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Opinion Cascades and Echo-Chambers in Online Networks: 

A Proof of Concept Agent-Based Model  
 

Toby D. Pilditch (t.pilditch@ucl.ac.uk) 
Department of Experimental Psychology, University College London 

WC1E 6BT, Gower Street, London, United Kingdom 

 

 

Abstract 

In online networks, the polarization of opinions (e.g., 
regarding presidential elections or referenda) has been 
associated with the creation of “echo-chambers” of like-
minded peers, secluded from those of contrary viewpoints. 
Previous work has commonly attributed such phenomena to 
self-regarding preferences (e.g., confirmation bias), individual 
differences, and the pre-dispositions of users, with clusters 
forming over repeated interactions. 
The present work provides a proof of concept Agent-Based 
Model that demonstrates online networks are susceptible to 
echo-chambers from a single opinion cascade, due to the 
spatiotemporal order induced by lateral transmission. This 
susceptibility is found to vary as a function of degree of 
interconnectivity and opinion strength. Critically, such effects 
are found despite globally proportionate levels of opinions, 
equally rational agents (i.e. absent conformity, confirmation 
bias or pre-disposition architecture), and prior to cyclical 
interactions.  
The assumptions and implications of this work, including the 
value of Agent-Based Modelling to cognitive psychology, are 
discussed. 

Keywords: Information cascades; opinion dynamics; belief 
updating; Agent-Based Models 

Introduction 

As online networks, such as social media, have developed 

and increased in popularity, research regarding the spread of 

false information, the polarization of opinions (Dandekar, 

Goel, & Lee, 2013), and echo-chamber phenomena (Del et 

al., 2016) have become increasingly pertinent topics. Such 

phenomena pose a problem to society, and democracy as a 

whole, given the average user’s exposure to only the 

information and opinions of their local (i.e. direct) network, 

leading to a break-down in informed debate and consensus. 

Recently, questions regarding how individuals on a 

network receive new information and form or adopt 

opinions has come to the fore. Whether on topics of national 

referenda, deciding between presidential candidates, or 

interpreting news events (e.g., who is at fault in the 

annexation of Crimea, the shooting down of passenger 

aircraft, the political correctness of a reported comment or 

behavior), it has become more and more common for such 

information to be ascertained via social media
1
. In this way, 

an agent’s source of information comes through a filter of 

network-acquaintances, presenting an unprecedented degree 

                                                           
1 In 2016 a PewResearch poll found the majority (62%) of US 

adults get their news through social media. Source: 

http://www.journalism.org/2016/05/26/news-use-across-social-

media-platforms-2016/  

of lateral, peer-to-peer dissemination of information. Such 

peer-to-peer transference of information, in a time where the 

information itself (whether “fake news”, political memes, or 

posted opinion) carries a bias in its view of the world, 

presents a problem that psychology and multi-agent 

modelling is well-placed to answer. 

The purpose of the present paper is two-fold: Firstly, this 

work provides a novel demonstration of the dangers of 

lateral propagation of opinions in online networks, based 

solely on the level of interconnectivity and the inherent way 

in which interpreted events (i.e. opinions) travel through 

them. This results in high levels of false consensuses and 

echo-chambers on a local level within the network. 

Critically, such localized clustering is shown to occur before 

any repeated interaction behaviors, and is robust to both 

different opinion strengths and propensities to communicate. 

Secondly, this work presents an argument that cognitive 

science is readily placed to lend insight into these 

interactive, societal level phenomena, and the super-

aggregate behaviors. Such insight can be lent by the ready 

application of cognitive models taken from individual-based 

empirical work and theory, to multi-agent simulations, 

known as Agent-Based Models (ABMs), so as to uncover 

and explain phenomena beyond the scope of individual-

based experiments. 

Cascades and Opinions 

How information is communicated between individuals on a 

societal (or multi-agent) scale, and its consequences, has 

been formally approached in two main areas; information 

cascades and opinion dynamics. 

Research in information cascades has focused on the way 

in which information is spread through a system. This has 

included how networks may be resistant to cascading 

influence, such as the spread of cultural fads (Watts, 2002). 

