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ABSTRACT OF THE DISSERTATION 

 

Methods for Optimizing Mechanistic and Predictive Models of Human Disease 

 

by 

 

Rachel Shoshana Mester 

Doctor of Philosophy in Biomathematics 

University of California, Los Angeles, 2024 

Professor Bogdan Pasaniuc, Chair 

 

A major goal of the biomathematics discipline is to optimize mathematical models for biological 

processes.  This optimization can take on various forms; finding the appropriate model that fits 

available data, allows for accurate inference, and is computationally feasible is no easy task and 

requires an understanding of both the biological processes at hand and the mathematics behind 

each potential model or algorithm.  In this dissertation, I seek to understand how mathematical 

modeling choices affect our ability to understand human disease.  I study infectious, cancerous, 

and polygenic disease from a variety of computational perspectives. First, I apply methods for 

differential sensitivity analysis in biological models for both cancerous and infectious disease 

spread.  I compare prediction accuracy for existing first-order methods and propose a second-order 

method with enhanced flexibility both in terms of the model for which it is applied and the 

programming environment available.  Second, I compare statistical approaches for uncovering 

genetics of complex disease in admixed populations, using likelihood ratio tests to understand how 
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to incorporate local ancestry in genome wide association studies to achieve the highest power. 

Third, I utilize machine learning methods to reduce diagnostic delay for patients across the 

University of California Health system.  I adapt a logistic regression model to find patients likely 

to have common variable immune deficiencies from one health system to five health systems.  I 

also adapt this algorithm from the immunology realm to the cardiology realm to predict cardiac 

amyloidosis. Along the way, I use this context to study automated feature selection, longitudinal 

feature engineering, and observational bias in electronic health record data.   
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1 INTRODUCTION 

For any field of applied mathematics, the choice of a model to fit the problem has a profound 

impact on the utility of the model.  Does the choice of model accurately reflect the known 

mechanisms behind the problem at hand? Is fitting the data computationally feasible? Can the 

model be used for inference and/or prediction? These are the types of questions that must be asked 

before a particular model is implemented to solve a problem.  The domain of human disease is no 

different, and when creating models in this discipline one must consider additional obstacles, such 

as the different scales in which human biology operates and the bias that is often present in 

observational data.  In this dissertation, I address some open questions in the field of the 

mathematical, statistical, and computational modeling of human disease.  In each chapter, I delve 

into a different category of human disease and a different type of mathematical modeling.  

In Chapter 2, I focus on infectious and cancerous diseases.  At first glance, these types of 

human disease may seem disparate, however both infectious and cancerous processes can be 

modeled as the collective behavior of individual agents (people in the case of infection and cells 

in the case of cancer) which can have a state of healthy or diseased.  In this chapter, published as 

Mester R, Landeros A, Rackauckas C, Lange K. Differential methods for assessing sensitivity in 

biological models. PLoS computational biology. 20221.1, we apply stochastic models and 

dynamical systems to these processes. Next, we implement a variety of differential sensitivity 

algorithms to ascertain the advantages and trade-offs of each for these types of models.  Sensitivity 

analysis is a process used to understand how a change in parameter value will impact the outcomes 

of the model.  It is useful for applications such as fitting data, understanding uncertainty, and 
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prioritizing interventions.  Differential sensitivity refers to the use of derivatives to analytically 

calculate a measure of model sensitivity to parameters. 

We assessed three different types of differential sensitivity algorithms, including forward 

differentiation1.2, adjoint differentiation1.3, and the complex perturbation method1.4.  We 

demonstrate the impact of applying differential sensitivity to a variety of biological models, from 

the concepts of cancer to infectious disease.  These biological models also span the deterministic 

and stochastic model spaces.  We compare the various aspects of the performances of these 

algorithms, including computational speed, memory, time to convergence, and precision of 

prediction power.  We also consider the implementation benefits of each of these methods, 

including whether the algorithm requires differentiability of the base model, whether it can be 

parallelized, and whether it can be implemented in a multi-threaded way.  In addition, we consider 

second-order methods for differential sensitivity in the same categories, including the proposal of 

a novel second-order complex perturbation method. My contributions to this work include 

implementing the complex perturbation methods in Julia, application of these methods to the six 

biological models we compared, computation of performance metrics, and analysis of results. 

In Chapter 3, I turn to common diseases in humans.  Specifically, I consider genome wide 

association studies (GWASs), which are statistical tests with the goal of identifying genetic 

variation in the form of single nucleotide polymorphisms (SNPs) which have a statistically 

significant correlation to the disease status of the carrier.  From the construction of polygenic risk 

scores to the identification of biological mechanisms of disease, the genetics community has 

embraced GWAS as an important tool for almost 20 years, and GWAS has proven to be 

foundational to prioritizing genomic loci for further study. But ensuring that every person can be 

an ultimate beneficiary of GWAS is still an unfinished task. While we now know that the accuracy 
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of a polygenic risk score suffers when applied to a population distinct from the training 

population1.5, the majority of GWAS studies are performed on populations of European ancestries. 

Specifically, admixed individuals (traditionally defined as individuals with recent ancestry from 

two or more continents) have been underrepresented in GWAS studies.  While over 35% of US 

individuals self-report as having admixed ancestry, less than 5% of individuals in genomic studies 

as of 2020 were admixed1.6. In addition to the extremely important goal of including all persons in 

personalized medicine, including admixed individuals properly in GWAS will also improve our 

ability to detect genetic signals.  Before GWAS became the norm for genetic association studies, 

admixture mapping was a successful method of finding genetic loci that correlate with 

phenotypes1.7. The recent mixing of ancestry present in the genomes of admixed individuals results 

in chromosomes that contain segments that can be mapped back to an ancestral population. The 

ancestry information of a particular segment of an admixed genome is known as the local ancestry 

for that segment of the genome.  Genomic loci may harbor different linkage patterns and different 

allele frequencies depending on local ancestry.  These differences linked to local ancestry are the 

key to admixture mapping.  In the last 10 to 15 years, a variety of statistical methods have been 

developed to both leverage the benefits of GWAS and utilize the additional information that local 

ancestry provides. I assess the different types of situations in which utilizing local ancestry in 

GWAS is beneficial.  We compare putative causal SNPs with differing allele frequencies by 

ancestry, different background linkage disequilibrium levels, and different levels of causal effect 

size heterogeneity to find the regions in this genetic architecture space in which GWAS methods 

that explicitly account for local ancestry have improved power over simpler, standard GWAS 

methods.  This chapter was published as Mester R, Hou K, Ding Y, Meeks G, Burch KS, 

Bhattacharya A, Henn BM, Pasaniuc B. Impact of cross-ancestry genetic architecture on GWASs 
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in admixed populations. The American Journal of Human Genetics. 20231.8.  My contributions to 

this work include writing simulations, analyzing results, and writing the manuscript with the help 

of all co-authors. 

In Chapter 4, I shift attention to the phenotypic presentation of uncommon human diseases.  

Instead of statistically correlating genetic variation with disease status and predicting risk of future 

disease onset, I use phenotypic variables from patients’ electronic health records to infer their 

current underlying disease status. Some diseases, such as common variable immunodeficiencies 

(CVID), which is the focus in this chapter, often go undiagnosed for years after a patient first starts 

exhibiting symptoms1.9.  This diagnostic delay is due to a combination of factors including the 

heterogeneous nature of the disease both in terms of presentation (symptoms can vary drastically 

between patients) and in terms of body system affected (patients may seek care from different 

doctors for different symptoms, resulting in a constellation of care in which no individual physician 

has the full picture of the disease). Using electronic health record (EHR) data (the data that results 

directly from patient interactions with the medical system such as doctor visits, diagnoses, 

medication prescriptions, lab results, and demographic information), we seek to find patients likely 

to have CVID for the purposes of referral to immunology.  In Johnson R, Stephens AV, Mester R, 

Knyazev S, Kohn LA, Freund MK, Bondhus L, Hill BL, Schwarz T, Zaitlen N, Arboleda VA. 

Electronic health record signatures identify undiagnosed patients with common variable 

immunodeficiency disease. Science Translational Medicine. 20241.10, we use machine learning to 

create PheNet, an algorithm that outputs a patient’s probability to have an underlying CVID 

diagnosis, and apply it in the University of California, Los Angeles (UCLA) deidentified data 

repository (DDR). My contributions to this work include completing computational work and 

figure preparations for the revisions of the manuscript.  
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Next, we extend PheNet from the UCLA health system to the rest of the University of 

California health system, using the University of California Health Data Warehouse (UCHDW).  

The UCHDW includes EHR data from the University of California health systems at Los Angeles, 

San Francisco, Davis, San Diego, and Irvine.  In adapting PheNet to the UCHDW, we must assess 

the impact of covariates on the model.  In the original PheNet algorithm, we trained our data on 

cases and controls that we matched based on age, sex, race, and time in the EHR.  Now, each site 

has a different distribution of these covariates amongst the general population as well as a different 

distribution of the covariates within our case cohort.  We introduce covariates into the model to 

reduce the bias that can be introduced from observational data. 

Additionally, we were interested in finding a mathematically rigorous method for feature 

selection.  In the original PheNet model, we used phecodes1.11, a mapping of International 

Classification of Disease (ICD) codes which groups similar phecodes together for the purposes of 

statistical analysis, that were known to be clinically relevant to CVID.  In this next iteration, we 

introduced a likelihood ratio test to independently assess whether adding each additional phecode 

to the model increased the likelihood of the model significantly.  An additional important part of 

feature selection is the transformation of raw data into useful information.  We consider the 

longitudinal aspect of EHR data to be a potentially important aspect of a patient’s medical history 

and explored methods to incorporate it into PheNet. 

Last, we investigate whether PheNet is extendable to other diseases.  Cardiac amyloidosis is a 

form of amyloidosis, a disease that is caused by abnormal proteins building up in the body.  While 

cardiac amyloidosis can cause heart failure, it is often missed even after a patient experiences a 

cardiac event.  Patients with transthyretin cardiac amyloidosis are often eligible for tafamidis, a 

treatment that can help prevent a worsening of the disease.  Thus, it is important to reduce the 
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diagnostic delay of cardiac amyloidosis to help improve prognosis for these patients.  Previously, 

Huda et al4.12 developed an algorithm to predict which heart failure patients had cardiac 

amyloidosis.  In this last piece of the chapter, we use PheNet to differentiate between patients with 

and without cardiac amyloidosis at the point of first incidence of a heart failure diagnosis code.   

 Overall, in these next iterations of PheNet we have adapted PheNet for use in a new 

database (the UC Health Data Warehouse), introduced ridge regression as our statistical model for 

classification, used antibiotics data to calculate recurrence features from longitudinal electronic 

health record data, leveraged data driven feature selection for both the binary and recurrence 

features, and applied the entire process to a completely new phenotype.  We have learned that 

including more data in our model improves model performance, even though that data comes from 

heterogeneous datasets.  We have also learned that while clinical feature selection and data-driven 

feature selection result in similar performance in our CVID cohort, data-driven feature selection 

can be useful to fill in the gaps of clinical knowledge.  Furthermore, we have learned that it is 

possible to infer episodes of infection from electronic health records.  And finally, we have learned 

that we can apply this pipeline to additional phenotypes without much additional intervention. 

My contributions to this work to extend PheNet to the UCHDW, improve feature selection and 

apply PheNet to cardiac amyloidosis were the study design, implementation of the methods and 

application in the UCHDW, and analysis of the results.  This work is ongoing and may be 

published in the future.   
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2  DIFFERENTIAL METHODS FOR ASSESSING SENSITIVITY IN BIOLOGICAL 

MODELS 

2.1 INTRODUCTION TO SENSITIVITY ANALYSIS 

In many mathematical models underlying parameters are poorly specified. This problem is 

particularly acute in biological and biomedical models. Model predictions can have profound 

implications for scientific understanding, further experimentation, and even public-policy 

decisions. For instance, in an epidemic some model parameters can be tweaked by societal or 

scientific interventions to drive infection levels down. Differential sensitivity can inform medical 

judgement about the steps to take with the greatest impact at the least cost. Similar considerations 

apply in economic modeling. Additionally, parameter estimation for model fitting usually involves 

differential sensitivity through maximum likelihood or least squares criteria. These optimization 

techniques depend heavily on gradients and Hessians with respect to parameters. While some 

parameter estimation methods rely on Bayesian computational techniques2.1 rather than gradients, 

these techniques tend to scale poorly as the number of model parameters increases. A common 

way to alleviate the poor scaling of Bayesian inference is Hamiltonian Monte Carlo2.2, which itself 

requires gradient calculations. Techniques for assessing sensitivity of stochastic models often rely 

on the gradient-dependent Fisher information matrix of the model, which is the basis for a variety 

of multi-step local sensitivity analysis techniques for discrete stochastic models2.3. 

Calculation of gradients and Hessians of a model can also be important in other steps of 

the scientific process. For example, iterative model development2.4 involves using the Fisher 

information matrix to inform experimental design. Extended Kalman filtering2.5 incorporates 

differential sensitivity into model construction. Regardless of the method, parameter estimation is 
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an important step in fitting a biological model, and the success of this step strongly impacts the 

ultimate utility of the model. Understanding the uses and limitations of differential sensitivity can 

aid in determining the identifiability of model parameters, how sensitive they are to experimental 

error or measurement noise, and the overall importance of their existence in the model. Finally, it 

is worth noting that while local sensitivity analysis is the focus of this manuscript, global 

sensitivity analysis often relies on local differential sensitivity estimates to inform optimal 

stepsizes in regional searching2.6 or to resolve inconsistencies that arise when local sensitivity is 

non-monotonic2.8. 

In any case it is imperative to know how sensitive model predictions are to changes in 

parameter values. Unfortunately, assessment of model sensitivity can be time consuming, 

computationally intensive, inaccurate, and simply confusing. Most models are nonlinear and 

resistant to exact mathematical analysis. Understanding their behavior is only approachable by 

solving differential equations or intensive and noisy simulations. Sensitivity analysis is often 

conducted over an entire bundle of neighboring parameters to capture interactions. If the parameter 

space is large or high-dimensional, it is often unclear how to choose representative points from 

this bundle. Faced with this dilemma, it is common for modelers to fall back on varying just one 

or two parameters at a time. Model predictions also often take the form of time trajectories. In this 

setting, sensitivity analysis is based on lower and upper trajectories bounding the behavior of the 

dynamical system. 

The differential sensitivity of a model quantity is measured by its gradient with respect to 

the underlying parameters at their estimated values. The existing literature on differential 

sensitivity is summarized in the modern references2.8,2.9. There are a variety of software packages 

that evaluate parameter sensitivity. For example, the Julia software DifferentialEquations.jl2.10 
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makes sensitivity analysis routine for many problems. Additionally, PESTO2.11 is a current Matlab 

toolbox for parameter estimation that uses adjoint sensitivities implemented as part of the 

CVODES method from SUNDIALS2.12. Although the physical sciences have widely adopted the 

method of differential sensitivity2.13,2.14, the papers and software generally focus on a single 

sensitivity analysis method rather than a comparison of the various approaches. This singular focus 

leaves open many questions when biologists conduct sensitivity analyses. Should the continuous 

sensitivity equations be used, or would automatic differentiation of solvers be more efficient on 

biological models? On the types of models biologists generally explore, would implicit parallelism 

within the sensitivity equations be beneficial, or would the overhead cost of thread spawning 

overrule any benefits? How close do simpler methods based on complex perturbation get to these 

techniques? The purpose of the current paper is to explore these questions on a variety of models 

of interest to computational biologists. 

In the current paper we also suggest an accurate method of approximating gradients that 

compares favorably against forward automatic differentiation techniques, provided a model 

involves analytic functions without discontinuities, maxima, minima, absolute values, or any other 

excursion outside the universe of analytic functions. In the sections immediately following, we 

summarize known theory, including the important adjoint method for computing the sensitivity of 

functions of solutions2.13,2.14. Then we illustrate sensitivity analysis for a few deterministic models 

and a few stochastic models. Our exposition includes some straightforward Julia code that readers 

can adapt to their own sensitivity needs. These examples are followed by an evaluation of the 

accuracy and speed of the suggested numerical methods. The concluding discussion summarizes 

our experience, indicates limitations of the methods, and suggests new potential applications. 
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For the record, here are some notational conventions used throughout the paper. All 

functions that we differentiate have real or real-vector arguments and real or real-vector values. 

All vectors and matrices appear in boldface. The superscript ! indicates a vector or matrix 

transpose. For a smooth real-valued function 𝑓(𝐱), we write its gradient (column vector of partial 

derivatives) as ∇𝑓(𝐱) and its differential (row vector of partial derivatives) as 𝑑𝑓(𝐱) = ∇𝑓(𝐱)!. If 

𝑔(𝐱) is vector-valued with 𝑖th component 𝑔"(𝐱), then the differential (Jacobi matrix) 𝑑𝑔(𝐱) has 

𝑖th row 𝑑𝑔"(𝐱). The chain rule is expressed as the equality 𝑑[𝑓 ∘ 𝑔(𝐱)] = 𝑑𝑓[𝑔(𝐱)]𝑑𝑔(𝐱) of 

differentials. The transpose (adjoint) form of the chain rule is ∇𝑓 ∘ 𝑔(𝐱) = 𝑑𝑔(𝐱)!∇𝑓[𝑔(𝐱)]. For 

a twice-differentiable function, the second differential (Hessian matrix) 𝑑#𝑓(𝐱) = 𝑑 ∇𝑓(𝐱) is the 

differential of the gradient. Finally, 𝑖 will denote √−1. 

2.2 METHODS FOR COMPUTING SENSITIVITY 

2.2.1 Forward Method 

Section 2.8.3 briefly discusses sensitivity analysis for the linear constant coefficient system 

$
$%
𝐱(𝑡) = 𝐀(𝛃)𝐱(𝑡) of ordinary differential equations (ODEs). Sensitivity of the nonlinear system 

$
$%
𝐱(𝑡, 𝛃) = 𝑓[𝐱(𝑡), 𝛃] can be evaluated by differentiating the original ODE with respect to 𝛽&, 

interchanging the order of differentiation, and numerically integrating the system 

𝑑
𝑑𝑡

∂
∂𝛽&

𝐱(𝑡, 𝛃) =
∂
∂𝛽&

𝑓[𝐱(𝑡), 𝛃] + 𝑑𝐱𝑓[𝐱(𝑡), 𝛃]
∂
∂𝛽&

𝐱(𝑡, 𝛃). 

This formulation of the problem depends on knowing 𝐱(𝑡, 𝛃). In practice, one solves the 

system 
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Equation 2.1: 

𝑑
𝑑𝑡 9

𝐱(𝑡, 𝛃)
∇𝛃𝐱(𝑡, 𝛃)

: = ;
𝑓[𝐱(𝑡), 𝛃]

∇𝛃𝑓[𝐱(𝑡), 𝛃] + 𝑑𝛃𝐱(𝑡, 𝛃)!∇𝐱𝑓[𝐱(𝑡), 𝛃]
< 

jointly, where 𝑑𝛃𝐱[𝑡, 𝛃] is the Jacobi matrix of 𝐱(𝑡, 𝛃) with respect to 𝛃. This is commonly referred 

to as forward sensitivity analysis and is carried out by software suites such as 

DifferentialEquations.jl and SUNDIALS CVODES2.12. We note that a common implementation 

of sensitivity analysis is to base calculations on directional derivatives. Thus, the directional 

derivative 

𝑑𝛃𝐱(𝑡, 𝛃)!∇𝐱𝑓[𝐱(𝑡), 𝛃] = lim
)→+

𝑓{𝐱(𝑡) + 𝜖∇𝐱𝑓[𝐱(𝑡), 𝛃], 𝛃} − 𝑓[𝐱(𝑡), 𝛃]
𝜖

 

version of the forward method allows one to evolve dynamical systems without ever computing 

full Jacobians. The forward method can also be applied when quantities of interest are defined 

recursively. 

2.2.2 Adjoint Methods 

The adjoint method is incorporated in the biological parameter estimation software PESTO 

through CVODES2.12. This method2.8,2.9 is defined directly on a function 𝑔[𝑥(𝛃), 𝛃] of the solution 

of the ODE. The adjoint method introduces a Lagrange multiplier 𝜆(𝛃), numerically solves the 

ODE system forward in time over [𝑡+, 𝑡,], then solves the system 

𝑑𝛃𝜆(𝛃) = 𝑑𝐱𝑓[𝐱(𝛃), 𝛃]𝜆(𝛃) + 𝑑𝛃𝑔[𝐱(𝛃), 𝛃], 

for 𝜆(𝛃) in reverse time, and finally uses the introduced parameter to compute derivatives via 
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𝑑𝛃𝑔[𝑥(𝛃), 𝛃] = E 𝜆
%!

%"
(𝑡, 𝛃)𝑑𝛃𝐱(𝑡, 𝛃)𝑑𝑡. 

The second and third stages are commonly combined by appending the last equation to the 

set of ODEs being solved in reverse. This tactic achieves a lower computational complexity than 

other techniques, which require solving an 𝑛-dimensional ODE system 𝑝 times for 𝑝 parameters. 

In contrast, the adjoint method solves an 𝑛-dimensional ODE forwards and then solves an 𝑛-

dimensional and a 𝑝-dimensional system in reverse, changing the computational complexity from 

𝒪(𝑛𝑝) to 𝒪(𝑛 + 𝑝). Whether such asymptotic cost advantages lead to more efficiency on practical 

models is precisely one of the points studied in this paper. 

Alternatively, one can find the partial derivatives using finite differences. The simplest 

method here is to compute a slightly perturbed trajectory 𝐱(𝑡, 𝛃 + 𝛥𝐯) and form the forward 

differences 

𝐱(𝑡, 𝛃 + 𝛥𝐯) − 𝐱(𝑡, 𝛃)
𝛥

 

at all specified time points as approximations to the forward directional derivatives of 𝐱(𝑡, 𝛃) in 

the direction 𝐯. Choosing 𝐯 to be unit vectors along each coordinate axis gives ordinary partial 

derivatives. The accuracy of this crude method suffers from round-off error in subtracting two 

nearly equal function values. These round-off errors are in addition to the usual errors committed 

in integrating the differential equation numerically. Round-off errors can be ameliorated by using 

central differences 

𝐱 K𝑡, 𝛃 + 𝛥2 𝐯M − 𝐱K𝑡, 𝛃 −
𝛥
2 𝐯M

𝛥  
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rather than forward differences. However, the central difference method requires twice the number 

of computations as the forward difference method. Thus, the choice of a difference method 

depends on prioritization of accuracy versus computational efficiency. In small models, 

computational efficiency may be less of a priority, in which case central difference methods are 

preferred. 

2.2.3 Complex Perturbation Methods 

There is a far more accurate way of computing model sensitivity when the function 𝑓[𝐱, 𝛃] 

defining the ODE is analytic in the parameter vector 𝛃 [15]. An analytic function can be expanded 

in a locally convergent power series around every point of its domain. This implies that the 

trajectory 𝐱(𝑡, 𝛃) is also analytic in 𝛃. For a real analytic function 𝑔(𝛽) of a single variable 𝛽, the 

derivative approximation 

𝑔′(𝛽) =
Imag 𝑔(𝛽 + 𝛥𝑖)

𝛥 + 𝑂(𝛥#) 

in the complex plane avoids roundoff and is highly accurate for 𝛥 > 0 very small [16, 17]. Thus, 

in calculating a directional derivative of 𝐱(𝑡, 𝛃), it suffices to (a) solve the governing ODE 

$
$%
𝐱(𝑡, 𝛃) = 𝑓[𝐱(𝑡), 𝛃] with 𝛃 + 𝛥𝑖𝐯 replacing 𝛃, (b) take the imaginary part of the result, and (c) 

divide by 𝛥. To make these calculations feasible, the computer language implementing the 

calculations should support complex arithmetic and ideally have an automatic dispatching 

mechanism so that only one implementation of each function is required. In contrast to numerical 

integration of the joint system (equation 2.1), the complex perturbation method is much more 

simply parallelizable across parameters. 

The following straightforward Julia routine for computing sensitivities 



 16 

function differential(f::F, p, $\Delta$) where F 
    fvalue = real(f(p)) # function value 
    df = zeros(length(fvalue), length(p)) # states $\times$ parameters 
    pworker = [map(complex, p) for _ in 1:Threads.nthreads()] 
    Threads.@threads for j = 1:length(p) 
        _p = pworker[Threads.threadid()] # thread worker array 
        _p[j] = _p[j] + $\Delta$ * im # perturb parameter 
        fj = f(_p) # compute perturbed function value 
        _p[j] = complex(real(_p[j]), 0.0) # reset parameter 
        df[:,j] .= imag(fj) ./ $\Delta$ # fill in jth partial 
    end 

takes advantage of the simplicity of multithreading the complex perturbation method by parameter. 

