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Abstract

Essays On The Economics of Agriculture, Information, and Climate Change

by

Itai Trilnick

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor David Zilberman, Chair

Agricultural practices are increasingly dependent on precise, real-time weather information.
Irrigation, pest management, and even strategies for climate change adaptation require ade-
quate information inputs. This dissertation starts with a valuation of weather information in
California, assessing some of the the economic gains from the California Irrigation Manage-
ment Information System (CIMIS). This system of weather stations and information portal
was intended for water saving in irrigation, but turned out to have many unexpected uses.
The next chapter uses CIMIS historical information to estimate the yield response of Cali-
fornia pistachios to warm winters. This has been an ongoing challenge in the literature, as
the available yield data are scarce and noisy. Merging them with CIMIS data is essential
in estimating this response, and for predicting the yield effects of winter temperatures in
the future. The last builds on these predictions, and analyzes the potential gains from a
technology that could deal with the challenge of warming winter days: spraying the dormant
trees with kaolin clay, which reflects part of the sunlight and keeps the trees cooler. To assess
the gains, I take the estimated response function, climate predictions, and other variables to
market model that is solved numerically and allows for welfare gain calculations. Beyond the
potential of this specific technology for pistachios, tweaking temperature distribution tails
seems like a promising concept for climate change adaptation. Many temperature challenges
brought by climate change are in these distribution tails, where yield responses are often
non-linear. This means that small temperature adjustments, local in time and place, might
suffice for cost-effective adaptation strategies. I call this concept “Micro-Climate Engineer-
ing”, and predict that such practices will be increasingly popular with the progression of
climate change.
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Chapter 1

Introduction

1.1 The value of weather information in agriculture

Weather is a key input for agricultural production. A vast economic literature is dedicated
to the role of weather information in grower decision making, market outcomes, and com-
modity futures. On one hand, better information (and forecasts) about the weather can help
growers optimize their use of other inputs, increasing efficiency in production and avoiding
costs related with uncertainty. On the other hand, some economic models can show—under
some assumptions—that more precise weather information might not be welfare increasing,
as ex-ante uncertainty about the weather can lead to extra investment in other inputs. That
is, when growers have better forecast of adverse weather, output would be further reduced
from its level under uncertainty (Lave, 1963). There is also some concern about weather
forecasts acting as signals for collusion among growers, but simple price mechanisms can
technically reduce output and welfare with better weather prediction even in a competitive
market (Babcock, 1990). Notwithstanding these warnings by economists, the economic gains
from weather information are usually deemed positive, even if their magnitude is sometimes
contested (MacAuley, 2005).

Much of the seminal economic literature on the value of weather information was written
between the 1960’s and the 1990’s, when significant improvements in forecasting was achieved
with the advance of computing power and complex meteorology models (Tribbia, 1997). This
literature is based on the agricultural practices and available data of that time. While liter-
ature about the value of weather information seems to have plateaued in the 2000’s, perhaps
as forecasting technologies matured and stabilized, the surge of precision agriculture could
re-ignite interest in this topic. Heterogeneity within fields and precise growing strategies,
based on exact measurement of weather variables (e.g. evapo-transpiration or degree hours),
is increasingly the subject of research and technological application (Gordon et al., 2018).
Uncertainty regarding real-time weather on micro scales poses conceptually similar questions
to those dealt with by the weather forecast literature in the past. At the same time, new
discussions on the value of weather information and the government’s role in providing it



CHAPTER 1. INTRODUCTION 2

have been revived with advances in remote sensing and satellite technology (Cirac-Claveras,
2019).

The technical and scientific capabilities required to gather and analyze weather data, as
well as the non-rival nature of weather information as a product, meant that much of the
development of weather services has been done by governments. Johnson and Holt (1997)
point out that this led to a significant economic literature, assessing the potential gains from
better weather information given the public expenditures. Their survey of the relevant liter-
ature mostly includes econometric studies, where the output gains from improved forecasting
are estimated and the economic gains from providing them are then calculated per hectare.
Other methodologies include survey based valuation, paired with economic data and mod-
eling. Anaman and Lellyett (1996) assess the gains from a weather information system for
cotton growers in Australia, finding the benefit-cost ratio of the system at 12.6 (for cotton
alone). Klockow, McPherson, and Sutter (2010) conduct a survey based study of the value of
the Mesonet network in Oklahoma. Less than 4% of Oklahoma’s cropland is irrigated, and
the modest value they find for Mesonet information mostly comes from risk management.
Interestingly, there are few such examples of an economic study about a specific weather
information system in the published literature, as opposed to numerous studies on the value
of information for growers. Johnson and Holt do mention, for example, that weather forecast
services in Sweden and New Zealand have gone through “extensive privatization”, but do
not cite any articles analyzing these decisions.

The first part of this dissertation is an analysis of economic gains from the California
Irrigation Management Information System (CIMIS), a network of weather stations and data
center run by the California Department of Water Resources. For over 30 years, this system
has been used by growers, consultants, and other users in California agriculture. This chapter
presents the preliminary findings from a thorough report on the value of CIMIS, showing
substantial gains not only in agriculture but also in landscape management, regulation,
research, and industry.

1.2 Weather information and climate change

Climate change poses a major challenge for agriculture, as predicted shifts in tempera-
ture and precipitation patterns around the world affect agricultural productivity (Zilberman
et al., 2004; Carleton and Hsiang, 2016). Early studies on climate change in agriculture first
focused on the impacts of changing mean temperatures, and more recent empirical literature
emphasizes the importance of temperature variance and extreme heat on yields, especially
during the growing season (Auffhammer and Schlenker, 2014). For example, Schlenker and
Roberts (2009) show sharp drops in the yields of corn, soybean, and cotton, when exposed
to degree days above 28–300C. Similar findings have been replicated in various crops and
locations around the world. Climate scientists affirm that heat waves will increase in fre-
quency and duration as the process of climate change advances (IPCC, 2013). Researching
yield responses to high temperatures, especially when the relationship seems non-linear or
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threshold like, is therefore essential for prediction of climate change effects on agriculture.
This can only be done with adequate weather information.

Chapter 3 presents an analysis of the yield response of pistachios to hot winters. This is
also a temperature distribution tail problem, at least when looking at temperatures between
November and March. Daytime temperatures in California winters have been rising in the
past 20 years, and are predicted to rise further in the future. This can have detrimental
implications for pistachios, a major California crop, but estimating the yield response func-
tion has been a challenge so far. I use CIMIS data and innovative techniques to recover this
relationship and predict the potential threat of climate change to California pistachios. It
turns out that Pistachios, a billion dollar crop in California, could be threatened by warming
winter within the next 20 years.

1.3 Micro-Climate Engineering

While the scope and magnitude of our current climate crisis might be unprecedented
in human history, this is not the first time that humans are facing climatic challenges in
agriculture. Olmstead and Rhode (2011) show how, through the 19th and 20th centuries
in North America, wheat growers managed “...to push wheat cultivation repeatedly into
environments once thought too arid, too variable, and too harsh to farm”. The transition
was made possible mostly by the development of new varieties. Plant breeding toward that
end required information on the climate both in the progenitor native areas and the areas
where the eventual new varieties would be planted (see Kingsbury, 2009, for a history of
plant breeding and its role in agriculture.).

Adaptation to climate can be on the physical dimension as well. Specific interventions
can be designed to change the physical environment surrounding plants. The most obvious
intervention is building irrigation systems, to compensate for lack of adequate rainfall and
soil moisture. But examples of adaptation to temperature by physical means exist as well.
This type of intervention is common for a left tail effect: frost. A short lasting fall or spring
frost lasts a few hours and can cause substantial damages. To avoid it, only a slight increase
in temperature is required, and growers know how to do that.

Some examples for dealing with frost are hundreds of years old. The Tiwanaku civilization
formed a system of raised fields on the shores of lake Titikaka in the 7–12 centuries C.E.
Fields in select locations were raised with extra soil, up to a few feet above the ground level.
Water from nearby springs was diverted and run through canals dug in these raised fields.
This provided not only moisture for the plants, but also converted the top soil level into a
large heat storage unit. On frost nights, which are common in this high area, the heat stored
in the soil kept the near-surface temperatures on raised fields higher than the normal air
temperatures, preventing plants from freezing (Kolata and Ortloff, 1989). Without modern
weather instruments, the Tiwanaku realized that slight differences in ambient temperatures
can have crucial consequences, and planned their fields according to their understanding of
the climate. This system yielded far better than regular dry farming practiced before in
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this area, and supported a larger population than the one residing on the lake shores in
the 1990’s. Eventually, as climate became drier, the water level of lake Titikaka dropped
and the springs dried up, resulting in the collapse of the Tiwanaku culture (Binford et al.,
1997). Despite its eventual failure, this technology was successful in abating frost damage
for centuries, maintaining a population of hundreds of thousands and showing the power of
human intervention on the field level to tackle a temperature distribution tail challenge.

In Europe, traditional methods of dealing with frosts in vineyards include lighting small
fires or “frost candles”. A more modern approach uses big fans, circulating the cold air in
the inverted layer with the warmer air on top of it. Farmers have been using “air disturbance
technology” in the US since the 1950’s (Hu et al., 2018). Wind generators are used around
the world to protect wine grapes, fruits, and even tea from spring frosts. In some cases,
a similar effect can be achieved with sprinklers (Olen, Wu, and Langpap, 2015; Lu et al.,
2018).

Interestingly, little economic literature has focused on air disturbance technologies. Stew-
art, Katz, and Murphy (1984) assess the value of weather information in the Yakima Valley
of central Washington, in the context of frost prediction and air disturbance technologies.
This descriptive study was published in the Bulletin of the American Meteorological Soci-
ety. Searching the EconLit database for “frost” in article titles returns only four results
involving actual frost in agriculture, none dealing with temperature altering. A search in
the abstracts of papers published by the American Journal of Agricultural Economics results
in two papers, neither mentioning air disturbance technologies. The seeming dis-interest in
these technologies is even more peculiar in 2019, when weather information is more accessi-
ble than ever: air disturbance systems are now sold with online communication to weather
services, with the option for automatic operation in case of frost, and can often be switched
on and off remotely. They are probably more efficient and valuable than ever before, given
advances in technology and the high value of certain frost-sensitive crops.

Technologies such as air disturbance are examples of a concept I call “Micro-Climate
Engineering” (MCE). These are relatively small interventions in temperature distributions,
limited in space and time, which aim to avoid the nonlinear effects of the extremes. The frost
examples discussed above deal with left tail effects. There are also technologies available to
deal with right tail effects, which is the focus of my last chapter.

The final chapter of this dissertation deals with an MCE proposal for California pista-
chios. Chapter 3 deals with the threat of warm winters on pistachios, estimating the potential
losses to this high value crop from climate change. Chapter 4 deals with a proposed solution.
The MCE technology proposed for this challenge is spraying the dormant trees with kaolin
clay, a non-toxic white substance which reflects the sunlight. Sprayed trees have been shown
to experience lower temperatures than control trees, and their yields were higher. This in-
tervention requires precise hourly measures of temperature, so growers can track the buildup
of special temperature metrics and decide if and how much treatment is required.

Using the pistachio yield-temperature response, estimated in the previous chapter, I build
a model that integrates MCE in the pistachio market. The model can be solved with and
without the option to use MCE, under various weather realizations. The value of MCE for
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California pistachios is calculated as the difference in welfare measures attained in each case.
The expected net present value of MCE in pistachios for 2020-2040 is assessed in billions
of US dollars. This is yet another example of the potential use of weather information for
dealing with climate change challenges in agriculture.

Micro-Climate Engineering might remind some readers of Geo-Engineering, a contro-
versial climate change adaptation concept. Geo-engineering proposals involve global scale
interventions in the atmosphere and hydrosphere that would revert some of the changes
in the total temperature distribution worldwide (Irvine et al., 2016). In contrast, MCE is
a small scale concept, aiming to tweak the temperature tail distributions where necessary
rather than shifting the entire distribution year round. Many MCE technologies already
exist and are used by growers, making sense both on the technical and economic dimensions.
I believe many more examples are out there to be found, and many more will evolve as
growers adapt to climate change.
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Chapter 2

Assessing The Gains From Public
Weather Information: the case of
CIMIS

2.1 CIMIS and California agriculture

This chapter assesses the gains from a weather service provided by the California Depart-
ment of Water Resources (DWR): the California Irrigation Management Information System
(CIMIS). Established in 1982, it now comprises of hundreds of weather stations, scattered in
many of the growing regions in California, and centralized computing systems for distribut-
ing the information and interpolating data between the stations. The intended purpose of
CIMIS was to provide accurate real-time information for growers to optimize irrigation and
save water. Specifically, many CIMIS stations include evapo-transpiration (ET) sensors,
applied on specially maintained turf. Agronomists have been publishing crop coefficients,
which serve to transform the turf-based ET measures for use in various commercial crops.
This way, growers can estimate how much water has been used by their plants, and plan
replenishment of soil moisture accordingly. CIMIS also reports other weather variables, such
as temperature, relative humidity, wind speed and direction, and soil temperature at the
station. It does not offer forecast services.

CIMIS has become a staple of agricultural practice and research in California. Searching
for it on Google Scholar results in 2,860 entries for articles and publications. The gains
from CIMIS have previously been analyzed by a team of researchers from the University of
California – Berkeley (Parker et al., 1996), and the findings were published widely (Cohen-
Vogel et al., 1998; Parker et al., 2000). This report used a survey methodology, and found
a 13% applied water reduction with CIMIS, 8% yield increase, and a total economic gain of
$32.4 million yearly. The 1996 report also found some examples of unintended use of CIMIS,
which in fact delivered a substantial portion of the gains. For example, while the system
was mainly designed for improving irrigation performance and water saving, the researching
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team found that there are many gains from CIMIS use in pest management. CIMIS detailed
temperature data are used to calculate pesticide application timing, reducing the amounts
of pesticide and increasing yields.

This chapter presents and analyzes the main findings from a more recent report, prepared
for DWR by David Zilberman, Itai Trilnick, and Ben Gordon. This report was meant to
update the knowledge on the current uses and users of CIMIS, its economic gains, and
potential future improvements. The full report is yet in the writing process. However,
several patterns and conclusions can already be drawn, and are presented in this chapter.

2.2 Methodologies

The study is based on a survey of CIMIS users. Before running the survey, extensive
interviews were held with various users to gather narratives about the roles of CIMIS in
different contexts. These interviews provided a first qualitative picture of current CIMIS uses
and interactions with other technologies and practices. They suggest that CIMIS has indeed
become a mainstay in California agriculture, especially for growers relying on drip irrigation.
However, many farmers access CIMIS indirectly through consultants, and might not be aware
of the uses and benefits of the system. With the advance of alternative decision making tools
(weather stations, soil monitors, etc), CIMIS is now part of a larger information eco-system.
The interviews showed that the public availability of CIMIS data, including historic records,
are highly regarded among users. This historical and cross-sectional information store is
extremely valuable for decision-making and research. It is essential for calibrating other
weather tools, verifying their results, and designing water management schemes that require
knowledge of the historical distribution of weather variables. In addition, it may even be
used to more accurately value farmland.

Interviews were followed by a small survey, carried out by phone and aimed at assessing
the initial insights from the interview. The final step was a full scale online survey, sent
to all registered CIMIS users. Results from this survey are the basis for economic value
calculations.

2.3 Survey details

The electronic survey was designed together with the CIMIS team, considering the results
from the initial phone survey. It was decided to try and survey all registered CIMIS users,
sending invitations to the email addresses used for enrollment. This might not cover all
existing users: some might still be getting information through a third party, such as a
consultant or media sources. There are also some electronic services which do not require
registration, such as a File Transfer Protocol (FTP) enabled server run by CIMIS. To survey
potential users who are not registered, as well as potential users who are not currently using
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CIMIS, an invitation to participate was also sent by email to mailing lists provided by the
CIMIS team.

The survey included some general questions, directed to all audiences, and questions
tailored to specific user groups identified in the initial survey: growers, consultants, users in
landscape management, regulators, researchers, and others. The CIMIS team decided that
the survey will not include direct questions about water use, costs, and willingness to pay
for CIMIS services, especially when addressing growers. These questions were deemed too
intrusive, jeopardizing both the response rate and general trust of users in the CIMIS system.
This meant that a direct WTP approach, like the ones used in the previous study of CIMIS
and the one used by Anaman and Lellyett (1996), would not be possible. Most questions
were framed either in Likert-like scales or as a relative response (e.g. percent water saved).
The analysis of the results uses indirect assessing of CIMIS impacts, using these types of
responses and outside information.

The online survey was done on a commercial platform, Survey Gizmo. It is worth noting
that most registered users are not active. In fact, CIMIS user statistics show that a relative
small percent of registered users had logged in and extracted data from the system in the
year before the survey. Altogether, we have 3,057 responses, out of which 2,358 are complete.

2.4 General Results

The breakdown of self-reported user types is listed in Table 2.1. About 1/4 of our re-
spondents report their primary activity, as it relates to CIMIS, to be agriculture. The
second largest category is “other”, encompassing a mix of respondents who, in our opinion,
should have picked another definition, and a few others who seem to use the data for personal
research. This category has gardeners, nursery workers, water consultants, government work-
ers, and a few retired people working on individual projects. We did not reclassify obvious
mis-responses, as that would not change the fact that they ended up answering a different set
of questions than their “real” category. The third category is government workers, followed
closely by research, environmental consulting and landscape management.

About 60% of respondents are aged 45 and above, and only about 17% are aged 25-35.
While this might be the result of the age distribution in the major fields of occupation which
are potential CIMIS users, it could also be that the current interface of CIMIS caters less to
younger potential users who might seek the data elsewhere. About a quarter of respondents
are women, and their share decreases at higher age groups. This probably reflects the
changing labor force characteristics in CIMIS related professions over the past few decades.

In terms of geographic location, most respondents (80%) report only one area of activ-
ity, with the San Joaquin Valley leading the count. Figure 2.1 below shows the shares of
respondents in each region. Note that we allowed more than one response for location.

We ask all respondents to rank each type of data, offered by CIMIS, according to the
frequency they search for it. Figure 2.2 shows the breakdown of answers for each of the
frequency choices. ET and precipitation are large shares of the “often” column. These
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User Type Count Share
Agriculture 599 25%
Other 352 15%
Government 297 13%
Research 284 12%
Environmental design / consulting 241 10%
Landscape management 217 9%
Water district 163 7%
Student 105 5%
Commercial / Industrial 51 2%
Golf course management 49 2%

Table 2.1: Respondent counts for the online survey.

Figure 2.1: Counts of responses for location of CIMIS related activities.
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shares decrease when moving in the “never” direction. On the other hand, one can observe an
opposite trend for insolation (sun radiation), soil temperature, and relative humidity, which
seem to be of less interest for respondents. Interestingly, air temperature seems less correlated
with the frequency response, with response rate for “often” lower than “sometimes”. This
could stem from the use of air temperature data: while irrigation requires using ET data
often, air temperature data applications might require less frequent data pulls.

Figure 2.2: Response rates for frequency of each weather measure offered by CIMIS.

