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ABSTRACT OF THE THESIS

Towards Opportunistic Navigation with LEO Satellites:
Machine Learning for Satellite Orbit Propagation

By

Jamil A. Haidar-Ahmad

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2022

Professor A. Lee Swindlehurst, Chair

Low Earth orbit (LEO) satellites inherently possess desirable attributes for navigation: (i)

abundance, (ii) geometric and spectral diversity, and (iii) high received powers. However,

the first prerequisite to satellite navigation is to know the satellites’ ephemeris (i.e., position

and velocity over time) and clock error states. Unlike global navigation satellite systems

(GNSS), specifically designed for navigation, with satellites in medium Earth orbit (MEO)

that constantly transmit ephemeris and clock corrections to users in their signals, LEO satel-

lites, mainly operated by private companies, generally do not openly send such information

in their proprietary signals. The quality of oscillators on-board LEO satellites’ as well as

their clock error states are completely unknown. Moreover, the most accurate publicly avail-

able information on LEO satellites’ ephemerides is in the form of two-line element (TLE)

files, which yield ephemerides with errors of a few kilometers in position and a few meters

per second in velocity. Consequently, LEO satellites’ states are completely unknown (clock

errors) or uncertain at best (ephemeris).

This thesis addresses the aforementioned challenges by performing the opportunistic estima-

tion of LEO satellites’ states. First, a study of the use of machine learning for satellite orbital

determination is conducted. Multiple models for orbit propagation are analyzed, and the

ix



model with the best performance is found. The model is then utilized in a STAN framework,

experimentally demonstrating its capability of producing satellite ephemeris good enough to

allow for desirable navigation solutions. Next, a framework is proposed to collect training

data when the target ephemeris data is not available due to satellites not transmitting their

ephemeris. Finally, the framework’s feasibility is demonstrated experimentally first by local-

izing a stationary receiver and second by coupling an IMU with LEO observables to navigate

a moving ground vehicle.
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Chapter 1

Introduction

With the ongoing technological advances, constant connectivity and a shift to complete

autonomy are already becoming necessary requirements when developing the technologies

that shape our daily life. With these requirements comes the deeply ingrained reliance on the

positioning, timing, and navigation (PNT) services that global navigation satellite systems

(GNSS) have been providing for the past decades. Most critical national infrastructures

depend heavily on GNSS availability, reliability, resilience, and integrity. This technology is

utilized for industrial purposes as well as in our daily life, where it is applied in transportation

(autonomous vehicles), urban air mobility, civil aviation, drone aviation and delivery systems,

object and people tracking, agriculture, robotics, etc.

This overwhelming importance of the GNSS technology and our reliance on it raises cause

for concern as any disruption could speak catastrophic throughout many infrastructures.

Such disruptions are not purely theoretical concerns as there have been thousands of reports

GPS jamming and spoofing as well as GNSS signals being unavailable (eg. under dense

foliage, during unintentional interference, and in deep urban canyons). Furthermore, newer

technologies require higher accuracy and resilience that GNSS cannot achieve in standalone
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mode, such as positioning and navigation indoors or in deep urban canyons. As a result,

other technologies are necessary as alternative or complimentary to GNSS for guaranteeing

the stringent PNT requirements of the current and future technologies.

Alternative signals that could be utilized for positioning and navigation purposes are called

signals of opportunity (SOPs). Ambient SOPs are exploited and utilized in an opportunistic

navigation paradigm that aims to overcome the limitations of standalone GNSS. These SOPs

come in different forms and multiple sources ranging between terrestrial signals and extrater-

restrial signals. Terrestrial SOPs include digital television, and AM/FM, cellular signals. Of

particular note, the various generations of cellular signals (3G code-division multiple-access

(CDMA), 4G long-term evolution (LTE), and 5G have shown the potential of meter-level

level accuracy on ground and aerial vehicles [1, 2, 3, 4, 5, 6, 7].

Extraterrestrial signals, or space-based SOPs, are most commonly signals coming from Low

Earth Orbit (LEO) satellites as they have the most desirable properties for use in a naviga-

tion framework [8, 9]. These LEO satellites have dominated the scene recently as more and

more companies rush to enter the space race and launch their own mega constellations into

space [10, 11]. This has been facilitated by the strides that have been achieved recently in

technologies relating to building LEO satellites and launching them. These ground-breaking

developments have dramatically decreased launch costs and have made available smaller and

cheaper components to build satellites and other spacecraft. Furthermore, with the privatiza-

tion of space launches, LEO satellites for mega-constellations can be launched from different

places on Earth allowing the satellites to be placed directly into their designed orbits, instead

of having to rely on a limited set of launch sites with limited time availability. Finally, these

private companies have developed reusable orbital-class launch systems such as the Falcon

9 which dramatically reduced launch costs. With LEO space vehicles(SVs) already forming

a virtual blanket covering Earth with around 3,800 active satellites in orbit, the space race

is showing no signs of slowing down as these mega constellations have the potential to serve
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as the foundation for supporting new technologies and advancements in satellite imaging,

remote sensing, and revolutionizing communication and navigation technologies such as 5G

which demands higher data rates [12, 13, 14]. LEO satellites could also provide space-based

optical mesh networks; global, high-availability, high-bandwidth, and low-latency internet

[15, 16, 17]. Figure 1.1 shows some of the existing and future LEO megaconstellations that

will form a virtual blanket cover around Earth. A direct consequence of LEO SVs’ abundance

Figure 1.1: Existing and future LEO satellite constellations.

is that their configuration relative to a receiver anywhere on Earth yields a low geometric

dilution of precision (GDOP), which improves navigation accuracy. Figure 1.2 shows the

current GDOP and a heatmap of the number of GNSS satellites over Earth. Compared to

only one of the rising mega-constellations, Starlink, we can see a huge improvement in both

GDOP and the number of visible satellites over Earth(availability) as illustrated in Figure

1.3c. Furthermore, LEO satellites are around twenty times closer to Earth than GNSS

satellites, residing in medium Earth orbit (MEO), which results in the received power of

3



Figure 1.2: Current GNSS GDOP and number of available satellites heatmap.

LEO signals being up to 30dB more powerful than their GNSS counterparts [18, 19, 20].

Finally, LEO SVs transmit in a wide range of frequency ranging from 137–138 MHz in the

very high frequency (VHF) band for Orbcomm to 11.325 GHz in the Ku band for Starlink;

thus, improving the resilience of LEO SVs’ signals to interference. LEO satellites’ signals of

opportunity could complement and safeguard GNSS to provide high levels of performance

and operational resilience [21, 22, 23].

Some companies, such as Iridium in collaboration with Satelles, have taken advantage of

that by launching satellites with highly accurate clocks and PNT (Positioning, Navigation,

and Timing) capabilities. However, these services are not available for non-subscribers, and

companies launching LEO satellites for communication, broadband Internet, and sensing

4



(a)

(b)

(c) Current (a) and future (b) Starlink number of available satellites.

purposes may not be willing to incur the expenses of integrating a PNT-capable system into

their satellites and sharing the relevant information publicly [21, 22]. Fortunately, the LEO

satellites’ signals could be used opportunistically no matter if they were initially designed

for navigation or not [24, 9, 25, 26]. LEO satellites’ signals of opportunity (SOPs) could

complement and safeguard GNSS with high levels of performance quality and operational

resilience.

Utilizing LEO satellites signals opportunistically comes at the cost of: (i) developing special-

ized receivers to extract navigation observables from these signals, (ii) tackling clock errors

of both satellite and receiver clocks which might not be as tightly synchronized as needed

5



for navigation requirements, and (iii) knowing the satellite’s ephemeris with minimal error.

When it comes to the first point, the variability of signal structure and its unknown nature

for each constellation makes it difficult to create receivers to extract navigation observables

from these unknown signals. Furthermore, the equipment required must be able to capture

these signals across multiple channels and frequencies, with specialized antennas, and must

have the ability to sample signals at high sampling frequencies therefore handling data that

must be kept synchronized while being processed at extremely high throughput in real time.

This places a certain barrier-to-entry regarding equipment costs and the knowledge required

for equipment selection. The first two challenges have been the subject of extensive research

recently [24, 27, 9, 28, 29, 25, 30, 23, 31, 32, 33].

Several advancements were made to address the challenge of satellite orbital determination

using models and algorithms for propagating the satellites’ states as well as the associated

uncertainty [34]. These propagators take into consideration, to various extents, multiple

sources of perturbing forces such as the Earth’s non-uniform gravitational field, atmospheric

drag, solar radiation pressure (SRP), and third-body attraction (eg., the Sun and the Moon)

[35]. The United States Air Force Simplified General Perturbations 4 (USAF SGP4) [36, 37]

analytical propagator is based on a general perturbation analysis. SGP4 is used to gener-

ate ephemerides from a set of mean orbital elements given at a reference epoch in two-line

elements (TLE) files, which are published and updated periodically by the North American

Aerospace Defense Command (NORAD)[38]. However, these operational analytical orbit

determination methods are based on limited dynamical models and mean elements which

may not meet accuracy requirements for navigation [39, 40]. Space agencies usually employ

high-precision orbit propagators (HPOP), which are numerical propagators used in conjunc-

tion with precise force models. However, numerical propagators require large amounts of

data as well as significant computation time which renders them undesirable for real-time

navigation purposes. Finally, semi-analytical models such as Draper semi-analytical satellite

theory (DSST) combine the accuracy of numerical propagation and the characteristic speed
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of analytical propagation[41]. However, all of the previously mentioned propagators require

sufficient prior knowledge of force model parameters as well as an accurate initial estimate,

which is not readily available. The most accurate publicly available LEO satellite ephemeris

information is in the form of TLE files that suffer from an error of a few kilometers, but with

most error concentrated in the along-track axis of the LEO SV’s body frame.

Machine learning (ML) has shown tremendous potential in radar and communications [42],

and its powerful modeling capabilities have been recently studied to provide a less parameter-

reliant orbit propagation solution [43, 44]. In [45, 46], distribution regression was used for

orbital determination of objects in LEO and GEO space. Propagating LEO space debris

orbits was studied through the use of support vector machines (SVMs) [47, 48], and LEO

satellite orbital states were modeled using artificial neural networks (ANNs), SVMs, and

gaussian processes (GPs). An exhaustive simulation study developed in [48, 49] showed that

ANNs possess high regression capabilities compared to SVMs and GPs. Under the ANN

approach exists some previous work that employed multiple neural network (NN) architec-

tures, such as the Time Delayed Neural Network (TDNN) and Long Short-Term Memory

(LSTM) neural networks [50]. However, utilizing ML in full orbital determination, allowing

for completely replacing standard propagators, is yet to be achieved. Promising prelimi-

nary results were recorded in [51], in which a TDNN was trained using the data from two

Orbcomm LEO satellites, which broadcast their three-dimensional (3-D) position in the

Earth-centered, Earth-fixed (ECEF) coordinate frame from onboard GNSS receivers. How-

ever, utilizing ML in full orbital determination, allowing for completely replacing standard

propagators, is yet to be achieved.

The contributions of this thesis are threefold and conduct a study on the use of machine

learning in satellite orbital determination for use in a positioning and navigation framework.

First, the capability of computational neural networks and other machine learning algorithms

in predicting satellite ephemeris time series (when given correct satellite ephemeris as training

7



data) is studied:

� First, a comprehensive performance analysis is conducted between different ANN archi-

tectures for short and long-term satellite orbit prediction, such as TDNNs and LSTMs.

� Second, the performance of numerical and analytical propagators powered by a ML

approach, to account for residual error correction, is studied.

� Third, the validation and generalization of the proposed ML-based orbital propagator

for different orbits and constellations is assessed.

� Fourth, the performance of the proposed ML-based Simultaneous Tracking and Nav-

igation (STAN) framework in estimating a ground vehicle’s position is demonstrated

experimentally.