This function requires a function 𝑓(𝐩):ℝ, ↦ ℝ- of a real vector 𝐩 declared as complex. The 

perturbation scalar 𝛥 should be small and real, say 10./+ to 10./# in double precision. If the 

parameters 𝑝& vary widely in magnitude, then a good heuristic is to perturb 𝑝& by 𝑝&𝑑𝑖 instead of 

𝑑𝑖. The returned value df is an 𝑚 × 𝑛 real matrix. The Julia commands real and complex effect 

conversions between real and complex numbers, and Julia substitutes $\rm im$ for 𝑖 = √−1. We 

will employ these functions later in some case studies. 

A recent extension2.18 of the complex perturbation method facilitates accurate 

approximation of second derivatives. The relevant formula is 

Equation 2.2:  

∂#

∂𝛽&#
𝑔(𝛃) =

Imag X𝑔Y𝛃 + 𝑒0"/2𝛥𝐞&\ + 𝑔Y𝛃 − 𝑒0"/2𝛥𝐞&\]
𝛥#

+ 𝑂(𝛥2), 

where 𝑒0"/2 = (1 + 𝑖)/√2. Roundoff errors can now occur but are usually manageable. Here we 

present a novel result for how to extend the complex perturbation method to approximate mixed 

partials. Our derivation is condensed into the following equations 
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𝛥𝑔X𝐱 + 𝑒0"/2Y𝐞& + 𝐞3\] ≈ 𝑔(𝐱) + 𝑒0"/2𝑑𝑔(𝐱)𝛥Y𝐞& + 𝐞3\

	 	 +
𝑖
2 𝛥

Y𝐞& + 𝐞3\
4
𝑑#𝑔(𝐱)𝛥Y𝐞& + 𝐞3\

	 	 +
𝑒05/2

6 𝑑5𝑔 b𝐱; 𝛥5Y𝐞& + 𝐞3\
5d

𝑔X𝐱 − 𝑒0"/2𝛥Y𝐞& + 𝐞3\] ≈ 𝑔(𝐱) − 𝑒0"/2𝑑𝑔(𝐱)𝛥Y𝐞& + 𝐞3\

	 	 +
𝑖
2 𝛥

Y𝐞& + 𝐞3\
4𝑑#𝑔(𝐱)𝛥Y𝐞& + 𝐞3\

	 	 −
𝑒05/2

6
𝑑5𝑔 b𝐱; 𝛥5Y𝐞& + 𝐞3\

5d .

 

This approximation is accurate to order 𝑂(𝛥6) and allows us to infer that 

Equation 2.3:  

Imag 𝑔X𝒙 + 𝑒0"/2ΔY𝒆𝒋 + 𝒆𝒌\] + 𝑔X𝒙 − 𝑒0"/2ΔY𝒆𝒋 + 𝒆𝒌\]
Δ2

=

Y𝒆𝒋 + 𝒆𝒌\
4𝑑#𝑔(𝒙)Y𝒆𝒋 + 𝒆𝒌\ + 𝑂YΔ4\ =

𝜕#

𝜕𝛽&#
𝑔(𝜷) +

𝜕#

𝜕𝛽3#
𝑔(𝜷) + 2

𝜕#

𝜕𝛽&𝜕𝛽3
𝑔(𝜷) + 𝑂YΔ4\ 	

 

 

Since we can approximate 9
#

9:$
# 𝑔(𝛃) and 9

#

9:%
# 𝑔(𝛃), we can now approximate 9#

9:$ 9:%
𝑔(𝛃) 

to order 𝑂(𝛥2). These approximations are derived in the Section 2.8.1. 

The Julia code for computing second derivatives 

function hessian(f::F, p, $\Delta$) where F 
  d2f = zeros(length(p), length(p)) # hessian 
  dp = $\Delta$ * (1.0 + 1.0 * im) / sqrt(2) 
  for j = 1:length(p) # compute diagonal entries of d2f 
    p[j] = p[j] + dp 
    fplus = f(p) 
    p[j] = p[j] - 2 * dp 
    fminus = f(p) 
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    p[j] = complex(real(p[j]), 0.0) # reset parameter 
    d2f[j, j]  = imag(fplus + fminus) / $\Delta$^2 
  end 
  for j = 2:length(p) # compute off diagonal entries 
    for k = 1:(j - 1) 
      (p[j], p[k]) = (p[j] + dp, p[k] + dp) 
      fplus = f(p) 
      (p[j], p[k]) = (p[j] - 2 * dp, p[k] - 2 * dp) 
      fminus = f(p) 
      (p[j], p[k]) = (complex(real(p[j]), 0.0), complex(real(p[k]), 0.
0)) 
      d2f[j, k]  = imag(fplus + fminus) / $\Delta$^2 
      d2f[j, k] = (d2f[j, k] - d2f[j, j] - d2f[k, k]) / 2 
      d2f[k, j] = d2f[j, k] 
    end 
  end 
  return d2f 
end 

operates on a scalar-valued function 𝑓(𝑢) of a real vector 𝐩 declared as complex. The second-

order complex perturbation method can also be multithreaded by parameter, provided the unmixed 

second partials are computed prior to the mixed ones. Because roundoff error is now a concern, 

the perturbation scalar 𝛥 should be in the range 10.5 to 10.6 in double precision. The returned 

value 𝑑#𝑓 is a symmetric matrix. 

2.2.4 Automatic Differentiation 

Another technique one can use to calculate the derivatives of model solutions is to 

differentiate the numerical algorithm that calculates the solution. This can be done with 

computational tools collectively known as automatic differentiation2.19. Forward mode automatic 

differentiation is performed by carrying forward Jacobian-vector products at each successive 

calculation. This is accomplished by defining higher-dimensional numbers, known as dual 

numbers2.20, coupled to primitive functions 𝑓(𝐱) through the action 
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𝑓(𝐚 + 𝐛𝜖) = 𝑓(𝐚) + 𝜖𝑑𝑓(𝐚)𝐛. 

Here 𝜖 is a dimensional marker, similar to the complex 𝑖, which is a two-dimensional number. For 

a composite function 𝑓 = 𝑓# ∘ 𝑓/, the chain rule is 𝑑𝑓(𝐚)𝐛 = 𝑑𝑓#[𝑓/(𝐚)]𝑑𝑓/(𝐚)𝐛. The 𝑖th column 

of the Jacobian appears in the expression 𝑓(𝐱 + 𝐞"𝜖) = 𝑓(𝐱) + 𝜖∇"𝑓(𝐱). Since computational 

algorithms can be interpreted as the composition of simpler functions, one need only define 

automatic differentiation on a small set of base cases (such as +, ∗, sin, and so forth, known as the 

primitives) and then apply the accepted rules in sequence to differentiate more elaborate functions. 

The ForwardDiff.jl package2.20 in Julia accomplishes this by defining dispatches for such 

primitives on a dual number type and provides convenience functions for easily extracting 

common objects like gradients, Jacobians, and Hessians. Hessians are calculated by layering 

automatic differentiation twice on the same algorithm to effectively take the derivative of a 

derivative. 

In this form, forward mode automatic differentiation shares many similarities to the 

complex perturbation methods described above without the requirement that the extension of 𝑓(𝐱) 

be complex analytic. At every stage of the calculation 𝑓(𝐱) must be differentiable, a weaker yet 

still restrictive assumption. Conveniently, automatic differentiation allows for arbitrarily many 

derivatives to be calculated simultaneously. By defining higher-dimensional dual numbers that act 

independently via 

𝑓 o𝐚 +p𝑏"
"

𝜖"r = 𝑓(𝐚) + ∑𝜖"𝑑𝑓(𝐚)𝐛" , 

one can calculate entire Jacobians in a single function call 𝑓(𝐚 + ∑ 𝐞"" 𝜖"). This use of higher-

dimensional dual numbers is a practice known as chunking. Chunking reduces the number of 
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primal (non-derivative) calculations required for computing the Jacobian. Because the 

ForwardDiff.jl package uses chunking by default, we will investigate the extent to which this detail 

is applicable in biological models. 

2.3 CASE STUDIES 

We now explore applications of differential sensitivity to a few core models in oncology 

and epidemiology. 

2.3.1 CARRGO Model 

The CARRGO model2.21 was designed to capture the tumor-immune dynamics of CAR T-

cell therapy in glioma. The CARRGO model generalizes to other tumor cell-immune cell 

interactions. Its governing system of ODEs 

𝑑𝑥
𝑑𝑡

= 𝜌𝑥 u1 −
𝑦
𝛾x
− 𝜅/𝑥𝑦

𝑑𝑦
𝑑𝑡

= 𝜅#𝑥𝑦 − 𝜃𝑦
 

follows cancer cells 𝑥 as prey and CAR T-Cells 𝑦 as predators. This model captures Lotka-Volterra 

dynamics with logistic growth of the cancer cells. Our numerical experiments assume the 

parameter values and initial conditions 

𝜅/ = 6 × 10.;/(day × cell), 𝜅#		 = 		3 × 10.///(day × cell),
𝜃 = 1 × 10.6/day, 𝜌		 = 		6 × 10.#/day, 𝛾		 = 		1 × 10; cells,
𝑥+ = 1.25 × 102 cells, 𝑦+		 = 		6.25 × 10# cells

 

suggested by Sahoo et al.2.21. 
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A traditional sensitivity analysis hinges on solving the system of ODEs and displaying the 

solutions at a chosen future time across an interval or rectangle of parameter values. Figure 2.1 

shows how 𝑥(𝑡) and 𝑦(𝑡) vary at 𝑡 = 1000 days under joint changes of 𝜅/ and 𝜅#, where 𝜅/ is the 

rate at which cancer cells are destroyed in an interaction with an immune cell, and 𝜅# is the rate at 

which immune cells are recruited after such an interaction. This type of analysis directly portrays 

how a change in one or two parameters impacts the outcome of the system. Surprisingly, the 

number of cancer cells 𝑥(𝑡) depends strongly on 𝜅# but only weakly on 𝜅/. In contrast, the number 

of immune cells 𝑦(𝑡) depends comparably on both parameters, perhaps because the initial 

population of immune cells is much smaller than the initial population of cancer cells. 

There are limitations to this type of sensitivity analysis. How many solution curves should 

be examined? What time is most informative in displaying system changes? Is it necessary to 

compute sensitivity over such a large range of parameters when the trends are so clear? These 

ambiguities cloud our understanding and require far more computing than is necessary. 

Differential sensitivity successfully addresses these concerns. Gradients of solutions immediately 

yield approximate solutions in a neighborhood of postulated parameter values. The relative 

importance of different parameters in determining species levels can be determined from 

inspection of the gradient. Furthermore, modern software easily delivers the gradient along entire 

solution trajectories. There is no need to solve for an entire bundle of neighboring solutions. 

Differential assessment is far more efficient. The required calculations involve solving an 

expanded system of ordinary differential equations just once under the automatic differentiation 

method or solving the system once for each parameter under the complex perturbation method. 

Either way, the differential method is much less computationally intensive than the traditional 

method of solving the ODE system over an interval for each parameter or over a rectangle for each 
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pair of parameters. Here is our brief Julia code for computing sensitivity via the complex 

perturbation method. 

using DifferentialEquations, Plots 

 
function sensitivity(x0, p, d, tspan) 
  problem = ODEProblem{true}(ODE, x0, tspan, p) 
  sol = solve(problem, saveat = 1.0) # solve ODE 
  (lp, ls, lx) = (length(p), length(sol), length(x0))   
  solution = Dict{Int, Any}(i => zeros(ls, lp + 1) for i in 1:lx) 
  for j = 1:lx # record solution for each species 
    @views solution[j][:, 1] = sol[j, :] 
  end 
  for j = 1:lp 
    p[j] = p[j] + d * im # perturb parameter 
    problem = ODEProblem{true}(ODE, x0, tspan, p) 
    sol = solve(problem, saveat = 1.0) # resolve ODE 
    p[j] = complex(real(p[j]), 0.0) # reset parameter 
    @views sol .= imag(sol) / d # compute partial 
    for k = 1:lx # record partial for each species 
      @views solution[k][:,j + 1] = sol[k, :] 
    end 
  end 
  return solution 
end 
 
function ODE(dx, x, p, t) # CARRGO model 
  dx[1] = p[4] * x[1] * (1 - x[1] / p[5]) - p[1] * x[1] * x[2] 
  dx[2] = p[2]* x[1] * x[2] - p[3] * x[2] 
end 
 
p = complex([6.0e-9, 3.0e-11, 1.0e-6, 6.0e-2, 1.0e9]); # parameters 
x0 = complex([1.25e4, 6.25e2]); # initial values 
(d, tspan) = (1.0e-13, (0.0,1000.0)); # step size and time interval in 
days 
solution = sensitivity(x0, p, d, tspan); # find solution and partials 
CARRGO1 = plot(solution[1][:, 1], label = "x1", xlabel= "days",  
ylabel = "cancer cells x1", xlims = (tspan[1],tspan[2])) 
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CARRGO2 = plot(solution[1][:, 2], label = "d1x1", xlabel= "days",  
ylabel = "p1 sensitivity", xlims = (tspan[1],tspan[2])) 

In the Julia code the parameters 𝜅/, 𝜅#, 𝜃, 𝜌, and 𝛾 and the variables 𝑥 and 𝑦 exist as 

components of the vector 𝐩 and 𝐱, respectively. The two plot commands construct solution curves 

for cancer and its sensitivity to perturbations of 𝜅/. 

Figure 2.2 reinforces the conclusions drawn from the heatmaps, but more clearly and 

quantitatively. Additionally, differential sensitivity allows for the assessment of the sensitivity 

over the course of time, rather than just at a single time or small set of times. For example, the 

sensitivity of 𝑥 with respect to 𝛾 in this model exhibits both large positive and large negative values 

over the course of time. Measured as the difference in 𝑥 caused by a difference in 𝛾 at our end-

time 𝑡 = 1000, these effects tend to cancel each other out and fail to communicate the impact of 

the parameter 𝛾 on 𝑥 at intermediate times. In brief, the scaled sensitivity of cancer cells 𝑥 is much 

more dependent on carrying capacity 𝛾 later in the simulation, while the model sensitivity to birth 

rate 𝜌 is most pronounced around the earlier time 𝑡 = 200. 

2.3.2 Deterministic SIR Model  

The deterministic SIR model follows the number of infectives 𝐼(𝑡), the number of 

susceptibles 𝑆(𝑡), and the number of recovereds 𝑅(𝑡) during an epidemic. These three 

subpopulations satisfy the ODE system 

𝑑
𝑑𝑡 𝑆 = −𝜂𝐼

𝑆
𝑁

𝑑
𝑑𝑡
𝐼 = 𝜂𝐼

𝑆
𝑁
− 𝛿𝐼

𝑑
𝑑𝑡 𝑅 = 𝛿𝐼,

 



 24 

where 𝜂 is the daily infection rate per encounter and 𝛿 is the daily rate of progression to immunity 

per person. For SARS-CoV-2, current estimates2.22 of 𝜂 range from 0.0012 to 0.48, and estimates 

of 𝛿 range from 0.0417 to 0.05882.23. As an alternative to solving the extended set of differential 

equations, we again use the complex perturbation method to evaluate parameter sensitivities. 

The following Julia code for the complex perturbation method reuses the generic sensitivity 

function from the CARRGO model example. 

function ODE(dx, x, p, t) # Covid model 
  N = 3.4e8 # US population size 
  dx[1] = - p[1] * x[2] * x[1] / N 
  dx[2] = p[1] * x[2] * x[1] / N - p[2] * x[2] 
  dx[3] = p[2] * x[2] 
end 
 
p = complex([0.2, (0.0417 + 0.0588) / 2]); # parameters 
x0 = complex([3.4e8, 100.0, 0.0]); # initial values 
(d, tspan) = (1.0e-10, (0.0, 365.0)) # 365 days 
solution = sensitivity(x0, p, d, tspan); 
Covid = plot(solution[1][:, :], label = ["x1" "d1x1" "d2x1"],  
        xlabel = "days", xlims = (tspan[1],tspan[2])) 

Our parameter choices roughly capture measurements for the COVID-19 virus from early 

in the pandemic2.22,2.23. Figure 2.3 plots the susceptible curve and its sensitivities. In this case all 

three curves conveniently occur on comparable scales. Figure 2.3 captures not only the pronounced 

parameter sensitivity early in the pandemic but also the symmetry between the 𝛿 and 𝜂 parameters. 

2.3.3 Second-Order Expansions of Solution Trajectories 

In predicting nearby solution trajectories, the second-order Taylor expansion 
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Equation 2.4:  

𝑓(𝐱 + 𝐯) ≈ 𝑓(𝐱) + 𝑑𝑓(𝐱)𝐯 +
1
2𝐯

%𝑑#𝑓(𝐱)𝐯 

improves accuracy over the first-order expansion 

Equation 2.5:  

𝑓(𝐱 + 𝐯) ≈ 𝑓(𝐱) + 𝑑𝑓(𝐱)𝐯. 

The improved accuracy achieved by including second-order terms often justifies their 

computation. The complex perturbation method permits straightforward computation of second 

derivatives via approximations (equation 2.2) and (equation 2.3). The DiffEqSensitivity.jl and 

ForwardDiff.jl packages implement both adjoint and forward difference methods for computing 

the second derivatives of differential equation systems. Figure 2.4 displays predicted trajectories 

for the SIR model using the complex perturbation method when all parameters 𝑝" are replaced by 

𝑝"(1 + 𝑈"), where each 𝑈" is chosen uniformly from (−0.25,0.25). The figure vividly confirms 

the improvement in accuracy in passing from a first-order to a second-order approximation. More 

improvement becomes evident as the non-linearity of the solution trajectory increases. 

For example, the middle panel of Figure 2.4 shows that the solution trajectory of infected 

individuals bends dramatically with a change in parameters. This behavior is much better reflected 

in the second-order prediction compared to the first-order prediction, which over-corrects at the 

peak. The Euclidean distance between the actual and predicted trajectories at the sampled time 

points is about 25.4 in the first-order case and only about 9.06 in the second-order case, a reduction 

of over 60% in prediction error. By contrast, the trajectory of the recovered individuals steadily 

increases in a much more linear fashion. The bottom panel of Figure 4 shows that the first-order 
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prediction now remains reasonably accurate over a substantial period. Even so, the discrepancy 

between the predicted solutions grows so that by day 100 the Euclidean distance between the first-

order prediction and the actual trajectory exceeds 154, compared to about 34.0 for the second-

order prediction. Thus, calculating second-order sensitivity is helpful in both highly non-linear 

systems and systems with long time scales. 

2.3.4 Stochastic SIR Model 

We now illustrate sensitivity calculations in the stochastic SIR model. This model 

postulates an original population of size 𝑛 with 𝑖 infectives and 𝑠 susceptibles. The parameters 𝛿 

and 𝜂 again capture the rate of progression to immunity and the infection rate per encounter. Since 

extinction of the infectives is certain, we focus on the time to elimination of the infectives. It is 

also convenient to follow the vector (𝑖, 𝑛), where 𝑛 = 𝑖 + 𝑠 is the sum of the number of infectives 

𝑖 plus the number of susceptibles 𝑠. The mean time 𝑡", to elimination of all infectives satisfies the 

recurrence 

Equation 2.6:  

𝑡", =
1

𝑖𝛿 + 𝑖 K𝑛 − 𝑖𝑁 M 𝜂
+

𝑖𝛿

𝑖𝛿 + 𝑖 K𝑛 − 𝑖𝑁 M 𝜂
𝑡"./,,./

	 	 +
𝑖 K𝑛 − 𝑖𝑁 M 𝜂

𝑖𝛿 + 𝑖 K𝑛 − 𝑖𝑁 M 𝜂
𝑡"=/,,

 

for 0 < 𝑖 < 𝑛 together with the boundary conditions 

𝑡"" = p
1
𝑗𝛿

"

&>/

 and 𝑡+,		 = 		0. 
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The expression for 𝑡"" stems from adding the expected time for the 𝑖 → 𝑖 − 1 transition, 

plus the expected time 𝑖 − 1 → 𝑖 − 2, and so forth. This system of equations can be solved 

recursively for 𝑖 = 𝑛, 𝑛 − 1,…0 starting with 𝑛 = 1. Once the values for a given 𝑛 are available, 

𝑛 can be incremented, and a new round is initiated. Ultimately the target size 𝑛 = 𝑁 is reached. 

Taking partial derivatives of the recurrence (equation 2.6) yields a new system of recurrences that 

can also be solved recursively in tandem with the original recurrence. The complex perturbation 

method is easier to implement and comparable in accuracy to the partial derivative method. 

Another important index of the SIR process is the mean number of infectives 𝑚", ever 

generated starting with 𝑖 initial infectives and 𝑛 total people. These expectations can be calculated 

via the recurrences 

Equation 2.7:  

𝑚", =
𝑖𝛿

𝑖𝛿 + 𝑖 K𝑛 − 𝑖𝑁 M 𝜂
Y𝑚"./,,./ + 1\ +

𝑖 K𝑛 − 𝑖𝑁 M𝜂

𝑖𝛿 + 𝑖 K𝑛 − 𝑖𝑁 M 𝜂
𝑚"=/,, 

for 0 < 𝑖 < 𝑛 together with the boundary conditions 

𝑚"" = 𝑖 and 𝑚+,		 = 		0. 

One can compute the sensitivities of the 𝑚", to parameter perturbations in the same way as the 𝑡",. 

Here is the Julia code for the two means and their sensitivities via the complex perturbation 

method. Note how our earlier differential function plays a key role. 

function SIRMeans(p) 
    (delta, eta) = (p[1], p[2]) 
    M = zeros(typeof(p[1]),(N+1, N+1)) # mean matrix 
    T = similar(M) # time to extinction matrix 



 28 

    for n = 1:N # recurrence relations loop 
        for j = 0:(n-1) 
            i = n - j 
            a = i * delta # immunity rate 
            if i == n # initial conditions 
                M[i+1, n+1] = i 
                T[i+1, n+1] = T[i, i] + 1 / a 
            else 
                b = i * (n - i) * eta / N  # infection rate 
                c = 1 / (a + b) 
                M[i+1, n+1] = a * c * (M[i, n] + 1) + b * c * M[i+2, n
+1] 
                T[i+1, n+1] = c * (1 + a * T[i, n] + b * T[i+2, n+1]) 
            end 
        end 
    end 
    return [M[:, N+1]; T[:, N+1]] 
end 
 
p = complex([0.2, (0.0417 + 0.0588) / 2]); # delta and beta 
(N, d) = (100, 1.0e-10); 
@time (f, df) = differential(SIRMeans, p, d); 

The left column of Figure 2.5 displays a heatmap of the expected total number of 

individuals infected and the right column displays a heatmap of the expected days to extinction of 

the infection process. Rows 2 and 3 show the sensitivities of these quantities to the 𝜂 and 𝛿 

parameters in the stochastic SIR model. 

It is interesting to compare results from differential sensitivity to estimates from stochastic 

simulations. To see the difference in accuracy, we calculated the average number of individuals 

infected and the average time to extinction by stochastic simulation using the software package 

BioSimulator.jl2.24. Table 2.1 records the analytic and simulated means of these outcomes in the 

SIR model. As Table 2.1 indicates, the simulated means over 𝑟 = 100 runs are roughly comparable 

to the analytic means, but the standard errors of the simulated means are large. Because the 
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standard errors decrease as /
√@

, it is difficult to achieve much accuracy by simulation alone. In more 

complicated models, simulation is so computationally intensive and time consuming that it is 

nearly impossible to achieve accurate results. Of course, the analytic method is predicated on the 

existence of an exact solution or an algorithm for computing the same. 

Parameter sensitivities inform our judgment in interesting and helpful ways. For example, 

derivatives of both the total number of infecteds and the time to extinction with respect to 𝜂 are 

very small except in a narrow window of the 𝜂 parameter. This suggests that we focus further 

simulations, sensitivity analysis, and possible interventions on the region of parameter space where 

𝜂 falls in these windows. Derivatives with respect to 𝛿 also depend mostly on 𝜂 except at very 

small values of 𝛿. These conclusions are harder to draw from noisy simulations alone. 

2.3.5 Branching Processes 

Branching process models offer another opportunity for checking the accuracy of 

sensitivity calculations. For simplicity we focus on birth-death-migration processes2.25. These are 

multi-type continuous-time processes2.26,2.17 that can be used to model the early stages of an 

epidemic over a finite graph with 𝑛 nodes, where nodes represent cities or countries. On node 𝑖 we 

initiate a branching process with birth rate 𝛽" > 0 and death rate 𝛿" > 0. The migration rate from 

node 𝑖 to node 𝑗 is 𝜆"& ≥ 0. All rates are per person, and each person is labeled by a node. Let 𝜆" =

∑ 𝜆"&&A"  be the sum of the migration rates emanating from node 𝑖. Given this notation, the mean 

infinitesimal generator of the process is the matrix 

𝛀 = �
𝛽/ − 𝛿/ − 𝜆/ 𝜆/# ⋯ 𝜆/,,./ 𝜆/,

⋮ ⋮ ⋱ ⋮ ⋮
𝜆,/ 𝜆,# ⋯ 𝜆,,,./ 𝛽, − 𝛿, − 𝜆,

� 
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The entries of the matrix 𝑒%𝛀 = X𝑚"&(𝑡)] represent the expected number of people at node 

𝑗 at time 𝑡 starting from a single person of type 𝑖 at time 0. The process is irreducible when the 

pure migration process corresponding to the choice 𝛽" = 𝛿" = 0 for all 𝑖 is irreducible. 