Such work has typically characterized “information” as a 

singular, memetic entity that is propagated or hindered by 

either the properties of individuals within the network (such 

as the proportion of “easily influenced individuals”, see 

Watts & Dodds, 2007), or the structure of the network itself 

(e.g., hierarchical influencers; see Watts, 2002). This work 

has illustrated power law effects in information propagation 

across networks, an effect akin to percolation theory in 

physics (for a review, see Essam, 1980), wherein the 

clustered structure of a system leads to a critical singularity 

event (i.e. cascade). These cascades result in cluster size 

distribution effects, where smaller, more numerous clusters 
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occur as systems become more interconnected (Amar & 

Family, 1995; Meakin, Vicsek, & Family, 1985). 

Research in opinion dynamics has instead focused on the 

cyclical interactions of individuals within a network. In 

particular, it has looked at the ways in which individuals and 

groups interact so as to either reach a consensus (Acemoglu 

& Ozdaglar, 2011; Hegselmann & Krause, 2002) or 

segregate into polarized sub-groups of homogenous 

opinion-holders (Dandekar et al., 2013; Duggins, 2016; 

Zanette & Gil, 2006). Critically, this research has focused 

on groups of pre-existing opinion-holders. This work has 

yielded insights into belief-updating via repeated interaction 

(such as through the use of the Bounded Confidence Model; 

Deffuant, Neau, Amblard, & Weisbuch, 2000), along with 

psychologically based models of behaviors including 

network pruning (Ngampruetikorn & Stephens, 2015), 

which provides a plausible pruning mechanism of network 

contacts, based on a confirmation bias (self-regarding) 

principle. 

The present paper interweaves elements of these two lines 

of literature, in conjunction with cognitive architecture 

brought forth from models of learning and communication 

in cognitive psychology. In particular, agents are encoded 

with three pieces of cognitive machinery: attention 

(detecting the public declarations of others); learning 

(incorporating a communication into a belief-state, and 

evaluating it against evidence); and decision-making (each 

choosing whether to make their opinion public based on a 

decision rule). In this way, all agents within the network are 

equally rational. 

By focusing on universal cognitive architecture on the 

part of agents (and instead introducing stochasticity to the 

evidence against which an opinion is evaluated), this work 

argues that echo-chambers may result solely from the way 

in which networks are structured, and the spatiotemporal 

order of lateral opinion transference (i.e. an opinion 

cascade). 

The semi-random way in which networks are structured 

(my relational position to the global network is random, but 

my method of forming my proximal (direct) connections is 

rule-based (those whom I know)), runs parallel to work on 

“small-worlds” (Watts & Strogatz, 1998), which have 

shown susceptibility to cascades and synchronizability. As 

such, echo-chambers may occur without reliance on 

repeated interaction (Acemoglu & Ozdaglar, 2011; Duggins, 

2016), or individual differences encoded in agents, such as 

differences in susceptibility, or pre-dispositions towards an 

opinion (Watts & Dodds, 2007) or hierarchy (see 

Quattrociocchi, Caldarelli, & Scala, 2014). 

Agent-Based Modeling 

ABMs are multi-agent, dynamic simulations which use 

combinations of three central components; agents, patches, 

and links. Agents are the individual actors within a model, 

and in the present paper, represent individuals within a 

network. Agents may be encoded cognitive rules (e.g., 

learning models), simple behaviors (e.g., signaling to 

neighboring agents, movement), and values (e.g., prior 

beliefs, physical positioning). Agents are ascribed various 

forms of heterogeneity (such as occupying different 

positions within a network), as multiple agents are generated 

within the system. As the simulation runs, agents enact 

behaviors and update their values according to the specific 

rules ascribed to them, interacting with other agents and the 

environment accordingly.  

Similarly, both links, which represent connections 

between agents, and patches, which represent the 

environment, may be encoded with behaviors and values, 

and the capacity to dynamically interact and update as the 

simulation runs. In the present paper, links are used to 

represent the connections between individuals within a 

network, and are thus used for signaling between agents. 

Given the network representation (requiring only agents and 

the links between them), the present model does not require 

the use of patches. 