Respondents seem satisfied with CIMIS services. About 72% of respondents reported
using CIMIS at least occasionally. The user types reporting “often” using CIMIS the most
were Agriculture, followed by Golf Course Management and Water Districts. These user
types are indeed likely to use CIMIS on a day to day basis, at least for some part of the
year. In research and planning, on the other hand, one might use CIMIS to draw data only
at an initial stage of a given task. In general terms, of the respondents who report using
CIMIS to some extent, 77% say it is at least “moderately important” for their operations,
with 22% reporting CIMIS as “extremely important”. The frequency of use and importance
scores are positively correlated: frequent users also report high importance of CIMIS to
their operations, which makes sense. The correlations between frequency and satisfaction,
and between importance and satisfaction, seem less pronounced. There might be users who
use CIMIS infrequently, perhaps because only a smaller part of their tasks involve the weather
or climate information provided. Nevertheless, they seem satisfied with CIMIS services, as
the satisfaction scores are relatively high.

We also asked respondents to rank factors which hinder further use of CIMIS. Various
answers were provided, given the results of initial surveys, and there was also room to specify
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other answers. Two main concerns exist, especially for users in agriculture: how reliable is
the data and how to integrate it into existing systems and practices. Many growers and
consultants in agriculture complement CIMIS with other data sources, such as soil moisture
sensors, irrigation logs, and flow meters. Integrating information from multiple sources into
decision making is a challenge faced by virtually all growers.

2.5 Economic gain assessments

Agriculture

599 respondents, about a quarter of our survey, reported agriculture to be their primary
business. Out of these, about half (331) work on one farm, and the rest (267) are consultants
of sorts (i.e. work on many farms). 89% of respondents in agriculture report using CIMIS
to some extent. Growers and consultants were asked to report their total acreage, selecting
into pre-determined ranges. Summing these, we have 318,156 acres covered by growers, and
almost 3 million acres covered by consultants.

Many of the questions for growers and consultants were similar. One notable exception
is regarding water use. The team decided not to ask growers how much water they use,
fearing that growers would not want to share this information and would not finish the
survey. However, consultants were asked how much water their clients use on average. This
question was presented in the online survey as a slider bar, with a default at the lower bar
(0.5 AF/acre), and an option to check a “Not applicable” box. This box was not checked very
often. Instead, it seems like many consultants who did not want to answer this questions left
the slider bar at the default value of 0.5 AF/acre. This is a very low value for irrigated crops,
and we assume that all these responses are basically non-answers. Ignoring them, the average
reported water use is 2.96 AF/acre per year (0.94 standard deviation, over 152 responses).
This seems like a very reasonable distribution for water use in irrigated crops. Indeed, the
USDA’s most recent Farm and Ranch Irrigation Survey (2013, Table 4: “Estimated Quantity
of Water Applied By Source: 2013 and 2008”) reports a total of 7,543,928 irrigated acres in
California, with a total of 23,488,939 AF of water applied, and a resulting average water use
of 3.11 AF/acre, only a minor deviation of the reported average.

Given the responses from agricultural consultants, we seem to have captured a very large
portion of the drip irrigated acres in California. As a baseline for valuation, we will use
the total 2013 drip irrigated acreage from the USDA survey, 2.8 million acres. While some
growers might use CIMIS with gravitational or sprinkler systems as well, our understanding
of the qualitative and quantitative responses is that CIMIS is mostly important for drip. We
exclude the potential of CIMIS values on non-drip acreage, noting that our estimates would
therefore be conservative in that sense.
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Water savings

Growers in our survey reported an average CIMIS water saving effect of 24.2%. The
reported saving rates seem to be distributed evenly among crops and grower acreage. The
average water saving rates reported for consultants is 21.5%, a slightly lower rate than the
growers, but this difference is not meaningful in an economic or statistical way. Figure 2.3
plots the distributions of reported savings by growers and consultants, with very similar
means and medians. Regressing the reported savings rate on all user types, one cannot
reject the null hypothesis that the mean water saving effect is equal between growers and
consultants with 95% confidence (see Table 2.2 for the results). Since each group deals with
different acreages, we interpret this result as lack of substantial economies of scale in water
saving by CIMIS.

Figure 2.3: Box plots describing distribution of reported water savings with CIMIS. The
box contains the 25-75 percentile observations. The bold horizontal line is the median. The
triangles show the average for each group.

For a conservative estimate, we take the lower estimate as our representative saving
effect. The average annual water use in the survey was 2.94 AF/acre, slightly lower than the
California average in the USDA survey for all irrigated land. That same survey also reports
that the average water use by drip irrigation is 2.5 AF/acre . We use this datum, which leads
to more conservative results. Considering 2.8 million acres of drip irrigated land, with 2.5
AF/acre, the total water use in drip irrigation is 7 million AF per year. The (conservative)
water saving rate of CIMIS is 21.5%, and this water use already incorporates it. Therefore,
the amount of water which is saved by growers who use CIMIS is estimated at 1.92 million
AF per year, or about 8.2% of the total water used for irrigation in California in 2013.
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Reported Water Savings (percent)

Consulting −2.62∗

(−5.43, 0.19)

Golf Course Management −2.65
(−7.94, 2.64)

Government −2.70
(−6.42, 1.02)

Landscape Management 6.07∗∗∗

(3.16, 8.97)

Research 1.16
(−2.65, 4.97)

Water District −0.67
(−5.04, 3.70)

Constant 24.08∗∗∗

(22.23, 25.93)

Observations 692
Adjusted R2 0.04
F Statistic 6.33∗∗∗ (df = 6; 685)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.2: Regression of reported water saving percent with CIMIS on user categories.
The excluded category (constant) are growers. The numbers in parentheses are the 95%
confidence interval of the coefficients.
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The “net” economic value of this water saved with CIMIS is the sum of expenditures
that would have been incurred by growers if they were to purchase them. This assumes that
this water could have been purchased (i.e. there would be enough water), that the price
would be set at some level, and that the demand for water by growers is perfectly inelastic.
The first and last assumptions seem reasonable, at least for an approximation. Assuming a
water price, we can therefore multiply the amount of water saved by that price to get the
“net” or intensive gains. However, water markets are not established enough in California to
determine a single benchmark price for this calculation. In an evaluation of drip irrigation,
Taylor, Parker, and Zilberman (2014) use a range of water prices to assess monetary gains
from water savings. They use a lower price of $80/AF, high price of $220/AF, and an average
price of $150/AF. However, during the drought in 2014, prices as high as $1,100 per AF were
reported in the media (Vekshin, 2014). For the estimated 1.92 million AF of water saved
with CIMIS, these prices imply monetary savings of $154 - $422 million, depending on the
water availability which would determine the price. On a severe drought year, the saving
could reach up to $2,112 million.

GDP gains from extra water in agriculture

The monetary cost of water saved can be viewed as savings on the intensive margin. One
can also consider gains on an extensive margin. The water saved by use of CIMIS is likely
to be used in agriculture as well. This means more acres can be grown with the same initial
amount of water. The “full” economic value of the water saved by CIMIS in agriculture is
the value of agricultural output that can be produced with it on acres not irrigated before.

This following analysis includes the economic value of growing alone, without the added
values of post-harvest and economic multiplier effects, and probably a safe lower bound. We
do not, however, include a counter-factual productivity of non-irrigated land. In California,
this is probably range land or acreage that is too sloped for traditional irrigation methods,
and therefore of very low economic productivity.

With 1.92 million AF of water saved by CIMIS, and an average use of 2.5 AF/acre
by growers (assuming the water goes to drip irrigated crops), the savings from CIMIS can
water an extra 768,000 acres in California. To put this in context, this is about double
the total walnut acreage in 2016. Because of economic and technical constraints of water
transport, it is hard to determine which crops would be planted in these extra acres. A
conservative approximation assumes that the water saved by CIMIS serves to replicate the
existing distribution of crops (rather than adding acres to the highest value crops), taking the
average value of productivity of an acre as the benchmark. The weighted average of grower
revenue per acre in 2016 (not including pasture and crops with less than 5,000 acres in total)
was $3,757 per acre1. Multiplying by 768,000 acres, a conservative approximation for the
contribution from CIMIS to California’s GDP via agriculture is about $2.89 billion. This
number may appear very high, yet this calculation took various conservative assumptions:

1Author’s calculations based on crop report data by the California Department of Food and Agriculture.
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in the calculation of the water saved, in assuming the value of extra acreage, and in not
including post-harvest added value and multiplier effects. To be even more conservative,
let us assume that the elasticity of demand for the products grown on these extra acres is
-2. That is, an increase of 1% in quantity would drop the price by about 0.5%. This is
a reasonable estimate for elasticities of high value crops (e.g. the elasticity of demand for
pistachios is about -1.5). The resulting extra income for growers is then about $1.44 billion
dollars.

Yield effects

CIMIS allows for more precise irrigation, which means not only saving water but also
increasing yields: water application can be adjusted to the plant requirements, which might
depend on the weather and growing phase. We ask growers and consultants how does CIMIS
contribute in increasing yields, ranking from 1 (“None”) to 5 (“A lot”). How should we
quantify these ranked contributions? Taylor, Parker, and Zilberman (2014) mention average
yield effects of drip irrigation, ranging between 5% and 25% increase in output. This extra
yield effect is explained by allowing for more consistent soil humidity and the precision of
the irrigation. This aspect of drip depends on weather and ET information, such as the
one provided by CIMIS, to assess the water intake by plants and the appropriate amount of
water required. We calculate an average yield effect of CIMIS by reconciling the respondent
rankings with a portion of the yield effects from drip irrigation. For a lower estimate,
rankings between 1 and 3 (“Somewhat”) are attributed 0% yield effect, and the rankings of
4 and 5 get 5%. For a higher estimate, ranking of 1 gets 0% yield increase, ranking of 2
and 3 get 5% yield increase, and the rankings of 4 and 5 get a 10% yield increase. These
percent yield effects are then averaged among the respondents. We aggregate growers and
consultants with equal weights. 41% of respondents rank the importance of CIMIS for yield
effects at 4-5. The low estimate for yield contribution of CIMIS results in 2% output increase,
and the higher estimate at 5.9% increase. At a conservative estimate of per-acre income of
$3,757 for growers, this represents an extra yearly income of $76 - $222 per acre. For the
2.8 million acres using drip irrigation, this would account for $213 - $622 million yearly from
the contribution of CIMIS to yields. Assuming again the demand is elastic with a coefficient
of -2, these estimates would halve to $107 - $311 million.

Quality effects

Weather data can have quality effects on crops. For example, using ET data and drip
irrigation, the quality of tomatoes (measured by sugar content) can be increased by controlled
irrigation deficit in proper timing. For tomatoes grown under a contract, reaching threshold
quality levels raises the price received by the grower (Ayars, Fulton, and Taylor, 2015).
Another potential use of weather data is in pest control, avoiding not only yield loss but
quality degradation as well. These two examples reflect a relationship between quality and
price that has long been established in the literature (Parker and Zilberman, 1993). To
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assess the contribution of CIMIS to quality, we also asked respondents to rank it from 1
(“None”) to 5 (“A lot”). We assume that a score of 4-5 represents a quality index resulting
in a price increase of 5%. About 45% of all respondents (growers and consultants) report
a score of 4-5. The average price increase due to quality is therefore 2.2%, or $83 per acre.
For 2.8 million acres, this results in a total increased revenue of $231 million. Note that this
price (and revenue) increase is due to quality improvement, and thus not accompanied by a
quantity reduction in our analysis.

Landscaping and Golf

These are gains from water saving in parks, golf courses, and gardens. They were assessed
as a small portion of the total gains from CIMIS in the 1996 report by Parker et al., totaling
about $2.3 million (equivalent to about $3.8 million in 2019). Our current estimate for these
gains is much higher. The discrepancy from the 1996 report is due to several factors. First,
we believe to have reached out to more respondents in this sector. Second, water prices in
California have gone up substantially. Third, there might be more use of CIMIS and smart
irrigation planning in the sector compared to 20 years ago.

We focus on responses from landscape managers and golf course managers. They report
their operating acreage (selecting one of several provided ranges), the average water use,
and the estimated saving rate by using CIMIS. We have 28 respondents in golf courses with
6,750 acres in total, and 137 respondents in landscape management with 179,000 acres. The
total sum is about 21 times the acreage of the equivalent category in the 1996 report.

Based on the initial interviews, we grouped them into a single user category, but still
asked them to select into landscape or golf later in the survey. Table 2.2 proved us wrong.
Surprisingly, it turned out that the users in landscape management reported much higher
water saving rates with CIMIS. This could potentially be explained by technology: big
turf areas are still likely to be irrigated with sprinklers, which allow lower savings rates
even if CIMIS is used for optimal water calculations. On the other hand, a lot of non-turf
landscaping might be irrigated with drip.

The total amount of water, saved yearly with CIMIS according to our respondents, is
220,707 AF. Water prices for these types of users are much higher than in agriculture. We
can use the municipal water rates to get an estimate of the monetary savings. The EBMUD
rates, effective 2018, are $5.29 per 100 cubic feet (“All Other Accounts” – nonresidential)
or $4.12 for non-potable water. The Los Angeles Department of Water and Power charges
commercial, industrial and governmental users by tiers. For January 2019, the tier 1 rates
are $5.264 per 100CF, and tier 2 rates are $8.667. The specific tier 1 allotment is set for each
user. However, some non-profit users might get rates as low as $2.095 for tier 1 and $3.595 for
tier 2. For comparison with agriculture, note that the lowest rate cited above for municipal
water is more than four times higher than the “high” rate for agriculture in Taylor, Parker,
and Zilberman (2014). The spread of prices, even within municipalities, suggests that they
might not reflect the marginal cost of providing water to consumers. However, water utilities
(public and private) have regulated rates and usually work on a “cost plus” basis, such that
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the water rates should reflect their real average cost. These rates can therefore be used to
assess the economic gains from water savings.

The different municipal rates serve to construct bounds for our estimates. This first
order approximation does not take into account the potential elasticity in water demand, or
the potential effect of CIMIS in lowering residential water pricing by curbing down demand.
However, we think they are good benchmarks and could definitely serve as an estimate for
order of magnitude. The lower rate is the LADWP non-profit rate, which might not apply
for many CIMIS users. Assuming nobody exceeds their tier 1 allocation, the value of water
savings amounts to $201 million per year. For a higher EBMUD rate of $5.29, the savings
amount to $509 million per year. For a reasonable upper bound, assuming we are in Los
Angeles and 90% of the water consumption is in tier 1 (i.e. we exceed the initial allotment
by 10%), the sum is $539 million.

Unlike the case of agriculture, we do not believe the survey responses in this category
have captured all (or nearly all) the relevant acreage. Neither do we have a good sense of
the total relevant acreage in California, which could indicate by what factor these estimated
gains could be extrapolated. However, the sums are substantial as they are. We take them
as our total estimates for gains from CIMIS, noting that they are an under-estimate in this
sense.

2.6 Discussion and conclusions

This chapter analyzes the gains from CIMIS, focusing on agriculture and some urban
uses. The gains are much higher than the ones found in the 1996 report. This is partly
due to increased economic activity in general, but probably has to do with more adoption
of smart irrigation as well. The total yearly gains in agriculture range between $492 million,
taking only the intensive margin effects, and up to about $1,982 million considering the extra
acres that can be grown with the saved water. A surprisingly large sector using CIMIS is
landscaping and golf courses, with yearly monetary savings of at least $201 million for our
survey sample alone.

Several other user types were included in the survey, indicating a substantial role of
CIMIS in areas crucial for California’s economy. Respondents use CIMIS to plan drainage in
agricultural and urban settings, taking advantage of CIMIS historic rainfall records. CIMIS
is used for water budgeting and even pricing. Researchers in the public and private sector
use CIMIS for diverse purposes, from basic research to calibration and verification of other
weather related products. These are just a few of many additional uses of CIMIS we know
about, but do not quantify here due to the complicated methodological framework required.

The economic gains from CIMIS surely surpass the ongoing costs of a system with less
than a dozen employees. However, could these gains be achieved by the private sector?
The decreasing costs of weather sensors mean that growers and other users could potentially
access precise data on their own. If we wanted a cheap weather station, costing about
$1,000, for every 1,000 acres of drip irrigated land in California, the total cost would surpass
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$2.8 million, plus some ongoing costs for maintenance. This, however, would prevent many
benefits from the centralized aggregation of data and the historical records that are crucial
for research and planning, as one could not assure that aggregation of the data from all
these separate private stations would occur. While several online aggregators of weather
information exist, many rely on the public information provided by networks such as CIMIS
and other government bodies such as airports and air quality monitoring systems. It is not
obvious that private aggregators would be profitable if they had to purchase this information,
or what their WTP would be. Moreover, the ET measurements which many growers use are
usually not captured by commercial stations, and there are concerns regarding the reliability
of ET approximations by other variables. The development of satellite technology might
change these conditions in the future.
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Chapter 3

Estimating The Impact Of Heat On
Pistachio Yields: Small Panel Meets
Big Data

3.1 The challenge with a perennial crop

This chapter deals with the non-linear effects of temperature on yields in California pista-
chios (Pistachia vera). Dealing with a perennial crop presents challenges rarely encountered
in research on crops such as corn, soybeans, and rice. A first challenge has to do with bi-
ology. Annuals are grown from seed every year. Each yield observation is treated as an
independent draw from a distribution. Some adjustments for spatial correlation might be
taken, but the interactions of consecutive yields, e.g. via pest build-up or changes in soil
chemistry, are mostly overlooked.1 Perennials, on the other hand, do experience yield effects
of factors such as tree vintage, carry-over from past years, and alternate bearing patterns.
These processes are responsible for some of the factors obfuscating the real relationships
between temperatures and nut yields (Pope et al., 2015). Altogether, the potential for sta-
tistical noise, stemming from correlations between error terms, is much higher in perennials
than annuals.

A second challenge is that temperature might affect yields not only in the growing season
and not only via the common implicit “heat stress” mechanism. For perennials, temperature
effects might be greatest before or after fruit bearing time. This chapter deals with the
effects of temperature on pistachios during their winter dormancy phase. The following
brief explanation of dormancy is based on Erez (2000). Many fruit and nut trees, including
pistachios, have a dormancy phase during winter. This phase is an evolutionary adaptation,
allowing the tree to “hibernate” and protect sensitive organs while harsh weather conditions
take place. Trees prepare for dormancy by storing energy reserves, shedding leaves, and
developing organs to protect the tree buds. Once a tree went into dormancy, it needs to

1This might not be a bad approximation with the common application of pesticide and fertilizer.
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calculate when to optimally “wake up”. Blooming too early might expose the foliage to
frost. Blooming too late means not taking advantage of available resources (sunlight), and
eventually being out-competed. Trees use environmental signals to trigger bud breaking
and bloom. These signals involve day length and temperatures. Failure to attain threshold
signal levels, varying between crops and varieties, leads to late, low, and non-uniform bud
breaking, which is linked to low yields at harvest. This threshold mechanism means that
small changes in the temperature distribution can have large effects on yields, especially in
the warmer areas where the chances of not reaching the threshold signal are higher.

