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Abstract

Teachers often use drawings of the normal distribution to sup-
port explanations of related statistical concepts, assuming that
the normal curve provides a common language for such dis-
cussions. However, we find that students may not understand
the basic features of the normal curve. In Study 1, we showed
that students who already have studied the normal distribution
in a college-level class do not understand basic concepts as-
sociated with it. Then, in Study 2, we investigated whether
a brief instructional, narrated video could improve students’
understanding of the normal probability distribution. Specifi-
cally, we compared three instructional formats: static slides, a
video recording of a hand physically drawing those plots, and
a screen recording of the hand-drawing. Despite the brevity
of the intervention, we found significant improvements in stu-
dents’ understanding of the normal probability distribution and
related probability concepts. The findings are discussed in re-
lation to the dynamic representation and embodied cognition
literature.

Keywords: dynamic visualization, embodied representation,
statistics education, learning media

In college-level introductory statistics classes, understand-
ing the concept “distribution”, and particularly the concept
”probability distribution”, is an important step for students as
they transition from data analysis to statistical reasoning and
inference (Batanero et al., 2004). Even beyond the techni-
cal importance of probability distributions, teachers often use
visual representations of such distributions—especially nor-
mal distributions—as a way to explain other, more complex,
concepts, such as the p-value that results from a statistical
hypothesis test (Ainsworth, 2008; Batanero et al., 2004). Yet
students, and especially novice learners, often have difficulty
connecting fundamental concepts to the visualizations we use
to explain them (Rau, 2017). In essence, teachers may be
asking students to make sense of novel concepts via visual-
izations they do not understand (Airey & Linder, 2009).

Perhaps because teachers themselves have a solid grasp
of probability distributions—including, in particular, normal
distributions—they may assume that students understand, at
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least, what it means to interpret the normal distribution as a
probability distribution. For example, when teachers shade
in some part of a normal curve to represent the probability
represented by that area, they assume that students already
understand that the total area under the curve equals 1. How-
ever, such assumptions might often remain untested in the
classroom, and they may not be valid (Rau, 2017; Airey &
Linder, 2009).

To more closely examine these issues, the studies reported
here had two objectives. First, we explored what students do
and do not understand about normal distributions and the vi-
sualizations we use to represent them (Study 1). To this end,
we surveyed a small sample of students nearing the end of
a college-level introductory statistics class that had explicitly
taught them about normal distributions. To foreshadow our
results, we found evidence that many students, even after in-
struction, had only a weak understanding of what normal dis-
tributions were, with many misconceptions and confusions.
This finding raises troubling questions about how strongly
teachers should rely on normal distributions as a means for
communicating about other statistical concepts (Chance et al.,
2004).

Second, based on these findings, we attempted to teach
students how to interpret common representations of nor-
mal probability distributions (Study 2). Specifically, we cre-
ated instructional interventions in the form of brief, narrated
videos that could be added as supplementary materials to on-
going statistics classes (we chose such interventions, in part,
because our research was carried out during the COVID-
19 pandemic, when classes were offered remotely). We
aimed to provide a brief intervention that, nonetheless, would
have lasting effects that could, in theory, support students in
better interpreting future explanations of statistical concepts
couched in terms of the normal curve. Moreover, we com-
pared several, closely matched forms of interventions, and
tested their tested their effects on both immediate and delayed



post-tests.

In designing the instructional videos we drew heavily on
two areas of study in Cognitive Science. First, we studied
”dynamic visualizations”, which replace the static nature of
many online instructional videos, as well as many slides used
in classrooms, with animations where visual plots gradually
appeared on the screen, one sub-component after another, as
if they were being drawn (in the style of Khan Academy)
(Castro-Alonso,et al., 2015). We tested whether such dy-
namic representations could improve students’ comprehen-
sion over and above what they might get from static slides.
Second, we studied “embodied representations”, i.e., videos
that could potentially engage students’ perceptual-motor rep-
resentations to scaffold their understanding (de Koning &
Tabbers, 2011). Specifically, we tested whether augmenting
dynamic animations with a human hand that physically draws
plots would enhance their effectiveness.