ABMs have been used to explore and assess how 

behaviors on an individual level, when placed within a 

dynamic, multi-agent, heterogeneous system, can lead to 

societal level, super-aggregate behaviors (Epstein, 1999, 

2006; Schelling, 2006). For example, by encoding a 

preference in individuals to be neighbors with others who 

are similar (whether, on racial, socio-economic, or cultural 

lines), and assuming some stochasticity in signaling such 

similarity, Thomas Schelling (1971) was able to show the 

evolution of segregation on a community, and even city-

wide level. In a similar manner, the previously mentioned 

research on information cascades  and opinion dynamics 

(Duggins, 2016) has used this technique to demonstrate a 

number of phenomena, with relatively few assumptions, that 

are difficult with traditional, equation-based cognitive 

modelling. 

A Model of Opinion Cascades 

The aim of the current model is to provide a proof that the 

inherent structure of an online network is susceptible to high 

degrees of opinion segregation (i.e. false consensuses or 

echo-chambers). Critically, this segregation does not require 

repeated interaction, and can instead occur as a consequence 

of a single “cascade” across a network of rational agents 

(i.e. assuming no individual differences in cognitive 

architecture), despite equal proportions of opinion-holders 

on a global level. 

A network of agents is created whereby agents are 

randomly assigned an XY coordinate, and each outfitted 

with the cognitive architecture and values outlined below. 

Each agent then forms links with its neighbors based on 

proximity in terms of Euclidean distance – representative of 

relational proximity in online networks (see Duggins, 2016). 

The number of links agents form is manipulated, and based 

on the percentage of the total number of agents in the 

system, from .5%, to 50%. This is calculated by dividing the 

number of links per agent by the total number of agents in 

the network. Thus, given a population of 1000 agents, for an 

interconnectivity of .5%, all agents form links with their 
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nearest 5 neighbors; for 10%, the nearest 100 agents, and so 

on. Accordingly, given a fixed population size across 

simulations, interconnectivity is manipulated via the number 

of links each agent possesses. In a similar manner, a neutral 

“event” node is placed in the geographical center of the 

simulation, and connected to the nearest agents according to 

the above rules for interconnectivity. Thus, increasing 

interconnectivity beyond 50% serves no purpose, given that 

every other agent will have been exposed to the neutral 

event (i.e. is 1
st
 generation), and thus no cascade can occur 

beyond two time points. Similarly, in the current model, 

interconnectivity below .5% (i.e. 5 links per Agent) starts to 

risk fracturing the network into separate entities. 

Cognitive Architecture 

Each agent is outfitted with simple cognitive architecture 

that can be classified into three branches: attention, learning, 

and propagation. 

All agents within the network attend to their linked-

neighbors, in that they are sensitive to the first of their 

neighbors to “declare” an opinion. Having seen such a 

declaration, the agent then moves into a learning phase to 

evaluate it.  

The communicated opinion thus forms a prior for the 

evaluating agent. As mentioned previously, the opinions in 

the model are categorized into a binary division (Opinion A, 

Opinion B). Thus, from a neutral prior (.5), moving towards 

Opinion A is assigned a positive direction, whilst moving 

towards Opinion B a negative direction. In this way, a prior 

indicating Opinion A should shift the neutral recipient agent 

positively (e.g., 0.5 + 0.1 = 0.6), and negatively for Opinion 

B. The strength of this shift is accordingly manipulated as a 

proxy of opinion strength / influence. 

To represent the relationship between the strength of an 

opinion and the likelihood of a recipient adhering to that 

opinion, a learning model is used that allows agents to 

evaluate the opinion against stochastic evidence. 

Specifically, a reinforcement learning model is used 

(Rescorla & Wagner, 1972), in which agents evaluate an 

opinion in light of new evidence, such that the prediction 

error (δ), multiplied by the learning parameter (β), is added 

to the value associated with the opinion (prior) for the 

current trial (Q(t)), leading to an updated opinion value (Q(t 

+ 1)). 

𝑄(𝑡 + 1) =  𝑄(𝑡) +  𝛽𝛿(𝑡)        (1) 

 

Such models have been adapted (with added complexity) 

successfully to model the impact of instruction in 

reinforcement learning (Doll, Jacobs, Sanfey, & Frank, 

2009; Staudinger & Büchel, 2013) and are thus considered a 

suitable placeholder for the proof of concept model. To 

evaluate the belief, agents then experience a number of 

evidence trials (arbitrarily set to 10), where evidence values 

are binary {0, 1}, and are drawn with equal likelihood (i.e. 