Several agronomic models exist for this dormancy exit mechanism and the role of tem-
perature in it. The Dynamic Model (see Fishman, Erez, and Couvillon, 1987b,a; Erez et al.,
1989) seems to be the most precise in predicting bloom in many temperate areas such as
California (Luedeling, 2012). This model uses a metric of chill portions (CP), which are cal-
culated with a vector of hourly temperatures. The formula is sequential, mimicking chemical
dynamics which depend on the concentrations of substrate and product. Chill portion build
up depends on these concentrations and the ambient temperature. Roughly speaking, when
temperatures go above 6oC, accumulation slows down. When temperatures exceed 15oC,
the process reverses, and the CP count quickly drops to the last integer portion that has
been “banked”. Thus, rising winter daytime temperatures can have a detrimental effect on
chill count, even if the temperatures themselves are not extreme on the yearly distribution,
because they interfere with the build-up of chill portions. This mechanism is an example of
the complex modeling issues, from the biology perspective, when dealing with perennials: it
require crop specific agronomic knowledge, and the CP build up model makes it impossible
to assess the marginal effects of certain temperatures, as CP are not linear in degree hours.

A third challenge with some perennial crops is the limited information on yields. Hetero-
geneity in local weather conditions increases the statistical power of traditional yield panels
in annuals, with acreage spreading over many geographic regions. California pistachios, on
the other hand, are concentrated in the southern part of San Joaquin Valley. Moreover, they
are planted in areas where the climatic conditions are mostly beneficial for them. Few events
of adverse weather exist on record, which can be used for analysis. Therefore, the variance
in CP in our range of interest is even more limited.

The issue of limited information also has to do with the size of reporting units in the
available data. The California Department of Food and Agriculture, as well as the US De-
partment of Agriculture, usually report average yields on the county level. If the counties are
large, compared to the growing area, few observations will be generated, and the averaging
process will get rid of useful extreme observations on the sub-county level. The aggregated
reporting problem, together with crop concentration, limits the possibilities of traditional
econometric analysis on crop yields. I address this problem here for California pistachios,
but the challenge might prove a barrier for research on other crops as well. Consider not
only high value commercial crops concentrated in a few California counties, but also “orphan
crops”: local crops which have received less attention from researchers and the private sector,
yet generate substantial nutritional value for low income communities in developing coun-
tries. The African Orphan Crops Consortium, an initiative to promote research and use of
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these crops in Africa, list 101 crop of interest on its website, many of them perennial.2 Cullis
and Kunert (2017) note that orphan crops “...are poorly documented as to their cultivation
and use, and are adapted to specific agro-ecological niches and marginal land with weak or
no formal seed supply systems”. Research on specific orphan varieties might therefore suffer
from the same challenges of California pistachios: biological complexity, concentration of
growing acreage, and few data reporting units.

In this chapter, I combine two approaches to estimate the yield response of California
pistachios to winter CP count. The first approach is a “big data” one: I enhance a California
yield panel of five counties with local temperatures at the pistachio growing areas. I use
satellite data and temperature readings from local weather stations to create a large data
set that can be connected with the yearly yields. Substantially increasing the number of
explanatory variables, this allows for more nuances observations. The second approach is
an aggregate estimation methodology, previously used in agricultural productivity literature
but –to my knowledge– not yet explored in climate literature. This approach notes that
the (aggregated) observed outcome variable is a mix of unobserved sub-unit heterogeneity
in the data generating process. Information about this heterogeneity is used to recover the
relationship between temperatures and yields.

The result of this exercise is the first successful recovery of the nonlinear yield response to
winter chill in commercial pistachio production. I apply my findings to climate predictions
in the current growing areas to show the potential impact of climate change on California
pistachios in the next 20 years, and predict that a significant decline can be expected.

3.2 Recovering Information With a Small Panel

The challenge is recovering information on the yield response to winter CP with a small
panel. Just for comparison, Barrows, Sexton, and Zilberman (2014) estimate the yield
effect of genetically engineered (GE) traits (two parameters) for cotton in a panel of 1,900
observations. Schlenker and Roberts (2009) have a main specification for corn with 16
temperature parameters (intervals of 3oC) on a US county panel with 105,981 observations.
Both studies also include a few more parameters and fixed effects which take more degrees
of freedom, but still allow for meaningful estimations. My California pistachio panel has 51
CP measures and 165 observations (5 counties over 33 years).

Suppose we actually had sub-county yield data for pistachios (these could be individual
orchards), so we could match a yield observation to each local temperature observation.
Following the pest control literature (e.g. Zilberman et al., 1991), the yield can be modeled
as a potential yield (PY ) times a function of the temperature and an error term.

Y ieldi,t = f(Ti,t) · PYi,t · eεi,t (3.1)

log (Y ieldi,t) = log (f(Ti,t)) + log (PYi,t) + εi,t (3.2)

2http://africanorphancrops.org/meet-the-crops/

http://africanorphancrops.org/meet-the-crops/
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The potential yield is the (average) yield that would have been attained with zero damage
temperatures. Note, this is not the maximum yield, but the average yield that would be
attained with zero damage stemming from our input of interest. This does allow this average
yield to be lower than an “ideal” yield, as the crop might experience sub-optimal levels of
other inputs even when the damage from pests or temperature is zero. In fact, the setup
assumes that damages from temperature are orthogonal to damages from other factors (e.g.
alternate bearing, pests, etc.).

The log form, which also approximates the effect of temperature as percent change in
yield, allows us to separate the temperature effect from background potential yield and noise,
and estimate it by OLS or similar methods. What happens if we only have the aggregated
yields on the county level? Barrows, Sexton, and Zilberman (2014) deal with a similar
question when estimating the yield effect GE varieties in cotton, corn, and soybeans. They
have a panel of country level yields, but these are not partitioned to GE and non-GE yields.
However, they do have the shares of GE and non-GE planted acres in each country. treating
the total yields as weighted averages of the GE and non-GE yield, they can estimate the
yield effects of GE traits using OLS.

The problem here is similar. I only have county level yields for pistachio, but I do have
the shares of each county experiencing various CP levels. The total effect of temperature
on the county level is the average of its effects on the individual orchards, weighed by their
acreage share. This turns out model into:

log (Y ieldc,t) = log

(
86∑

CP=36

Φc,t(CP ) · f(CP )

)
+ log (PYc,t) + εc,t (3.3)

where CP is the winter CP count, ranging from 36 to 86 in my data, and Φc,t(CP ) is the
share of county c in year t that experienced that CP count. These are my weights. Ideally,
I could estimate the first RHS expression by a non-parametric binned regression, and get
the average treatment effect of each CP level. However, in a small panel setting and with
numerous CP values, there might not be enough statistical power to estimate an equation
such as:

log (Y ieldi,t) =
86∑

CP=36

Φ(CP )i,tβ)CP + log (PYi,t) + εi,t (3.4)

with different parameters β)CP for each chill portion level. The high resolution in the
CP share variables is necessary, however, if we want to determine the shape and location
of a non-linear effect. I need to reduce the dimensionality of the problem without getting
rid of my specific county shares at each CP. Two solutions are applied here: structural and
polynomial.
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Structural Estimation

The structural approach follows the original potential yield setting. When PY is viewed
as the zero (relevant) loss yield, the function f(·) becomes a net-of-loss function, ranging
between 0 (no yield remaining) and 1 (potential yield attained). In practice, however, the
potential yield is unknown, and researchers will often use a fixed-effects setup to model
the heterogeneity in potential yields between countries or regions. For example, Barrows,
Sexton, and Zilberman (2014) motivate their model with an “expected efficacy” function that
is bounded in [0, 1] (page 680) but later set up and run a linear fixed-effects model (page
687). This econometric practice is very common in many settings, but since the potential
yield is no longer modeled as an expected maximum, the function f(·) can no longer be
interpreted as a net-of-loss damage function which is bounded in [0, 1].

I suggest the following setup, which follows the original motivation more closely. The
agronomic literature, introduced more thoroughly in a subsequent section of this chapter,
looks at the yield response in pistachios as a satiated process. When the weather conditions
are too warm, there would be virtually no yield. When the weather conditions are cold
enough, yield would be normal (conditional on non-temperature factors). However, colder
conditions will not have further yield effects (within the scope of California climate). I
therefore take the potential yield to be the (county-decade) average yield, considering only
years when chill is deemed as sufficient by the existing literature in the entire county. This
would be equivalent to Barrows, Sexton, and Zilberman having a measure of pest infestation
on non-GE areas, and using the country averages yields when the infestation level is relatively
low as potential yield. For this, I take a CP level of 65, which has not been shown to reduce
yields in previous publications (e.g. Pope et al., 2015). Of my 165 observations, 101 serve
to calculate the potential yield, and 64 are not. The rate seems high, but it assures at least
two observations are used per county-decade to calculate the potential yield.

Now, the ratio of yield to potential yield in the panel should theoretically be bounded
between 0 (in very low chill) and 1 (when chill is optimal), with deviation from these bounds
attributed fully to the disturbance term.3 Assuming that this increase is smooth and mono-
tonic, the logistic probability function is a good candidate to model the process. Equation
(3.3) turns into:

log

(
Y ieldc,t
PYc,t

)
= log

(
86∑

CP=36

Φc,t(CP ) · P (CP | δ)

)
+ εc,t (3.5)

where P is the logistic probability of CP given the parameters δ. The logistic distribution
has two functional: location (which is also the mean and median of the distribution) and scale
(a second moment parameter, in fact a multiple of the distribution variance). This reduces

3Theoretically, at low chill levels the error term is bounded below as the ratio cannot be negative. This is
a potential violation of the zero conditional mean assumption (i.e. the expected error term might be positive
for low chill values). It seems like less of a problem with my aggregated data, where the minimal ratio is
0.195. In theory, the bias would attenuate the chill effects, making my estimates conservative.
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the dimensionality of the problem, as only these two parameters need to be estimated,
resulting in more statistical power. These parameters are found by non-linear regression,
minimizing the sum square errors:

(̂l, s) = argmin
l,s

∑
c,t

[
log

(
Y ieldc,t
PYc,t

)
− log

(
86∑

CP=36

Φc,t(CP ) · 1

1 + exp( l−CP
s

)

)]2
(3.6)

The numerical solution, minimizing the sum squared residuals in the model, is run in R
using the “nls.lm” function of the “minpack.lm” package (Elzhov et al., 2016).

Polynomial Regression

This approach follow the more standard procedure with fixed effects, where the yield effect
of temperature might not be bounded above by 1. The interpretation of the estimated effect
is the change in yield from the average growing condition. To deal with the dimensionality
challenge of equation (3.4), I approximate the effect of chill on log yields using a Chebyshev
polynomial, one of the approaches used by Schlenker and Roberts (2009) in their corn study.
The equation is:

log (Y ields,t) = Φ′s,t

2∑
j=0

γj ·U(j) + log (PYs,t) + εs,t (3.7)

where U(j) are vectors of the polynomial components values at each CP in [36, 86], and γj
are the coefficients to estimate. I center both the response and shares at each CP around their
averages to account for county-decade fixed effects. The coefficients are found numerically
using the same R package.

3.3 Pistachios and Winter Temperatures

California pistachios are a high value crop, with grower revenues of $1.8 billion in 2016.
The most common variety is “Kerman” (with “Peters” for male trees), and almost all the
California acreage is planted in five adjacent counties in the southern part of the San Joaquin
valley. In recent years, rising winter daytime temperatures and decreasing fog incidence
have lowered winter CP counts. Climatologists have concluded that winter chill counts
will continue to dwindle (Luedeling, Zhang, and Girvetz, 2009; Baldocchi and Wong, 2008),
putting pistachios in danger at their current locations.

To better predict the trajectory for this crop and make informed investment and policy
decisions, the yield response function to chill must first be assessed. This task has proven
quite challenging. The effects of chill thresholds on bloom can be explored in controlled
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environments, but for various reasons these relationships are not necessarily reflected in
commercial yield data. For example, Pope et al. (2015) report that the threshold level of
CP for successful bud breaking in California pistachios was experimentally assessed at 69,
but could not identify a negative response of commercial yields to chill portions of the same
level or even lower. They use a similar yield panel of California counties, but only have one
“representative” CP measure per county-year. Using Bayesian methodologies, they fail to
find a threshold CP level for pistachios, and reach the conclusion that “Without more data
points at the low amounts of chill, it is difficult to estimate the minimum-chill accumulation
necessary for average yield.”

The statistical problem of low variation in treatment (effective weather) at the growing
area, encountered by Pope et al., is very common in published articles on pistachios. Simply
put, pistachios are not planted in areas with adverse climate. Too few “bad” years are
therefore available for researchers to work with when trying to estimate commercial yield
responses. An ideal experiment would randomize a chill treatment over entire orchards, but
that is not possible. Researchers resort either to small scale experimental settings, with
limitations as mentioned above, or to yield panels, which usually are small in size (i.e. small
number of yield reporting units), length (in years), or both.

Zhang and Taylor (2011) investigate the effect of chill portions on bloom and yields in
two pistachio growing areas in Australia, growing the “Sirora” variety. Using data from
“selected orchards” over five years, they note that on two years where where chill was below
59 portions in one of the locations, bloom was uneven. Yields were observed, and while no
statistical inference was made on them, the authors noted that “factors other than biennial
bearing influence yield”. Elloumi et al. (2013) Investigate responses to chill in Tunisia, where
the “Mateur” variety is grown. They find highly non-linear effects of chill on yields, but this
stems from one observation with a very low chill count. Standard errors are not provided,
and the threshold and behavior around it are not really identified. Kallsen (2017) uses a
panel of California orchards, with various temperature measures and other control variables
to find a model which best fits the data. Unfortunately, only 3 orchards are included in
this study, and the statistical approach mixes a prediction exercise with the estimation
goal, potentially sacrificing the latter for the former. Besides the potential over-fitting using
this technique, the dependent variables in the model are not chill portions but temperature
hour counts with very few degree levels considered, and no confidence interval is presented.
Finally, Benmoussa et al. (2017) use data collected at an experimental orchard in Tunisia
with several pistachio varieties. They reach an estimate for the critical chill for bloom, and
find a positive correlation between chill and tree yields, with zero yield following winters with
very low chill counts. However, they also have many observation with zero or near-zero yields
above their estimated threshold, and the external validity of findings from an experimental
plot to commercial orchards is not obvious.
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Data

Pistachio growing areas are identified using USDA satellite data (Boryan, Yang, and
Willis, 2014) with pixel size of roughly 30 meters. About 30% of pixels identified as pistachios
are singular. As pistachios don’t grow in the wild in California, these are probably miss-
identified pixels. Aggregating to 1km pixels, I keep those pixels with at least 20 acres of
pistachios in them. Looking at the yearly satellite data between 2008-2017, I keep those 1km
pixels with at least six positive pistachio identifications. These 2,165 pixels are the grid on
which I do temperature interpolations and calculations.

Observed temperatures for 1984-2017 come from the California Irrigation Management
Information System (CIMIS, 2018), a network of weather stations located in many counties
in California, operated by the California Department of Water Resources. A total of 27
stations are located within 50km of my pistachio pixels. Missing values at these stations
are imputed as the temperature at the closest available station plus the average difference
between the stations at the week-hour window.

Future chill is calculated at the same interpolation points, with data from a CCSM4 model
CEDA (2016). These predictions use an RCP8.5 scenario. This scenario assumes a global
mean surface temperature increase of 2oC between 2046-2065 (from a baseline of 1986-2005)
(IPCC, 2013). The data are available with predictions starting in 2006, and include daily
maximum and minimum on a 0.94 degree latitude by 1.25 degree longitude grid. Hourly
temperature are calculated from the predicted daily extremes, using the latitude and date
(procedure coded in R by Luedeling, 2017). I then calibrate these future predictions with
quantile calibration procedure (Leard and Roth, 2019), using a week-hour window.

Past observed and future predicted hourly temperatures in the dormancy season (Novem-
ber 1st to March 1st) are interpolated at each of the 2,165 pixels, and chill portions are cal-
culated from these temperatures. Erez and Fishman (1997) produced an Excel spreadsheet
for chill calculations, which I obtain from the University of California division of Agriculture
and Natural Resources, together with instructions for growers (Glozer, 2016). For speed, I
code them in an R function (Trilnick, 2018).

The data above are used for estimation and later for prediction of future chill effects. For
the estimation part, I have a yield panel with 165 county-year observations. For each year
in the panel, I calculate the share of county pixels that had each CP level. For example: in
2016, Fresno county had 0.4% of its pistachio pixels experiencing 61 CP, 1.8% experiencing
62 CP, 12% experiencing 63 CP, and so on. The support of CP through the panel is [36, 86].
Past county yields are from crop reports published by the California Department of Food
and Agriculture.

Figure 3.1 presents chill counts and their estimated effects in percent yield change for
two time periods: 2000-2018 and 2020-2040. The top left panel shows the chill counts in
the 1/4 warmest years between 2000 and 2018 (observed temperatures). The top right panel
shows the chill counts in the 1/4 warmest years in climate predictions between 2020 and
2040. Chill at the pistachio growing areas is likely to drop substantially within the lifespan
of existing trees.
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Figure 3.1: Chill and yield effects in the five main pistachio growing counties of California.
This figure shows data and predictions for the first quartile chill portion measure, i.e. the
warmest 1/4 years. Chill data for 2000-2018 is observed, and data for 2020-2040 is predicted.
The yield effect is calculated with the logistic function fitted to the data.
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3.4 Results

Results from the structural estimation are presented in Table 3.1. Both estimates for
the parameters of the logistic function are statistically significant. The point estimates
for location and scale are used to construct a logistic curve serving as my main functional
estimation. In Figure 3.2, the bold smooth line shows the point estimate curve, and the
shaded area is the 90% confidence area. Both are shifted down by one unit to portray the
negative effects compared to a high chill benchmark. The results show a visible yield decline
when CP go below 70, which is consistent with the experimental literature reporting bloom
inconsistencies below 69 CP. At 55 CP, which have only been experienced locally so far, the
loss is about 30%.

Parameters:

Estimate Std. Error t value Pr(>|t|)

[1,] 47.430 4.085 11.612 < 2e-16 ***

[2,] 8.202 2.546 3.221 0.00154 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3805 on 163 degrees of freedom

Number of iterations to termination: 7

Reason for termination: Relative error in the sum of squares is at most ‘ftol’.

Table 3.1: Output from structural model.

Results from the polynomial regression are presented in Table 3.2 . The first coefficient
is for an intercept term, and it is a zero with very wide error margins. This makes sense,
as centering around the means also gets rid of intercepts. The second coefficient (for the
Chebyshev component x) is positive, as we would expect, and statistically significant. The
third coefficient (for the component 2x2 + 1) is negative, as we would also expect since the
returns from chill should decrease at some point, but not statistically significant even at the
10% level. However, as dropping it would eliminate the decreasing returns feature, I keep
it at the cost of having a wide confidence area. With the estimated coefficients, I build
the polynomial curve that represents the effect of temperatures on yields. It is presented in
Figure 3.2 with a bold dashed line. The 90% confidence area boundaries are the dotted lines
bounding it above and below. Note that the upper bound of the confidence area does not
curve down like the lower one. This is the manifestation of the third coefficient’s P-value
being greater than 0.1.

In both cases, the confidence area was calculated by bootstrapping. The data was re-
sampled and estimated 500 times, producing 500 curves with the resulting parameters. At
each CP level, I take the 5th and 95th percentiles of bootstrapped curve values as the bounds
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Parameters:

Estimate Std. Error t value Pr(>|t|)

[1,] 0.000e+00 1.062e+07 0.000 1.00000

[2,] 5.698e-01 1.841e-01 3.095 0.00232 **

[3,] -2.216e-01 1.474e-01 -1.503 0.13471

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3617 on 162 degrees of freedom

Number of iterations to termination: 2

Reason for termination: Relative error in the sum of squares is at most ‘ftol’.