Equivalently, the process is irreducible when the graph representing transition probabilities is 

strongly connected. Henceforth, we assume the process is irreducible and let 𝚪 denote the mean 

infinitesimal generator of the pure migration process. The process is subcritical, critical, or 

supercritical depending on whether the dominant eigenvalue 𝜌 of 𝛀 is negative, zero, or positive. 

To determine the local sensitivity of 𝜌 to a parameter 𝜃2.26,2.27, suppose its left and right 

eigenvectors 𝐯 and 𝐰 are normalized so that 𝐯𝐰 = 1. Differentiating the identity 𝛀𝐰 = 𝜌𝐰 with 

respect to 𝜃 yields 

u
∂
∂𝜃 𝛀x𝐰 + 𝛀

∂
∂𝜃𝐰 = u

∂
∂𝜃 𝜌x𝐰 + 𝜌

∂
∂𝜃𝐰.

 

If we multiply this by 𝐯 on the left and invoke the identities 𝐯𝛀 = 𝜌𝐯 and 𝐯𝐰 = 1 we find that 

∂
∂𝜃 𝜌 = 𝐯u

∂
∂𝜃 𝛀x𝐰.

 

Because 9
9C&
𝛀 = − 9

9:&
𝛀, it follows that an increase in 𝛿" has the same impact on 𝜌 as the same 

decrease in 𝛽". The sensitivity of 𝐯 and 𝐰 can be determined by an extension of this reasoning 

[28]. The extinction probabilities 𝑒" of the birth-death-migration satisfy the system of algebraic 

equations 

Equation 2.8: 

𝑒" =
𝛿"

𝛽" + 𝛿" + 𝜆"
+

𝛽"
𝛽" + 𝛿" + 𝜆"

𝑒"# +p
𝜆"&

𝛽" + 𝛿" + 𝜆"&A"

𝑒&  
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for all 𝑖. This is a special case of the vector extinction equation 

𝐞 = 𝑃(𝐞)		 = 		 o
𝑃/(𝐞)
⋮

𝑃,(𝐞)
r 

for a general branching process with offspring generating function 𝑃"(𝐱) for a type 𝑖 person2.29. 

For a subcritical or critical process, 𝐞 = 𝟏. For a supercritical process all 𝑒" ∈ (0,1). Iteration is 

the simplest way to find 𝐞. Starting from 𝐞+ = 𝟎, the vector sequence 𝐞, = 𝑃(𝐞,./) satisfies 

𝟎 ≤ 𝐞,		 ≤ 		𝐞,=/		 ≤ 		𝐞 

and converges to a solution of the extinction equations. Here all inequalities apply component-

wise. 

To find the differential2.28 of the extinction vector 𝐞 with respect to a vector 𝛉 of 

parameters, we assume that the branching process is supercritical and resort to implicit 

differentiation of the equation 𝐞(𝛉) = 𝑃[𝐞(𝛉), 𝛉]. The chain rule gives 

𝑑𝛉𝐞 = 𝑑𝐞𝑃(𝐞, 𝛉)𝑑𝛉𝐞 + 𝑑𝛉𝑃(𝐞, 𝛉). 

This equation has the solution 

Equation 2.9: 

𝑑𝛉𝐞 = [𝐈, − 𝑑𝐞𝑃(𝐞, 𝛉)]./𝑑𝛉𝑃(𝐞, 𝛉). 

The indicated inverse does, in fact, exist. Alternatively, one can compute an entire extinction curve 

𝐞(𝑡) whose component 𝑒"(𝑡) supplies the probability of extinction before time 𝑡 starting from a 

single person of type 𝑖 . This task reduces to solving the ODE for $
$%
𝐞(𝑡) by the methods previously 

discussed. 
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The following Julia code computes the sensitivities of the extinction probability for a two-

node process by the complex perturbation method. 

using LinearAlgebra 
 
function extinction(p) 
  types = Int(sqrt(1 + length(p)) - 1) # length(p) = 2 * types + types
^2  
  (x, y) = (zeros(Complex, types), zeros(Complex, types)) 
  for i = 1:500 # functional iteration 
    y = P(x, p) 
    if norm(x - y) < 1.0e-16 break end 
    x = copy(y) 
  end 
  return y 
end 
 
function P(x, p) # progeny generating function 
  types = Int(sqrt(1 + length(p)) - 1) # length(p) = 2 * types + types
^2  
  delta = p[1: types] 
  beta = p[types + 1: 2 * types] 
  lambda = reshape(p[2 * types + 1:end], (types, types)) 
  y = similar(x) 
  t = delta[1] + beta[1] + lambda[1, 2] 
  y[1] = (delta[1] + beta[1] * x[1]^2 + lambda[1, 2] * x[2]) / t 
  t = delta[2] + beta[2] + lambda[2, 1] 
  y[2] = (delta[2] + beta[2] * x[2]^2 + lambda[2, 1] * x[1]) / t 
  return y 
end 
 
delta = complex([1.0, 1.75]); # death rates 
beta = complex([1.5, 1.5]); # birth rates 
lambda = complex([0.0 0.5; 1.0 0.0]); # migration rates 
p = [delta; beta; vec(lambda)]; # package parameter vector 
(types, d) = (2, 1.0e-10) 
@time (e, de) = differential(extinction, p, d) 
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To adapt the code to a different branching process model, one simply supplies the 

appropriate progeny generating function and necessary parameters. 

The average number 𝑎"& of infected individuals of type 𝑗 ultimately generated by a single 

initial infected individual of type 𝑖 is also of interest. The matrix 𝐀 = Y𝑎"&\ of these expectations 

can be calculated via the matrix equation 

Equation 2.10: 

𝐀 = (𝐈, − 𝐅)./, 

where 𝐅 is the offspring matrix 

𝐅 =

⎝

⎜
⎛

2𝛽/
𝛽/ + 𝛿/ + 𝜆/

𝜆/#
𝛽/ + 𝛿/ + 𝜆/

⋯
𝜆/,,./

𝛽/ + 𝛿/ + 𝜆/
𝜆/,

𝛽/ + 𝛿/ + 𝜆/
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One can determine the local sensitivity of the expected numbers of total descendants by 

differentiating the equation 𝐀 = (𝐈, − 𝐅)./. The result 

Equation 2.11: 

𝑑𝛉𝐀 = (𝐈, − 𝐅)./𝑑𝛉𝐅(𝐈 − 𝐅)./, 

depends on the sensitivity of the expected offspring matrix 𝐅. Julia code for the complex 

perturbation method with two nodes follows. 

function particles(p) # mean infected individuals generated 
  types = Int(sqrt(1 + length(p)) - 1) # length(p) = 2 * types + types
^2  
  delta = p[1: types] 
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  beta = p[types + 1: 2 * types] 
  lambda = reshape(p[2 * types + 1:end], (types, types)) 
  F = complex(zeros(types, types)) 
  t = delta[1] + beta[1] + lambda[1, 2] 
  (F[1, 1], F[1, 2]) = (2 * beta[1] / t, lambda[1, 2] / t) 
  t = delta[2] + beta[2] + lambda[2, 1] 
  (F[2, 1], F[2, 2]) = (lambda[2, 1] / t, 2 * beta[2] / t) 
  A = vec(inv(I - F)) # return as vector 
end 
 
delta = complex([1.0, 1.75]); # death rates 
beta = complex([1.5, 1.5]); # birth rates 
lambda = complex([0.0 0.5; 1.0 0.0]); # migration rates 
p = [delta; beta; vec(lambda)]; # package parameter vector 
(types, d) = (2, 1.0e-10) 
@time (A, dA) = differential(particles, p, d) 

2.4 RESULTS 

We now measure the accuracy, computational speed, and prediction error for adjoint, 

forward mode, and complex perturbation methods. To account for the variety of settings 

encountered by biologists, we include two additional ODE models in our comparisons. The 

ROBER model describes chemical reactions typical of enzymatic behavior2.30 and furnishes an 

example of a stiff ODE system. More information on the ROBER model can be found in Section 

2.8.2. To compare the three methods in a high-dimensional ODE model, we turn to the mammalian 

cell cycle (MCC) model. Our MCC model is a simplified version of the original MCC model 

constructed by Gerard and Goldbetor2.31, as explained in more detail in Section 2.8.2. The model 

comprises 11 equations and 15 parameters and captures aspects of cell reproduction and cycling 

mediated by chemical signaling via cell-state dependent proteins such as tumor repressors, 

transcription factors, and other DNA replication checkpoints. The model relies on cell state as 

opposed to cell mass and nicely replicates sequential progression along the cell cycle. 
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2.4.1 Accuracy 

It is important to understand how close computed differential sensitivities are to true 

differential sensitivities. Unfortunately, the latter are almost always unavailable for ODE models. 

For the stochastic SIR and branching process models, true sensitivities are well matched by the 

approximate sensitivities delivered by the complex perturbation methods, provided the complex 

perturbation is small enough2.32. As a proxy for comparison to true values in ODE models, one can 

compute the Euclidean distance between sensitivities delivered by the complex perturbation 

method and the methods relying on the chain rule. In general, we find that these distances are very 

small. 

For the forward and adjoint sensitivities of non-stiff ODEs such as the SIR and CARRGO 

models, it is known that as one decreases the tolerance of the underlying ODE solver, the solution 

and its sensitivities converge to their true values2.33. To demonstrate that the same behavior occurs 

in our cases, we compute the sensitivities 9
9F
𝑆 of the SIR model and 9

9G'
𝑥/ of the ROBER model 

at 𝑡 = 1000 using the adjoint, forward, and complex perturbation methods at a variety of 

tolerances ranging from 1 × 10.# to 1 × 10.H. 

Figure 2.6 shows that all three method types (adjoint, forward, and complex perturbation) 

ultimately converge. In the non-stiff case (the SIR model), the adjoint method requires a step size 

of 1.0 to converge, while the stiff case (the ROBER model) requires a much smaller step size of 

0.1 to converge. Each method converges at a different rate and potentially from a different 

direction. In the case of a relatively small, non-stiff model, the complex perturbation method 

converges more quickly (and at a higher tolerance) than the other methods. Notably, when the 

tolerance for the adjoint method is too weak the error rate increases more dramatically than for the 
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forward method. This behavior becomes even more pronounced if we consider a stiff ODE model 

such as ROBER. In this case it is worth noting that the forward and complex perturbation methods 

converge, albeit under a more stringent tolerance. The adjoint method however struggles to 

converge for the ROBER model unless the step size is decreased to 0.1 (shown in the figure). 

While the smaller step size does allow the adjoint method to converge even in the stiff case, this 

smaller step size is much more computationally intensive and, in many cases, may be infeasible. 

2.4.2 The Speed versus Accuracy Trade-off 

The trade-off between computational speed and accuracy is relevant to solving ODE 

systems whether they are stiff or not. Figure 2.7 displays the time versus error trade-off for both 

the SIR (non-stiff) and ROBER (stiff) models. In this case, error is calculated as the Euclidean 

distance between the derivatives calculated at various error tolerances and the derivatives 

calculated at a strict tolerance of 1 × 10.H (for the SIR model) and 1 × 10.I (for the ROBER 

model). We chose these tolerances as the strictest possible that are numerically realistic for each 

model. Figure 2.6 demonstrates that our choices are strict enough for the methods to reach 

convergence. We display errors versus time in a log-log plot averaged over compartments and 

parameters and normalized by length of time. We do not include the adjoint method in this 

comparison due to its difficulties in convergence and large computational cost. 

Figure 2.7 figure demonstrates the clear trade-off between speed and accuracy in both the 

stiff (ROBER) and non-stiff (SIR) cases. In both cases, the forward method can be computed more 

quickly for equal errors than the complex perturbation method. As expected, the ROBER model 

has a less steep slope compared to the SIR model, indicating that the returns in accuracy grow 

more slowly per time invested for a stiff ODE system. 
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2.4.3 Computational Speed 

Speed is an important attribute of any computational method, especially when it is 

performed without the benefit of computational clusters or distributed computing resources. Our 

speed comparisons offer a first look at the efficiency gains possible with multithreading. In 

implementing multithreading for both the complex perturbation and forward mode methods, we 

call the Polyester.jl package to compute each partial derivative in a separate thread. All 

computations were done in Julia version 1.7.1 on a Windows operating system with an Intel Core 

i7-8565U CPU. 

In addition to multithreading, the forward method as implemented in ForwardDiff.jl 

package provides the capability of multichunking. This involves splitting the equations in each 

system into different chunks to be solved separately. While forward methods do benefit from 

chunking, this tactic is unavailable in many packages outside of ForwardDiff.jl or outside of the 

Julia language. For biologists who depend on other packages and computer languages, it may be 

more pertinent to focus on the non-chunked results for the forward method. 

Table 2.2 records the computational speed of the complex perturbation, forward, and 

adjoint methods (and their multithreaded and multi-chunked versions, as applicable) for four ODE 

systems models (SIR, CARRGO, ROBER, and MCC). Our comparisons of the first-order methods 

show that the forward and complex perturbation methods perform comparably, while the adjoint 

method performs orders of magnitude slower than the other two. The fastest method is the 

multichunked forward method, with the complex perturbation method a close second for the 

simpler ODE systems such as SIR and CARRGO. For the stiff (ROBER) and large (MCC) models 

however, the complex perturbation method falls further behind the multichunk forward mode 

method. This could be expected from the larger gap between the time versus accuracy curves in 
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the ROBER model as compared with the SIR model and illustrated in Figure 2.6. However, it is 

noteworthy that naive implementations of forward mode differentiation lack the advantage of 

chunking and are consequently slower than the complex perturbation method. 

The adjoint method also has the worst time performance of the second-order methods by 

orders of magnitude. Both the forward and complex perturbation methods performed well in all 

four ODE systems models, with the complex perturbation method performing particularly well in 

models where the number of parameters is not large compared to the number of equations. 

While multi-threading usually decreases computational time for both first-order and 

second-order methods, it does not decrease computational time by as wide of a margin as expected. 

Many of the solver methods for stiff ODEs rely on BLAS operations that are already internally 

optimized by running on multiple threads. Explicitly multi-threading sensitivity methods therefore 

restricts the number of threads available for BLAS operations, adversely affecting their 

performance. In addition to the reduced efficiency of BLAS operations, multi-threading incurs a 

start-up cost for each thread. These start-up costs may overshadow the benefits of multi-threading 

if the amount of computation per thread is not high enough. Multi-threaded methods require more 

allocations than other methods, and thus require more garbage collection. While time spent on 

garbage collection varies, we find that garbage collection can take over twice as much 

computational time in multi-threaded methods than in their single-threaded counterparts. Thus, 

multi-threading can only really start to improve computational efficiency when these additional 

costs are small compared to the cost of each computation. Multi-threading may even be less 

efficient in some cases.  

Table 2.3 compares the computational speeds of the different methods for the stochastic 

SIR and branching process models. As expected for the stochastic SIR model, computational speed 
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varies roughly quadratically with the number 𝑁 of individuals in the system. In the stochastic SIR 

model, the complex perturbation method proves to be twice as fast as the manual differentiation 

of (equation 2.10) and (equation 2.8) because the latter requires a larger number of individual 

computations. For the branching process model however, this trend reverses since manual 

differentiation relies on fast linear algebra rather than iteration and avoids the overhead of complex 

arithmetic. The derivatives of 𝐀 are matrix equations, and in this case forward mode differentiation 

even without chunking performs as well as the complex perturbation method, although it does not 

scale as well to larger systems (𝑁 = 1000). However, in the case of the derivatives of 𝐞, which 

are calculated using recursion, neither implementation of forward mode differentiation can be 

computed as quickly as the complex perturbation method, and this difference increases with the 

size of the system. Other evidence not shown suggests that the complex perturbation method can 

reliably evaluate sensitivities where solutions depend on linear algebra and/or recurrence relations. 

In summary, unless derivatives are quite complicated, manual differentiation is generally more 

computationally efficient than either the complex perturbation method or the forward method. In 

computing second derivatives, we expect the tables will be turned. To their credit, the forward and 

complex perturbation methods do not require formulating derivatives analytically in advance and 

are consequentially easier to implement. 

2.4.4 Prediction Error 

In general, prediction error measures how well the first and second-order sensitivities 

capture the change in behavior of a model. Since we have previously shown that the various 

methods for computing differential sensitivity yield nearly the same results, prediction error is a 

good metric for determining the value of differential sensitivity in a particular model. We measure 

prediction error by the Euclidean norms 
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err/ = ∥ 𝑓(𝐱 + 𝐯) − 𝑓(𝐱) − 𝑑𝑓(𝐱)𝐯 ∥

err# = ∥ 𝑓(𝐱 + 𝐯) − 𝑓(𝐱) − 𝑑𝑓(𝐱)𝐯 −
1
2𝐯

%𝑑#𝑓(𝐱)𝐯 ∥.
 

Other norms, such as the ℓ/ and ℓJ norms, yield similar results. In the ODE models, 𝑓(𝐱) 

denotes a matrix trajectory so the Frobenius norm applies. To capture proportional prediction 

errors, we normalize all vector outputs by their length and all matrix outputs by the square of their 

length. 

Prediction accuracy varies widely between models and even between parameters. As we 

expect however, second-order approximations are more accurate in prediction. Table 2.4 records 

prediction errors for each model. For the ODE systems, we see that stiffness highlights the added 

value of the second-order approximations. In the ROBER and CARRGO models, the second-order 

approximations have an order of magnitude less prediction error than the first-order 

approximations. However, stiffness does not appear to impact how the prediction errors grow over 

time. The ROBER and MCC models do not suffer from increased errors per time point after longer 

prediction intervals. 

In the stochastic SIR model, prediction error does not seem to be compounded at all; in 

fact, the error per value calculated decreases in the case of 9K
9F

. In the case of branching processes 

with many types 𝑁 and large parameter sets, it is inadvisable to compare prediction accuracy across 

system sizes. However, we can conclude from these results that at least the prediction error does 

not compound as 𝑁 increases. Furthermore, prediction accuracy for the branching process models 

appears to vary dramatically depending on the parameter in question. 



 41 

2.5 DISCUSSION 

Our purpose throughout has been to demonstrate the ease and utility of incorporating 

differential sensitivity analysis in dynamical modeling. Because models are always approximate, 

and parameters are measured imprecisely, uncertainty plagues virtually all dynamical models. 

While improving models is incremental and domain specific, sensitivity analysis provides a handle 

on local parameter uncertainty across models. 

Of the methods mentioned in this text, the adjoint method, forward method, and complex 

perturbation methods all require that the functions defining a model be differentiable in the 

underlying parameters. While the complex perturbation method has the additional requirement that 

these functions be complex analytic, it is the only method explored in this manuscript that can be 

extended to discrete stochastic models in addition to ODE systems. For the modeler who prefers a 

one size fits all approach, or who prefers to prioritize ease of implementation, we argue that the 

complex perturbation method should be the method of choice. In addition to its wide range of 

applicability, the complex perturbation method can be easily multi-threaded and requires only 

implementation of the component functions of the model. In contrast to the second-order complex 

perturbation method, forward differentiation slows dramatically in calculating a Hessian directly. 

It becomes competitive if one calculates the gradient of the gradient. The gradient of the gradient 

method is not always available natively and usually must be implemented separately as we have 

done in the current manuscript. Crucially, implementing a specialized forward mode method was 

possible due to the underlying automatic differentiation software’s flexibility and support for 

composition. 

In situations demanding computational speed, our results suggest that choosing a method 

tailored to a model may be pertinent. In the case of stochastic models, manually differentiating and 
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applying the chain rule must be balanced against the complex perturbation method, which requires 

less effort up front but longer processing after the derivatives have been determined. For ODE 

systems models, forward mode is the most computationally efficient when multichunking is 

available. If multichunking is not available, then the complex perturbation method has comparable 

speed to the forward method when run with the same tolerance. In maximizing computational 

efficiency, it is important to note that the use of automatic differentiation tools may require more 

user input for algorithm selection or multi-threading implementation. Choice of software is critical 

as well; not all software packages with automatic forward differentiation support chunking as 

implemented in the ForwardDiff.jl package and that so dramatically improves the computational 

efficiency of this method. 

There are additional challenges to computing model sensitivity that we do not address. For 

example, not all models use functions that are differentiable in their parameters. Additionally, 

models may be differentiable yet extremely stiff, in which case the computational time for each 

sensitivity method discussed here will suffer disproportionally as the number of parameters grows. 

Furthermore, assessing global parameter sensitivity is more challenging. It can be attacked by 

techniques such as Latin square hypercube sampling or Sobel quasi-random sampling, but these 

become infeasible in high dimensions2.34. Given the availability of appropriate software, 

differential sensitivity is computationally feasible, even for high-dimensional systems. 

In the case of stochastic models, traditional methods require costly and inaccurate 

simulation over a bundle of parameter values. Differential sensitivity is often out of the question. 

Current automatic differentiation systems, such as PyTorch, Zygote and ForwardDiff, treat 

generated random numbers as constants, and thus are not reliable methods for use in calculating 

differential sensitivity of model outcomes that depend on these random variables. This limits the 
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ability of researchers to understand a biological system and how it responds to parameter changes. 

If a system index such as a mean, variance, extinction probability, or extinction time can be 

computed by a reasonable algorithm, then differential parameter sensitivity analysis can be 

undertaken. We have indicated in a handful of examples how this can be accomplished. 

In summary, across many models representative of computational biology, we have reached the 

following conclusions: 

a) Forward mode, adjoint, and complex perturbation sensitivity methods all converge to the 

same differential sensitivity values in non-stiff models, thus offering the same level of 

accuracy for all methods. For stiff models, forward mode and complex perturbation methods 

converge but adjoint sensitivity struggles and does not achieve convergence for realistic 

tolerance parameters. 

b) Chunked forward mode automatic differentiation and forward mode sensitivity analysis tend 

to be the most computationally efficient on the tested models. 

c) The complex perturbation methods described in this manuscript are competitive and often 

outperform the unchunked version of forward mode automatic differentiation, while being 

less sensitive to stiffness than the adjoint methods. 

d) Shared memory multi-threading of the complex perturbation and forward mode automatic 

differentiation methods provides a performance gain but only in high-dimensional systems. 

e) Forward mode automatic differentiation method requires that each step of a calculation is 

differentiable. This renders it unusable for calculating the derivative of ensemble means of 
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discrete state models, such as birth-death processes. For these cases, the complex 

perturbation method outperforms manual differentiation. 

f) The complex perturbation method is competitive with automatic differentiation methods in 

accuracy, is more straightforward to implement, and can be applied to a wider variety of 

methods. 

These conclusions are tentative but supported by our limited number of biological case studies. 

We note that the performance differences may change depending on the efficiency of the 

implementations. The Julia DifferentialEquations.jl library and its DiffEqSensitivity.jl package 

have been shown to be highly efficient, outperforming other libraries in both equation solving and 

derivative calculations in Python, MATLAB, C, and Fortran2.19,2.33. 

The automatic differentiation implementations in machine learning libraries optimize array 

operations much more than scalar operations. This can work to the detriment of forward mode AD. 

MATLAB or Python style vectorization improves the performance of forward mode AD 

sensitivity analysis by reducing interpreter overhead. Therefore, our conclusions serve as 

guidelines for the case where all implementations are well-optimized. For programming languages 

with high overheads or without compile-time optimization of the automatic differentiation passes, 

the balance in efficiency shifts more favorably towards the complex perturbation method. 

One last point worth making is on the coding effort required by the various methods. Both 

automatic differentiation and the complex perturbation method have comparable accuracy when 

applied to systems of ODEs, with automatic differentiation having the advantage in speed when it 

is implemented with the additional level of parallelization provided by chunking. However, the 

complex perturbation method can easily be generalized to other kinds of objective functions and 
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may be more straightforward to implement for those less sophisticated in computer science. While 

automatic differentiation is the basis of many large scientific packages, the code required for the 

complex perturbation methods is fully contained within this manuscript and is easily transferable 

to other programming languages with similar dispatching on complex numbers. This hard to 

measure benefit should not be ignored by practicing biologists who simply wish to quickly arrive 

at reasonably fast code. 

2.6 TABLES 

Table 2.1: SIR model outcomes 

 Calculated Mean Simulated Mean Simulated Standard Error 

Time to Extinction 2.792 × 10 days 3.074 × 10 days 4.153 days 

Number Infected 5.484 × 10( people 5.838 × 10( people 8.551 × 10) people 

Comparison between the calculated and simulated means of SIR model outcomes in the stochastic 

SIR model simulated under the initial conditions S+ = 3.4 × 102, I+ = 1 and parameter values η =

0.7194, δ = .5025. Results for the simulated means were obtained using the BioSimulator 

package in Julia and averaging results over r = 100 runs. 

