ecosystems,

a substantial (>25%) proportion of MAGs used for host predictions were obtained from meta-

genomes generated in the same study from which the input phage was derived (Fig 4D). We

confirmed the relevance of “local” MAGs by performing host prediction with iPHoP for 3 spe-

cific studies using custom databases where host MAGs from these studies were removed,

which resulted in 26% of the host predictions being lost (S5 Table). Hence, for comprehensive

host prediction of a new phage dataset, it may be valuable to also integrate into the host

genome database additional bacterial and archaeal MAGs obtained from the same sample or

experiment, if available. To facilitate this, we included an automated database building module

in iPHoP, enabling users to add their own MAGs in a host database based on phylogenies and

taxonomies generated through GTDB-tk [40].

Estimating host diversity coverage by metagenome-derived viruses

We next evaluated these IMG/VR host predictions from the host perspective, specifically

assessing which host taxa were most frequently associated with viruses, and how much of the

bacterial and archaeal diversity remained without any known or predicted virus. Overall,

across the 5,711 bacteria and archaea genera with at least 2 genomes in the host database, 205

(3.6%) were associated with at least 1 reference virus in NCBI RefSeqVirus, while 1,700

(29.8%) were exclusively associated with metagenome-derived virus(es) through iPHoP

(iPHoP score�90; Fig 5A and S6 Table). These host genera only associated with viruses

through iPHoP predictions were found across various bacterial and archaeal phyla, from Fir-
micutes and Bacteroidota to Methanobacteriota (31% to 48% of genera with host prediction

only; Fig 5A), and were not systematically associated with the largest genera, i.e., the ones with

the highest number of species (S11 Fig). Meanwhile, other phyla such as Patescibacteria, Planc-
tomycetota, Acidobacteriota, and Chloroflexota still displayed a majority of genera without any

associated virus, either isolated or predicted (79% to 83%), highlighting the large diversity of

viruses likely still to be identified and characterized.

We also evaluated which host taxa were associated with the largest number of predicted

viruses for each biome reasoning that, if the predictions were mostly correct, these should cor-

respond to taxa that are frequently observed in these ecosystems. Overall, the 10 genera most

frequently predicted as hosts in each ecosystem indeed corresponded to taxa primarily

detected in these same biomes, e.g., Bacteroides and Faecalibacterium for human microbiome,

Vibrio and Pseudoaltermomonas for marine samples, and Streptomyces and Mycobacterium for

terrestrial samples (Fig 5B). The main exception to this pattern was the unexpectedly high

number of host predictions to the Bacteroides genus for marine, freshwater, and terrestrial

viruses. As the Bacteroides-infecting Crassvirales phages [41–43] have been used as markers

for fecal contamination [44,45], these predictions might reflect pervasive contamination of

these environments, although these may also reflect a bias in the current phage and host isolate

databases, skewing predictions towards this host genus. Overall, while these results illustrate

how in silico host predictions must always be considered critically and in light of the current

limitations of databases and tools, increasing the diversity of isolated phage–host pairs from

various environments will likely help refine these predictions in the future.

Partial genomes, novel host genera, and eukaryotic viruses as potential

sources of errors

Finally, we explored the impact on iPHoP prediction of 2 types of input sequences possibly

occurring in metagenome analyses: partial genomes of bacteriophages and archaeoviruses, as
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opposed to near-complete genomes, and genomes of eukaryotic viruses. Despite recent pro-

gresses in sequencing technologies and bioinformatic tools, phage genome assembly can still

yield mostly “low-quality” (<50% complete) genomes for some samples and ecosystems,

which will likely negatively impact downstream host prediction. Meanwhile, some virus

sequence identification tools can detect both eukaryotic and prokaryotic viruses, and these

sequences are sometimes analyzed as part of the same dataset, which may lead to errors for

host prediction tools like iPHoP that expect bacteriophages and archaeoviruses as input.

When applying iPHoP to randomly fragmented sequences from the test set, we observed a

systematic decrease in recall with decreased length and/or completeness (S12 Fig). However,

the FDR observed for these partial genomes was similar to that observed for complete genomes

for “high” cutoffs (minimum iPHoP score 90 and 95), and only slightly increased at minimum

iPHoP score 75 (from approximately 20% to approximately 25%). Taken together, this sug-

gests that applying iPHoP to partial genomes is likely to result in reduced recall, i.e., fewer

input sequences will receive a prediction with a high score, but the number of erroneous pre-

dictions is unlikely to increase substantially.

Next, we evaluated the results of iPHoP host prediction for phages infecting “novel” hosts,

i.e., a host genus without a representative genome in the host database. To that end, we applied

iPHoP on the test set using filtered databases in which all reference genomes from the real host

Fig 5. Taxonomic and environmental distribution of hosts predicted using iPHoP from the IMG/VR v3 genomes. (A) Archaeal (top

left) and bacterial (bottom right) genome diversity from the GTDB database r202 [34]. The GTDB phylogenetic trees were collapsed at the

phylum level. The status of virus association, i.e., isolated virus, predicted virus only at iPHoP score�95 or�90, or no prediction, was

evaluated for each host genus, and the phyla shapes are colored according to the number of genera in each category within this phylum. (B)

For each major biome type, the 10 host genera with the highest number of predicted IMG/VR high-quality virus genomes are included in

the plot. Each host genus was also determined to be mainly detected in a biome type or detected across multiple biomes based on the

distribution of MAGs assigned to this genus across ecosystems in the GEM catalog (see Methods). Source data are available in S1 Data.

https://doi.org/10.1371/journal.pbio.3002083.g005
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genus were removed (S13 Fig). Overall, when using minimum score cutoffs of 90 or 95, the

majority of phages did not yield a prediction when the real host genus was filtered from the

database, and when a prediction was provided, it was to a genus in the same family as the real

host genus. For a more relaxed minimum score cutoff of 75, iPHoP provided a prediction for

67% of the input phages, including to genera in the same order or class as the real host (S13

Fig). This suggests that, when processing samples with a large number of novel host genera,

i.e., not represented in the current reference genome databases, iPHoP predictions should ide-

ally be restricted to “high” score (i.e., score�90) and interpreted at the family rank.