Table 3.2: Output from polynomial model.

for the confidence area. This approach also deals with the potential spatial (or other) cor-
relation in error terms. Another minor issue requiring the bootstrap approach is that the
implicit potential yield estimation (by the “within” transformation or manually averaging
yields of high chill years) should change the degrees of freedom in the non-linear regressions
when estimating the standard errors.

In the lower panel of Figure 3.2, a histogram of positive shares is presented. That is, for
each chill portion, the count of panel observations where the share of that chill portion was
positive. The actual shares of the very low and very high portions are usually quite low.
This shows the relatively small number of observations with low chill counts.

3.5 Discussion and conclusions

The two yield effects curves look very similar in the relevant chill range. By both es-
timates, the yield loss is very close to 0 at higher chill portions, and starts declining sub-
stantially somewhere in the upper 60’s, as the experimental literature would suggest. Inter-
estingly, the polynomial curve does not exceed zero effect, although it is not mechanically
bounded from above like the logistic curve. This probably reflects the fact that historically,
the average growing conditions has not deviated much from the optimal range. The “within”
transformation hence did not deviate the potential yield much from the optimum in this case.

At currently low chill portion ranges of 55-60, the effect is around −25%, again consistent
with the stipulation of Pope et al. (2015) that a significant effect threshold would be located
there. Considering alternate bearing and other factors contributing to the background fluc-
tuation in yields, it is easy to understand how such effects on relatively small areas within
the pistachio growing counties have not been picked up by researchers so far. Anecdotal
yield losses due to low chill have happened on relatively small scale and passed undetected
in the county-level statistics, especially when only one or two chill measures per county were
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Figure 3.2: Effects of chill portions on pistachio yields. The solid bold curve and shaded
area around it are the logistic fit with 90% confidence area (shifted down by unit to show
negative effects). The bold dashed line and finer dotted lines are the polynomial fit and
confidence area. The bottom panel shows the counts of observations with positive shares of
each chill portion.
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considered.
In this case, while the resulting curves are very similar, I find the structural approach

more convincing. First, it has a smaller confidence area, and therefore seems more precise.
Second, a polynomial of low order will not approximate the process described by agronomists
very well. However, estimating higher order polynomials results in estimates that are not
statistically significant.

The implications of my estimates for pistachio yields are depicted in the lower half of
Figure 3.1. The bottom left panel shows the effects on the 1/4 warmest years in 2000–
2018. They are mostly between 10-20% yield decline. These rates are easy to miss due to
substantial yield fluctuations in pistachios. What do these estimates mean for the future of
California pistachios? Prediction of yield effects for the years 2020–2040 are depicted in the
bottom right panel, again for the 1/4 warmest years in the 2020-2040. They show substantial
yield drops, which could amount to costs in the hundreds of millions of dollars. Chapter 4
in this dissertation explores the potential gains from a technology that could help deal with
low chill in pistachios: applying kaolin clay mixtures on the dormant trees to block sunlight.
Thee expected net present value of this technology is estimated at the billions of dollar in
economic gains. Considering my results, there may be significant gains from using these
technologies even in warmer years today.

Concluding this chapter, I want to stress the fact that even in the era of “big data” in
agriculture, data availability is still a challenge when estimating yield responses to temper-
ature in some crops, especially perennials and local varieties. Weather information required
for assessing potential damages and new technologies might not always be available for a
researcher. This chapter develops a methodology to recover this relationship, using local
weather data and techniques for dealing with aggregated observations. I use this setup to
empirically assess the yield effects of insufficient chill in pistachios, recovering this relation-
ship from commercial yields for the first time in the literature. I then look at the threat of
climate change to pistachio production in southern California. As winters get warmer, low-
ering chill portion levels are predicted to damage pistachio yields and disrupt a multi-billion
dollar industry within the next 20 years. These results were made possible by using precise
local weather data, applying relevant statistical methods, and using agronomic knowledge
in the modeling process. This approach for information recovery from a small yield panel,
with limited useful variability at first sight, could be useful for other crops as well.
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Chapter 4

Micro-Climate Engineering for
Climate Change Adaptation in
Agriculture: The Case of California
Pistachios

4.1 Micro-Climate Engineering

In the introduction chapter, I discuss the nature of temperature challenges posed by
climate change. The rising average temperatures, according to the empirical literature,
might not be the major source of potential loss. Rather, it’s the elongating and fattening
(right side) temperature distribution tails that would be responsible for much of the damage.

Could there be a way for farmers to target these tails directly? If so, such technologies
could have potential uses for climate change adaptation. It so happens that farmers already
deal with temperature extremes, and are capable of tweaking the tails of temperature dis-
tributions to avoid losses. The introduction already discussed “air disturbance technology”,
basically large wind generators, used to deal with some types of frosts (Hu et al., 2018).

Solutions for right side temperature tails exist as well. Of course, shading plants using
nets or fabric is an existing practice, but these technologies are costly and not very flexible.
However, other products that reflect sunlight and lower plant exposure to excess heat are
available on the market. Perhaps the most common ones are based on a fine kaolin clay
powder, which is mixed with water and sprayed directly on plants to form a reflective coat,
sometimes referred to as a “particle film”. These products have been commercially available
since 1999, and are shown to effectively lower high temperature damages by literally keeping
plants cooler (Sharma, Reddy, and Datta, 2015). Some manufacturers report a canopy
temperature reduction of up to 6oC when using their products. Spraying of this mix requires
special rigs and equipment, but the costs are reasonable, and far lower than setting up
shading in the form of nets (with or without frames). This technology can be thought of as
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cheap, disposable shading. Surprisingly, even though kaolin clay has been used by farmers
to deal with other problems, less related to climate change (e.g. sunburns on fruit), I could
find no economic literature discussing this technology. As with the case of air disturbance
technology, these types of technologies have mostly been ignored by economists.

One reason for this gap in the literature could be that economists have not yet realized
that these individual products and practices share a common conceptual framework: they are
tweaking temperature distribution tails, while leaving the main probability mass untouched.
This is an approach I call “Micro-Climate Engineering” (MCE). These are relatively small
interventions in temperature distributions, limited in space and time, which aim to avoid
the nonlinear effects of the extremes. Farmers know the available technologies for MCE and
use them regularly, but their potential applications for climate change have not really been
explored. The concept of MCE could be very important for climate change adaptation in
agriculture, especially when considering the role of extreme temperatures on predicted future
losses. MCE solutions, where feasible and profitable, could assist in preserving current crop
yields and delaying more costly adaptation strategies.

This chapter sets to explore the concept of MCE in general, and assess the gains from
MCE in California pistachios as a case study. Specifically, pistachios are threatened by
warming winter days, which could threaten existing acreage within the next twenty years
(see Chapter 3 for details). This challenge stands out in the existing literature in three ways:
first, while much of the climate change literature focuses on annual crops, pistachios are
perennial. This means that the opportunity cost of variety switching are higher. Second, the
challenge does not occur in the “growing season”, but on the winter months when trees are
dormant and seemingly inactive. This emphasizes the importance of climate change effects
year round, rather than just in the spring and summer. Third, the challenge stems from a
biological mechanism that is not heat stress. Heat stress is perhaps the most obvious process
by which rising temperatures can have adverse effects on yields, and by far the most studied in
the economic literature on climate change. However, other biological mechanism are affected
by weather as well, and can cause substantial yield losses. This paper incorporates agronomic
knowledge on bloom disruption due to increased winter temperatures, a mechanism that is
relatively unexplored in the economic literature.

Scientists at the University of California Cooperative Extension have been experimenting
with kaolin clay applications on pistachios, and the results seem promising (Doll, 2015; Beede
and Doll, 2016). This could mean a great deal to growers and consumers. This chapter
analyzes the potential economic gains from this MCE application in California pistachios.

4.2 California Pistachios And Climate Change

Introduced to California more than 80 years ago, and grown commercially since the mid
1970’s, pistachio (Pistachia Vera) was the state’s 8th leading agricultural product in gross
value in 2016, generating a total revenue of $1.82 billion dollars. According to the California
Department of Food and Agriculture (2017), California produces virtually all pistachio in the
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US, and competes internationally with Iran and Turkey (2/3 of revenues are from export).
In 2016, five California counties were responsible for a 97% of the state’s pistachio crop:
Kern (35%), Fresno (28%), Tulare (15%), Madera (11%), and Kings (8%). Since the year
2000, the total harvested acres in these counties have been increasing by roughly 10% yearly.
Each increase represent a 6 - 7 year old investment decision, as trees need to mature before
commercial harvest (CPRB, 2009).

The challenge for California pistachios has to do with their winter dormancy and the
temperature signals required for spring bloom. I discuss the dormancy challenge and the
Chill Portion (CP) metric in Chapter 3. It is worth noting that in fact, for the areas covered
in this study, chill portions are strongly (and negatively) correlated with the 90th temperature
percentile (Q90) between November and February, the dormancy season for pistachios. The
correlation is very strong, with a goodness of fit rating of about 0.91. In essence, insufficient
chill is a right side temperature tail effect, comparable with similar effects in the climate
change literature.

Chapter 3 estimates the yield response of pistachios to CP. Substantial losses are predicted
below 60 CP. Compared to other popular fruit and nut crops in the state, this is a high
threshold (Pope, 2015), putting pistachio on the verge of not attaining its chill requirements
in some California counties. In fact, there is evidence of low chill already hurting yields
(Pope et al., 2015; Doll, 2015). Declining chill is therefore considered a threat to California
pistachios.

Climate and Damage Predictions

Chill in most of California has been declining in the past decades, and is predicted to
decline further in the future. Luedeling, Zhang, and Girvetz (2009) estimate the potential
chill drop for the southern part of San Joaquin valley, where virtually all of California
pistachio is currently grown. For the measure of first decile, i.e. the amount of CP attained
in 90% of years, they predict a drop from an estimate of 64.3 (±2.9) chill portions in the
year 2000 to estimates ranging between 50.6 (±3.8) and 54.5 (±3.6) (climate change scenario
depending) in the years 2045-2060. Agronomists and stakeholders in California pistachios
recognize this as a threat to this valuable crop (Doll, 2017; Jarvis-Shean, 2017). Together
with increasing air temperatures, a drastic drop in winter fog incidence in the Central Valley
has also been observed. This increases tree bud exposure to direct solar radiation, raising
their temperature even further (Baldocchi and Waller, 2014). The estimates cited above
virtually cover the entire pistachio growing region, and the first decile metric is less useful
for a thorough analysis of pistachios. I therefore need to create and use a more detailed
dataset, in fact the same one described in Cahpter 3. Figure 3.1 shows the geographic
distribution of chill and potential damage in the 1/4 warmest years of observed climate
(winters of 2000-2018) and predicted climate (2020-2040). While not very substantial in the
past, these losses are predicted to reach up to 50% in some regions in the future.
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4.3 Modeling Micro-Climate Engineering

This section develops a model to assess the gains from MCE. This is a single year, short
run market model, solving for price and quantity under different winter chill realizations.
Equilibrium price and quantity are used to calculate welfare outcomes such as grower profits,
consumer surplus, and the total welfare. For each realization, the model is solved twice: once
with an option to use MCE, and one without it. The differences in welfare outcomes under
the same conditions, with and without MCE, are the welfare gains from MCE. Note that in
both cases, agents act optimally. MCE gains are therefore to be interpreted as the difference
in welfare measures between a world with MCE and a world without it.

I abstract from a benchmark with increased storage, which could theoretically alleviate
inter-year fluctuations. Pistachios are usually stored for up to one year (Thompson and
Adel A, 2016). The potential loss rates in a bad weather year are significant. Coping by
storage in a meaningful way would require multi-year, double digit storage rate, which seems
technically unfeasible.

Growers

The individual grower model draws from the pest control literature (see for example
Lichtenberg and Zilberman 1986; Chambers and Lichtenberg 1994; Sexton et al. 2007; Wa-
terfield and Zilberman 2012). In fact, the same setup is used to estimate the yield loss-rate
from warm winters in Chapter 3 (the structural approach). Growers are considered to be
small, facing the same prices for inputs and outputs, risk neutral, and fully informed about
the prices the weather on their plot. Consider a grower with a production function H(z),
increasing in input z. The function H(z) is referred to as the potential output function,
where z is an input vector unrelated to the potential weather damage.

The grower also faces a damage or loss function L(c) ∈ [0, 1]. This loss depends on
the chill realization this grower sees. The grower knows c before making input decisions z.
This is especially realistic in our case, considering that most inputs (water, fertilizer, pest
management, labor) are applied in the spring and summer, after the trees exit dormancy.
The grower maximizes profits, manipulating the input level z.

Supply without MCE

A grower without MCE takes the weather related climate loss as exogenous, and maxi-
mizes profits by choosing an optimal level of input z:

max
z

π = p · [1− L(c)] ·H(z)− pz
T · z (4.1)

Without loss of generality, treat z as a single, aggregate input. Note that the weather
related loss is exogenous and constant. The grower’s problem is solved by equating the value
of marginal productivity of z to its price:
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p · [1− L(c)] ·Hz(z) = pz (4.2)

The first order condition is solved for an optimal z∗, and the grower supplied quantity can
then be calculated. The potential output function is specified as: H(z) = α+ β ·

√
z , which

results in linear potential supply for the grower. Linear supply has traditionally been used
in multiple settings, including on the returns from agricultural R&D (Norton and Davis,
1981; Alston et al., 2009)1. Together with the damage component, the supply function is as
follows:

q(p, c) = [1− L(c)] ·
(
α + [1− L(c)] · β

2

2pz
· p
)

(4.3)

As expected, with higher price and/or higher net-of-loss rates, supply increases. To
get realistic values, calibration of this function is required. Mainly, the coefficients of the
potential output function need to be established. Available market data for calibration are
historical county yields. I also have past weather data of 2,165 weather interpolation points
of the same pixel size (1 Km2), which I treat as individual growers. The linear supply
form, however, can be aggregated as long as all bundled growers face the same weather
realization. To model supply, I aggregate by the county chill quintiles. For each county-
year, the 20% of interpolation points within the county with the lowest chill are the the
first quintile; the next 20% chill points are the second, and so on. This assumes that,
besides the temperature realizations, the potential output of all pixels (growers) in a county
is identical. Note that for each county, the number of growers in each quintile is different,
reflecting different acreage and capacity parameters. Altogether, the sum of county-chill
quintile supplies should approximate the total supply.

To calibrate coefficients for county quintiles, I use market outcomes from 2016: the
grower price and county quantities are taken from the California Department of Food and
Agriculture annual crop report. To pinpoint a linear supply function, I also need a slope for
supply, and use a short run supply elasticity parameter to calculate it. Short run elasticity
in agricultural goods is usually considered very low on the short run (Alston, Norton, and
Pardey, 1995, p. 321), and the 6-7 year setup requirement for pistachios should place its
elasticity on the lower end even within this category. Others have modeled pistachio supply
as completely inelastic (e.g. Gray et al., 2005), yet I think it is more realistic to take a positive
parameter, as inputs such as harvesting effort can surely change supply. Estimates for supply
elasticity are hard to come by in the literature. For an approximation, Russo, Green, and
Howitt (2008) estimate the elasticity of almond supply w.r.t. one year lagged own price to
be 0.19.2 I take this as a starting point for the pistachio own price short run supply elasticity
and use it in the main specifications. I later show results with other elasticities as well.

1A more recent review on the impact of biofuel demand on commodity prices matched estimates from
the literature with estimates generated by a model with linear supply and demand at given elasticities. It
turns out this simple model can give good approximations for the impact estimates generated by the more
intricate models in the literature (see Persson, 2015).

2This estimate is not even statistically significant (p-value = 0.2), but it’s the best I could find
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With county quantities, market price, county-quintile chill related losses in 2016 (very
low in all cases), and an elasticity, I can back out county coefficients for the supply function3.
The county-quintile (c, k) coefficients are one fifth of the county coefficients, e.g. αc,k = 0.2αc.
The total supply without MCE is the total sum of these county supplies:

Q(p) =
∑
c

5∑
k=1

qc,k(p) =
∑
c

5∑
k=1

[1− L(tc,k)] ·
[
αc,k +

β2
c,k

2 · pz
· (1− L(tc,k)) · p

]
(4.4)

Supply with MCE

When MCE is available, the grower can also adjust the loss incurred due to weather. The
profit maximizing problem is now:

max
x,z

π = p · [1− L(x, c)] ·H(z)− pz · z − px · x (4.5)

where x is the MCE input. Note that the natural chill itself, c, is still exogenous.
This formulation assumes separability in output between x and z, i.e. input x only affects
yields through the chill mechanism. Although some MCE products also have some other
useful properties (e.g. some pest control capabilities and lowering water requirements),
these properties are not very useful at time of tree dormancy. Hence, this assumption seems
reasonable in our case.

An internal solution for the grower problem can be found with the two first order condi-
tions, equating the value of marginal productivity of each input to its price:

p · [1− L(x)] ·Hz(z) = pz (4.6)

p · [Lx(x)] ·H(z) = px (4.7)

Combining these, I get an expression of optimal z∗ as a function of optimal x∗:

pz
px

=
1− L(x∗)

Lx(x∗)
· Hz(z

∗)

H(z∗)
(4.8)

=
x∗

δ(x∗)
· η(z∗)

z∗
(4.9)

=⇒ z∗ = x∗ · η(z∗)

δ(x∗)
· px
pz

(4.10)

3The equations is:

β2
c

2 · pz
=

εs∑
1− L(t2016c,k )

· qc,2016
p 2016

=⇒ αc = qc,2016 −
β2
c

2 · pz
· p ·

∑(
1− L(t2016c,k )

)
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where η is the elasticity of potential output in z, and δ is the elasticity of (net-of) loss ratio
in x4. This can be plugged in a FOC to get a necessary conditions for profit maximization:

p · Lx(x∗) ·H (z∗(x∗)) = px (4.11)

This is an implicit function of x∗, given the relative prices and other parameters. To better
understand the concept of MCE as a solution for climate challenges, let us differentiate the
equation (4.11) w.r.t. the output price p and the optimal MCE input x∗. I get (after some
simplification):

∆x∗

∆p
=

Lx(x
∗) ·H (z∗(x∗))

−Lxx(x∗) ·H (z∗(x∗)) + Lx(x∗) ·Hz(z∗(x∗)) · z∗x(x∗)
(4.12)

Where regularity conditions assure us this ratio is positive (the loss function should be
concave in the solution area). Naturally, an increase in output price is related to an increase
in the optimal MCE input. However, a significant increase requires a large marginal MCE
effect, i.e. Lx(x

∗)� 0 in the numerator. Where this not the case, i.e. Lx(x
∗)→ 0, increase

in price will result in very little increase in x∗. Rather, the grower response would be through
changes in z∗.