P(E=1) = .5). To reiterate, the learning process herein serves 

as a representation for the relationship between prior 

strength, and its likelihood of acceptance/rejection. Thus, if 

the communicated opinion is represented by a weaker prior, 

it is more likely to be rejected by the learning / evaluation 

process. Similarly, increasing the amount of available 

evidence has the equivalent effect of converging the agent to 

the .5 (neutral) true state of the event (i.e. reducing the 

likelihood of passing on the original opinion). In this way, 

stronger opinions make the cascade more deterministic. 

Further, using a stochastic sampling process to dictate 

opinion uptake serves as a useful baseline model, to which 

complexity may be added directly to learning processes. 

Having evaluated, agents declare for one of the two 

opinions, based on a decision rule: if Q(posterior) > .5, hold 

Opinion A; if < .5, hold Opinion B. This declaration is then 

made public (and thus may act as a prior to attending linked-

neighbors) with a probability that is manipulated between 

systems. For example, a P(Declaration) of 1 means all 

agents will make their opinions public, whilst a 

P(Declaration) of .1 means there is a 10% probability of 

agents making their opinion public. This P(Declaration) 

bears a parallel to Watts and Dodds (2007) “individual 

threshold”, found to impact spreading phenomena. 

Dynamics 

Given the above architecture has been established, 

simulations commence with the initial, neutral “event” 

being witnessed by a portion of the network (based on 

manipulated interconnectivity). These agents (termed 1
st
 

generation) start with a neutral prior, and so, based on the 

stochastic nature of the evidence, half should arrive at each 

opinion post-evaluation. From this point, if an agent of the 

1
st
 generation makes their opinion public (based on 

manipulated P(Declaration)), their attentive (presently 

neutral) linked-neighbors (2
nd

 generation) then take this 

opinion as a prior, and evaluate it according to the procedure 

above. This 2
nd

 generation agents, having come to a 

decision, then similarly each choose whether to make their 

opinion public (based on P(Declaration)), and thus the 3
rd

 

generation is exposed. This process continues until there has 

been no change in the number opinion-holders (of either 

type) for two consecutive time periods (i.e. if no one has 

made an opinion public, and thus the opinions have “died 

out”, or if the network is now completely saturated). 

Importantly, for the proof of concept model, having 

decided upon an opinion, an agent is no longer attentive to 

further information. This is purposeful to prevent cyclical 

effects beyond an initial cascade, as the goal of the present 

paper is to show the susceptibility of interconnected neutral 

agents to an opinion cascade, without resorting to 

explanations of homophily (Dandekar et al., 2013) and 

localized consensus reaching (Ngampruetikorn & Stephens, 

2015). 

For the purpose of the present paper, the behaviors of 

interest are constrained to two, related measures. Firstly, the 

global proportion of opinions across the system (i.e. the 

proportion of agents with Opinion A, and the proportion 

with Opinion B) is of interest before inferring anything 

about localized clustering. For example, whether localized 
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clustering is simply a by-product of a dominant, network-

wide opinion. This leads to the second measure: the average 

percentage of likeminded neighbors an agent possesses. In 

other words, of an agent’s visible network, what percentage 

are in agreement with the agent (e.g., 50% indicates agents 

directly linked to equal proportions of each opinion-type).  

The manipulated variables are summarized in table 1 below: 

 

Table 1. System variables 

 

 

Central Findings 

The above model was implemented in NetLogo (5.2.1). 

Each system specification (Interconnectivity (100) x 

Opinion Strength (3) x P(Declaration) (3)) was run 

independently 100 times, taking an average set of values for 

each specification. The total number of agents in each 

simulation was set to 1000. 

Figs. 1a & 1b show example outcomes of opinion cascades 

(A in red, B in blue) across a sparsely connected (1% 

interconnectivity) and a more densely connected (10% 

interconnectivity) system, respectively. 

  

a   b 

 

Figures 1a and 1b: Sparsely and densely connected 

networks, post cascade (grey represents unused links). 

 

Importantly, as Fig. 2 illustrates, irrespective of opinion 

strength, P(Declaration), or interconnectivity, the global 

proportion of different opinion holders consistently 

approximates 50/50.  

 

 
 

Figure 2: Proportion of opinion holders across network 

 
 

Figure 3: Degree of Clustering. Calculated as the average 

percentage of like-minded neighbors an agent possesses 

(panels represent P(Declaration) conditions). 