Finally, when applied to 8,128 eukaryotic virus genomes from RefSeq, iPHoP predicted a

bacterial or archaeal host for 1,018 viruses (S7 Table). These erroneous predictions were pri-

marily (85%) derived from the k-mer comparison to bacteria and archaea genomes, for rela-

tively short viral genomes within the RNA viruses (Riboviria realm, 640; 63%) and ssDNA

viruses (Monodnaviria realm, 155; 15%), and the vast majority (90%) were associated with a

relatively low confidence score (iPHoP score<90). These results warn that false-positive pre-

dictions may occur when users apply iPHoP to a mixed dataset containing both prokaryotic

and eukaryotic viruses, especially for samples composed of RNA and/or ssDNA virus

sequences. To alleviate this potential issue, we recommend users to cross-reference any iPHoP

prediction with a host domain prediction, i.e., a prediction of whether the sequence belongs to

a prokaryotic or eukaryotic virus, based on taxonomic assignment of this virus or on an auto-

mated tool such as Host Taxon Predictor [46].

Discussion

Viral metagenomics has profoundly transformed our understanding of global viral diversity

and viral impacts on microbial communities. One critical piece of information missing com-

pared to isolated viruses is the host connection, which significantly limits the inference and

biological knowledge extracted from viromics data [4]. Accordingly, different methods have

been developed to address this critical challenge, each with their specific limitation. Here, we

present the iPHoP framework as a way to automatically integrate results from multiple host

prediction approaches, which enables reliable prediction of host genus for a larger diversity of

phages than any previous tool. The iPHoP tool and database are available as a stand-alone tool

(bitbucket.org/srouxjgi/iphop/), a Bioconda recipe (https://bioconda.github.io/recipes/iphop/

README.html), and a Docker container (https://hub.docker.com/r/simroux/iphop).

While iPHoP substantially improved host predictions on viruses from real metagenomic

datasets, several limitations remain. First, because it relies on a suite of different tools, iPHoP

remains relatively slow compared to other tools: A full iPHoP host prediction takes approxi-

mately 12 minutes for a test set of 5 complete phage genomes using the Sept_2021_pub data-

base and 6 CPUs. This running time may not be problematic for viromics studies that typically

run host prediction only once on a large set of metagenome-derived virus genomes, but it

makes iPHoP suboptimal for time-sensitive analyses. Second, while iPHoP scores are designed

to reflect FDRs, these estimations depend on the composition of the test dataset used. Even

though we tried to use a balanced set as much as possible by ensuring that we included viruses

with a broad range of relatedness to reference sequences, iPHoP scores should only be inter-

preted as approximated FDRs at best. Third, since iPHoP was designed with a viral ecology

framework in mind, our goal was to provide reliable host predictions at the genus rank, i.e.,

with FDRs ideally <10%, from diverse input phages. Arguably, in other contexts such as phage

therapy applications, host predictions will need to be more specific and reach the host species

or strain level. Such a high-resolution host prediction will likely require the reconstruction of

detailed virus–host networks, as attempted by VirHostMatcher-Net [31], or detailed analysis
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of receptor-binding proteins [23]. In the near future, however, we anticipate that genus-level

approaches like iPHoP will be broadly applicable and provide host predictions for a large

range of viruses, while higher-resolution approaches such as VirHostMatcher-Net will likely

be more limited in scope, so that both types of tools will be useful for different applications.

Fourth, several potential improvements to iPHoP can already be envisioned, including, e.g.,

the addition of complementary approaches such as the detection of shared tRNA between

phages and hosts, the consideration of additional features such as whether the input virus is

temperate or virulent, and the ability to predict multiple hosts for broad host range phages.

Finally, iPHoP remains limited by host, virus, and host–virus databases, as illustrated by the

difference in the number of phages with host prediction between the human microbiome and

other ecosystems. Achieving similar performance across all biomes will require in particular

expanding the catalog of potential host genomes, with a particular attention paid to CRISPR

arrays, which are often not fully assembled from metagenomes [28,47], and expanding the

diversity of viruses associated with a host, either from isolation or using in vitro host linkage

[48–51]. In that context, to accommodate future expansions of the tool set and databases,

iPHoP was intentionally designed as a modular framework, and we envision the current tool

as only the first step towards a comprehensive automated in silico host prediction toolkit.

Material and methods

Virus–host training sets and host databases

To evaluate different host prediction approaches and train new classifiers, a curated dataset of

known virus genomes with corresponding host taxonomy was established based on genomes

available in the NCBI databases up to January 2021. For training new classifiers, sequences

from bacteriophages and archaeoviruses were obtained from NCBI RefSeq release 201

(released in July 2020), and the host genus of each virus was obtained from the corresponding

genome annotation and/or publication [52]. This dataset was used to train new classifiers (see

below), but not to evaluate any tool since these virus–host pairs were likely to have been used

for training in previously published tools as well.

To complement this training set, a distinct test set was established based on NCBI GenBank.