To specify a loss function with MCE, I assume that each application of kaolin increases
the chill count by one portion. Note that the cost of increasing the chill count by one portion
depends on the total acreage. The cost of one additional portion per acre is estimated at
$555. In the real world, there is a limit to the potential cooling effects of kaolin clay. Applying
more reflective mix on trees already coated with a hefty layer would not be useful. However,
as the layers are prone to washing off with winter rain, I take these costs and effects as linear
for the model. The total required “extra” chill portions, usually about 15 on a warm year,
seems feasible with weekly applications starting early in the winter.

Once the optimal level of MCE –x∗– has been established by solving equation (4.11), a
solution for the regular input level –z∗– can be calculated directly (for the algebra details see
appendix A.1 and A.2). This results in an implicit supply function for a grower with MCE:

qc,k[p] =

αc,k + βc,k ·
−αc,k +

√
α2
c,k + 2 · β

2
c,k

pz
· 1−L(x[p])
Lx(x[p])

· px · Acresc,k
2 · βc,k

 (4.13)

Note that the βc,k terms cancel out, and we are left with an expression to calculate
using the coefficients I calibrated before. Then, given the MCE input price px and the chill
realization for the grower, this expression results in the supplied quantity for any pistachio
price.

4Note that L(x) is decreasing in x, hence the derivative of the net-of loss function w.r.t. x is positive.
5I thank Donald Stewart from UCANR’s Agricultural Issues Center for data on material and deployment

costs of kaolin clay. Pounds per acre ratios and the expected weekly effect are from (Doll, 2015). I assume
a weekly rain event during winter washes off the treatment, which needs to be applied again
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Market Demand

In empirical demand estimations, such as the ones I cite below, we usually find either
linear or iso-elastic specifications. Linear demand allows for a choke price (i.e. price where
zero units are wanted) and demand elasticity that varies with the price, which seems more
realistic when modeling large supply disruptions. The demand function in the model is
therefore linear:

D(p) = a− b · p (4.14)

Again, to pin-point a demand function, we need to calibrate these parameters with a point
and a slope. For a point, I use the 2016 price and quantity. I assume an elasticity to calculate
the slope. Most estimates for pistachio demand elasticity are between −1 and −2. Demand
for pistachio is considered elastic, as much of it is exported and it is not a staple food. The
elasticity is capped, reflecting relatively low substitutibility because of pistachio’s unique
flavor. The earliest demand elasticity estimate I found is from the 1970’s: Dhaliwal (1972),
in Nuckton (1978), estimated it at −1.5. Awondo and Fonsah (2014) try to calculate demand
elasticity by using total production and averaging consumption among the US population,
using an AIDS based model. They estimate a price elasticity of −0.96(0.04). Gray et al.
(2005) cite a report by Lewis, estimating an elasticity ranges of (−1.66,−1.44) for domestic
demand, and (−2.31,−1.59) for export demand. Cheng et al. (2017) estimate local demand
elasticity using micro-data (the Nielsen barcode data) and get an (uncompensated) price
elasticity of −1.25(0.11). Zheng, Saghaian, and Reed (2012) estimate an export demand
elasticity of −1.79(0.34), which produces a range quite similar to the 1999 study by Lewis.
I chose to combine the latter (more recent) two estimates, given that 2/3 of pistachios
are exported. The combined elasticity distribution is εD ∼ N(−1.61, 0.232). I assume an
elasticity of εD = −1.61 and later show results with other elasticities as well.

Market Clearing and Welfare Outcomes

Figure 4.1 sketches the short run market model. The linear supply curves take weather
as given. On an ideal weather season, the supply curve is S0. On a year with warm winter,
the supply curve is multiplied by a coefficient smaller than one, i.e. shifts left and rotates
counter-clockwise, resulting in curve S1. Without MCE, the intersection of demand with
S1 determines the market equilibrium. Once that is solved, the welfare outcomes-consumer
surplus, grower sector profits, and total welfare-are calculated as the areas above or under
the appropriate curves.

When MCE technology is available, a modified supply curve starts with a section overlap-
ping S1, and then “bends” right towards S0. If demand is high enough, market equilibrium
is attained at this bend. Again, the welfare outcomes with MCE are calculated with the
equilibrium price and quantity, together with the demand and SMCE curves.

The gains from MCE are the differences between these market outcomes, i.e. the out-
comes with MCE minus the outcomes without it. Note that the expansion of supply by
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Figure 4.1: Sketch of market model for pistachios with micro-climate Engineering. S0 is the
supply curve under perfect weather. S1 is the supply curve in a warm year, where yields are
lower. SMCE is the supply with micro-climate engineering.

MCE is guaranteed to result in (weakly) positive gains from MCE in terms of total welfare
and consumer surplus: the price is lower and quantity is higher. As for the grower sector,
it does enjoy extra profits from being able to produce more, but the resulting lower price
also decreases its profits from the output that would have been produced anyway without
MCE. Therefore, one cannot tell a priori if grower profits increase or decrease when MCE
is available. The sign and magnitude will need to be determined in the simulations, given
the various parameters and functional forms.

The climate prediction data produce a point estimate of chill portions for each year in
2020-2040. For a given set of model parameters and climate predictions for 2020-2040, the
model is solved numerically twice for each year in this range. The consumer, grower, and
welfare gains are calculated for each year using these two simulations. Using a discount rate
of 5%, I can calculate the Net Present Value (NPV) of the MCE gains in 2019. For each
scenario, I run this procedure for 100 “independent draws” of 2020-2040 prediction paths.
For each one, an entire simulation is run to produce an NPV of the gains. I report the
Expected NPV (ENPV), the mean of this distribution, and standard errors around it. More
details on the numerical solution of the model can be found in appendix A.3.
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Acreage Growth Scenarios

Before I present the simulated welfare gains, there is one more piece in the puzzle. The
calibrated model is set with 2016 acreage (329,826 acres). Pistachio acreage through 2020-
2040 is likely to be different, and most likely higher than that. However, the model does not
include endogenous growth of planted and harvested pistachio acres. To give some bounds
on the expected gains, I run the simulations with four different acreage growth scenarios,
each specifying a different pistachio acreage growth path until 2040.

All scenarios assume some growth path until 2030, when acreage stabilizes and stays
fixed through 2040. The first scenario is “No Growth”, meaning that 2020-2040 climate
predictions are cast over the 2016 acreage. This should give a lower bound for gains, as
acreage is predicted to grow and not shrink. The second scenario is “Low Growth”, which
sets the yearly growth of harvested acres until the year 2022 at 9.6%, the average rate since
2000, and then sets zero growth (total acreage growth of 75%). The growth until 2022 is
attributed to currently planted but not yet bearing acres. This assumes that we are on
the brink of a dynamic equilibrium in growth, and therefore no new acres will be planted
in California. This scenario should give estimates that are higher than the “No Growth”
scenario, but still rather conservative. The third scenario is “High Growth”. This one sets
the growth rate until 2022 at 14.6%, the average rate since 2010, and then lets pistachio
acreage follow the historic path of almonds in California (total acreage growth of 260%).
That is, the growth rate of almonds when they had the corresponding pistachio acreage.
This very optimistic growth prediction makes the “High Growth” scenario the upper bound
for the gains from MCE. One potential concern with acreage growth is that growers might
switch new acreage to unaffected counties, or plant more heat tolerant varieties. For this,
the “High North” scenario takes the high growth rate, but all new acreage harvested from
2023 is located in an imaginary “North” county, where chill damages are virtually zero. Note
that planting in the unaffected north has the same effect on supply as planting a more heat
tolerant variety near the existing locations (assuming that the potential output, both in the
north and of the new variety, are identical to the current one). This last scenario is, in my
opinion, the most plausible in terms of MCE gain magnitudes. A summary of the growth
rates is depicted in Figure 4.2. In all scenarios, demand grows by the total rate of acreage
growth.

4.4 Simulations Results

I present the Expected NPV of our simulations (and standard deviations) in Table 4.1.
The total welfare gains from MCE technologies are positive, for the market as a whole and
for consumers specifically. ENPVs of the total welfare gains are between $1.6 billion in the
“No Growth” scenario to $4.8 billion in the “High Growth” scenario. Consumer surplus
gains range from $2.5 billion to $7.2 million for the same scenarios. The reader might guess
by now that the expected gains for growers are negative. Indeed, the increased quantity
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Figure 4.2: Growth rate development for different scenarios.

with MCE is not enough to compensate for the profit loss due to lower price. The gains
from MCE for the grower sector are negative, ranging from −0.9 billion dollars in the “No
Growth” scenario to −2.4 billion in the “High Growth” scenario. This is true not only for
the ENPV calculation, but in general in almost every predicted year and scenario, except
for a few with the most extreme adverse weather predictions.

Scenario Consumer Grower Welfare

No Growth 2.5 (0.2) -0.9 (0.1) 1.6 (0.2)
Low Growth 4.2 (0.4) -1.5 (0.1) 2.7 (0.3)
High North 5.4 (0.5) -1.9 (0.1) 3.5 (0.4)
High Same 7.2 (0.7) -2.4 (0.2) 4.8 (0.6)

Table 4.1: Expected net present value of MCE in billions of US$. Yearly gains in the years
2020-2040 are discounted at 5% yearly and summed to calculate ENPV in 2019. The values
presented are the mean (standard deviation) from 100 climate prediction bootstraps.
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The average loss for growers is not the result of a distortion. Growers in the model make
optimal decisions given the market conditions. MCE expands supply and lowers prices,
increasing the total grower revenue. How do we know this? We have a linear demand system
where the “perfect weather” equilibrium has elastic demand. On a warm year, the quantity
drops to a point with even more elastic demand. The quantity increasing effect of MCE must
therefore increase consumer expenditures. Nevertheless, these increased revenues result in
lower total profits.

Other elasticity specifications

The main specification assumes a competitive market and takes certain values of elas-
ticities for supply and demand. How would the gains from MCE change under alternative
assumptions about market structure and parameters? To test this, I first run the model under
the competitive assumptions with different elasticities. I use the values εS = (0.1, 0.19, 0.3)
and εD = (−0.5,−1.1,−1.61,−2). Table 4.2 Shows the results for the “High North” scenario
in a convenient format. As expected, the more elastic the supply, and the less elastic the
demand, consumer gains (and total welfare gains) from MCE increase, as do grower profits
losses. While the profits and surplus vary a lot between the different elasticity pairs, the
movement is opposite in such way that the total expected welfare gains are relatively stable.

Grower ; Consumer εD = εD = εD = εD =
Welfare -2.0 -1.61 -1.1 -0.5
εS = 0.10 -0.7 ; 3.7 -1.4 ; 4.5 -3.2 ; 6.4 -9.2 ; 13.1

3.0 3.1 3.3 3.9
εS = 0.19 -1.0 ; 4.4 -1.9 ; 5.4 -3.8 ; 7.5 -9.7 ; 13.9

3.4 3.5 3.7 4.2
εS = 0.30 -1.9 ; 6.1 -3.0 ; 7.3 -5.3 ; 9.7 -11.2 ; 16.2

4.2 4.3 4.5 4.9

Table 4.2: Expected NPV gains (billion $US) from MCE under varying elasticities in the
“High North” scenario. Top left is grower gains, top right is consumer gains, bottom is total
welfare gains. The emphasized numbers correspond to the main specification.

Introducing Market Power

So far, I assumed that consumers buy directly from growers, and the market is com-
petitive. In fact, pistachios are processed and marketed by intermediaries, and it has been
reported that about half of the output is marketed by one firm (Blank, 2016). Combined
with high entry costs (no income for at least 6 years as trees mature), it would seem plau-
sible that some market power is being exercised. Therefore, it is interesting to examine the
gains from MCE under some degree of market power in the supply chain. The purpose of
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this exercise is not to try and evaluate the existing market power in pistachios, or to assess
the potential welfare effects of market power relative to a competitive market. Rather, the
question is: what would be the gains from MCE if market power exists?

To include market power in the model, I use a flexible framework with an intermediary or
middleman which can have market power on consumers (see Just, Hueth, and Schmitz 2005,
p. 386-388 and Sexton and Zhang 2001). In fact, the model can also accommodate market
power on the growers (monopsonistic power, e.g. from large retail chains). For simplicity, and
since determining a range for the real degree of monopsonistic market power is complicated,
I only use the monopolistic market power part. This intermediary manipulates the price
for growers and consumers to maximize its profit. Maximum profit is attained when the
intermediary equates the marginal revenue from sales to consumers with marginal outlay
paid to growers plus extra costs in the supply chain. The result is a fixed ratio between the
price for consumers and the marginal cost of the intermediary, which is the grower price plus
the processing and handling costs. This is, of course, an extension of the celebrated work
by Lerner (1934), who realized that the price-cost margin is evidence of monopoly strength,
and that this margin should – in theory – be equal to the inverse of demand elasticity. The
explicit derivation, relating the marginal revenue to price and elasticity, is a well known
textbook result (e.g. Carlton and Perloff, 2005, p. 92). The equation linking grower and
consumer prices is:

pCONSUMER =
(
pGROWER + δ

)
×
(

1 +
ψ

εD

)−1
(4.15)

where ψ ∈ [0, 1] is a market power measure w.r.t. the consumer sector (oligopolistic
market power), where zero is no market power and 1 is monopoly. εD is the price elasticity
of demand, which is negative, making the term in parenthesis smaller than one6. δ are added
costs in the supply chain from grower to consumer, and are assumed to be fixed.

The actual measure of market power ψ for pistachios is unknown. However, it is useful
to think of a reasonable upper bound for it. I run the simulations with ψ = 0.5 as upper
bound, and ψ = 0.25 for a middle point between the upper bound and the competitive
market simulations reported above. Applying market power means limiting the supplied
quantities. This might increase or decrease the “raw” grower profits, while creating positive
profits for the intermediary. To get a sense of the total oligopsonist gains, I add both the
grower and intermediary gains together, resulting in “Agribusiness” gains. Table 4.3 shows
the results from these simulations, ordered by the gains for agribusiness sector. It turns out
that only under the rather extreme ends of our parametric range, including market power
measure, does the agribusiness sector see positive gains from MCE.

To get a sense of the effect of all variables on the gains from MCE, Figure 4.3 shows
the “ceteris paribus” picture for gains under the ”High Same” scenario. This plot shows the
outcomes from running the model on 200 variable parameter combinations. Note that the

6This number is greater than zero since I am assuming elastic demand. Accordingly, I do not run
simulations with market power for εD = −0.5
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εD εS ψ Agribusiness Consumer Welfare
-2.00 0.10 0.50 3.2 5.7 8.9
-2.00 0.19 0.50 2.2 8.3 10.5
-1.61 0.10 0.50 2.2 8.6 10.8
-2.00 0.10 0.25 1.0 4.6 5.6
-2.00 0.19 0.25 0.5 5.9 6.4
-1.61 0.10 0.25 0.1 6.1 6.3
-2.00 0.30 0.50 -0.1 13.6 13.4
-2.00 0.10 0.00 -0.2 3.7 3.6
-1.61 0.19 0.50 -0.2 12.8 12.6
-2.00 0.19 0.00 -0.5 4.4 4.0
-2.00 0.30 0.25 -0.8 8.7 8.0
-1.61 0.19 0.25 -0.8 7.9 7.1
-1.61 0.10 0.00 -0.9 4.6 3.7
-2.00 0.30 0.00 -1.2 6.0 4.8
-1.61 0.19 0.00 -1.3 5.4 4.1
-1.61 0.30 0.00 -2.3 7.2 4.9
-1.10 0.10 0.00 -2.6 6.6 4.0
-1.61 0.30 0.25 -2.8 11.6 8.7
-1.10 0.10 0.25 -3.1 10.9 7.8
-1.10 0.19 0.00 -3.2 7.6 4.4
-1.10 0.30 0.00 -4.5 9.7 5.2
-1.61 0.30 0.50 -4.8 20.3 15.4
-1.10 0.19 0.25 -5.4 14.0 8.6
-1.10 0.10 0.50 -6.3 21.8 15.5
-1.10 0.30 0.25 -9.4 19.4 10.1
-1.10 0.19 0.50 -16.9 32.7 15.8
-1.10 0.30 0.50 -30.6 46.7 16.0

Table 4.3: Expected gains (billion $US) from MCE under varying elasticities and market
power in the “High North” scenario. Agribusiness gains are grower plus intermediary gains.
The emphasized numbers correspond to the main specification.
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range of drawn parameters is wider than our specified parameter ranges, which I think are
reasonable for the pistachio market. This is why we see many results with positive grower
gains from MCE.

Figure 4.3: Effect of model variables on MCE gains. Each point is an ENPV of a model
run. Each of the 200 randomly drawn parameter combinations are run on 5 random climate
bootstraps. The result are 1000 ENPV values shown here.

The solid line in each panel is the prediction from a local polynomial regression, a sort
of empirical derivative. Grower and Agribusiness profit losses from MCE are greater when
demand is more elastic and supply is less elastic, as expected. Consumer surplus gains
behave in the opposite way. The total welfare gains from MCE overall seem pretty stable
with demand elasticity in the specified ranges, but increases when supply is more elastic.
The price of MCE, px, ranges from 10 to 300 in the plot. As it increases, consumer and total
welfare gains from MCE decrease, as less MCE input is used by growers, as expected. The
profit and agribusiness gains increase (while still negative) and then plateau towards zero,
probably as the price increases lower the total use of MCE to very low levels.
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4.5 Discussion and Conclusion

MCE could help overcome a climate challenge for California pistachios. I model the
market and assess the potential welfare gains from a reflective coating technology that lowers
the effective temperatures in pistachio orchards. The expected NPV in 2019, for the gains
from this technology between 2020 and 2040, is predicted to be around $2.7-3.5 billion. These
come from consumer surplus gains, as the total gains for growers in the main specifications
are negative. The latter result is not unheard of in agricultural settings, where a negative
supply shock can actually increase grower profits. For example, Carter et al. (1981) show
that the 1979 labor strikes in California actually increased revenues and profits for lettuce
growers. The simulation results shows the flip side of the coin: solving a (weather generated)
supply shock can lower grower profits.

While less tangible (and taxable) than actual registered profits, consumer surplus gains
are real economic gains enjoyed by the public. This point holds even when discussing a
narrower welfare framework for California alone. Part of the modeled gains in consumer
surplus are enjoyed elsewhere, as the majority of pistachio output is currently exported.
However, export demand is usually considered more elastic than domestic demand, making
the share of local consumer surplus gains disproportionate to the share of local consumption.
At a share of 1/3 of total consumption, let us assume that Californians still enjoy half of
the consumer surplus gains from MCE (and the entire grower gains). Adjusting Table 4.1,
the total welfare gains in California are strictly negative when the demand is unrealistically
inelastic, εD = −0.5, and strictly positive for more realistic demand assumptions (εD <
−1.1).

The scope of consumer surplus gains brings us to the potential gains from public invest-
ment in R&D for MCE solutions. With social returns from investments largely exceeding
private ones, this type of research is a good candidate for prioritizing in public research fund
allocation (Alston, Norton, and Pardey, 1995, p. 491). The case for public research is made
stronger by the fact that there seems to be little private incentive to invest in MCE, at least
in this case. I see MCE technologies mostly as an adaptation of existing ones to solve a
climate problem. Therefore, innovations in the field would be hard to make proprietary by
the innovator. Moreover, innovators are likely to come from the industry: a large growing
firm would have the resources and access to enough pistachio acreage to run experiments
and develop new MCE solutions. But if this firm sees that a world with MCE (adopted by
everyone) is worse, why invest in innovation? Adding market power to the equation makes
an even stronger potential case for public R&D: the total welfare gains are higher, and the
incentives for innovation could be even lower.