Table 2.2: ODE model computational time (𝛍s) 

SIR model 

First-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 2.252 × 10) 1.688 × 10( 1.377 × 10* 

Complex Perturbation Multithread 1.913 × 10) 1.401 × 10( 1.062 × 10* 

Forward 3.272 × 10) 2.036 × 10( 1.460 × 10* 
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Forward Multithread 2.218 × 10) 1.480 × 10( 1.117 × 10* 

Forward Multichunk 1.567 × 10) 9.564 × 10) 7.247 × 10( 

Forward Multichunk Multithread 1.499 × 10) 9.526 × 10) 7.236 × 10( 

Adjoint 8.901 × 10* 7.707 × 10+ 6.950 × 10, 

    

Second-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 7.885 × 10) 5.712 × 10( 5.806 × 10* 

Complex Perturbation Multithread 6.732 × 10) 4.528 × 10( 3.724 × 10* 

Forward 9.325 × 10) 5.280 × 10( 4.530 × 10* 

Forward Multithread 7.546 × 10) 3.504 × 10( 2.640 × 10* 

Forward Multichunk 1.742 × 10) 7.601 × 10) 4.541 × 10( 

Forward Multichunk Multithread 1.714 × 10) 7.270 × 10) 4.631 × 10( 

Adjoint 2.976 × 10* 6.240 × 10- 1.626 × 10. 

CARRGO model 

First-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 3.977 × 10) 2.195 × 10( 2.332 × 10* 

Complex Perturbation Multithread 3.661 × 10) 2.480 × 10( 2.330 × 10* 

Forward 5.404 × 10) 2.597 × 10( 2.505 × 10* 

Forward Multithread 4.527 × 10) 2.601 × 10( 2.336 × 10* 

Forward Multichunk 3.759 × 10) 1.661 × 10( 1.417 × 10* 

Forward Multichunk Multithread 2.699 × 10) 1.352 × 10( 1.215 × 10* 

Adjoint 6.118 × 10* 5.097 × 10+ 7.825 × 10, 
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Second-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 2.039 × 10( 1.245 × 10* 1.469 × 10- 

Complex Perturbation Multithread 2.123 × 10( 1.206 × 10* 1.573 × 10- 

Forward 2.749 × 10( 1.239 × 10* 1.376 × 10- 

Forward Multithread 1.737 × 10( 1.011 × 10* 1.735 × 10- 

Forward Multichunk 1.097 × 10( 4.475 × 10( 5.382 × 10* 

Forward Multichunk Multithread 7.135 × 10) 3.181 × 10( 3.967 × 10* 

Adjoint 2.048 × 10* 2.795 × 10- 7.536 × 10+ 

ROBER model 

First-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 2.475 × 10( 4.111 × 10( 4.117 × 10( 

Complex Perturbation Multithread 1.549 × 10( 2.600 × 10( 5.016 × 10( 

Forward 3.029 × 10( 4.544 × 10( 8.271 × 10( 

Forward Multithread 1.726 × 10( 2.905 × 10( 4.766 × 10( 

Forward Multichunk 1.471 × 10( 2.422 × 10( 4.113 × 10( 

Forward Multichunk Multithread 1.343 × 10( 2.442 × 10( 3.902 × 10( 

Adjoint 1.456 × 10, 2.656 × 10/ 2.069 × 1001 

    

Second-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 7.985 × 10( 1.250 × 10* 2.306 × 10* 

Complex Perturbation Multithread 5.157 × 10( 8.868 × 10( 1.763 × 10* 

Forward 7.422 × 10( 1.101 × 10* 2.291 × 10* 

Forward Multithread 4.062 × 10( 6.131 × 10( 1.403 × 10* 



 48 

Forward Multichunk 1.420 × 10( 2.157 × 10( 3.655 × 10( 

Forward Multichunk Multithread 1.439 × 10( 2.159 × 10( 3.552 × 10( 

Adjoint 3.669 × 10. 7.388 × 10, – 

Mammalian cell cycle model 

First-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 2.952 × 10( 2.588 × 10* 8.50 × 10* 

Complex Perturbation Multithread 1.806 × 10( 1.521 × 10* 4.612 × 10* 

Forward 2.758 × 10( 1.527 × 10* 7.741 × 10* 

Forward Multithread 2.147 × 10( 1.524 × 10* 4.646 × 10* 

Forward Multichunk 1.071 × 10( 6.806 × 10* 1.709 × 10* 

Forward Multichunk Multithread 8.038 × 10) 5.494 × 10( 1.325 × 10* 

Adjoint 3.601 × 10- 3.029 × 10. 3.332 × 10/ 

    

Second-order Methods tend = 10 tend = 100 tend = 1000 

Complex Perturbation 3.336 × 10* 4.457 × 10- 1.262 × 10+ 

Complex Perturbation Multithread 3.969 × 10* 2.969 × 10* 1.198 × 10+ 

Forward 6.331 × 10* 5.213 × 10- 1.383 × 10+ 

Forward Multithread 3.465 × 10* 3.445 × 10- 1.116 × 10+ 

Forward Multichunk 2.257 × 10* 1.392 × 10- 2.886 × 10- 

Forward Multichunk Multithread 1.544 × 10* 8.824 × 10* 2.007 × 10- 

Adjoint 6.589 × 10- 2.041 × 10. 7.388 × 10, 

Parameters for the ODE models match those previously introduced in this manuscript. Multithread 

refers to parallelism across parameters. Multichunk refers to parallelism across compartments. We 
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invoke the Julia solvers AutoVern9(Rodas5(autodiff=false)) with a tolerance of 1 × 10.I for the 

nonstiff (SIR, CARRGO, and MCC) models and Rodas4(autodiff=false) with a tolerance of 

1 × 10.L for the stiff (ROBER) model. These tolerances reflect the convergence tolerances. 

Continuation of computational time (µs) in ODE models. Second-order adjoint method not 

included for the ROBER model at t=1000 due to time constraints. For the second-order adjoint 

method, the ForwardDiffOverAdjoint(QuadratureAdjoint(autodiff=false) solver option was used.  

Table 2.3: Stochastic model computation time (𝛍s) 

SIR model 

∂𝑀/ ∂𝛿 𝑁 = 10 𝑁 = 100 𝑁 = 1000 

Complex Perturbation 1.90 × 100 1.634 × 10( 1.975 × 10- 

Manual Differentiation 3.80 × 100 3.879 × 10( 4.925 × 10- 

    

∂𝑇/ ∂𝛿 𝑁 = 10 𝑁 = 100 𝑁 = 1000 

Complex Perturbation 1.86 × 100 1.620 × 10( 2.006 × 10- 

Manual Differentiation 3.45 × 100 4.213 × 10( 4.875 × 10- 

Branching process model 

∂𝐴/ ∂𝛿0 𝑁 = 10 𝑁 = 100 𝑁 = 1000 

Complex Perturbation 2.43 × 10( 2.33 × 10- 1.36 × 10, 

Manual Differentiation 1.08 × 100 3.75 × 10* 4.97 × 10- 

Forward 1.79 × 10) 2.96 × 10- – 

Forward Multichunk 2.85 × 100 1.32 × 10- 1.39 × 10/ 
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∂𝑒/ ∂𝛿0 𝑁 = 10 𝑁 = 100 𝑁 = 1000 

Complex Perturbation 1.04 × 10( 3.44 × 10* 4.25 × 10+ 

Manual Differentiation 4.26 × 10) 4.90 × 10* 3.19 × 10+ 

Forward 1.03 × 10* 1.33 × 10+ – 

Forward Multichunk 1.23 × 10( 1.12 × 10+ 2.27 × 10/ 

Model parameters for stochastic SIR match those previously described in this manuscript. 

Parameters for the branching process model are generated randomly on the range β ∈ [0.05,0.16], 

δ ∈ [0.05,0.19], and λ ∈ [0.0003,0.00046]. Manual differentiation relies on differentiating 

equations (eq.7) and (eq. 6) for the stochastic SIR model and equations (eq. 11) and (eq. 9) for the 

branching process model. 

Table 2.4: Prediction error results for ODE and stochastic models. 

ODE models 

 tend = 10 tend = 100 tend = 1000 

SIR First Order 3.370 × 100 2.444 × 10+ 2.524 × 10- 

SIR Second Order 8.208 × 101 2.299 × 10+ 2.303 × 10- 

CARRGO First Order 6.195 × 1020 2.801 × 10( 1.465 × 10- 

CARRGO Second Order 1.116 × 102) 4.956 × 10) 4.217 × 10* 

ROBER First Order 3.205 × 102- 3.588 × 102- 1.837 × 102- 

ROBER Second Order 1.753 × 102+ 2.201 × 102+ 1.039 × 102+ 

MCC First Order 3.467 × 102* 7.556 × 102- 1.542 × 102* 

MCC Second Order 1.268 × 102* 1.922 × 102- 3.918 × 102- 
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Stochastic SIR model 

 𝑁 = 10 𝑁 = 100 𝑁 = 1000 

Total Number Infected (𝑀) from 𝜂 2.322 × 102( 2.009 × 102) 1.241 × 100 

Total Number Infected (𝑀) from 𝛿 4.456 × 102( 2.586 × 102) 3.670 × 102) 

Time to Extinction (𝑇) from 𝜂 1.601 × 102( 6.715 × 102( 4.046 × 102( 

Time to Extinction (𝑇) from 𝛿 2.074 × 1020 1.599 × 1020 4.811 × 102) 

Branching process model 

 𝑁 = 10 𝑁 = 100 𝑁 = 1000 

Total Number Infected (𝐴) from 𝛽0 3.025 × 102) 7.020 × 102+ 7.234 × 102/ 

Total Number Infected (𝐴) from 𝛿0 5.036 × 102) 8.734 × 102- 1.348 × 102. 

Total Number Infected (𝐴) from 𝜆0,0 2.402 × 102* 4.229 × 102+ 4.152 × 102, 

Extinction Probability (𝑒) from 𝛽0 1.119 × 102* 3.476 × 102. 7.257 × 10201 

Extinction Probability (𝑒) from 𝛿0 7.682 × 102* 3.776 × 102+ 9.424 × 102/ 

Extinction Probability (𝑒) from 𝜆0,0 5.123 × 102- 3.044 × 102+ 5.800 × 102, 

Stochastic derivatives are calculated with the complex perturbation method and ODE derivatives 

are calculated with the forward difference method. All predictions are for a 10% change in 

parameter. Parameters for the ODE and stochastic SIR models match those previously introduced 

in this manuscript. Parameters for the branching process model are generated randomly on the 

range β in [0.05,0.16], λ in [0.0003,0.00046], and δ = β + .03 for calculation of a sub-critical 

system (A) and δ = β − .03 for calculation of a super-critical system (e). 
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Table 2.S1: Parameters in the MCC model 

Compartment Initial Value (𝜇 mol) Parameter Value 

pRBc1 0.1 kpc1 0.05 

pRBc2 0.05 kpc3 0.025 

Cd 0.01 kcd1 0.4 

Mdi 0.01 Ki8 2.0 

Md 0.01 Ki7 0.1 

pRB 0.0 kcd2 0.005 

E2F 0.0 kdecom1 0.1 

pRBp 0.0 k2d 0.1 

AP1 0.0 Cdk4tot 1.5 

p27 0.0 kcom1 0.175 

Mdp27 0.0 Vm2d 0.2 

– – k1d 0.1 

– – Vm1d 1.0 

– – kc1 0.15 

Table 2.S2: Parameters in the ROBER model 

Compartment Initial Value Parameter Value 

𝑥0 1.0 𝑝0 4 × 102) 

𝑥) 0.0 𝑝0 3 × 10. 

𝑥( 0.0 𝑝0 1 × 10* 
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2.7 FIGURES 

 

Figure 2.1: Sensitivity of cancer and immune cells in the CARRGO model. A heatmap 

representing the number of cancer cells, or 𝑥(𝑡) (left) and the number of immune cells, or 𝑦(𝑡) 

(right) as the parameters 𝜅/ (horizontal axis) and 𝜅# (vertical axis) are varied. Results displayed 

summarize simulations of the CARRGO model with parameter values and initial conditions 

indicated in this section at time 𝑡 = 1000 days. 
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Figure 2.2: Sensitivity of cancer cells in the CARRGO model. Time series plots of cancer cells 

(𝑥(𝑡)) and the derivatives of 𝑥(𝑡) with respect to the CARRGO parameters 𝜅/, 𝜅#, 𝜃, 𝜌, 𝛾. Results 

shown are for the initial conditions and parameter values defined in Figure 1 and simulated over 

the course of 𝑡 = 1000 days. The complex perturbation method of sensitivity analysis is used to 

compute derivatives. 
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Figure 2.3: Sensitivities of susceptibles in the Covid model. Time series of the susceptible 

population (𝑆(𝑡)) and its sensitivities to the two parameters (𝜂 and 𝛿) of the classic SIR model. 

Results shown are for the SIR model simulated for one year with initial conditions 𝑆+ = 3.4 × 10H, 

𝐼+ = 100, 𝑅+ = 0, and the parameter values 𝜂 = 0.7194, 𝛿 = 0.5025. Derivatives are calculated 

using the complex perturbation method. 
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Figure 2.4: Model trajectories for SIR model calculated using first and second differentials. 

Time series plot of the SIR model simulated over 𝑡 = 100 days with initial conditions 𝑆+ = 1000 

and 𝐼+ = 10. Results depend on the SIR model with the original parameters from Figure 3 (original 

trajectory), re-simulating the SIR trajectory after perturbing the parameters by a random amount 

around 25% (trajectory with perturbed parameters), approximating the trajectory based on the 

linear expansion (eq. 5) and the first derivative calculated with the complex perturbation method 

(first-order prediction), and approximating the trajectory based on the quadratic expansion (eq. 4) 

and the first and second derivatives calculated with the complex perturbation method (second-

order prediction). 
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Figure 2.5: Sensitivity of stochastic SIR model. Heatmaps showing the mean number of infected 

individuals (𝑀) at extinction, the mean time to extinction (𝑇), and their sensitivities to the 

parameters 𝜂 and 𝛿 for the stochastic SIR process. Sensitivities rely on the complex perturbation 

method to calculate derivatives and assume initial conditions 𝑆+ = 100 and 𝐼+ = 1. 
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Figure 2.6: Convergence of adjoint, forward, and complex perturbation methods for 

numerical sensitivities. Convergence plot of the SIR model (top) and ROBER model (bottom) 

simulated over 𝑡 = 1000 days. For SIR the initial conditions are 𝑆+ = 3.4 × 10H, and 𝐼+ = 100, 

and the parameters are 𝜂 = 0.7194 and 𝛿 = 0.5025. For ROBER the initial conditions are 𝑥/ =

1.0, 𝑥# = 0.0, and 𝑥5 = 0.0, and the parameters are 𝑝/ = 4 × 10.#, 𝑝# = 3 × 10L, and 𝑝5 =

1 × 102. First-order sensitivities are computed via code from this manuscript (complex 

perturbation method), the ForwardDiff.jl package (forward method), and the 

Rodas4(autodiff=false) solver under the QuadratureAdjoint(autojacvec=EnzymeVJP()) sensealg 

protocol in the DiffEqSensitivities.jl package (adjoint method). The adjoint method requires a step 

size of 1.0 for the SIR model and a step size of 0.1 in the ROBER model to converge. All results 

are normalized by the number of time steps included in the simulation. 
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Figure 2.7: Time vs Error of Forward and Complex Perturbation Methods for Numerical 

Sensitivities. Time versus error log-log plot of the SIR model (top) and ROBER model (bottom) 

simulated over 𝑡 = 1000 days. For SIR the initial conditions are 𝑆+ = 3.4 × 10H, and 𝐼+ = 100, 

and the parameters are 𝜂 = 0.7194 and 𝛿 = 0.5025. For ROBER the initial conditions are 𝑥/ =

1.0, 𝑥# = 0.0, and 𝑥5 = 0.0, and the parameters are 𝑝/ = 4 × 10.#, 𝑝# = 3 × 10L, and 𝑝5 =

1 × 102. First-order sensitivities are computed via code from this manuscript (complex 

perturbation method) and the ForwardDiff.jl package (forward method). Times reported are the 

median times computed using the Benchmark.jl package, and errors are the Euclidean distance 

between the solution at the strictest tolerance (10.H for SIR and 10.I for ROBER) and the solution 

at a variety of tolerances with a maximum of 10.#. All errors are normalized by the number of 

time steps. 
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2.8 SUPPLEMENT 

2.8.1 Derivation of second derivative complex perturbation method 

To prove the formulas for approximating partial derivatives stated in the text, we first note 

that any analytic function 𝑓(𝐳) of several variables can be expanded in a locally convergent power 

series about every point 𝐳 of its open domain of definition. If we choose a real direction vector 𝐯, 

then the function 𝑔(𝑤) = 𝑓(𝐳 + 𝑤𝐯) is locally analytic in the complex plane {𝐳 + 𝑤𝐯:𝑤 ∈ ℂ} and 

can be expanded in a power series around 𝑤 = 0. Thus, 

Equation 2.A1:  

𝑔(𝑤) = p
𝑑&

𝑑𝑤&

$

&>+

𝑔(𝟎)
𝑤&

𝑗!
+ 𝑂(|𝑤|$=/) 

for any integer 𝑑 ≥ 0. Now consider the setting where 𝐳 has real components. If 𝑓(𝐳) is real 

valued, then the derivatives $$

$M$ 𝑔(𝟎) will be real as well. One can exploit this fact in 

approximating the derivatives. For example, if 𝑤 = 𝑖, then 𝑤& rotates among the four values 1, 𝑖, 

−1, and −𝑖. Because the terms of the expansion (equation 2.A1) alternate between real and 

imaginary values, the first partial derivative formula 

𝑔′(𝛽) =
Imag 𝑔(𝛽 + 𝛥𝑖)

𝛥 + 𝑂(𝛥#) 

holds. For the choice 𝑤 = 𝑒0"/2, the powers 𝑤$ rotate among the eight values 1, 𝑒0"/2, 𝑖, 𝑖𝑒0"/2, 

−1, −𝑒0"/2, −𝑖, and −𝑖𝑒0"/2. The powers (−𝑤)& = (−1)&𝑤& agree in this regard except for sign. 

Hence, the terms in the expansion of the sum 

𝑔X𝐱 + 𝑒0"/2𝛥Y𝐞& + 𝐞3\] + 𝑔X𝐱 − 𝑒0"/2𝛥Y𝐞& + 𝐞3\] 
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alternately cancel and reinforce. Thus, the first five terms of the expansion are real, 0, imaginary, 

0, real, 0. It follows that the imaginary part of the sum is accurate to order 𝑂(𝛥6) and that the 

approximations 

∂#

∂𝛽&#
𝑔(𝛃) =

Imag X𝑔Y𝛃 + 𝑒0"/2𝛥𝐞&\ + 𝑔Y𝛃 − 𝑒0"/2𝛥𝐞&\]
𝛥#

+ 𝑂(𝛥2) 

and 

	 	
Imag {𝑔X𝐱 + 𝑒0"/2𝛥Y𝐞& + 𝐞3\] + 𝑔X𝐱 − 𝑒0"/2𝛥Y𝐞& + 𝐞3\]}

𝛥#

	 = XY𝐞& + 𝐞3\]
4
𝑑#𝑔(𝐱)XY𝐞& + 𝐞3\] + 𝑂(𝛥2)

	 =
∂#

∂𝛽&#
𝑔(𝛃) +

∂#

∂𝛽3#
𝑔(𝛃) + 2

∂#

∂𝛽& ∂𝛽3
𝑔(𝛃) + 𝑂(𝛥2)

 

are accurate to order 𝑂(𝛥2). 

2.8.2 Additional models 

The Mammalian Cell Cycle Model 

The Mammalian Cell Cycle Model is a model originally described in2.31 and simplified in 

the BioModels2.35 database. This system describes the interaction of cyclin-dependent kinases 

(Cdk) with Cdk inhibitors, growth factors, and other proteins that regulate the development of 

mammalian cells. The model includes characteristics such as cell cycling, tumor repressor initiated 

progression control, and cell cycle completion. The ODE system representing the model is 
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𝑑𝑝𝑅𝐵𝑐1
𝑑𝑡

= 𝑘𝑝𝑐1 ∗ 𝑝𝑅𝐵 ∗ 𝐸2𝐹

𝑑𝑝𝑅𝐵𝑐2
𝑑𝑡 = 𝑘𝑝𝑐3 ∗ 𝑝𝑅𝐵𝑝 ∗ 𝐸2𝐹

𝑑𝐶𝑑
𝑑𝑡 = 𝑘𝑐𝑑1 ∗ 𝐴𝑃1 + 𝑘𝑑𝑒𝑐𝑜𝑚1 ∗ 𝑀𝑑𝑖

	 −𝑘𝑐𝑜𝑚1 ∗ 𝐶𝑑 ∗ Y𝐶𝑑𝑘4%N% − (𝑀𝑑𝑖 + 𝑀𝑑 +𝑀𝑑𝑝27)\

	 +𝑘𝑐𝑑2 ∗ 𝐸2𝐹 ∗
𝐾𝑖7

𝐾𝑖7 + 𝑝𝑅𝐵
∗

𝐾𝑖8
𝐾𝑖8 + 𝑝𝑅𝐵𝑝

𝑑𝑀𝑑𝑖
𝑑𝑡 = 𝑉𝑚2𝑑 ∗

𝑀𝑑
𝑘2𝑑 +𝑀𝑑 + 2 ∗ 𝑘𝑐𝑜𝑚1 ∗ 𝐶𝑑 ∗

Y𝐶𝑑𝑘4%N% − (𝑀𝑑𝑖 + 𝑀𝑑 +𝑀𝑑𝑝27)\

𝑑𝑀𝑑
𝑑𝑡

= 𝑉𝑚1𝑑 ∗
𝑀𝑑𝑖

𝑘1𝑑 +𝑀𝑑𝑖
+ 𝑘𝑐𝑜𝑚1 ∗ 𝐶𝑑 ∗ Y𝐶𝑑𝑘4%N% − (𝑀𝑑𝑖 + 𝑀𝑑 +𝑀𝑑𝑝27)\

𝑑𝑝𝑅𝐵
𝑑𝑡 = 𝑘𝑐𝑑2 ∗ 𝐸2𝐹 ∗

𝐾𝑖7
𝐾𝑖7 + 𝑝𝑅𝐵 ∗

𝐾𝑖8
𝐾𝑖8 + 𝑝𝑅𝐵𝑝

𝑑𝐸2𝐹
𝑑𝑡 = 𝑘𝑐𝑑2 ∗ 𝐸2𝐹 ∗

𝐾𝑖7
𝐾𝑖7 + 𝑝𝑅𝐵 ∗

𝐾𝑖8
𝐾𝑖8 + 𝑝𝑅𝐵𝑝

𝑑𝑝𝑅𝐵𝑝
𝑑𝑡

= 𝑘𝑐𝑑2 ∗ 𝐸2𝐹 ∗
𝐾𝑖7

𝐾𝑖7 + 𝑝𝑅𝐵
∗

𝐾𝑖8
𝐾𝑖8 + 𝑝𝑅𝐵𝑝

𝑑𝐴𝑃1
𝑑𝑡 = 𝑘𝑐𝑑1 ∗ 𝐴𝑃1

𝑑𝑝27
𝑑𝑡

= 0

𝑑𝑀𝑑𝑝27
𝑑𝑡 = 𝑘𝑐1 ∗ 𝑀𝑑 ∗ 𝑝27 + 𝑘𝑐𝑜𝑚1 ∗ 𝑐𝑑 ∗ Y𝐶𝑑𝑘4%N% − (𝑀𝑑𝑖 + 𝑀𝑑 +𝑀𝑑𝑝27)\

 

The initial values of each compartment and parameter are defined in Table 2.S1.  

The ROBER Model 

The ROBER Model refers to the auto-catalytic chemical reaction of Robertson as described 

in2.30. This model is often used as an example of a classic stiff ODE system encountered in biology. 

The ODE system this model represents is 
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𝑑𝑥/
𝑑𝑡 = −𝑝/𝑥/ + 𝑝5𝑥#𝑥5
𝑑𝑥#
𝑑𝑡

= 𝑝/𝑥/ − 𝑝#𝑥## − 𝑝5𝑥#𝑥5
𝑑𝑥5
𝑑𝑡 = 𝑝#𝑥##

 

The initial values of each compartment and parameter are defined in Table 2.S2. 

2.8.3 Sensitivity of linear systems 

The simplest dynamical models are governed by the linear constant coefficient differential 

equation $
$%
𝐱(𝑡) = 𝐀(𝛃)𝐱(𝑡) with solution 𝐱(𝑡) = 𝑒%𝐀(𝛃)𝐱+, where 𝐀(𝛃) is any function 

differentiable in its parameters 𝛃 and constant in 𝑡 . The directional derivative of the matrix 

exponential 𝑒𝐁 in the direction 𝐕 can be represented by the integral 

𝑑𝐕𝑒𝐁 = E 𝑒T𝐁
/

+
𝐕𝑒(/.T)𝐁𝑑𝑠	. 