Specifically, INPHARED [32] was used to download a collection of bacteriophages and archae-

oviruses from NCBI in January 2021, and all genomes already present in NCBI RefSeq release

201 were removed. For the remaining ones, host taxonomic information was obtained from

the corresponding annotation and/or publication, and genomes for which host taxonomy was

uncertain were removed, leading to a final dataset of 1,870 viruses with host taxonomy (S2

Table). These genomes were compared to the NCBI RefSeq references (see above) as well as

the phage reference database used in RaFAH v0.1 [25] using diamond blastp v0.9.24 (default

parameters; [53]) after de novo prediction of cds using Prodigal v2.6.3 (option “-p meta”;

[54]), and the AAI estimation script provided with the Metagenomic Gut Virus catalogue

(https://github.com/snayfach/MGV/blob/master/aai_cluster; [33]). Temperate phages were

identified in the test set based on the annotation provided with each genome by searching for

the keywords “prophage,” “provirus,” “lysogen,” and “integrated” and based on BACPHLIP

v0.9.6 [55] with a minimum score of�0.8. When annotation and BACPHLIP prediction were

conflicting, the information from the genome annotation was prioritized. Virulent phages

were identified based on BACPHLIP v0.9.6 [55] with a minimum score of�0.8.

Host database consolidation

The host genome database currently used in iPHoP, named “iPHoP_db_Sept21,” was built

from 3 publicly available genome sets, namely the GTDB database (release 202; [34]),
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published genomes from the IMG database (as of July 7, 2021; [35]), and the Genomes from

Earth’s Microbiomes (GEM) catalog [36], as follows. First, the 47,894 representative genomes

from each GTDB species cluster were obtained from the GTDB database itself. Next, bacteria

and archaea genomes from the IMG database that were not already included in GTDB release

202 and with a total length�100 kb (n = 22,188), and medium- and high-quality MAGs from

the GEM catalogue (n = 52,515), were compared to the GTDB species representatives using

the ani_rep function from GTDB-tk v1.5.0 (default parameters; [40]), based on Mash version

2.3 [56] and FastANI v1.32 [57]. All genomes with a similarity of�99% ANI over�99% AF

were considered as identical to one of the GTDB representatives and discarded (n = 1,724).

Nonidentical genomes with a similarity of�95% ANI to one of the GTDB representatives

were retained in the database as members of the corresponding species cluster (n = 32,735).

Finally, the remaining genomes (n = 27,279) were considered as potential representatives of

additional species clusters. To include these in a GTDB-compatible phylogenomic framework,

these genomes were first checked for quality using CheckM v1.1.3 [58], discarding all genomes

with<50% completeness or >10% contamination, and then dereplicated with dRep v3.2.2

[59] with cutoffs of 90% ANI and 60% coverage. The nonredundant genomes (n = 13,658)

were then integrated in updated bacteria and archaea phylogenomic trees using the function

de_novo_wf from GTDB-tk v1.5.0 (default parameters; [40]). The resulting trees are then used

in iPHoP for taxonomic assignation of and phylogenetic distance estimation between all

representatives.

The representative genomes included in the GTDB-tk-generated trees are used in iPHoP

for all prediction methods (n = 60,000, i.e., 47,894 existing GTDB representatives and 12,106

additional ones from IMG and GEM). For blast-based prediction, these representative

genomes are supplemented with additional genomes clustered into one of these species clus-

ters, after removing duplicate genomes (n = 43,022, for a total of 103,022 genomes used).

Finally, for CRISPR-based predictions, CRISPR spacers were predicted de novo in all 121,781

genomes (i.e., representatives, clustered, and duplicates), with CRT 1.2 [60] and PilerCR [61]

using custom python scripts from https://github.com/snayfach/MGV/tree/master/crispr_

spacers [33]. All spacer sequences from arrays with�3 spacers were collected and dereplicated

(100% identity), and spacers with a sequence length<10 or >100 were excluded. Ultimately,

the spacer collection used in the iPHoP_db_Sept21 database includes 1,398,130 spacers from

40,036 distinct genomes.

Evaluation and benchmarking of selected host prediction methods

A set of published tools performing host predictions based on a single approach were selected

for benchmarking and potential inclusion in the iPHoP integrated framework (S1 Table). All

these tools were benchmarked against the same test dataset (see above) established from virus

sequences from NCBI GenBank (January 2021). Blast-based predictions were based on a blastn

comparison (v2.12.0+, maximum e-value 1 × 10−3, minimum identity percentage 80, maxi-

mum target sequence 25,000, minimum hit length 500 nt; [62]) between the input virus

genomes and the iPHoP_db_Sept21 blast database (see above). Metrics considered for each

pair of input virus and host contigs were total number of matches and average identity per-

centage. CRISPR-based predictions were based on a blastn comparison (v2.12.0+, word size 7,

no filtering of hits based on low complexity, i.e., “-dust no,” maximum target sequence

10,000,000; [62]) between the input virus genomes and the iPHoP_db_Sept21 spacer database

(see above), considering only hits to spacers 25 nucleotides or longer, with less than 8 mis-

matches overall, and with a custom complexity score <0.6. The custom spacer complexity

score was calculated based on sequence AT skew content and the complexity estimation by
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Wootton–Federhen (CWF) [63] as follows: The complexity score is set as (CWF score– 2) * 2,

except if (AT skew)> 0.65, in which case the complexity score is set to (AT skew) + 0.1. For

Figs 1A and S2, only hits with 2 or less mismatches over the entire spacer were considered.

The metric considered to rank hits for individual input virus genomes was the total number of

mismatches when considering the entire spacer. SpacePHARER predictions were based on the

predictmatch function from SpacePHARER v2.fc5e668 [12] applied to the input virus

genomes with a sensitivity of 7.5 (“-s 7.5”) and a maximum number of results per query

sequence of 10,000, using the IMG/VR v3 CRISPR database [8]. SpacePHARER “Combined

score” metric was used to rank predicted hosts for each input, with a minimum score cutoff of

20 applied for Figs 1A and S2.