What might be the implications of MCE technologies in a broader sense? One could imag-
ine, with further agronomic research, other MCE technologies applied to other fruit and nut
crops, and even for annuals such as corn or soybeans. Of course, these are less profitable
than pistachios, but they face similar challenges, and MCE solutions are not necessarily very
expensive. Other implications could be with the distribution of climate change damage inci-
dence. Technologies might only be available (and affordable) to growers in countries better
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off financially, further exacerbating international income disparities. An interesting poten-
tial for MCE technologies could be in accelerating the transition of agricultural practices
closer to the poles, sometimes referred to as the “crop migration” (Zilberman et al., 2004).
For example, MCE solutions for frost could accelerate the expansion of viticulture to higher
latitudes.

The simulation based valuation methodology in this chapter has its caveats. Modeling
supply and demand as linear is obviously a simplification. The assumptions on growth and
distribution of acreage are based on past growth patterns, and might not reflect unexpected
future changes in market conditions. The future chill predictions are in line with other
predictions by climatologists, yet might fail to materialize. Nevertheless, by choosing various
scenarios, basing the parameter ranges in the literature, and choosing conservatively when
possible, I believe to have gotten a reasonable range for the potential gains from MCE in
California pistachios. They are in the low billions for a crop of secondary importance to
California agriculture. I believe this shows a great potential of MCE technologies for climate
change adaptation in general.
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Appendix A

MCE Model Details

A.1 Getting an expression for z∗

The representative county grower maximizes profit. γi represent acreage growth for the
grower by the simulated year, and needs to pre-multiply px and the production coefficients.

max
(x , z)

π = γi · p · [1− L(xi)] · (α + β ·
√
zi)− pTz · zi − γi · px · x

Taking first order conditions:

γi · p · Lx(x) · (α + β ·
√
zi) = γi · px

γi · p · (1− L(x)) · β

2 · √zi
= pz

Combining them:

pz
γi · px

=
γi · (1− L(x))

γi · Lx(x)
·

β
2·√zi

α + β · √zi

=⇒ α + β ·
√
zi =

px
pz
· (1− L(x))

Lx(x)
· β

2 · √zi
· γi

α ·
√
zi + β · zi =

px
pz
· (1− L(x))

Lx(x)
· β

2
· γi

β · zi + α ·
√
zi −

px
pz
· (1− L(x))

Lx(x)
· β · γi

2
= 0

√
z∗i =

−α±
√
α2 + 2 · β2

pz
· 1−L(x)
Lx(x)

· px · γi
2 · β
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Note that, later one, the β in the denominator cancels out in the production function.
Thus we are not required to calculate it directly. Since α > 0, and zi has to be a real number,
I only consider the positive solution.

A.2 One Optimal Solution For Grower With MCE

A few challenges arise with our problem specification. First, since I am adding “artificial”
chill portions (x) to a natural chill realization, the optimal level of MCE could turn out
negative. In this case, the grower is set to supply the quantity with zero MCE (the no-MCE
case) as chill portions can be “bought” but not sold. A second challenge is that, given that
the production function is not quasi-concave over its support, there might not be an internal
solution at all. In this case, I show below that this must be due to the price of input px
being too high to justify any level of x, and therefore the grower is again set to supply the
no-MCE quantity. In Figure 4.1, this is the area where the supply with MCE coincides with
the no-MCE supply. A third challenge is that, for the same non-regularity, there might be
more than one solution for x∗ which solves the grower FOC. Visually, this is evident in Figure
4.1, where the slopes of the MCE supply curve at different prices are not necessarily unique.
In this case, I prove below that there are up to two solutions for the FOC, and the highest
one is a local maximum and profit maximizing one. In the numerical solution, I make sure
to choose the higher one when there are two.

Proposition 1. There is a unique choice of MCE level for a glower which maximizes his
profits.

Lemma 1. The value of marginal productivity of the MCE input x is positive and has a
maximum.

Proof. The VMPx is: p ·Lx(x∗) ·H (z∗(x∗)) All the components are positive and continuous,
therefore VMPx is positive and continuous. Note that lim

x→∞
VMPx = 0 and lim

x→−∞
VMPx =

0. Therefore, there exists some closed interval of x for which at least some values of VMPx are
weakly greater than any value outside that interval. On that closed interval, the continuous
VMPx attains a maximum value by the extreme value theorem. Since there are values inside
the interval that are weakly greater than any values outside of it, that maximum value is
the maximum of VMPx for any x.

As a corollary from this lemma, I can also say that no solution for the equation p ·Lx(x∗) ·
H (z∗(x∗)) = px means that the price px (which is positive) is just too high for any choice of
x: VMPx < px ∀x. In this case, the profit maximizing solution would be to use zero x.

Lemma 2. VMPx is unimodal, i.e. has one local maximum.

Proof. From the previous lemma, we know VMPx attains a maximum and has at least one
critical point. To find how many critical points there could be, derive the VMPx and equate
to zero, setting t = exp(m+ nx):
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n2 · t
(1 + t)4

· (1− t) ·

[
α +

√
α2 + 2 · β

2

pz
· 1 + t

n
· px · γi

]
+

n · t
(1 + t)2

·
2 · β2

pz
· n
n
· px · t

2
√
α2 + 2 · β2

pz
· 1+t

n
· px

= 0

n

(1 + t)2
· (1− t) ·

[
α +

√
α2 + 2 · β

2

pz
· 1 + t

n
· px · γi

]
+

β2

pz
· px · t√

α2 + 2 · β2

pz
· 1+t

n
· px

= 0

Note that the right side is always positive, and the left side is also positive with the
exception of 1− t. Morover, 1− t is monotonically decreasing in x. Therefore, there will be
only one point where this derivative is zero. Hence VMPx has only one critical point, which
must be a maximum according to the previous lemma. Note that this maximum is attained
when t > 1, i.e. at an x value which is higher than the location parameter of the logistic
distribution which is taken as the damage function. This is the range where the logistic
distribution is in fact concave.

Lemma 3. The grower FOC has up to two solutions.

Proof. Since VMPx is unimodal, the FOC: p · Lx(x∗) · H (z∗(x∗)) = px has up to two
solutions.

Lemma 4. If there are two internal solutions, the one with higher x is more profitable for
the grower.

Proof. Two internal solutions means that px intersects the unimodal VMPx at two points.
These intersections create an interval between the intersection points, where VMPx > px for
any x in the interval. Moving from the lower to the higher, the grower earns the difference
between value of marginal productivity of x and it’s price. Hence the intersection with higher
x has higher profits. Also note that z∗ is the same in both cases, so expenditures on z do
not change.

In the code, I make sure to verify that the higher solution for the FOC of each county-
quintile is chosen if more than one exists. The numerical solution of the entire equation
system, which includes a market clearing equation, seems to always reach the higher root
anyway. This might be because the lower solution is likely to be in an area where the damage
function is actually convex in x, and the numerical solver looks for a steady state.

Proof of proposition 1. If there is no internal solution for the FOC, or if the solution is
negative (not feasible), there is one optimal solution: x∗ = 0. If there is a positive internal
solution for the FOC, lemmas 1 - 4 assure us that there is only one level of x∗ where the
grower maximizes profits.
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A.3 Numerical Solution

I model the entire supply with 30 growers: five for each of the six counties. Each of these
five represents a county chill quintile realization. The total market supply is the sum of these
supplies. When simulating without MCE, the linear supply functions can be added directly,
and only a market clearing equation needs to be solved.

Simulating the model with MCE is more complicated, as the implicit supply functions of
our 30 representative growers are not additive. I have 30 equations such as equation (4.11) to
determine the equilibrium quantity of MCE input x∗cd for each county-quintile. These values
are then used to calculate the county-quintile supplied quantities, such as in equation (4.13).
The sum of this quantity is equated with demand to clear for a price. This system of 31
equations is numerically solved for one price and 30 levels of x∗cd, which translate to supplied
quantities. A solution for this system is the market equilibrium. The consumer surplus is
calculated, as before, using the area under the linear supply curve. For grower profits, I
need the area under a supply curve, or sum of areas under the 30 supply curves. However,
these supply functions are implicit, and I cannot directly integrate them. I approximate this
integral by solving for each grower’s output for a range of 20 equally distanced prices from
zero to the equilibrium price. I then create rectangles using these points, and sum them to
approximate for the grower profits.

The model is run for each year in 2020-2040, and net present value is calculated. This
procedure produces one simulation result for each set of pre-defined parameters. However,
the yearly predictions I use are not intended to forecast the weather in specific years (e.g.
predicting the chill in 2035), but rather present the climate trend and variation around it.
The climate predictions are therefore a stochastic input, making the otherwise deterministic
market model and simulations stochastic as well. We are interested in the expected gains
from MCE, given the predicted climate. To do this on a “moving target” (as climate has
a trend), I regress the future chill predictions on a third degree polynomial of years, plus a
dummy variable for counties. The residuals from this regression should be free of the climate
trend, and are plausibly i.i.d. 100 bootstraps of these residuals are added to the predicted
values from the regression. The model is run, for each parametric specification, over these
100 prediction bootstraps. The expected net present values are averages over these 100 re-
sults.

A.4 FAQ about the model and solution

Figure 4.1 could raise some discomfort among economists, especially regarding the SMCE

curve. Below are a few explanations, presented in a Frequently Asked Questions format.

Q 1. This SMCE curve is not concave! How do you know that you will get a unique solution
to the grower’s problem?
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A. In short, the corner solution is x∗ = 0 when the output price does not justify using MCE,
and I can prove that there is only one profit maximizing solution for the grower. For details,
please see the section: “One Optimal Solution For Grower With MCE”.

Q 2. Why does the SMCE overlap S1 in the lower prices?

A. In low prices, it doesn’t make sense to invest in MCE because the value of marginal
productivity (VMP) from it are just lower than the VMP from the ordinary input z. This
is a corner solution discussed in the section: “One Optimal Solution For Grower With
MCE”.

Q 3. What happens to SMCE in very high prices? It seems to get closer to S0.

A. Asymptotically, as the price increases SMCE converges with S0. At high prices, enough
MCE has been applied so as to make the climate virtually ideal. That is, there is satiation
in MCE input x. As the output price goes even higher, expenditures on MCE are virtually
fixed, and further increase in production is only done by adding more input z. That is, the
marginal cost becomes the same as it would be in ideal climate, a situation represented by
S0. For an extreme case, consider a grower who has MCE technologies available, but also
enjoys perfect weather. In this case, SMCE and S0 are the same.

Q 4. Are you worried about the linear supply curves generating non-realistic grower profits
in the low price range?

A. I am definitely worried about that, but it should not matter for the grower profit gains
from MCE technology. In the range of low prices, our modeled S0 and SMCE overlap, so all
this excess modeled profit is fully deducted. In our experience, the curves start diverging
at about $1,500-$2,000, a plausible marginal cost. Therefore, the grower profit gains from
MCE in the model are not impacted by the linear specification in low prices.
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Appendix B

R code for simulations

B.1 Helpful functions

# Damage func t i on : ( ac tua l l y , net o f l o s s func t i on )
damage func <− f unc t i on ( c h i l l , k ao l i n = 0){

value <− p l o g i s ( c h i l l + kao l in , 47 .43 , 8 . 2 )
re turn ( value )

}

# Damage func t i on f i r s t d e r i v a t i v e
damage func dx <− f unc t i on ( c h i l l , k ao l i n = 0) {

value <− d l o g i s ( c h i l l + kao l in , 47 .43 , 8 . 2 )
re turn ( value )

}

# s o l v i n g f o r supply parameters
a l p h a b e t a s o l v e r <− f unc t i on ( vec , pr i c e , quantity , e l a s , df ){

alpha = vec [ 1 ]
beta2 pz = vec [ 2 ]
df$damage = damage func ( d f $ c h i l l 2 0 1 6 )
supply <− df$damage ∗ df$share ∗

( alpha + df$damage ∗ beta2 pz ∗ p r i c e / 2)
value1 <− quant i ty − sum( supply )

dQdp <− sum( df$damage ∗ df$share ∗
( df$damage ∗ beta2 pz / 2) )

value2 <− dQdp ∗ p r i c e / quant i ty − e l a s
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re turn ( c ( value1 , va lue2 ) )
}

# s o l v i n g without kao l i n ( p r i c e i s the s o l u t i o n )
n o k a o l i n s o l v e r <− f unc t i on (p , data vec , nk df ){

# data vec has some a n c i l l i a r y c o e f f i c i e n t s .
a <− data vec [ 1 ]
b <− data vec [ 2 ]
LR <− data vec [ 3 ]
e x t r a c o s t <− data vec [ 4 ]

# c a l c u l a t e damage f o r each county−q u i n t i l e
nk df$damage <− damage func ( n k d f $ c h i l l )

# ad jus t alpha and beta2 to damage
nk df$a lpha <− nk df$a lpha ∗ nk df$share ∗ nk df$growth
nk df$beta2 pz <− nk df$beta2 pz ∗ nk df$share ∗ nk df$growth

# c a l c u l a t e l i n e a r s u p p l i e s
nk df$supply <− nk df$damage ∗ (

nk df$a lpha +
nk df$beta2 pz ∗ nk df$damage ∗ p / 2)

# the p r i c e should zero the market number ( supply − demand)
market num <− sum( nk df$supply ) −

# beta ” a l r eady i n c l u d e s ” l r
sum( nk df$growth ∗ nk df$share ) ∗ ( a + b ∗ (p + e x t r a c o s t ) )

r e turn ( market num )
}

# supply f i n d e r f o r kao l i n treatment . To be run by opt imize r
k a o l i n f i n d e r <− f unc t i on ( kao l in vec , data vec , k f d f ){

# data vec has some a n c i l l i a r y c o e f f i c i e n t s .
data vec <− as . numeric ( data vec )
px <− data vec [ 1 ]
p kao l i n <− data vec [ 2 ]

# t h i s should take a k f d f o f one row
# le t ’ s make i t as l a r g e as the k a o l i n v e c
k f d f <− k f d f %>%
sample n ( l ength ( k a o l i n v e c ) , r e p l a c e = TRUE)
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# i n s e r t the ”moving” kao l i n vec ( opt imized on )
k f d f $ k a o l i n <− k a o l i n v e c

kf df$damage = damage func ( k f d f $ c h i l l , k f d f $ k a o l i n )
kf df$damage dx = damage func dx ( k f d f $ c h i l l , k f d f $ k a o l i n )

# get z ˆ∗ given p r i c e s
k f d f $ z v e c <− − k f d f $a lpha
k f d f $ z v e c <− k f d f $ z v e c +

s q r t ( k f d f $a lpha ˆ2 +
2 ∗ k f d f $ be t a 2 p z ∗
( px ∗ k f d f $ a c r e a g e ∗ kf d f$growth ) ∗
(1 / s q r t ( k f d f $ s h a r e ∗ kf d f$growth ) ) ∗
kf df$damage / kf df$damage dx

)
k f d f $ z v e c <− k f d f $ z v e c / 2

# get va lue s o f county nece s sa ry equat ions
# in an equ i l ib r ium , these are zero
k f d f $ e q u a t i o n <− p kao l i n ∗ kf df$damage dx ∗

( k f d f $a lpha ∗ k f d f $ s h a r e ∗ kf d f$growth +
s q r t ( k f d f $ s h a r e ∗ kf d f$growth ) ∗ k f d f $ z v e c ) −

px ∗ k f d f $ a c r e a g e ∗ kf d f$growth

return ( k f d f $ e q u a t i o n )
}

# kao l i n supply b u i l d e r
k a o l i n s u p p l y b u i l d e r <− f unc t i on ( pr i ce , data vec , k sb d f ){

# data vec has some a n c i l l a r y c o e f f i c i e n t s .
px <− data vec [ 1 ]

# f i r s t , t ry to see which county−c h i l l−d e c i l e s can get a FOC at
t h i s p r i c e

t e m p l i s t <− s p l i t ( ksb df , seq (dim( ksb d f ) [ 1 ] ) )
s o l l i s t <− l app ly ( t emp l i s t , f unc t i on ( x ) t ry ( roo tSo lve : : un i root

. a l l (
f = k a o l i n f i n d e r ,
i n t e r v a l = c (−40 ,40) ,
n = 100 ,
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data vec = c (px , p r i c e ) ,
k f d f = x

) ,
s i l e n t = TRUE) )

# those who get i t , g r ea t . those who don ’ t get ze ro kao l i n
s o l l i s t <− l app ly ( s o l l i s t , f unc t i on ( x ) {

i f ( c l a s s ( x ) == ” try−e r r o r ”){
r e turn ( data . frame ( o p t k a o l i n = 0) )

} e l s e i f ( i s empty ( x ) ) {
r e turn ( data . frame ( o p t k a o l i n = 0) )

} e l s e i f (max( x ) < 0) { # t h i s i s t e c h n i c a l l y imposs ib l e , but
i keep i t anyway

return ( data . frame ( o p t k a o l i n = 0) )
} e l s e {

r e turn ( data . frame ( o p t k a o l i n = max( x ) ) )
}

})
s o l l i s t = bind rows ( s o l l i s t )

# optimal kao l i n could be negat ive
k s b d f $ o p t k a o l i n <− as . numeric ( s o l l i s t $ o p t k a o l i n )

ksb df$damage <− damage func ( k s b d f $ c h i l l , k s b d f $ o p t k a o l i n )
ksb df$damage dx <− damage func dx ( k s b d f $ c h i l l ,

k s b d f $ o p t k a o l i n )

# c a l c u l a t i n g z ˆ∗ f o r each county d e c i l e
k sb d f$ z ve c <− − ksb df$a lpha
k sb d f$ z ve c <− ksb d f$ z ve c +

s q r t ( ksb df$a lpha ˆ2 +
2 ∗ ksb d f$beta2 pz ∗
( px ∗ ksb d f$ac r eage ∗ ksb df$growth ) ∗
(1 / s q r t ( k sb d f$ share ∗ ksb df$growth ) ) ∗
ksb df$damage / ksb df$damage dx

)
k sb d f$ z ve c <− ksb d f$ z ve c / 2

# c a l c u l a t e supply ( assuming p o s i t i v e kao l i n )
ksb df$supp ly <− ksb df$damage ∗ (

ksb df$a lpha ∗ ksb d f$ share ∗ ksb df$growth +
s q r t ( k sb d f$ share ∗ ksb df$growth ) ∗ ksb d f$ z ve c )
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# make sure the p o s i t i v e kao l i n s o l u t i o n s are l o c a l maxima
check vec <− exp (−6.56 + 0 .141∗ ( k s b d f $ c h i l l + k s b d f $ o p t k a o l i n

) ) − 1
check vec <− check vec / exp (−6.56 + 0 .141∗ ( k s b d f $ c h i l l +

k s b d f $ o p t k a o l i n ) )
check vec <− check vec − ( ksb df$supp ly − ksb df$a lpha ) /

ksb df$supp ly
s t o p i f n o t ( a l l ( check vec [ k s b d f $ o p t k a o l i n > 0 ] > 0) )