A simple proof of this fact appears in Example 3.2.2 of reference36. Setting 𝐁 = 𝑡𝐀(𝛃) and 

applying the chain rule leads to the partial derivative 

∂
∂𝛽&

𝑒%𝐀(𝛃)𝐱(0) = E 𝑒T%𝐀(𝛃)
/

+
𝑡
∂
∂𝛽&

𝐀(𝛃)𝑒(/.T)%𝐀(𝛃)𝑑𝑠 𝐱(0)

	 = E 𝑒T𝐀(𝛃)
%

+

∂
∂𝛽&

𝐀(𝛃)𝑒(%.T)𝐀(𝛃)𝑑𝑠 𝐱(0),
 

which can be laboriously evaluated by numerical integration. Simplification into a sum of 

exponentials is possible if 𝐀(𝛃) is uniformly diagonalizable across all 𝛃26. 

In practice, it is simpler to differentiate the original ODE with respect to 𝛽&, interchange 

the order of differentiation, and numerically integrate the system 
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𝑑
𝑑𝑡

∂
∂𝛽&

𝐱(𝑡, 𝛃) =
∂
∂𝛽&

𝐀(𝛃)𝐱(𝑡, 𝛃) + 𝐀(𝛃)
∂
∂𝛽&

𝐱(𝑡, 𝛃) 

from 0 to some final value of 𝑡. The initial condition 𝐱(0, 𝛃) = 𝐱(0) remains intact, and the new 

condition ∇𝛃𝐱(0, 𝛃) = 0 is added. 
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3  IMPACTS OF CROSS-ANCESTRY GENETIC ARCHITECTURE ON GWASS IN 
ADMIXED POPULATIONS 

3.1 INTRODUCTION TO GWAS IN ADMIXED POPULATIONS 

The success of genomics in disease studies depends on our ability to incorporate diverse 

populations into large-scale genome-wide association studies (GWASs).3.1–3.4 Cohort and biobank 

studies are growing to reflect this diversity,3.5–3.7 and a variety of techniques exist which 

incorporate populations of different continental ancestries into GWASs.3.8 However, while 

admixture has been an important factor in other steps in the disease mapping process, such as fine-

mapping3.9 and estimating heritability,3.10,3.11 individuals of mixed ancestries (admixed 

individuals) have largely been left out of traditional association studies. GWASs performed in 

admixed populations have greater power for discovery compared to similar sized GWASs in 

homogeneous populations.3.12,3.13 Thus, excluding admixed individuals from association studies 

will not only increase health disparities, but will also disadvantage other populations. To prevent 

this exclusion, approaches to association studies have been developed specifically for admixed 

populations.3.14–3.17 However, the impact of HetLanc (differences in estimated allelic effect sizes 

for risk variants between ancestry backgrounds) on GWAS methods remains under-explored. Of 

particular interest are recently admixed populations, defined as fewer than 20 generations of 

mixture between two ancestrally distinct populations. In such populations, the admixture process 

creates mosaic genomes comprised of chromosomal segments originating from each of the 

ancestral populations (i.e., local ancestry segments). Local ancestry segments are much larger than 

linkage disequilibrium (LD) blocks3.18; thus, LD patterns within each local ancestry block of an 

admixed genome reflect LD patterns of the ancestral population. Similarly, allele frequency 

estimates from segments of a particular local ancestry are expected to reflect allele frequencies of 

the ancestral population. Variation in local ancestry across the genome leads to variability in global 
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ancestry (the average of all local ancestries within a given individual). Such variability in local 

and global ancestries could pose a problem to GWASs in admixed populations as genetic 

ancestries are often correlated with socio-economic factors that also impact disease risk, thus 

yielding false positives in studies that do not properly correct for genetic ancestries. Because local 

and global ancestry are only weakly correlated,3.19 complete control of confounding due to 

admixture requires conditioning on both local and global ancestry.3.20 However, the success of 

admixture mapping indicates that the possibility of losing power due to over-correction for local 

ancestry differences is serious.3.21,3.22 

GWASs in admixed populations are typically performed either using a statistical test that 

ignores local ancestry altogether (referred to in this work as ‘‘standard GWASs’’ and defined in 

Table 3.1) or using a test that explicitly allows for HetLanc (e.g., Tractor). The former provides 

superior power in the absence of HetLanc with the latter having great potential for discovery in its 

presence. However, these methods’ relative statistical power for discovery depends on the cross-

ancestry genetic architecture of the trait, i.e., which variants are causal and what are those variants’ 

ancestry-specific frequencies, causal effects, and linkage disequilibrium patterns. For example, 

existing studies have found that standard GWASs can yield a 25% increase in power over 

Tractor3.13 in the absence of HetLanc while Tractor has higher power when causal effects are 

different by more than 60%.3.15 However, the full impact of cross-ancestry genetic architecture on 

GWAS power in admixed populations remains underexplored. 

In this work, we use simulations to perform a comprehensive evaluation quantifying the 

impact of these factors on the power of GWAS approaches in admixed populations. We provide 

guidelines for when to use each test as a function of cross-ancestry genetic architecture. Elements 

of cross-ancestry genetic architecture such as allele frequencies, global ancestry ratios, and LD are 
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known or can be calculated in advance of a GWAS to determine which of our simulation results 

apply in each case. Using extensive simulations, we find that standard GWASs should be preferred 

when HetLanc is small or non-existent. We quantify the extent of HetLanc and the ancestry-

specific allele frequency differences required for Tractor to overcome the extra degree of freedom 

penalty. We further validate our results using the African-European admixed population in the UK 

Biobank (UKBB). By examining the HetLanc of significant SNPs in the UKBB, we can 

understand how often it rises to a level that impacts the power of traditional GWASs. 

3.2 SUBJECTS AND METHODS 

3.2.1 Simulated genotypes  

We simulate genotypes using the following procedure, which produces a set of genotypes 

made up of independent SNPs from admixed genotypes with two ancestries.  

1) Draw the individual global ancestry proportion of ancestry 2, 𝛼~𝑁(𝜃, 𝜎#) for 10,000 

individuals where q is the expected global ancestry proportion of ancestry 2, and 𝜎# is the 

variance of global ancestry in the population (we use 𝜎# = 0.125 to reflect the variance of 

global ancestry found in the UK Biobank admixed population). 𝛼 is coerced between [0,1].  

2) For each individual, draw a local ancestry count 𝑙~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛼, 2), where l represents the 

local ancestry count of ancestry 2.  

3) For each local ancestry, draw a genotype 𝑔"~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑙, 𝑓"), where fi represents the allele 

frequency at local ancestry i. Allele frequencies fi were specified for each simulation 

scenario according to the figure legends. 
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3.2.2 Simulated quantitative phenotypes with a single causal SNP  

We simulate quantitative phenotypes with a single causal SNP (used in Figures 3.2C, 3.2D, 

3.3A, and 3.S1–3.S8) using the following procedure.  

1) Standardize genotypes so that they have a mean 0 and variance 1.  

2) Given some effect sizes 𝛽/, 𝛽#, calculate 𝑉𝑎𝑟U = 𝑉𝑎𝑟(𝛽/𝑔/ + 𝛽#𝑔#), where the variance 

is taken over all individuals, and Varg represents the genetic variance component of the 

phenotypes.  

3) Given some heritability h2, calculate 𝑉𝑎𝑟V = 𝑉𝑎𝑟U
/.W#

W#
, where Vare is the environmental 

variance component of the phenotypes. This comes from the equation ℎ# = XY@4
XY@4=XY@5

. 

4)  For each individual, draw 𝜖~𝑁(0, 𝑉𝑎𝑟V) where 𝜖 is the random noise to add to the 

phenotype to represent environmental variables.  

5) Repeat for 1,000 replicates. 

3.2.3 Simulated quantitative phenotypes with multiple causal SNPs  

We simulate quantitative phenotypes with multiple causal SNPs using real genotypes (used 

in Figures 3.4, 3.S9, and 3.S10) with the following procedure.  

1) Use chromosome 1 of the UK Biobank admixed African-European genotypes.  

2) Given some polygenicity p (p = 100 used in Figures 3.4 and S9, p = 1, 10, 100 used in 

Figure 3.S10), randomly choose p SNPs to be causal.  
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3) Given some genetic correlation, draw effect sizes 𝛽/, 𝛽#, for causal SNPs chosen in step 2. 

Genetic correlations equal to 1.0, 0.5, and 1.0 used in Figures 3.4 and 3.S9, genetic 

correlation equal to 1.0 for Figure 3.S10. For more on genetic correlation, see Hou et al.3.23 

4) Calculate 𝑉𝑎𝑟U = 𝑉𝑎𝑟(𝛽/𝑔/ + 𝛽#𝑔#), where the variance is taken over all individuals, and 

Varg represents the genetic variance component of the phenotypes.  

5) Given some heritability h2, calculate 𝑉𝑎𝑟V = 𝑉𝑎𝑟U
/.W#

W#
, where Vare is the environmental 

variance component of the phenotypes. This comes from the equation ℎ# = XY@4
XY@4=XY@5

. 

h2=0.5 used in Figures 3.4, 3.S9, and 3.S10.  

6) For each individual, draw 𝜖~𝑁(0, 𝑉𝑎𝑟V) where 𝜖 is the random noise to add to the 

phenotype to represent environmental variables.  

7) Repeat for 100 replicates. 

3.2.4 Simulated case-control phenotypes  

We simulate case-control phenotypes (used in Figures 3.2A and 3.2B) using the following 

procedure. 

1  Given some SNP, ancestry-specific odds ratios 𝛽/, 𝛽#, and a case prevalence c, case-control 

phenotypes were simulated under the logistic model as in Atkinson et al.3.15  

a)  Calculate the genetic component of the phenotype (yg) for each individual j as 

𝑦U,& = 𝛽/𝑔/,& + 𝛽#𝑔#,&. 
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b) Find some intercept b such that 𝑒𝑥𝑝𝚤𝑡(𝑦U + 𝑏)ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ 	− 	𝑐	 = 	𝑙𝑜𝑔𝑖𝑡(𝑐), where the bar 

refers to the mean over all individuals j.  

c) For each individual j, draw case status from a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 K𝑒𝑥𝑝𝑖𝑡Y𝑦U,& + 𝑏\M 

distribution.  

d) Randomly discard control phenotypes until the case:control ratio is 1:1.  

2  Repeat for 100 iterates of 1,000 replicates. 

3.2.5 Real genotypes and phenotypes  

For our real data analysis, we used genotypes from the UK Biobank. We limited our study to 

participants with admixed African-European ancestry. Overall, we had 4,327 individuals with an 

average of 58.9% African and 41.1% European ancestry. We used the imputed genotypes for these 

individuals with a total of 16,584,433 SNPs. The genotypes were mapped to the GRCh38 build 

and imputed to the TOPMed reference panel. We calculated the top 10 PCs for these genotypes 

and added these PCs as covariates to all analyses as our global ancestry component. The 

phenotypes we used are also from the UK Biobank and include aspartate transferase enzyme 

(AST), BMI, cholesterol, erythrocyte count, HDL, height, LDL, leukocyte count, lymphocyte 

count, monocyte count, platelet count, and triglycerides. We log transformed AST, BMI, HDL, 

leukocyte count, lymphocyte count, monocyte count, platelet count, and triglycerides to analyze 

all 12 traits as quantitative, continuous traits. We standardized all genotypes and phenotypes to be 

mean centered at 0.0 and have a variance of 1. This research complies with all relevant ethical 

regulations. The ethics committee/IRB of UKBB gave ethical approval for collection of UKBB 
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data. Participants signed a written consent form to be a part of the UKBB. Approval to use UKBB 

individual-level data in this work was obtained under application 33127. 

3.2.6 Association testing on simulated genotypes  

We calculate the standard GWAS and Tractor association tests on simulated data. A 

standard GWAS is a one degree of freedom association test that uses the model 𝑦 = 𝛽U + 𝑒Z +

𝑏𝟏 + 𝜖 to test against a null hypothesis that includes global ancestry (𝛼). Tractor is a two degree 

of freedom association test that uses the model 𝑦 = 𝛽/𝑔/ + 𝛽#𝑔# + 𝑒[𝑙 + 𝑒Z𝛼 + 𝑏𝟏 + 𝜖 to test for 

𝛽/ = 0 and 𝛽# = 0 against a null hypothesis that includes local ancestry (l) and global ancestry 

(𝛼). They can both be adapted to be used on case-control phenotypes by substituting logistic 

regression and odds ratios for linear regression and effect sizes. Additionally, they can both be 

adjusted for additional covariates such as age and sex. For our simulations, we used global ancestry 

proportions as ourmeasure of global ancestry (𝛼) and did not need to adjust for any additional 

covariates such as age and sex as we did not model those factors in our simulations. For power 

calculations, we use a standard significance threshold of p-value < 5x10-8. 

3.2.7 Association testing on real genotypes  

We used admix-kit3.43 to perform the standard GWAS and Tractor association tests on these 

data and extracted the p values. To determine significant SNPs, we filtered for SNPs with a 

standard p-value of < 5x10-8. For the Manhattan plots, we plot all SNPs with a p-value < 10-2 in 

Figure 3.5B and a p-value < 10-4 in Figure 3.S11 for computational plotting purposes. For Tables 

3.S1 and 3.S2 and Figure 3.5A, to determine whether SNPs were part of the same locus, we 

grouped SNPs within a 500 kB radius and kept the most significant SNP from each test (standard 

GWAS and Tractor) in that locus.  



 75 

3.2.8 Measures used to compare our results  

In this work, we introduce several key measures that we use to compare our results. The 

formal definitions of these are the following.  

Percent difference in power: 

2(𝑃𝑜𝑤𝑒𝑟\%Y,$Y@$	^_`\ 	− 	𝑃𝑜𝑤𝑒𝑟!@Ya%N@)
𝑃𝑜𝑤𝑒𝑟\%Y,$Y@$	^_`\ 	+ 	𝑃𝑜𝑤𝑒𝑟!@Ya%N@

 

Adjusted chi square: 

We take the p value from a 𝜒# statistic and convert it back to a 𝜒/# statistic, regardless of 

the original degrees of freedom. The adjusted chi square score for a 𝜒/# is itself. 

3.3 RESULTS 

3.3.1 Heterogeneity by local ancestry impacts association statistics in admixed populations  

HetLanc occurs when a SNP exhibits different estimated allelic effect sizes depending on 

its local ancestry background. HetLanc can manifest itself at causal SNPs due to genetic 

interactions between multiple causal variants or differential environments, although recent work 

suggests that the magnitude and frequency of these types of epistatic effects between causal 

variants is limited.3.23 A more common form of HetLanc is observed at non-causal SNPs that tag 

the causal effect in a differential manner across ancestries. Differential linkage disequilibrium by 

local ancestry at these non-causal SNPs (tagged SNPs) can cause HetLanc even when allele 

frequencies and causal effect sizes are the same across ancestries. The extent to which HetLanc 

exists and the magnitude of these differences in effect sizes are yet uncertain.3.22–3.38 However, the 
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existence of HetLanc plays an important role in the power of GWAS methods to detect 

associations. Consider the example in Figure 3.1 in which the allelic effect size for a tagged SNP 

is estimated for a phenotype in an admixed population. In this population, both the tagged SNP 

and the true causal SNP may exist in regions attributed to both local ancestries present in the 

population (Figure 3.1A). Since LD patterns differ by local ancestry, the correlation between the 

tagged and causal SNPs will also depend on local ancestry (Figure 3.1B). This differential 

correlation between tagged and causal SNPs will cause the estimated allelic effect size for the 

tagged SNP 𝛽Ð%YU," to depend on local ancestry i (Figure 3.1C). Thus, even for cases in which true 

causal effect sizes are the same across ancestries, allelic effect sizes estimated for the tagged SNP 

may be heterogeneous. Since GWASs cannot determine true causal effect sizes, we introduce Rhet, 

a measure of HetLanc which allows for both true causal effect-size heterogeneity and LD- and 

allele frequency-induced estimated allelic effect-size heterogeneity. 

3.3.2 Methods for association testing in admixed populations  

We start with a formal definition for a full model relating genotype, phenotype, and 

ancestry for a single causal SNP: 

Equation 3.1: 

𝑦 = β/𝑔/ + β − 2𝑔# + 𝑒[𝑙 + 𝑒bα + 𝑒!𝐴 + 𝑏𝟏 + ϵ 

where y is a phenotype, g1 and g2 are vectors that represent the number of alternate alleles with 

local ancestry 1 and 2 (such that g1 + g2 = g, the full genotype regardless of ancestry), b1 and b2 

are ancestry-specific marginal effect sizes of the SNP, l is the vector of local ancestry counts at the 

locus, el is the effect size of l; a is a vector of global ancestry proportions, ea is the effect size of 
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a, A is a matrix of additional covariates (such as age and sex), 𝑒! is a vector of effect sizes for 

these covariates, b is the intercept term multiplied by the column vector 1, and e is random 

environmental noise. 

 Variability across local and global ancestries has been leveraged in various statistical 

approaches for disease mapping in admixed populations. One of the first methods developed for 

association was admixture mapping (ADM).3.30,3.36 ADM tests for association between local 

ancestry and disease status in affected individuals and control subjects or in a case-only fashion. 

This association is achieved by contrasting local ancestry deviation with expectations from per-

individual global ancestry proportions. Therefore, ADM is often under-powered especially in 

situations in which allele frequency at the causal variant is similar across ancestral populations.3.31 

Genotype association testing is traditionally performed using a linear or logistic regression with 

some standard covariates. This type of association test, referred to in this work as a standard 

GWAS, tests for association between genotypes and disease status while correcting for global 

ancestry to account for stratification.3.17,3.32 However, neither ADM nor standard GWASs take 

advantage of the full disease association signal in admixed individuals. SNP1, SUM, and MIX are 

examples of association tests that combine local ancestry and genotype information. SNP1 

regresses out local ancestry in addition to global ancestry to control for fine-scale population 

structure. This approach helps control for fine-scale population stratification but may remove the 

signal contained in local ancestry information.3.33 SUM3.34 combines the SNP13.14 and ADM 

statistics into a two degree of freedom test. MIX3.14 is a case-control test that incorporates SNP 

and local ancestry information into a single degree of freedom test. Most recently Tractor3.15 

conditions the effect size of each SNP on its local ancestry followed by a joint test allowing for 

different effects on different ancestral backgrounds. This step builds the possibility of HetLanc 
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explicitly into the model, which may be particularly important when SNPs are negatively 

correlated across ancestries.3.35 Other varieties of tests have also been developed using different 

types of frameworks, most notably BMIX3.35 which leverages a Bayesian approach to reduce 

multiple testing burden. These statistics have been compared at length.3.3,3.14,3.22 However, existing 

comparisons do not consider HetLanc, nor do they thoroughly discuss allele frequency differences 

across ancestries. 

3.3.3 Standard GWASs have more power than Tractor in the absence of heterogeneity by 

ancestry  

First, we use simulations to compare type I error and power for each association statistic 

in Table 3.1. Starting with 10,000 simulated admixed individuals based on a 50/50 admixture 

proportion, we simulate 1,000 case-control phenotypes with a single causal SNP (see subjects and 

methods). We define type I error as the percent of noncausal SNPs found to have significant 

associations (p-value < 0.05) for each score (see subjects and methods). Type I error is well 

controlled by Tractor (5.01%), SNP1 (5.01%), MIX (5.00%), and standard GWASs (5.01%) 

(Figure 3.2A). However, we find that type I error is not as well controlled for ADM (9.15%) and 

SUM (7.84%). We next calculate power to detect causal SNPs for an odds ratio of OR1 = OR2 = 

1.2 (see subjects and methods). We find that SNP1 had the highest power at 42.14%. However, 

SNP1 was not significantly more powerful than either MIX (power 42.12%, p-value 0.878) or a 

standard GWAS (power 42.05%, p value 0.325, Figure 3.2B). The power of all three of these tests 

was significantly higher (p-value < 1x10-16) than for SUM (power = 33.4%), ADM (power = 

0.039%), or Tractor (power = 31.9%). Since Tractor is a statistical test specifically designed to 

find SNP-trait associations with effects that are heterogeneous by local ancestry,3.15 this loss of 

power is expected for Tractor when effect sizes are the same across ancestries, which is not the 
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genetic architecture for which Tractor was designed. We find that while these association statistics 

are all well controlled, power does substantially differ between them. In the absence of both 

HetLanc and allele frequency difference, one degree of freedom SNP association tests outperform 

two degree of freedom tests. 

 We next investigate how differences in causal allele frequency (CAF) impact the power of 

a standard GWAS and Tractor in the case where true causal effect sizes are the same. We 

investigate the impact of varying CAF in each ancestry independently. Using our 10,000 simulated 

admixed individuals from the previous experiment, we simulate 1,000 quantitative phenotypes 

with a single causal SNP (see subjects and methods). We calculate the power of both Tractor and 

a standard GWAS to find these causal SNPs and then average that power over 100 simulated 

genotypes with specific allele frequencies. First, we let CAF1 = 0.5 and CAF2 range from 0.0 to 

1.0 with a 0.1 increment and plot power over CAF2 (Figure 3.2C). We find that a standard GWAS 

and SNP1 have higher power than Tractor at all levels of CAF difference. Since Tractor has an 

extra degree of freedom compared to a standard GWAS and SNP1, Tractor is disadvantaged when 

β/ = β#. Additionally, we see that while SNP1 has (insignificantly) higher power than a standard 

GWAS when CAF1 = CAF2, the power of SNP1 deteriorates as causal allele frequency difference 

increases. This behavior is qualitatively the same as Tractor. When CAF1 = CAF2, a standard 

GWAS has 94.7% power, with Tractor at 91.1% power. However, as CAF2 becomes more 

different from CAF1, a standard GWAS maintains its power at 93.0%. By contrast, Tractor loses 

much of its power, with only 45.3% power when the causal allele is fixed at 100% in population 

2 and only 48.1% power when the causal allele is absent in population 2. A standard GWAS 

maintains higher power than Tractor even at varying levels of heritability (Figures 3.S1–3.S3), 
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global ancestry (Figure 3.S1), effect size b (Figure 3.S2), and CAF1 (Figure 3.S3). However, the 

difference in power has a large range depending on the CAF difference between local ancestries.  

Next we introduce percent difference in power, a one-dimensional metric to compare 

between these association statistics (see subjects and methods). We use this metric to visualize 

how varying CAF1 and CAF2 independently impacts the power of a standard GWAS and Tractor 

(Figure 3.2D). The percent increase in power when using a standard GWAS over Tractor when 

the causal SNP is absent in population 2 is 68%. The power difference between a standard GWAS 

and Tractor increases as CAF difference increases. Furthermore, the lower the CAF starts out in 

population 1, the larger the power difference between these two statistics. Specifically, when CAF1 

= 0.5 and CAF2 = 0.1, the difference in CAF is 0.4 and a standard GWAS has a 25% power increase 

over Tractor. However, when CAF1 = 0.4 and CAF2 = 0.0, the difference in CAF is still 0.4 but a 

standard GWAS has a 43% increase in power over Tractor. While these differences in power do 

depend on both CAF differences and absolute CAF values in both ancestries, it is worth noting 

that differences in power along the diagonal axis are not significant. For example, while the 

increase in power of a standard GWAS over Tractor is 25% when CAF1 = 0.5 and CAF2 = 0.1 and 

the increase in power of a standard GWAS over Tractor is 26% when CAF1 = 0.1 and CAF2 = 0.5, 

the difference that occurs when switching causal allele frequencies between ancestries only has a 

p-value of 0.345 in this case. 

While this result corroborates previous studies,3.40–3.42 the relationship between Tractor and 

admixture mapping provides insight into the mechanism behind this dynamic. Mainly, as allele 

frequency differentiation by local ancestry increases, so does the power of the admixture mapping 

test statistic. In fact, ADM has no power when causal allele frequencies do not differ by ancestry 

but achieves up to 6.7% power when CAF1 = 0.0 and CAF2 = 0.5 (Figure 3.S4A). However, the 
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Tractor method uses the admixture mapping statistic as its null hypothesis. A stronger null 

hypothesis will be rejected less often than a weaker one even when the alternative hypothesis is 

the same, causing any test utilizing a strong null hypothesis to have less power. Thus, Tractor will 

have less power when its null hypothesis (ADM) has more power, which occurs in situations with 

high allele frequency differentiation. When allele frequencies do not differ by ancestry, Tractor 

achieves 91% power in our simulations. However, when CAF1 = 0.0 and CAF2 = 0.5, Tractor 

power plummets to 44% (Figure 3.S4B). SNP1, which also uses ADM as its null hypothesis, 

suffers from the same deterioration in power as causal allele frequency differentiation increases 

(Figure 3.S4C). When the causal allele frequencies are the same, SNP1’s power matches that of a 

standard GWAS, but as causal allele frequency differentiation increases, SNP1 loses power in the 

same pattern as Tractor. This indicates that Tractor loses power compared to a standard GWAS 

due to both its additional degree of freedom and due to its choice of null hypothesis.  