For WIsH predictions, input virus genomes were compared to the iPHoP_db_Sept21

WIsH database with WIsH v1.0 [13] and a maximum p-value of 0.2. The WIsH p-value was

also used to rank predictions for each input virus. For predictions based on the s2* similarity,

the corresponding code from VirHostMatcher-Net (July 2021 version; [31]) was used to com-

pare input virus genomes to the VirHostMatcher database in iPHoP_db_Sept21 (see above).

The s2* similarity score is the only metrics considered for each hit. For PHP, input virus

genomes were compared to the iPHoP_db_Sept21 PHP database (see above) using PHP (July

2021 version; [16]), and the PHP score was used as a metric for each hit. The upset plot com-

paring the predictions obtained for different host-based tools was generated with the UpSetR

package [64].

RaFAH [25] predictions were obtained by running the “predict” function from RaFAH

v0.3 on the input virus genomes with default parameters and using the Predicted_Host_Score

as metric. vHULK [26] predictions were obtained by running vHULK v1.0.0 with default

parameters and using score_genus_relu as the metric. VPF-Class predictions were obtained by

running the vpf-class function from the vpf-tools 0.1.0.0 toolkit [27] with default parameters,

using the host taxon with the highest membership_ratio as the prediction for each input virus

and the confidence_score as the metric. Finally, HostPhinder predictions were obtained by

running the “latest” version of HostPhinder docker container (December 2015) with default

parameters and the main reported score as metric.

For all the tools, the best prediction was taken for each input virus based on the relevant

metric and considered as correct if the genus of the predicted host genome or the predicted

genus for tools predicting host taxonomy was consistent with the information collected from

the reference database (S2 Table).

Establishment of balanced training sets for single-tool iPHoP classifiers

For the 5 host-based approaches selected to be included in the iPHoP framework (“Blast,”

“CRISPR,” “WIsH,” “VirHostMatcher,” and “PHP”), individual machine learning classifiers

taking into consideration multiple top hits for each input virus were optimized as follows. A

training set was built from the hits obtained from NCBI Virus RefSeq release 201 [52] against

the iPHoP_db_Sept21 database, using similar cutoffs as for the benchmarks (see above) but

considering for each input virus the 50 best hits (blast) or 30 best hits (all other methods). All

hits were associated with the corresponding host genome representative (see “Virus–host

training sets and host databases” above), and for each input virus, all host genome representa-

tives with one hit were considered as a candidate host.

For each pair of input virus–candidate host, the different hits obtained for this virus were

gathered as follows. First, the phylogenetic distance between the host genome representative of

each hit and the candidate host was obtained from the GTDB-tk-generated trees (see above),

so that hits can be ordered by distance to the candidate host. Next, depending on the tools, 1 to
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3 scores were used to describe the strength of the hit, and all the hits for a given input virus are

tallied, i.e., the number of hits observed for a given distance and set of scores is tabulated. The

resulting matrices then serve as input to either neural network or random forest classifiers. For

more detailed information about the cutoffs, score selection, and transformation used for each

tool, please see S5 Fig.

For classifier training, a subset of 20,000 to 60,000 virus–host instances were randomly

selected for each tool, with the following constraints: (i) between 60% to 85% of incorrect

virus–host pairs, i.e., instances where the candidate host was assigned to a genus different from

the host genus listed for this virus in the database, and (ii) between 45% to 70% of instances

with a “known” virus, i.e., for which the virus had an AAI percentage of 70% or higher to the

closest reference. These constraints were included to ensure that the training set was not too

unbalanced in favor of (i) incorrect predictions, since most hits are to genomes from a differ-

ent genus than the host, and (ii) “known” viruses, which typically represent the majority of

databases and could bias the classifiers. A subset (10%) of these training data were set aside

and used as a common validation set when comparing different versions of each classifier (see

below). Further, for each instance, 3 different sets of hits were used: one including all the hits

obtained for the virus, one including only a random subset (from 0% to 100%) of hits, and one

including only one randomly selected hit with a distance�4 to the candidate host (if any) and

all hits with a distance >4, or one randomly selected hit among all hits if all display a distance

>4. This random subsampling of hits was included to simulate different levels of representa-

tion of host diversity in the database, since current bacteria and archaea genome databases do

not provide an even coverage of the global diversity, and isolated viruses used here for training

are likely to be biased towards well-represented hosts.

Optimization and evaluation of single-tool classifiers for iPHoP

All dense and convolution networks were built using TensorFlow 2.7.0 [65], and all random

forest classifiers were built with the Tensor Flow Decision Forests v0.2.1, both within the Keras

2.7.0 Python library [66]. Classifiers were trained on the corresponding training set, using 80%

of the data for training and 20% for validation (“validation_split = 0.2” for the neural net-

works). The Adam optimizer was used to train all the neural networks. Classifier parameters

including the number of layers, kernel size, and dilation rate for convolution networks, num-

ber of dense layers for dense networks, and number of trees and maximum tree depth for ran-

dom forest classifiers were optimized for each individual classifier using the Optuna v2.5.0

framework [67], by running 100 training trials (see S5 Fig). For each type of classifier (convo-

lution network, dense network, and random forest classifier), the 5 best versions based on

minimum Binary Cross Entropy loss (for networks) or maximum accuracy (for random for-

ests) on the common validation set (see above) were selected as potential candidates.