Prima facie, dynamic visualizations such as real-time
drawing or animations would appear superior to static repre-
sentations because they can explicitly represent processes, not
just the end results of processes (Castro-Alonso et al., 2014;
Hegarty, 2004; Chandler, 2004; Mayer & Moreno, 2002).
Moreover, they may reduce cognitive load by “distributing”
new information across time (for a review, see Ainsworth,
2008) and, relatedly, better match the computational demands
of learning (Tversky et al., 2002). Moreover, they may be
more motivating than still images (Rieber, 1991). However,
the advantages of dynamic representations are not clear cut.
Although dynamic representations do tend to yield better im-
plicit learning and learning attitudes (Lowe, 1999; Wright et
al., 1999), they do not necessarily produce better conceptual
learning outcomes (Hegarty, 2004; Tversky et al., 2002). One
reason for this may be that dynamic representations, despite
being engaging, might tax working memory due to their tran-
sient nature (Hegarty, 2004; Lowe, 2004; Chandler, 2004).
When the video or the animation has advanced, it is gone -
learners cannot access it anymore.

One way to potentially render dynamic visualizations more
effective is by connecting them to the learner’s physical ex-
perience in the world, via bodily actions such as gesture (de
Koning & Tabbers, 2011). In other words, “embodied” cog-
nitive processing could aid students in reaping the benefits
of dynamic visualizations. Whereas most of the literature
of embodied cognition focuses on learning procedures and
motor tasks, a growing body of work demonstrates that em-
bodiment could support the development of conceptual un-
derstanding and higher-order skills such as problem solving
and reading comprehension (Glenberg et al. 2008; Thomas &
Lleras 2009; Zhang et al., 2021). Importantly, the facilitative
effect of bodily movements during learning has been demon-
strated even when the learners themselves are not the source
of the bodily action but are simply observing others’ bodily
movements in a video (de Koning & Tabbers, 2013; Son et
al., 2018; Glenberg et al. 2008; Thomas & Lleras 2009).

Based on these considerations, our instructional narrated
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video of a human hand drawing visual figures combined both
dynamic and embodied qualities. Drawing as a learning tool
has been studied independently of dynamic visualization and
embodied cognition, and has been found to have certain ad-
vantages in its own right. Whether generated by the learner,
or observed as it is generated by someone else, drawing can
give learners more time to notice more (and more subtle) de-
tails in new representations, allowing them to think about how
different elements of the drawing are connected in a process
that unfolds over time (Landin, 2011).

Below, we first evaluate what students know about nor-
mal distributions and, then, test whether our intervention im-
proves their understanding of this concept.

Study 1
Method

Participants Participants were 39 undergraduate students
taking a 10-week, introductory statistics course at the Univer-
sity of California, Los Angeles. Due to the COVID-19 pan-
demic, the entire course was taught remotely (online). Stu-
dents participated in the study for extra credit toward their
final course grade and did not get any other form of compen-
sation.

Design & Procedure Students were emailed an invitation
to participate in the study near the end of the course. By
that point, students had already been taught the basic concepts
pertaining to normal distributions, and had used the standard
normal distribution to calculate p-values for simple statisti-
cal tests. Students who chose to participate clicked a link
to complete a Qualtrics survey (https://www.qualtrics.com).
Following the survey, students were asked to (1) rate the dif-
ficulty of the survey as a whole, on a scale from 0 to 10 (0 =
not hard at all), and (2) estimate how well they thought they
performed, on a scale from O to 10 (0 = merely guessing an-
swers). Participants could not go back across questions.