While high levels of allele frequency differentiation drastically decrease the power of 

Tractor, a standard GWAS also has a smaller decrease in power at high levels of allele frequency 

differentiation, from 95% at equal allele frequencies to 93% when CAF1 = 0.0 and CAF2 = 0.5 

(Figure 3.S4D). This decrease in power is not as large as that suffered by Tractor, but it is also due 

to increased power of the null hypothesis at higher frequency differentiation across populations. 

The null hypothesis of the standard GWAS test statistic only includes global ancestry, but the 

power of global ancestry alone to predict a trait increases as allele frequency differentiation 

increases.3.32 The idea that including global ancestry as a covariate in these analyses reduces power 

for SNPs with large CAF differences raises the question of how much attenuation can be expected 

when more exact measures of global ancestry (such as principal components) are included in the 

analysis. However, the overall power attenuation due to the inclusion of global ancestry is small 
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compared to that due to local ancestry; thus, we shift our focus back to considering local ancestry-

specific effects on power.  

3.3.4 Impact of HetLanc on power depends on allele frequency differences  

Next, we investigate the impact of CAF differences and HetLanc on power differences 

between a standard GWAS and Tractor. The exact relationship between HetLanc (measured as 

Rhet), CAF difference, and percent difference in power is complex (Figure 3.3A). First, there is a 

window when 0.5 < Rhet < 1.5 in which, regardless of CAF difference, HetLanc is not enough to 

increase the power of Tractor relative to a standard GWAS. Thus, at these ‘‘low’’ levels of 

HetLanc, a standard GWAS will reliably have more power than Tractor across the allele frequency 

spectrum. Similarly, when Rhet < 0.5, there is no allele frequency difference which would increase 

the power of a standard GWAS relative to Tractor. This corroborates our findings that when effect 

sizes are in opposite directions, Tractor is expected to have improved power over standard GWASs 

regardless of CAF difference. We can see that it is characteristics of both standard GWASs and 

Tractor that drive this trend (Figure 3.S5). The power of a standard GWAS depends most strongly 

on the magnitude of Rhet and is diminished the most when effect sizes are in opposite directions. 

By contrast, the power of Tractor depends strongly on both CAF difference and Rhet. These two 

factors combine to create an asymmetric shape for the percent difference in power (Figure 3.3A). 

This asymmetry in power observed for the Tractor method is likely due to correlations between 

effective sample size, allele frequency, global ancestry, and local ancestry that can occur in an 

asymmetric manner when causal effect sizes and causal allele frequencies differ between local 

ancestries.3.32 In these figures, we must consider that CAF1 is held constant at 0.5 and β# is held 

constant at 1.0. For example, Rhet = 0.5 corresponds to 𝛽/ = 0.5 and 𝛽# = 1.0. When CAF1 = 0.5 

and CAF2 = 0.9, most of the genetic variance from the individuals in the study will come from 
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ancestry 2 due to its larger causal allele frequency and larger effect size. This leaves the association 

for ancestry 1 with much less genetic variance to work with, and thus will lead Tractor’s ability to 

detect an association in ancestry 1 to be under-powered. However, when CAF2 = 0.1, much less 

of the total genetic variation in the population will come from ancestry 2, leading Tractor’s power 

to detect association in both populations to be more balanced.  

We also find that SNP1 power suffers not only when causal allele frequency differences 

increase but also when HetLanc increases. We additionally investigate similar scenarios for 

standard GWASs and Tractor with varied global ancestry proportions (Figure 3.S6), population-

level CAF (Figure 3.S7), and heritability (Figure 3.S8). While the exact boundaries of these 

regions do differ, the overall shape of this heatmap and the conclusions mentioned above do not 

qualitatively change. 

3.3.5 Polygenic trait simulations follow the same pattern as single causal variant simulations  

We next investigate how HetLanc impacts power in polygenic traits. We consider the 

genotypes of individuals with African-European admixture in the UK Biobank. These individuals 

have an average of 58.9% African and 41.1% European ancestry over the population of 4,327 

individuals. We simulate phenotypes using 100 causal SNPs along chromosome 1 and compare 

the power of a standard GWAS and Tractor over 100 simulations. Using real genotypes allows us 

to consider polygenic traits in the context of more realistic linkage disequilibrium and admixture. 

We now use genetic correlation3.23 instead of Rhet to measure HetLanc in the case of polygenic 

traits and separate our findings by whether or not the causal SNPs are differentiated (MAF 

difference > 0.2) or non-differentiated (MAF difference % 0.2).  
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First, we find that both standard GWASs and Tractor have relatively well-calibrated type 

I error rates (Figure 3.4A). At an expected false positive rate of 5%, a standard GWAS has a 5.06% 

false positive rate for differentiated SNPs and a 5.00% false positive rate for non-differentiated 

SNPs. In this situation, in which genetic correlation = 1.0 (which corresponds to zero effect size 

heterogeneity), Tractor has a well-calibrated false positive rate of 4.99% for differentiated SNPs, 

but a false positive rate of 3.35% for non-differentiated SNPs, which is significantly deflated (p-

value < 10-16).  

Similar to our simulations with only a single causal SNP, a standard GWAS and Tractor 

each have higher power in different combinations of genetic correlation and MAF differences. 

When genetic correlation remains 1.0 (Figure 3.4B), a standard GWAS has 23.0% power for 

differentiated SNPs and 25.5% power for non-differentiated SNPs, in contrast to Tractor’s 19.5% 

power for differentiated SNPs and 23.3% power for non-differentiated SNPs. The difference in 

power between differentiated SNPs and non-differentiated SNPs is significant (p-values 3.53x10-

3 for a standard GWAS and 1.73x10-6 for Tractor). The difference in power between a standard 

GWAS and Tractor is significant as well (p-values 4.84x10-4 for differentiated SNPs and 3.22x10-

4 for non-differentiated SNPs).  

After we introduce HetLanc, its direction and magnitude impact which method has the 

most power, a result which resembles our previous findings. When effect sizes vary by ancestry 

but are in the same direction (genetic correlation = 0.5, Figure 3.4C), a standard GWAS has more 

power for differentiated SNPs (18.7% for a standard GWAS and 16.8% for Tractor, p-value 0.04), 

whereas Tractor has more power than a standard GWAS for nondifferentiated SNPs (18.0% for 

standard GWAS and 20.1% for Tractor, p-value 5.44x10-4). When effect sizes are in opposite 

directions however (genetic correlation = 1.0, Figure 3.4D), Tractor has more power than standard 
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GWASs for both differentiated SNPs (4.90% for a standard GWAS and 11.5% for Tractor, p-value 

= 3.50x10-11) and non-differentiated SNPs (1.93% for a standard GWAS and 14.7% for Tractor, 

p-value < 10-16). We also consider the SNP1 test for these polygenic analyses. As expected, SNP1 

remains well calibrated in the polygenic case but falls between Tractor and standard GWASs in 

terms of power when effect sizes are the same (genetic correlation = 1.0). However, when effect 

sizes are different (genetic correlation = 0.5 or 1.0), SNP1 performs less well than either standard 

GWASs or Tractor (Figure 3.S9). We also consider how the level of polygenicity impacts power 

in the case with genetic correlation = 1.0 (Figure 3.S10). We find that while a standard GWAS 

remains more powerful than Tractor when polygenicity is reduced to 10, the differences in power 

between a standard GWAS and Tractor do not remain significant in either the differentiated or 

non-differentiated case. This is likely due to the high heritability in this case since for the polygenic 

simulations we held h2 = 0.5. Thus, in the case of 100 causal SNPs, each SNP had a h2 = 0.005, 

which is identical to the heritability in the single causal SNP simulations. In the case of 10 causal 

SNPs, however, each SNP had h2 = 0.05, which increased overall power, causing a necessary 

decrease in power difference between methods. 

3.3.6 A standard GWAS finds more significant loci across 12 traits in the UK Biobank  

We next seek to understand the impact of correcting for local ancestry in genetic analyses 

in real data. We investigate both Tractor and a standard GWAS in the same population of African-

European admixed individuals from the UK Biobank. In real data, we investigate MAF (minor 

allele frequency) differences in lieu of CAF differences, since it is common practice to test minor 

alleles in real GWASs. First, we investigate MAF differences between segments of African and 

European local ancestry over 16,584,433 imputed SNPs. We find that the mean absolute minor 
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allele frequency difference of these SNPs is 0.0959, with a standard deviation of 0.115. 85.2% of 

them have an absolute allele frequency difference of <0.2 across local ancestry (Figure 3.S11). 

 Next, we investigate empirically derived values of Rhet to determine in which region 

of the heatmap estimated effect sizes are likely to be found in real data (Figure 3.3B). We ran the 

Tractor method on 12 quantitative traits to find the actual values of Rhet for the estimated effect 

sizes β`cd and βefd. These traits were aspartate transferase enzyme (AST), BMI, cholesterol, 

erythrocyte count, HDL, height, LDL, leukocyte count, lymphocyte count, monocyte count, 

platelet count, and triglycerides. Then, we line up the histogram of these empirically derived values 

of Rhet with the heatmap.  We find that for 69.3% of all SNPs found to be significant using the 

Tractor test statistic, the empirical value for Rhet is within this [-0.5, 1.5] window.  While this is an 

estimate, we predict the true difference between estimated marginal effect sizes might be smaller 

than indicated by these empirical values because Tractor is more powerful in identifying SNPs 

with heterogeneous effect sizes. This result reflects previous findings that causal effects are similar 

across ancestries within admixed populations23. Due to this similarity in effect size, most of the 

significant SNPs sit in the center of the heatmap. This region of this heatmap predicts that standard 

GWASs will have more power than Tractor. While we cannot directly compare the standard 

GWAS χ/# score with the Tractor  𝜒## score due to their differing degrees of freedom, we can 

compare the mean adjusted  χ# statistics. To calculate the adjusted statistic, we take the p-value 

from a 𝜒# statistic and convert it back to a 𝜒/#  statistic, regardless of the original degrees of 

freedom. In this way, we can compare the mean adjusted  𝜒# statistic of the SNPs found to be 

significant in this case. We find that this statistic is significantly larger for the standard GWAS 

method than the Tractor method (Figure 3.S12). For significant SNPs, the mean standard GWAS 

𝜒/#   is 42.9, the mean adjusted Tractor 𝜒/#  is 37.5, and the p-value for the difference is 2.11x10-4. 
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In addition to assessing HetLanc directly, we can also compare the number of independent 

significant SNPs found by a standard GWAS and Tractor for these phenotypes. We find that while 

the number of independent significant SNPs varies across all traits, including when grouped by 

independent loci (Table 3.S1), overall, a standard GWAS finds more significant independent 

signals than Tractor (Figure 3.5A). We find 22 independent significant loci, with 19 loci found in 

a standard GWAS and 10 found in Tractor. This trend is most pronounced in HDL, in which 5 

independent loci were determined to be significant by a standard GWAS compared to none for 

Tractor. Similarly, BMI, leukocyte count, and monocyte count also only had independent 

significant loci when testing using a standard GWAS as opposed to Tractor. Cholesterol and LDL 

had significant loci found by both standard GWAS and Tractor, with a larger number found by the 

standard GWAS. Height is the only trait for which Tractor identified one significant locus but not 

the standard GWAS. Unfortunately, our sample sizes were not large enough to detect any 

significant loci for platelet count, triglycerides, or lymphocyte count. All independent significant 

loci for these 12 phenotypes are detailed in Table 3.S2.  

Additionally, we find that while a standard GWAS often finds more significant 

independent loci than Tractor, the two methods do not always find the same loci. Erythrocyte count 

is one phenotype in which we find an equal number of independent significant loci using both a 

standard GWAS and Tractor. However, not all loci overlap. Investigating the Manhattan plot of 

erythrocyte count specifically (Figure 3.5B), we see that loci on chromosome 16 are found by both 

a standard GWAS and Tractor. But outside of the main locus, both the standard GWAS and Tractor 

find separate additional significant regions. At the main locus, this Manhattan plot clearly shows 

that a standard GWAS has significantly smaller p-values for the same locus. Thus, in a smaller 

sample size only a standard GWAS would have found this important region. This example 
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highlights the importance of choosing the most highly powered association statistic for any given 

situation. Manhattan plots for other phenotypes can be found in Figure 3.S13.  

3.4 DISCUSSION 

In this work, we seek to understand the impact that estimated allelic effect-size 

heterogeneity by ancestry (HetLanc) has on the power of a GWAS in admixed populations. Our 

main goal is to find whether conditioning disease mapping on local ancestry leads to an increase 

or decrease in power. We find that HetLanc and CAF differences are the two most important 

factors when considering various methods for disease mapping in admixed populations. We focus 

on two association statistics: a standard GWAS, which ignores local ancestry, and Tractor, which 

conditions effect sizes on local ancestry. We find that in cases with small or absent levels of 

HetLanc, a standard GWAS is more powerful than Tractor in simulations of quantitative traits. 

This conclusion holds across a variety of global ancestry proportions and levels of SNP heritability. 

We find that as CAF differentiation between ancestries increases, so does the improvement of 

power of a standard GWAS compared to Tractor. At high HetLanc (Rhet >1.5) or when effect sizes 

are in opposing directions (Rhet < 0.5), we find that Tractor out-performs a standard GWAS. For 

African-European admixed individuals in the UKBB, most significant loci have both small 

measured HetLanc and MAF differences. We find that across 12 quantitative traits, a standard 

GWAS finds more significant independent loci than Tractor. Furthermore, a standard GWAS has 

smaller p-values for the loci that it shares with Tractor. This suggests that on smaller datasets, 

more of the shared loci would be found by a standard GWAS than by Tractor.  

This work has several implications for GWASs in admixed populations. Our results suggest 

that usually, a standard GWAS adjusted for global ancestry is the most powerful way to perform 
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a GWAS in an admixed population. However, it may be possible to predict the comparative power 

of a standard GWAS and Tractor using the allele frequencies and linkage disequilibria of a specific 

sample. Additionally, since in real analyses a standard GWAS and Tractor often find different loci, 

it is important to keep both methods in mind when performing analyses. These methods prioritize 

different types of loci, with standard GWASs likely prioritizing loci with higher MAF differences 

and Tractor prioritizing loci with higher levels of HetLanc. Furthermore, our findings suggest that 

conditioning on local ancestry is a major factor in Tractor’s loss of power in situations in which 

causal allele frequencies differ. Thus, the performance of a method which includes effect size 

heterogeneity could potentially be considerably improved if local ancestry were not included in 

the null hypothesis. We leave assessment of the power and calibration of this type of hybrid method 

for future work.  

We conclude with caveats and limitations of our work. When hoping to understand these 

patterns of power for association statistics, there are many combinations of different elements of 

genetic architecture to consider. These include phenotypic factors such as environmental variance 

and polygenicity, as well as elements of admixture such as the number of generations of admixture 

and the strength of linkage disequilibrium. We could not consider them all, and thus it is likely 

that additional nuances to our findings exist when other factors are considered. One major element 

not considered in this work is case-control traits. While we chose to focus on quantitative traits in 

this analysis due to their simplicity and ubiquity, case-control traits are also important in medicine. 

It is possible that the behavior of these phenotypes will vary compared to the quantitative traits 

that we analyze here, both in simulations and real data. We suggest case-control traits as an 

interesting avenue of research for future works. Lastly, we chose to focus our analyses on standard 

GWASs and Tractor due to their popularity and ease of use. We compare how these methods work 
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‘‘out of the box’’ to provide simple and usable guidance for others. However, as discussed in the 

introduction to this work, a variety of other association tests exist. It is likely that in certain 

circumstances one of these existing methods would outperform both a standard GWAS and 

Tractor.  

From both scientific and social perspectives, it is important that admixed populations are 

incorporated more effectively into genetic studies. By providing insight into the strengths and 

limitations of these methods, we hope to enable studies to maximize their power in admixed 

populations. 

3.5 TABLES 

Table 3.1: Summary of GWAS association statistics 

Association 
statistic 

Statistical test (H0) Assumptions 
on 𝛃 

Ancestry-related 
covariates 

Degrees of 
freedom 

ADM el = 0 - α 1 
Standard GWAS β = 	0 β/ = β# = 0 α 1 

SNP1 β = 	0 β/ = β# = 0 l, α 1 
MIX el ° β	 = 	0 β/ = β# = 0 α 1 
SUM β = 	0 

and el = 0 
β/ = β# = 0 α 2 

Tractor β/ = 0 and β# = 0 - l, α 2 

All tests adjust for global ancestry and can be used on binary traits, and all tests except MIX can 

be implemented with adjustment for additional covariates and use on quantitative traits. For more 

information on the comparison of standard GWAS, ADM, SUM, and MIX, see Pasaniuc et al.3.14 

and Seldin et al.3.22 We note that while additional methods exist,3.36–3.39 we do not focus on them 

in this work because they do not directly relate to Equation 3.1. 
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Table 3.S1: Number of independent significant loci by phenotype 

Phenotype # loci standard GWAS # loci tractor # loci shared 

cholesterol 3 2 2 

erythrocyte 3 3 2 

Height 0 1 0 

LDL 4 3 3 

log(AST) 1 1 0 

log(BMI) 1 0 0 

log(HDL) 5 0 0 

log(leukocyte) 1 0 0 

log(lymphocyte) 0 0 0 

log(monocyte) 1 0 0 

log(platelets) 0 0 0 

log(triglycerides) 0 0 0 
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Table 3.S2: Independent significant SNPs in UKBB admixed population 

Phenotype SNP  

(reference allele / alternate allele) 

Standard GWAS 

p-value 

Tractor  

p-value 

cholesterol chr1:55054772 (A / G) 3.72	 ×	10.H not significant 

cholesterol chr8:118543713 (A / T) 1.19	 ×	10.; 8.31	 ×	10.; 

cholesterol chr19:44908822 (C / T) 1.22	 ×	10.5/ 2.31	 ×	10.5+ 

erythrocyte chr16:261108 (G / A) 5.44	 ×	10.#6 not significant 

erythrocyte chr16:360054 (A / G) 9.15	 ×	10./5 not significant 

erythrocyte chr16:50884914 (A / T) 4.92	 ×	10./+ not significant 

erythrocyte chr16:117409 (C / T) not significant 3.47	 ×	10./H 

erythrocyte chr16:260355 (C / T) not significant 6.34	 ×	10./H 

erythrocyte chr16:384271 (G / A) not significant 2.33	 ×	10.// 

Height chr7:78824856 (G / A) not significant 7.79	 ×	10.; 

LDL chr1:55063542 (C / A) 2.47	 ×	10.// 1.14	 ×	10./+ 

LDL chr1:88869866 (G / A) 3.01	 ×	10.H not significant 

LDL chr8:118543713 (A / T) 5.74	 ×	10.; 2.45	 ×	10.H 

LDL chr19:44908822 (C / T) 3.58	 ×	10.I+ 6.24	 ×	10.2; 
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log(AST) chr10:17819068 (G / A) 5.03	 ×	10.// not significant 

log(AST) chr19:17024164 (C / T) not significant 2.30	 ×	10.H 

log(BMI) chr3:196672134 (G / A) 4.83	 ×	10.H not significant 

log(HDL) chr15:76063105 (G / A) 1.54	 ×	10.H not significant 

log(HDL) chr16:56957451 (C / T) 1.34	 ×	10.H not significant 

log(HDL) chr17:58519260 (G / A) 4.30	 ×	10.H not significant 

log(HDL) chr17:58607316 (C / G) 4.94	 ×	10.H not significant 

log(HDL) chr17:58744530 (C / T) 4.94	 ×	10.H not significant 

log(leukocyte) chr14:30683993 (A / G) 4.96	 ×	10.H not significant 

log(monocyte) chr1:159092646 (G / A) 2.21	 ×	10.H not significant 
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3.6 FIGURES 

 

Figure 3.1: Toy example of how differential LD by local ancestry can induce HetLanc. (A) 

Admixed populations contain haplotypes with different local ancestry at the causal or tagged SNP. 

(B) The correlation between tagged and causal SNPs depends on their local ancestry due to 

differential LD by local ancestry. (C) In a GWAS, the estimated marginal SNP effect size is 

proportional to the true causal effect size and the correlation between the tagged and causal SNPs 

(β%YU,gÔ ∝ ρ"βaYhTY[,") where i refers to the ith ancestry). 
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Figure 3.2: Association statistics in the absence of HetLanc . (A) Type I error for association 

statistics. Type I error calculated as the percent of null SNPs with a significant association detected. 

95% confidence interval too narrow for display. (B) Power for association statistics. Power 

calculated as the percent of simulations to successfully recover the causal variant. Odds ratios OR1 

= OR2 = 1.2. 95% confidence interval too narrow for display. (C) Power for a standard GWAS, 

SNP1, and Tractor as CAF2 is varied between 0.0 and 1.0 and CAF1 is fixed at 0.5. Power for all 

three methods varies as CAF difference varies. 95% confidence interval too narrow for display. 

(D) Heatmap of percent increase in power of a standard GWAS over Tractor when β/ = β# = 1.0. 

Causal allele frequencies CAF1 and CAF2 varied from 0.0 to 0.5 in increments of 0.1. All 

simulations are for case-control (A and B) or quantitative (C and D) traits simulated 1,000 times 

for a population of 10,000 individuals with 100 genotypes each with global ancestry proportion 

50/50. Power calculated using (A) nominal threshold p-value < 0.05, (B) Bonferroni-corrected 

CAF2 CAF2

C
AF

1
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threshold p-value < 1x10-5 , or (C and D) standard threshold p-value < 5x10-8 . (A and B) Case-

control traits have case-control ratio 1:1, 10% case prevalence, and CAF1 = CAF2 = 0.5. (C and 

D) Quantitative traits have heritability h2 = 0.005. Heritability, global ancestry, causal effect size 

β, and overall CAF do not qualitatively impact these results (Figures S1–S3). 
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Figure 3.3: Impact of HetLanc on percent difference in power depends on CAF difference. 

(A) Heatmap of percent difference in power for a standard GWAS versus Tractor. The ‘‘*’’ 

indicates the center with no HetLanc or CAF difference. The solid line represents the boundary 

between when a standard GWAS and Tractor have higher power. The dashed line represents the 

region in which a standard GWAS always has higher power than Tractor. Quantitative trait 

simulated 1,000 times for a population of 10,000 individuals on a trait with effect size β/ ranging 

from 1.0 to 3.0 in increments of 0.1, and effect size β# = 1.0. Global ancestry proportion 50/50, 

heritability at h2 = 0.005, and causal allele frequencies CAF1 = 0.5 and CAF2 ranging from 0.1 to 

1.0 in increments of 0.1. Power calculated using a standard threshold p-value < 5x10-8. (B) 

Histogram of empirical Rhet =i'
j

i#j
 for significant SNPs found for 12 phenotypes in the UKBB. β/×,β#× 

estimated using Tractor. 
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Figure 3.4: Effect size heterogeneity in the context of polygenicity. (A) Boxplot of type I error 

for Tractor and a standard GWAS split by non-differentiated (MAF difference < 0.2) and 

differentiated (MAF difference > 0.2) SNPs. (B) Boxplot of power for Tractor and a standard 

GWAS in the case of no effect size heterogeneity split by non-differentiated and differentiated 
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SNPs. (C) Boxplot of power for Tractor and a standard GWAS in the case of effect size 

heterogeneity split by non-differentiated and differentiated SNPs. (D) Boxplot of power for Tractor 

and a standard GWAS in the case of opposite effect sizes split by non-differentiated and 

differentiated SNPs. All simulations used real UKBB admixed genotypes and simulated 

phenotypes with 100 causal SNPs and a total additive genetic heritability of h2 = 0.5 (see subjects 

and methods). ‘‘*’’ indicates a nominally significant p-value (<1.28x10-3). The boxes show the 

inter-quartile range while the whiskers show the rest of the distribution (not including outliers). 
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Figure 3.5: Comparing significant SNPs found with a standard GWAS and Tractor . (A) Venn 

diagram of independent significant loci found using a standard GWAS and Tractor in the UKBB 

across 12 quantitative traits. (B) Manhattan plot of erythrocyte count in the UKBB. Significant 

SNPs found with a standard GWAS shown in red and significant SNPs found with Tractor shown 

in blue. Manhattan plot SNPs shown filtered for p value < 0.01 and SNPs are plotted based on 

post-filter indices. 
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Figure 3.S1: Global ancestry does not have a large impact on power compared to the choice 

of test statistic and SNP heritability. Power curves of Standard GWAS and Tractor as SNP 

heritability varies. In this case where neither frequency nor causal effect size vary by local 

ancestry, Standard GWAS has increased power over Tractor, especially at small levels of SNP 

heritability. Simulation results of 1,000 replicates with N = 10,000 individuals with causal allele 

frequency CAF1 = CAF2 = 0.5, and causal effect sizes 𝛽/ =	𝛽# = 1.0. 95% confidence interval 

too narrow for display. 