To select the optimal combination of classifiers, these candidates were then applied to the

test set, and the results obtained on the nonambiguous cases were observed (i.e., blast hit�10

kb, CRISPR match with 0 mismatches, WIsH p-value�1 × 10−5, VHM score�0.8, PHP score

�1,450). For each classifier, the 10th percentile of scores for these nonambiguous cases where

the classifier prediction was correct was used as an estimate of a “high-confidence” score for

this classifier, and the number of incorrect predictions with a score higher than this cutoff was

used as an estimate of the error rate, i.e., incorrect prediction with a score comparable to non-

ambiguous correct predictions. This error rate was then used to iteratively select classifiers by

first selecting the one with the lower error rate, then selecting additional classifiers if they pro-

vided�5% additional correct prediction among nonambiguous cases, or if they “corrected”

�10% of the previous false-positive errors. If no classifier fulfilled these conditions, the
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selection process was stopped. Ultimately, all selected classifiers (see S4 Table) were run on the

full test set to derive Precision-Recall curves and FDR estimations.

Training, optimization, and evaluation of iPHoP main random forest

classifier (combined-hosts-RF)

To integrate signal from multiple approaches, a random forest classifier (“combined-hosts-

RF”) was trained to obtain a single confidence score for a given virus–candidate host pair

based on the score obtained for all individual classifiers selected (see S4 Table). Specifically, for

each virus–candidate host pair used in the training set (see above), the following information

were included for each selected classifier: the score obtained for the virus–candidate host pair,

the rank of this pair among all candidate hosts considered for this given virus, and the differ-

ence between the score of the pair and the highest score obtained for the given virus. This led

to a final input matrix with 30 columns, i.e., 3 features (score, rank, and distance to best score)

for each of the 10 selected classifiers. A balanced training set was built from the training sets

created for each individual classifier (see above), including 700 randomly sampled viruses with

at least 1 blast hit and 1 CRISPR hit, 700 each from viruses with either at least 1 blast hit or 1

CRISPR hit, and 700 viruses with neither blast or CRISPR hits. For each selected virus, up to

10 correct and up to 5 incorrect predictions (i.e., candidate virus–host pairs) were randomly

selected. Eventually, the balanced training set included 17,105 correct and 13,960 incorrect

virus–candidate host pairs.

Random forest classifiers were built using the TensorFlow Decision Forests v0.2.1 [65]

package within the Keras 2.7.0 python library [66], with parameters optimized with the

Optuna v2.5.0 framework [67]. Parameters to be optimized included maximum tree depth

(between 4 and 32), minimum number of examples in a node (between 2 and 10), and number

of trees (between 100 and 1,000). A total of 100 trials were performed, each was evaluated on

the test dataset, the 5 classifiers with the highest accuracy were selected as the best candidates,

and the candidate with the highest recall at 5% FDR was then selected as the final combined-

hosts-RF classifier.

Integrating iPHoP classifiers and RaFAH into a final host prediction

In order to rank host predictions for individual viruses obtained with different methods, and

since the scores from different classifiers are not directly comparable, the test dataset was used

to transform raw scores into empirical FDRs. Specifically, the PPV, i.e., the number of correct

predictions divided by the total number of predictions, which corresponds to 1 minus the

FDR, was computed on sliding windows of each tool score from 0 to 1, with window size 0.05

(for Blast Conv_87, Blast RF_39, CRISPR Conv_85, CRISPR Dense_15) or 0.01 (for com-

bined-hosts-RF, and RaFAH). For each tool, a generalized linear model was then fitted on

these values using the mgcv v1.8–36 library [68] in R v 4.0.5 [69] with REML estimation, and

an empirical PPV and FDR was then calculated for scores ranging from 0 to 1 by steps of

0.001.

These empirical PPVs are then used in the iPHoP framework to derive a single composite

score for each virus–candidate host genus pair as follows. For each pair, all methods with PPV

<0.5 are first discarded. Next, the method with the highest PPV, i.e., the lowest FDR, for this

pair is selected as the source of the main FDR. To take into account prediction from other

methods, which passed the PPV threshold, i.e., were�0.5, the FDRs from these additional pre-

dictions are then multiplied by 2 (to rescale between 0 and 1), and the final composite score is

then calculated as 1 minus the product of the main FDR and the additional “rescaled” FDRs, if

any. This means that additional methods pointing to the same virus–host genus pair can only
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improve the composite score, as they will multiply the main FDR by factors always�1. Finally,

a similar empirical approach based on the test dataset was used to transform these composite

scores in PPVs (see above), and these empirically estimated PPVs are provided to iPHoP users

as “Confidence score” in the result files. By default, only predictions with a confidence score

�90, i.e., an estimated FDR<10%, are included in the summary output file; however, users

can select any confidence score ranging from 75 to 100.

To enable this integration of results from host-based tools and RaFAH, the predictions

from RaFAH had to be converted into GTDB-compatible taxa. To this end, each genus listed

in the RaFAH output file was searched for in the GTDB metadata files, and the list of genomes

associated with this RaFAH genus along with their GTDB genus-level taxon was tallied. Each

RaFAH genus was then associated to all GTDB genus-level taxa representing�50% of the

genome list if the list included <10 genomes,�20% of the genome list if the list included 10 to

100 genomes, or�10% if the list included�100 genomes. This approach provided GTDB

genus-level taxa for 595 RaFAH genera, with 492 linked to a single taxa, and 90 linked to 2

taxa, often closely related (e.g., “Thioalkalivibrio” and “Thioalkalivibrio_B,” “Pseudothermoto-

ga_A,” and “Pseudothermotoga_B”).