Second, after ML is demonstrated to be able to predict ephemeris time series, the issue of

not having correct satellite ephemeris to be used as training data is addressed. A hybrid

numerical-machine learning approach is proposed for LEO satellite orbit prediction where

the receiver has no prior knowledge on the satellite’s position except for publicly available

TLE files:

� A hybrid numerical-ML propagator is developed in a three-step framework: (i) refin-

ing a LEO satellite’s ephemeris via opportunistic tracking initialized from an SGP4-

propagated TLE, (ii) training the ML propagator on the refined ephemeris, thus ex-

tending the approach in [51, 52] to no prior true ephemeris information by solely relying

on initialization from TLEs, and (iii) localizing a receiver opportunistically with the

ML-propagated ephemeris.

� The ephemeris propagation performance of the hybrid numerical-ML framework is

compared with that of standalone propagators using true decoded Orbcomm ephemeris

data.
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� Experimental results are presented to demonstrate the efficacy of the proposed frame-

work with a first pass of an Orbcomm satellite during which the tracking to refine

the ephemeris is performed and a second pass of the same satellite during which the

opportunistic localization performance using ML-propagated ephemeris and SGP4-

propagated ephemeris are compared.

Third, an experiment is conducted where a moving ground vehicle equipped with an in-

ertial measurement unit (IMU) applies the proposed framework and utilizes LEO multi-

constellation signals from up to 4 satellites at the same time to provide a navigation solution.

This thesis is organized as follows. Chapter 2 tackles the question of the capability of ML

models in estimating satellite ephemeris. Chapter 3 presents experimental results for using

ML-propagated ephemeris in a Simultaneous Tracking and Navigation (STAN) framework.

Chapter 4 presents a comprehensive framework to first perform the tracking of LEO SVs,

which are used to replace the unavailable true satellite ephemeris in training, and second to

propagate that ephemeris and use it in localizing a stationary receiver. Chapter 5 presents an

experiment conducted on a moving ground vehicle where the previously described framework

is intergrated with an inertial measurement unit (IMU) to provide a tightly coupled IMU-

navigation solution. The contributions of this thesis are summarized in Chapter 6.
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Chapter 2

Machine Learning for Orbital

Determination

2.1 Classical Orbital Determination

To address the challenge of satellite orbital determination, several orbital propagation meth-

ods were developed in the literature to propagate the states of satellites at any point in time

[53, 54, 55, 56], and their differences can be categorized by two factors: complexity and ac-

curacy. Numerous dynamics models which estimate the state of LEO satellites (position and

velocity), as well as these estimates’ uncertainty, have been developed over the years. The

state of a satellite can be parametrized by its Keplerian elements, also known as Classical

Orbital Elements (COE). Those orbital elements, along with some other information about

a satellite’ states, could be found in its corresponding Two-line Element sets (TLEs) which

are publicly published on a daily basis by the North American Aerospace Defense Command

(NORAD).

To this end, one way to mathematically propagate a satellite’s ephemeris given its position
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and velocity vector in an inertial reference frame is to solve a second order differential

equation relating the satellite’s position and acceleration. This is also known as a Keplerian

orbit, which is an unperturbed orbit where for any values of the initial state vector, the

satellite’s corresponding Keplerian orbit can be found.

However, propagating a satellite’s ephemeris through unperturbed Keplerian orbital models

numerically or analytically leads to highly inaccurate results as there are several sources of

perturbing forces such as atmospheric drag, the Earth’s oblateness causing a non-uniform

gravitational field, solar radiation pressure, and other sources of gravitational forces (e.g., the

Sun and the Moon). Therefore, the models realistically utilized are perturbed models, such

as the two-body J2 propagator which takes into consideration the previously mentioned

perturbations, including multiple forces which could offset the satellite’s ephemeris from

following an unperturbed path. These perturbations can be modeled as additive noise,

which can still be handled through classical methods; however, these perturbations act as a

cascade of nonlinear functions on the satellite’s states.

Numerical methods such as the “Two Body” model, “Two-Body with J2” model [57], and

the ”High-Precision Orbit Propagator” (HPOP)[58] are capable of producing highly accurate

orbits; however, the J2 model is only accurate for short propagation periods, and HPOP

requires a dense number of parameters for modeling perturbation forces as well as heavy

computational loads to forecast the satellite orbit, rendering them unsuitable in real-time

navigation systems. Meanwhile, their analytical counterparts, such as the Simplified General

Perturbation (SGP4), are more computationally efficient and less parameter-heavy allowing

for real-time propagation at the cost of introducing larger satellite position errors. The

currently available parameters from NORAD, such as values from TLE files, do not provide

enough data for achieving a desirable ephemeris accuracy, since utilizing these elements for

orbital determination with a standard SGP4 propagator could lead to errors in the order of

several kilometers, which accumulate and drift over time.
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2.2 Machine Learning Overview

To address the issues of the unavailability of parameters for modeling perturbation forces

and the nonlinearities introduced, a data-based approach is proposed. This is where the

power of data-based ML methods can be utilized. ML attempts to build a model based

on training data, which is subsequently utilized in several applications, such as making

predictions or inferences, classifying data, or making decisions. ML has been utilized in

solving highly dynamic, nonlinear, and highly uncertain problems. ML can be categorized

into: (i) supervised learning, where the model is given both the input and expected output;

(ii) unsupervised learning, where the model is only given the inputs; (iii) reinforced learning,

where the model is given rewards or penalties according to the decisions it makes.

For orbital determination, a ML model would be given the task of taking data relevant to

a LEO satellite’s ephemeris as inputs and using this information to predict the satellite’s

future ephemeris; therefore utilizing supervised learning. Unlike deep learning models, where

the feature extraction piece of the process is automated, enabling the use of large datasets,

classical machine learning requires researchers to determine the set of features which would

allow a model to understand the differences between structured data inputs. This work

focuses on the classical approach as large amounts of reliable and highly accurate LEO

satellite ephemerides data are not available. Furthermore, a large and complex deep learning

model would take incrementally increasing time for both training and inference rendering it

difficult to apply in real-time applications without specific hardware.

Predicting satellite ephemeris could be thought of as a time-series prediction problem. Utiliz-

ing classical methods for time series forecasting such as the Autoregressive Moving Average

(ARMA) or the Seasonal Autoregressive Integrated Moving-Average with Exogenous Re-

gressors (SARIMAX) method would be straightforward approaches. These models assume

a linear internal propagation model, which would be the case for a simple Keplerian orbit,
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such as the two-body model. Therefore, a better approach is to use neural networks which

are capable of handling nonlinearities and even learning and storing hidden states that could

encode parameters related to perturbation forces.

2.2.1 Feed Forward Neural Network

Artificial neural networks (ANNs), also termed ”Universal Approximators”, are theoretically

capable of approximating any continuous function [59]. For time-series prediction, the ML

model could be trained to find a function that takes as input previously known satellite

ephemeris and tries to find a non-linear transformation to predict the satellite’s ephemeris

at the next time step. Consider some input x ∈ X that is mapped to y ∈ Y by an unknown

function f : X 7→ Y . Given enough compact subsets of data points mapping the input space

and output space {(x1, y1), . . . , (xn, yn)}, the NN forms probability-weighted associations,

effectively approximating the function that maps the two spaces. NNs are capable of achiev-

ing this by funneling the inputs through a multitude of “neuron” blocks, where every neuron

computes σ(x,w, b) = σ(w · x + b), where w is the weight associated with every input, b is

the bias associated with every input, and σ is the activation function of the neuron which

could either be linear or could add nonlinearity to the system.

Once the estimated output ŷ is computed, the error between the observed output y and ŷ

is calculated through a cost function C(y, ŷ), which the NN aims to minimize. There is an

abundance of cost functions used in ML, each allowing for an intuitive understanding of the

difference between the observed and estimated output. The mean-squared error (MSE) will

be used as a cost function to assess the performance in the proposed approach, which can

be expressed as

C(y, ŷ)MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.1)
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where n is the number of data points, yi is the observed values, and ŷi is the estimated values.

Once the cost function is computed, each layer’s weights and biases are updated according

to how much those weights and biases contributed to the each layer’s error output.

2.2.2 Recurrent Neural Network

While FFNNs create mappings from the input to output space, they lack the ability to retain

memory from previous mappings. Instead of assuming that satellite ephemeris can be directly

generated from previous inputs, a state space representation allows for the introduction of

some sort of memory in the form of a hidden state. Recurrent neural networks (RNNs)

model dynamic systems. A typical dynamic system is described by equations of the form:

ẋ = Ax+Bu

y = Cx

where x is the state, u is the input, and y is the observed output. In discrete time, we have:

x(t+ 1) = Ax(t) +Bu(t)

y(t+ 1) = Cx(t+ 1)

The goal here is system identification. An RNN model is capable of creating exactly this

kind of structure in the discrete-time domain. The input is u(t), u(t − 1), . . . u(t − N) for

some prediction length N . The output is x(t+ 1) at a single time. The point is that x(t) is

not memoryless, but in fact depends on the prior values of x(t − n), memory of the last N

samples, where this memory is stored in “state” x.

Each ”hidden unit” actually has memory of its own past state. So at time t, each hidden
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Figure 2.1: Simple RNN architecture

unit in the RNN looks at the current input u(t) but also looks at its own prior value x(t−1).

There are weights from both inputs, so that x(t) = Ax(t − 1) + Bu(t − 1). So this exactly

implements the idea of a dynamic system. Finally, the output is read using another ”dense”

layer to obtain ŷ(t) = Cx(t). Errors could be calculated at every time step comparing the

true output to the predicted output y − ŷ, but typically this is only done for the ”final”

output, or after a finite number of time steps. This forces the network to learn a good

update matrix A. Figure 2.1 shows the basic structure of a simple RNN.

Finally, ”backpropagation through time”(BPTT) is used to figure out A and B. The hidden

state x(0) is initialized (usually zero, but could be taken from a previous estimate). Then

that ”forward propagates” through the A matrix a few times to get x(t+N) = ANx(0). At

each step Bu(t) is added in. The final error y(t+N)− ŷ(t+N) is backpropagated through

the A matrix (which is the same at each time step) and the B matrix back to different

values of u(t) at each time step, subject to the constraint that there is only one A and one

B matrix. Figure 2.2 shows how an RNN is unfolded when the BPTT algorithm runs.

Note that this is different from the Kalman filter formulation, and closer to system identifi-
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Figure 2.2: Unfolded RNN for BPTT.

cation, because the A and B matrices are learned, rather than assuming they are known in

advance. At the same time the values for the hidden state x are learned.

2.3 Previous Work

Efforts towards less parameter-reliant models have been made in utilizing the powerful mod-

eling capabilities of machine learning (ML) for providing an orbital propagation solution. In

[45, 46], distribution regression was used for orbital determination of objects in LEO and

GEO space. Propagating LEO space debris orbits was studied through the use of support

vector machines (SVMs) [47, 48], and LEO satellite orbital states were modeled using ANNs,

SVMs, and Gaussian processes (GPs). An exhaustive simulation study developed in [48, 49]

showed that ANNs possess high regression capabilities compared to SVMs and GPs. Under

the ANN approach exists some previous work that employed multiple neural network (NN)

architectures, such as the Time Delayed Neural Network (TDNN) and Long Short-Term

Memory (LSTM) neural networks [50]. However, utilizing ML in full orbital determination,
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allowing for completely replacing standard propagators, is yet to be achieved. Promising

preliminary result were recorded in [51], in which a TDNN was trained using the data from

two Orbcomm LEO satellites, which broadcast their three-dimensional (3-D) position in the

Earth-centered, Earth-fixed (ECEF) coordinate frame from onboard GNSS receivers.

2.4 Proposed Frameworks

To achieve a computationally feasible ML solution for orbital determination and propagation,

two frameworks which assume available training data are explored: (i) ephemeris prediction

and (ii) error prediction. First, the ephemeris propagation framework presents an architec-

ture that is capable of propagating a satellite’s orbit from historical state data, where each

state is given by S = [r, ṙ]⊺, and r and ṙ are the LEO satellite’s 3-D position and velocity in

the ECEF frame. There has been previous work in training a TDNN to model a satellite’s

path for a short time window (approximately 30 seconds) in [51]. However, this model used

the LEO satellite’s states which are transmitted by onboard GPS receiver and transmitted

in the downlink signal. While this approach produced promising results with Orbcomm LEO

satellites, this cannot be generalized to other LEO satellite constellations, since they do not

necessarily transmit their states openly. As such, a more realistic approach would be to train

the NN to model a computationally heavy yet highly accurate propagator, such as HPOP.