Materials The survey consisted of 15 questions about prob-
ability; of these, four questions specifically examined stu-
dents’ understanding of probability under a normal curve (for
details, see Results). For example, we asked whether, and
why, the area under a normal curve equaled 1; and tested
students’ ability to use the symmetry property of the normal
curve to compare probabilities across its two sides. Below,
we do not report results on the other 11 questions, which ad-
dressed topics such as p-value interpretation and statistical
power.

Results

On average, students rated the difficulty of the questions as
6.44 out of 10 (SD = 1.89), and estimated their own perfor-
mance as 4.80 out of 10 (SD = 2.05). Below, we qualitatively
describe students’ responses to each of four questions testing
their understanding of the area under a normal curve.

In the first question, students were presented with a normal
curve whose entire area was shaded (Figure 1A) and were



told: “This is a normal probability distribution.” They were
then asked if they could estimate the probability represented
by the shaded region under the curve, and elaborate on their
answer in an open response question.
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Figure 1: The figures presented to students in the survey

Out of 39 students, only 25 (64%) correctly answered that
the total probability under the curve equals 1. Out of the 14
students who answered the question incorrectly, 10 students
(25.6% of the total sample) said that the probability could not
be estimated because there were no numbers on the x-axis.
One student wrote: “Since this is a bell shaped curve there
is an equal amount of values before and after the median in
the center of the curve. Given that there are no values on
the graph I wouldn’t be able to estimate a specific number to
represent the shaded region.”

The other 4 students either said that the area could be esti-
mated but did not provide a specific number, or gave a wrong
explanation. One student wrote that, “Yes you can, why, be-
cause the area under the curve, my estimate would be depend-
ing what it is asking and deal with Z scores”. The concept of a
Z score was a frequently mentioned in students’ explanation,
with many students thinking, erroneously, that a Z score was
required to compute the total probability under the curve.

The second question presented students with another nor-
mal curve, with its peak (i.e., mean/median/mode) marked
with a vertical line; only the area to the right of the line was
shaded (Figure 1B). We asked students whether they could
estimate the probability represented by the shaded area. In
contrast to question 1, not all 39 students answers “Yes” (but
two students did not provide a specific number). Most stu-
dent—including the students who previously said they could
not estimate the probability when the total area under the
curve was shaded—seemed to understand the idea that half of
the area represents a probability of 0.5. Given that knowing
the probability of the entire area under the normal curve is,
at least implicitly, logically required for calculating the area
corresponding to half this distribution, it is surprising that the
same students who said that numerical values were needed for
estimating probability on the previous question now seemed
to have no problem generating a probability. One of these
students said, “The probability is 50% since half of the data
points fall under the shaded region.”

The third question again presented students with the curve
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in Figure 1A but, this time, paired it with a different, wider,
normal curve. The total area under each curve was shaded
(Figure 1C). We asked students: “If we draw a normal
distribution that is wider than the one in Question 1 (as
shown below), how would the probability represented by the
shaded part under the distribution change?” Only 14 students
(35.9%) answered correctly that the probability would not
change and provided a reasonable explanation of their an-
swer. For example, one student answered: ‘“The probability
is still 100% because the whole distribution is shaded in”’; an-
other said: “It would not change at all. The area under the
curve still represents the entire probability.”

The 24 students who answered Question 3 incorrectly
made 3 main types of errors: (1) 11 students said that the
probability would change if the distribution became wider.
One of these students said: “The probability would change
to encompass fewer Y values and more X values.” Another
said: “The original distribution is normal and the wider dis-
tribution is not. The empirical rule only applies to normal
distributions. So indicators of 68% or 2.5% would not ex-
ist.” (2) Seven students did not say whether the probability
represented by the shaded region would change or not. For
example, one student said only that “the peak is higher than
the wider one.” (3) The remaining 7 students said that the
probability would not change, but were not able to provide a
sensible explanation of their answer. For example, one said:
“ 1 don’t think it would change, making it wider would only
help people clearly see the distinction between the x-axis, but
I don’t think anything more.”