Benchmarks and comparison to other integrated host prediction

approaches

Three other tools providing host prediction based on multiple approaches were benchmarked

on the same test dataset (see above) as iPHoP. VirHostMatcher-Net (July 2021 version; [31])

was run on the test dataset with default parameters, requesting the top 100 predictions to be

included in the output files, and using the default host database provided with the tool. Phis-

Detector (February 2021 version; [30]) was run on the test dataset with the following parame-

ters: “--min_mis_crispr 2 --min_cov_crispr 70 --min_per_prophage 30 --min_id_prophage

70 --min_cov_prophage 30 --min_PPI 1 --min_DDI 5 --min_per_blast 10 --min_id_blast 70

--min_cov_blast 10”, and using the default database provided with the tool. Finally, Vir-

Matcher v0.3.2 [29] was run on the test dataset via its KBase App [70]. Since no host database

was provided with VirMatcher, a custom host genome database was built based on the RefSeq

genomes that displayed at least 1 hit to any of the test dataset virus with blast, CRISPR, or

WIsH.

For each tool, the prediction with the highest score was considered as the host genus pre-

dicted for a given virus, excluding predictions to hosts with unknown genera. These “best hit”

predictions were then used to evaluate the recall of each tool, i.e., the number of correct host

genus predictions, at different FDR level, either on the complete test dataset or when restrict-

ing to specific ranges of “novelty,” i.e., AAI to the closest reference ranging from 0% to 5%, 5%

to 10%, 10% to 30%, 30% to 60%, or 60% to 100%.

To evaluate the impact of sequence length and completeness on iPHoP performance, data-

sets of partial sequences were generated from the test set using an in-house Perl script. Specifi-

cally, 10 replicates of 500 random sequences were generated with the following length: 20 kb,

10 kb, 5 kb, and 1 kb, or completeness: 50%, 20%, 10%, and 5%. For reference, 10 random

datasets of 500 complete genomes from the same test set were also generated. Host genus was

predicted on these input sequences with iPHoP using default parameters, and recall and FDR

were evaluated as described above.

To evaluate how eukaryotic virus sequences are handled by iPHoP, we performed host pre-

diction with iPHoP using default parameters on 8,128 eukaryotic virus genomes obtained

from NCBI RefSeq r214 [52]. These were selected based on the host information provided in

the RefSeq database, and their taxonomy was also obtained from the same RefSeq database.
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Finally, to evaluate the potential for false-positive host predictions when the real host genus

was not represented in the host database, we performed host prediction with iPHoP on the test

dataset using a series of filtered database from which individual genera were removed. We

then compared the predictions obtained at 3 given cutoffs (75, 90, and 95) to the real host tax-

onomy, i.e., whether a prediction was provided, and whether the prediction corresponded to

the same family, class, and/or order as the real host. For this benchmark, only host-based pre-

dictions were considered, as RaFAH predictions do not rely on the availability of a host

genome.

Evaluation of iPHoP host predictions on high-quality genomes from the

IMG/VR database

To evaluate iPHoP on real metagenome-derived virus genomes, 216,015 high-quality genomes

from the IMG/VR v3 database [8], i.e., metagenome-derived viral genomes estimated to be

�90% complete based on CheckV v0.4.0 [71], were processed with iPHoP v1.0, using the

iPHoP_db_Sept21 database. These sequences were previously identified as prokaryotic virus

genomes, i.e., all viruses predicted to infect eukaryotes were excluded, by the IMG/VR v3 pipe-

lines [8]. Host genus prediction was based on the host genus with the best iPHoP composite

score for each input sequence, with a minimum score cutoff of 75. Metadata for IMG/VR

sequences, including corresponding study and dataset if available, were obtained from the

IMG/VR database (2020-10-12_5.1 version) [8]. Temperate and virulent phages were identi-

fied based on BACPHLIP v0.9.6 [55] with a minimum score of�0.8. Metadata for the host

genome, including the corresponding study and dataset if available, were obtained from the

IMG and Gold databases (information downloaded in January 2022; [35,72]). To verify that

this dataset did not overlap significantly with the training and test sets, genome-wide AAI was

computed between the 216,015 high-quality genomes and the genomes included in the train-

ing and test sets using the AAI estimation script provided with the Metagenomic Gut Virus

catalogue (https://github.com/snayfach/MGV/blob/master/aai_cluster/README.md). Over-

all, 90% of all IMG/VR v3 sequences, and 87% of IMG/VR v3 sequences with at least 1 host

predicted, displayed less than 10% AAI to their closest reference in the training or test sets,

confirming that the IMG/VR sequences are meaningfully distinct from these training and test

sets. VirHostMatcher-Net [31] was applied to the same dataset for comparison, using the same

version, options, and cutoffs as previously described (see above).

A custom host database was built to evaluate the impact of bacterial and archaeal MAGs on

host prediction by iPHoP. Specifically, all MAGs were excluded from the host database, i.e.,

the whole GEM dataset and all sequences in GTDB or IMG indicated as “metagenome-

derived.” Host prediction with iPHoP was then performed for the same IMG/VR sequences,

using similar parameters as described above. Similarly, to further evaluate the impact of “local”

MAGs, i.e., MAGs derived from the same study as the input sequences, on iPHoP prediction,

3 custom host databases were built for 3 collections of metagenomes (Gold Study Id

Gs0110170, Gs0114290, and Gs0114820), in which the MAGs derived from these specific stud-

ies were removed. These host databases were then used for host prediction with iPHoP on all

IMG/VR sequences assembled from these same studies. In both cases, the list of viruses with

host prediction at different score cutoffs was compared to the list of viruses for which host pre-

diction was available when using the whole host database.