This model would look at historical HPOP data during training, and then take d previous

consecutive states to output the next state: Ŝt = Λ(Ŝt−1, Ŝt−2, . . . , Ŝt−d), where Λ is the

function that maps previous states to the next state. A key constraint to the complexity of

this model in allowing higher dimensionality is the time needed for inference, as the model

should stay within real-time timing constraints.

Second, the error propagation framework models the error between a fast and less accurate

propagator, such as SPG4, with a more accurate propagator, such as HPOP. This method is
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attractive since both propagators already handle the computation of highly dynamic parame-

ters, leaving the NN to simply ”close the gap” between two propagators that already perform

similarly. The model is trained to find the mapping from SPG4-propagated state vectors

to HPOP-propagated state vectors ŜHPOP = Γ(SSGP4), where Γ is the mapping between the

two states.

While input data in the form of SGP4 ephemeris propagated from TLE files is readily

available, target outputs (true satellite ephemeris) are not available for training. Therefore, a

framework is developed to create these target outputs through satellite tracking and filtering.

2.4.1 Ephemeris Propagation

This section presents an ML model specialized for predicting LEO satellite orbits for short

time windows.

Training

The proposed ANN models are investigated to study their ability and accuracy in predicting

a LEO satellite’s state vector (3-D position and velocity). Ground truth data in the ECEF

reference frame was acquired using the Analytical Graphics System Tool Kit (AGI-STK)

software, which is capable of generating highly accurate orbits through the use of the HPOP,

a numerical propagator with high dimensionality and high fidelity [58]. AGI-STK allows for

exporting such orbits for use in an ML environment. The satellite chosen for the simula-

tion study is the Orbcomm F107 satellite (NORAD ID: 40087). AGI-STK provides its own

database of satellite models, where this satellite’s model parameters, such as its inertial mass

distribution, are available. The toolkit provides an HPOP propagator with updated force

models from its database. The force models include gravitational effects of the sun, moon,

and options to include Jupiter, Venus, Saturn, and other planetary gravitational forces. The
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gravitational effects include Earth’s gravitational model (2008) with high order and degree.

Other forces include drag models, taking into account area/mass ratio, atmospheric density

models, low altitude density models, and solar flux/geomagnetic models. Additionally, solar

radiation pressure is utilized by the propagator while taking into account central body radia-

tion pressure and eclipsing central bodies of the Earth and Moon. This makes the AGI-STK

tool, utilizing HPOP, suitable for exporting propagated LEO satellite ephemeris to be used

for training, validation, and testing [60].

Design

To achieve a ML model which could take initial historical data and propagating the satellite’s

orbit, using its previous output as new input, this model should be capable of time series

prediction, as the satellite’s state elements could be seen as its own time series. Feed forward

neural networks (FFNN) [61, 62], which simply propagate from input to output in one

direction. However, other NNs like recurrent NNs (RNNs), close the loop, retain memory,

and provide a feedback to the NN. For this reason, the RNNs are expected to perform well

in modeling highly nonlinear and harmonic data [63, 64, 65, 66].

TDNNs are simple FFNNs, except that in TDNNs the input is fed as a time series, which

allows the NN to learn the dynamics of the system. For orbital determination, the output

ŷ(t) is the state vector SLEO(t) at time t, and the input is I(0, 1, . . . , N − 1) = {x(t), x(t −

τ), . . . , x(t − (N − 1)τ)} for N previous state vector data points. The TDNN’s output is

connected to the input I through a delay block, closing the loop, and effectively creating

a nonlinear auto-regressive (NAR) prediction model. The TDNN model is given an initial

input I0, and it predicts the next state of the satellite which is fed back as the new input.

Fig. 2.3 depicts the structure of TDNN.

LSTMs are mainly composed of a cell which remembers values over time intervals (memory
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Figure 2.3: TDNN architecture.

cell), an input gate, output gate, and a forget gate which regulates the flow of information

into and out of the cell [67]. Fig. 2.4 presents the structure of an LSTM NN.

σσ σ

Figure 2.4: Generic LSTM Architecture.

The next subsection compares the performance of TDNN and LSTM for short orbital pre-

diction.

Results

A simulation study was conducted using the data generated from the AGI-STK software

corresponding to the an Orbcomm LEO satellite. Table 2.1 summarizes the simulation

settings. Fig. 2.5 plots the training and validation MSEs as a function of training epochs.

The validation errors for the TDNN design are low, showcasing its ability to function within

an acceptable margin of error with new data. The LSTM is shown to be capable of following

the profile of the LEO satellite’s orbit, however, its accuracy was much lower.
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Table 2.1: Simulation Settings.

Parameter Value

Satellite name Orbcomm F107
Duration [hours] 10

Sampling time [seconds] 1
Training Period [hours] 5
Testing Period [hours] 5
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Figure 2.5: Validation loss (MSE) versus number of training epochs of proposed models.

The training and validation errors show that the TDNN architecture outperforms the LSTM.

The TDNN model is assessed by predicting the satellite’s ephemeris in a closed-loop fash-

ion. A TDNN model was trained for every output pair of parameters in the orbital state

S = {x, y, z, vx, vy, vz}. For each coordinate, a model was trained to output its value and

derivative. Simulation results showed promising propagation accuracy for long-term windows

using the proposed TDNN-based approach compared to the conventional SGP4 model. Fig.

2.6 depicts the error comparison of SPG4 and the TDNN corresponding to the {x, ẋ} pair.
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Figure 2.6: LEO satellite’s position error comparison between SGP4 and TDNN.

The results suggest that the TDNN model is capable of following the HPOP propagator for

a short time window. The TDNN showed an acceptable performance for about one orbit,
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after which the performance starts degrading.

2.4.2 Error Propagation

The errors of the proposed ANNs with respect to HPOP were close to those of SGP4.

This could be attributed to the complexity of the LEO satellite’s orbit, as well as the high

dimensional properties of HPOP. SGP4 itself is accurate as well, though not as accurate as

HPOP, in propagating the ephemeris. Therefore, a nonlinear autoregressive with exogenous

inputs (NARX) model was devised to map the output of an SGP4 propagator to those of a

well-initialized HPOP propagator.

Training

To compare both proposed frameworks, the same training, validation, and testing data

extracted from AGI-STK’s HPOP propagated ephemeris are utilized.

Design

The NARX model essentially functions similarly to a NAR model, with the only difference

being that exogenous inputs, which are propagated SPG4 ephemeris, are utilized in predict-

ing the output, as seen in Fig. 2.7. The NARX architecture has been shown to be highly

capable of learning long-term dependencies [68] and predicting time series [69, 70, 71]; even

chaotic time series [72].

Figure 2.7: Proposed NARX model.
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The NARX architecture takes SGP4 propagated position states as inputs. It also has a

feedback loop where its output, the estimated HPOP state values, are fed back as additional

input. This way, the model takes SGP4 as input as well as previous estimated ˆHPOP(t −

1, . . . , t− d) values, and it outputs new estimated ˆHPOP(t) values.

Results

The simulation settings shown in Table 2.1 for the Orbcomm LEO satellite were used. Fig.

2.8 and Table 2.2 show the position error magnitude of the SGP4 versus the propagated

SGP4+NARX approach. Because the SGP4 propagator is initialized with TLE files, which

are a compact means to achieve modestly fast and accurate calculation, its initial position

error can reach up to 1 km [73, 74, 75]. Fig. 2.8 (a) shows the SGP4 position error magnitude

while keeping the initial TLE error. Fig. 2.8 (b) shows the SGP4 position error magnitude

with the initial error of the TLE file removed for a fairer comparison since both graphs would

start from 0 error. The results show that SGP4+NARX is accumulating error at a much

slower rate compared to SGP4.
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Figure 2.8: 3-D Position error magnitude for Orbcomm FM107’s trajectory (a) without
removing the initial error of SGP4 and (b) with removing the initial error of SGP4.

From these results, it can be concluded that SGP4+NARX offers promising orbit propaga-

tion.
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Table 2.2: LEO propagation performance in simulation for 350 seconds.

RMSE [m] Orbcomm-FM107
SGP4 (with TLE initial error) 773

SGP4 (without TLE initial error) 54
SGP4+NARX 8

2.5 Model Investigation

The chosen model’s performance is investigated. First, to get the best of our proposed model,

we make use of tuners that allow us to optimally look within a specified search space and

get the best hyper-parameters. Figure 2.9 shows an overview of some tuners considered.

Both the Hyper-band and Bayesian tuners were utilized and the hyper-parameters to which

Figure 2.9: Overview of hyper-parameter tuners.

each tuner converged were investigated. Table 2.3 shows the hyper-parameter search space.

Both tuners converged to the same hyper-parameters. It is important to note that adding

multiple RNN layers or Dense layers does not lead to better results.

Figure 2.10 shows a sample of the progression of weights over training epochs for multiple

models with different hyper-parameters. Finally, the tuners agreed on two hidden RNN

layers with 2 Dense layers. The number of layers per node is 10 with no noticeable increase

in performance when using a higher number of nodes. The optimizer used here is Yogi[78];
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Table 2.3: Hyper-parameter Search Space.

Parameter Range

Number of Layers [1,10]
Number of nodes/layer [4,512]

Input features Any subset from x, y, z, vx, vy, vz
Prediction Length [0.1s, 4 minutes]

Optimizer Adam[76], Adagrad[77], SGD, Yogi[78]

Adam[76] produces similar results while maintaining generality, but Yogi tends to get much

closer to the validation data. The prediction length is set to 400 time delays where the time

interval between delays is 0.01 seconds. It is interesting to compare the derived model to a

less complex model. We utilize the Hyper-band tuner to give us the best hyper-parameters

for a simple neural network using only Dense layers. The hyper-parameters tuned are the

number of layers ([0,2] hidden layers), number of nodes per layer([20,420] nodes), activation

function for each layer, and the initial learning rate. Figure 2.11 shows a sample of some

neural network models trained over a specific search space. The lines each represent a unique

model. A line specifies which hyper-parameters its model was built with and then lands on

the derived values of the training loss and validation loss. The inputs are scaled with a

“MinMax” scaler which squeezes the values of each state between 0 and 1. Since the states

are input in meters, and the satellites are 700km in altitude, the values are scaled down to

a minimum value in the order of 10−6. With utilizing the “Mean Square Error” as our loss

function, a meter-level solution means a loss of order less than (10−6)2 = 10−12. Figure 2.11

shows that even models with a linear activation function and no hidden units, can achieve

meter-level accuracy for one-step prediction. This indicates that the neural network derives

that to output the correct ephemeris, it would only need to output a weighted version of a

time-shifted SGP4-propagated ephemeris. Therefore, one method for ephemeris propagation

when given a sparse amount data relating to a satellite’s true position is to find a time shift

that matches the SGP4-propagated ephemeris with the satellite’s true ephemeris and use

that time-shifted ephemeris.
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Figure 2.10: Progression of weights throughout epochs for multiple models.

2.6 Conclusion

This chapter gives a brief summary on machine learning in general and its usage in satellite

ephemeris propagation. This can be utilized in multiple areas such as space situational
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Figure 2.11: Sample results for Hyper-band tuning.

awareness, positioning, and navigation. Multiple models are investigated utilizing decoded

LEO satellite ephemeris from Orbcomm satellites used as ground truth targets. The best

model found is an autoregressive model that takes its past outputs as new inputs as well as

past and future SGP4-propagated ephemeris that uses TLE files as for its initialization.
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Chapter 3

Machine Learning aided Simultaneous

Tracking and Navigation

3.1 STAN Overview

This section presents a high-level block diagram of the proposed system. The proposed

system builds on the traditional STAN framework introduced in [9]. The performance of

the STAN framework has been previously demonstrated in realistic simulation environments

and experimentally on a ground vehicle and on an unmanned aerial vehicle (UAV), showing

the potential of achieving meter-level-accurate navigation [51, 79, 9].