 

Figure 3.S2: Effect size does not have a large impact on power compared to the choice of test 

statistic and SNP heritability. Power curves of Standard GWAS and Tractor as SNP heritability 

varies. In this case where neither frequency nor causal effect size vary by local ancestry, Standard 
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GWAS has increased power over Tractor, especially at small levels of SNP heritability. Simulation 

results of 1,000 replicates with N = 10,000 individuals with causal allele frequency CAF1 = CAF2 

= 0.5, global ancestry proportions at 50/50, and causal effect sizes 𝛽/ 	= 	𝛽#. 95% confidence 

interval too narrow for display. 

 

Figure 3.S3: Causal allele frequency does not have a large impact on power compared to the 

choice of test statistic and SNP heritability. Power curves of Standard GWAS and Tractor as 

SNP heritability varies. In this case where neither frequency nor causal effect size vary by local 

ancestry, Standard GWAS has increased power over Tractor, especially at small levels of SNP 

heritability. Simulation results of 1,000 replicates with N = 10,000 individuals with causal allele 

frequency CAF1 = CAF2, global ancestry proportions at 50/50, SNP heritability ℎ# = 0.005, and 

causal effect sizes 𝛽/ 	= 	𝛽# = 1.0. 95% confidence interval too narrow for display. 
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Figure 3.S4: Association statistic power at differing levels of causal allele frequency 

difference. (a) Admixture mapping has maximum power when causal allele frequency difference 

by local ancestry is increased. (b) Tractor has drastically decreased power when causal allele 

frequency difference by local ancestry is increased. In this case where causal effect size does not 

vary by local ancestry, the decrease in Tractor power at high levels of minor allele frequency 

difference by local ancestry is driven by the increase in power for admixture mapping, which 

serves as the null hypothesis against which Tractor tests SNP-level effects. (c) SNP1 has higher 

power than Tractor generally but also suffers from drastically decreased power when causal allele 
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frequency difference by local ancestry is increased, likely due to its identical null hypothesis. (d) 

Standard GWAS has slightly decreased power when causal allele frequency difference by local 

ancestry is increased. Standard GWAS does not suffer from using ADM as its null hypothesis as 

Tractor does, but the decrease in power is likely due to increased correlation between global and 

local ancestry at high levels of allele frequency difference. All panels are simulation results of 

1,000 replicates with N = 10,000 individuals with global ancestry proportions at 50/50, SNP 

heritability ℎ# = 0.005, and causal effect sizes 𝛽/ 	= 	𝛽# = 1.0. 

 

Figure 3.S5: Impact of HetLanc and CAF difference on power of Standard GWAS, Tractor, 

and SNP1 individually. As HetLanc increases, Standard GWAS power decreases, especially 

when causal effects are in opposite directions. CAF difference impacts Tractor and SNP1 more 

drastically than Standard GWAS. Simulation results of 1,000 replicates with N = 10,000 

individuals with minor allele frequency CAF1 = 0.5, global ancestry proportions at 50/50, 
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heritability ℎ# = 0.005, and causal effect size 𝛽# = 1.0. 

Figure 3.S6: Impact of HetLanc and CAF difference on percent difference in power depends 

on global ancestry ratios. Heatmap of percent difference in power for Standard GWAS vs 

Tractor. Red indicates where PowerStandard GWAS > PowerTractor. As global ancestry ratios become 

further from 50%, the range of HetLanc and CAF difference in which Standard GWAS has more 

power than Tractor increases. Simulation results of 1,000 replicates with N = 10,000 individuals 

with minor allele frequency CAF1 = 0.5, heritability ℎ# = 0.005, and causal effect size 𝛽# = 1.0. 
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Figure 3.S7: Impact of HetLanc and CAF difference on percent difference in power 

depends on CAF. Heatmap of percent difference in power for Standard GWAS vs Tractor. Red 

indicates where PowerStandard GWAS > PowerTractor. As CAF becomes further from 0.5, the range of 

HetLanc and CAF difference in which Standard GWAS has more power than Tractor increases. 

Simulation results of 1,000 replicates with N = 10,000 individuals with global ancestry 



 107 

proportions at 50/50, SNP heritability ℎ# = 0.005, and causal effect size 𝛽# = 1.0. 

 

Figure 3.S8: Impact of HetLanc and CAF difference on percent difference in power depends 

on heritability. Heatmap of percent difference in power for Standard GWAS vs Tractor. Red 

indicates where PowerStandard GWAS > PowerTractor. As heritability decreases, the percent difference 

in power between Standard GWAS and Tractor increases. Simulation results of 1,000 replicates 

with N = 10,000 individuals with causal allele frequency CAF1 = 0.5, global ancestry proportions 

at 50/50, and causal effect size 𝛽# = 1.0. 
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Figure 3.S9: Effect Size Heterogeneity of Tractor, SNP1, and Standard GWAS in the Context 

of Polygenicity. (a) Box plot of Type I error for Tractor, SNP1, and Standard GWAS split by non-

differentiated (MAF difference ≤ 0.2) and differentiated (MAF difference > 0.2) SNPs. (b) Box 

plot of power for Tractor, SNP1, and Standard GWAS in the case of no effect size heterogeneity 
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split by non-differentiated and differentiated SNPs. (c) Box plot of power for Tractor, SNP1, and 

Standard GWAS in the case of effect size heterogeneity split by non-differentiated and 

differentiated SNPs. (d) Box plot of power for Tractor, SNP1 and Standard GWAS in the case of 

opposite effect sizes split by non-differentiated and differentiated SNPs. (a-d) All simulations used 

real UKBB admixed genotypes and simulated phenotypes with 100 causal SNPs and a total 

additive genetic heritability of ℎ# = 0.5 (see methods). “*” indicates a nominally significant p-

value (<0.05). “**” indicates a Bonferroni-corrected significant p-value (<1.28 x 10-3). 

 

Figure 3.S10: Effect Size Heterogeneity in the Context of Varying Levels of Polygenicity. (a) 

Box plot of power for Tractor, SNP1, and Standard GWAS in the case of one causal SNP split by 

non-differentiated and differentiated SNPs. All methods had 100% power in this case due to a high 

SNP heritability of 50%. (b) Box plot of power for Tractor, SNP1, and Standard GWAS in the 

case of 10 causal SNPs split by non-differentiated and differentiated SNPs. (c) Box plot of power 

for Tractor, SNP1, and Standard GWAS in the case of 100 causal SNPs split by non-differentiated 

and differentiated SNPs. (a-d) All simulations used real UKBB admixed genotypes and simulated 

phenotypes with genetic correlation = 1.0 and a total additive genetic heritability of ℎ# = 0.5 (see 

methods). “*” indicates a nominally significant p-value (<0.05). “**” indicates a Bonferroni-

corrected significant p-value (<1.28 x 10-3). 



 110 

 

Figure 3.S11: Minor allele frequency differences between European and African local 

ancestries in the African-European admixed population in the UKBB. Minor allele frequency 

differences center near zero, at -2.39 x 10-2, indicating only a small systematic bias towards larger 

minor allele frequencies in the African local ancestry segments. Mean absolute value of minor 

allele frequency differences is 9.59 x 10-2, indicating a small average allele frequency difference, 

with a standard deviation of 1.15 x 10-1. Study population is 4,327 individuals from the UK 

Biobank with on average 58.9% African and 41.1% European admixed ancestry.  
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Figure 3.S12: Adjusted Chi Square Statistics for significant SNPs for 12 traits in the UKBB. 

Standard GWAS 𝜒/# is significantly larger than the Tractor statistic (adjusted from 𝜒## to 𝜒/#). Mean 

Standard GWAS 𝜒/# for significant SNPs is 42.9, mean Tractor 𝜒## for significant SNPs is 37.5, p-

value 2.11 x 10-4. Study population is 4,327 individuals from the UK Biobank with on average 

58.9% African and 41.1% European admixed ancestry. Tractor and Standard GWAS statistics 

computed over 16,584,433 SNPs and 12 traits including AST, BMI, cholesterol, erythrocyte count, 

HDL, height, LDL, leukocyte count, lymphocyte count, monocyte count, platelet count, and 

triglycerides. See methods for chi-square adjustment. 
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Figure 3.S13: Manhattan plots for 12 quantitative traits in the UKBB African-European 

admixed population. Study population is 4,327 individuals from the UK Biobank with on average 

58.9% African and 41.1% European admixed ancestry. Manhattan plot SNPs shown filtered for p-

value < 10-4 and SNPs are plotted based on post-filter indices. 
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4  METHODS TO REDUCE DIAGNOSTIC DELAY FOR RARE DISEASES 
ACROSS THE UNIVERSITY OF CALIFORNIA HEALTH SYSTEM 

4.1 INTRODUCTION TO COMMON VARIABLE IMMUNODEFICIENCIES 

Common variable immunodeficiency (CVID) is one of the more common types of primary 

immunodeficiency4.1. Patients with CVID often suffer from infection, inflammation, and auto-

immunity4.2.  However, while a patient’s CVID diagnosis typically follows findings of low levels 

of multiple immunoglobulins (Ig), that patient’s journey from onset of symptoms to administration 

of the test to indicate the disease is often long and winding4.3.  This type of diagnostic delay impacts 

both the patient and the health system in which the patient participates4.4.  Patients with underlying 

CVID but without a diagnosis may not receive the care that they need or receive only care to 

manage symptoms of the disease individually.  This delay of up to 15 years4.5 in some cases results 

in increased costs, frustration, and time on the part of both patient and physician, with the patient 

having to additionally bear the worsening of prognosis that is consistent with diagnostic delay4.6.    

One major reason for this diagnostic delay is that CVID is in fact a group of heterogeneous 

human inborn errors of immunity4.7.  As such, the clinical presentation of CVID varies widely by 

patient4.8.  Thus, it may be difficult for a physician who is not a specialist in primary 

immunodeficiencies to recognize that a patient’s symptoms are indicative of CVID.  The difficulty 

in recognizing a patient’s symptoms as that of CVID is increased if a patient does not regularly 

visit the same physician, instead utilizing an emergency department or network of care.  Many of 

the symptoms of CVID include health problems that are much more common than the underlying 

disease itself4.9, which is estimated to occur in ~0.004%4.10 of the population.  However, when 

taken as a whole, the range, severity, and recurrence of these symptoms may point to some unifying 

underlying cause for a patient’s symptoms.  Diagnostic delay can also occur due to the broad range 

of body systems that may be impacted by a primary immunodeficiency.  From cardiologists to 
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dermatologists, pulmonologists to ENTs, a CVID patient may be referred to any number of 

specialists to treat their symptoms before they are finally referred to immunology.   

These reasons for diagnostic delay all have one thing in common – the physicians involved in 

the patient’s care either don’t have a full picture of that patient’s healthcare journey, or they don’t 

have enough experience with CVID to know to look for it.  This is where the introduction of 

machine learning in electronic health records can be helpful. 

Electronic health record (EHR) data is the data that comes from a patient’s interactions with 

the health system.  Diagnosis codes, laboratory values, medication prescriptions, and other types 

of health information are often stored in a structured, query-able fashion.  EHR data has been used 

to aid in diagnosis and prediction tasks for a variety of clinical phenotypes4.11-4.13.  CVID is another 

disease that can benefit from the introduction of machine learning to reduce diagnostic delay.   

4.2 DEVELOPING THE PHENET ALGORITHM 

4.2.1 PheNet at the University of California, Los Angeles 

 At the University of California, Los Angeles (UCLA), the electronic health records of 

patients of UCLA Health are made deidentified and available for research (with patient 

permission). Using this data, we constructed a machine learning algorithm to find patients likely 

to have CVID based on their EHR data4.14.   

 Utilizing the 186 known cases of CVID in the UCLA DDR, we constructed a statistical 

model to learn the signature of CVID in EHR data, which could then be applied to patients with 

unknown disease status to ascertain their probability of having CVID as an underlying disease.  In 

this process (Figure 4.1), we first found patients with putative immunodeficiencies using the D80 
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ICD code in the EHR.  Next, physician chart review identified 186 true CVID patients.  After 

identifying this case cohort, we found an additional 1,106 patients for a control cohort, matching 

cases on age, sex, race, and amount of data available (measured as time since first recorded visit).   

 Once we had the full case-control cohort, we chose clinical features known to be 

biologically associated with CVID.  Starting with the Online Mendelian Inheritance in Man 

(OMIM)4.15 database, we found OMIM codes known to be related to CVID, and mapped those to 

Human Phenotype Ontology (HPO)4.16 terms.  From there, we mapped the HPO terms to 

International Classification of Disease (ICD)4.17 codes, which we further grouped into phecodes4.18.  

In total, we extracted 34 OMIM-derived phecodes from the EHR to be used as features in our 

model. In addition, we included immunoglobulin G (IgG) labs.  Patient values for serum IgG levels 

were categorically assigned to 2-low (< 600 mg/dl), 1-normal (>600 mg/dl) or 0-unknown (no test 

recorded).   

 Using our 186 cases and 1,106 controls, we constructed a cross-validation set of 5 folds of 

80% training, 20% testing split.  We used the cross-validation folds to determine the best-

performing model, using the mean area under the receiver operating characteristics curve (AUC-

ROC) as our metric.  We tested different model hyperparameters including down-sampling and 

up-sampling rates, as well as different feature sets such as inclusion or exclusion of the IgG 

category, and different model types such as log-inverse, marginal logistic regression, ridge 

regression, and random forest models.  In addition, we tested using different numbers of phecodes 

in addition to the 34 OMIM-derived phecodes, from 0 to 20.  In isolation, we found that the best 

performing model had an additional 5 phecodes (AUC-ROC 0.948), included IgG as a feature 

(AUC-ROC 0.946), had 50% up-sampling (AUC-ROC 0.946) and no down-sampling (AUC-ROC 

0.948) (Figure 4.2). In total however, we found that the best performing model included 10 
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phecodes in addition to the 34 OMIM phecodes. We also found that while ridge regression had the 

highest AUC-ROC (0.961), marginal logistic regression achieved a similarly high AUC-ROC 

(0.946) while remaining the most interpretable method. Since our goal was for physicians to adopt 

this algorithm in clinical practice, we decided to prioritize interpretability and use a marginal 

logistic regression model.  

 Next, we sampled 10,000 patients randomly from the UCLA DDR to use as controls in the 

model and retrained the weights for the model.  With this new cohort, we retrained the model using 

the previously determined hyperparameters.  Under this paradigm, our model (PheNet) 

outperformed PheRS4.19, a recently published method for finding patients with rare disease using 

EHR data (Figure 4.3).  By comparison, our CVID specific risk score had a higher AUC-ROC 

(0.95) compared to the more generalized PheRS (AUC-ROC 0.79). 

Next, we applied this algorithm to the rest of the DDR patients.  We found the top 100 patients 

scored by PheNet and compared them to a random group of 100 patients.  Using physician chart 

review, we found that patients ranked highly by PheNet were much more likely to have a true 

underlying CVID (Figure 4.4). In the top 100 PheNet ranked patients, 74% were categorized as at 

least a 3 out of 5 likelihood score for CVID (by manual physician chart review), compared to only 

10% of the randomly chosen patients. 

4.2.2 PheNet in the University of California Health Data Warehouse 

 The University of California Health Data Warehouse (UCHDW)4.20 is an integrated, 

deidentified EHR database for the combined University of California (UC) system.  This database 

includes ICD codes, medications, lab values, demographics, and more for the 8 million+ patients 



 124 

seen at the health systems affiliated with UCLA (Los Angeles), UCSF (San Francisco), UCD 

(Davis), UCSD (San Diego), UCI (Irvine), and UCR (Riverside).   

 After the success of PheNet in the DDR at UCLA, we chose to extend the reach of our 

algorithm to the rest of the UC health system using the UCHDW.  Assembling a group of 

immunologists from five of the UC health systems (UCLA, UCSF, UCD, UCSD, UCI), we 

identified a group of 575 bona fide CVID patients at the University of California (Table 4.1). This 

new cohort is predominantly female and of self-identified white race. We also note that the mean 

age of cases at UCSF is 10 years younger than that at other sites, which is expected given UCSF’s 

focus on pediatric medicine.  Our goal was to find patients ranking highly with PheNet from each 

institution, handing off the top 100 from each for a further chart review by immunologists and a 

potential referral to an immunology clinic. 

 Within this new cohort, we chose to update our model training process to avoid re-using 

data and better separate the training and testing process (Figure 4.5). After imposing quality control 

on our cases to ensure we had enough data on each one, we split our cohort of 565 remaining cases 

into an 80% training set and 20% testing set.  We then selected 10 control patients per case from 

the UCHDW, matched on age, sex, race, amount of available data, and now site as well.  Thus, 

from our 565 cases we created a training cohort of 452 cases and 5,027 controls as well as a testing 

cohort of 113 cases and 947 controls.  All model training was conducted on our training cohort, 

but results reported here are using the held-out testing cohort. In this way, we avoid “double 

dipping” and seeing inflated accuracy metrics for our model. 

 We also chose to introduce some additional metrics for comparison between models.  In 

addition to the AUC-ROC previously mentioned, we also consider the area under the precision 
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recall curve (AUC-PR), the positive predictive value of the top 100 patients (PPV-100) and the 

positive predictive value of the top 113 patients (PPV-norm).  We chose to include AUC-PR 

because it is generally considered a better metric of accuracy for a machine learning model in 

which the percentage of cases is small, which our percentage of 10% is considered to be4.21.  We 

chose the PPV-100 metric with the application in mind; if our immunologists would be reviewing 

charts from the top 100 patients from their institutions, then we wanted to ensure that we optimized 

the top 100 patients to have the most CVID patients as possible.  Similarly, PPV-norm considers 

a number of patients similar to our top 100 metric but is normalized so that the range for this metric 

is [0.0, 1.0] and thus more comparable to AUC-ROC and AUC-PR. 

 Finally, now that we had physician buy-in for PheNet, we were able to relax some of our 

conditions on interpretability.  Thus, we were able to implement a ridge regression version of 

PheNet that had shown to have better performance during our cross-validation phase of model 

building.  With ridge regression, we were able to increase the up-sampling to 80%.  This increase 

in up-sampling follows from the idea that ridge regression is more calibrated for data that has 

higher correlations between features4.22.  In data that is highly up-sampled, features are expected 

to be more highly correlated because so many of the patients (or “rows”) are identical.  However, 

up-sampling gives us the advantage of increasing our effective case:control ratio4.23.  Thus, ridge 

regression provides the advantage of allowing for a larger percentage of up-sampling.  Our larger 

dataset also allowed for additional features to be included in the model; we now include 15 

phecodes in addition to the OMIM-derived phecodes as features.  Table 4.2 includes the top 20 

features ordered by their effect sizes included in this model.  As expected, OMIM-derived 

phecodes dominate the list, with low IgG near the top. 
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 We now compare the performance of the PheNet models we have trained using different 

methods on different data (Table 4.3).  In the first row, we see the original PheNet model trained 

on UCLA data and tested on our UCLA-only case-control cohort.  We note that under our new 

80% training, 20% testing fully matched cohort, the original PheNet algorithm underperforms 

compared to under the paradigm in the previous section (AUC-ROC 0.67, AUC-PR 0.25, PPV-

100 0.37, PPV-norm 0.28).  However, the same UCLA model tested on the UC-wide testing cohort 

(in the second row) performs worse (AUC-PR 0.21, PPV-100 0.23). This demonstrates that the 

weights that were trained by PheNet on UCLA data only are not portable to the rest of the UC 

health system.  In the last row is the UCHDW model trained on the UC-wide training cohort and 

tested on the UC-wide testing cohort.  This model performs the best so far with an AUC-PR of 

0.51 and a PPV-100 of 0.48. While this model has double the AUC-PR and PPV-100 of the 

previous model, there is still much room for improvement. 

4.3 INCORPORATING ARTIFICIAL INTELLIGENCE 

4.3.1 Feature selection using likelihood ratio tests 

 So far, we have utilized the clinical knowledge available in the OMIM database to ascertain 

34 features for the CVID prediction model.  Using this database to augment our machine learning 

algorithm was important because our training data was so small.  However, there are some 

downsides to this manual form of feature selection.  Manual feature selection is more labor 

intensive than automated feature selection, and in addition requires the presence of an expert.  This 

requirement for time and expertise limits the scalability of implementing PheNet in additional 

phenotypes in the future.  Additionally, it is possible that these OMIM-derived features are not 

actually the best features to use in a predictive model.  While the symptoms described in in OMIM 

are undoubtedly the most common manifestations of CVID, the relative frequency of these 
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symptoms in individuals without CVID is not taken into account, thus potentially limiting the 

predictive power of these phecodes. 

With the inclusion of the data from the UCHDW, the training data for our model is now 

over twice as large as it was previously.  With this improvement in sample size, we can now 

consider feature selection without OMIM as a guide.  The way that we implement intelligent 

feature selection is through the likelihood ratio test. 

A likelihood ratio test capitalizes on the fact that the likelihoods of two nested models can 

be combined to follow a χ# distribution.  Specifically, 

−2𝑙𝑛 Ø
𝐿(𝑚+|𝑝+ ∈ 𝑅@)
𝐿(𝑚`|𝑝` ∈ 𝑅,)

Ú~χ,.@#  

where 𝐿(𝑚+|𝑝+ ∈ 𝑅@) is the likelihood of a ‘null’ model m0 given some set of size r of 

‘null’ parameters p0 and 𝐿(𝑚`|𝑝` ∈ 𝑅,) is the likelihood of an ‘alternate’ model mA given some 

set of size n of ‘alternate’ parameters pA. If the models are nesting (m0 is a special case of mA), then 

the resulting statistic follows a χ# distribution with n-r degrees of freedom4.24. In a statistical or 

machine learning model, the likelihood ratio test can be used for feature selection using the 

following procedure.  First, fit m0 (the null model) to the data.  The null model can have any 

features that are automatically included and must be of the same form as the alternate model.  In 

this case, I used a ridge regression model fit with only IgG lab values, since this is our strongest 

clinical predictor. Next, add a feature and calculate the likelihood of this alternate model.  If the p-

value of the likelihood ratio test falls below the significance threshold, replace the alternate model 

with the null model and continue to the next feature. 

I next utilize feature selection by likelihood ratio test to fit PheNet, using a Bonferroni-

corrected p-value of 8.18x10-5.  Table 4.4 demonstrates that implementing this change in PheNet 

results in a small increase in AUC-ROC (0.90), PPV-100 (0.51) and PPV-norm (0.49). In Table 
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4.6, we can see the top 20 phecodes for this model.  While many of the top phecodes can be found 

on the original list of OMIM-derived phecodes, some additional features such as ‘Influenza’ and 

‘Methicillin resistant staphylococcus aureus’ stand out. 

4.3.2 Learning windows for phenotype recurrence 

One way to visualize the phenotypes of this UC-wide cohort is through a fingerprint 

diagram (Figure 4.6). This diagram separates out each individual case as a column and groups 

them by site, and then contains the OMIM-derived phecodes on the y-axis. CVID cases in our 

cohort range from having most of the OMIM-derived phenotypes to none of them, rendering this 

classification task very difficult with just binary data. However, phenotype data in the EHR is not 

just binary.  Phecodes can appear on a patient’s chart any number of times, and the longitudinal 

aspect of the data (each entry of a phecode has a date attached to it) can be useful in telling the 

patient’s story.  If a patient has an immunodeficiency, then theoretically that patient would not 

only get infections such as sinusitis, pneumonia, and otitis media, but those infections should occur 

more often, last longer, and be more serious than for someone with normal immune function.   

We decided to tackle this idea of whether how often an infection occurs (or rather, how 

many times an infection appears on a patient’s medical record) can be collapsed into a feature that 

is helpful for this model.  One indicator of how many times a specific infection has occurred is a 

count of that phecode. However, a simple count of the number of times a phecode appears in a 

patient’s chart can be misleading.  Patients may visit a physician multiple times during one episode 

of an infection, and even if these visits are not related to the infection, that phecode may be noted 

in the chart.  Instead, we chose to use the idea of a rolling window to capture the number of 

episodes a specific phecode appears in a patient’s chart. 
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The idea behind rolling windows is that if a patient has a phecode in their chart at least 

some number of days d after the most recent occurrence of that same phecode in their chart, then 

this appearance is a recurrence of the infection instead of a relapse.  A recurrence of an infection 

will count as the start of a new episode, and the patient’s episode count will increase by one.  Each 

time the phecode appears in the chart within d days, the start of the window resets.  In this way, 

we can count the number of episodes of a specific phecode a patient has documented in the EHR.  

However, we must first come up with an estimate for d. To determine the optimal d for calculating 

recurrence windows, we turn to the clinical information that antibiotic records can show us.   

If we consider the antibiotic usage of all patients who have had a specific infection phecode 

(for example, otitis media) and take into account guidelines for first-line antibiotic usage and 

second-line antibiotic usage, we can calculate the time between first-line and first-line antibiotic 

use and first-line and second-line antibiotic use for all instances of each.  The time between first-

line and first-line antibiotic use can roughly be assumed to be a recurrence, while the time between 

first-line and second-line antibiotic use can roughly be assumed to be a relapse.  