To represent the diversity of hosts included in these IMG/VR-derived host predictions, the

GTDB bacteria and archaea trees were plotted using the ggtree v2.4.1 package [73], with clades

collapsed at the phylum level. Each phylum was then colored according to the status of its

member genera, i.e., whether each host genus is associated with an isolated virus in RefSeq, a
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host prediction with iPHoP score�95, a host prediction with iPHoP score�90, or no isolate

or host prediction. To verify whether iPHoP host predictions linked viruses from each main

biome to host taxa consistently found in the same biomes, the GEM dataset [36] was used to

evaluate the biome distribution of individual host genera. Specifically, each GEM MAG was

associated to its corresponding genus and original sample biome, if this information was avail-

able (n = 38,556). Each genus was then associated with a given biome if�50% of the corre-

sponding MAGs originated from a sample of this biome (n = 3,500 genera) or was considered

as “Detected across multiple biomes” if the majority biome represented <50% of the genus

MAGs (n = 90 genera).

Supporting information

S1 Fig. Characteristics of the test dataset. (A) Distribution of the host genera for the test

dataset. Note: Only genera associated with�5 viruses are included, another 125 host genera

were associated with<5 viruses and are not displayed. (B) Distribution of AAI to the closest

reference in NCBI RefSeq for the test dataset. The corresponding list of viral genomes included

in the test dataset is provided in S2 Table. Source data are available in S1 Data (Source data 1

and S2 Table).

(TIF)

S2 Fig. Comparison of different host prediction approaches on different subsets of the test

dataset. Total number of predictions and number of correct predictions (y-axis) obtained at

any rank for each tool (x-axis) on sequences from the test dataset (S2 Table). For each tool, the

number of correct predictions is indicated by the colored bar, while the total number of pre-

dictions is indicated by the gray bar. The top panel displays the results obtained on the entire

test dataset (n = 1,870). The middle panel includes results obtained for all phages predicted as

temperate, either via BacPhlip or based on the genome annotation (n = 949). The middle panel

includes results obtained for all phages predicted as virulent by BacPhlip (n = 663). Source

data are available in S1 Data (Source data 1).

(TIF)

S3 Fig. Characteristics of the high-quality IMG/VR genomes. (A) Number of high-quality

viral genomes from IMG/VR v3 identified across the 5 major biomes in the database. Genomes

sampled from other biomes of lacking a biome information are gathered in the “Other” cate-

gory. (B) Distribution of the average amino acid identity between IMG/VR v3 viral genomes

and the NCBI Viral RefSeq v203. Source data are available in S1 Data (Source data 4).

(TIF)

S4 Fig. Overlap between host-based tools for individual viruses. For each host-based tool

included in the benchmark (see Fig 1), the overlap in terms of input sequence for which a cor-

rect prediction was obtained is presented here as an upset plot. The intersection size represents

the number of phages with correct prediction using the combination of methods indicated at

the bottom. This number is also indicated above each bar, and the bar color indicates the num-

ber of tools included in the combination. Source data are available in S1 Data (Source data 1).

(TIF)

S5 Fig. Schematic of the data transformation and classifier architectures used in iPHoP.

(A) Summary of the cutoff and metrics used for each host-based tool considered in iPHoP (see

S1 Table). (B) Overview of the 3 different types of classifiers evaluated in iPHoP. The different

parameters optimized using the Optuna framework are highlighted in blue. For varying num-

bers of layers, the same parameters were optimized for each layer, but each was optimized
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separately, i.e., the parameters values were independent between the different layers.

(TIF)

S6 Fig. ROC and Precision-Recall curves for single-tool classifiers. For each host-based tool,

the ROC curves (left) and Precision-Recall curves (right) based on the test dataset are pre-

sented for the 5 best classifiers of each type and compared to the “naive” approach, i.e., best hit

based on the raw score. FPR, false positive rate; PPV, positive predictive value; TPR, true posi-

tive rate. The 1-to-1 line is indicated as a dashed black line on the ROC curves. Random forest

classifiers were only evaluated for Blast and CRISPR approaches. Source data are available in

S1 Data (Source data 5).

(TIF)

S7 Fig. Percentage of correct host predictions obtained for viruses with different degrees

of “novelty”. The number of correct host predictions was evaluated for 3 different score cut-

offs corresponding to 20%, 10%, and 5% estimated FDR (false discovery rate). Input viruses

were classified into 5 categories (x-axis) based on their AAI (average amino acid identity) to

the closest reference phage genome. The number of correct host predictions is indicated for

each iPHoP classifier (see Fig 3A) and for the composite score considering all classifiers

(“Final iPHoP prediction”). Source data are available in S1 Data (Source data 3).

(TIF)

S8 Fig. Comparison of different integrated host prediction tools, including iPHoP, on the

test dataset. Standard Receiver Operating Characteristic (left) and Precision Recall (middle)

curves for the 4 integrated host prediction approaches compared. To take into account the

number of predictions provided by each tool, a third plot (right panel) indicates the positive

predictive value (y-axis) when considering an increasing number of predictions (x-axis). To

obtain this, cutoffs were progressively lowered to include an increasing number of predictions

for each tool and prioritize the highest confidence ones, i.e., starting with the highest PPV pos-

sible. For the ROC curve, a 1-to-1 line is indicated with a dashed black line. For the Precision

Recall and PPV curves (middle and right panels), the red and purple dashed lines indicate 5%

and 10% false discovery rates, respectively. Source data are available in S1 Data (Source data

3).

(TIF)

S9 Fig. Type of host prediction obtained for high-quality IMG/VR v3 genomes with differ-

ent degrees of “novelty”. High-quality genomes from the IMG/VR v3 database for which a

host prediction was obtained with iPHoP (score�90) were binned based on the average

amino acid identity (AAI) to the closest reference in NCBI RefSeq Virus r203 (x-axis). Predic-

tions entirely based on host-based tools are indicated as “Host only,” predictions exclusively

based on RaFAH are indicated as “Phage only,” and predictions where both types of tools were

consistent and with iPHoP score�90 are listed as “Both.” Source data are available in S1 Data

(Source data 4).