The STAN framework utilizes specialized LEO receivers to extract navigation observables,

such as ephemeris messages, if available, pseudorange, and Doppler measurements from the

LEO satellite signals. Furthermore, a model-based LEO propagator, such as “Two-Body

with J2” initialized with SGP4-propagated ephemeris, is employed in estimating the LEO

satellite’s states (position and velocity). The ML-STAN framework instead replaces the

model-based propagator with an ML-based propagator to achieve potentially more accurate
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Figure 3.1: Proposed improvements on the STAN system.

propagated LEO states. The framework includes GNSS receivers, which produce a navigation

solution from GNSS signals, when such signals are available. Finally, an IMU which reports

the vehicle’s specific force, angular rate, and orientation, is embedded within an INS. The

INS provides the vehicle’s position state, which along with the LEO signals, propagated LEO

states, GNSS signals, and clock models which compensate for timing bias and phase shifts,

are fed into an Extended Kalman Filter (EKF). The employed EKF then simultaneously

estimates the vehicle’s states, tracks the LEO satellite’s states, and estimates timing biases

as well as the confidence of the estimated values. When GNSS signals are available, the

framework uses these signals for navigating the vehicle and tracking the LEO satellites.

Once the GNSS signals cut off, the ML model propagates the LEO satellite states within

the STAN framework. Fig. 3.1 depicts the proposed EKF-ML-STAN framework.

The proposed ML propagator approach could take one of two forms. The first form replaces

the LEO propagation block with a specialized ML propagation block capable of directly

estimating LEO satellite ephemeris. The second form adds an error correction block to

the STAN framework right after the LEO propagation block. The error correction block

learns the mapping between a standard propagator, such as SGP4, and a highly accurate

propagator, such as HPOP, that is fitted onto ground truth ephemeris transmitted by LEO
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satellites.

3.2 Experimental Results

In this section, the performance of the proposed STAN navigation framework is assessed ex-

perimentally. Here, the performance utilizing propagation via Two Body with J2, initialized

with SPG4-propagated ephemeris, will be compared to the one achieved with the proposed

SGP4+NARX. In the experiment, Orbcomm LEO satellites signals were collected, where

a ground-truth reference of the satellite ephemeris was obtained by decoding the satellites’

positions transmitted from their on-board GPS receivers [80]. The error estimation NARX

architecture was chosen, as it has demonstrated the highest accuracy among the studied ML

frameworks.

3.2.1 Environmental Layout and Experimental Setup

A ground vehicle was equipped with the following hardware and software setup:

� A quadrifilar helix antenna to receive the Orbcomm SV downlink signals, which are

transmitted at frequencies between 137 and 138 MHz

� AUSRP E312 to sample Orbcomm symmetric differential phase shift keying (SDPSK)

signals.

� These samples were then processed by the Multi-channel Adaptive TRansceiver In-

formation eXtractor (MATRIX) software-defined radio developed by the Autonomous

Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory to perform

carrier synchronization, extract pseudorange rate observables, and decode Orbcomm

ephemeris messages [80].
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� A Septentrio AsteRx-i V integrated GNSS-IMU, which is equipped with a dual-

antenna, multi-frequency GNSS receiver and a Vectornav VN-100 micro-electromechanical

system (MEMS) IMU. Septentrio’s post-processing software development kit (PP-

SDK) was used to process GPS carrier phase observables collected by the AsteRxi

V and by a nearby differential GPS base station to obtain a carrier phase-based nav-

igation solution. This integrated GNSS-IMU real-time kinematic (RTK) system [81]

was used to produce the ground truth results with which the proposed navigation

framework was compared.

MATLAB-based estimatorLabVIEW MATRIX SDR

Ettus E312

Multi-frequency
GNSS antennas

VN-100: TacticalAsteRx-iV
module

Integrated
GNSS-IMU

GPS antennas

UHF quadrifilar

helix antenna

VHF quadrifilar

helix antenna

grade IMU

Figure 3.2: Experimental Setup.

The experimental setup is shown in Fig. 3.2. The ground vehicle was driven along U.S. Inter-

state 5 near Irvine, California, USA, for 7,495 m over 258 seconds, during which 2 Orbcomm

LEO satellites were available. The standard deviation of the Orbcomm Doppler measure-

ments was set to be 4.7 Hz, which was obtained empirically. Three navigation frameworks

were implemented to estimate the vehicle’s trajectory: (i) the LEO signal-aided INS STAN

framework using Two body with J2 initialized with SGP4-propagated ephemeris as its prop-

agator, (ii) the LEO signal-aided INS STAN framework using the NARX as its propagator,
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Table 3.1: LEO Propagation Performance in an experimental scenario.

RMSE [m] Orbcomm FM112 Orbcomm FM117

SGP4 558 1,226
SGP4+NARX 74 38

(iii) a traditional GPS-aided INS for comparative analysis. The SGP4 propagated ephemeris

was initialized from the corresponding TLE file published by NORAD. The HPOP ephemeris

utilized for training was properly initialized through STK, using the Orbcomm LEO satel-

lite’s positions decoded from the first measurement epoch. To perform a fair comparison

between the propagation of SGP4+NARX that uses the first decoded ephemeris point for

initialization and the performance of SGP4 that uses a relatively old TLE file, we generated

a new TLE file from the transmitted ephemeris, propagated it with SGP4, and used it for

the comparison. Fig. 3.3 sketches the data generation and prediction phases.

Truth (Transmitted Ephemeris)
SGP4 (initialized by the most recent TLE)
HPOP (initialized by transmitted ephemeris)
SGP4+NARX
SGP4 (initialized by corrected TLE)

PredictionTraining

TLE

Figure 3.3: Sketch illustrating the training phase of the NARX model (using TLE-SGP4 and
HPOP) as its prediction phase.

3.2.2 Results

First, the performance of the SGP4+NARX model as a propagator is compared with SGP4.

The ephemeris position error ELEO = {Ex, Ey, Ez} of both tracked satellites and the total po-

sitional error characterized by Er =
√

E2
x + E2

y + E2
z are shown in Fig. 3.4 and summarized

in Table 3.1.
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Figure 3.4: Comparison between SGP4 and SGP4+NARX propagation

The improved results in LEO satellite position estimation translate directly to a better

navigation performance for a ground vehicle. Fig. 3.5 shows the vehicle’s true trajectory

compared to estimates from the original STAN framework and the proposed STAN with

SGP4+NARX. The results are summarized in Table 3.2. The results show how the NARX

model’s ability in better estimating the LEO satellites’ ephemeris leads to a more accurate

navigation solution.

Table 3.2: Ground Vehicle Navigation Performance.

Performance Measure STAN with SGP4 STAN with SGP4+NARX

RMSE [m] 30 3.6
Final Error [m] 30 8.3

3.3 Conclusion

An experiment was conducted with a ground vehicle navigating while measurements were

extracted from two Orbcomm LEO satellites. The training data for the ML model was his-

torical HPOP ephemeris data of the satellite’s orbit. The performance of the SGP4+NARX
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Figure 3.5: Experimental results showing (a) the trajectory of a ground vehicle navigating
with the proposed approach. The truth (white) is compared to the STAN with SGP4 estimate
(red) and the STAN with SGP4+NARX estimate (green). (b, c) the trajectory of the 2
Orbcomm LEO satellites generated by SGP4+NARX predictions (yellow) versus the truth
trajectories (red) obtained from onboard GPS receivers. Map data: Google Earth.

model in tracking the LEO satellites’ ephemeris was compared with the results of a tra-

ditional LEO propagation model using SPG4. The EKF with SGP4+NARX framework

noticeably outperformed the traditional EKF with SGP4 framework’s accuracy. The STAN

with SGP4 achieved a ground vehicle 3-D position RMSE of 30 m. In contrast, the proposed

STAN with SGP4+NARX framework achieved a ground vehicle 3-D position RMSE of 3.6

m, while the two LEO satellites were tracked with 3-D position RMSE of 38 m and 74 m.
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Chapter 4

Hybrid Framework for Unavailable

Target Ephemeris

In the previous chapter, transmitted satellite ephemerides were used as ground truth target

values to train our machine learning model. However, it is not the case that LEO satel-

lites publicly transmit their live ephemeris. Therefore, a new approach must be proposed

to get the target values which the model will train on for satellite ephemeris prediction.

This chapter proposes a hybrid numerical-machine learning approach for LEO satellite orbit

prediction where the receiver has no prior knowledge on the satellite’s position except for

publicly available TLE files. The following contributions are made:

� A hybrid numerical-ML propagator is developed in a three-step framework: (i) refin-

ing a LEO satellite’s ephemeris via opportunistic tracking initialized from an SGP4-

propagated TLE, (ii) training the ML propagator on the refined ephemeris, thus ex-

tending the approach in [51, 52] to no prior true ephemeris information by solely relying

on initialization from TLEs, and (iii) localizing a receiver opportunistically with the

ML-propagated ephemeris.
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� The ephemeris propagation performance of the hybrid numerical-ML framework is

compared with that of standalone propagators using true decoded Orbcomm ephemeris

data.

� Experimental results are presented to demonstrate the efficacy of the proposed frame-

work with a first pass of an Orbcomm satellite during which the tracking to refine

the ephemeris is performed and a second pass of the same satellite during which the

opportunistic localization performance using ML-propagated ephemeris and SGP4-

propagated ephemeris are compared.

4.1 Carrier-Phase Measurement Model

Unlike GNSS satellites that periodically transmit accurate ephemeris information and clock

corrections in their navigation message, LEO satellites do not openly transmit such infor-

mation in general. Therefore, carrier-phase measurements are extracted opportunistically

from LEO satellites to allow for tracking and localization. The following section describes

the opportunistic carrier-phase measurement model.

A LEO receiver extracts continuous-time carrier phase measurements from LEO satellites’

signals by integrating the Doppler measurement over time [82]. The carrier phase mea-

surement (expressed in meters) made by the receiver on the LEO satellite at time-step k,

which represents discrete-time instant tk = kT + t0 for an initial time t0, can be modeled in

discrete-time as

ϕ(k) = ∥rr(k)− rleo(k
′)∥

2
+ c [δtr(k)− δtleo(k

′
l)] + λN

+ cδtiono(k) + cδttropo(k) + v(k), k = 1, 2, . . . (4.1)

where k′ represents discrete-time at tk′ = kT + t0 − δtTOF, with δtTOF being the true time-
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of-flight of the signal from the LEO satellite to the receiver, rr and rleo are the receiver’s

and LEO satellite’s 3-D position vectors expressed in the same reference frame, λ is the

wavelength of the carrier signal transmitted by the LEO satellite, N is the carrier phase

ambiguity of the LEO satellite carrier phase measurement, δtiono and δttropo are the iono-

spheric and tropospheric delays, respectively, affecting the LEO satellite’s signal, and v is

the measurement noise, which is modeled as a zero-mean white Gaussian random sequence

with variance σ2
ϕ.