Finally, Question 4 tested whether students could use the
symmetry property of the normal distribution to reason about
probabilities. Therefore, it presented students with a normal
curve having a mean of 8, and a vertical line marking a value
of 10 on the x-axis. The area to the left of this line was shaded
(Figure 1D). Students were told:

“Here’s a drawing of a normally shaped population dis-
tribution with a mean of 8. The probability of a randomly
sampled data point being greater than 10 is 0.2. Based on
this, what is the probability of a randomly sampled data point
being greater than 6? Explain your answer.”

14 students (35.9%) correctly reasoned that the probability
should be 0.8. The remaining 25 students, who provided in-
correct probabilities, came up with a variety of explanations.
As before, five students erroneously tried using the concept of
Z scores or the “empirical rule”, a shorthand to remember the
percentage of values that fall within each standard deviation
of the normal distribution, to explain their answers. One, for
example, said:

”If the probability of a random data point being greater
than 10 is .2, then 10 has a Z score of 2. This means that
a change in value from 8 to 10 is measured in 2 standard de-
viations, so 6 to 8 is another 2 Z scores. So the probability of
a randomly sampled data point being greater than 6 is about
98%, because it is represented by the area of the normal dis-
tribution above -2 standard deviations from the mean. ”



Another student said that the probability would be 0.6 “be-
cause there is a Z score of -2.”

Discussion

The results of Study 1 showed that even students nearing the
completion of an introductory statistics course at a highly se-
lective university have, for the most part, only a shaky grasp
of the concept of normal probability distributions. In particu-
lar, many students do not fully understand how the area under
a normal curve can be used to represent probability, or that
the total area under any probability distribution (regardless of
its shape) would add up to 1. Students also are not generally
able to infer probabilities based on the symmetric property of
a normal probability distribution—at least in scenarios that
are somewhat challenging—and often resort to concepts such
as Z scores or the central limit theorem, inappropriately ap-
plying unnecessary or irrelevant concepts to the problem at
hand.

Together, these results suggest that when teachers draw
probability distribution curves on the board or display them
on slides as a means of communicating statistical concepts,
their students may not even interpret that basic features of
such displays in the intended ways. For us, this raised the
question of whether we could remedy students’ misconcep-
tions about probabilities under the normal curve through a
brief instructional intervention, which we set out to do in
Study 2.

Study 2

In Study 2 we set out to create a brief instructional interven-
tion that, if successful, could provide students with the fun-
damental knowledge they would need to interpret the kinds
of visual representations teachers commonly use to explain
more advanced statistical concepts. The focus of the instruc-
tion was on the normal curve and its use as a probability dis-
tribution for modeling the distribution of a variable. Effects
of the training were assessed on both immediate and delayed
post-tests. The instruction was implemented in the form of
a brief (16min) video, of which we created three versions.
Students were randomly assigned to view one of the three
versions:

For the first version of the video—the Hand Drawing con-
dition (Figure 2, left)—we videotaped a human hand drawing
on an iPad, and then recorded a voice narration of what was
being represented in the drawing as it unfolded through time.
We decided to use a narrated hand drawing because the result-
ing representation is both dynamic and embodied. Based on
our reading of the literature, both of these features, especially
when used together, might be expected to help students link
the visual features of probability distributions to their con-
ceptual meanings. Further, we chose this particular version of
embodied representation because it is simple to implement: if
this intervention works, then many instructors who create on-
line materials in the style of Khan Academy (i.e., animated,
dynamic drawings with no hand) could easily adjust their pre-
sentation to include their hand. In addition, compared to other
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options such as gesturing hands or a talking head, a hand is
a less confounded manipulation of embodied representations,
because it adds relatively little information that is not directly
related to the statistical figures being drawn, such as commu-
nicative gestures or facial expressions.