(TIF)

S10 Fig. Breakdown of iPHoP host predictions for high-quality IMG/VR v3 genomes

assigned as virulent (top) or temperate (bottom). Similar as Fig 4A and 4B, the left panel

shows the distribution of the best score provided by iPHoP for the corresponding subset of

IMG/VR v3 quality genome (top: virulent, bottom: temperate), organized by ecosystem. For

each vOTU, the best score from iPHoP was considered if�75, or the vOTU was considered as

not having a predicted host. The right panel shows the type of signal used to achieve host pre-

diction with a score�90. “Host-based” includes all 5 host-based tools, while “Phage-based”
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includes predictions obtained with RaFAH. “Both” includes consistent predictions obtained

with RaFAH and at least 1 host-based tool. Temperate and virulent phages were identified via

BACPHLIP [55] with a minimum score of 0.8 and based on genome annotation (see Methods).

Source data are available in S1 Data (Source data 4).

(TIF)

S11 Fig. Number of species and iPHoP prediction per host genus. Each dot represents a

host genus with at least 2 species, with the x-axis reflecting the total number of species in the

genus, and the y-axis reflecting the total number of IMG/VR v3 HQ sequences predicted to

infect this host genus with an iPHoP score� 90. Host genera and species were obtained from

the GTDB database [34]. The right panel presents a zoomed-in version of the area highlighted

with dashed black lines in the left panel. Source data are available in S1 Data (Source data 4).

(TIF)

S12 Fig. Performance of iPHoP on partial genomes. Partial genome assemblies were simu-

lated by taking 500 random sequences from the testing set and selecting a random subset of

fixed length (20 kb, 10 kb, 5 kb, and 1 kb) or fixed completeness (50%, 20%, 10%, and 5%),

before processing with iPHoP for host genus prediction. This process was repeated 10 times,

and the standard error across the 10 replicates is reported on each bar plot. Host prediction

with iPHoP was also obtained for the same sets of 500 sequences from the testing set using

complete genomes, for reference (“100% completeness,” colored in grey on the figure). For

each input type, the recall (i.e., number of sequences with a host prediction, top), and FDR

(i.e., percentage of erroneous predictions among all predictions, bottom) is indicated for dif-

ferent minimum iPHoP score cutoffs (75, 90, and 95). Source data are available in S1 Data

(Source data 6).

(TIF)

S13 Fig. Performance of iPHoP when no reference genomes from the correct host genus is

available in the host database. “Novel” host genera, i.e., cases in which the correct host was

not represented in the host database, were simulated by recomputing iPHoP host prediction

using filtered databases where all genomes from a given genus were removed. For this bench-

mark, only host-based predictions were considered and RaFAH phage-based predictions were

ignored, as the latter did not rely on the availability of reference genomes in the host database.

The same test dataset was used as in the regular benchmarks (see S1 Table and S1 Fig). For

each minimum score cutoff (75, 90, and 95), all phages for which a correct host genus predic-

tion was obtained with the standard database at this given cutoff were considered, and the pre-

diction with the corresponding filtered host database was compared to the real host taxonomy.

The category “no prediction” correspond to cases where iPHoP did not provide a prediction at

the selected cutoff when using the filtered host database. The default score cutoff (90) is

highlighted with a star symbol. The score cutoff of 75 is the lowest possible minimum score

available in iPHoP. Source data are available in S1 Data (Source data 7).

(TIF)

S1 Table. List of individual tools benchmarked, included in, and/or compared to iPHoP.

(XLSX)

S2 Table. List of viral genomes included in the test dataset, obtained from NCBI GenBank,

and used to evaluate the performance of individual and integrated tools.

(XLSX)

S3 Table. Number and percentage of correct host predictions for different individual tools

at different host taxonomic ranks. For each tool and rank, the number and percentage of
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correct predictions is indicated for all available predictions, the top 50%, or the top 10%,

ranked based on each tool’s score (see Methods).

(XLSX)

S4 Table. Characteristics of the single-tool classifiers considered for inclusion in iPHoP.

The classifiers eventually included in iPHoP v1.0 are indicated with a “x” symbol in the col-

umn “Classifiers selected for inclusion in iPHoP.”

(XLSX)

S5 Table. Overview of iPHoP host genus prediction for IMG/VR high-quality sequences

across different host databases, with and without (local) MAGs. The first tab includes the

summarized results for the 2 benchmarks, i.e., a custom database without MAGs for all IMG/

VR sequences, and custom databases without “local” MAGs (i.e., from the same study) for 3

specific studies. Additional tabs provide the list of IMG/VR sequences with a host prediction

from the complete host database, but either no prediction or a lower iPHoP score prediction

when using a “no MAG” or “no local MAG” host database.

(XLSX)

S6 Table. Number of viruses predicted for each host genus. Host genera with at least 2 spe-

cies and considered in Fig 5 are listed in the first tab, while host genera composed of a single

species are indicated in the second tab.

(XLSX)

S7 Table. Erroneous host prediction by iPHoP for eukaryotic viruses. Eukaryotic virus

genomes were obtained from the NCBI RefSeq r214 database. For each virus with a prediction

with iPHoP score�75, the best predicted host (i.e., maximum score) is indicated, along with

the method within iPHoP that yielded this prediction (see Fig 3A).

(XLSX)

S1 Data. Underlying data for main and supplementary figures (Figs 1–5, S1–S4 and S6–
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