Assuming no cycle slip occurs when the receiver tracks the carrier phase (i.e., the carrier

phase ambiguity remains constant), the difference between the receiver and the LEO satellite

clock biases and the carrier phase ambiguity are lumped into a single term c∆δt(k) to simplify

the carrier phase measurement model between the receiver and the satellite in (4.1) into

ϕ(k) = ∥rr(k)− rleo(k
′)∥2 + c∆δt(k) + cδttropo(k)− cδtiono(k) + v(k), (4.2)

c∆δt(k) ≜ c [δtr(k)− δtsv(k
′)] + λN. (4.3)

4.2 Orbital Determination Framework

Localization with carrier phase measurements from an overhead satellite requires knowl-

edge of the satellite’s ephemeris. The best estimate available publicly for a LEO satellite’s

ephemeris would be from an initial ephemeris at a given time provided by the TLE files

published by NORAD, which would then be propagated through SGP4. However, this ini-

tial ephemeris could be off by a few kilometers, and with SGP4 propagating the satellite’s

ephemeris through time, the error would continue to increase, only to be corrected when

a new TLE file is published the next day. This is not ideal for use in localization where

using wrong ephemeris as-is in the localization filter could yield huge localization errors.
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The proposed framework mitigates the issue of relying on an ephemeris that is off by several

kilometers. A base station with known position opportunistically tracks and refines the satel-

lite’s ephemeris when it is overhead. Next, a neural network trains on this refined ephemeris

and predicts the satellite’s future position and velocity. Finally, a receiver with unknown

position is given this predicted ephemeris and uses this ephemeris instead of the TLE one in

localizing itself when the same satellite passes overhead. Figure 4.1 illustrates the proposed

framework. The following subsections describe each stage of the proposed framework.

First Pass:

Tracking

Satellite not in view:

Propagation

Second Pass:

Localization

Figure 4.1: Proposed Framework.

4.2.1 Opportunistic Tracking

This subsection formulates the extended Kalman filter (EKF) utilized as the tracking filter

used to estimate the LEO satellite’s ephemeris in the first stage of the proposed framework.

The filter assumes a base station with known position receiving carrier phase measurements

modeled in (4.1). The EKF state vector is given by

xleo =
[
rT
leo, ṙ

T
leo, c∆δt, c∆δ̇t

]T

38



where the xleo is the LEO satellite state vector, composed of the LEO satellite’s position

rleo and velocity ṙleo vectors, expressed in the Earth-centered inertial (ECI) frame, and the

lumped bias term, c∆δt, and drift term, c∆δ̇t, are those described in (4.3). The model

dynamics of the clock terms are described in Appendix 7.5.

For the satellite’s time update between measurements, a two-body model including the most

significant non-zero mean perturbing acceleration, which corresponds to J2 effects, is adopted

as the LEO satellite orbital dynamics model in the ECI reference frame. This model offers a

trade-off between accurate open-loop state prediction while maintaining a simple analytical

Jacobian for estimation error covariance propagation and is given as follows

r̈leo = agrav,J2 + w̃leo, agrav,J2 =
dUJ2

drleo

, (4.4)

where rleo ≜ [xleo, yleo, zleo]
T is the 3-D position vector of the LEO satellite in the ECI frame,

agrav,J2 is the acceleration due to Earth’s non-uniform gravity including J2 effects, UJ2 is the

non-uniform gravity potential of Earth including J2 effects at the satellite, and w̃leo is a

process noise vector with power spectral density (PSD) Q̃leo, which attempts to capture

the overall acceleration perturbations including the unmodeled non-uniformity of Earth’s

gravitational field, atmospheric drag, solar radiation pressure, third-body gravitational forces

(e.g., gravity of the Moon and Sun), and general relativity [35].

The two-body with J2 model, which allows for accuracies of a few meters in a short period

of time, describes the components of agrav,J2 = [ẍgrav, ÿgrav, z̈grav]
T as

ẍgrav = − µxleo

∥rleo∥3

[
1 + J2

3

2

(
RE

∥rleo∥

)2(
1− 5

z2leo
∥rleo∥2

)]
,

ÿgrav = − µyleo
∥rleo∥3

[
1 + J2

3

2

(
RE

∥rleo∥

)2(
1− 5

z2leo
∥rleo∥2

)]
,

z̈grav = − µzleo
∥rleo∥3

[
1 + J2

3

2

(
RE

∥rleo∥

)2(
3− 5

z2leo
∥rleo∥2

)]
, (4.5)
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where µ is Earth’s standard gravitational parameter, and RE is the mean radius of the Earth.

4.2.2 Localization

This subsection formulates the Extended Kalman Filter (EKF) utilized as the localization

filter used to estimate the receiver’s position in the second stage of the proposed framework.

The filter assumes a stationary receiver with unknown position and clocks. The receiver

opportunistically extracts carrier phase measurements as modeled in 4.1. The EKF state

vector is given by

xr =
[
rT
r , c∆δtr, c∆δ̇tr

]T

where the xr is the receiver state vector composed of the receiver’s position rr vector, ex-

pressed in the ECEF frame, and the lumped clock terms follow the same model as those

described in section 4.2.1. The receiver transition matrix is Fr = I3×3 since the receiver is

stationary.

4.3 Experimental Results

In this section, the proposed framework is experimentally demonstrated by localizing a sta-

tionary receiver and comparing the performance of a filter using the refined ML-propagated

ephemeris against using SGP4-propagated ephemeris initialized from TLE. In this experi-

ment, an Orbcomm satellite was chosen since it is the only constellation that transmits the

satellite’s ephemeris publicly. Signals from satellite Orbcomm FM107 were collected, and us-

ing a specialized software defined radio, carrier-phase measurements were opportunistically
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extracted. Furthermore, the satellite’s downlink signals, which include the satellite’s true

ephemeris generated by on-board GPS receivers, are decoded for comparison and used as

ground truth. Finally, Ionospheric and Tropospheric delays are corrected for in the carrier-

phase measurements [26].

4.3.1 Experimental Setup

A very high frequency (VHF) quadrifilar helix antenna was connected to an Ettus E312

Universal Software Radio Peripheral (USRP) to sample Orbcomm LEO satellites’ signals

at 137-138 MHz at a sampling rate of 2.4 MSps. The USRP’s oscillator was disciplined

by an external, freely-running NI CDA-2990 OctoClock. The recording was repeated twice

to record two consecutive passes of Orbcomm FM107 LEO satellite over Irvine, Califor-

nia. The measurements opportunistically extracted from the LEO satellite’s signals during

the first pass are used to opportunistically track Orbcomm FM107 satellite’s and refine its

ephemeris. Then, this refined ephemeris is used as an input to the supervised training of the

hybrid numerical-ML propagator. This propagator is subsequently employed to propagate

the ephemeris of Orbcomm FM107 satellite’s for around 100 minutes, which corresponds to

its orbital period, until the satellite is visible again over Irvine. During the second pass,

the measurements extracted from Orbcomm FM107 satellite’s signals are used to oppor-

tunistically localize the receiver while using the hybrid numerical-ML propagated ephemeris.

The localization performance is compared to that obtained using the SGP4-propagated TLE

ephemeris. The skyplot showing the trajectory of the satellite for both consecutive passes is

shown in Fig. 4.2.
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Figure 4.2: Skyplot of satellite Orbcomm FM107 during the tracking experiment (first pass)
and the localization experiment (second pass).

4.3.2 Tracking

First, a base station with known position starts opportunistically extracting carrier-phase

measurements to the satellite. The framework described in 4.2.1 is utilized in tracking the

satellite and refining its ephemeris. The state estimates are initialized as follows:

x̂leo(0|0) = [rT
leo(0), ṙ

T
leo(0), z(0)− ∥rr − rleo(0)∥2 , 0]

T

where [rT
leo(0), ṙ

T
leo(0)]

T is the satellite’s initial state given from the SGP4-propagated ephemeris

initialized from TLE, in the ECI frame. The estimate of the lumped clock bias, c∆δt, is

initialized as the difference between the initial measurement and the range from the base

station to the satellite as propagated from TLE, and the drift, c∆δ̇t, is initialized at 0. The
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initial error estimation covariance was computed according to

P xleo
(0|0) ≜ diag[P i(0|0),P clk(0|0)]

P i(0|0) ≡
i
bR̄(0)P b(0|0)

i
bR̄

T(0)

i
bR̄(0) = diag[ibR(0), ibR(0)]

P b(0|0) ≡ diag[5×105, 3×103, 105, 0.05, 0.01, 0.2]

P clk(0|0) ≡ diag[100, 10]

where P i and P b are the initial error covariance in the ECI frame and the satellite’s body

frame respectively, and i
bR is the rotation matrix from the body frame to the ECI frame. This

method initializes the estimate error covariance in the body frame which is more intuitive

than initializing in the ECI frame, as it has been shown that most of the error is usually

in the along-track. This allows to capture the elliptical nature of the error covariance and

initializes cross terms in the ECI frame which would allow for faster and better convergence.

Finally, the measurement noise covariance was set to 0.5 m2. The satellite was tracked for

517 seconds, decreasing the magnitude of error in the satellite position from 980 m initially to

56 m with reference to the transmitted ephemeris. Figs. 4.3 and 4.4 show the EKF tracking

plots for the satellite’s ephemeris in the body frame. The cross track direction is the least

observable, which is consistent with [83]. Fig. 4.5 shows the position error magnitude of the

tracked ephemeris compared to that of the SGP4 ephemeris propagated from TLE.

4.3.3 Propagation

After tracking is finalized, the estimated ephemeris at the final time of tracking is considered

to be the best estimate for the satellite’s ephemeris. This ephemeris is then back-propagated

using the J2 orbital propagation model to smooth over the tracking period, since the J2

orbital propagation model is accurate for short windows of time. This smoothed ephemeris
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Figure 4.3: EKF position plots in the satellite’s body frame.
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Figure 4.4: EKF velocity plots in the satellite’s body frame.

is now ready to used for training. The ML model is given the continued SGP4 ephemeris

propagated from TLE as exogenous input and the tracked and smoothed ephemeris as ground
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Figure 4.5: Position error magnitude comparison between SGP4 ephemeris initialized from
TLE and tracked ephemeris.

truth. The ML model then trains on this data and learns a mapping from the SGP4-

TLE ephemeris to the tracked ephemeris. Finally, the ML model starts propagating and

extrapolating satellite ephemeris, taking as its input the SGP4-TLE ephemeris at each time

step and its own outputs at previous time steps, and outputting a corrected ephemeris at

that time step. The ML model is propagated for 5,870 seconds until the satellite comes

back to view. The ephemeris is then further propagated a further period of 363 seconds

for this ephemeris to be used in localization. Fig. 4.6 shows the magnitude of error for the

ML-propagated ephemeris and that of the SGP4-propagated ephemeris when compared with

the transmitted ephemeris during the second pass.
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Figure 4.6: Position error magnitude comparison between SGP4 ephemeris initialized from
TLE and the propagated ephemeris through the ML model.

4.3.4 Localization Results

Finally, the localization filter described in Subsection 4.2.2 is utilized for localizing a ground

stationary receiver. The state estimates are initialized as follows

x̂r(0|0) = [r̂T
r (0), z(0)−

∥∥r̂r − rj
leo(0)

∥∥
2
, 0]T

where r̂T
r (0) is the receiver’s initial state which randomly drawn according to r̂T

r (0) ∼

N [rr,P e(0|0)], in the ECEF frame. The estimate of the lumped clock bias c∆δt is ini-

tialized as the difference between the initial measurement and the estimated initial range

where j ∈ {ML, SGP4} is the index of the satellite ephemeris used. The drift c∆δ̇t is
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initialized at 0. The initial error covariance matrices are as follows

P xr(0|0) ≜ diag[P e(0|0),P clk(0|0)]

P e(0|0) ≡
e
lR̄P l(0|0)

e
lR̄

T

P l(0|0) ≡ diag[106, 106, 0.1]

P clk(0|0) ≡ diag[108, 104]

where P e(0|0) and P l(0|0) are the initial receiver position error covariance in the ECEF

frame and the local East-North-Up (ENU) frame respectively, and e
lR is the rotation ma-

trix from the local ENU frame to the ECEF frame. This allows for comparing with the

two-dimensional (2-D) North-East error only since the Up direction is poorly estimable from

satellite measurements only. Finally, the measurement noise covariance was set to 0.5 m2.