Hand Drawing Screen Recording Static Slides

" [ g

Figure 2: screenshot of instructional videos from the three
experimental conditions in Study 2

For the second version—the Screen Recording condition
(Figre 5, right)—we used the same audio track as in the Hand
Drawing condition, but this time paired it with the iPad’s
screen recording of the drawing as it was being produced for
the Hand Drawing condition. Thus, the only difference be-
tween these first two versions was in whether the hand could
be seen doing the drawing or not, which allowed us to gauge
the effect of embodiment over and above the effect of the dy-
namic representation without the hand.

Finally, the third version of the video—the PowerPoint
Condition (Figure 2, right)—used the same audio track, but
instead of showing the drawing unfold dynamically over time,
it displayed a series of static PowerPoint slides. The content
of the slides was designed to match the final output of the
hand drawings in the other two conditions. Based on con-
cerns raised in the previous literature, we tried to equate as
much as possible the information contained across the three
versions of the video.

In addition to an immediate assessment following the in-
structional video, we included a delayed assessment, which
was administered several weeks after the initial video inter-
vention. Measuring delayed effects is important for two rea-
sons: (1) to tests whether learning lasts and can generalize
beyond a single and controlled laboratory session (Halpern
& Hakel, 2010; Stigler et al., 2019); and (2) because some-
times the impact of an intervention—on transfer in particu-
lar—shows up only in a delayed post-test (Adams et al., 2014;
McLaren, Adams & Mayer, 2015) .

Two predictions can be derived from this design: first, if
the Screen Recording group performs better on the post-test
than the static PowerPoint group, that would mean that dy-
namic visualizations (here, drawing) aid learning over and
above a presentation of the same content in static slides. Sec-
ond, if the Hand Drawing group performs better on the post-
test than the Screen Recording group (and the static Power-
Point group), it would demonstrate the unique value of adding
an embodied element to dynamic visualizations. If we find
support for only the second, but not first, prediction, it would
suggest that dynamic visualizations on their own are not al-
ways sufficient to support learning about normal probability
distributions.



Method

Participants Seventy-nine undergraduate students taking
an introductory statistics course (Psychological Statistics) at
University of California, Los Angeles during the summer ses-
sion, participated in the study. Of these students, 71 took the
delayed post-test. From among these, eight participants were
excluded from the study based on predetermined exclusion
criteria, which included (1) spending either less than 400s or
more than 7200s on the survey; (2) reporting significant tech-
nical difficulties or disruptions while completing the survey
(e.g. not having a quiet enough study environment for them
to watch the instructional video); or (3) writing the same re-
sponse for every free response question. Thus, following ex-
clusion, we obtained a final sample of 63 undergraduates. The
sample was ethnically diverse: 50.79% Asian, 4.76% Black
or African American, 12.70% Hispanic or Latino, 23.81%
White, and 7.93% multiracial or other.

Design & Procedure Similar to Study 1, students who
wanted to participate in a Qualtrics survey for extra credit
voluntarily clicked on the link, at which point the survey
software randomly assigned them to one of three conditions:
Hand Drawing (N=16),Screen Recording (N=23), or (static)
PowerPoint (N=24).

All three conditions included an initial survey, followed by
an instructional video, followed by an immediate and, later,
a delayed post-test. In the initial survey, participants com-
pleted a pre-test with seven questions assessing their under-
standing of frequency histograms, density histograms, and
probability distributions. Then, participants watched a 16min
instructional video, which varied according to which condi-
tion they were assigned to. They then rated the pace of the
video and how much of the video they felt they understood.
Afterwards, they answered 15 post-test questions, three sur-
vey questions about their attitudes towards the video, and one
screening question asking if anything went wrong during the
experiment.

Approximately three weeks later, when students took their
final course exam, they were informed that they could get ad-
ditional extra credit by taking the delayed post-test. Students
participated voluntarily in this activity. Importantly, the mate-
rial covered in the course between the immediate and delayed
post-tests did not vary across experimental groups. The mate-
rial focused on using a modelling approach to explain varia-
tion. Only students who completed both post-test evaluations
were included in our data analysis of the delayed post-test.