# r e p l a c e va lues o f negat ive kao l i n s u p p l i e s with r e g u l a r ze ro
kao l i n supply

i f (sum( k s b d f $ o p t k a o l i n == 0) > 0){
# make a vec to r o f l i n e a r s u p p l i e s
temp supply <− damage func ( k s b d f $ c h i l l , 0) ∗

( ksb df$a lpha ∗ ksb d f$ share ∗ ksb df$growth +
ksb d f$beta2 pz ∗ ksb d f$ share ∗ ksb df$growth ∗
damage func ( k s b d f $ c h i l l , 0) ∗ p r i c e / 2)

ksb df$supp ly [ k s b d f $ o p t k a o l i n == 0 ] <− temp supply [
k s b d f $ o p t k a o l i n == 0 ]

}

r e turn ( ksb df$supp ly )
}

# Function to s o l v e the market with MCE.
k a o l i n s o l v e r <− f unc t i on (p , # the s o l u t i o n i s the p r i c e and MCE

l e v e l s
kao l i n da ta vec , # more parameters
k a o l i n d f ){

# k a o l i n d a t a v e c has some a n c i l l a r y c o e f f i c i e n t s .
k a o l i n d a t a v e c <− as . numeric ( k a o l i n d a t a v e c )
a <− k a o l i n d a t a v e c [ 1 ]
b <− k a o l i n d a t a v e c [ 2 ]
LR <− k a o l i n d a t a v e c [ 3 ]
px <− k a o l i n d a t a v e c [ 4 ]
e x t r a c o s t <− k a o l i n d a t a v e c [ 5 ]

#k a o l i n s u p p l y b u i l d e r (3000 , px , k a o l i n d f )
# under p r i c e p , what would supply be?
supp ly vec <− k a o l i n s u p p l y b u i l d e r (p , px , k a o l i n d f )
# what would demand be?
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demand <− sum( kao l in d f$growth ∗ k a o l i n d f $ s h a r e ) ∗
#(a + b ∗ LR ∗ (p + e x t r a c o s t ) )
# b a l ready i n c l u d e s LR
( a + b ∗ (p + e x t r a c o s t ) )

r e turn (sum( supp ly vec ) − demand)
}

# wrapper funct ion , r e tu rn s a vec to r with r e s u l t s .
s o lve r wrapper <− f unc t i on ( data vec , # parameter vec to r

c h i l l d f , # f u l l p r ed i c t ed c h i l l matrix
share vec ,
acreage vec ,
growth vec ,
c h i l l 2 0 1 6 , # f o r parameter c a l i b r a t i o n
pr ice2016 , quantity2016 ,
e x t r a c o s t ){

# data vec i s a row from ” s i m f i n a l ” data frame
data vec <− as . numeric ( data vec )
ed <− data vec [ 1 ]
e s <− data vec [ 2 ]
px <− data vec [ 3 ]
LR <− data vec [ 6 ] # the Lerner Ratio
year <− data vec [ 7 ]

## 1) Ca l ib ra t e system to get parameters
# demand parameters
b = ed ∗ quant i ty2016 / (LR ∗ ( pr i c e2016 + e x t r a c o s t ) )
a = quant ity2016 − b ∗ LR ∗ ( pr i c e2016 + e x t r a c o s t )
s t o p i f n o t (b < 0 & a > 0)

## 2) make u s e f u l data frame f o r c h i l l
c h i l l d a t a <− data . frame ( c h i l l d f [ c h i l l d f $ w i n t e r == year , ] )

# add c h i l l f o r ”North” county
c h i l l d a t a <− rbind ( c h i l l d a t a ,

c (” North ” , year , rep (75 , dim( c h i l l d a t a ) [ 2 ]
− 2) ) )

# gather the c h i l l data frame
c h i l l d a t a <− c h i l l d a t a %>% s e l e c t (−winter ) %>%

gather ( key = ”measure ” , va lue = ” c h i l l ” , −County ) %>%
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arrange ( County , measure )
# make sure t h i s didn ’ t convert c h i l l to cha rac t e r
c h i l l d a t a $ c h i l l <− as . numeric ( c h i l l d a t a $ c h i l l )

# merge the c h i l l d f with shares , acreage , and growth va lue s
c h i l l d a t a <− c h i l l d a t a %>%

l e f t j o i n ( ac r eage vec %>%
rename (” acreage ” = Acres ) , by= ”County ”)

c h i l l d a t a <− c h i l l d a t a %>%
l e f t j o i n ( sha r e vec %>%

rename (” share ” = share output ) , by = ”County ”)

c h i l l d a t a <− c h i l l d a t a %>%
l e f t j o i n ( growth vec %>%

f i l t e r ( Year == year ) , by = ”County ”)

c h i l l d a t a <− c h i l l d a t a %>%
l e f t j o i n ( c h i l l 2 0 1 6 , by = c (” County ” , ”measure ”) )

# we are doing county c h i l l−q u i n t i l e s , ad jus t the acreage and
share s

c h i l l d a t a $ a c r e a g e <− c h i l l d a t a $ a c r e a g e / l ength ( unique (
ch i l l da ta$measu r e ) )

c h i l l d a t a $ s h a r e <− c h i l l d a t a $ s h a r e / l ength ( unique (
ch i l l da ta$measu r e ) )

## Get demand parameters
# i n i t i a l guess
temp beta2 pz <− 2 ∗ quant i ty2016 ∗ es / pr i c e2016
temp alpha <− quant i ty2016 − 0 .5 ∗ temp beta2 pz ∗ pr i c e2016

# opt imize to get parameters
param so lut ion <− roo tSo lve : : mu l t i roo t ( a l p h a b e t a s o l v e r ,

s t a r t ( temp alpha ,
temp beta2 pz ) ,

p r i c e = pr ice2016 ,
quant i ty = quantity2016 ,
e l a s = es ,
df = c h i l l d a t a )

c h i l l d a t a $ b e t a 2 p z <− param so lut ion$root [ 2 ]
c h i l l d a t a $ a l p h a <− param so lut ion$root [ 1 ]
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s t o p i f n o t ( a l l ( c h i l l d a t a $ a l p h a > 0) & a l l ( c h i l l d a t a $ b e t a 2 p z >
0) )

rm( temp beta2 pz , temp alpha )

## 3) Ca l cu la t e no kao l i n pr i ce , q u a n t i t i e s , CS, and p r o f i t s
# f i r s t , c a l c u l a t e the p r i c e
p nokao l in <− un i roo t ( n o k a o l i n s o l v e r ,

i n t e r v a l = c (0 , 50000) ,
#data vec = c (a , b , LR) ,
data vec = c (a , b , LR, e x t r a c o s t ) ,
nk df = c h i l l d a t a ) $root

# c a l c u l a t e the supply vec to r w/o kao l i n
n o k a o l i n d f <− c h i l l d a t a
nokaol in df$damage <− damage func ( n o k a o l i n d f $ c h i l l )

# ad jus t alpha and beta2 to share s
nokao l in d f$a lpha <− nokao l in d f$a lpha ∗ nokao l i n d f $ sha r e ∗

nokao l in d f$growth
nokao l i n d f$be ta2 pz <− nokao l i n d f$be ta2 pz ∗ nokao l i n d f $ sha r e

∗ nokao l in d f$growth

# c a l c u l a t e s u p p l i e s
nokao l in d f$ supp ly <− nokaol in df$damage ∗ (

nokao l in d f$a lpha +
nokao l i n d f$be ta2 pz ∗ nokaol in df$damage ∗ p nokao l in / 2)

# c a l c u l a t e county p r o f i t s
# the share o f ” automatic ” output has no MC ( shor t run )
# t h i s i s a t rapezo id , with p a r a l l e l s i d e s o f supply and alpha ,

and
# he ight p nokao l in

n o k a o l i n d f $ p r o f i t <− ( nokao l in d f$ supp ly + nokao l in d f$a lpha ∗
nokaol in df$damage ) ∗

p nokao l in / 2

# c a l c u l a t e CS :
# what ’ s the choke p r i c e ?
p choke <− −a / b # that ’ s grower p r i c e choke
# CS i s the t r i a g l e area
CS nokaol in <− sum( nokao l in d f$ supp ly ) ∗
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( p choke − (LR ∗ ( p nokao l in + e x t r a c o s t ) ) ) / 2

#c a l c u l a t e in t e rmed ia t e p r o f i t
i n t e r p r o f i t n o k a o l i n <− (LR − 1) ∗ ( p nokao l in + e x t r a c o s t ) ∗

sum( nokao l in d f$ supp ly )
# w e l f a r e p r o f i t s
w e l f a r e n o k a o l i n <− sum( n o k a o l i n d f $ p r o f i t ) + CS nokaol in +

i n t e r p r o f i t n o k a o l i n

## 4) c a l c u l a t e same s t u f f f o r kao l i n case .

kao l i n da ta <− c h i l l d a t a # j u s t to make i t d i f f e r e n t from
p r e v i o u s l y used k a o l i n d f

# s o l v i n g f o r market p r i c e
k a o l i n s o l u t i o n <− un i roo t ( k a o l i n s o l v e r , c (10 , 20000) ,

k a o l i n d a t a v e c = c (a , b , LR, px ,
e x t r a c o s t ) ,

k a o l i n d f = c h i l l d a t a )

p kao l i n <− k a o l i n s o l u t i o n $ r o o t
# c a l c u l a t e supply
kao l in data$supp ly <− k a o l i n s u p p l y b u i l d e r ( p kao l in ,

px , kao l i n da ta )

# how much kao l i n are they us ing at equ i l i b r i um
# the supply b u i l d e r
t e m p l i s t <− s p l i t ( kao l in data , seq (dim( kao l i n da ta ) [ 1 ] ) )
s o l l i s t <− l app ly ( t emp l i s t , f unc t i on ( x )
t ry ( roo tSo lve : : un i root . a l l ( k a o l i n f i n d e r , i n t e r v a l = c (−50 ,50) ,

n = 100 , data vec = c (px , p kao l i n ) ,
k f d f = x ) , s i l e n t = TRUE) )

# those who get i t , g r ea t . those who don ’ t get ze ro kao l i n
s o l l i s t <− l app ly ( s o l l i s t , f unc t i on ( x ) {

i f ( c l a s s ( x ) == ” try−e r r o r ”){
r e turn ( data . frame ( o p t k a o l i n = 0) )

} e l s e i f ( i s empty ( x ) ) {
r e turn ( data . frame ( o p t k a o l i n = 0) )

} e l s e i f (max( x ) < 0) { # t h i s i s t e c h n i c a l l y imposs ib l e , but
i keep i t anyway

return ( data . frame ( o p t k a o l i n = 0) )
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} e l s e {
r e turn ( data . frame ( o p t k a o l i n = max( x ) ) )

}
})
s o l l i s t = bind rows ( s o l l i s t )

# the optimal kao l i n f o r those with c r i t p below the p r i c e i s
ze ro

k a o l i n d a t a $ o p t k a o l i n <− as . numeric ( s o l l i s t $ o p t k a o l i n )
kao l in data$actua l damage <− damage func ( k a o l i n d a t a $ c h i l l ,

k a o l i n d a t a $ o p t k a o l i n )

# c a l c u l a t e grower p r o f i t s : approximated by r e c t a n g l e s on p r i c e
vec to r

p r i c e v e c <− seq ( from = 0 , to = p kao l in , l ength . out = 20)
p r i c e i n t e r v a l s <− d i f f ( p r i c e v e c )

supp ly d f <− sapply ( p r i c e ve c ,
k a o l i n s u p p l y b u i l d e r ,
data vec = px ,
ksb d f = c h i l l d a t a )

supp ly d f <− data . frame ( supp ly d f )
colnames ( supp ly d f ) <− paste0 (” supply ” , round ( p r i c e v e c ) )
# temp df j u s t he lp s get a vec to r out o f i t
temp df <− supp ly d f [ ,−1]
temp df <− apply ( temp df , 1 , f unc t i on (x , d i f f v e c ) sum( x ∗

d i f f v e c ) ,
d i f f v e c = p r i c e i n t e r v a l s )

k a o l i n d a t a $ p r o f i t <− temp df

### c a l c u l a t e CS :
# CS i s the t r i a g l e area
CS kaol in <− sum( kao l in data$supp ly ) ∗

( p choke − (LR ∗ ( p kao l i n + e x t r a c o s t ) ) ) / 2

# c a l c u l a t e in t e rmed ia t e p r o f i t
i n t e r p r o f i t k a o l i n <− (LR − 1) ∗ ( p kao l i n + e x t r a c o s t ) ∗ sum(

kao l in data$supp ly )

# c a l c u l a t e t o t a l w e l f a r e
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w e l f a r e k a o l i n <− sum( k a o l i n d a t a $ p r o f i t ) + CS kaol in +
i n t e r p r o f i t k a o l i n

##5) put i t a l l in a vec to r and return .

# f i r s t , l e t ’ s aggregate some s t u f f by county
n o k a o l i n d f <− n o k a o l i n d f %>% group by ( County ) %>%

summarize (
quant i ty = sum( supply ) ,
p r o f i t = sum( p r o f i t ) ,
damage = mean( damage )

) %>% ungroup ( )

kao l i n da ta <− kao l i n da ta %>% group by ( County ) %>%
summarize (

quant i ty = sum( supply ) ,
p r o f i t = sum( p r o f i t ) ,
damage = mean( actual damage )

) %>% ungroup ( )

r e tu rn vec <− c ( a , b ,
nokaol in df$damage , # mean ( net−o f ) damage ra t e
# nokao l in r e s u l t s
p nokaol in ,
nokao l in d f$quant i ty ,
sum( nokao l i n d f $quant i ty ) ,
n o k a o l i n d f $ p r o f i t ,
sum( n o k a o l i n d f $ p r o f i t ) ,
CS nokaolin , i n t e r p r o f i t n o k a o l i n ,

we l f a r e nokao l i n ,
# kao l i n r e s u l t s
p kao l in ,
kao l in data$quant i ty ,
sum( kao l i n da ta$quant i ty ) ,
k a o l i n d a t a $ p r o f i t ,
sum( k a o l i n d a t a $ p r o f i t ) ,
CS kaol in , i n t e r p r o f i t k a o l i n , w e l f a r e k a o l i n )

names ( r e tu rn vec ) <−
c (” a ” , ”b” ,

paste0 ( nokaol in df$County , ” potent ia l damage ”) ,
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” p r i c e n o k a o l i n ” ,
paste0 ( nokaol in df$County , ” supp ly nokao l i n ”) ,
” t o t a l s u p p l y n o k a o l i n ” ,
paste0 ( nokaol in df$County , ” p r o f i t n o k a o l i n ”) ,
” p r o f i t n o k a o l i n ” ,
” CS nokaol in ” , ” in t e rmed ia ry nokao l i n ” , ” w e l f a r e n o k a o l i n ” ,
# names f o r kao l i n s t u f f
” p r i c e k a o l i n ” ,
paste0 ( kaol in data$County , ” s u p p l y k a o l i n ”) ,
” t o t a l s u p p l y k a o l i n ” ,
paste0 ( kaol in data$County , ” p r o f i t k a o l i n ”) ,
” p r o f i t k a o l i n ” ,
” CS kaol in ” , ” i n t e r m e d i a r y k a o l i n ” , ” w e l f a r e k a o l i n ”)

p r i n t ( paste0 (”Done with s imu la t i on : ” , Sys . time ( ) ) )
r e turn ( r e tu rn vec )

}

B.2 Running the simulations

## 1) SETUP ###########################################
# c l e a r environment
rm( l i s t = l s ( ) )
# load packages
l i b r a r y ( roo tSo lve )
l i b r a r y ( t i d y v e r s e )

s e t . seed (2017)
num sim <− 200
num boots <− 100

## 2) PISTACHIO DATA AND GROWTH SCENARIOS ##############

# Loading p i s t a c h i o y i e l d f i l e .
p i s t a c h i o d a t a <− readRDS(”C:// us e r s // i t a i . t r i l n i c k //XXXXX// data //

p i s t a c h i o y i e l d s . rds ”)

## growth r a t e s :
# I have the growth paths here :
a c r e a g e s c e n a r i o s <− p i s t a c h i o d a t a $ a c r e a g e s c e n a r i o s
# grow high <− ac r eage s c ena r i o s$H igh [ a c r eage s c ena r i o s$Yea r ==

2030 ] /
# ac r eage s c ena r i o s$H igh [ a c r eage s c ena r i o s$Yea r == 2016 ]
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# grow low <− acreage scenar io s$Low [ ac r eage s c ena r i o s$Yea r ==
2030 ] /

# acreage scenar io s$Low [ ac r eage s c ena r i o s$Yea r == 2016 ]

# j u s t making sure that the acreage share i s s i m i l a r to output
share

acreage 2016 <− p i s t a c h i o d a t a $ p i s t a c h i o 2 0 1 6
a c r e a g e 2 0 1 6 $ s h a r e a c r e s <− c (1 , acreage 2016$Acres [−1] /

acreage 2016$Acres [ 1 ] )
ac reage 2016 <− acreage 2016 %>% s e l e c t ( County , Acres , sha r e ac r e s

, share output ) %>%
f i l t e r ( County %in% c (” Fresno ” , ”Kern ” , ”Kings ” , ”Madera ” , ”

Tulare ” , ” State Total ”) )
# # c r e a t e ” north ” county with r e s t o f acreage
acreage 2016 <− data . frame ( acreage 2016 )
acreage 2016$Acres [ acreage 2016$County == ” State Total ” ] <−

acreage 2016$Acres [ acreage 2016$County == ” State Total ” ] −
sum( acreage 2016$Acres [ ! ( acreage 2016$County == ” State Total ”) ] )

ac reage 2016$share output [ acreage 2016$County == ” State Total ” ] <−
acreage 2016$share output [ acreage 2016$County == ” State Total

” ] −
sum( acreage 2016$share output [ ! ( acreage 2016$County == ” State

Total ”) ] )
acreage 2016$County [ acreage 2016$County == ” State Total ” ] <− ”

North”
acreage 2016 <− acreage 2016 %>% arrange ( County )

# make a df with county , year , s c enar io , and acreage
a c r e s b y y e a r <− expand . g r id ( County = c (” Fresno ” , ”Kern ” , ”Kings ” ,