The receiver was localized for 363 seconds, using the ML-propagated ephemeris as the satel-

lite’s ephemeris in the EKF filter. The 2-D magnitude of error decreases from 2,219 m

initially to 448 m with reference to the true receiver location. However, when the SGP4-

propagated ephemeris, which is off by about 7 km, is utilized with the same measurement

noise covariance, the error increases up to 6,718 m. This is to be expected as the EKF trusts

the given ephemeris and attempts to decrease the measurement error covariance by posi-

tioning the receiver somewhere where the given measurements and given satellite ephemeris

match. Fig. 4.7 shows the EKF localization plots for the receiver’s position in the ENU

frame. Fig. 4.8 shows the experimental results with the initial 2-D position estimate and

the final position estimates of the compared filters.
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Figure 4.7: EKF position plots for stationary localization using ML generated ephemeris.
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Figure 4.8: Experimental results showing the initial and final 2-D stationary receiver local-
ization errors using (i) SGP4-propagated ephemerides and (ii) ML-propagated ephemerides.
Map data: Google Earth.

48



4.4 Conclusion

This chapter proposed a hybrid numerical-machine learning approach for LEO satellite orbit

prediction where the receiver has no prior knowledge on the satellite’s position except for

publicly available TLE files. A base station tracking satellites along with the chosen suitable

ML model could provide receivers with corrected satellite ephemeris for use in localization.

The feasibility and accuracy of this approach were showcased experimentally and compared

with localization using SGP4 ephemeris (initialized from TLE). The proposed framework re-

duced the initial receiver error from 2.22 km to 448 m while the SGP4-ephemeris localization

yielded a final error of 6,718 m.
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Chapter 5

Fusion with Tightly Coupled IMU

5.1 Experiment Overview

A natural extension for integrating the proposed model into a navigation framework is cou-

pling it with an IMU for navigating a ground vehicle. However, to do that, we require

observables from multiple satellites for a good navigation solution. As a demonstration, we

conduct an experiment where the proposed three stage framework is applied on two Orb-

comm satellites, and then on the second time the satellites are observed, their measurements

aid a moving ground vehicle in navigating. In this experiment, signals from two Orbcomm

satellites, Orbcomm FM113 (NORAD ID 41185) and Orbcomm FM114 (NORAD ID 41179),

were collected, and using a specialized software defined radio, carrier-phase measurements

were opportunistically extracted. Furthermore, the satellite’s downlink signals, which in-

clude the satellite’s true ephemeris generated by on-board GPS receivers, are decoded for

comparison and used as ground truth. Finally, Ionospheric and Tropospheric delays are cor-

rected for in the carrier-phase measurements. The tight coupling of IMU and LEO follows

the steps thoroughly described in [84].
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The measurements opportunistically extracted from the LEO satellite’s signals during the

first pass are used to opportunistically track the satellites and refine their ephemeris. Then,

this refined ephemeris is used as an input to the supervised training of the hybrid numerical-

ML propagator. Each satellite gets a different trained model, and this propagator is sub-

sequently employed to propagate the satellites’ ephemeris for around 100 minutes, which

corresponds to its orbital period, until the satellites are visible again over Irvine. During the

second pass, the measurements extracted from the satellites’ signals are tightly coupled with

IMU measurements and are used to opportunistically localize a moving vehicle while using

the hybrid numerical-ML propagated ephemeris. The localization performance is compared

to that obtained using the IMU measurements only.

A suitable time period was chosen where two satellites were available at the same time twice.

The satellites are tracked at the first pass, where a stationary receiver with known location

receives signals from the satellites and corrects their ephemerides. Then, using the same

machine learning approach, the ephemerides are propagated and ready to be used on the

moving vehicle.

5.2 Experimental Setup

First, since the second generation active Orbcomm satellites are much fewer than other LEO

constellations (12 satellites vs 3000+ satellites eg. Starlink), a suitable time period must be

chosen to maximize the availability of multiple satellites at the same time. An algorithm is

devised to automate the process:

� All online Orbcomm satellite ephemerides are propagated for multiple days.

� Elevation angles are calculated with respect to a stationary receiver present where the

stationary tracking for the first pass occurs.
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� Availability of the satellites is calculated based on a 25◦ elevation mask.

� Windows of time where more than one satellite is available are kept.

� Due to the periodic nature of the satellites’ orbits, satellites are available together in

a periodic nature. Therefore, there must be multiple windows containing the same

satellites.

� Windows with a unique set of satellites, are grouped together. This creates multiple

opportunities for conducting the experiments.

� For each group, pairs of windows are created.

� For each group, if any window has a duration less than 2 minutes, it is removed.

� For each group, if the first window in each pair has a satellite with a maximum elevation

angle less than 25◦, it is removed.

� For each group, the maximum elevations of satellites in the second window during the

period of overlap between satellites is recorded. If at least one of of these elevations is

less than 35◦, the pair is removed.

� For each group, the pairs are filtered by allowing a maximum duration of 5 hours

between the first and second window.

� Now we have satisfied multiple criteria:

– All pairs of windows include at least two satellites.

– All satellite maximum elevation angles are suitable for both tracking and naviga-

tion.

– All satellite elevation angles are desirable for when the satellites are available at

the same time (which is when navigation will occur).
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– The duration between first and second passes is not too long, allowing for more

accurately propagated ephemerides to be used during navigation. This is because

the accuracy of the propagated ephemeris deteriorates after propagating for a long

period of time.

– The duration of time for tracking and navigating is long enough to allow for

convergence or at least conceiving more accurate solutions.

� Since the satellites are all almost at equal altitudes, the elevation angle is correlated

with the duration the satellites are available. This means a satellite with a larger

elevation angle is available for a longer duration. The final step is to sort the found

candidate pairs by overlap duration and ranking them from most overlap duration to

least. This information along with the skyplots for the candidate pairs of time windows

are created, and the final selection is done manually.

Finally, Figure 5.1 and Figure 5.2 depict the elevation angles and skyplot for the chosen pair

respectively. The two pairs are separated by 85 minutes where the machine learning model

will propagate the satellites’ ephemerides through.

5.3 Stationary Tracking

5.3.1 Experimental Setup

First, we setup the same Orbcomm antenna and USRPs for signal sampling as in Chapters

3 and 4. A very high frequency (VHF) quadrifilar helix antenna was connected to an Ettus

E312 Universal Software Radio Peripheral (USRP) to sample Orbcomm LEO satellites’

signals at 137-138 MHz at a sampling rate of 2.4 MSps. The USRP’s oscillator was disciplined

by an external, freely-running NI CDA-2990 OctoClock. The recording was repeated twice
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Figure 5.1: Satellite elevation angles for the first and second pass.

Figure 5.2: Skyplot for the first and second pass.

to record two consecutive passes of Orbcomm FM113 and Orbcomm FM114 LEO satellite

over Irvine, California. Since Orbcomm satellites are sparse and do not usually appear in

the same elevation mask, the chosen Orbcomm satellites satisfy multiple criteria including

maximum elevation, duration for which the satellites are visible, and duration for which both
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satellites are visible at the same time.

5.3.2 Results

First, a base station with known position starts opportunistically extracting carrier-phase

measurements to the satellites. Figure 5.3 plots the transmitted position ephemerides for

both tracked satellites.

The sampled observables are Doppler measurements. Each satellite transmits on two different

frequencies and thus each satellite has two sets of measurements. Figure 5.4 plots the sampled

Doppler measurements for each satellite along with the simulated Doppler measurements

using SGP4-propagated ephemeris initialized from TLE. This ephemeris is compared to the

transmitted ephemeris and shifted in time to be as close as possible.

The Doppler is noticeably noisy and there are multiple visible outliers. To fix this, a simple

outlier removal method is employed. First, the recorded Doppler measurements and the

simulated Doppler measurements are subtracted to get an error metric (in Hz). Figure 5.5

shows the Doppler error for each of the satellites.

It is clear that the error oscillates around a certain path, and there are outliers clearly

present. To mitigate this, we first fit a line onto the path which will be considered the mean

around which noise is additive. Figure 5.6 shows the line fit for each of the error residuals.

Next, each residual error datapoint is subtracted from the fit line. All error residuals that are

more than 5 Hz in each direction are removed. The measurements removed are not used at

any point during tracked later. Figure 5.7 depicts the remaining residual errors after outlier

removal.

Finally, Figure 5.8 plots the corrected Doppler measurements after removing the outliers.
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Figure 5.3: Transmitted ephemerides from Orbcomm Satellites FM113 and FM114.
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Figure 5.4: Recorded Doppler measurements for each satellite.
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Figure 5.5: Doppler error for each satellite.

Figure 5.6: Line fit on error residual for each satellites.

Figure 5.7: Error Residual after outlier removal for each satellite.
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Figure 5.8: Corrected Doppler measurements for each satellite.
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The framework described in 4.2.1 is utilized in tracking the satellites and refining their

ephemeris. The same framework is utilized as the one in 4.3.2. Orbcomm FM113 was tracked

for 389 seconds, 365 seconds of which were usable after removing outliers and measurements

that were too inaccurate due to errors at the beginning and end of tracking. Orbcomm

FM114 was tracked for 190 seconds. The magnitude of error for Orbcomm FM113 was

reduced from 3,091m initial error to 176m final error with reference to the transmitted

ephemeris. Figure 5.9 shows the EKF tracking plots in the body frame for the position and

velocity of Orbcomm FM113.

Figure 5.9: Tracking EKF plots for Orbcomm FM113.

Figure 5.10 shows the error magnitude when tracking the satellite’s position.

Finally, EKF smoothing is applied allowing us to create target ground truth ephemeris values

for training the ML model. The ML model propagates both satellite ephemerides and the

generated ephemerides are utilized in navigation as shown in the next section.
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Figure 5.10: Tracking Error Magnitude plots for Orbcomm FM113.

5.4 Tightly Coupled IMU-LEO Navigation on Ground

Vehicle

5.4.1 Localization Framework

Figure 5.11 shows the navigation framework at work. The role of the INS in the context of an

EKF-based aided INS is to take the sequence of sampled IMU measurements (accelerometer

and gyroscope), extract gyroscope and accelerometer biases, and perform successive integra-

tions to propagate an estimate of an IMU state vector between aiding measurement updates.
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It is common to directly estimate the orientation, position, and velocity of the IMU in an

Earth-centered Earth-fixed (ECEF) frame {e} instead of the body frame {b}, since aiding

sources (e.g., GPS satellites and SOP emitters) are typically represented in {e}. An EKF is

developed to estimate the IMU state vector ximu ∈ ℜ16 given by:

ximu =
[
b
eq̄,

erT
b ,

eṙT
b , b

T
gyr, b

T
acc

]T
(5.1)

where b
eq̄ represents the IMU’s orientation (i.e rotation from frame {e} to {b}),erT

b is the

IMU’s position, eṙT
b is the IMU’s velocity, and bTgyr, b

T
acc represent the IMU’s gyroscope and

accelerometer biases.

Figure 5.11: Navigation Framework.

The EKF prediction propagates the vehicle’s states through the IMU, propagates the satel-

lite’s states through the ML model, and propagates the clocks as previously described. Fi-

nally, the EKF update utilizes GNSS received signals to update and correct the mentioned

states. After cutoff, GNSS signals are no longer utilized and LEO signals are used instead.
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The INS is loosely coupled with GNSS measurements at first to allow the initial states when

GNSS is cut off to have already converged to values close to their true values. This is mainly

to allow for correct initial bias estimation. The coupling is loose where the measurements

are the position and velocity of the vehicle.

Next, the INS is coupled tightly with LEO measurements once GNSS is cutoff. Appendix 7.6

describes the opportunistic measurement model. Both navigation solutions utilize altimeter

measurements. According to the measurement model, the lumped clock terms (the difference

between satellite clock bias and receiver clock bias and its derivative) need to be estimated

as well. The clock state dynamics are described in Appendix 7.5. The clock states for each

satellite is:

xleo =
[
c∆δt, c∆δ̇t

]T
(5.2)

making the final state vector:

x =
[
ximu,x

(1)
leo,x

(2)
leo, . . .

]
(5.3)

The EKF time update, INS state transition and process noise covariance matrices, and

measurement update equations are stated in Appendix 7.1,Appendix 7.2, and Appendix 7.3

respectively.

5.4.2 Experimental Setup

Figure 5.12 illustrates the experimental setup for the moving vehicle experiment.