Materials Three versions of videos, each teaching the same
set of basic concepts— histogram”, “normal distributions”,
and “probability distributions”—were designed. The Hand
Drawing version of the video was made by using a video
camera to record an instructor’s hand drawing on a tablet
according to a lesson plan for teaching the statistical con-
cepts above (the video camera was external to the tablet).
The Screen Recording version of the video was created using

the tablet’s internal screen-capture technology to record the

drawings from the first video, without the actual hand, but
with the same audio. The PowerPoint version of the video
was contained static slides with recreated copies of the “end-
state” of each screen in the first video, with the same audio.

Measures Pre-test. The pre-test contained seven questions
designed to assess participants’ existing knowledge of normal
probability distributions. These same questions were also in-
cluded on the post-test.

Immediate post-test. The immediate post-test contained 17
questions. These questions targeted conceptual understand-
ing of the area and the probability under a normal probability
distribution, its symmetry property, the features of a faceted
histogram, the idea of using the normal distribution as a gen-
erative model of data, and the changes in probabilities as dis-
tributions become wider or narrower.

Delayed post-test. The delayed post-test contained 17
questions. Seven questions were duplicates of questions in-
cluded on the immediate post-test, and the rest were new
questions.

Three trained coders, blind to each participant’s experi-
mental condition, scored students’ responses on both the im-
mediate and delayed post-tests. Each question was randomly
assigned to be coded by two coders. Disagreements in cod-
ing were discussed in a group meeting until a consensus was
reached.

Results

Pre-test A one-way Analysis of Variance (ANOVA) with
condition as the independent variable and pre-test score as the
dependent variable found no significant difference between
the three conditions (F{3 ¢0) = .153, p = .858, n? =0.005).

Immediate post-test Scores on the immediate post-test for
each of the three conditions are shown in Figure 3. Descrip-
tively, students in the Hand Drawing condition had higher
scores than those in the other two conditions. A one-way
ANOVA found a significant difference in post-test perfor-
mance across the three groups (F(2 g0y = 4.191, p = .020, n?
= .12; Levene’s test and normality checks were carried out
and the data met the assumptions). Pairwise ¢-tests showed a
significant difference between the Hand Drawing group and
the (static) PowerPoint group (f(3g) = 2.90, p = .005, Cohen’s
d = .92), but not between the Hand Drawing group and the
Screen Recording group (t(37) = 1.69, p = .097), nor between
the PowerPoint group and the Screen Recording group (4s)
= 1.32, p = .192). Pairwise, post-hoc comparisons were ad-
justed using the Bonferroni correction to 0.017 (0.05/3).

We computed the gains from questions that appeared both
on pre and post test across three conditions by subtracting
pretest score from a subset of immediate post-test score.
Hand Drawing group had a mean gain of 2.03 (sd = 1.96).
Screen Recording group had a mean gain of 1.04 (sd = 1.63).
PowerPoint group had a mean gain of 0.85 (sd = 2.08). Cerit-
ically, however, we did not include a control group that re-
ceived no intervention.
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Figure 4: Violin plots showing delayed post-test scores by
condition. Conventions are the same as in Figure 3.

To compare the effectiveness of the three interventions
while controlling for potential differences across groups in
pre-test performance, we conduced a one-way Analysis of
Covariance (ANCOVA). The difference on immediate post-
test performance between the three conditions remained sig-
nificant (F{y 59) = 4.567, p = .014, n? = .14). Followup pair-
wise comparisons showed a significant difference between
the Hand Drawing group and the PowerPoint group (f(3g)
= 3.07, p = .003) but not between the the Hand Drawing
group and the Screen Recording group (t(37) = 1.79, p = .079),
nor between the PowerPoint group and the Screen Recording

group (f(45) = 1.40, p = .167).