 

The degree of clustering (Fig. 3) can be broken down into 

several key findings. First, and central to the present paper, 

localized clustering increases as a function of decreasing 

interconnectivity and opinion strength, with stronger 

opinions and low interconnectivity (<1%) resulting in the 

local (directly visible) networks of agents consisting of 

>90% likeminded individuals
2
. Second, this effect occurs 

irrespective of the propensity for individuals within the 

network to make their opinions public
3
. In other words, 

whether P(Declaration) is at 100% or 10%, localized 

clustering occurs regardless. 

Finally, localized clustering is mitigated by the degree of 

stochasticity (i.e. as opinion strength moves towards neutral, 

thus having no communicative impact) and increasing 

interconnectivity. However, it is important to note that to 

prevent local clustering requires either no opinion impact or 

moving towards high (and arguably unrealistic) levels of 

interconnectivity.  

Discussion 

The central finding of the present paper is that the 

fundamental way in which networks are constructed, when 

combined with the temporal dynamics of how information 

travels through them, and the cognitive representation of 

opinions as a prior, inherently leads to false consensus 

effects and echo-chambers. Thus, the more deterministic 

peer-to-peer communications are (i.e. how likely is a 

recipient to adopt the opinion of a sender), and the lower the 

relative density of connections within the network, the 

greater the impact of the spatiotemporal order (i.e. the larger 

the cascade sequence) on clustering.
4
 

                                                           
2 Further simulations in which total network size has been 

varied, but density has been kept constant at 1% (i.e. 10 agent-links 

for 1000 agents, 50 links for 5000 agents) have shown clustering 

effects remain constant (i.e. depend on relational, not absolute 

links / network size). 
3 Mathematically, P(Declaration) starts to have an impact when 

it effectively reduces the average number of “functional” links to a 

point below the absolute threshold for a singular cohesive network 

(i.e. if it reduces the average number of active links below 4 in the 

present model; left-hand panel of Fig. 3). 
4 The present model demonstrates this with fixed, neutral (0.5) 

priors for all agents. If variance in priors is included, such that SD 

Variable Description Levels

Interconnectivity (%) (Links per Agent / Total 

Agents in Network) * 100

0.5, 1, 1.5, 

... 50

Opinion Strength Added to (or subtracted from) 

neutral agent prior (P(H) = .5)

0, 0.1, 0.2

P(Declaration) Probability of making opinion 

public

0.1, 0.5, 1
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Critically, this effect occurs prior to any repeated 

interactions between agents, separating the present work 

from opinion dynamic literatures (Acemoglu & Ozdaglar, 

2011; Allahverdyan & Galstyan, 2014), and without 

assuming individual differences on the part of agents (e.g., 

differences in susceptibility) or singular information types, 

common to information cascade literatures (Watts, 2002). 

Further, work in these areas including social network 

pruning (Ngampruetikorn & Stephens, 2015) and 

polarization effects (Dandekar et al., 2013; Duggins, 2016), 

when looking at cyclical interactions, illustrate that repeated 

interaction is likely to only exacerbate the already high 

levels of localized clustering. 

False Consensus and Echo-chambers 

The effects described in the present work are found to be 

broadly independent of the propensity to communicate, and 

robust across the degree of interconnectivity (requiring 

approximately 50% interconnective density to negate, 

something unfeasible in online networks approaching 

billions). Putting this into concrete terms, Facebook has an 

estimated 1.79 billion active users
5
. The average (median) 

number of “friends” or links is approximately 200
6
, meaning 

the average user is connected to .000011% of the overall 

network. To fully negate the effects demonstrated here 

would require either the severance of lateral transmissions 

(or decreasing the deterministic capacity of communications 

sufficiently), or having each user share direct connections 

with approximately 900 million other users. 

The formation of echo-chambers and the polarization of 

opinions is typically attributed to repeated interaction with a 

self-regarding preference (Ngampruetikorn & Stephens, 

2015) or a signaling of like-mindedness (e.g., trust; see Li, 

Scaglione, Swami, & Zhao, 2013). This work instead shows 

that the structure of the network, and the way in which 

opinions emanate across it, are sufficient to result in false 

consensus effects and echo-chambers. To put this in more 

pragmatic terms; regardless of who you know, why you 

know them, or how you have repeatedly interacted / pruned 

your network, the fact that you do not, and arguably cannot 

know enough people, no matter who they are, is sufficient to 

leave you highly susceptible to echo-chambers. 