The ground vehicle was equipped with the following hardware and software:
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Figure 5.12: Experimental Setup.

� a Septentrio AsteRx-i V integrated GNSS–IMU, which is equipped with a dual-antenna

multifrequency GNSS receiver and a Vectornav VN-100 microelectromechanical system

IMU; the AsteRx-i V enables access to the raw measurements from this IMU, which

was used for the time update of the orientation, position, and velocity, as described in

Appendices 7.1,7.2. The carrier phase observables recorded by the Septentrio system

were fused by nearby differential GPS base stations to produce the carrier phase-

based RTK solution [52]. This RTK solution was used as a ground truth during

postprocessing.

� A very high frequency (VHF) quadrifilar helix antenna to capture the Orbcomm satel-

lite signals.

� Ettus E312 Universal Software Radio Peripheral (USRP) to sample Orbcomm LEO

satellites’ signals at 137-138 MHz at a sampling rate of 2.4 MSps.
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� An external, freely-running NI CDA-2990 OctoClock to discipline the USRP’s oscilla-

tor.

5.4.3 Data Preprocessing

Figure 5.13 shows the simulated and recorded Doppler measurements captured by the mov-

ing vehicle. The same pre-processing steps are executed on the recorded measurements,

effectively removing outliers.

Figure 5.13: Doppler measurements for each satellite.

5.4.4 Experimental Results

The initial section of the navigation solution runs for 40 seconds. This is where the car

navigates using IMU measurements coupled loosely with GNSS measurements. This allows

the states to converge to estimates close to their true values while their uncertainty decreases.

The second section is where both LEO satellites are present. The LEO satellites are captured
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for a few minutes, but for demonstration purposes, a section of the trajectory is chosen, and

the car navigates after GNSS is cutoff for 30 seconds. Figure 5.14 shows the EKF navigation

plots for the ground vehicle’s position in the ENU (East, North, Up) frame.

Figure 5.14: EKF position plots for ground vehicle navigation using the ML generated
ephemeris.

The ground vehicle was localized for 30 seconds, using the ML-propagated ephemeris as the

satellites’ ephemerides in the EKF filter. The ground vehicle was also localized utilizing

IMU measurements only for 30 seconds. The 2-D magnitude of error when using LEO+IMU

increases much slower than that of the IMU-only solution. Figure 5.15 shows the trajectories

of both solutions with respect to the true trajectory of the ground vehicle. Figure 5.16

shows the trajectories as seen from Google Earth. It is clear that the LEO+IMU solution

outperforms IMU only and provides an adequate navigation solution for short periods of

time. This is only the case when the states are initialized close to their true values, when

the satellite ephemerides are close to their true values, and when there are multiple satellites

present. This demonstration utilizes only two satellites, but it can be extrapolated that

when using more satellites, it is expected that the estimates would stay close to their true

values for a longer period of time.
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Figure 5.15: Trajectory Comparison between the tightly coupled LEO+IMU navigation
solution and the IMU-only navigation solution.

True Trajectory
LEO+IMU
IMU Only

Figure 5.16: Trajectories as seen from Google Earth.

Table summarizes the RMSE and final 2D position error for each of the suggested navigation

solutions.

Table 5.1: Comparison of Experimental Results.

Experiment RMSE(m) Final Error (m)
IMU Only 105.96 235.5
LEO+IMU 6.00 8.19
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5.5 Discussion

It is important to mention that the solution is created after post-processing and many chal-

lenges arise for a real-time application. First, the IMU must be initialized and calibrated

properly for an accurate navigation solution. In the experiment, GNSS measurements were

utilized to initialize values such as accelerometer bias, gyroscope bias, and heading, but in

a scenario where GNSS measurements are not available, the IMU must be properly initial-

ized through other means. Furthermore, the satellite ephemeris propagation must not exceed

multiple orbits since the deviation of the propagated ephemeris from the satellite’s ephemeris

will render it unusable for navigation purposes. Ideally, a base station would be tracking

satellites and propagating their ephemerides while transmitting propagated ephemerides to

a user to use for navigation. Moreover, multiple satellites have to be visible with their

ephemerides tracked. This is not a challenge since there is a large amount of satellites from

different constellations at any point in time. Finally, the lumped clock states must be initial-

ized close to their true values. Therefore, for a real-time application, the clock states must

be correctly initialized either by having GNSS present previously, or through other means

(eg. base station).

5.6 Conclusion

This section demonstrated the proposed navigation framework at work. First, the IMU

states(orientation, position, velocity, accelerometer bias, and gyroscope bias) are initialized.

GNSS measurements are loosely coupled with the IMU measurements by updating the states

with position and velocity measurements. The states converge to estimates close to their

true values while their uncertainty decreases. GNSS is then cutoff and LEO satellites’ mea-

surements are introduced. The state vector is augmented with lumped clock bias and drift
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terms to account for the LEO satellite measurements. The states are then tightly coupled

with measurements from the LEO satellites allowing the error to drift slowly, unlike the

IMU-only solution where the error diverges immediately.
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Chapter 6

Conclusion

In this thesis, a study of the use of machine learning for satellite orbital determination is

conducted. Multiple models for orbit propagation are analyzed, and the model with the

best performance is found. The model is then utilized in a STAN framework, experimen-

tally demonstrating its capability of producing satellite ephemeris good enough to allow for

desirable navigation solutions. Next, a framework is proposed to collect training data when

the target ephemeris data is not available due to satellites not transmitting their ephemeris.

Finally, the framework’s feasibility is demonstrated experimentally first by localizing a sta-

tionary receiver and second by coupling an IMU with LEO observables to navigate a moving

ground vehicle.
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Chapter 7

Appendix

7.1 IMU Time Update

The tight coupling of IMU and LEO follows the steps thoroughly described in [84]. The time

update of ximu is performed using ECEF strapdown mechanization equations.

7.1.1 Orientation Time Update

The orientation time update is given by

b
e
ˆ̄q(k + 1|j) = bk+1

bk
ˆ̄q ⊗ b

e
ˆ̄q(k|j), (7.1)

where
bk+1

bk
ˆ̄q represents an estimate of the rotation quaternion between the IMU’s body frame

at time k and k + 1. The quaternion
bk+1

bk
ˆ̄q is computed by integrating gyroscope rotation
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rate data ωimu(k) and ωimu(k + 1) using a fourth order Runge-Kutta numerical integration

according to

ω̄ ≜
1

2

[
bω̂(k) + bω̂(k + 1)

]
− e

bR
T(k)eiω,

where Ω [ · ] ∈ R4×4 is given by

Ω [a] ≜

 −⌊a×⌋ a

−aT 0

 , a ≜ [a1, a2, a3]
T ,

bω̂(k) is the bias-compensated rotation rate measurement, which is computed according to

bω̂(k) = ωimu(k)− b̂gyr(k|j), (7.2)

and e
iω ≜ [0, 0, e

iω]
T is the rotation rate of the Earth, i.e., the rotation rate of the ECEF

frame {e} with respect to the ECI frame {i}. The value of e
iω, according to the latest version

of the world geodetic system (WGS 84), is e
iω = 7.292115× 10−5 rad/s.

7.1.2 Position and Velocity Time Update

Integrating IMU specific force data to perform a time update of the position and velocity

in an ECEF coordinate frame introduces a centrifugal and Coriolis term due to the rotation
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rate of the Earth e
iω [85]. Assuming that the variation of the Coriolis force is negligible over

the integration interval, the velocity time update is performed according to

eˆ̇rb(k+1|j) = eˆ̇rb(k|j)+
T

2
[eâ(k) + eâ(k + 1)]+ eg(k, erb(k))T −2T ⌊ieω×⌋eˆ̇rb(k|j), (7.3)

where eâ and ba are the transformed bias-compensated specific force and untransformed

bias-compensated specific force, respectively, which are given by

eâ(k) ≜ R̂T(k)bâ(k), (7.4)

ba(k) = âimu(k)− b̂acc(k|j), (7.5)

and R̂(k) ≜ R
[
b
e
ˆ̄q(k|j)

]
.

The position time update is performed according to

er̂b(k + 1|j) = er̂b(k|j) +
T

2

[
eˆ̇rb(k + 1|j) + bˆ̇r(k|j)

]
− T 2⌊ieω×⌋eˆ̇rb(k|j). (7.6)
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7.1.3 Accelerometer and Gyroscope Bias Time Update

Noise-corrupted and bias-corrupted IMU measurements can be modeled in discrete-time as

bωimu(k) =
b ωi(k) + bgyr(k) + ngyr(k), k = 1, 2, . . . (7.7)

baimu(k) =
b
i R(k)

[
iab(k)−i g(k,i rb(k))

]
+ bacc(k) + nacc(k) (7.8)

where bωi ∈ ℜ3 is the true rotation rate of a coordinate frame {b} fixed to the body of the

IMU with respect to an inertial frame {i}, such as the Earth-centered inertial (ECI) frame;

bgyr ∈ ℜ3 is the gyroscope’s three-dimensional (3D) bias; ngyr ∈ ℜ3 is a measurement noise

vector, which is modeled as a white noise sequence with covariance Qngyr
; b
iR ∈ ℜ3×3 is the

rotation matrix, which rotates the coordinates of a vector expressed in frame {i} into frame

{b}; iab ∈ ℜ3 is the true acceleration of {b} expressed in {i}; igb ∈ ℜ3 is the acceleration

due to gravity in the inertial frame, which depends on the position of the IMU irb ∈ ℜ3;

bacc ∈ ℜ3 is the accelerometer’s 3D bias; and nacc ∈ ℜ3 is a measurement noise vector, which

is modeled as a white noise sequence with covariance Qnacc
. The evolution of the gyroscope

and accelerometer biases are modeled as random walks as

bgyr(k + 1) = bgyr(k) +wgyr(k) (7.9)

bacc(k + 1) = bacc(k) +wacc(k) (7.10)

74



The time update of the biases bgyr and bacc follow from (7.7) and (7.8), respectively, giving

b̂gyr(k + 1|j) = b̂gyr(k|j),

b̂acc(k + 1|j) = b̂acc(k|j).

7.2 INS State Transition and Process Noise Covariance

Matrices

The calculation of the discrete-time linearized INS state transition matrix Φimu and process

noise covariance Qimu are performed using strapdown INS equations as described in [86, 85].

The discrete-time linearized INS state transition matrix Φimu is given by

Φimu =



Φqq 03×3 03×3 Φqbgyr 03×3

Φrq I3×3 T I3×3 Φrbgyr Φrbacc

Φṙq 03×3 Φṙṙ Φṙbgyr Φṙbacc

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3


,

where
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Φqq = I3×3 − T ⌊eiω×⌋, Φṙṙ = I3×3 − 2T ⌊eiω×⌋

Φqbgyr = −T

2

[
R̂T(k + 1) + R̂T(k)

]
,

Φṙq = −T

2
⌊[eâ(k) + eâ(k + 1)]×⌋ , Φrq=

T

2
Φṙq,

Φṙbgyr =−T

2
⌊eâ(k)×⌋Φqbgyr , Φṙbacc = Φqbgyr ,

Φrbgyr =
T

2
Φṙbgyr , Φrbacc =

T

2
Φṙbacc .

The discrete-time linearized INS process noise covariance Qimu is given by

Qimu =
T

2
ΦimuNcΦ

T
imu +Nc,

where
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Nc = diag
[
Sngyr , 03×3, Snacc , Swgyr , Swacc

]
,

where Sngyr = TQngyr and Snacc = TQnacc are the PSD matrices of the gyroscope’s and

accelerometer’s random noise, respectively, and Swgyr = Qwgyr/T and Swacc = Qwacc/T are

the PSD matrices of the gyroscope’s and accelerometer’s bias variation, respectively.