Delayed post-test Scores on the immediate post-test for
each of the three conditions are shown in Figure 4. Descrip-
tively, the ordering of the three groups remained the same
as during the immediate post-test. Nonetheless, a one-way
ANOVA found no significant differences across conditions
(Flo.60) = 1.978, p = .147, n? = .062). Still, pairwise t-tests
showed a significant difference between the Hand Drawing
group and the PowerPoint group (f33) = 1.98, p = .052, d
= .67), but not between the Hand Drawing group and the
Screen Recording group (t37) = 1.06, p = .293), nor between
the PowerPoint group and the Screen Recording group (f(4s)
=1.01, p = .316). When controlling for pre-test performance
by keeping it constant, we again found a significant differ-
ence between the Hand Drawing group and the PowerPoint
group (737 = 2.03, p = .046). However, these test results did
not survive Bonferroni correction for multiple comparisons.

Discussion

In Study 2 we used a brief intervention to teach students con-
cepts related to probability distributions. Specifically, we cre-
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ated a "hand-drawing” video, utilizing both dynamic visual-
izations and embodied representations. We found that this 16-
min video improved understanding compared to the “static”
PowerPoint intervention, which did not have these charac-
teristics. The intervention that used dynamic visualizations
without a visible hand produced outcomes in between the
other two conditions, but did not differ significantly from ei-
ther. This pattern was descriptively maintained three weeks
after the intervention, although the differences were reduced.

This pattern of results provides evidence for the potency of
combining dynamic visualizations with embodied represen-
tations. Moreover, the lack of significant difference between
still PowerPoint slides and the animated (dynamic) Screen
Recording is in alignment with the hypothesis that dynamic
visualizations alone may overly tax limited working memory
resources, making it difficult for learners to remember ele-
ments of the dynamic visualization for long enough to con-
struct understanding. The embodied quality of the human
hand in the Hand Drawing intervention may help to alleviate
this problem by activating another pathway (i.e. the bodily
movement of the instructor) for learners to encode and under-
stand information, resulting in better learning outcomes. In
addition, the findings are consistent with Mayer’s multi learn-
ing principles, in which embodiment such as drawing with an
visible hand is hypothesized to help learning, especially when
it guides specific cognitive processes (Mayer, 2014).

General Discussion

The findings altogether have two implications for statistics
instructors: First, students may not have the fundamental un-
derstandings teachers assume they have when they use vi-
sualizations based on the normal curve to explain more ad-
vanced statistical concepts (e.g., p-values). But second, this
gap in knowledge can be remedied with a brief intervention
that could be delivered online, outside of class time, provid-
ing students with the basis to learn more advanced concepts.

Although we suspect that the most common instructional
materials in current use are relatively static in nature (like the
PowerPoint condition in our study), we have demonstrated
that students can learn more from representations that are
both dynamic and embodied. Further, these representations
may be even more important in online instruction: whereas
in-person instructors can, through their gestures, make static
slides “come alive”, limitations of static slides are more dif-
ficult to overcome in the context of remote instruction. For-
tunately, modern computer/web technologies put the creation
of interventions of the sort we used within reach of most in-
structors, and make it possible to deliver these interventions
outside of class, wherever students are.

A central question raised by our findings concerns the
“minimal” changes—in terms of dynamic visualizations and
embodied representations—that instructors could make to
their materials in order to improve student learning outcomes.
For instance, some instructors introduce dynamic visualiza-
tions into their slides (without recording videos) by using an-



imations and “’step-by-step” reveals of information; The re-
sulting instruction is perhaps somewhere between our screen-
recording and PowerPoint conditions. In addition, instructors
use gestures and pointing to draw attention to specific point-
ing of a slide, and may use embodied representations in non-
manual modalities (e.g., repeating an important phrase / def-
inition with a constant intonational / stress pattern). Future
research could further the delineate ideal trade-offs between
ease of implementation and student improvement.
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