”Madera ” , ” Tulare ” , ”North ”) , Year = 2016 :2040)

a c r e s b y y e a r <− l e f t j o i n ( ac r e s by year , acreage 2016 , by = ”
County ”)

a c r e s b y y e a r <− l e f t j o i n ( ac r e s by year , a c r e a g e s c e n a r i o s , by =
”Year ”)

ac r e s by yea r$ sha r e ou tput <− as . numeric (
a c r e s by yea r$ sha r e ou tput )

acre s by year$High [ i s . na ( acre s by year$High ) ] <−
acre s by year$High [ acre s by year$Year == 2030 ]

acres by year$Low [ i s . na ( acres by year$Low ) ] <− acres by year$Low [
acre s by year$Year == 2030 ]

ac r e s by year$ ‘ No Growth ‘ [ i s . na ( ac re s by year$ ‘ No Growth ‘ ) ] <−
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ac re s by year$ ‘ No Growth ‘ [ ac re s by year$Year == 2030 ]

acre s by year$High <− a c r e s b y y e a r $ s h a r e a c r e s ∗
acre s by year$High

acres by year$Low <− a c r e s b y y e a r $ s h a r e a c r e s ∗ acres by year$Low
acre s by year$ ‘ No Growth ‘ <− a c r e s b y y e a r $ s h a r e a c r e s ∗

acre s by year$ ‘ No Growth ‘

# now , a s c e n a r i o f o r the ”high−north ”
acre s by year$ ‘ High North ‘ <− acre s by year$High
a c r e s b y y e a r <− a c r e s b y y e a r %>%

group by ( County ) %>%
arrange ( Year ) %>%
mutate (

High2022 = nth ( High , 7)
) %>%
ungroup ( ) %>%
mutate (

‘ High North ‘ = i f e l s e ( Year > 2022 , High2022 , High )
) %>%
group by ( Year ) %>%
mutate (

sum d i f f = i f e l s e ( Year > 2022 , sum( High ) − sum( High2022 ) , 0) ,
) %>% ungroup ( )

ac re s by year$ ‘ High North ‘ [ ac re s by year$Year > 2022 &
acres by year$County == ”North ” ] <−

ac re s by year$ ‘ High North ‘ [ ac re s by year$Year > 2022 &
acres by year$County == ”North ” ] +

a c r e s b y y e a r $ s u m d i f f [ ac re s by year$Year > 2022 &
acres by year$County == ”North ” ]

a c r e s b y y e a r <− a c r e s b y y e a r %>% s e l e c t ( County , Year ,
”High Same” = High ,
‘ High North ‘ ,
”Low Growth” = Low ,
‘No Growth ‘ )

scenar io names <− c (”No Growth ” , ”Low Growth ” , ”High North ” , ”High
Same”)

# and now a df f o r share s
growth by year <− a c r e s b y y e a r %>%
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group by ( County ) %>%
arrange ( Year ) %>%
mutate (

‘ High Same ‘ = ‘ High Same ‘ / f i r s t ( ‘ High Same ‘ ) ,
‘Low Growth ‘ = ‘Low Growth ‘ / f i r s t ( ‘Low Growth ‘ ) ,
‘No Growth ‘ = ‘No Growth ‘ / f i r s t ( ‘No Growth ‘ ) ,
‘ High North ‘ = ‘ High North ‘ / f i r s t ( ‘ High North ‘ )

) %>% ungroup ( )

## Determine p r i c e and quant i ty f o r 2016
market data <− p i s t a c h i o d a t a $ p a s t d a t a
pr i c e2016 <− market data$Price [ market data$Year == 2016 ]
quant i ty2016 <− market data$Production [ market data$Year == 2016 ]

## 3) LOAD MAPS AND POINTS #################################

c h i l l l i s t i m p o r t e d <− readRDS(”XXXXX//
f i n a l p o i n t d a t a p i s t a c h i o 1 k m . rds ”)

c c s m p o i n t c a l i b c h i l l <−
c h i l l l i s t i m p o r t e d $ c c s m p o i n t c a l i b c h i l l

prob vec <− seq ( from = 10 , to = 90 , by = 20) /100

c h i l l d f <− c c s m p o i n t c a l i b c h i l l %>% s e l e c t (−point num ) %>%
group by ( County , winter ) %>%
dplyr : : summarise ( n e s t c o l =

l i s t ( data . frame ( prob = paste0 (” q ” , prob vec ) ,
c h i l l = q u a n t i l e ( c h i l l , probs = prob vec ,

names = FALSE) ) ) ) %>%
unnest %>% ungroup ( ) %>%
spread ( key = prob , va lue = c h i l l )

rm( c c s m p o i n t c a l i b c h i l l )

# get the damages in 2016
c i m i s p o i n t c h i l l <− c h i l l l i s t i m p o r t e d $ c i m i s p o i n t c h i l l
c h i l l 2 0 1 6 <− c i m i s p o i n t c h i l l %>% s e l e c t (−point num ) %>%

f i l t e r ( winter == 2016) %>%
group by ( County ) %>%
dplyr : : summarise ( n e s t c o l =

l i s t ( data . frame ( prob = paste0 (” q ” , prob vec ) ,
c h i l l = q u a n t i l e ( c h i l l , probs
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= prob vec , names = FALSE
) ) ) ) %>%

unnest %>% ungroup ( )
ch i l l 2016$County <− as . cha rac t e r ( ch i l l 2016$County )
c h i l l 2 0 1 6 $ p r o b <− as . cha rac t e r ( c h i l l 2 0 1 6 $ p r o b )
colnames ( c h i l l 2 0 1 6 ) <− c (” County ” , ”measure ” , ” c h i l l 2 0 1 6 ”)
c h i l l 2 0 1 6 <− rbind ( c h i l l 2 0 1 6 ,

data . frame (
County = rep (” North ” , 10) ,
measure = ch i l l 2016$measu re [ 1 : 1 0 ] ,
c h i l l 2 0 1 6 = rep (75 , 10) ) )

rm( c i m i s p o i n t c h i l l )

## 4) SIMULATION FUNCTIONS #######

source (”C:// us e r s // i t a i . t r i l n i c k //XXXXX// codes //
l i n ea r s imu l a t i on s func t i on s NPV .R”)

## 5) Creat ing parameter Dataframes ######################

## main parameters : f o r means
s im parameters <− expand . g r id (

ed = c (−2 , −1.61 , −1.1 , −0.5) ,
e s = c ( 0 . 1 , 0 . 19 , 0 . 3 ) ,
px = c (25 , 55 , 110) ,
monopoly = c (0 , 0 . 25 , 0 . 5 ) ,
monopsony = 0 ,
LR = 1 ,
year = 2020:2040

)
s im parameters <− s im parameters %>% f i l t e r ( ! ( ed > −1 & monopoly >

0) )
# update l e r n e r r a t i o
sim parameters$LR <− 1 / (1 + ( sim parameters$monopoly /

s im parameters$ed ) )

## c r e a t i n g bootstrappped weather years f o r SE
# b a s i c a l l y , I can ’ t draw from the weather year s because c l imate

i s changing over
# time . I need to de−trend the c h i l l po r t i on s
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b o o t f i t t e d <− c h i l l d f [ , 1 : 2 ]
b o o t r e s i d u a l s <− c h i l l d f [ , 1 : 2 ]
f o r ( c o l in colnames ( c h i l l d f ) [−c (1 , 2 ) ] ) {

temp reg <− as . formula ( paste ( co l , ”˜ 0 + County + I ( winter −
2020) + I ( ( winter − 2030) ˆ2) + I ( ( winter − 2030) ˆ3) ”) )

temp reg <− lm( temp reg , data = c h i l l d f )
b o o t f i t t e d $ n e w c o l <− t emp reg$ f i t t ed . va lue s
colnames ( b o o t f i t t e d ) [ dim( b o o t f i t t e d ) [ 2 ] ] <− c o l
bo o t r e s i du a l s $new co l <− t emp reg$ r e s i dua l s
colnames ( b o o t r e s i d u a l s ) [ dim( b o o t r e s i d u a l s ) [ 2 ] ] <− c o l

}

# making boots t rap weather year s
boot machine <− f unc t i on ( empty , df1 , df2 ){

#df1 i s the pr ed i c t ed
#df2 i s r e s i d u a l s
temp df <− df2 %>% group by ( County ) %>%

sample n (21 , r e p l a c e = TRUE) %>% ungroup ( )
r e t u r n d f <− df1
r e t u r n d f [−c (1 , 2 ) ] <− r e t u r n d f [−c (1 , 2 ) ] + temp df [−c (1 , 2 ) ]
r e turn ( r e t u r n d f )

}
b o o t l i s t <− l app ly ( 1 : num boots , boot machine , b o o t f i t t e d ,

b o o t r e s i d u a l s )

##### c r e a t i n g g r id o f outcomes f o r ” d e r i v a t i v e ” p l o t
de r iv paramete r s <− data . frame (

ed = r u n i f ( num sim , −3, −1.05) ,
e s = r u n i f ( num sim , 0 . 05 , 0 . 9 ) ,
px = r u n i f ( num sim , 10 , 300) ,
monopoly = r u n i f ( num sim , 0 , 0 . 75 ) ,
monopsony = rep (0 , num sim ) ,
LR = rep (1 , num sim )

)

d e r i v d f <− der iv paramete r s
f o r ( i in 1 : 20 ) {

d e r i v d f <− rbind ( de r i v d f , de r iv paramete r s )
}
d e r i v d f $ y e a r = rep (2020 :2040 , num sim )
deriv parameters$LR <− 1 / (1 + ( der iv parameters$monopoly /
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der iv parameter s$ed ) )

## 6) BASIC 2016 FIGURES FOR CALIBRATION #######

share vec <− acreage 2016 %>% s e l e c t ( County , share output )
ac r eage vec <− acreage 2016 %>% s e l e c t ( County , Acres )
# acr eage vec <− as . numeric ( ac r eage d f$Acre s )
# count i e s <−
#share vec <− c ( share s 2016$share output , 0 . 03 )
# names ( ac r eage vec ) <− count i e s
c h i l l d f <− data . frame ( c h i l l d f )

#phi <− 0 .517

# p r i c e i s skewed because o f what seems l i k e a Fresno erroneous
r e p o r t i n g .

p r i c e2016 <− 4300
# make p r i c e and quant i ty metr ic
pr i c e2016 <− pr i c e2016 #/ 0 .91
quant i ty2016 <− quant i ty2016 #∗ 0 .91

e x t r a c o s t <− pr i c e2016 ∗ 0 .517 # t h i s should r ep r e s en t the ext ra
c o s t s in l e v e l s

####### Test runs

# data vec <− s im parameters [ 1 , ]
# # the s t a r t i n g acreage
# share vec <− acreage 2016 %>% s e l e c t ( County , share output )
# acr eage vec <− acreage 2016 %>% s e l e c t ( County , Acres )
# growth vec <− growth by year %>% s e l e c t ( County , Year , growth = ”

High ”)
#
# temp re su l t <− so lve r wrapper ( data vec , c h i l l d f , share vec ,

acreage vec , growth vec , c h i l l 2 0 1 6 , pr ice2016 , quantity2016 ,
e x t r a c o s t )

#
# pr in t ( t emp re su l t )
#
# sk ipp ing checks ( too long to inc lude , b a s i c a l l y make sure s i g n s

are ok )



APPENDIX B. R CODE FOR SIMULATIONS 79

rm( temp re su l t )

## 7) RUNNING THIS THING ##############

# r e a l run f o r parameter matrix
c l <− p a r a l l e l : : makeCluster (8 )
p a r a l l e l : : c l u s t e rExpor t ( c l , c (” pr i c e2016 ” , ” quant ity2016 ” , ”

growth by year ” ,
” sha r e vec ” , ” ac r eage vec ” , ”

e x t r a c o s t ” ,
” n o k a o l i n s o l v e r ” , ”damage func ” ,
” damage func dx ” , ”

k a o l i n s u p p l y b u i l d e r ” ,
” a l p h a b e t a s o l v e r ” ,
” so lve r wrapper ” , ” k a o l i n s o l v e r ” , ”

k a o l i n f i n d e r ”) )
p a r a l l e l : : c lusterEvalQ ( c l , l i b r a r y ( t i d y v e r s e ) )

p r i n t ( paste0 (” S ta r t i ng main r e s u l t s : ” , Sys . time ( ) ) )

f o r ( s c e n a r i o in scenar io names ){
t emp re su l t <− p a r a l l e l : : parApply ( c l , s im parameters , 1 ,

so lver wrapper ,
c h i l l d f ,
sha r e vec = share vec ,
a c r eage vec = acreage vec ,
growth vec = growth by year %>% s e l e c t (

County , Year , growth = s c e n a r i o ) ,
c h i l l 2 0 1 6 = c h i l l 2 0 1 6 ,
pr ice2016 , quantity2016 , e x t r a c o s t )

temp names <− row . names ( t emp re su l t )
t emp re su l t <− t ( t emp re su l t )
t emp re su l t <− as . data . frame ( t emp re su l t )
colnames ( t emp re su l t ) <− temp names
temp re su l t <− cbind ( temp resu l t , s im parameters )
# add s c e n a r i o v a r i a b l e
t emp re su l t $Scenar i o <− s c e n a r i o
i f ( s c e n a r i o == ”No Growth ”){

l i n e a r r e s u l t <− t emp re su l t
} e l s e {
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l i n e a r r e s u l t <− rbind ( l i n e a r r e s u l t , t emp re su l t )
}
pr in t ( paste0 (”Done with ” , s cenar i o , ” main r e s u l t s : ” , Sys . time

( ) ) )
}
#p a r a l l e l : : s t opClus t e r ( c l )

##### running bootstrapped runs
# as these runs take a long time , I only boots t rap the main

s p e c i f i c a t i o n :
# ed = −1.61 , es = 0 .19 , px = 55 , monopoly = 0

# I have 90 parameter combinations . Now, I want to run each on a
c l imate bots t rap

# that i s 90 X 21 ( years ) X 100 ( boot s t raps ) X 4 s c e n a r i o s
# each one takes about 3 seconds
# that ’ s about 630 hours
# p a r a l l e l i n g on 10 cores , ˜63 hours
# boot seemed to run much s lower . took more than 24 hours and wasn

’ t f i n i s h e d with one s c e n a r i o
# I t h e r e f o r e s t a r t with j u s t the v a r i a t i o n f o r e l a s t i c i t i e s

# f i r s t , a func t i on to wrap the wrapper to get the c h i l l data
frame in p lace

boot params <− s im parameters %>% f i l t e r ( px == 55)

boot wrapper <− f unc t i on ( df , params ,
share vec ,
acreage vec ,
growth vec ,
c h i l l 2 0 1 6 ,
pr ice2016 , quantity2016 ,
e x t r a c o s t ) {

# a boootst rap i s a s o l u t i o n with 21 years . So need to run over
a l l va lue s

# in the booted c h i l l data frame
temp value <− apply ( params , 1 ,

so lver wrapper ,
c h i l l d f = df ,
sha r e vec = share vec ,



APPENDIX B. R CODE FOR SIMULATIONS 81

ac r eage vec = acreage vec ,
growth vec = growth vec ,
c h i l l 2 0 1 6 ,
pr ice2016 , quantity2016 ,
e x t r a c o s t )

# the value are the r e s u l t s f o r a l l 21 years in boots t rap
temp names <− row . names ( temp value )
temp value <− t ( temp value )
temp value <− as . data . frame ( temp value )
colnames ( temp value ) <− temp names
re turn ( temp value )

}

p a r a l l e l : : c l u s t e rExpor t ( c l , ” boot wrapper ”)

p r i n t ( paste0 (” S ta r t i ng main boot s t raps : ” , Sys . time ( ) ) )

# t h i s should re turn a l i s t o f data frames with s imu la t i on r e s u l t s
f o r ( s c e n a r i o in scenar io names ){

pr in t ( paste0 (” S ta r t i ng boot s t raps on s c e n a r i o : ” , s c enar i o , ”
” , Sys . time ( ) ) )

t emp re su l t <− p a r a l l e l : : parLapply ( c l , b o o t l i s t ,
boot wrapper ,
boot params ,
sha r e vec = share vec ,
a c r eage vec = acreage vec ,
growth vec = growth by year

%>% s e l e c t ( County , Year ,
growth = s c e n a r i o ) ,

c h i l l 2 0 1 6 = c h i l l 2 0 1 6 ,
pr ice2016 , quantity2016 ,

e x t r a c o s t )
# t h i s r e tu rn s a l i s t
t emp re su l t <− bind rows ( t emp re su l t )
temp params <− r e p l i c a t e ( num boots , boot params ,

s i m p l i f y = FALSE)
temp params <− bind rows ( temp params )
s t o p i f n o t (dim( temp re su l t ) [ 1 ] == dim( temp params ) [ 1 ] )
t emp re su l t <− cbind ( temp resu l t , temp params )

# add s c e n a r i o v a r i a b l e
t emp re su l t $Scenar i o <− s c e n a r i o
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i f ( s c e n a r i o == ”No Growth ”){
l i n e a r b o o t s <− t emp re su l t

} e l s e {
l i n e a r b o o t s <− rbind ( l i n e a r b o o t s , t emp re su l t )

}
pr in t ( paste0 (”Done with bootst raps , ” , s c enar io , ” : ” , Sys . time

( ) ) )
}

# name the boots t rapps
boot nums <− rep ( 1 : num boots , dim( boot params ) [ 1 ] )
boot nums <− boot nums [ order ( boot nums ) ]
#s t o p i f n o t (dim( l i n e a r b o o t s ) [ 1 ] == length ( boot nums ) )
l inear boots$boot num <− boot nums
tab l e ( l inear boots$boot num )
rm( boot nums )

### now f o r d e r i v a t i v e s . they are the same except f o r the
parameters and the boot s t raps

# I have a big matrix with vary ing parameters , and 21 years f o r
each combination

# I ’ l l run i t on the f i r s t and second c l imate p r e d i c t i o n boots t rap
p r i n t ( paste0 (” S ta r t i ng d e r i v a t i v e s : ” , Sys . time ( ) ) )
d e r i v r e s u l t <− p a r a l l e l : : parLapply ( c l , b o o t l i s t [ 1 : 5 ] ,

boot wrapper ,
d e r i v d f ,
sha r e vec = share vec ,
a c r eage vec = acreage vec ,
growth vec = growth by year %>%

s e l e c t ( County , Year , growth
= ‘ High North ‘ ) ,

c h i l l 2 0 1 6 = c h i l l 2 0 1 6 ,
pr ice2016 , quantity2016 ,

e x t r a c o s t )
# t h i s r e tu rn s a l i s t
d e r i v r e s u l t <− bind rows ( d e r i v r e s u l t )
temp params <− r e p l i c a t e (5 , d e r i v d f ,

s i m p l i f y = FALSE)
temp params <− bind rows ( temp params )
s t o p i f n o t (dim( d e r i v r e s u l t ) [ 1 ] == dim( temp params ) [ 1 ] )
d e r i v f i n a l <− cbind ( d e r i v r e s u l t , temp params )
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d e r i v f i n a l $ S c e n a r i o <− ”High North”

p r i n t ( paste0 (”Done with d e r i v a t i v e s : ” , Sys . time ( ) ) )

p a r a l l e l : : s t opClus t e r ( c l )

# save r e s u l t s f i l e
saveRDS ( l i s t (” l i n ea r ma in ” = l i n e a r r e s u l t ,

” l i n e a r d e r i v ” = d e r i v f i n a l ,
” l i n e a r b o o t s ” = l i n e a r b o o t s ,
” c h i l l d f ” = c h i l l d f ,
” a c r e s d f ” = acre s by year ,
” growth df ” = growth by year ,
” pr i c e2016 ” = pr ice2016 ,
” c h i l l 2 0 1 6 ” = c h i l l 2 0 1 6 ,
” acreage 2016 ” = acreage 2016 ,
” quant ity2016 ” = quantity2016 ,
”README” = paste0 (” Linear model r e s u l t s , based on

county q u i n t i l e c h i l l por t ions , est imated l o g i s t i c
func t i on ” , Sys . time ( ) ) ) ,

f i l e = ”C:// Users // i t a i . t r i l n i c k // dropbox //CIMIS p r o j e c t //
i t a i / kao l i n pape r // data //
r e s u l t s l i n e a r b y c o u n t y d e c i l e s u p d a t e d a l l b o o t s . rds ”)
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