7.3 EKF State Measurement Update Equations

The standard EKF equations are modified to deal with the 3-D orientation error correction,

which contains one less dimension than the 4-D orientation quaternion estimate. To this

end, the state estimate is separated into two parts according to x̂ ≜
[
b
e
ˆ̄q
T
, ŷT

]T
, where

b
e
ˆ̄q ∈ R4 is the orientation quaternion estimate and ŷ ∈ R14+5M is a vector containing the

remaining estimates of x. Next, the EKF correction vector x̆(k + 1), which is to be applied

to the current state prediction x̂(k + 1|j) to produce the EKF state measurement update

x̂(k + 1|k + 1), is computed according to

x̆(k+1) ≜

 θ̆(k+1)

y̆(k+1)

 =

 ΛθK(k+1)ν(k+1|j)

ΛyK(k+1)ν(k+1|j)

 ,

where θ̆ ∈ R3 is the orientation correction, y̆ ∈ R14+5M is a vector containing the remaining

corrections,
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Λθ ≜
[
I3×3,03×(14+5M)

]
,

Λy ≜
[
0(14+5M)×3, I(14+5M)×(14+5M)

]
,

ν(k+1|j) ≜ z(k+1)− ẑ(k+1|j) is the measurement residual, and K and S are defined as

P (k + 1|k + 1) = P (k + 1|j)−K(k + 1)S(k + 1)KT(k + 1) (7.11)

K(k + 1) ≜ P (k + 1|j)HT(k + 1)S−1(k + 1) (7.12)

S(k + 1) ≜ H(k + 1)P (k + 1)HT(k + 1) +R(k + 1) (7.13)

Finally, the EKF state measurement update x(k+1|k+1) is computed by applying θ̆(k+1)

to b
e
ˆ̄q(k+1|j) through

b
eq̄ = b

e
ˆ̄q ⊗ ˜̄q, ˜̄q =

[
1

2
θ̃
T
,

√
1− 1

4
θ̃
T
θ̃

]T

(7.14)

and applying y̆(k+1) to y(k+1|j) using the standard EKF additive update equation, giving
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x̂(k + 1|k + 1) =

 b
e
ˆ̄q(k+1|j)⊗

[
1
2
θ̆
T
(k+1),

√
1− 1

4
θ̆
T
(k+1)θ̆(k+1)

]T
ŷ(k+1|j) + y̆(k+1)

 . (7.15)

7.4 LEO Satellite Dynamics Model

This subsection gives an overview of LEO satellite orbital dynamics, which are used in the

navigation filter to estimate the LEO satellites’ states in the STAN framework.

A two-body model including the most significant non-zero mean perturbing acceleration is

adopted as the LEO satellite orbital dynamics model in the Earth-centered inertial (ECI)

reference frame. This model offers a trade-off between accurate open-loop state prediction

while maintaining a simple analytical Jacobian for estimation error covariance propagation.

The most significant perturbing accelerations for a LEO satellite are due to Earth’s non-

uniform gravity agrav. The two-body model can be written generally as

r̈leol = agravl + w̃leol , agravl =
dUl

drleol

, (7.16)

where rleol ≜ [xleol , yleol , zleol ]
T is the position vector of the l-th LEO satellite in the ECI

frame, Ul is the non-uniform gravity potential of Earth at the satellite, and w̃leol is a process

noise vector with power spectral density (PSD) Q̃leol , which attempts to capture the overall

acceleration perturbations including the unmodeled non-uniformity of Earth’s gravitational

field, atmospheric drag, solar radiation pressure, third-body gravitational forces (e.g., gravity

of the Moon and Sun), and general relativity [35].

Several models have been developed for U . For a satellite requiring accuracies of a few

meters, the JGM-3 model developed by Goddard Space Flight Center is usually sufficient
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[87]. Here, the tesseral and sectoral terms of the JGM-3 model are neglected, since they are

several orders of magnitude smaller than the zonal terms (denoted {Jn}∞n=2). This yields [88]

Ul =
µ

∥rleol∥

[
1−

N∑
n=2

Jn
Rn

E

∥rleol∥n
Pn [sin(θl)]

]
, (7.17)

where µ is Earth’s standard gravitational parameter, Pn is a Legendre polynomial with har-

monic n, Jn is the n-th zonal coefficient, RE is the mean radius of the Earth, sin(θl) =

zleol/∥rleol∥, and N = ∞. Since the acceleration due to the J2 coefficient is approx-

imately three orders of magnitude greater than the acceleration due to the other zonal

coefficients modeling Earth’s oblateness, the perturbation due to non-uniform gravity will

be approximated by using only the term corresponding to J2. Taking the partial deriva-

tive of (7.17) with respect to the components of rleol with N ≡ 2 gives the components of

agravl =
[
ẍgravl , ÿgravl , z̈gravl

]T
as

ẍgravl = − µxleol

∥rleol∥3

[
1 + J2

3

2

(
RE

∥rleol∥

)2(
1− 5

z2leol
∥rleol∥2

)]
,

ÿgravl = − µyleol
∥rleol∥3

[
1 + J2

3

2

(
RE

∥rleol∥

)2(
1− 5

z2leol
∥rleol∥2

)]
,

z̈gravl = − µzleol
∥rleol∥3

[
1 + J2

3

2

(
RE

∥rleol∥

)2(
3− 5

z2leol
∥rleol∥2

)]
. (7.18)

Further analysis comparing different LEO orbital models can be found in [40, 79].
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7.5 Clock Dynamics Model

The receiver’s and LEO satellites’ clock error state dynamics are assumed to evolve according

to [89]

xclk,i (k + 1) = Fclk xclk,i(k) +wclk,i(k), (7.19)

xclk,i ≜
[
cδti, cδ̇ti

]T
, Fclk =

 1 T

0 1

 ,

where i = {r, leol}, δti is the clock bias, δ̇ti is the clock drift, c is the speed of light, T is the

constant sampling interval, andwclk,i is the process noise, which is modeled as a discrete-time

white noise sequence with covariance

Qclk,i = c2 ·

 Sw̃δti
T + Sw̃δ̇ti

T 3

3
Sw̃δ̇ti

T 2

2

Sw̃δ̇ti

T 2

2
Sw̃δ̇ti

T

 , (7.20)

The terms Sw̃δti
and Sw̃δ̇ti

are the clock bias and drift process noise PSDs, respectively, which

can be related to the power-law coefficients, {hαi
}2αi=−2, which have been shown through

laboratory experiments to characterize the power spectral density of the fractional frequency

deviation of an oscillator from nominal frequency according to Sw̃δti
≈ h0,i

2
and Sw̃δ̇ti

≈

2π2h−2,i [90]. The receiver’s and LEO satellites’ process noise covariances Qclkr and Qclkleo

are calculated from (7.20) using the PSDs associated with the receiver’s and LEO satellites’

oscillator quality, respectively.

The dynamics of the difference between the receiver’s and LEO satellites’ clock error states

are given by

∆xclk(k + 1) = F∆clk∆xclk(k) +∆wclk(k), (7.21)
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∆xclk ≜
[
c∆δtleo1 , c∆δ̇tleo1 , . . . , c∆δtleoL , c∆δ̇tleoL

]T
,

c∆δtleol ≜ c · [δtr − δtleol ] , c∆δ̇tleol ≜ c ·
[
δ̇tr − δ̇tleol

]
,

where F∆clk = IL×L⊗Fclk, with ⊗ denoting the Kronecker product, and ∆wclk is the process

noise which has a covarianceQ∆clk that encapsulates the correlation between entries of∆xclk

resulting from the common process noise of the receiver clock states. Assuming the LEO

satellites to be equipped with identical oscillators, Q∆clk simplifies to

Q∆clk = 1L×L ⊗Qclkr + IL×L ⊗Qclkleo ,

where 1L×L is the L × L matrix with all entries equal to 1 and IL×L is the L × L identity

matrix.

7.6 Carrier-Phase Measurement Model

A LEO receiver extracts continuous-time carrier phase measurements from LEO satellites’

signals by integrating the Doppler measurement over time [82]. The carrier phase mea-

surement (expressed in meters) made by the receiver on the LEO satellite at time-step k,

which represents discrete-time instant tk = kT + t0 for an initial time t0, can be modeled in

discrete-time as

ϕ(k) = ∥rr(k)− rleo(k
′)∥

2
+c [δtr(k)− δtleo(k

′
l)]+λN+cδtiono(k)+cδttropo(k)+v(k), k = 1, 2, . . .

(7.22)

where k′ represents discrete-time at tk′ = kT + t0 − δtTOF, with δtTOF being the true time-

of-flight of the signal from the LEO satellite to the receiver, rr and rleo are the receiver’s

and LEO satellite’s 3-D position vectors expressed in the same reference frame, λ is the
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wavelength of the carrier signal transmitted by the LEO satellite, N is the carrier phase

ambiguity of the LEO satellite carrier phase measurement, δtiono and δttropo are the iono-

spheric and tropospheric delays, respectively, affecting the LEO satellite’s signal, and v is

the measurement noise, which is modeled as a zero-mean white Gaussian random sequence

with variance σ2
ϕ.

Assuming no cycle slip occurs when the receiver tracks the carrier phase (i.e., the carrier

phase ambiguity remains constant), the difference between the receiver and the LEO satellite

clock biases and the carrier phase ambiguity are lumped into a single term c∆δt(k) to simplify

the carrier phase measurement model between the receiver and the satellite in (4.1) into

ϕ(k) = ∥rr(k)− rleo(k
′)∥2 + c∆δt(k) + cδttropo(k)− cδtiono(k) + v(k) (7.23)

where

c∆δt(k) ≜ c [δtr(k)− δtsv(k
′)] + λN. (7.24)

7.7 Ionospheric and Tropospheric Correction Models

Standard models [82] are used to correct for the ionospheric and tropospheric effects on the

measurement model (4.1). In general, ionospheric and tropospheric delays can be modeled

as the product of the delay at zenith and a mapping function of the LEO SV’s elevation

angle θ, known as the obliquity factor [82]. As the elevation angle of the SV decreases, the

obliquity factor increases due to the fact that signals at low elevation angles propagate longer

in the ionosphere and troposphere.
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7.7.1 Ionospheric Correction Model

The ionospheric delay at zenith cδtiono,z is typically given by

cδtiono,z =
40.3× 1016 TECV

f 2
c

(7.25)

where fc is the carrier frequency in Hz, TECV is the total electron content (TEC) in the

vertical direction, expressed in TEC units (TECUs). NASA’s Jet Propulsion Laboratory

(JPL) maintains a real-time global map of the ionosphere’s TEC [91]. Additionally, archived

TEC maps validated by the International GNSS Service (IGS) using dual-frequency GNSS

observations are available at [92].

The ionospheric delay obliquity factor fiono(θ) is computed using the thin shell model as [82]

fiono(θ) =

[
1−

(
Re cos θ

Re + hI

)2
]− 1

2

, (7.26)

where hI ≈ 350 km is the mean ionospheric height.

The time-history of the ionospheric delay cδtiono is consequently given by

cδtiono(k) = cδtiono,z · fiono(θ), (7.27)

where the LEO SV’s elevation angle θ varies at each time-step k.

7.7.2 Tropospheric Correction Model

The effect of the tropospheric delay on the measurements is split into wet and dry com-

ponents. The tropospheric wet cδttropow,z and dry cδttropod,z delays at zenith are computed
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using the Hopfield model [82]

cδttropow,z = 0.373
e0
T 2
0

hw

5
cδttropod,z = 77.6× 10−6P0

T0

hd

5
, (7.28)

where T0 is the temperature in Kelvin, P0 is the total pressure and e0 is the partial pressure

of water vapor in millibars, hw = 12 km, and hd ≈ 43 km.

The tropospheric wet ftropow(θ) and dry ftropod(θ) obliquity factors are given by

ftropow(θ) =
1

sin θ + 0.00035
tan θ+0.017

ftropod(θ) =
1

sin θ + 0.00143
tan θ+0.0445

(7.29)

The time-history of the tropospheric delay cδttropo is consequently given by

cδttropo(k) = cδttropow,z · ftropow(θ) + cδttropod,z · ftropod(θ), (7.30)

where the LEO SV’s elevation angle θ varies at each time-step k.
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