It should be noted that this proof of concept model carries 

with it several assumptions. Most notably, opinions are 

classified in a binary fashion, so as to replicate the target 

                                                                                                  
> opinion strength, then clustering severity is reduced. However, 

this relies on the strong assumption that there is independence of 

opinions across a self-selecting network. If one incorporates 

instead a degree of dependence in neighbouring opinion-holders, 

then one has in effect shifted echo-chamber formation to precede 

opinion transmission, and have thus “baked-in” the result.  
5 Figure taken from monthly active users as of the 3rd quarter of 

2016. Source: https://www.statista.com/statistics/264810/number-

of-monthly-active-facebook-users-worldwide/  
6 Figure taken from Pew Research Center survey of Facebook 

users in 2014. Source: http://www.pewresearch.org/fact-

tank/2014/02/03/6-new-facts-about-facebook/  

opinion types under investigation, and associated with echo-

chambers (e.g., referenda, or political campaigns). Future 

work is proposed to incorporate variance as they move 

across a network (i.e. do they dissipate, or become stronger). 

Secondly, agents attend and evaluate based on the first 

exposure to an opinion in their immediate network (i.e. 

those they are directly connected to). Although future work 

is suggested to incorporate the influence of multiple sources 

(e.g., via social conformity), such architecture is initially 

precluded to avoid “baking in” localized clustering effects. 

Finally, the present model assumes a flat hierarchy of 

individuals. Although the argument can be made that fixing 

the level of interconnectivity for all individuals in a network 

is an artificial constraint, in terms of the degree of 

interconnectivity in target systems (e.g., Facebook) the 

functional difference in interconnectivity among users is 

between approximately .000011% (200 friends) and 

.00028% (5000 friends; Facebook user limit). Although 

structural hierarchy, such as media influencers, may have an 

impact on dissemination (along with their own motives, 

such as following pre-existing opinion trends; see 

Quattrociocchi et al., 2014), the present work serves to 

illustrate that localized clustering can result from the 

spatiotemporal order of lateral transmission across a 

network. 

Further Work 

The present work, in serving as a proof of concept for an 

increasingly important phenomenon, and providing some 

initial assumptions to illustrate the effects in a 

straightforward manner, leaves the door open for further, 

more psychologically informed modelling opportunities. 

Further work should start to incorporate additional 

complexity on the part of agent (cognitive) architecture, 

such as the inclusion of social conformity (Latané, 1981), 

which is predicted to increase clustering tendencies (and 

feasibly increase the strength of opinions as they spread 

throughout the system. Similarly, work on confirmation bias 

suggests a similarly exacerbating role (Allahverdyan & 

Galstyan, 2014; Doll et al., 2009; Nickerson, 1998; 

Staudinger & Büchel, 2013). Finally, the inclusion of 

Bayesian models of source credibility (Harris & Hahn, 

2009; Harris, Hahn, Madsen, & Hsu, 2015; Madsen, 2016) 

are of interest  (Bayesian models of social learning have 

already started being applied to opinion dynamics; see 

Acemoglu & Ozdaglar, 2011), given the way in which 

people form networks (i.e. we tend to select those we know / 

trust / like when forming our “direct” network). These 

suggestions are by no means exhaustive, but serve as 

examples of the promising (and readily applied) further 

additions to the framework laid out in the present work. 

The present work purposefully precludes such 

psychological elements, which are expected to exacerbate 

the effects illustrated in this proof of concept model. This 

choice was made both for reasons of parsimony, and to 

provide a demonstration that the effects herein do not rely 

on such processes or explanations. 
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In conclusion, the present paper demonstrates that rational 

agents (i.e. absent special functionality of cognition or 

individual differences), through the way in which online 

networks are structured, are intrinsically susceptible to high 

levels of localized clustering (i.e. echo-chambers) when 

opinions are transmitted laterally. Further, it is hoped that 

the present paper serves as an example of how 

psychological principles taken from the individual level may 

be applied to a societal level through the use of Agent-

Based Models. 
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