In Figure 4.7, we can see that the distributions of the length of time between first line and 

first line antibiotic usage differs from the distributions of the length of time between first line and 

second line antibiotic usage in patients with acute sinusitis or otitis media.  However, we found 

that the median time between first line antibiotics (putative recurrence) was > 38 days and the 

median time between second line antibiotics (putative relapse) was < 27 days.  Thus, we chose 30 

days as a standard window length to use to measure recurrence of clinical features in PheNet. 

Using the likelihood ratio test method of feature selection, we found 32 phecodes of the 

original 66 phecodes for which adding recurrence increased the likelihood of the model. We also 

find that overall, adding these recurrence features improves the performance of the model by a 
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substantial amount.  Table 4.4 demonstrates that adding these additional features to PheNet 

results in an almost two-fold increase in AUC-PR (0.87), PPV-100 (0.83) and PPV-norm (0.75). 

4.3.3 Accounting for confounders in a multi-site study 

 One of the major differences between the UCHDW and the DDR at UCLA is that the 

UCHDW is a composite of data from six different UC systems.  Any time data is pooled from 

multiple sources, there will likely be confounding variables in the data that may introduce bias.  

One way to help with confounding is to include confounding variables as covariates4.25, so that the 

effect sizes of the other variables in the statistical model are effectively conditioned on the 

existence or non-existence of that confounding variable.    

 Table 4.5 displays the different demographics that are present across the UCHDW sites.  

Each site is unique, with a diverse set of patients.  The average patient age at UCSF is 36, while at 

the other sites the average patient age ranges from 41 to 46.  The longest average record length is 

at UCLA, where it is 3 years as opposed to 2 elsewhere.  UCR has the largest Hispanic Latino 

population at 29%.  Unfortunately, self-identified race (SIRE) is difficult to assess given the high 

numbers of individuals of unknown SIRE at all sites. While the matching process present in our 

current algorithm causes us to not encounter confounding as much due to forced non-correlation 

between demographics and outcome, the resultant model from PheNet is run on the full database, 

in which it is impossible to ensure “matching” or lack of confounders.  Thus, we chose to create 

an additional unmatched control set to measure the effect sizes of confounders.   

 After training on unmatched controls and adding in the demographic variables as covariates 

in the model, Table 4.4 shows that each of the metrics have improved compared to the previous 

model (AUC-ROC 0.98, AUC-PR 0.95, PPV-100 0.93, and PPV-norm 0.88). However, Table 4.7 

shows that this improvement in performance comes with a cost. Now, only 11 phecodes, 5 
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recurrent phecodes, and 2 lab values add significantly enough to the model to be included. Instead, 

all the demographic variables (age, record length, sex, race, and site) are significant to the model.  

4.4 APPLICATION TO CARDIAC AMYLOIDOSIS 

4.4.1 Introduction to cardiac amyloidosis 

Cardiac amyloidosis is a type of amyloidosis, a disease in which misfolded proteins are 

deposited in organs in the body4.26. Cardiac amyloidosis occurs when these misfolded proteins 

(amyloid plaques) are deposited in the cardiovascular system, which can cause heart failure among 

other symptoms. However, while cardiac amyloidosis is estimated to be a factor in heart failure in 

up to 25% of patients4.27, it is not routinely tested for in the clinic. This lack of diagnosis or 

diagnostic delay worsens the prognosis of those that suffer from this disease4.27.    

One major reason for this diagnostic delay is that cardiac amyloidosis is often mistaken for 

other phenotypes4.28.  As such, patients may see a cardiologist or be suffering from heart failure 

but not be tested for cardiac amyloidosis.  This is especially problematic for patients with 

transthyretin cardiac amyloidosis, for which a drug (tafamidis) can be taken to halt the effects.  

Thus, patients are missing out on a potential treatment for their heart failure by not getting tested 

for cardiac amyloidosis.   

We propose to use the PheNet and the UCHDW to aid in diagnosis through prediction for 

cardiac amyloidosis.  By training PheNet to discern between patients with cardiac amyloidosis -

induced heart failure and patients with other types of heart failure, we hope to show that PheNet 

has potential applications beyond CVID and can help reduce mortality from disease in a variety of 

contexts. 
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4.4.2 Study design 

To train PheNet on a new phenotype, we must first create a reliable case definition.  For 

cardiac amyloidosis, we have two options.  The first option is to use the cardiac amyloidosis 

phecode (E85.82).  However, phenotyping based on the presence or absence of a phecode can be 

unreliable, and it would be best if we could train on the specific type of cardiac amyloidosis for 

which a pharmacological intervention is possible (transthyretin cardiac amyloidosis).  Thus, we 

chose to construct our case cohort from patients with a tafamidis prescription (N=777).  Tafamidis 

is a drug that uniquely treats transthyretic cardiac amyloidosis and will only be prescribed once a 

patient has been positively diagnosed with the condition (unlike a phecode which can appear at 

any point in the diagnostic journey). Table 4.8 describes our cohort of cardiac amyloidosis patients, 

with comparisons from both methods of phenotype ascertainment to two different types of controls 

– controls with heart failure and controls from the general population without any heart failure 

diagnoses in their chart. The cardiac amyloidosis patients are expectedly older than the heart failure 

patients, who are in turn older than the general population.  They are also mostly male, which has 

been noted in the literature4.27. We also see the expected increased prevalence of cardiac 

amyloidosis in the African American population; there is a genetic variant thought to be causal for 

this disease that has a higher frequency in populations that identify as African American. We can 

also see the percentages of common cardiac amyloidosis-related comorbidities, medications, and 

lab results.    

For our controls, we use a cohort of heart failure patients who are matched with our cases 

based on age, sex, record length, race, site, and ethnicity. We utilize an 80/20 training/testing split 

of the case-control data, with each cohort consisting of 10% cases.  For features, we augment 
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phecode information with medication information for medications clinically relevant to cardiac 

conditions. 

4.4.3 Results 

 Using the PheNet framework that we developed for CVID, we trained a ridge regression 

model using 80% up-sampling, no down-sampling, and likelihood ratio feature selection.  First, 

we train a null model based on age. While age is a strong predictor of cardiac amyloidosis in the 

general population, since our cohort is matched on age, any association that PheNet finds between 

age and cardiac amyloidosis would be entirely random.  Thus, without a known strong clinical 

indicator of the disease to use as our starting feature, age stands as the ideal “null” model to test 

additional features against. Table 4.9 shows that, as expected, the performance of this model is 

only slightly better than random, with AUC-ROC = 0.53 (no signal is 0.5) and AUC-PR = 0.12 

(no signal is 0.1 in this case).  

 Next, we use likelihood ratio feature selection to choose medication features that 

significantly improve the model.  We aggregate medications within similar medication classes 

(warfarin, loop diuretics, digoxin, anti-platelets, orthostatic, and neuropathic) and consider 

whether a patient has ever had a medication from each class.  Adding these relevant medications 

improved the model slightly, with an AUC-ROC = 0.63 and AUC-PR = 0.15. 

 Next, we added in binary phecodes features, continuing to use likelihood ratio feature 

selection.  To encourage our model to select for cardiac amyloidosis (as opposed to against heart 

failure), we filtered the available phecodes to only those present in at least 2% of cardiac 

amyloidosis cases.  Adding in these phecodes provides a huge jump in performance, up to AUC-

ROC = 0.95 and AUC-PR = 0.81. 
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 Last, we added in recurrent phecodes to the model.  Nine recurrent phecodes are significant 

for model performance, and they improve the performance of PheNet by a small amount, keeping 

AUC-ROC = 0.95 and getting AUC-PR = 0.81.  Figure 4.8 displays these features and their 

distributions across the patient set in the best performing model.  We can see how sparse the 

medication data really is, which likely contributes to how small the impact of incorporating 

medication information was on the performance of the model.  We also see that PheNet can find 

known comorbidities of cardiac amyloidosis even though its feature selection process is 

completely agnostic to known clinical indicators.  For example, the feature “inflammatory and 

toxic neuropathy” has been shown to be correlated with cardiac amyloidosis status. 

Currently, there is an algorithm to predict cardiac amyloidosis being used in various 

hospitals that was developed by Huda et al4.29. While this algorithm achieves AUC-ROC 0.93 in 

sample (claims data), it performs worse on EHR data (AUC-ROC 0.81).  Our model has higher 

performance metrics (of the reported metrics) on an in-sample dataset, however we leave it to 

future work to see how this model would perform in an out-of-sample set. 

4.5 DISCUSSION 

In this chapter, we seek to create a machine learning algorithm that will help decrease 

diagnostic delay for CVID patients.  Our main goal is to find whether we can correctly classify 

whether patients have CVID with enough precision to merit physician chart review and eventual 

referral of high scoring patients to immunology. Using 186 physician-reviewed CVID patients at 

UCLA, we created PheNet, which can classify CVID patients using marginal logistic regression 

and phecodes selected through the OMIM database. Next, we extend PheNet to the UC Health 

Data Warehouse, where we have 575 physician-identified CVID cases. We revamp our testing and 

training process to ensure a more realistic testing environment without reusing any data in both 
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training and testing.  We also switch to using ridge regression due to the high correlations between 

phenotypes and increase our up-sampling ratio to improve model performance.  We find that 

retraining PheNet with these changes on the UC Health Data Warehouse cohort has a higher 

performance that reusing the UCLA-trained weights on this new patient cohort.  Next, we consider 

how to train PheNet in the absence of clinical knowledge such as OMIM to do the majority of 

feature selection for us.  We introduce likelihood ratio -based feature selection to choose features 

for the PheNet model in a way that is agnostic of clinical knowledge or biases.  We find that 

training PheNet to use likelihood ratio-based feature selection allows us to improve model 

performance. Next, we incorporate longitudinal data in our model.  We utilize antibiotic usage 

information within the UCHDW to find optimal widow sizes with which to infer episodes of care.  

We use these episodes of care to define recurrent phenotypes that we use as features in PheNet. 

These recurrent features substantially improve the performance of PheNet for CVID. We 

additionally consider the impact of including covariates in our model.  We switch to a non-matched 

control group and fit demographic covariates to our model to compare performance with the 

matched control group.  We find that a model that is based on non-matched controls and includes 

demographic covariates further improves the performance of PheNet. Finally, we apply PheNet to 

cardiac amyloidosis, an entirely new phenotype.  We train a state of the art classifier that 

differentiates between heart failure patients with cardiac amyloidosis and those that don’t.   

This work has several implications for machine learning in electronic health records. We 

have shown that it is possible to train a classifier using structured electronic health record data that 

can choose features without manual clinical input.  PheNet is robust enough to handle multiple 

health systems beyond UCLA as well as additional phenotypes beyond CVID. Our likelihood ratio 
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test -based feature selection method finds clinically meaningful features in electronic health record 

data, and we were able to infer episodes of care well enough to use them as a predictive measure.  

This work opens many possibilities of future research.  When likelihood ratio testing is 

employed for feature selection, a p-value must be chosen as a threshold for significance.  In this 

chapter, I used a Bonferroni-corrected p-value, which worked well.  However, it is well known 

that phecodes are correlated with each other, which likely renders a Bonferroni correction too 

stringent.  Finding the optimal p-value cutoff and fine-mapping the phecode signal to an actual 

‘causal’ phecode (rather than a correlated one) would be an important step forward in intelligent 

feature selection for machine learning for electronic health records.  Similarly, while PheNet has 

proven to be robust to incorporating multiple health systems’ data, research has yet to show what 

the best way is to incorporate EHR data from multiple sources, what are the likely confounders, 

and how to balance preserving signal with conditioning out false positives.  

I will conclude with caveats and limitations of our work. While considering rare 

phenotypes it is unlikely but impossible to rule out without chart review the possibility that our 

control cohorts contain some undiagnosed patients.  If this is true, model performance may be 

skewed due to PheNet picking up true positives that we are calling as false positives.  Additionally, 

we make assumptions about the ‘real’ environment in which we will run PheNet; if our control 

group is very different from the rest of the health system population, it is unclear how well our 

model will perform. 

From both humanitarian and economic perspectives, diagnostic delay is a problem in our 

healthcare system. By providing insight into some new strategies to use machine learning to find 

patients with an underlying diagnosis, we hope to be able to reduce diagnostic delay and improve 

the health of our patients. 
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4.6 TABLES 

Table 4.1: UC-wide case cohort for CVID 

 UCSD 
cases (80) 

UCSF 
cases (80) 

UCI cases 
(193) 

UCLA 
cases (192) 

UCD 
cases (20) 

Mean age (SD) 59 (15) 49 (21) 60 (18) 57 (20) 52 (20) 
Mean record years (SD) 7 (4) 9 (3) 7 (4) 8 (4) 9 (3) 

% male 29 50 35 29 45 
% female 71 50 65 71 55 
% Asian 5 1 3 2 5 

% other race 5 11 4 4 5 
% white 88 82 89 71 75 

% unknown 2 2 6 10 5 
% Hispanic or Latino 4 11 3 9 5 

% not Hispanic or 
Latino 

94 86 91 81 90 

% Native Hawaiian or 
other Pacific Islander 

0 0 1 0 0 

% Black or African 
American 

0 0 0 1 0 

% American Indian or 
Alaska Native 

0 0 0 1 0 
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Table 4.2 Top 20 PheNet features and effect sizes using OMIM 

Feature Weight 
Primary thrombocytopenia 1.6 
Acquired hemolytic anemias 1.3 
Low IgG 1.1 
Bronchiectasis 1.0 
Failure to thrive 1.0 
Meningitis 0.90 
Splenomegaly 0.85 
Autoimmune hemolytic anemias 0.66 
Chronic sinusitis 0.65 
Asthma 0.56 
Other arthropathies 0.56 
Diarrhea 0.43 
Thrombocytopenia 0.43 
Alopecia 0.26 
Infections of skin/subcutaneous tissue 0.24 
Pneumonia 0.23 
Lymphadenitis 0.20 
Hypoglycemia 0.18 
Pituitary hypofunction 0.16 
Chronic pharyngitis/nasopharyngitis 0.16 

Table 4.3: PheNet performance on UCHDW compared to UCLA 

 AUC-ROC AUC-PR PPV-100 PPV-norm 
UCLA weights, UCLA test set 0.67 0.25 0.37 0.28 

UCLA weights, UC test set 0.60 0.21 0.23 0.26 
UC weights, UC test set 0.89 0.51 0.48 0.43 

Table 4.4 PheNet performance using intelligence feature selection 

 AUC-ROC AUC-PR PPV-100 PPV-norm 
OMIM weights 0.89 0.51 0.48 0.43 
LRT weights  0.90 0.48 0.51 0.49 

LRT weights + recurrence 0.98 0.86 0.83 0.75 
LRT weights + demo 0.98 0.95 0.93 0.88 
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Table 4.5 Demographic factors vary across the UC health system 

 UCD 
(1,187,105) 

UCSF 
(1,943,998) 

UCLA 
(2,517,440) 

UCSD 
(1,194,390) 

UCR 
(30,607) 

UCI 
(986,844) 

Mean age 
(SD) 

41 (24) 36 (26) 45 (23) 46 (22) 41 (22) 44 (23) 

Mean record 
years (SD) 

2 (3) 2 (3) 2 (3) 3 (3) 1 (2) 2 (3) 

% male 48 47 46 45 32 45 
% female 52 53 54 54 68 55 
% Asian 6 11 7 8 4 13 

% Black or 
African 

American 

6 6 4 5 5 2 

% other race 14 19 10 22 18 15 
% white 38 39 43 50 35 59 

% unknown 33 22 32 14 24 11 
% Native 

Hawaiian or 
other Pacific 

Islander 

1 1 0 0 0 0 

% Multirace 2 3 3 2 2 2 
% Hispanic 

or Latino 
13 17 13 21 29 27 

% not 
Hispanic or 

Latino 

54 62 55 65 47 61 

Table 4.6 Top 20 PheNet features and effect sizes using intelligent feature selection 

Feature Weight 
Primary thrombocytopenia 2.0 
Cushing’s syndrome 1.8 
Renal failure NOS 1.3 
Bronchiectasis 1.2 
Chronic obstructive asthma 1.00 
Splenomegaly 0.90 
Chronic sinusitis 0.86 
Other CNS infection and poliomyelitis 0.84 
Influenza 0.84 
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Log IgG 0.79 
Chronic pain syndrome 0.73 
Ventral hernia 0.69 
Methicillin resistant Staphylococcus aureus 0.62 
Essential tremor 0.60 
Other specified diseases of hair and hair follicles 0.57 
Post-inflammatory pulmonary fibrosis 0.57 
Pericarditis 0.56 
Diarrhea 0.53 
Prurigo and lichen 0.51 
Other disorders of bladder 0.47 

Table 4.7 Top 20 PheNet features and effect sizes of demographics and recurrence 

Feature Weight 
Low IgG 3.9 
Bronchiectasis 3.3 
Chronic pharyngitis/nasopharyngitis 2.9 
Primary thrombocytopenia 2.8 
Chronic sinusitis 2.6 
Other infectious/parasitic diseases 2.0 
Normalized record length 1.8 
Asthma 1.5 
UCI patient 1.4 
Low calculated globulins 1.0 
UCSD patient 0.68 
White SIRE 0.56 
UCLA patient 0.32 
Normalized age 0.0095 
UCSF patient -0.02 
Male -0.18 
Other tests -0.27 
Asian SIRE -1.2 
Attention deficit hyperactivity disorder -1.2 
Need for hormone replacement therapy (postmenopausal) -1.3 
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Table 4.8 Cardiac amyloidosis cohort in the UCHDW 

 Tafamidis 
cases 

E85.82 
cases 

Heart failure 
patients 

General 
population 

Mean age (SD) 79 (8) 78 (10) 69 (16) 42 (24) 
Mean record years (SD) 5 (4) 6 (4) 4 (4) 2 (3) 

% male 89 84 56 46 
% Black or African American 11 11 10 5 

% white 68 67 56 44 
% essential hypertension 52.2 68.1 64.7 13.6 

% coronary atherosclerosis 39.5 47.3 49.0 3.7 
% atrial fibrillation 52.0 64.8 40.7 2.6 

% other peripheral nerve disorders 29.0 38.1 10.2 2.9 
% heart failure with preserved EF 

(diastolic heart failure) 
47.1 63.2 37.4 0.9 

% loop diuretic 84.5 78.9 77.3 6.8 
% neuropathic 45.2 50.7 37.4 12.5 
% orthostatic 13.4 17.8 7.5 0.9 

Median prealbumin (mg/dL) 24.5 18.9 20.0 25.9 
Median troponin (ng/mL) 0.09 0.09 0.03 0.02 

Table 4.9 PheNet performance for cardiac amyloidosis 

 AUC-ROC AUC-PR PPV-100 PPV-norm 
Age 0.53 0.12 0.11 0.13 

Age + meds  0.63 0.15 0.16 0.15 
Age + meds + phecodes 0.94 0.79 0.87 0.74 

Age + meds + phecodes + recurrence 0.95 0.81 0.91 0.74 
 

 

 

 

 

 

 



 142 

4.7 FIGURES 

 

Figure 4.1: Overview of PheNet model training and application within a discovery cohort. 

We present a visual summary of case/control cohort construction, PheNet model training, and 

application within a discovery dataset at UCLA Health. (A) The workflow for constructing a case 

cohort of clinically diagnosed patients with CVID from medical charts. (B) Criteria used to create 

a matched control cohort from the EHR (n = 1106). (C) Construction of the prediction model, 

including feature selection from phecodes, inclusion of laboratory values, a variety of inference 

frameworks, and data balancing techniques. (D) Example of how the PheNet model can be applied 

within a discovery cohort to identify patients with a high likelihood of CVID, who could then be 

further assessed by manual chart review to confirm diagnosis. 
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Figure 4.2: Exploration of model parameters for PheNet. We show AUC-Receiver Operator 

and AUC-Precision Recall curves for the PheNet model using matched case (N=186) and control 
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(N=1,106) cohorts with 5-fold cross-validation. We varied the a) number of additional phecode 

features in addition to OMIM-selected features, b) prediction model, c) inclusion of 

immunoglobulin G (IgG) tests, d) up-sampling, and e) down-sampling. 

 
Figure 4.3: PheNet is more accurate than existing phenotype risk scores for predicting 

CVID. Performance metrics comparing the performance of PheNet and PheRS-CVID within 

UCLA Health population case and control cohorts. The PheNet and PheRS-CVID models were 

trained using weights trained from EHR data. Receiver operating characteristic (A) and precision-

recall (B) curves across the different prediction models are shown. AUC is provided in the legend. 

(C) Individuals with a PheNet score of >0.90 and the proportion of CVID cases captured within 

the varying percentiles of PheNet and PheRS scores. 
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Figure 4.4: PheNet identifies undiagnosed individuals with CVID. CVID clinical validation 

scores for the top n = 100 individuals with the highest PheNet score and n = 100 randomly sampled 

individuals. Each individual was ranked according to an ordinal scale from 1 to 5 quantifying the 

likeliness of having CVID where 1 was defined as near certainty not CVID and 5 was definitive 

as CVID. 

 

Figure 4.5 Overview of PheNet model training and application within the UCHDW. We 

present a visual summary of case/control cohort construction, PheNet model training, and 
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application within UCHDW. (A) The workflow for constructing a case cohort of clinically 

diagnosed patients with CVID from medical charts. (B) Criteria used to create a matched control 

cohort from the EHR. (C) Construction of the separate testing and training cohorts (D) Example 

of how the results of PheNet applied to the UCHDW are disseminated to each of the sites to 

identify patients with a high likelihood of CVID, who could then be further assessed by manual 

chart review to confirm diagnosis. 

 

Figure 4.6 Phenotypic fingerprint of CVID. This phenotypic summary of OMIM phecodes in 

the UCHDW CVID cohort showcases the heterogeneity of the disease.  Each column represents 

an individual separated by site, and each row represents an OMIM-derived phecode separated by 

phenotype category. 
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Figure 4.7 Histogram of medication windows for recurrence. Histogram of episode lengths 

between antibiotic usage in patients with acute sinusitis (left) and otitis media (right).  The blue 

bars mark the number of days between first line antibiotics and second line antibiotics, which 

indicates a relapse.  The orange bars mark the number of days between first line antibiotics to 

first line antibiotics again, which indicates a recurrence. 

 

Figure 4.8 Phenotypic fingerprint of cardiac amyloidosis. This phenotypic summary of the 

model features in the UCHDW cardiac amyloidosis cohort showcases the variety of phecodes 



 148 

correlated to the disease.  Each column represents an individual separated by site, and each row 

represents a feature. 
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5 CONCLUSION 

 In this dissertation, I have studied infectious, complex, and rare disease through the lenses 

of agent-based, statistical, and machine learning models.  In Chapter 2, I showed how local 

differential sensitivity analysis can be applied to biological models ranging from the deterministic 

SIR model to branching processes.  I also develop a novel method to calculate mixed second 

derivatives of a model outcome with respect to its parameters, and I implement this new method 

in addition to multithreaded and first order methods of the same type in the Julia programming 

language. I then benchmark these methods for accuracy, precision, and speed 

 In Chapter 3, I study how to achieve the highest possible power for GWAS in admixed 

populations.  I consider admixture mapping, standard GWAS, and Tractor, and show that because 

the alternative hypothesis of admixture mapping is the same as the null hypothesis of Tractor, 

Tractor will have lower power precisely when admixture mapping has high power (i.e., when 

ancestry-specific allele frequency differences are highest).  Next, I use simulations to investigate 

ancestry-specific allelic effect size heterogeneity and find regions of heterogeneity in which 

Tractor, standard GWAS, or an allele-frequency-difference-dependent choice has the highest 

power.  Finally, I consider real admixed genomes in the UK Biobank and compare the distribution 

of ancestry-specific allelic effect size heterogeneity with my findings for the power for GWAS.   

 In Chapter 4, I create a machine learning model to find patients likely to have an underlying 

condition using electronic health record data.  First, I adapt an existing machine learning method 

(PheNet) for use in the UC Health Data Warehouse, incorporating data from five university health 

systems, updating the statistical methodology to ridge regression on the way.  Next, I implement 

data-driven feature selection, using likelihood ratio tests to iteratively add clinical features to a 

model.  I also used data-driven feature selection to add recurrence features to the model, which we 
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inferred from longitudinal health record data using information about antibiotic usage. Last, I 

applied the new machine learning model to a new phenotype using ridge regression, data driven 

feature selection, and recurrence, to come up with an out of the box method to find undiagnosed 

cardiac amyloidosis patients after a heart failure.   

In the future, I am interested in continuing to study how to best model electronic health 

record data.  Our database, the UC Health Data Warehouse, is comprised of six university health 

systems, all with their own unique patient populations and internal policies.  Understanding this 

structure and the best ways to incorporate six potentially disparate health systems into one machine 

learning model is an important problem to be able to overcome.  Additionally, while CVID is a 

heterogeneous disease, the heterogeneity of the control population is in some ways much larger.  

Methods that can appropriately account for and potentially discard this type of variation will 

increase the portability of any method trained on electronic health record data.   

Overall, this dissertation has served to add to the fields of differential sensitivity analysis, 

GWAS in admixed populations, and machine learning for electronic health records.  It is my hope 

that the works described can help improve human health and equity in the future. 




